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Look Up Table Evaluation 

RGB band extraction and LUT vignette correction proved to be a simple task 

when using Python script within ESRI’s ArcMap 10.2, with typical processing times of 

less than 10 seconds per waveband.  Visual inspection of the camera-recorded RGB 

channels revealed that the red band images exhibited the best signal-to-noise ratio when 

using red edge and NIR filters, followed by green, and then blue.  This finding supports 

that of Lebourgeois et al. (2008), and is likely the result of less light transmission through 

the shorter wavelength-filtered bands.  Accordingly, only red and green bands of the 

RGB images were used in this study, with the green band often presenting the only usable 

data when saturation occurred in the red band.  As Figure 4.4 demonstrates, the 

application of the LUT correction method changed the non-uniform Spectralon images to 

those with the expected, nearly uniform surface properties of a Lambertian reference 

panel.  Furthermore, comparing the CV of images taken at multiple shutter speeds 

suggested that the LUT vignette correction method is valid across a range of light 

Figure 4.3:  By stacking B + W 

689 short pass and Omega 

Optics filters, it was possible to 

isolate light in the RE region.  

This example demonstrates the 

importance of checking the 

transmittance of filters employed 

in remote sensing applications. 
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intensities, as image variation across the Spectralon surface was consistently reduced 

(Figure 4.5).  Problems were encountered, however, when LUTs created in the laboratory 

were applied to images of the Spectralon reference taken in sunlit conditions.  To address 

this issue, LUTs were created for sunlit conditions and used for all subsequent outdoor 

image processing.  It should be noted that several studies have cautioned about the 

ineffectiveness of the LUT method when settings are changed from those used to 

generate the LUT for a camera and lens combination; accordingly, camera ISO and lens 

aperture were held constant within the study (Dean et al., 2000; Yu, 2004). 

 

Figure 4.4:  The LUT method of vignette correction proved to be a reliable method of 

reducing this form of systematic error across images taken of a Spectralon reflectance 

panel.  Further research is needed to determine how various lighting conditions and camera 

settings influence the LUT method’s effectiveness. 
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Figure 4.5:  The LUT method consistently reduced Spectralon image CV over a range of shutter 

speeds, suggesting this method can be used across a range of light intensities.  Less consistent 

results were obtained when correcting outdoor imagery using laboratory created LUTs, 

prompting the creation of separate LUTs for sunlit conditions. 

 

Swatch Target Measurements 

 Adjusting foam swatch images to reflectance proved to be a simple task once 

average DNs of the Spectralon reference panel were determined within the images.  

Comparisons between the camera and spectrometer swatch reflectance values taken 

within the Spectroscopy Lab resulted in r2 values of 0.98 or better for all lens/filter 

combinations (Figure 4.6).  Sunlit comparisons of swatches yielded similar results, with 

r2 values of 0.97 or better for all lens/filter combinations (Figure 4.7).  The high 

agreement found between camera and spectrometer reflectance suggests that consumer-

grade cameras are capable of making accurate measurements of light in user-defined 

wavelength ranges.  Furthermore, these findings also illustrate that observations can be 

made in wavebands related to vegetated features of interest, indicating that such 

consumer-grade camera systems have potential to be incorporated into advanced remote 

sensing applications and research. 
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Figure 4.6:  When swatch reflectance values from the cameras were compared to those of a 

spectrometer, in the University of Nebraska-Lincoln’s Spectroscopy Lab, a close association 

was found between reflectance measured using the two instruments.  Slightly lower r2 values 

and/or higher y-intercepts were found observed when reflectance was calculated from the 

camera’s green band, indicating the higher signal-to-noise ratio present in this band when 

observing red edge and NIR light. 
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Figure 4.7:  Comparison of camera and spectrometer measured swatch reflectance 

values, taken under sunlit conditions, indicated a high degree of similarity between the 

two systems.  The ability of consumer-grade cameras to accurately measure surface 

reflectance suggests potential integration of these systems into advanced remote sensing 

applications and research. 
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Turf Plot Measurements 

 Data collected at the University of Nebraska-Lincoln’s East Campus Turfgrass 

Research Center provided a mixed results and insight into the use of such systems for 

future airborne applications.  Lens hoods were employed on the 28mm lens and filter 

combinations, but could not be used with the 50mm combinations, due to a lack of 

exposed filter threads.  Data collection required approximately 20 to 30 minutes to collect 

all camera system and spectrometer measurements at each solar zenith angle, resulting in 

as much as four to six degrees of change in zenith angles early and late in the day.  

