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The demand for miniaturized device and components is rapidly increasing in fields of aerospace, 

energy, optics, electronics and communication, automation and medical. Rotary Ultrasonic 

Machining (RUM) is capable of machining hard and brittle materials such as advanced ceramics, 

glass and silicon used in many industries. Rotary Ultrasonic Machining (RUM) is a hybrid 

machining process in which material is removed by conventional grinding and ultrasonic 

machining. Micro RUM is a downscaled version of a macro RUM and is similar to micro 

Ultrasonic Machining (micro USM), where the vibration takes place in work piece instead of 

tool. 

The goal of this thesis is to conduct a feasibility study and investigate material removal 

mechanism for micro rotary ultrasonic machining (micro RUM). The effect of the spindle speed, 

tool tip geometry, static load, coolant, coolant concentration, work piece property on the material 

removal rate (MRR) and tool wear of micro RUM was studied. In RUM water is normally used 

as a coolant. In this study, milk was first introduced as new slurry in micro RUM and 

comparison experiments were conducted by adopting water with conventional polycrystalline 

diamond (PCD) powder mixture and water only as slurry. It was discovered that as MRR 

increase with an increase in the spindle speed, vibration amplitude and static load irrespective of 



 

type of working fluid. Milk as a working fluid resulted in the higher MRR, a better surface finish 

and less tool wear as compared to water, honey, coffee and PCD slurry as working fluids. 

Capability of micro RUM process for machining bovine bone was investigated. It was also found 

that viscosity of coolant plays a vital role in the material removal process. Temperature rise 

during machining was recorded using micro thermocouples. Scanning Electron Microscope 

(SEM) examination at higher magnifications revealed that using milk as the coolant showed a 

higher occurrence of ductile mode than water as a coolant. Milk was used as a working fluid 

during machining of bovine bone because viscosity of milk and blood is 20, 10 centipoises 

respectively. Surface quality of bone machined part using micro RUM is much better than other 

traditional and non-traditional machining methods. Finally, material removal rate predictive 

model was proposed and verified. 
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CHAPTER 1 

INTRODUCTION 

1.1 Micromanufacturing  

The demand of miniaturized devices and components is increasing rapidly in fields of aerospace, 

energy, optics, electronics, communication, automation and medical. As per each work pieces’ 

physical and chemical properties, different micro manufacturing processes are required. Typical 

micro products include medical implants, analysis equipment’s, sensors, micro-scale pumps, ink 

jet printers, reading caps for hard drives, optical lenses, and pacemakers, etc.  

 Manufacturing processes are connected to the micro and nano level products because 

every industry needs these products using advanced ceramics, metals and polymers. Product 

miniaturization is necessary in micro-electro-mechanical system (MEMS) devices as well as a 

strong need for an efficient use of space, energy and materials. Key parameters in the 

manufacturing of micro parts and devices are: high tolerance, accuracy, high precision, 

machining productivity, surface quality, process capability and work piece property. 
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Figure 1.1. Micromachining using conventional machine tool [1] 

Micro machining is defined as the ability to produce features with the dimensions between 1 µm 

to 999 µm [2]. When using a conventional machining process such as drilling, turning is difficult 

to machine advance ceramics, silicon and titanium alloys.  Using the traditional method in 

manufacturing, a cutting tool is used to machine the work piece; but in non traditional methods, a 

cutting tool is used to machine the work piece but it is a non-contact process between the tool 

and work piece. Micro manufacturing research mainly focuses on developing techniques for 

machining materials which includes: electro discharge machining (EDM), electro chemical 

machining (ECM), laser, ultrasonic machining, and micro wave machining. 
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Table 1.1 Different materials for micro products and related process [3] 

Material Processes 

Silicon based material lithography, wet etching, CVD, RUM, EDM 

and MEMS 

Metals and alloys Micro forming, EDM, drilling, milling, ECM 

and LIGA 

Plastic/polymers Injection modeling, ion etching  

Advanced ceramics Laser, RUM, grinding  

Advance metal ceramics Laser, EDM, ECM 

 

*CVD = Chemical Vapor Deposition 

RUM= Rotary Ultrasonic Machining 

EDM= Electrical Discharge Machining 

MEMS=Microelectromechanical systems 

ECM= Electrochemical Machining 

LIGA= Lithography, electroforming, and molding  
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Figure 1.2. Micromachining with miniaturized machine tools and micro factories [1] 
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1.2 Rotary Ultrasonic Machining  

Using RUM for machining hard and brittle material is a conventional and  cost saving approach. 

In Rotary Ultrasonic Machining process material is removed by ultrasonic machining and 

conventional grinding. 

The components of the RUM process are: Ultrasonic spindle kit, feeding device and a coolant 

system [4]. A coolant was injected between the tool and work piece which flushed away the 

debris. A good surface finish, improved hole accuracy and capability to drill a hole with low 

pressure was achieved by using RUM [5].The use of diamond integrated tool in RUM helped to 

improve hole accuracy and it was easy to drill a deeper hole. 

1.3 Micro Rotary Ultrasonic Machining  

Micro rotary ultrasonic machining (RUM) is derived from macro RUM, which is able to 

machine hard and brittle materials. This process is not commercialized at the micro level. Micro 

RUM is a similar process to Macro RUM but instead of tool vibration, the work piece is vibrated 

ultrasonically at a frequency of 39.5 KHz. The rough performance assessment of the micro RUM 

in comparison to other micro machining processes is presented in table.1.2 [3]. Micro RUM is a 

non- electrical, non-thermal and environmentally safe process. Complex shape features can be 

machined regardless of electrical and chemical properties of work piece materials. 

