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Population dynamics tries to explain in a simple mechanistic way the variations of the

size and structure of biological populations. In this dissertation we use mathematical

modeling and analysis to study the various aspects of the dynamics of plant populations

and their seed banks.

In Chapter 2 we investigate the impact of structural model uncertainty by con-

sidering different nonlinear recruitment functions in an integral projection model for

(Cirsium canescens). We show that, while having identical equilibrium populations,

these two models can elicit drastically different transient dynamics. We then derive a

formula for the sensitivity of the equilibrium population to changes in kernel elements

and show that these sensitivities can also vary considerably between the two models.

In Chapter 3 we study the global asymptotic stability of a general model for a plant

population with an age-structured seed bank. We show how different assumptions

for density-dependent seed production (contest vs. scramble competition) can change

whether or not the equilibrium population is globally asymptotically stable. Finally,

we consider a more difficult model that does not give rise to a positive system,

complicating the global stability proof.

Finally, in Chapter 4 we develop a stochastic integral projection model for a

disturbance specialist plant and its seed bank. In years without a disturbance,

the population relies solely on its seed bank to persist. Disturbances and a seed’s

depth in the soil affect the survival and germination probability of seeds in the seed



bank, which in turn also affect population dynamics. We show that increasing the

frequency of disturbances increases the long-term viability of the population but the

relationship between the mean depth of disturbance and the long-term viability of the

population is not necessarily monotone for all parameter combinations. Specifically,

an increase in the probability of disturbance increases the long-term mean of the total

seed-bank population and decreases the probability of quasi-extinction. However, if

the probability of disturbance is too low, a larger mean depth of disturbance can

actually yield a smaller mean total seed-bank population and a larger quasi-extinction

probability, a relationship that switches as the probability of disturbance increases.
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Chapter 1

Introduction

Population dynamics is the area of science which tries to explain in a simple mechanistic

way the time variations of the size and structure of biological populations ([6]). When

modelers drop the assumption of homogeneity within the population, a structured

population model is needed. Structured population models describe the distribution of

individuals throughout different classes, categories or characteristics. For example, the

categorization of individuals can be based upon age, measure of body size, life cycle

stages, gender or genetic differences ([24]). Structured models have the advantage

of being able to create a link between the individual level and the population level,

accounting for dynamical behaviors that simple, unstructured models cannot.

When life-cycle events (e.g. seed production) are roughly synchronous, it is

common for population biologists to use discrete-time models. Population projection

matrix (PPM) models are commonly used for predicting the dynamics of structured

populations in discrete time (for a survey of PPMs, see [12]). In many cases, however,

the stage used to structure the population is continuous (size, for example). Instead

of discretizing the stage variable so that one can use a PPM population modelers,

beginning with [31], have started using integral projection models (IPMs), which
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consider continuous stages (but still consider time as discrete). Despite the different

modeling assumptions, the mathematical properties of PPMs and IPMs are very

similar ([53]). If life-cycle events are not synchronous it is usually more appropriate to

use a continuous-time model (e.g. an ordinary or partial differential equation) to model

the population dynamics. A theoretical comparison of of discrete and continuous time

population models can be found in [79].

In this dissertation we will deal with plant and plant-seed bank models. Because

the life-cycle events of plants are usually assumed to be synchronous, we will use

discrete time models, which can be written as

nt+1 = Mnt, (1.1)

where the sequence {nt}∞t=0 evolves in a Banach space X (which is often called the

population’s state space) and M is an operator from X to itself. The Banach spaces

X we will explicitly consider will be L1(Ω) for some continuous set of stages Ω (in

the IPM case), Rn (in the PPM case) or some combination of the two. Provided

the operator M is linear (the ecological processes involved are density independent),

the long-term populations grow (or decline) exponentially at a rate of λ, the leading

eigenvalue of M .

Often times the processes governing the population can vary from year-to-year via

environmental or demographic stochasticity. In this setting the operator M may be a

function of a stochastic process {θt}∞t=0, so we can re-write (1.1) as

nt+1 = M(θt)nt. (1.2)

If M(·) is linear the long-term behavior of (1.2)(which is surveyed in [34]) is analogous
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to that of (1.1): The mean growth (or decay) rate of the population converges to

a constant value λs, which is constant with probability one. This is often called

stochastic exponential growth (or decay).

Many processes (deterministic and stochastic) in biology are density dependent, i.e.

the operator M or M(·) is nonlinear. When the operator is nonlinear the population

usually does not exhibit exponential or stochastic exponential growth (or decay) as

t→∞. In deterministic, density-dependent models one usually sees the population

converge an equilibrium, a cycle, invariant loop or a strange attractor ([13]). In

stochastic, density-dependent models the possibilities are more vast, although [41]

showed that the probability measure elicited by their model converges to a unique

measure, and therefore the population converges to a stationary random sequence.

In this dissertation we will focus on plant and plant-seed bank models. The stage

variable for a plant population is often assumed to be some measurement of size

([9], [67], [63], [34]) which, being continuous, is most appropriately modeled as the

stage in an IPM rather than a PPM. We will make use of a PPM in Chapter 3,

when we structure the population’s seed bank with respect to (discrete) age. Thus, a

combination of both PPMs and IPMs will be studied in this work.

We assume that density dependence is included in the models in one of two

ways: seed recruitment and/or seed production. Both of these processes are in the

reproductive stage of the life-cycle. Therefore, if we follow the method of [24], [64]

and [76] and break the operator M into two operators M = A+B, where A models

survival and movement between stages and B models reproduction, then only the

operator B is nonlinear. In Chapters 2 and 3 we will use and build upon the results

of [64] and [76] for deterministic, density-dependent population models where only

B is nonlinear. In those papers they further assumed that the stage of a juvenile is

independent of its mother. In the case of a plant-only model, b was the the distribution
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of juvenile plants and cT the functional such that cTn was the abundance of seeds

produced by the population n. The nonlinearity in their model was via a function f ,

where f(cTn) was the abundance of juvenile plants that results from cTn seeds. Thus,

Bn = bf(cTn). With these, one can write (1.1) as

nt+1 = Ant + bf(cTnt). (1.3)

It is often convenient to write f as the product of the establishment probability

g and the number of seeds, i.e. f(cTn) = g(cTn)cTn, where g ∈ C(0,∞) and is a

decreasing function on (0,∞). As long as the triple (A, b, c) satisfies realistic ecological

assumptions and f is increasing, concave down, with f(0) = 0, the long-term dynamics

of (1.3) are determined by the stability radius of (A, b, c), which we will call pe. pe is

the smallest positive number p such that the linear operator A + pbcT has spectral

radius equal to 1. It is proved in [43] that

pe = (cT (I − A)−1b)−1.

If we define g0 := sup
y>0

g(y) and g∞ := inf
y>0

g(y) , then if pe < g∞ the population

eventually blows up, if pe ∈ (g∞, g0) the population has a globally stable equilibrium

vector and if pe > g0 the population eventually goes extinct. The results can be

summarized in the following theorem from [64], a theorem we will use in Chapter 2

and 3 of this dissertation:

Theorem 1.0.1

1) If pe > g0, then the zero vector is a globally stable equilibrium for (1.3) in the sense
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that for every n0 in the positive cone K of X,

lim
t→∞

nt = 0.

Furthermore, for every ε > 0, there exists δ > 0 such that ‖n0‖ ≤ δ implies ‖nt‖ ≤ ε

for all t ∈ N.

2) If pe ∈ (g∞, g0) then there exists y∗ which satisfies f(y∗) = pey
∗. The vector n∗ ∈ X

given by

n∗ = pey
∗(I − A)−1b

is a globally asymptotically stable equilibrium of (1.3) on K \ {0}, i.e.

lim
t→∞

nt = n∗,

and for every ε > 0, there exists δ > 0 such that ‖n0 − n∗‖ ≤ δ implies ‖nt − n∗‖ ≤ ε

for all n ∈ N.

3) If pe < g∞, then there exists n0 ∈ K such that limt→∞ ‖nt‖ =∞.

In Chapter 2 we study the effects of structural model uncertainty of an IPM

of the form (1.3) from [67] for Platte thistle (Cirsium canescens). For structured

population models most research has been focused on analyzing long-term, asymptotic

population characteristics, such as a populations asymptotic growth rate or equilibrium

population density. However, when a population is forced away from its equilibrium

stage distribution by disturbances, such as environmental catastrophes or management

actions, the subsequent dynamics of this population can change considerably in the

short term, making the analysis of such dynamics extremely relevant ([42]). For

example, sudden changes in some vegetative distributions can significantly change the
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structure of associated animal communities ([70], [82]). The impacts of such transient

events on population dynamics can often not be elucidated with equilibrium analysis

(like those summarized in Theorem 1.0.1) alone.

The majority of investigations of transients in discrete-time, structured population

models have focused on models that are density independent ([14], [15], [50], [73],

[74], [75], [71]). However, as previously stated, many systems are driven by density-

dependent mechanisms, but the signal for density dependence in empirical data sets is

often weak. A typical example of this is the seedling recruitment data in Fig. 1 of [67]

and Figure 1.1: the data are few, very noisy, and collected over a limited range of seed

densities. It is challenging to find sensible functions that fit such noisy data well, and

commonly used criteria to choose among different candidate functions (such as Akaike

information criterion (AIC) or Bayesian information criterion) can only provide a

relative ranking of poor fitting functions. Moreover, these statistical criteria do not

consider the ability of a function to project dynamics outside the rage of observed data.

This is particularly relevant if one is interested in dynamics outside the range of data

collection, which is often the case when studying the effect of large perturbations that

can cause transient dynamics. When projecting dynamics outside the range of data

collected, we might consider functional forms that are derived from first biological

principles, but do not rank first based on information criteria, and evaluate the effect

of structural model uncertainty on model predictions.

[67] represents density-dependent seedling recruitment with a power function of

the form f(x) = xν , where x is the density of seeds produced by the population

in one time-step, f(x) is the density of seedlings that result from these seeds and

the parameter ν is fit to data. If ν ∈ (0, 1) (which is essential to describe negative

density-dependent dynamics), the power function has mathematical properties which

include having an unbounded derivative for low seed densities and being unbounded for
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large seed densities. These extreme values of x are outside the range of seed densities

considered in the statistical analysis of [67]. When studying transient dynamics,

extreme values of x are highly relevant. Therefore, we derived an alternative to the

power function for seedling recruitment based on biological principles that takes into

account these extreme values and ask the question: How sensitive are the predicted

transient dynamics to the choice of the function used to characterize density-dependent

seedling recruitment? Our alternative function describes seedling recruitment more

realistically for extreme values of x, as recruitment is essentially linear for small seed

densities and essentially constant for large seed densities. The resulting function is

identical to the classical Michaelis-Menten, Beverton-Holt, or Holling type II functional

response functions.

It also follows through an argument in dimensional analysis that if ν ∈ (0, 1) the

function f(x) = xν cannot be consistent with the rest of model. Whether or not a

power function is a valid model for density-dependent recruitment first depends on

whether or not it is dimensionally consistent with the rest of the model. Therefore, in

Chapter 2 we will add an additional parameter to the power function and use nonlinear

regression to fit the additional parameters, obtaining dimensional consistency. This

additional analysis was not done in the original publication of this work ([30]).

We show that the predicted transient dynamics can differ considerably depending

on which nonlinear function is used for recruitment and, theoretically, this difference

does not have a bound. This is even the case when we insist that the equilibrium

populations predicted by both models are identical. We illustrate these differences in

transient dynamics with ecologically motivated examples.