Collection was timed to center data collection around the solar zenith angle of interest.  

Missing data resulted when the Spectralon reference panel was not included in the last 

image of the first two solar angles using the 28mm lens/filter combination precluding the 

calculation of CIred edge difference between the first and last image, and during the first 

solar angle collected with the 50mm lens/filter combination, where a problem with the 

shutter release system only allowed partial plot capture.  After data collection, it was 

discovered that most of the imagery’s Bayer filtered red bands were saturated due to 

overexposure during image capture (Figure 4.8).  Based on this finding, the Bayer filtered 

green band was used for comparison between instruments.   
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Figure 4.8:  This JPEG image, captured as the same time as the raw image, illustrates how 

improper exposure setting resulted in image saturation during turf plot measurements.  This 

can be seen in the image values reaching the peak of their dynamic range, or a DN of 255.  

 

 

 

 

 

 

 

 

 

 

 

Initial image registration resulted in root mean square error (RMSE) values of less 

than one; subsequent, automated image registration and CIred edge calculation required less 

than 15 seconds per image when using a Python script within ArcMap 10.2.  CIred edge 

values derived from the 28mm lens/filter combination and spectrometer resulted in r2 

values ranging from 0.62 to 0.96 (Table 4.1).  These findings indicate the potential for such 

consumer-grade camera systems to be used in advanced research and commercial applications 

where canopy chlorophyll content is a subject of interest.  Conversely, CIred edge values from 

the 50mm lens/filter combination and spectrometer resulted in r2 values ranging from 
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Table 4.1:  CIred edge values, derived from the 28mm lens/filter combination, 

showed strong agreement between CIred edge values captured from a spectrometer 

using the same wavebands.   

0.01 to 0.88 (Table 4.2).  Further investigation of the CIred edge Spectralon difference 

between the first and last 50mm CIred edge image taken at 40o setting suggests that the r2 = 

0.01 relationship is likely the result of changing irradiance during image capture.  

Therefore, this value was removed as an outlier.  In the equation used to calculate surface 

reflectance, 𝐷𝑁𝑡𝑎𝑟𝑔𝑒𝑡 was derived from the first image containing the Spectralon panel 

with the last image also containing the panel to indicate if changes in illumination had 

occurred during multi-image capture.  The CIred edge Spectralon difference should be close 

to zero with consistent lighting during data collection.  A difference of 0.3966 indicates 

irradiance changed drastically during image collection and likely led to the reduced 

correlation that was observed. 

   

 

 

 

 

 

 

 

 

 

Solar Zenith 

(degrees) 

Slope 

(gain) 

Y-intercept 

(offset) r² 

Spectralon CI 

Difference 

70 Rising 1.1824 0.4123 0.63 N/A 

60 Rising 1.4238 0.3233 0.91 N/A 

50 Rising 1.2611 0.3935 0.93 0.0248 

40 Rising 1.3421 0.4082 0.96 0.0306 

30 Rising 1.2796 0.6514 0.93 0.0036 

20 Rising 1.5209 0.5174 0.89 0.0009 

Solar Noon 1.8284 0.5963 0.83 0.0190 

20 Setting 2.1236 0.6001 0.86 0.0328 

30 Setting 2.1936 0.7577 0.79 0.0054 

40 Setting 1.4622 0.2799 0.79 0.0088 

50 Setting 1.6918 1.2179 0.59 0.0016 

60 Setting 2.7216 0.8451 0.83 0.0143 

70 Setting 3.1217 0.6683 0.84 0.0062 
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Table 4.2:  Agreement between CIred edge values derived from the 50mm lens/filter 

combination and spectrometer were generally high, excluding the r2 = 0.01 relationship 

observed as the solar zenith was 50o and setting.   

 

 

 

That changing in illumination affected camera data capture can also be seen in 

Figure 4.9, where samples taken from the image containing the Spectralon panel used for 

reflectance adjustment (sample locations13-15 and 28-30) experienced noticeably less 

variation throughout the course of the day.  The incorporation of a spectrometer 

measuring irradiance during capture would have provided insight to the extent changing 

light conditions affected the resulting measurements and should be an important 

consideration for future research efforts.  Another noteworthy consideration is that, while 

the NIST traceable Spectralon reference panel was used in this study, other characterized 

surfaces of known reflectance (such as reflective tarps, painted targets, or gravel) could 

also be used within the reflectance equation to derive image reflectance.  This could be 

especially important for aerial remote sensing applications requiring larger reference 

surfaces (Jones & Vaughn, 2010).   