 

 

Table 1.2 Micro machining process comparison 
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Process Machining 

Speed 

Material Accuracy Spindle  

Micro RUM High  Brittle and Hard Medium High 

Micro EDM Low Electrically Conductive High Low or zero 

Micro ECM Low Electrically Conductive Medium  Low or zero 

Micromechanical 

Machining  

High  Softer than tool High but burr Low  

 

1.4 Research Objectives and Thesis Organization 

The overall goal of this thesis is to develop a relationship between micro RUM parameters and 

understand the material removal mechanism of micro RUM process.  

Objectives of this thesis are: 

1. Perform a parametric study to find out process parameter relation to the performance of 

micro RUM by experiments. 

2. Use different coolants and concentration to perform several experiments to find out effect 

of coolant on the micro RUM process. 

3. Understand mechanisms of material removal and tool wear. 

4. Effect of different process parameters of micro RUM on surface quality of different work 

piece. 

5. Develop and verify a predictive model for material removal rate (MRR) of micro RUM. 

Chapter 2 presents a literature review on RUM in general and micro-RUM in detail.  
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Chapter 3 includes the details of the in-house designed and built experiments, machining 

parameters selected and experiments performed. 

Chapter 4 entails the use of new coolant i.e. milk used in micro-RUM process and the effect of 

process parameters on machining performance. Scanning electron microscope (SEM) images 

were used to understand the material removal mechanism, surface quality and tool wear. 

Chapter 5 encompasses the use of milk as a coolant in bovine bone machining. A comparative 

study between bone and silicon work piece after machining is also discussed. 

Chapter 6 presents the development of a predictive model for material removal rate in micro-

RUM. 

Chapter 7 includes the results of this thesis, conclusions and recommendation for future work.  
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Introduction 

 

This chapter discusses the process mechanism of RUM and micro RUM. It describes the current 

research on the mechanism of the material removal rate and machining parameters of micro and 

macro RUM. 

 

2.2 Rotary Ultrasonic Machining (RUM) 

Rotary ultrasonic machining (RUM) is a hybrid machining process which includes the material 

removal mechanism of diamond grinding and ultrasonic machining [6, 7]. The set up of RUM 

consists of diamond impregnated and an ultrasonically vibrated rotating tool which fed towards 

the work piece at a constant feed rate. A coolant is injected between the tool and the work piece 

through a hollow tube which washes away debris and prevents jamming of the drill as well as 

maintains a cool state [8].  

2.3 Evolution of RUM 

Rotary Ultrasonic Machining was invented in 1964 by Percy Legge [9]. Figure 2.1 shows the 

Principle of Ultrasonic Machining. The power supply produces an alternating electric current at 

frequency 18 to 24 KHz [10]. The tool is vibrated at 20 KHz frequency and fed towards the work 

piece. Abrasive slurry (mixture of diamonds powders and a working fluid) is fed between 

ultrasonically vibrating tool and the work piece. 
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Figure 2.1. Principle of Ultrasonic Machining [10] 
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In Rotary Ultrasonic Machining (RUM), the abrasive slurry is replaced by a diamond 

impregnated tool. Figure 2.2 Illustrate the process of RUM. It was reported that MRR obtained 

from RUM is 6-10 times higher than the conventional grinding process [11, 12].  Comparing 

RUM with USM, RUM is 10 times faster. It is easier to drill deep holes with RUM, and hole 

accuracy is improved [13, 14]. When using RUM, it is easy to achieve high material removal 

rates while maintaining a low cutting pressure, which results in good surface finish and strength 

degradation [11]. 

 

Figure 2.2: Illustration of RUM process [15] 
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2.3.1 Review on RUM history  

Percy Legge presented rotary ultrasonic machining in 1964, but the idea of combining drilling 

with vibration assistance was proposed by G.C. Brown et al patent (U.S. Patent 2,943,383). 

In first RUM device, the slurry was abandoned and a diamond impregnated tool and rotating 

work piece was used. The work piece was held in rotating chuck, only circular holes could be 

machined; and a small work piece could be drilled. 

Improvement in RUM carried out at United Kingdom Atomic Energy Authority (UKAEA) led to 

development of a machine with a rotating ultrasonic transducer. It was possible to precisely 

machine stationary work pieces to close tolerance [15]. 

RUM is also known as Ultrasonic Vibration Grinding [16, 17], Ultrasonic twist drilling [18], and 

Ultrasonic Drilling [9]. 
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2.4 RUM Experimental Work 

Table 2.1 shows the different work piece materials machined by RUM and USM 

Work piece Experimental study Theoretical study 

Glass [19, 20, 21] [22] 

Polycrystalline Diamond 

compacts 

[23]  

Canasite [15]  

Silicon Carbide [24, 25 26]  

Silicon Nitride [24]  

Stainless Steel [24]  

Alumina [27, 28, 29] [ 30] 

Titanium  [31, 32, 33]  

Zirconia [11, 12] [34] 

Potassium dihyrogen 

phosphate (KDP) 

[35]  

Macor (Dental Ceramic)  [36]  

Inconel [37]  
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2.4.1 Material Removal Mechanism 

Impact mode, grinding dominant mode and erosion mode are three major modes involved in 

rotary ultrasonic machining [38]. Figure 2.3 shows the movement of abrasives on the tool during 

the machining process. 