Once finished with comparing the transient dynamics of the two models, we then

turn our attention to the comparing the sensitivity of the equilibrium population n∗

to small changes in model parameters. Sensitivity and elasticity analyses have proved
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Figure 1.1: The relationship between seedling recruitment in year t+ 1 and estimated
seed production in year t. We digitized the data from Fig. 4 in [67] and estimated
the parameters for an adjusted, two-parameter power function and Michaelis-Menten
function. The dotted curve is the fitted power function f1(x) = 5.0899x0.4453 (AIC =
139.3136) and the solid curve is the fitted Michaelis-Menten function f2(x) = 510.0626x

4706+x

(AIC 137.7314). In Appendix A we describe parameter estimation procedure of the
Michaelis-Menten function.



9

to be ubiquitous in the analysis of models in population biology and ecology (see, for

example, [11], [12], [27], [28], [23], [66], [45]). As in the case of transient dynamics,

sensitivity and elasticity analyses are particularly important in making management

decisions about ecosystems. The most common mathematical analysis consists of

studying the effect of small changes in model parameters on the long-term population

growth rate λ for density-independent (linear) population models. Sensitivity and

elasticity of λ in this case is rather straightforward and captures effects of changes in

model parameters on population measures such as fitness or the success of population

establishment or invasion. However, the model in [67] is density dependent, leading to

a population that converges to an equilibrium in lieu of having a long-term growth

rate.

There have been some attempts to perform sensitivity and elasticity of density-

dependent (nonlinear) population models ([13], [38], [39], [40], [83]). These studies

have consisted of analyzing sensitivities and elasticities of λ from a linearized model

at an equilibrium point and the sensitivities and elasticities of the equilibrium total

population size N∗ := ||n∗|| itself. However, by studying the population via a

single value such as λ or N∗, a modeler may be missing out on important ecological

information. One could ask the question: “Do changes in parameter a affect members

of the population with characteristic b in the long-run?” By using λ or N∗ as a proxy

for the population, one cannot sufficiently answer that question.

We derive an exact formula for the sensitivity of n∗ to changes in the data

(A, b, c). We use these formulas to show, as in the case of transient dynamics, that

the sensitivity of n∗ can vary considerably depending on which nonlinear function is

used for recruitment, even if we insist (again) that the equilibrium populations are

identical to begin with. We also show that, since the derived sensitivity function is a

function of the stage variable in the model, these differences in sensitivity are larger
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for some members of the population than they are for others.

Other theoretical studies have emphasized that, in many circumstances, statistically

well-fitting nonlinear functions are not ecologically realistic (see, for instance, [22], [37],

[68]). However, Chapter 2 highlights the role that the functional form of the density

dependence plays in short-term, transient dynamics and sensitivity of the equilibrium

population n∗, which, to our knowledge, has not been addressed.

In Chapter 3 we consider mathematically the abstract plant model (1.3) coupled

with an age-structured seed bank in RN . Many plant populations have persistent

seed banks. Seed banks consist of viable seeds that have been produced in previous

years. Instead of germinating, the seeds have undergone dormancy and can remain

viable in the soil for more than one season. Seed banks buffer plant populations

against environmental perturbations like fire or pest outbreaks. Therefore, even if

all above ground plant material is destroyed, seeds germinate from the seed bank

and, as a consequence, reduce the probability of population extinction. Furthermore,

seed banks act as a reservoir for genes and/or gene complexes ([35], [80], [54], [48],

[49], [47], [32], [60], [20], [10]). The vital role of seed banks for population viability

necessitates incorporating seed banks specifically into demographic models to avoid

erroneous model predictions ([48], [49], [25]).

Often the survival and/or germination probabilities decrease with seed age ([48],

[2], [17]), in which case it is important to keep track of the age distribution of seeds in

the seed bank. We thus characterize the seed bank as an age-structured population

(so that it is represented by a vector in RN), which is coupled with the dynamics of

the associated plant species. Furthermore we assume that seed production depends

on plant density and seedling establishment depends on the density of germinating

seeds. These two density-dependent processes cannot simply be modeled with one

nonlinear function, as density-dependent seed production only suppresses the density
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of newly created seeds, but density-dependent seedling recruitment depends on the

total density of germinating seeds in the population (which is the sum of new and old

germinating seeds). We assume that the density dependence in seedling establishment

is due to contest competition, and a derivation of this general relationship can be

found in Chapter 2. We consider both contest and scramble competition assumptions

for the density dependence in seed production, as the per-capita seed production data

in [46] suggests that either could be the case.

We prove that, in the case where seed production is modeled with contest com-

petition, there is a globally stable equilibrium vector for the population which is

independent of the initial population. In the case where seed production is assumed

to be modeled with scramble competition the same global stability results hold for

much, but not necessarily all, of parameter space.

Seed banks have infrequently been modeled as structured populations (but see [48],

[10], [32], [17]), and we are unaware of any studies of the global asymptotic stability

of a density-dependent plant-seed bank model. We apply our analytical results to a

model for the annual plant Sesbania vesicaria obtained from [46].

We conclude Chapter 3 by exploring mathematically a plant-seed bank model with

a scalar seed bank that elicits population data that is not in the positive cone of the

population’s state space X. Despite this extra difficulty we are able to salvage most of

the global stability results obtained in Section 3.2. Finally, we analyze the sensitivity

of the equilibrium in a toy plant-seed bank model to changes in the seed survival

probability.

In our final chapter, we shift our attention to annual disturbance specialist plants.

Many annual plants are disturbance specialists, germinating only in freshly disturbed

soil. In these species the frequency, intensity, timing, and spatial extent of disturbance

can greatly influence the probability of germination and survival of seeds in the



12

seed bank ([20], [61], [59]). Disturbances create a more favorable environment for

germination by removing more competitive species ([20], [61], [3], [59]). However,

disturbance also alters the depth distribution of seeds in the seed bank: burying some

seeds deep in the soil where survival is high (and germination rates are low), and

relocating other seeds closer to the soil surface where germination rates are high (but

survival is low) ([61], [60]).

Most attempts at understanding the dynamics of plant-seed bank populations have

ignored the effect of depth. [20] used a stochastic matrix model that considers seed

depth as either “shallow” or “deep”. In their model a disturbance was determined

by a simple Bernoulli random variable with probability of disturbance p, but depth

of disturbance is not explicitly or mechanistically considered. Mohler’s model [60]

included seed depth as a continuous variable, but disturbance was not a stochastic event

because plowing, controlled by farmers, was the only type of disturbance considered.

The objective of his model was to understand the effect of different plowing regimes

on germination probability and seed bank size, but the effect of the seed bank on

long-term population dynamics of the plant population was not examined. Neither

model considered density-dependent processes a priori, which commonly affect seedling

survival and seed production ([54], [46], [61]). If conditions are favorable and the

seed bank size is large it is possible that even disturbance specialist plants experience

density dependence in some years. Thus, we explicitly include density dependence in

the model by assuming that seedling survival decreases with seedling density.

In Chapter 4 we construct a density-dependent stochastic IPM ([31], [33], [34])

for an annual disturbance specialist’s population dynamics. In our model seed depth

in the soil is a continuous variable, and germination is only possible in the presence

of a disturbance. We incorporate the characteristics of a disturbance as a stochastic

process. In each time-step there is a probability h that the population will be disturbed
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and the distribution of possible disturbance depths is exponentially distributed with

mean depth of disturbance ρ (truncated at maximum disturbance depth, D). We

further assume that the disturbance in a given time-step uniformly redistributes all

seeds between the surface and the disturbance depth r, and that the seeds below r

remain in place.

We performed Monte Carlo simulations to study the effect of disturbance probability

h and the mean depth of disturbance ρ on the long-term seed bank population’s mean,

variance, and quasi-extinction probability. Our most interesting result illustrates

a tradeoff between depth-dependent germination and survival, which can only be

understood by modeling seed depth explicitly. For some values of h the mean depth of

disturbance has a non-monotone effect on seed bank population’s long-term mean and

variance. If recruitment is intermediate to low and the disturbance frequency is low,

population mean and variance decreases with increasing mean depth of disturbance

because more deeply buried seeds are brought to the surface and germinate. However,

if in the following year there is no disturbance most newly produced seeds die, so

a high mean depth of disturbance in combination with low disturbance frequency

causes a decrease in the seed bank population. As a consequence, the quasi-extinction

probability increases with increasing ρ. In contrast, the model predicts the opposite

effect of ρ on population mean and variance if disturbance frequency and recruitment

are sufficiently high to approach a quasi-extinction probability of zero. These results

suggest that incorporating the depth distribution of seeds in the seed bank can be

important for evaluating population dynamics and viability of disturbance specialist

plants.
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Chapter 2

Analyzing Structural Model

Uncertainty: Transients and

Sensitivity

2.1 Comparison of Transient Dynamics

To create a consistent setting for the comparison of the two models in this chapter, we

will first give a detailed account of the physical dimensions of each function used in the

IPM. We consider it desirable for a candidate recruitment function to have physical

dimensions that are consistent with the rest of the IPM. We will then illustrate the

differences in transient dynamics between the IPM using the power function and the

Michaelis-Menten function by simulating two ecological events. The first simulation

will mimic an ecological catastrophe, like a fire that destroys all above-ground plant

biomass, where the initial population will consist entirely of seedlings (recruited from

surviving seeds left in the ground). Second, we will simulate an ecological restoration
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project where the initial population consists of large, adult plants. We show that both

IPMs can yield surprisingly large differences in transient dynamics even though the fit

of the Michaelis-Menten function to the empirical data is comparable to the power

function (Figure 1.1) and both IPMs predict the same equilibrium population density

(see Appendix A). We then derive general mathematical properties of the two models

that show why these differences occur.

2.1.1 Model

An IPM can be used to describe how a population with a continuously varying stage

structure changes in discrete time ([31]). The use of IPMs in plant ecology has grown

tremendously over the last decade ([63]). See [9] for a tutorial on constructing IPMs.

The population is characterized by a function, n(x, t), where

∫ x+δx

x

n(y, t) dy

gives the total density of the population near stage x and time t, with physical

dimensions plants(area)−1. This function can be thought of as a continuous-stage

analog to population vectors n(t) = [n1(t) n2(t) ... nm(t)]T in population projection

matrix models (e.g., [12]). We have chosen to use an IPM because the ability to

capture the transient dynamics is often linked to the number of life history stages

assumed in the model ([73], [71]). In a general IPM, the population n(x, t) satisfies

the integrodifference equation,

n(x, t+ 1) =

∫ U

L

K(x, y)n(y, t) dy,
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where K(x, y) is called the kernel of the IPM and L and U are the smallest and largest

observed value for the stage, respectively. We decompose the kernel into two parts

([24]):

K(x, y) = p1(x, y) + p2(x, y)

where p1(x, y) describes survival and growth, which models the probability of movement

from stage y to stage x in one time-step. The fecundity portion of the kernel, p2(x, y),

models the density of stage x individuals that are produced by stage y individuals.

We use a version of the model of [67] that ignores the effect of seed predation

([9]); this modification does not affect the way density dependence is implemented

in the model. The natural logarithm of the plants root crown diameter is used as

an indicator of plant size (the stage variable); the time-step is 1 year. We start by

mentioning the physical dimensions of each of the model components to contrast the

two seedling recruitment functions (power function and Michaelis-Menten function) on

the basis of dimensional analysis. The Platte thistle populations distribution, n(·, ·),

has the dimension of plants(size)−1(area)−1.