Solar Zenith 

(degrees) Slope (gain) 

Y-intercept 

(offset) r² 

Spectralon CI 

Difference 

70 Rising N/A N/A N/A N/A 

60 Rising 0.6338 -0.0019 0.65 0.0162 

50 Rising 0.6802 0.0615 0.52 0.0097 

40 Rising 0.7276 0.0364 0.49 0.0175 

30 Rising 0.7597 0.0551 0.83 0.0290 

Solar Noon 0.6947 0.0585 0.85 0.0162 

30 Setting 0.7624 0.0688 0.85 0.0293 

40 Setting 0.7280 0.0415 0.88 0.0003 

50 Setting -0.1549 0.2806 0.01 0.3966 

60 Setting 0.6534 -0.0013 0.60 0.0150 

70 Setting 0.7336 -0.0396 0.65 0.0143 
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 In addition to changes in irradiance during data capture, another fundamental 

problem can be seen in the inconsistent slope and y-intercept values experienced 

throughout the day and between lens configurations.  This problem is especially apparent 

with the 28mm lens configuration, where slopes range from 1.18 to 3.12 and y-intercepts 

fluctuate from 0.32 to 1.22 (Table 4.1).  Insight into this issue can be gained by reviewing 

the red edge and NIR response of both instruments at each sample location during the 

day.  The boxplots in Figure 4.9, depicting variance in reflectance values for each sample 

location throughout the day, indicate NIR spectrometer values experienced a great deal of 

variation and consistently fell below both camera values and expected reflectance from 

an actively growing, vegetated surface (Jones and Vaughan 2010; McCoy 2005).  A 

review of the spectrometer spectra indicated that there was an inconsistent fluctuation in 

NIR values in the 850-1000nm range (Figure 4.10).  Such fluctuation likely resulted from 

the sensor and, potentially, the fiber optic failure during data capture and would explain 

the very different camera and spectrometer values seen in the 780-1000nm region. 
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Figure 4.10:  Spectrometer response during turf plot data capture indicates there were sensor 

issues in the 850-1000nm wavelength range.  This explains variation in slope and y-intercept 

values with the 28mm lens combination and the relative lack of variation in the 50mm lens 

combination, which focused on an unaffected region of NIR. 

 

 

 

Less variation in slope and y-intercept was observed when looking at data 

collected with the 50mm lens configuration (Table 4.2).  This observation supports the 

theory that spectrometer issues largely led to fluctuation in 28mm lens configuration 

values, as the 780-790nm range of NIR light observed with the 50mm lens combination 

does not appear to have been affected (Figure 4.10).  It is noteworthy that relatively lower 

r2 values were observed between instruments when measuring the 725-735nm red edge 

and 780-790nm NIR bandwidths of light.  Instrument variance associated with sample 

location suggests this poorer relationship may stem from a relative lack of difference 

between turf grass plots when viewed in these wavebands (Figure 4.11).  This is 

especially true in observing the 725-735nm red edge portion of the spectrum where little 

mean variance is observed across turf grass samples, compared with the 680-725nm red 

0

10

20

30

40

50

400 450 500 550 600 650 700 750 800 850 900 950 1000

R
e

fl
e

ct
an

ce
 (

%
)

Wavelength (nm)

Daily Averaged Turf Spectra and Filter Bandwidth

LDP 780 Longpass

O
m

e
ga

 O
p

ti
ca

l 6
8

0
-7

2
5

n
m

Ed
m

u
n

d
 O

p
ti

cs
 7

2
5

-7
3

5
n

m

Ed
m

u
n

d
 O

p
ti

cs
 7

8
0

-7
9

0
n

m



41 

edge range captured with the 28mm configuration (Figures 4.9 and 4.11).  While NIR 

response seemed to vary in both lens configurations, presumably due to a higher amount 

of biomass supported by increased nitrogen, a relative lack of red edge variance would 

reduce the coefficient of determination’s ability to determine the degree of instrument 

similarity. 