 

 

Figure 2.3. Tool abrasive trajectory [38] 

It is not easy to observe machining surface or chips generated in RUM process due to the 

intrinsic features of RUM process [39]. It was noticed that if the specimen size decreases, the 

probability of stress concentration decreases, and fracture strength increases [12]. 

In RUM, hammering of the vibrating tool on a work piece causes brittle failure in the work 

surface which leads to chip formation and materials removed from the work piece [40]. 

In comparison to other ultra precision machining processes such as polishing, lapping etc., 

ductile regime machining is cost effective and less time consuming [41]. Researcher Bifano 
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postulated a hypothesis about ductile regime grinding that all materials, regardless of their 

hardness or brittleness will undergo a transition from brittle machining regime to a ductile 

machining regime if the grinding rate is made small [42]. 

 

Figure 2.4:  Ductile regime machining [43] 

Figure 2.4 shows the three different zones formed after the tool indentation in work piece. 

Continuous formation of chips and absence of micro cracks and craters are characteristics of the 

first ductile cutting zone. Holes, cracks and surface damage are the features of a brittle cutting 

zone [43]. 
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Figure 2.5. Material removal mechanism in RUM [40] 
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2.5 Machining Parameters 

In this section, past research and experimental investigation about the effect of RUM parameter 

such as static load, material removal rate, spindle speed, feed rate etc, on performance of RUM 

with different work piece as stated in table 2.1 are reviewed. 

 

2.5.1 Static pressure (Force) 

Static pressure has a significant effect on RUM drilling performance. Advance ceramic 

machining such as zirconia, alumina etc. It was noticed that as static pressure increases, MRR 

increases and at a higher load MRR decreases [30, 44]. As static pressure increases, the tool 

cannot vibrate properly and debris accumulated in the gap and hence MRR decreases. For 

composite material C/SiC, it was observed as load increases, MRR increases; but hole clearance 

(surface roughness) decreases [45-48]. As static pressure increases, surface roughness increases 

[12]. 
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2.5.2 Ultrasonic vibration  

 Increase in vibration amplitude leads to increase in MRR. For C/SiC composites, with optimal 

vibration, MRR increases along with an increase in hole clearance [45]. High amplitude of tool 

vibration results in a large force, and it flushes debris out from the gap, hence MRR increases. It 

was discovered that, while machining of dental ceramic macor, cutting force is reduced when 

ultrasonic vibration power increases from 20 % to 30%. Surface roughness increases and then 

decreases after a certain value and also chipping size increases when ultrasonic vibration power 

increases [36]. Similarly, a researcher noticed that as ultrasonic vibration power increased, 

cutting force was decreased while machining of alumina [49], increased for CMC [50] and also 

didn’t vary much for silicon carbide [33]. 

2.5.3 Rotation speed 

Research noticed that the MRR increases when rotation speed increased but not proportionally 

[12, 30, 51]. It was observed that as the spindle speed increases surface roughness decreases also 

chip size decreases [36]. 

2.5.4 Abrasive size 

For advanced ceramics, MRR increases as diamond concentration increase up to an optimum 

value [12, 45]. It was reported that optimal value depends upon the tool oscillation amplitude 

[52]. Hole clearance was found to increase as the abrasive grit size increases [12]. 
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2.5.5 Coolant  

It was noticed that coolant pressure doesn’t have significant effect on MRR. The synthetic 

coolant and tap water show effective performance in RUM drilling than water based solution 

[27]. Tap water and synthetic coolant provide a higher cutting force than water based coolant, 

and these coolant types have an insignificant effect on MRR and surface roughness [53]. An air 

operated double diaphragm pump was introduced into RUM coolant system to decrease the 

machined surface roughness [23]. 

2.5.6 Tool wear 

Separation of diamond grains from grinding debris is difficult while machining of advanced 

ceramics [26]. In grinding, total weight loss of a wheel and wear of a wheel is determined by 

grain fracture and bond fracture [54]. There are four types of wheel wear mechanism: attritious 

wear, grain fracture, bond fracture and grain pullout [55]. 
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Figure 2.6: Wheel wear mechanism [56] 

It was found that while machining, a grain pulled out from tool which resulted in a hole in tool. 

The reason found behind this was the weakening of the interface between diamond grains, and 

the metal bond is due to mechanical impact and high temperature [26]. 

2.5.7 Edge chipping  

The main obstacle in drilling high quality holes is nothing but chipping. Low feed rate and high 

spindle speed result in a lower chipping [57]. Total cost of machining is higher because of larger 

edge chipping thickness [58] reported that the most influential factor on edge chipping is the 

cutting force. 
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2.6 Micro RUM 

In the RUM process, the rotating and ultrasonically vibrating tool with metal bonded diamond 

abrasives feeds towards the work piece at a constant static load. The tool is vibrated at a 

frequency of about 20 KHz. The use of a diamond integrated tool in micro-RUM helps to 

improve hole accuracy and can easily drill a deeper hole. The basic difference in the RUM and 

USM process is that in the RUM process, the tool is impregnated with abrasive particles while 

the abrasive particles are added to the working fluids in the USM process. An investigation 

shows that a larger tool in micro-RUM provides higher material removal rate. The bigger tool 

covers a larger machining area and has more abrasives; therefore, more cutting action takes 

place. Surface roughness values were in range of 0.3-0.8 µm for sampling length of 0.08mm 

[59]. For bone machining, the material removal rate was found to increase with increasing 

spindle speed and abrasive grit size [59]. However, higher spindle speed and larger static load 

resulted in lager hole enlargement compared to lower spindle speed and static force. Drilling 

depth achieved by a cylindrical tool was always higher than a conical tool. Working fluid plays 

an important role in micro RUM by improving the machining conditions as well as removing 

debris out of the gap. Figure 2.7 shows the bone machined by micro rotary ultrasonic machining. 
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Figure 2.7: Bone machined using micro rotary ultrasonic machining [59] 

2.6.1Micro RUM experimental work 

Table 2.2 shows micro RUM experimental work 

Work piece Experimental study Theoretical study 

Silicon [59, 60]  

Bovine bone [61]  
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CHAPTER 3 

EXPERIMENTS 

3.1 Introduction 

In house designed and built experimental set up was used for machining. The experimental set up 

is explained in section 3.2 .1. Different types of tools used are explained in section 3.2.2. Section 

3.2.3 describes the experimental conditions. 