Plants that do not flower in a given time-step have to grow and survive to make it

to the next time-step. Let s(·) and fp(·) be the survival and flowering probabilities,

respectively, of members of the population with size y, which are both assumed

dimensionless. We will call the growth function g(·, ·) where

∫ x+δx

x

g(z, y) dz (2.1)

is the probability of a size y plant growing to a size near x in one time-step (which is

a probability distribution for each fixed y). g(·, ·) has the dimension of (size)−1(with∫ x+δx
x

g(z, y) dz being dimensionless).

The probability of not flowering, 1− fp(·), is incorporated into the survival part of
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the kernel because Platte thistle is a monocarpic plant and, as a consequence, flowering

is fatal. The model assumes that survival, flowering, and growth are statistically

independent events. Therefore, the survival/growth portion of the kernel is

p1(x, y) = s(y)(1− fp(y))g(x, y). (2.2)

In order to produce juvenile plants (seedlings), existing plants must survive and

flower. The seeds produced by these flowering plants then need to establish. Seedling

size is assumed to be independent of the size of the mother plant (a low maternal effect

on seedling size has also been reported for other plant species ([81], [69]). Therefore,

the fecundity portion of the kernel is

p2(x, y) = pe(t)s(y)fp(y)Sd(y)J(x),

where Sd(y) is the number of seeds produced by members of the population with size

y (with dimension of (seeds)(plant)−1), and J(·) is the probability distribution of the

size of seedlings, with dimension of (size)−1. The term pe(t) is the probability of a

seed establishing to become a seedling by the next time-step, that is, the probability

that a seed germinates and survives until the next population census. The density of

seeds produced at time t, which we will call γ(t), can be computed via the integral

γ(t) =

∫ U

L

s(y)fp(y)Sd(y)n(y, t) dy.

The dimension of γ(·) is seeds(area)−1.

Seed establishment probability for Platte thistle is assumed to be density dependent

in ([67]). Therefore, for each t, the term pe(t) is a function of γ(t), the total density

of seeds produced at time t. We will call the function modeling seedling recruitment
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f(·), which will be the product of seed establishment probability and the total density

of seeds in the population at time t, i.e.

f(γ(t)) = pe(γ(t))γ(t). (2.3)

We will assume for the remainder of this chapter that s(·), fp(·), Sd(·), J(·) and

g(·, ·) are positive and continuous, with s(·), fp(·) < 1. The full density-dependent

IPM can therefore be expressed as

n(x, t+ 1) =

∫ U

L

p1(x, y)n(y, t) dy +

∫ U

L

pe(γ(t))J(x)s(y)fp(y)S(y)n(y, t) dy,

where p1(·, ·) is as defined in (2.2). More concisely,

n(x, t+ 1) =

∫ U

L

p1(x, y)n(y, t) dy + J(x)f(γ(t)). (2.4)

Notice that the model in (2.4) is the sum of a density-independent growth and

survival and density-dependent seedling recruitment. For the connection between

(2.4) and (1.3) see Section 2.2.1. We must note that some authors have used the term

“recruitment” to mean the same as “establishment probability” (see, for instance, [68]).

In this chapter, these terms are used to describe two distinct, albeit related, concepts,

as seedling recruitment is the product of seed establishment and seed density.

The seed establishment probability in [67] is given by

pe(γ(t)) = γ(t)ν−1, (2.5)

where the estimated value for ν in [67] is 0.67. When pe(γ(t)) is as in (2.5), we

have that f(γ(t)) = γ(t)ν = pe(γ(t))γ(t). In general, a seedling recruitment function,
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f(γ(t)), needs to have the dimension of plants(area)−1 for (2.4) to be dimensionally

consistent. Hence, pe(γ(t)) needs to have the dimensions of plants(seed)−1. Since

ν ∈ (0, 1), the function pe(γ(t)) = γ(t)ν−1 does not have these dimensions for any

choice of ν ∈ (0, 1), which is unacceptable. To remedy this situation we will use the

parameters κ1 and κ2 to define a more appropriate function for seed establishment

probability in the power function case as

pe(γ(t)) = κ1(κ2γ(t))ν−1. (2.6)

If κ2 has dimension (area)(seeds)−1 (which makes the product κ2γ(t) dimensionless)

and κ1 has dimension plants(seed)−1, then pe(γ(t)) = κ1(κ2γ(t))ν−1 := κ(γ(t))ν−1

is dimensionally consistent with the rest of the model. For the remainder of this

chapter we will use this redefined version of the power function, with κ = 5.0899 and

ν = 0.4453, which were found via nonlinear regression ([62]) on the data from Figure

1 in [67] (Figure 1.1).

While the introduction of κ has remedied the fact that the power function in [67]

is not dimensionally consistent with the remainder of the model, we still lack a clear

biological interpretation for the parameters κ and ν. Furthermore, the power function

still has mathematically pathological properties (e.g. having an unbounded derivative

at the origin and being unbounded for large seed densities). In the next section, we

derive a different seedling recruitment function from first principles so that every

parameter has a clear biological interpretation from the dimensional analysis point of

view and the aforementioned mathematical pathologies are not present.
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2.1.2 Derivation of Seedling Recruitment Function

To mechanistically derive the seedling recruitment function, f(γ(t)), we follow in the

spirit of the derivation of the Holling type II functional response in classical predation

theory ([44]). We envision seeds participating in “predation of space”, with the analogy

of “handing time” by Holling in classical predation theory becoming “handling space”

in our derivation. In this model, we only consider intraspecific competition.

Let N(t) be the density of seedlings that are recruited between time t and t+1, i.e.,

the density of seeds produced that survive to become a seedling within one time-step.

First, we make the assumption that the number of seedlings between time t and t+ 1

increases with the space available for seeds to establish, S(t), which has the dimension

of area. Also, assume that N(t) increases (as a function of γ(t)) with the establishing

efficiency rate a, where a has the dimension plants(seed)−1(area)−1. A first attempt

at a relationship between N(t) and γ(t) yields

N(t) = aS(t)γ(t). (2.7)

To obtain a more realistic relationship between N(t) and γ(t), it is reasonable to

assume that the space available to establish will decrease with the number of seedlings,

so S(t) is decreasing with respect to N(t). We envision a seed addition experiment

where only seeds compete among themselves for the available microsite area. If we

define the constant Se to be the space taken up (as a proportion of the total space

available) by one seed that establishes and becomes a seedling, where Se has dimension

area(plant)−1, we can re-write S(t) as follows:

S(t) = Stot − StotSeN(t) = Stot(1− SeN(t)), (2.8)
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Where Stot is a fixed characteristic of the population’s environment and is the total

area of the space available for the plant population’s seeds to establish. Substituting

(2.8) into (2.7) and solving for N(t) yields:

N(t) =
aStotγ(t)

1 + aStotSeStot

. (2.9)

Or, more concisely,

N(t) =
αγ(t)

β + γ(t)
, (2.10)

where

α = (Se)
−1, β = (aStotSe)

−1. (2.11)

The dimensions of α and β are plants(area)−1 and seeds(area)−1, respectively.

(2.10) is the Michaelis-Menten function. Notice that, if we let N(t) = f(γ(t)), we can

write

f(γ(t)) =

(
α

β + γ(t)

)
γ(t) = pe(γ(t))γ(t). (2.12)

Using the Michaelis-Menten function for seedling recruitment, we can clearly

interpret the parameters and their dimensions in a way that is consistent with the rest

of the IPM. For example, the function pe(γ(t)) has dimension plants(seeds)−1 and

decreases to zero as the number of seeds grows to infinity, as one should expect in

the dynamics of negative density-dependent seed establishment. Also, when γ(t) is

small, we see that pe(γ(t)) is roughly the constant α(β)−1 = aStot, which describes

the probability of a seed establishing in the total absence of density dependence. β is

an analog for the familiar half-saturation constant in classical predation theory ([77])

and is here the seed production needed to attain half of the maximum total seedling

recruitment, α.

The Michaelis-Menten function is a limiting case of the derivation of a general
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seedling recruitment function of [29], which considers safe sites for seeds to establish

and makes assumptions about the distribution of seeds after flowering and dispersal.

The derivation in this chapter is considerably simpler and, given that we are not

modeling space explicitly as a variable in the population, perhaps more appropriate

for this setting.

For the remainder of this chapter, we call the IPM that uses the power function

for seedling production the power function model, and we call the IPM that uses the

Michaelis-Menten function the mechanistic model. Note that the survival, growth,

seed production, and distribution of seedlings components remain identical in the

two models, and therefore these names are simply to distinguish the way the seedling

recruitment is implemented in the IPMs.

2.1.3 Results

To compare the two Platte thistle IPMs fairly, we initially calibrated the parameters

of the Michaelis-Menten function to obtain the same equilibrium population density as

the power function model (see Appendix A). Therefore, the subsequent comparisons

of the transient dynamics in Example 1 and 2 are of two IPMs having identical

equilibrium population densities and size distributions. The fit (AIC value) of the

calibrated Michaelis-Menten to the empirical recruitment data was comparable to the

fit of the power function used in [67], while the fit of the power function with the

additional parameter κ was slightly worse (see Figure 1.1).

We define the transient function T (t, ρ) to be the per-capita difference in the total

population density from time t − 1 to time t, dependent on the initial population
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distribution, ρ(·). Mathematically

T (t, ρ) :=
||n(·, t)|| − ||n(·, t− 1)||

||n(·, t− 1)||
, (2.13)

for t = 1, 2, .... Here, || · || refers to the L1 norm defined by

||φ(·, t)|| :=
∫ U

L

|φ(x, t)| dx, (2.14)

which equals the total density of the population φ(x, t), with dimension plants(area)−1.

This transient function definition is similar to the GR metric in [50] for matrix models

and is a function of t and ρ(·) alone, as n(x, t) implicitly depends on the initial

population, ρ(·). The “·” symbol indicates that the stage variable, x, is integrated

away. This measurement of transients compares the populations current total density

with its total density in the previous time-step. We say that the population experiences

a transient attenuation at time t0 if T (t0, ρ) < 0 and a transient amplification if

T (t0, ρ) > 0. Note that we can rewrite the transient function as the per-capita growth

rate minus unity. This makes clear our intention to have the cutoff between transient

attenuation and amplification at zero. Therefore, using our definition, if a population

has a transient attenuation (amplification), it has a smaller (larger) density than it

had one time-step ago.

We have made certain to explicitly write that the transient function depends

on the initial population distribution because the transient dynamics of a single-

species, structured population tend to depend on the population structure that is

remaining after the ecological disturbance (corresponding to t = 0). For examples of

this phenomenon in density-independent matrix models, see [74] and [50]. Next, we

illustrate that the stage structure of the initial population is the key determinant of the
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transient dynamics predicted by the Platte thistle IPMs and provide a mathematical

proof.