Another consideration when viewing the more consistent slope and y-intercept 

values seen in the 50mm lens configuration comparison is a potential reduction in 

bidirectional effects when using lenses with a greater focal length.  Bidirectional effects 

can be conceived as light coming of a surface with a directional component as well as 

variations introduced by shadows and light scattering across a sensors field of view; all 

three factors are likely to play a role in vegetated surfaces, such as the turf grass plots 

(Jones and Vaughan 2010; McCoy 2005).  Since bidirectional effects increase toward the 

edges of the sensor’s field of view, it is likely that the smaller field of view of the 50mm 

lenses would have reduced bidirectional effects in these images (Pellikka et al. 2000).   
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Relationships between the CIred edge measured with both consumer-grade camera 

system and spectrometer highlight several important considerations for future research 

and use in airborne applications, including: proper exposure settings, use of lens hoods, 

and time-of-capture reflectance adjustment.  During data capture, Bayer-filtered red 

bands became saturated due to overexposure.  While the camera’s Bayer-filtered, green 

band provided a substitute in this study, future image saturation can be avoided by 

ensuring camera exposure settings are placed in a range that would not overexpose the 

camera’s red, green, and blue bands.  Additionally, as was found in the filter transmission 

results, using lens hoods to limit the amount of light entering the filter at odd angles 

would help ensure only the bandwidths of interest are being captured.  In the CIred edge 

instrument comparison, it is noteworthy that the 50mm lens/filter combination did not use 

lens hoods and exhibited less overall accuracy, especially at low solar angles.  Future 

research should consider the effect of lens hoods and the incidence angle of surface 

lighting on instrument accuracy.  Further consideration might also be given to the 

possibility of mounting filters between the filter and the lens to determine if this reduces 

angular lighting effects.  

The results of this study also demonstrate how changing light conditions during 

multi-image capture can reduce the accuracy of reflectance calculation and subsequently 

calculated indices.  Figures 4.9 and 4.11 demonstrate how sample variance is greatly 

reduced within the image used to calculate reflectance from a reference surface; samples 

13-15 and 28-30 were taken from this image in the 28mm configuration and samples 10 

and 20 in the 50mm configuration.  This finding supports field data collection 

recommendations of Rundquist et al. (2014), who suggest that remote sensing 
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instrumentation be calibrated as frequently as possible when operating in changing light 

conditions.  It is recommended that future research include reference surfaces within each 

image when possible, or that a spectrometer be used to quantify irradiance during 

capture, so that surface reflectance can be calculated for each image captured. 

Findings from the CIred edge instrument comparison, with daily averaged r2 vales of 

0.83 and 0.70 for the 28mm and 50mm lens/filter combinations (when the 0.01 outlier is 

removed), indicate there is potential for the integration of consumer-grade camera 

systems into many remote sensing applications, including: environmental monitoring, 

precision agriculture, and remote sensing research.  Consumer-grade camera systems, 

mounted on sUAS or manned platforms, could potentially generate standardized data sets 

to help monitor and quantify the effects of regionally changing climatic variables, such as 

the onset of spring foliage or vegetation response to changes in temperature and 

precipitation (Lucieer et al., 2012).  Consumer-grade camera systems mounted on 

airborne platforms could also be implemented within precision agriculture to help place 

fertilizer, herbicide, and other inputs where needed during the growing season (Lan et al., 

2010; Yang et al., 2015).  Research has suggested that generating variable-rate nitrogen 

application maps from ground-based or airborne remote sensing data can increase 

producers’ nitrogen use efficiency, effectively increasing profits while reducing ground 

water contamination and greenhouse gas emissions resulting from excessive fertilizer 

applications (Holland & Schepers, 2010; Quemada et al., 2014; Raun et al., 2002; 

Robertson et al., 2013; Scharf et al., 2002; Solari et al., 2010; Wagner & Hank, 2013).  

The cost-effective nature of consumer-grade camera systems, combined with their high 

spatial and temporal resolution, provides an opportunity to bring remote sensing research 
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to bear in today’s farming operations.  These cost savings and increased spatial-temporal 

resolutions would also benefit the remote sensing research community, where further 

insight into the complexity of space-time effects on remotely sensed data could be 

gained.  With climate change affecting ecosystems at all scales, the ability to objectively 

compare spatial-temporal data related to plant communities can provide insight into the 

influence of changing environmental variables (Cleland et al., 2007; Field et al., 1995; 

Yang et al., 2013).   

 

 

 

CHAPTER FIVE CONCLUSIONS 

 This research was designed to determine the feasibility of using consumer-grade 

cameras to measure surface reflectance in user-defined wavelengths, with the goal of 

incorporating these sensors into manned and unmanned remote sensing applications.  