 

 

3.2 Experimental Setup 

 3.2.1 Micro ultrasonic machine  

Micro rotary ultrasonic machining experiments were performed by using an in-house designed 

and built set up of micro ultrasonic machine. Ultrasonic vibration system (transducer and 

generator), positioning system (XYZ-stages), cutting force feedback sensor, system controller, 

machine spindle, tool holder and work piece holder  are the basic component necessary to build 

the micro ultrasonic machine system. The system is an assembly of a piezoelectric ultrasonic 

transducer, a spindle for rotating tool and position of tool was controlled in X, Y and Z axes by a 

precision motion controller with 25 nm resolution. The work piece was vibrated ultrasonically at 

39.5 KHz by mounting it on the free end of the transducer. A working fluid was injected into the 

gap between the tool and work piece. Figure 3.1 describes the system design. Figure 3.2 explains 

principle of operation of micro RUM. Figure 3.3 shows modified experimental set up of micro 

RUM.  

 

 



23 
 

 

 

Figure 3.1. System design diagram 

 

 

  

Figure 3.2. Principle of Micro rotary ultrasonic machining 
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Figure 3.3. Modified experimental set up of micro RUM 

            

(a)                                                                         (b) 

Figure 3.4. SEM images of conical tool (a) and tool tip (b) 

3.3 Experimental Conditions 
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Experiments were conducted using the dental tool under the experimental conditions presented in 

Table 3.1. Experiments were focused on understanding influence of different working fluid, 

spindle speed and static load on material removal rate, surface of work piece and tool shape after 

machining. The vibration frequency was 39.5 KHz and the amplitude was 1 µm. The machining 

time of each experiment was 60 sec. For RUM process water is normally used as coolant. Till 

now, no work has ever been reported on using soft particles as slurry medium in micro-RUM. In 

present work, milk was first introduced as new slurry in micro-RUM and a set of comparison 

experiments were conducted by adopting water with conventional PCD powder mixture and 

water only as slurry. Bovine milk, water and 1%wt Polycrystalline diamond powder (PCD-5) 

slurry were used as working fluids for experiments. Milk contains large and particles which are 

not brittle but they are the fat molecules, an enzyme varies in size 0.1 micron to 90 micron [62]. 

The average diameter of the PCD abrasive particles is 5µm. 

Table 3.1 Machining parameters 

 

Parameters Values 

Static Load (g) 3, 5, 6, 7, 8, 9, 10 

Working fluid Milk, Water, Water + PCD(1%wt) slurry 

Spindle Speed (rpm) 500, 1000, 3000 

Work piece Silicon, PZT 
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CHAPTER 4 

RESULTS AND DISCUSSION 

 

4.1 Introduction 

This chapter discusses the results of the experiments conducted on silicon and PZT material 

using conical dental tool in section 4.2. Section explains tool wear (SEM images) as result of 

machining and section 4.3 describes the surface quality (SEM images of machined surface) 

comparison between different working fluids. 

 

4.2 Experimental results with conical dental tool 

The effect of static load, spindle speed on material removal is discussed in the following 

sections. 

        4.2.1 Effect of static load  

Fig. 4.1 (a) and 4.1 (b) show the effect of static load on MRR for silicon and PZT materials 

respectively, for a tool rotation speed of 3000 RPM. For the same working fluid and the rotation 

speed, a higher static load would induce a larger pressure on working fluid particles resulting in a 

higher MRR. When machining silicon with micro-RUM, the MRR achieved by using PCD slurry 

was the lowest. The reason may be that while machining by larger size abrasives, some particles 

interact with tool particles and tool particles accumulate in the gap resulting in lower MRR.  

When machining PZT material, the MRR achieved by using water as working fluid was the 

lowest despite it was close to that of PCD slurry. For both work piece materials, it was found that 

using milk as the working fluids leads to the highest MRR. It seems that the non-brittle molecule 
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particles of the milk have a significant effect on material removal rate. This result can be 

attributed to the influence of molecule weight on MRR. Unlike abrasives, milk molecules are 

like polymers. These molecules are much heavier than other molecules of abrasive particles. 

Therefore, so during machining process as load increases, impact energy of the molecules 

increases and due to the heaver weight of milk molecules, is exerted on work piece leading to 

higher MRR. 