Theorem 2.1.1 For a non-zero population n(x, t), which solves the density-dependent

IPM

n(x, t+ 1) =

∫ U

L

p1(x, y)n(y, t) dy + f(γ(t))J(x), n(x, 0) = ρ(x), (2.15)

the value of the transient function at time t0 + 1 can be re-written as

T (t0 + 1, ρ) = En(·,t0)((1− fp(x))s(x))− 1 +
f(||n(·, t0)||En(·,t0)(c(x)))

||n(·, t0)||
, (2.16)

where c(x) := s(x)fp(x)S(x) and En(·,t0)(z) is the expected value of z subject to the

probability density function defined by the normalized population structure P (x, t0) :=

n(x, t0)(||n(·, t0)||)−1. More specifically, the initial value of the transient function is

T (1, ρ) = Eρ(·)((1− fp(x))s(x))− 1 +
f(||ρ(·)||Eρ(·)(c(x)))

||ρ(·)||
. (2.17)

Proof:

The transient function can be explicitly written as

T (t0 + 1, ρ) =
||
∫ U
L
p1(·, y)n(y, t0) dy + f(γ(t0))J(·)|| − ||n(·, t0)||

||n(·, t0)||
,

which, if we define P (y, t0) := n(y, t0)(||n(·, t0)||)−1, T (t0 + 1, ρ) becomes

=

∫ U

L

∫ U

L

s(y)(1− fp(y))g(x, y)P (y, t0) dy dx+
f(γ(t0))

||n(·, t0)||

∫ U

L

J(x) dx− 1

=

∫ U

L

∫ U

L

s(y)(1− fp(y))g(x, y)P (y, t0) dy dx+
f(γ(t0))

||n(·, t0)||
− 1,
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since J(·) is a probability density function. Because we are assuming that the functions

in the kernel p1(·, ·) are all positive and sufficiently smooth functions, with fp(y) < 1

for every y ∈ [L,U ], we can use the Fubini-Tonelli Theorem ([36]) to change the order

of the remaining integral. Therefore,

∫ U

L

∫ U

L

s(y)(1− fp(y))g(x, y)P (y, t0) dy dx

can be rearranged to become

=

∫ U

L

∫ U

L

s(y)(1− fp(y))g(x, y)P (y, t0) dx dy

=

∫ U

L

s(y)(1− fp(y))P (y, t0)

∫ U

L

g(x, y) dx dy

=

∫ U

L

s(y)(1− fp(y))P (y, t0) dy,

as g(·, y) is a probability distribution for each fixed y. By the definition of P (y, t0),

we see that

∫ U

L

s(y)(1− fp(y))P (y, t0) dy = En(·,t0)(s(x)(1− fp(x))).

Finally, note that for every t, γ(t) has the property that

γ(t) =

∫ U

L

c(y)n(y, t) dy = ||n(·, t)||En(·,t0)(c(x)),

which completes the proof.

�

Theorem 2.1.1 states that the transient function is the sum of expected probability

of death (due to flowering and mortality) and expected per-capita seedling production.
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At equilibrium, the transient function is roughly zero, and therefore, per-capita seedling

production offsets mortality. However, when a population is not at equilibrium, we

can expect that the right-hand side of (2.16) will not be zero.

Note that the presence of the expected values in (2.16) and (2.17) strengthens

what is widely believed about the size distributions impact on single-species transient

dynamics. For example, in a plant population where the smallest plants have the

lowest survival probability and produce the fewest seeds, one should expect that the

largest transient attenuations would occur with an initial population largely consisting

of small plants. This is due to the fact that the expected survival probability, seed

production, and subsequent seedling recruitment for small plants will be small. This

will result in the first term of the transient function plus the per-capita seedling

recruitment being small relative to unity, resulting in negative transient function

values.

A surprising result in this chapter is that the total population density alone can

explain why the predicted transient dynamics differ between the two models. For

instance, if the population density in the power function model becomes sufficiently

low (as in transient attenuation), the mathematical properties of the power function

force the transient function to have extremely high values. Notice that, in the power

function model, the transient function can be re-written as:

T (t0 + 1, ρ) = En(·,t0)((1− fp(x))s(x))− 1 +
κEn(·,t0)(c(x)ν)

||n(·, t0)||1−ν
. (2.18)

Assume that the initial population distribution is a predetermined density, M , of

seedlings, i.e., ρ(x) = MJ(x). In subsequent time-steps, the only new members of

the population are seedlings, distributed according to J(·). Because not all seedlings

survive to their second year (for example, EJ(·)((1− fp(x))s(x)) = 0.502 in [67]) and
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grow to a much larger size, the stage distribution stays roughly the same for small t

(see (2.4)). Let us assume that the total population density changes in the right-hand

side of (2.18) without changing the stage distribution at time t0. This implies that the

expected values in (2.18) are also unaffected. When ν ∈ (0, 1) the right-hand side of

(2.18), viewed as a function of ||n(·, t0)||, is unbounded as ||n(·, t0)|| approaches zero.

This is due to the fact that the derivative of the power function f ′(x) = κνxν−1, goes

to infinity as x approaches zero. Thus, for every positive real number N , there exists

a total population density ||n(·, t0)|| = MN such that for all total population densities

smaller than MN , we have

T (t0 + 1, ρ) > N. (2.19)

The conclusion in (2.19) states that, given a fixed stage distribution for the

population, the power function model predicts that there exists a population density

that ensures the beginning of a recovery (i.e., the population density starts rapidly

increasing towards the equilibrium), once the total population density dips below this

value. For instance, in the power function model, it is possible that a population of

largely non-reproducing plants (seedlings) starts to grow once the population density

drops below a particular threshold. We will illustrate this idea in Example 1.

The previous mathematical artifact is not present in the mechanistic model, whose

transient function can be written as

T (t0 + 1, ρ) = En(·,t0)((1− fp(x))s(x))− 1 +
αEn(·,t0)(c(x))

β + ||n(·, t0)||En(·,t0)(c(x))
. (2.20)

When viewed as a function of ||n(·, t0)|| (2.20) is a bounded function. Therefore, no

threshold population density exists below which a population is guaranteed to increase.

For instance, a population of seedlings cannot grow until some of the plants grow

sufficiently large to reproduce.
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When transient amplification occurs, the differences in the predictions of the

two models stem from the properties of the two seedling recruitment functions

when the seed production is greater than the equilibrium seed production γ∗ =∫ U
L
s(y)fp(y)Sd(y)n∗(y) dy (here n∗(·) is the equilibrium population). Because the

power function f(x) = κxν goes to infinity as x goes to infinity, in theory, the power

function will eventually predict much larger seedling recruitment than the Michaelis-

Menten function, and thus, everything else being equal, the power function model will

have larger densities than the mechanistic model when seed production is large. In

Example 1 and 2, we chose model parameters so that equilibrium populations of the

power function model and the mechanistic model are the same (see Appendix A), thus

(γ∗)ν =
αγ∗

β + γ∗
. (2.21)

Assume that γ∗ in (2.21) is the largest seed production such that the two seedling

recruitment functions intersect (as it is the Example 1 and 2, see Figure A.1). In a way

that is analogous to the argument for transient attenuation, for any initial population

ρ(·) and specified difference N between total population densities in the two models,

there exists a seed production γN that elicits (at least) this difference at time t = 1.

To see this, let n1(·, t) and n2(·, t) and solve (2.15) with the same initial condition

ρ(·), but with different seedling recruitment functions f1(·) and f2(·). Then, since the

survival and growth portions of the kernel are the same for both models, one has

||n1(·, 1)|| − ||n2(·, 1)|| = (f1(γ(0))− f2(γ(0)))

∫ U

L

J(x) dx,

which reduces to

||n1(·, 1)|| − ||n2(·, 1)|| = f1(γ(0))− f2(γ(0)),
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as J(·) is a probability distribution and the f ′is are independent of x. If f1(·) is the

power function, we have that γ(0)→∞ implies that f1(γ(0))→∞. In contrast, if

f2(·) is the Michaelis-Menten function, γ(0)→∞ implies that f2(γ(0))→ α, which

confirms the claim of the existence of a γN that elicits a difference of at least N

between the two models. Furthermore, because

γ(0) = ||ρ(·)||Eρ(·)(c(x)),

it follows that, given an initial probability density function for the population, one

can find ||ρ(·)||N such that for ||ρ(·)|| > ||ρ(·)||N , we have

||n1(·, 1)|| − ||n2(·, 1)|| > N. (2.22)

In Example 2, we will assume a homogeneous initial population and display this

result by showing how increasing ||ρ(·)|| increases the difference between the predicted

populations after only one time-step.

2.1.3.1 Example 1: Transient Attenuation

To illustrate the consequences of the preceding mathematical discussions for predicted

transient dynamics, we first envision a brief ecological disturbance, like a fire, that

wipes out the entire population of plants, with the exception of seeds in the soil that

germinate to become seedlings in the following year, but does not significantly alter

the long-term environmental conditions. While this is clearly an oversimplification, the

goal of this example is to merely evaluate if the way we implement density dependence

influences predicted transient dynamics.

To simulate this event, we will let ρ(x) = MJ(x) be the initial population,
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which consists entirely of seedlings, so ρ(·) is the population distribution of M

seedlings(area)−1. Very small plants do not reproduce, and seed production in-

creases with plant size (see [67]), but plants of all sizes can die. Thus, we expect

that a population consisting entirely of seedlings will decrease initially, before rising

back to its equilibrium population density. Accordingly, for small t both IPMs predict

transient attenuation because c(·) is increasing and survival and the probability of not

flowering are always below unity. The main difference in transient dynamics between

the two models is how quickly the population increases to its equilibrium density

following the disturbance event. We began our simulations with M values equal to

10, 15, 25, and 50 seedlings(area)−1 using identical initial size distributions of the

seedlings, J(·) in each simulation. As expected, in both IPMs the population density

values decline initially (see t = 1 in Figure 2.1). However, the power function model

predicts a faster recovery than the mechanistic model and the smaller the M value the

larger the difference between the predicted recovery patterns For example, if M = 10

and t = 10, the power function model predicts a population that is roughly twice as

large as that of the mechanistic model. This is in accordance with the mathematical

observation in (2.19). Initially, the total population densities and size distributions

of the populations are very similar for both models. However, when the population

density becomes small enough, the transient function of the power function model has

large positive values (relative to the mechanistic model), and faster recovery begins

(see t = 1 years in Figure 2.2).

2.1.3.2 Example 2: Transient Amplification

We expect transient amplification when the initial size distribution is skewed toward

larger plants with higher reproductive value relative to the stable size distribution
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because the function c(·) is increasing. We envision a restoration scenario where plants

are grown in a greenhouse, until they reach a large target size and then transplanted

into the field. In this case, the initial population consists entirely of large plants.

To simulate this hypothetical situation, we used an approximation to the Dirac-

Delta distribution (an explanation of the Dirac-Delta distribution can be found [52]),

centered at nine tenths of U , the largest root crown diameter in the population. Thus,

ρ(x) = Mδ(x− 0.9U), with initial population densities, M , of 10, 15, 25, and 50. As

Figure 2.3 illustrates, the power function model predicts transient amplifications that

are much larger relative to the mechanistic model, and this difference is more extreme

for large initial population densities. If recruitment is modeled by the power function,

the large seed densities produced by a population of large plants correspond to larger

seedling densities compared to recruitment being modeled by the Michaelis-Menten

function. This difference grows with the initial density because, naturally, large initial

populations of seed-producing plants correspond to large seed production values,

and thus, when large seed production values are the input for an unbounded power

function, the model subsequently predicts larger seedling densities than that if we

used the (bounded) Michaelis-Menten function. For example, in our simulation, a

density of 50 large plants(area)−1 produces 1, 021, 754 seeds. This is much larger

than the equilibrium seed production of γ∗ = 18, 904.6 seeds (see Appendix A for this

calculation), and thus, we would expect from (2.22) that the differences in recruitment

would be quite large. In fact, the power function allows 1.07% of these seeds to become

seedlings while the Michaelis-Menten function allows only 0.05% of these seeds to

become seedlings. This difference in seed establishment probability corresponds to an

order-of-magnitude difference in transient amplification between the two models.
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Figure 2.1: Predicted transient population dynamics for the two Platte thistle models
resulting from simulating the ecological event in Example 1. The initial densities, M ,
are (a) 10, (b) 15, (c) 25, and (d) 50 seedlings(area)−1; in each simulation, the size
distribution of the seedlings was identical to that reported in [67].
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Figure 2.2: Predicted transient function values for the two Platte thistle models
resulting from simulating the ecological event in Example 1. The initial densities, M ,
are (a) 10 (b) 15 (c) 25 and (d) 50 seedlings(area)−1; in each simulation, the size
distribution of the seedlings was identical to that reported in [67].
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Figure 2.3: Predicted total population densities for the two Platte thistle models
resulting from simulating the ecological event in Example 2. The initial densities,
M , are (a) 10, (b) 15, (c) 25, and (d) 50; in each simulation, M was distributed
according to the Dirac-Delta distribution centered at nine-tenths of the largest ob-
servable plants size. The dashed line illustrates the equilibrium population density
( 862.29 seedlings(area)−1).
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2.2 Comparison of Sensitivities

In this section we will derive exact sensitivities for the general nonlinear population

model analyzed rigorously in [64] and [76] and reviewed in Chapter 1. This sensitivity

is a structured sensitivity, i.e. it is a function of the stage variable in the model, as

opposed to being one value (like λ or N∗ = ||n∗||). We will then provide formulas for

the sensitivities for the mechanistic and power function models from [67] used in the

previous section. We will use these formulas to highlight further differences between

the using a power function and a Michaelis-Menten function for seedling recruitment.