Imagery from a consumer-grade camera system was calibrated using methods outlined by 

previous research, adjusted to surface reflectance, and compared to reflectance values 

obtained from a spectrometer in the same wavebands of interest.  In both laboratory and 

sunlit scenarios, camera system and spectrometer value comparison resulted in a r2 of 

0.97 or better for all lens/filter combinations evaluated.  The close association between 

instrument-derived reflectance values suggests that consumer-grade cameras are capable 

of accurately quantifying surface reflectance in user-defined wavelengths when the 

proper equipment and processing techniques are utilized.  Furthermore, the ability to 
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collect accurate reflectance data indicates that such consumer-grade camera systems 

could be incorporated into many advanced remote sensing applications and models. 

 To evaluate the camera system in a simulated airborne role, camera and 

spectrometer values were captured over turf grass variable nitrogen calibration plots at 

the University of Nebraska-Lincoln’s East Campus Turf Research Center and used to 

calculate CIred edge, an index known for its close association to chlorophyll content 

(Ciganda et al., 2009; Gitelson & Merzlyak, 1994; Hunt et al., 2013; Jones & Vaughan, 

2010).  Data collection took place under numerous solar zenith angles and changing sky 

conditions, resulting in r2 values ranging from 0.49 to 0.96 when spectrometer CIred edge 

values were compared to those of the camera system.    The high agreement seen in many 

of the spectrometer and camera system comparisons illustrate how these systems could be 

employed to quantify biophysical properties of interest in a host of airborne applications.  

For example, knowledge of chlorophyll distribution in a given crop canopy has many 

potential uses within precision agriculture as it is closely related to the crop’s nitrogen 

status, an especially important consideration when developing variable-rate nitrogen 

applications (Holland & Schepers, 2010; Quemada et al., 2014; Raun et al., 2002; Scharf 

et al., 2002; Solari et al., 2010; Wagner & Hank, 2013).  Where low r2 values were 

observed between instruments, this could be attributed to numerous factors, including a 

lack of lens hoods on the 50mm lens/filter combination, spectrometer errors in the case of 

the 28mm lens NIR wavelengths, and lack of a reflectance standard in each image to 

account for changing illumination during capture.  Each of the fore mentioned issues 

point to future consumer-grade camera research needs, where a better understanding 

could lead to greater utility of these systems in airborne applications. 
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 Consumer-grade camera systems can be used to quantify surface reflectance in 

user-defined wavelengths and used to calculate indices related to biophysical features of 

interest.  The ability of consumer-grade cameras to produce meaningful data has many 

implications for the use of these systems in advanced remote sensing applications and 

research.  Consumer-grade camera systems will allow such work to be conducted with 

the advantages of lower cost of image acquisition, increased ease of use, flexibility in 

data acquisition, and potential integration with numerous platforms.  Multispectral 

consumer-grade camera systems can be obtained at a relatively low cost, and offer an 

operational experience that many are familiar with, suggesting that these systems could 

be more readily obtained and operated by users across numerous disciplines.  The host of 

camera bodies, lenses, filters, and accessories available for consumer-grade cameras 

ensures that remote sensing professionals can configure these systems to collect data 

suitable for a given task at hand, ranging from the collection of simple color imagery to 

narrow bandwidth reflectance related to a given feature of interest.  This configurability 

also allows users to rapidly integrate new technology into their camera system, giving the 

flexibility to field the best technology for a given remote sensing application.  Finally, the 

light weight offered by consumer-grade camera systems is ideally suited for deployment 

on numerous manned and sUAS platforms.  As airspace regulations continue to favor the 

expanded use of sUAS in the United States, the increased spatial and temporal resolution 

offered by camera systems mounted on these platforms has the potential to open a 

plethora of new remote sensing research questions and applications. 

 As the world’s population continues to expand, there is an ever-increasing need to 

monitor our impact on climatic variation and better manage the earth’s resources.  
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Remote sensing has traditionally offered a way in which mankind can accomplish these 

objectives, giving a non-destructive means of quantifying the variability experienced 

across a given landscape in a time-efficient manner.  The integration of consumer-grade 

camera systems into remote sensing applications and research offers the potential to fill a 

niche between ground based, in-situ, measurements and those made by satellite sensors 

by providing a low-cost means of collecting multispectral imagery at very high spatial 

and temporal resolutions.  However, further research is needed on the ability of these 

systems to provide meaningful data related to a given feature under investigation.  Future 

research should consider a systematic approach, where consumer-grade camera system 

data collected from manned or sUAS platforms can be directly compared with the 

features under investigation.  Once the utility of consumer-grade camera systems can be 

established within a remote sensing context, these systems can be used to change the way 

science and industry approach the needs of humanity. 
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