 

 

(a) Silicon 
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(b) PZT                                                                                  

Figure 4.1. Effect of static load on MRR (working fluid=Milk, Water, PCD-5(1%wt), 

r=3000 rpm) 
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4.2.2. Effect of spindle speed  

Fig. 4.2 (a) and 4.2 (b) show the relationship of MRR of silicon and PZT with spindle speed by 

using different working fluid at constant load of 8g. MRR increases with the increasing of 

spindle speed irrespective of work material and working fluid. When the spindle speed increases, 

the effective number of cutting edges of the abrasive on the tool surface that contact with work 

piece also increases and the material removal process is accelerated [63]. A tachometer was used 

in the experiments to check the speed spindle while machining. It was noticed that spindle speed 

was not constant during machining process. Another reason for the increase in MRR is the faster 

debris removal effect due to the rotation of tool. The chipped materials come in contact with 

abrasives and get crushed and act as slurry medium. From the figures, it can be seen that 

irrespective of work piece material, the highest MRR is achieved by using milk as the working 

fluid. 
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(a) Silicon  

 

(b) PZT 

Figure 4.2. Effect of rotation speed on MRR (working fluid=Milk, Water, PCD-5 (1%wt)) 
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4.2.3. Tool Wear 

Tools used in micro-RUM are metallic and usually have a short life due to the fast tool wear 

[64]. Tools after machining were tested under microscope. Fig.4.3 and Fig. 4.4 show the tool 

shape after a series of micro-RUM machining of silicon and PZT material with milk, water and 

PCD slurry. It was found that tool used for machining with milk shows the least tool wear 

compared to those machined with abrasive slurry and water. It was noticed that abrasive slurry 

has significant effect on tool surface and tool wear. 

 

 

(a) Milk 
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(b) Water 

 

(c) PCD slurry 

Figure 4.3. Tool surface after machining with different fluids on silicon(r=3000rpm, 

A=1µm, t=60sec) 
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(a) Milk 

 

(b) Water 
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(c) PCD slurry 

Figure 4.4. Tool surface after machining with different fluids on PZT(r=3000rpm, A=1µm, 

t=60sec) 
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4.2.4. Surface Quality 

Edge Quality of the work piece material after machining is an important performance measure in 

micro-machining. It was found that abrasive particle size plays an important role in edge quality, 

as small abrasive particles size produce better edge quality [64]. Fig. 4.5 and Fig. 4.6 show the 

surface quality of work piece after machined with different working fluids. It was noticed that 

soft but heavier and larger particle size molecules of working fluid such as milk as slurry fluid 

give much better surface finish in both materials than water and PCD slurries. While machining 

with water and PCD the material from work piece gets chipped off and that prevents further 

machining resulting in a burr like structure. The soft milk molecules get mixed with chipped 

material and form very fine slurry resulting in a better surface finish. 

 

(a) Milk 
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(b) Water 

 

(c) PCD slurry 

Figure 4.5. Surface of silicon work piece after machined with different working fluids 

(r=3000rpm, A=1µm, t=60sec) 
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(a) Milk 

 

(b) Water 
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(c) PCD slurry 

Figure 4.6. Surface of PZT work piece after machined with different working fluids. 

(r=3000rpm, A=1µm, t=60sec) 
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CHAPTER 5 

BONE DRILLING  

5.1 Introduction 

In orthopedic and trauma surgery; many problems are encountered when drilling bone such as: 

hole accuracy, drill wander and heat generation. This study reports an experimental investigation 

of the effect of micro- RUM parameters on productivity, surface quality and temperature rise in 

machining of bovine bone. In present work, milk is used as working fluid during micro-RUM of 

bovine bone because viscosity of milk is 20 centipoises and is expected to maintain a lower 

temperature.  The influence of spindle speed and static load on material removal rate, surface of 

material, heat generation and tool wear has been studied. Literature review, the in- house built 

experimental system used in this study, design of experiments, results and discussions as well as 

conclusions are described in the following sections .  

5.2 Literature Review  

      5.2.1 Bone structure 

Being classified as the body’s main structural supportive material, outer hard layer of bone is 

known as cortical bone whereas inner spongy layer called cancellous bone (Figure 5.1). 

Periosteum and the endosteum contain the bone vascular system which provides it with nutrients 

and oxygen for bone growth and repair. 
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Figure 5.1. Stucture of bone used as work piece 

5.1.2 Bone machining 

 It is reported that while machining, if bone is exposed for longer than 30 s at 50
0
 C, cellular 

necrosis will be induced [65]. Because bone is a poor conductor of heat and its thermal 

conductivity is in range of 0.38-2.3 J/msK, the highest average temperature measured was 93.1 
0
 

C at drill speed of 2900 rpm and a force of two kilogram [66]. It was found that as load 

increased, the drilling temperature also increased [66]. Effect of heat on bone depends upon the 

temperature and duration of exposure [67].Literature indicates that common range of applied 

force during drilling was 6 and 24 N. Fracture, loss of trabeculae from cancellous bone and soft 

tissue defects are common results of grinding bone [68]. It was found that in a 1.2 mm thick pig 

bone, the changes in temperature at 50, 100, 150, and 250 rpm were 2.6
0
, 4.4

0
, 4.5

0
, and 4.7

0 
C, 

respectively [69]. It was observed that as revolution speed increased, the temperature increased 
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significantly irrespective of thickness [69].  The maximum recorded temperature during drilling 

of female bovine tibia at 800 rpm was 49.6
0
 C. Temperature decreased as feed rate increased. It 

was found that bone sex has a significant effect on drilling temperature because drilling 

temperature for female bone is always higher than for male bone. The high calcium content in 

female bone leads to higher temperature during drilling [70]. The drilled bone quality was found 

to be better with an uncoated drill compared to a TiBN coated drill for bone drilling [70]. Series 

of discrete fractures lead to bone chip formation and that resulted from action of the chisel edge 

at the drill bit’s tip [71]. During bovine bone drilling, temperature generation was higher than 

human bone drilling [65]. Low temperature embrittllement reduced the specific energy of 

orthogonal machining and drilling of bone [72].  It was found that temperature increased with 

force during drilling of a bovine femur [73]. Use of coolant, as expected can minimize the 

temperature elevation during bone drilling [67]. Cutting heat is generated because of plastic 

deformation in the tissue as well as between the cutting tool and machined surface [74]. Drill 

speed at 345, 885and 2900 rpm leads to the maximum temperature of bone at75
0
 C, 65