We will also show that these differences are a function of the root crown diameter (the

stage in the model) because the sensitivities of the equilibrium are also a function of

the root crown diameter, showing the extra information one can obtain via structured

sensitivities.

2.2.1 Derivation of Sensitivities

To derive the sensitives of the equilibrium population n∗ we will consider the model

(2.4) in the abstract form (from 1.3)

nt+1 = Ant + bf(cTnt). (2.23)

We will consider the sensitivity of n∗ to small changes in the data (A, b, c). In the

model (2.4) A is the survival and movement operator defined by the integral kernel

Au =

∫ U

L

p1(x, y)u(y) dy,

for u ∈ L1[L,U ]. A small change ε∆A to the (x0, y0) element of A would be the limit

of smooth functions approximating ε multiplied by the 2-dimensional Dirac-Delta
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distribution δ(x− x0, y − y0).

The vector of newborns b from (2.4) is simply the probability distribution J(·) ∈

L1[L,U ] and the fecundity functional c is defined by

cTu =

∫ U

L

c(y)u(y) dy,

where a small change in b or c at the point x0 would analogously be ε multiplied by the

limit of smooth functions approximating the 1-dimensional Dirac-Delta distribution

δ(x− x0). For notational purposes we’ll use δ to denote the Dirac-Delta distribution

used for each perturbation. The actual Dirac-Delta distribution used will be clear

according to context.

We will consider the case where n∗ is positive for any non-zero initial population

n0 (i.e. the stability radius pe < sup
y>0

g(y) := g0). From Chapter 1,

n∗ = pey
∗(I − A)−1b,

where y∗ is the unique nonzero solution of the equation f(y∗) = pey
∗. Because there

is a simple formula for the equilibrium population n∗ we can find exact sensitivities of

this equilibrium to changes in the data (A, b, c).

We will first look at a small change in the operator A defined by the integral kernel

in (2.2.1). Let ∆A := εδ be a small perturbation to the (x0, y0) element of the integral

kernel A, small enough so that the spectral radius of A + ∆A is still smaller than

unity. The subsequent change in n∗ is then

∆n∗ = ∆(pey
∗)(I − A)−1b+ pey

∗∆((I − A)−1b).

For the models compared in this chapter one can express pey
∗ as a function of pe, which
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we’ll denote pey
∗ := ψ(pe). For example, if f is the power function f(x) = κxν , then

ψ(pe) = κ
1

1−ν p
ν
ν−1
e and if f is the Michaelis-Menten function, then ψ(pe) = α − βpe.

Since we write pey
∗ := ψ(pe) we can therefore write

∆(pey
∗) = ∆(ψ(pe))∆(pe).

Since pe = (cT (I − A)−1b)−1 we can calculate ∆(pe) as follows:

∆(pe) =
1

cT (I − (A+ ∆A))−1b
− 1

cT (I − A)−1b

=
−cT (I − (A+ ∆A))−1∆A(I − A)−1b

cT (I − (A+ ∆A))−1bcT (I − A)−1b
.

Dividing by ε and taking the limit as ε→ 0, we have

dpe
dA

=
−cT (I − A)−1δ(I − A)−1b

(cT (I − A)−1b)2
:= −(pe)

2wT δv,

where w := cT (I − A)−1 and v := (I − A)−1b are the left and right eigenvectors,

respectively, of the operator A + pebc
T , with eigenvalue λ = 1. Using a similar

calculation we have that

d((I − A)−1b)

dA
= (I − A)−1δv,

Therefore, the sensitivity of n∗ to changes in the (x0, y0) element of A is

dn∗

dA
=
dψ(pe)

dpe
(−(pe)

2wT δv)v + ψ(pe)(I − A)−1δv. (2.24)

Notice that the sensitivity of the equilibrium population n∗ to a change in A is

the sum of the change due to changes in equilibrium reproduction (ψ(pe)) and the
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change due to changes in equilibrium population structure (v = (I − A)−1b).

Employing a similar calculation one can show that the sensitivity of the equilibrium

population n∗ to a change ∆c := εδ in c obeys the following equation

dn∗

dc
=
dψ(pe)

dpe
(−(pe)

2δTv)v.

Notice that, since the equilibrium population structure v = (I −A)−1b does not

depend on c, the sensitivity dn∗

dc
comes only from changes in equilibrium reproduction.

Because b is usually a probability vector, if one makes a perturbation to an element

in b a compensatory perturbation must also be made to another (or a series of other)

elements in b. The biological realism of these perturbations notwithstanding, let’s

assume for now that one is perturbing b by removing ε from the x0 element and adding

ε to the x1 element, using ∆b := εδ to denote such a perturbation. By an analogous

calculation to that of dn∗

dA
we have that

dn∗

db
=
dψ(pe)

dpe
(−(pe)

2wT δ)v + ψ(pe)(I − A)−1δ. (2.25)

2.2.2 Results

We will now compare the sensitivity of n∗ in the power function model (from [67])

to that of the sensitivity of n∗ mechanistic model. To do this it is advantageous

of us to write the abstract equations (2.24), (2.2.1), (2.25) using the terms in the

integral projection model. In this setting the population is a function of the root

crown diameter, x, and thus n∗ = n∗(x). Define w(·) and v(·) to be the left and right
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eigenfunctions, respectively, of the integral operator A+ pebc
T defined by

(A+ pebc
T )u :=

∫ U

L

(p1(x, y) + peJ(x)c(y))u(y) dy,

for all u ∈ L1[L,U ], with eigenvalue 1. Also, let K(·, ·) denote the kernel function

such that, for all u ∈ L1[L,U ]

(I − A)−1u :=

∫ U

L

K(x, y)u(y) dy. (2.26)

Using (2.26), the sensitivity of n∗(·) to changes in the (x0, y0) element of p1(·, ·)

becomes

dn∗(x)

dp1(x0, y0)
=
dψ(pe)

dpe
(−(pe)

2w(x0)v(y0))v(x) + (ψ(pe)v(y0))K(x0, x). (2.27)

The sensitivity of n∗(·) to changes in the x0 element of c(·) becomes

dn∗(x)

dc(x0)
=
dψ(pe)

dpe
(−(pe)

2v(x0))v(x). (2.28)

Finally, the sensitivity of n∗(·) to a small decrease in the x0 element of J(·) with a

compensatory small increase in the x1 element of J(·) becomes

dn∗(x)

db(x0, x1)
=
dψ(pe)

dpe
(−(pe)

2(w(x1)− w(x0)))v + ψ(pe)(K(x1, x)−K(x0, x)). (2.29)

To compare the power function and mechanistic models’ sensitivities we will only

consider the situation where the models have identical equilibrium populations. It

is important to note that, if the equilibrium populations are the same, the second

terms of (2.27) and (2.29) will both be the same. Therefore, any differences between
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the two models will come from differences in the term dψ(pe)
dpe

. For the power function

model dψ(pe)
dpe

= κ
1

1−ν ν
ν−1

p
1

ν−1
e , which is roughly equal to −15178. For the mechanistic

model dψ(pe)
dpe

= −β, which is equal to −4706. This is an order of magnitude difference.

Therefore (2.28) and the first terms of (2.27) and (2.29) will differ by an order of

magnitude.

The presence of structure in the sensitivity functions (2.27), (2.28), (2.29) yields

interesting results for the differences between the power function model and the

mechanistic model. For example, Figure 2.4 shows that the sensitivity functions are

essentially the same for x < −0.25 and x > 3, but can differ greatly in the interval

[0, 2.5] (the spike is due to the second term in (2.27)). This structure in sensitivity is

even more apparent when exploring these differences in the sensitivities (2.29) and

(2.28) (Figures 2.5 and 2.6, respectively). The lack of a spike in Figure 2.6 is due to

the lack of a second term in (2.28).

Overall, the power functional model’s equilibrium population is more sensitive than

that of the mechanistic model, although this sensitivity is not generally distributed

equally throughout the population. The change in a particular element in the kernel

can elicit a spike in the sensitivity function (due to the second term in (2.27) and

(2.29)), but there is also proportional change in the long-term population structure

v(·) that is from the term dψ(pe)
dpe

(which we’ve shown is very different depending on

the nonlinearity used). Because the population is weighted heavily towards members

with stage variable x ∈ [0, 2.5] (see Figure 2.7), a proportional change in population

structure v(·) is going to more drastically change members of the population whose

stage variable falls into this interval in the long term.

An interesting result is that the differences in the fecundity sensitivity (2.28)

between the power function model and the mechanistic model are smaller than the

differences in the survival and movement sensitives (2.27) and the sensitivities to
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changes in the newborn vector (2.29). This may be due to the fact that the function

c(·) contains the largest terms in the model, so a small change in c(·) may not be

noticeable when eventually calculating the new stability radius pe. It may also be

due to the fact that c(·) has no bearing on the long-term population structure, v(·),

leaving (2.28) with only one term.
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Figure 2.4: The sensitivity of the power function model (black lines) and the mecha-
nistic model (orange lines) to a small change in the (x0, y0) = (2.46, 2.46) term of the
kernel p1(·, ·).

2.3 Discussion

Using the model for Platte thistle in [67] as a case study, we have shown that the pre-

dicted transient dynamics and sensitivities of the predicted equilibrium population can
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Figure 2.5: The sensitivity of the power function model (black lines) and the mechanis-
tic model (orange lines) to a small decrease in the x0 = 1.71 term and a compensatory
increase in the x1 = 3.21 term of the function J(·).
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Figure 2.6: The sensitivity of the power function model (black lines) and the mecha-
nistic model (orange lines) to a small change in the x0 = 2.46 term of the function
c(·).
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Figure 2.7: The equilibrium population n∗(·) of the model in [67] with the adjusted
power function. Note that this function is proportional to the right eigenfunction v(·)
of the integral operator

∫ U
L

(p1(·, y) + peJ(·)c(y))(·) dy with eigenvalue 1.
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vary considerably depending on how we implement density dependence in recruitment,

even if the equilibrium dynamics are the same. Through mathematical arguments

we verify that the differences in transient dynamics between these two models are

due to the differences in functional form, and not simply a product of parameter

uncertainty, as the results in (2.19) and (2.22) are for general power functions and

general Michaelis-Menten functions. So while some parameter values may display

these differences more drastically than others, the results in this chapter suggest that

for some ecological outcomes the predicted transient dynamics will differ, regardless

of parameter values used, and these differences do not have a bound.