0 
C and 

93.1
0
 C respectively in absence of the coolant [75].Table 5.1 shows the thermal conductivity of 

cortical bone [76] ,table 5.2 shows different technique for bone machining and table 5.3 indicate 

different bone drilling temperature [67]. 
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Table 5.1 Thermal conductivity of cortical bone [76] 

Researcher Thermal Conductivity 

(W/mK) 

Note 

Biyikli et al 0.2 Human bone dry 

Zelenov 12.8, 9.7,9.9 Human bone longitudinal, 

radial, circumferential 

Lundskog 3.56 Human bone 

Vachon et al  0.601, 2.27 Ox bone dry, fresh  

Kirkland 0.888-3.08 Bovine and caprine bone 

Chato 0.38 Human bone fresh 

 

Table 5.2 Bone machining techniques 

Bone Machining techniques Purpose  

Wet grinding Provides a more precise implant bed for 

implants and faster healing [68] 

Milling  Find out maximum temperature increment 

during milling of bone under various cutting 

conditions [77] 

Self drilling and self tapping Screwing the implant in the body [69] 

Bone condensing  Preparation of the implant site in the bone 

because it generates less heat than drilling [78] 

Microwave drilling  Penetrate bone tissue [79, 80] 

Ultrasonically assisted drilling  Compared performance with conventional 

drilling [81] 

Drilling Investigate compatibility with implant [82] 

investigate drilling process in bone [72], find 

out thermal changes caused by varying drilling 
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speeds into bone [ 83]  

Machining with coated cutting tool Prepare bone for biomedical implant [84] 

Laser machining To produce an implant with define surface 

macrostructure[85], Rotational Acetabular 

Osteotomy (RAO) [86], Bone-implant contact 

was found using laser machining implant [87]  

Cutting method based on crack propagation  Machining process for biomaterials, analysis of 

crack propagation in bone [74] 

Piezo-electric bone cutting  Find out effect of piezo-electric bone cutting 

on formation of vascular thrombi in the bone 

[88] 

Abrasive  water jet cutting  Investigate whether the abrasive jet cutting 

quality in cancellous bone with a 

biocompatible 

abrasive is sufficient for the implantation of 

endoprostheses or for osteotomies [89] 

Ultrasonic osteotomy new method for correct condition of jaw and 

face as well as bone cutting [90] 

Micro –rotary ultrasonic machining  Machinability of bovine bone was investigated 

[59] 

 

 

 

 

Table 5.3 Temperature recorded in different bone drilling [67] 
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The literature review clearly indicates that problems related to maintaining or reducing 

temperature rise while increasing the productivity and surface quality during bone machining 

need to be addressed.  This experimental study attempts to address some aspects of the problem. 
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5.2 Experiments 

Experimental setup is shown in Figure 5.2 .Experiments were conducted under conditions 

listed in Table 5.4. Experiments were focused on understanding influence of different 

working fluid, spindle speed and static load on material removal rate, temperature and 

surface of bone and tool shape after machining. The vibration frequency was 39.5 KHz and 

the amplitude was 1 µm. The machining time of each experiment was 60 sec. Different 

concentration of bovine milk and water was used as working fluids for experiments. 

 

Figure 5.2. Experimental set up for bone machining  
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Table 5.4 Experimental conditions 

Parameters Values 

Static load (g) 3, 5,  10 

Working fluid 
Fat free bovine Milk, Water and Milk (10% wt, 50% 

wt) and 100%  wt) in water 

Spindle speed (rpm) 

 

500,1500, 3000 

 
Work piece Bovine bone, Silicon 

  

A preserved bovine rib (1976) was cut into small flat pieces. The flat pieces of cortical bone 

were obtained by grinding away cancellous bone and the curved portion of the cortical bone. 

Figure 5.1 shows a section of bone exhibiting the spongy cancellous inside and the hard cortical 

outside. 

A 2
3
 (two level three factor) full factorial design was used. The experiments were focused on the 

study of the following machining parameters: 

• Rotation speed: rotation speed of tool 

• Static load: load applied on work piece 

• Coolant: coolant used in the process of machining 
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Table 5.5 Low and High level of process variables 

Process Variable Unit Low level 

(-) 

High level 

(+) 

Rotation speed rpm 500 3000 

Static load g  3 10 

Coolant viscosity centipoises Water (1.004) Milk (20) 

 

5.4 Results and Discussion 

     5.4.1 Effect of static load on MRR and temperature with different working fluids 

   Fig. 5.3 (a) and Fig. 5.3 (b) show the effect of static load on MRR and temperature for bovine 

bone for tool rotation speed of 3000 RPM respectively. The material removal rate (MRR) was 

found to increase with an increase in static load. Between two different working fluids, it was 

found that milk resulted in higher MRR than water. It seems that non brittle particles of milk and 

milk viscosity have a significant effect on material removal rate. Milk molecules are heavier in 

weight than water molecules, therefore, during the machining process, impact energy due to 

molecules increases, leading to a higher MRR. It was found that temperature of bone increased 

with increase in static load. The main reason was the heat generated due to cutting action of the 

tool and friction between the tool and work piece. As the load increases: impact energy from the 

tool to the work piece increases and friction occurs between the tool and the work piece leading 

to a higher temperature. However this increase is smaller than reported for other processes 

mentioned in literature review. Temperature range during machining of bone using different 

processes varies from 49.6
0
 C to 93.1

0
 C. In this study, highest temperature observed was  42.1

0
 

C and 42.7 
0 

C using milk and water as coolant respectively which are less than other machining 

techniques 
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(a) Static load vs MRR 

 

(b) Static load vs Temperature 

Figure 5.3. Effect of static load on MRR and temperature rise (working fluid= Milk and 

Water, r=3000 rpm)                                
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5.4.2 Effect of spindle speed on MRR and temperature with different working fluids 

Figure 5.4 (a) and 5.4 (b) show the relationship of MRR and temperature of the bovine bone with 

spindle speed by using different working fluids with a constant load of 5 g respectively. MRR 

increases with increase in spindle speed irrespective of working fluid. When the spindle speed 

increases, the effective number of cutting edges of the abrasive on the tool surface that contact 

with work piece also increases and the material removal process is accelerated, similar to an 

observation reported in [63] for rotary ultrasonic grinding. It can be seen that, the higher MRR is 

achieved by using milk as a working fluid. Temperature was found to increase with an increase 

of rotation speed.  Similar to the effect of spindle speed on temperature rise, this increase is 

smaller than reported for other processes. Temperature range during machining of bone using 

different processes was varies from 49.6
0
 C to 93.1

0
 C (as mentioned earlier)  where as highest 

temperature observed during this study was  40.3
0
 C, 40.6 

0 
C using milk and water as coolant 

respectively.  
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(a) Rotation speed vs MRR 

 

(b) Rotation speed vs Temperature 

Figure 5.4. Effect of spindle speed on MRR and temperature rise of workpiece (working 

fluid= Milk and Water)           
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5.4.3 Effect of coolant concentration on MRR 

Figure 5.5 (a) and 5.5 (b) show the relation of MRR of bovine bone and silicon with different 

concentration of milk in water. MRR increased with the increasing of concentration of milk. 

Higher concentration provides more particles in the coolant to be involved in the machining 

process and increase in material removal rate. 

 

 

(a) Bone 
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(b) Silicon  

Figure 5.5. Effect of coolant concentration on MRR (working fluid= Milk (10% C, 50% C 

and  100% C) in Water, Work piece= Bone, Silicon)     

Minitab 14 software was used to analyze data. Spindle speed, coolant concentration and Static 

load used to find of more influence factor on MRR and rise in temperature of bone during 

machining. Figure 5.6 (a) shows the Pareto chart and normal probability plot of the standardized 

effects for temperature. It was found that 80% of static load and around 50% of spindle speed has 

influence on the rise in temperature of bone during machining. Figure 5.6 (b) shows the Pareto 

chart and normal probability plot of the standardized effects for MRR. It was found that 80% of 

static load has influence on MRR. 
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(a) Temperature 

 

   

 

(b) MRR 

 

Figure 5.6. Pareto chart and normal probability plot for Temperature and MRR 
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5.4.4. Tool wear 

Tools after machining were tested under a scanning electron microscope (SEM). Figure 5.7 

shows the tool tip shape after a series of micro-RUM machining of bovine bone with milk and 

water. It was found that the tool used for machining with milk shows the least tool wear 

compared to those machined with water.  From SEM it was found that there were 18 diamonds 

on the original conical tool tip. It was noticed that after machining with water as the coolant, 

there were 3 diamonds left on the conical tool tip .When milk was used as the coolant, there were 

10 diamonds left on the conical tool tip. Water as the coolant shows more tool wear because the 

increased amount of loosened diamonds impacted on the tool surface and tool wear occurred. 

 

(a) Original conical tool tip 
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(b) Milk 

 

(C ) Water 

Figure 5.7. Conical tool (250 micron) tip surface after machining with different working 

Fluids (r=3000 rpm, A=1µm, t=60 sec) 
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5.4.5. Surface quality 

The surface quality of the work piece after machining in different working fluids is observed. It 

was noticed that using milk as a slurry fluid gives much better surface finish in bovine bone. It 

was noticed that using milk as the coolant shows higher occurrence of ductile machining mode 

than water as coolant. While machining with water the material from work piece gets chipped off 

and that prevents further machining resulting in a burr like structure. The soft milk molecules get 

mixed with chipped material and form very fine slurry resulting in a better surface quality.  

 

(a) Milk 
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(b) Water 

Figure 5.8. Surface of bovine bone after machining with different coolant (tool=conical (250 

micron), r=3000 rpm, A=1µm, t=60 sec)   

 

5.4.5.1 Material removal mechanism 

As per the hypothesis about ductile-regime grinding, regardless of hardness or brittleness all 

materials will undergo from brittle to ductile machining regime if the feed rate is small 

[42].Ductile machining mode evidence was found in both materials. The scratching and cutting 

action due to abrasive grain on the machined surface could be seen in image. 