It is interesting to note that when the parameters in the Michaelis - Menten

function were fit independently in [30], the resulting equilibrium population density

(||n∗|| = 429 plants(area)−1) was similar to the beginning population size reported in

Fig. 1a in [67] prior to the invasion by Rhinocyllus. This would appear to build on

the suggestion made in this chapter that mechanistic modeling, followed by standard

methods of parameter estimation, offers the ideal prospect for obtaining a useful model

when the data are poor.

The differences in the sensitivities of n∗ between the two models should not be

surprising: The differences in sensitivity stem from differences in the derivative of

ψ(pe), which is implicity tied to the functional form for f used. It is an observed

phenomenon in approximation theory that the derivative of the function that best

fits a particular set of data often bears no resemblance to the derivative of the “true”

function being approximated (see, for example, Example 6.3 in [72]). Thus, it is very

possible that two models can have very distinct derivatives dψ(pe)
dpe

while having very

similar ψ(pe) functions, which is what is seen in Section 2.2.2.

The importance of choosing the most appropriate functional form for density-

dependent recruitment has been recognized in other contexts. For example, [68]
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has shown that the functional form used for recruitment can influence the optimal

harvesting strategy for duck populations in a nontrivial way. They argue that the

differences between these functions often lie outside the range of observed, or even

anticipated, data, and therefore, statistical methods are limited in determining what

functional relationships in vital rates are most appropriate. To address the effect

of the resulting structural uncertainty on model predictions, the authors advocate

for active probing of models that vary in their implementation of vital rates, which

means exploring model predictions outside the realm of data collection. The benefit

of this active scrutiny is often overlooked because model validation typically focuses

on replicating previously observed phenomena ([55]). In the study by [67], there

were no empirical recruitment data for very low or very high seed densities available

and the two alternative recruitment functions differ mainly in the unobserved data

range (Figure 1.1), and in the way they elicit dψ(pe)
dpe

. The differences in the predicted

transient dynamics and in the sensitivities to the predicted equilibrium population to

the choice of the recruitment function highlights the value of active probing of model

components.

Density dependence occurs due to the regulatory nature of limited resources in

a system. The strength of density dependence should be highest at some carrying

capacity, and population growth should not be limited at low population density,

resulting in essentially linear dynamics. The Michaelis-Menten function is essentially

linear for small seed densities (provided that β is sufficiently large). This implies

that the density dependence does not influence population dynamics until the seed

density is sufficiently high, which is what we expect to see. In contrast, when using

the power function, seedling recruitment is never linear for low seed densities. Thus,

the power function may poorly predict the dynamics at low density levels. In other

words, while the population might not be experiencing the biological effects of density



48

dependence, we are still predicting its dynamics subject to the mathematical effects

of density dependence ([42]). In Example 1, we discovered that the power function

models transient function can become arbitrarily large when the populations density

becomes sufficiently small (see (2.19)). This is due to the fact that the power functions

derivative is unbounded for seed production densities close to zero, which causes

seed establishment probability to be greater than unity for small seed densities. For

example, if γ(·) = 3, then

κγ(·)ν = 5.0899(3)0.4453 = 8.301782

which implies that pe(·) = 2.777, which is clearly false, as seed establishment probability

needs to be bounded above by a number smaller than unity to make sense. The largest

seed establishment value for the Michaelis-Menten function is much smaller than unity,

as pe(·) ≤ α(β)−1 = 0.108.

In the case where the total seed production is much larger than the available

number of microsites, a constant number of seedlings are recruited for each time-step.

No such limiting value will be obtained in the power function because it is unbounded

for large seed values, and the number of seedlings always increases with the number

of seeds produced. Even though models using the power function to represent density-

dependent recruitment predict equilibrium population densities, the lack of an upper

bound for recruitment may still lead to poor predictions of annual seedling recruitment

if populations are skewed toward individuals with high reproductive value. The result

is an overestimation of the potential magnitude of transient amplification (see (2.22)

and Figure 2.3). In contrast, the Michaelis-Menten function is more realistic in this

situation because, as the number of seeds produced goes to infinity, the density of

recruited seedlings approaches the constant α. This constant is determined by the
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number of available microsites.

We have shown that the choice of the functional forms, such as density-dependent

recruitment, can have profound effects on predicted transient dynamics and the

sensitivity of the equilibrium population to changes in model parameters. This

suggests that more emphasis should be placed on functional relationships that are

derived based on mechanistic ecological principles.
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Chapter 3

Global Stability of Plant-Seed

Bank Models with Age-Structured

Seeds

3.1 Plant-Seed Bank Model

In this chapter we will analyze the global stability of a general plant population with

an age-structured seed bank. Seed banks have been modeled as structured populations

in only a few references (e.g. [48], [10], [32], [17]). We are unaware of any studies of

global asymptotic dynamics of a general density-dependent plant-seed bank model

with an age-structured seed bank.

Plant Population

The plant population at time t is described by a vector nt, which is assumed to be

in the cone of non-negative vectors in a Banach Space X1 for t = 0, 1, . . .. In a PPM

([12]) X1 is a finite dimensional space Rm (so nt is a population vector), and in an
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IPM ([33]) X1 is often the space L1[L,U ] of integrable functions on the interval of

stages [L,U ] (so nt(x) is a function of a continuous variable x). In the absence of a

seed bank, the plant population is governed by the abstract, nonlinear population

projection model

nt+1 = Ant + bf(h(cTnt)), (3.1)

which is similar to (1.3) with f(·) = f(h(·)). In this model, however, there are two

nonlinearities representing density dependence; one for seed production (h) and one

for recruitment from seedlings to plants (f). In the absence of a seed bank one could

simply compose these functions into one nonlinearity. However, when modeling the

seed bank this distinction, as we will see in later sections, is important.

The terms in (3.1) are as follows: The population projection operator A is in

L(X1), the space of bounded, linear operators from X1 to itself. An example of A is

the kernel

An =

∫ U

L

p1(x, y)n(y) dy,

from Chapter 2. In this example n ∈ X1 = L1[L,U ]. The operator A models the two

ecological processes of survival and movement from one stage to another. Since this

process cannot create new members of the population, r(A) < 1 (where r(A) is the

spectral radius of A). The vector b ∈ X1 models the stage distribution of new plants

(which is assumed to be independent of mother plant, [33]), and cT is a bounded linear

functional on X1, where cTnt gives the abundance of available seeds produced by the

population at time t in a completely density-independent environment. The notation

cT is used instead of c in order to distinguish a functional on X1 from a vector in X1,

much like a row vector is distinguished from a column vector. An example of b is the
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probability distribution J(·) from Chapter 2, and an example of the functional c is

cTn =

∫ U

L

c(y)n(y) dy

from Chapter 2, for n ∈ X1, which again in this example is L1[L,U ].

3.1.1 Density Dependence

Consider the following feedback between plants, seeds and seedlings, which is assumed

to occur in one time-step:

mature plants
seed production−→ seeds

germination−→ seedlings
establishment−→ juvenile plants.

We will assume that the seed production and establishment processes can be density

dependent. The seed production density dependence will be modeled with the function

h and the establishment density dependence with the function f .

In many models the density of seeds produced (the seed production step) by the

plants in the population is assumed to be density independent (for example the model

studied in Chapter 2 from [67]). In the model studied in Section 3.2.1 we assume such

a density-independent relationship by letting h(y) = y, so the number of new seeds

produced in the population during time t will simply be cTnt.

However, some plant populations experience a density-dependent relationship

between the abundance of plants and seeds produced (see, for example, [46]). Therefore,

we will assume in Sections 3.2.2, 3.2.3, 3.2.3.1 and 3.2.3.2 that the abundance of new

seeds produced at time t is h(cTnt), where h is a nonlinear function (which we’ll

assume has a maximum of cTnt, the seed production in the complete absence of
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density dependence).

The establishment density dependence will be modeled as follows: The scalar

quantity f(y) represents the number of new plants generated by y available germinating

seeds, which we will assume is the sum of newly created seeds that germinate at

time t and the sum of all older seeds that germinate. We assume that seeds become

seedlings (via germination) in a density-independent way. This process is implicit in

the function f ; as one could assume that f(y) = f̃(gpy), where gp is the (constant)

germination probability for the y available seeds and f̃(·) is the function such that

f(y) = f̃(gpy) for all y ∈ [0,∞), but we will suppress this subtlety. The diminishing

amount of available microsites then causes a density-dependent relationship between

the abundance of germinating seeds and the subsequent abundance of new plants in

the population.

It is natural to view f(y) as the product of the number of germinating seeds y

available and the probability g(y) that a germinating seed eventually becomes a new

plant in that time-step. Thus

f(y) = g(y)y. (3.2)

We will call the function g the establishment probability.

We consider the following conditions on f and g:

(D1) g ∈ C(0,∞), g is a decreasing function on (0,∞), f(0) = 0, and f is strictly

increasing and concave down.

These are the same as the conditions on g and f assumed in [64] and [76]. Some

ecologically motivated functions that satisfy these assumptions are power functions of

the form

f(y) = κyν with ν ∈ (0, 1) and κ > 0, (3.3)



54

and Michaelis-Menten type functions of the form

f(y) =
αy

β + y
with α ∈ (0, 1) and β > 0. (3.4)

See Chapter 2 for a derivation of the Michaelis-Menten function for seed-to-plant

density dependence in a general plant population.

In Section 3.2.1 we assume h(y) = y, and the global asymptotic stability of the

plant-seed bank population is a corollary of the work in [64].

When h models either contest competition or scramble competition the two non-

linearities f and h will require more than one stability radius, which will force us

to obtain more conditions for these stability radii to satisfy. The analysis of global

stability in Sections 3.2.2 and 3.2.3 will therefore require a substantial modification of

the results in [64] and [76], surveyed in Chapter 1, which is the main mathematical

novelty in this chapter.

3.1.2 Age-Structured Seed Bank Model

We assume that the seed bank is structured with respect to the age of the seeds, in

the sense that the survival of the seeds in the seed bank is a function of age. There is

evidence that this is true in general ([2], [48], [54]). We assume that each seed, while

potentially surviving at different rates, has the same probability of germinating. We

further assume there is an age after which a dormant seed in the seed bank is either

no longer viable or is placed in a final class of “old” seeds.

We will use the following notation: the seed bank at time t has N discrete age

stages, s1,t, s2,t, . . . sN,t, where sj,t are seeds that are j time steps old at time t. Then

st = [s1,t, s2,t, . . . sN,t]
T is the seed population vector at time t. As previously stated,
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the number of available seeds ỹt at time t is the sum of newly created seeds and

available old seeds at time t. Written mathematically,

ỹt := h(cTnt) + s1,t + s2,t + ...+ sN,t.

We define the values γj ∈ (0, 1) to be the product of the probability of not germinating

and survival (assumed statistically independent) in one time step from the (j − 1)th

age class to the jth age class, for j = 1, 2, . . . , N. The number γN+1 is the product

of not germinating and survival in one time step from the Nth age class to all later

ages. If gp is the germination probability of seeds in the seed bank, then it follows

that gp + γj < 1, as seeds cannot directly create new seeds.