 



58 
 

 

(a) Milk 

 

(b) Water 

Figure 5.9. Ductile mode machining of bovine bone using milk and water as coolant 

(r=3000rpm, A=1µm, t=60sec, magnification=10000X) 
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(a) Milk 

 

(b) Water 

Figure 5.10. Ductile mode machining in silicon using milk and water as coolant 

(r=3000rpm, A=1µm, t=60sec, magnification=10000X). 
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5.5 Summary 

The effect of different working fluids, different concentrations, static load and spindle speed on 

MRR, work piece surface quality and tool wear in micro rotary ultrasonic machining has been 

studied. A novel working fluid, milk and its different concentrations were used as a coolant for 

bone machining. It is found that milk molecules can effectively improve performance of micro 

RUM using different work piece materials.  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 6 
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DUCTILE MODE MODEL FOR MATERIAL REMOVAL RATE  

6.1  Introduction 

Modeling the MRR during micro rotary ultrasonic machining of silicon is proposed and applied 

to prediction of MRR. In brittle fracture mode, hammering effect of tool oscillation leads to 

crack formation and material is removed [40]. Number of grit size and shape, tool size, number 

of abrasive participation in material removal process all these parameters are uncertain, so it is 

difficult to incorporate the effect of all the parameters in the modeling of material removal rate. 

6.2 Model Assumptions  

1. Material is removed in ductile mode only 

2. All abrasive grits are the same size of sphere with equal space distribution 

3. All abrasive grits take part in machining process  

4. Tool tip is cylindrical 

5. Tool wear has not much effect on material removal process 

6. Abrasive particles don’t deform during machining process 

 

 

 

6.3 Terminology 
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F = Max force on tool, N; 

N = The number of abrasive on end face of tool; 

D= Diameter of tool, m; 

d= Diameter of abrasive particle, m; 

E= Young’s modulus of work piece, Pa; 

v= Poisson’s ratio of work piece; 

A= Vibration amplitude, m; 

s = Spindle speed, rad/s; 

t∆ = Contacting time between the grit and work piece during each vibration period; 

r= Radius of abrasive grit, m; 

W= Volume of material removed by single grit in each vibration period 

δ = Cutting depth, m; 

f= Ultrasonic vibration frequency, Hz; 

L= Distance move by diamond particle during work piece penetration, m; 

 

 

6.4 Development of Model 
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6.4.1. Indentation depth by diamond particle [12] 
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The contact time t∆  can be estimated using grit trajectory equation and cutting depth δ  

Trajectory of a single grit is a sinusoidal curve shown in figure 6.1 [12]. 

 

 

 

Figure. 6.1. Vibration trajectory of a single grit  
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)2sin( ftAZ π=           (6.2) 

Each vibration period, an abrasive grit contacts with work piece at 1t firstly, and at 2t it 

reaches to maximum depth and finally separate from work piece at 3t . So contact time t∆  

can be represented as 
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The maximum cutting depth to which diamond particle penetrates to work piece can be 

calculated using following equation 
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6.5 Model Verification 

In this section the model is compared with the experimental data. Table 6.1 presents the 

machining conditions and material properties. Model was verified for different static load  

 

 

 

 

Table 6.1. Machining conditions and material properties 
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Vibration frequency 39.5 (KHz) 

Vibration Amplitude 1 (µm) 

Abrasive particle diameter 150 (µm) 

Young’s modulus of Silicon 130 (GPa) 

Poisson’s ratio 0.22 

Spindle speed 3000 (rpm) 

Tool diameter 835 (µm) 

Static load 3, 5, 10 (g) 

Number of diamond particles on tool tip 28 

 

 

 

 

 

 

 



66 
 

 

Figure 6.2. Experimental and predicted MRR for different load values 

The model overestimates the MRR for experimental conditions. Predicition of MRR is closer at 

lower load i.e. 3 g. However the difference increased as load increases. The MRR value is 

dependent on K value. As value of K is decreases difference in MRR decreases at higher load 

value. 

6.6 Limitation of the Model 

This model does not consider tool wear effect, also number of diamonds particles left on tool tip 

after machining needs to be considered for model development. The value of K should be 

calculated using material properties of work piece. Plastic flow in material removal is not 

considered. Coolant density should consider while developing model, also number of particle 

accumulation in machining gap need to be address. 
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CHAPTER 7 

CONCLUSIONS AND RECOMMENTATIONS  

7.1 Conclusion 

The following conclusions are drawn from this thesis work 

1. MRR was found to significantly increase due to the increase of the static load and the 

spindle speed irrespective of working fluid. 

2. Milk as a working fluid, resulted in a higher MRR. 

3. Milk, as working fluid, provides a better surface finish and less tool wear as compared to 

water and PCD slurry as the working fluid.  

4. It was found that while using micro RUM, the surface finish that was achieved was much 

better than other machining techniques. 

5. Material removal rate increased as the coolant concentration and coolant viscosity 

increased. 

6. Temperature of bone was found to increase as the static load and spindle speed increased. 

The highest temperatures that were noticed were 42.1 C, 42.7 C. These temperatures 

were collected after using milk and water as coolants respectively which is less than the 

temperature rise during other machining processes. 

7. Ductile mode machining evidence was found after bone and silicon machining. 
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7.2 Recommendations for future work 

System design 

• Instead of stainless steel tool, cemented carbide, PCD tool can be used to obtain 

optimal performance in terms of material removal rate, tool wear and surface 

finish. 

• It was found that rotation speed was not constant during the machining process. 

The use of E2530 variable speed electric motor might improve the accuracy and 

efficiency of micro rotary ultrasonic machining. 

• Micro thermocouples were used to measure the temperature during machining.  

The use of Nano temperature sensor might be helpful to find out the inner 

temperature of the work piece during machining process. 

Coolant  

• Fat free milk was used as a coolant. Instead of fat free, try several types of 

milk and see their effect on machining conditions such as tool wear and 

surface finish material removal rate. 

• Use of “green coolant” might be useful to reduce tool wear and increase 

MRR, and it is environmental friendly. 
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