The seed population vector at time t + 1 is obtained from the seed population

vector at time t by the following: s1,t+1 consists of the density of seeds produced by

plants which survive and do not germinate in the current year. Later seed classes

sj,t+1 consists of seeds that do not germinate and survive from seed class sj−1,t, for

j = 2, . . . N − 1. sN,t contains all ages N or higher, so sN,t+1 also contains seeds that

do not germinate and survive from sN−1,t and sN,t.

Hence the seed bank population {st}∞t=0 evolves in RN for some integer N which

represents the oldest seed class. The resulting plant-seed bank model can be written
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as

nt+1 = Ant + bf(ỹt), ỹt = h(cTnt) + ||st||1

s1,t+1 = γ1h(cTnt)

s2,t+1 = γ2s1,t

... (3.5)

sN−1,t+1 = γN−1sN−2,t

sN,t+1 = γNsN−1,t + γN+1sN,t.

3.1.3 Abstract Formulation

We will write (3.5) as an abstract first-order system, in order to prove the desired

global stability results. Let the norm on the Banach space X1 be denoted by ‖ · ‖X1 ,

and let X2 be RN with associated 1-norm

‖[x1, x2, . . . xN ]T‖1 =
N∑
j=1

|xj|.

We wish to work with nonnegative vectors in, and nonnegative operators on, X1 and

X2. Let K1 and K2 be reproducing cones for X1 and X2, respectively, with the partial

ordering ≥ (see [51] for a general theory). We will call vectors in K1 and K2 non-

negative vectors. An example of a reproducing cone in RN is {[x1, x2, ..., xn]T |xj ≥ 0 for

j = 1, 2, ..., N}. An example of a reproducing cone in L1[L,U ] is {f ∈ L1[L,U ]|f(x) ≥

0 a.e}. In both of these examples the idea of a non-negative vector is consistent with

intuition.

For i = 1, 2 we will call an operator on Xi that maps non-negative vectors to
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non-negative vectors a non-negative operator. An example of such an operator is an

N ×N matrix A with all non-negative entries.

The following hypotheses are natural in the study of plant-seed bank dynamics.

First, we state the conditions on the data for the plant population, (A, b, c).

(E1) A ∈ L(X1) is a non-negative operator with spectral radius r(A) < 1;

(E2) b is a non-negative vector in X1;

(E3) cT : X1 → R is a strictly positive linear functional, i.e. there exits cmin > 0 such

that

cTn ≥ cmin‖n‖, for all n ≥ 0; (3.6)

(E4) The coefficients γj ∈ (0, 1) for all j = 1, 2, ...N and γN+1 ∈ [0, 1).

Conditions (E1) and (E2) are not restrictive for most plant population models. Condi-

tion (E3) is not restrictive for when (A, b, c) is an integral projection model (see Section

4 of [64]), but can be restrictive when (A, b, c) is a matrix projection model. However,

the following results can be replicated if we assume primitivity of the matrices used

to model the plant population (see Section 3.4).

We can describe the coupled system (3.5) by a first-order system. The state of

this system is

ñt := [nt st]
T ⊂ X := X1 ⊗X2.

All convergence discussed in this chapter is in the Banach Space norm defined on X

by ‖ · ‖ = ‖ · ‖X1 + ‖ · ‖1.
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Let

Ã :=

 A Ø

Γ S

 , b̃ :=



b

0

...

0


, c̃T :=

[
h(cT ·) 1 ... 1

]
.

Here Ø := [0 0... 0] ∈ L(X2, X1) where 0 represents the zero vector in X1,

Γ := [γ1h(cT ·) 0T ... 0T ]T ∈ L(X1, X2),

where 0T is the zero functional on X1, and S ∈ L(X2) is the N × N substochastic

shift matrix

S =



0 0 . . . 0

γ2 0 . . . 0

0 γ3 . . . 0

...
...

...
...

0 . . . γN γN+1


.

Using the amended system data, we can write the coupled system (3.5) as

ñt+1 = Ãñt + b̃f(ỹt), ỹt = c̃T ñt. (3.7)

Notice that, unless h is linear, Γ is a nonlinear operator, which makes Ã a nonlinear

operator. This nonlinearity is the substantial difference between the model in this

chapter and that in [64] and [76].
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3.2 Global Stability Results

3.2.1 Density-Independent Seed Production

In the case of density-independent seed production we have h(y) = y for all y. We will

obtain global asymptotic stability results for (3.7), and hence for (3.5) by applying

the results in [64]. To do this we will need to recall the concept of the stability radius

of the linear system

ñt+1 = Ãñt + pb̃c̃T ñt,

where p is a scalar and f(y) is replaced with f(y) = py. From Chapter 1 the stability

radius p̃e is the smallest positive number p such that r(Ã+ pb̃c̃T ) = 1. From [43] p̃e is

equal to (c̃T (Ĩ − Ã)−1b̃)−1.

As also reviewed in Chapter 1 the asymptotic behavior of (3.7) and (3.5) depends

upon the relationship between the function g (see (3.2)) and the stability radius p̃e.

Roughly speaking, the nonlinear establishment probability function g needs to able to

achieve the value p̃e for there to be a non-zero equilibrium. In particular, if g(y) < p̃e

for all y ≥ 0, then the population dies out. Furthermore, g needs to be able to

eventually fall below p̃e for the population to settle down, i.e. if g(y) > p̃e for all y ≥ 0

the population can grow without bound. If p̃e is between these two thresholds the

population has a globally asymptotically stable, strictly positive equilibrium vector.

Define

g∞ := lim
y→∞

g(y), g0 := lim
y↘0

g(y). (3.8)

Theorem 3.2.1 Let h(y) = y and suppose that (D1), (E1), (E2), (E3) and (E4)

hold.

1) If p̃e > g0, then the zero vector is a globally stable equilibrium for (3.7) in the
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sense that for every non-negative ñ0 ∈ X1 ⊗X2,

lim
t→∞

ñt = 0.

Furthermore, for every ε > 0, there exists δ > 0 such that ‖ñt‖ < ε for all t ∈ N

whenever ‖ñ0‖ < δ.

2) If p̃e < g∞, then there exists a non-negative initial vector ñ0 ∈ X1 ⊗X2 such

that

lim
t→∞
‖ñt‖ =∞.

3) If p̃e ∈ (g∞, g0) then there exists y∗ such that f(y∗) = p̃ey
∗. The vector ñ∗ given

by

ñ∗ = p̃ey
∗(Ĩ − Ã)−1b̃

is a strictly positive globally asymptotically stable equilibrium of the system (3.7)

in the sense that for every positive ñ0 ∈ X1 ⊗X2,

lim
t→∞

ñt = ñ∗.

Furthermore, for every ε > 0, there exists δ > 0 such that ‖ñt − ñ∗‖ < ε for all

t ∈ N whenever ‖ñ0 − ñ∗‖ < δ.

Proof: We need to show that when (E1), (E2) and (E3) are satisfied then (3.7) will

satisfy conditions (A1), (A2) and (A3’) in [64], and we will be able to apply Theorems

3.1, 3.2 and 3.3 in that paper to obtain 1), 2) and 3) of Theorem 3.2.1, with pe replaced
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by p̃e. Since b ≥ 0 in X1, it immediately follows that b̃ ≥ 0 in X = X1 ⊗X2, showing

that (E2) is satisfied for b̃.

For every ñ ∈ X1 ⊗X2:

c̃T ñ = cTn+ ‖s‖1 ≥ cmin‖n‖X1 + ‖s‖1

Thus c̃T ñ ≥ c̃min‖ñ‖, where c̃min := min{1, cmin}, verifying (E3) for c̃.

Since r(A) < 1 and γN+1 ∈ [0, 1),

r(Ã) = max{r(A), γN+1} < 1,

verifying (E1) for Ã.

�

3.2.2 Density-Dependent Seed Production - Contest

Competition

We now assume that seed production is limited by overcrowding. In this section we

will further assume that h ∈ C[0,∞) is increasing and concave down into [0,∞), with

h(0) = 0. This nonlinearity models contest competition ([4]), which assumes that,

when there are many competitors, some competitors obtain all the resources they

need for seed production, while the rest obtain insufficient resources. We also assume

that h(y) ≤ y for every y ≥ 0, so the maximum density-dependent seed production is

no greater than the density-independent seed production. For the remainder of this

chapter we will assume that g∞ := limy→∞ g(y) = 0, i.e. the establishment probability

goes to zero as the number of available seeds goes to infinity.
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We will motivate what we expect for the equilibrium vector. Since there are

two nonlinearities f and h in this model, it is reasonable that our results should

depend upon two stability radii, as Ã is a nonlinear operator. The presence of the

second stability radius actually gives us an extra degree of freedom to obtain a nonzero

equilibrium vector. To see this, assume for the moment that h(cTnt) = p2c
Tnt for some

fixed p2 ∈ (0, 1). p2 is what we envision as the equilibrium proportion of maximum

seed production cTnt that are actually produced, which would indeed be a constant

if the population was at an equilibrium. Consider the system (3.5), with h(cTnt)

replaced by p2c
Tnt. This modified system is equivalent to

ñt+1 = Ãp2ñt + b̃f(ỹt), ỹt = c̃Tp2ñt, (3.9)

with

Ãp2 :=

 A Ø

Γp2 S

 , c̃Tp2 := [ p2c
T 1 ... 1], Γp2 := [p2γ1c

T 0T ... 0T ]T .

Ãp2 is now a linear operator. It follows similarly from Theorem 3.2.1 that if g0 is

greater than the stability radius p1 := (c̃Tp2(Ĩ − Ãp2)
−1b̃)−1 the adjusted system has a

globally stable equilibrium vector

ñ∗ = p1y
∗(Ĩ − Ãp2)−1b̃, (3.10)

where y∗ is the positive solution of

f(y∗) = p1y
∗. (3.11)
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It also follows from Theorem 3.2.1 that, if the stability radius p1 is larger than g0 for

all p2 then the adjusted system’s equilibrium is the zero vector.

Since the linear data (Ãp2 , b̃ and c̃p2) are non-negative, p1 is the only positive

number p such that r(Ãp2 + pb̃c̃Tp2) = 1. When we allow h ∈ C[0,∞) be increasing

and concave down into [0,∞), with h(0) = 0, instead of h(y) = p2y, the upcoming

theorem says that the equilibrium vector (3.10) is indeed globally stable.

What makes the upcoming results useful is that we can determine (p1, p2, y
∗) easily

through a system of three equations and three unknowns, in terms of the original

system data. Let M̃ be the first column of (I − S)−1. Then

(Ĩ − Ãp2)−1 =

 (I − A)−1 Ø

M̃γ1p2c
T (I − A)−1 (I − S)−1

 ,
Hence, by simple computation,

p−1
1 = (c̃Tp2 Ĩ − Ãp2)

−1b̃ =
p2(1 + γ1‖M̃‖1)

pe
. (3.12)

where pe := (cT (I − A)−1b)−1 is the stability of the plant-only system. Furthermore,

ñ∗ = p1y
∗(Ĩ − Ãp2)−1b̃ = [n∗ s∗]T = p1y

∗[(I − A)−1b
p2γ1M̃

pe
]T . (3.13)

and, since cTn∗ = p1y∗

pe
,

h(cTn∗) = p2c
Tn∗ =

p2p1y
∗

pe
. (3.14)

We can think of equations (3.11), (3.12) and (3.14) as the following three (slightly
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rewritten) equations in the three unknowns p1, p2 and y∗:

f(y∗) = p1y
∗

p1p2 =
pe

(1 + γ1‖M̃‖1)
(3.15)

h

(
p1y
∗

pe

)
=

p2p1y
∗

pe
.

From the above discussion and component-wise calculation on (3.13) we see that if p1,

p2 and y∗ satisfy (3.15) then ñ∗ is a non-zero equilibrium for (3.9).

Since g(y) ≤ g0 for all y ∈ (0,∞) we have that f(y) ≤ g0y for all y ∈ [0,∞). We

also assumed that h(y) ≤ y, which means that if (3.15) were to be true we would

need p1 ∈ [0, g0] and p2 ∈ [0, 1]. By the second equation in (3.15) p1 > 0 and p2 > 0.

If p1 = g0 then the suppositions on f imply that y∗ = 0, which implies that p2 = 1.

Similarity, if p2 = 1 then y∗ = 0, would imply that p1 = g0 Thus, if (3.15) has a

solution it is either the point (g0, 1, 0) or it’s in (0, g0)× (0, 1)× (0,∞).

As stated, if (p1, p2, y
∗) ∈ (0, g0)×(0, 1)×(0,∞) one can obtain the triple (p1, p2, y

∗)

easily via (3.15) and compute the equilibrium ñ∗ = p1y
∗(Ĩ − Ãp2)−1b̃, whose global

asymptotic stability is the subject of the next theorem.

Theorem 3.2.2 Suppose that (E1), (E2), (E3), (E4) and (D1) hold, and the function

h(y) is continuous, strictly increasing, and concave down on [0,∞) with h(0) = 0.

Further assume that h(y) ≤ y on [0,∞).

1) If pe
(1+γ1‖M̃‖1)

= (c̃T1 (Ĩ − Ã1)
−1b̃)−1 > g0, then the zero vector is a globally stable

equilibrium for the system (3.7) in the sense that for every non-negative ñ0 ∈

X1 ⊗X2,

lim
t→∞

ñt = 0.
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Furthermore, for every ε > 0, there exists δ > 0 such that ‖ñt‖ < ε for all t ∈ N

whenever ‖ñ0‖ < δ.

2) If there exists a solution (p1, p2, y
∗) of (3.15) in (0, g0) × (0, 1) × (0,∞), then

the vector ñ∗ given by

ñ∗ = p1y
∗(Ĩ − Ãp2)−1b̃

is a strictly positive globally asymptotically stable equilibrium of the system (3.7)

in the sense that for every positive ñ0 ∈ X1 ⊗X2

lim
t→∞

ñt = ñ∗.

Furthermore, for every ε > 0, there exists δ > 0 such that ‖ñt − ñ∗‖ < ε for all

t ∈ N whenever ‖ñ0 − ñ∗‖ < δ.

Proof: For (1), since (c̃T1 (Ĩ − Ã1)
−1b̃)−1 > g0 = supy>0 g(y) and h(y) ≤ y,

ñt+1 ≤ Ã1ñt + b̃g(c̃T1 ñt)c̃
T
1 ñt ≤ Ã1ñt +mb̃c̃T1 ñt,

for some m < p1. By induction

ñt ≤ (Ã1 +mb̃c̃T1 )tñ0, t ∈ N

Since p1 = (c̃T1 (Ĩ − Ã1)
−1b̃)−1 is the stability radius of (Ã1, b̃, c̃

T
1 ), we have that

r(Ã1 +mb̃c̃T1 ) < 1. Thus

lim
t→∞

ñt = 0.

The (ε, δ) conclusion follows from the boundedness of Ã1 +mb̃c̃T1 .

For (2), Without loss of generality we can assume that n0 ∈ K1 \ 0, as if it were

not then si,0 > 0 for some i = 1, 2, .., N , which would imply that n1 ∈ K1 \ 0 (using
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(3.5) and (E4)).

With the triple (p1, p2, y
∗) ∈ (0, g0) × (0, 1) × (0,∞) satisfying (3.15) define the

functional

w̃Tp2 := c̃Tp2(Ĩ − Ãp2)
−1. (3.16)

It is straightforward to verify that w̃Tp2 is a left eigenvector for the operator

Ãp2 + p1b̃c̃
T
p2

with eigenvalue 1, i.e.

w̃Tp2(Ãp2 + p1b̃c̃
T
p2

) = w̃Tp2 . (3.17)

Applying w̃Tp2 to (3.7),

w̃Tp2ñt+1 = w̃Tp2Ãñt + w̃Tp2 b̃f(ỹt). (3.18)

If ỹt ≤ y∗ and cTnt ≤ cTn∗, then f(ỹt) ≥ p1yt and h(cTnt) ≥ p2c
Tnt, so (3.18)

implies that

w̃Tp2ñt+1 ≥ w̃Tp2(Ãp2 + p1b̃c̃
T
p2

)ñt = w̃Tp2ñt. (3.19)

If ỹt ≤ y∗ and cTnt ≥ cTn∗, then f(ỹt) ≥ p1ỹt and h(cTnt) ≥ p2c
Tn∗, so (3.18) implies

that

w̃Tp2ñt+1 ≥ w̃Tp2Ãñt + w̃Tp2p1b̃(h(cTnt) + ‖st‖1) ≥ w̃Tp2p2p1b̃c
Tn∗. (3.20)

If ỹt ≥ y∗, then f(ỹt) ≥ p1y
∗, so (3.18) implies that

w̃Tp2ñt+1 ≥ w̃Tp2Ãñt + w̃Tp2p1b̃y
∗ ≥ w̃Tp2p1b̃y

∗. (3.21)
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Hence (3.19), (3.20) and (3.21) imply that

w̃Tp2ñt ≥ min{w̃Tp2ñ0, p2p1w̃
T
p2
b̃cTn∗, w̃Tp2 b̃p1y

∗}. (3.22)

By Holder’s inequality

w̃Tp2ñt ≤ ‖w̃p2‖‖ñt‖, so ‖ñt‖ ≥
1

‖w̃p2‖
w̃Tp2ñt. (3.23)

Using again that either h(cTnt) ≥ p2c
Tnt or h(cTnt) ≥ p2c

Tn∗, it follows from (3.23)

that

ỹt = h(cTnt) + ‖st‖1 ≥ h(cTnt) ≥ min{α1p1p2y
∗

pe
,

min{p2cmin, αmin}
||w̃Tp2 ||

w̃Tp2ñt}.

Finally, since ñ0 is a positive vector in X1 ⊗X2

(Ĩ − Ãp2)−1ñ0 = ñ0 +
∞∑
j=1

Ãjp2ñ0 ≥ ñ0. (3.24)

Thus,

w̃Tp2ñ0 = c̃Tp2(Ĩ − Ãp2)
−1ñ0 > min{p2cmin, 1}‖ñ0‖ > 0. (3.25)

Similarly, p2p1w̃
T
p2
b̃cTn∗ and w̃Tp2 b̃p1y

∗ are positive, so ỹt is bounded away from zero

for all t > 0. Also, using condition (E3) and the fact that n0 is a positive vector in

X1, cTnt is bounded away from zero for all t > 0, by a similar argument. Thus, since

f and h are increasing and concave down (see Figure 3.1), the secant slopes have the

property that

|f(ỹt)− f(y∗)|
|ỹt − y∗|

< p1
|h(cTnt)− h(cTn∗)|
|cTnt − cTn∗|

< p2 (3.26)
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Therefore there exist m1 < p1 and m2 < p2 such that for all t ≥ 0,

|f(ỹt)− f(y∗)| ≤ m1|ỹt − y∗| |h(cTnt)− h(cTn∗)| ≤ m2|cTnt − cTn∗|. (3.27)

Also, since f is increasing, h is increasing and concave down, and ỹt > 0 for all t > 0,

for any µ > 0,

|h(µf(ỹt))− h(µf(y∗))| ≤ m2|µf(ỹt)− µf(y∗)| ∀t ≥ 0. (3.28)

We can easily verify from (3.13) that ñ∗ = Ãp2ñ
∗ + p1b̃c̃

T
p2
ñ∗ = Ãñ∗ + b̃f(y∗) by

construction. Thus

ñt+1 − ñ∗ = Ãñt − Ãñ∗ + b̃f(ỹt)− b̃f(y∗).

By the variation of parameters formula

ñt − ñ∗ = Ãtñ0 − Ãtñ∗ +
t−1∑
j=0

Ãt−j−1b̃f(ỹj)− Ãt−j−1b̃f(y∗). (3.29)

We will now multiply on the right by the functional c̃Tp2 and analyze each component

individually. To do so, notice that

Ãt =

 At Ø∑t−1
i=0 S

iΓAt−1−i St

 . (3.30)

Taking the first component of (3.29) multiplied on the left by c̃Tp2

p2c
T (nt − n∗) = c̃Tp2(Ã

tñ0 − Ãtñ∗)|X1 + p2

t−1∑
j=0

cTAt−j−1b(f(ỹj)− f(y∗)), (3.31)
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Figure 3.1: Typical nonlinearities f or h which satisfy (D1) and sectors defined by
lines with slopes ±p1 or ±p2 (dotted), showing how (3.26) holds.
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where (Ãtñ0 − Ãtñ∗)|X1 is the X1 component of the vector Ãtñ0 − Ãtñ∗. Taking

absolute values and using positivity implies that

|p2c
T (nt − n∗)| ≤ |c̃Tp2(Ã

tñ0 − Ãtñ∗)|X1|+ p2

t−1∑
j=0

cTAt−j−1b|(f(ỹj)− f(y∗))|. (3.32)

Using (3.26),

|p2c
T (nt − n∗)| ≤ |c̃Tp2(Ã

tñ0 − Ãtñ∗)|X1|

+ p2m1

t−1∑
j=0

cTAt−j−1b(|h(cTnj)− h(cTn∗)|+ ‖sj − s∗‖1)

≤ |c̃Tp2(Ã
tñ0 − Ãtñ∗)|X1|

+ p2m1

t−1∑
j=0

cTAt−j−1b(m2|cTnj − cTn∗|+ ‖sj − s∗‖1).

Summing from t = 0 to M , where M is large, we have

M∑
t=0

|p2c
T (nt − n∗)| ≤

M∑
t=0

|c̃Tp2(Ã
tñ0 − Ãtñ∗)|X1|+

(3.33)

p2m1

M∑
t=0

t−1∑
j=0

cTAt−j−1b(m2|cTnj − cTn∗|+ ‖sj − s∗‖1).

The nonlinear operator Ã is bounded above by the linear operator Ã1 in the

sense that Ãx ≤ Ã1x for all x in the positive cone K1 ⊗ K2. Since r(Ã1) =

max{r(A), γN+1} < 1, the first term in (3.33) converges as M → ∞. If we rear-
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range the second sum and use the fact that the system is positive, we have that

M∑
t=0

|p2c
T (nt − n∗)| ≤

∞∑
t=0

|c̃Tp2(Ã
tñ0 − Ãtñ∗)|X1 |+

p2m1

M−1∑
j=0

(m2|cTnj − cTn∗|+ ‖sj − s∗‖1)
M∑

t=j+1

cTAt−j−1b.

Adding more terms (so that some of the sums are infinite) and changing indices

M∑
t=0

|p2c
T (nt − n∗)| ≤

∞∑
t=0

|c̃Tp2(Ã
tñ0 − Ãtñ∗)|X1|+

p2m1

M−1∑
j=0

(m2|cTnj − cTn∗|+ ‖sj − s∗‖1)
∞∑
t=0

cTAt−j−1b (3.34)

≤
∞∑
t=0

|c̃Tp2(Ã
tñ0 − Ãtñ∗)|X1|+

p2m1

pe

M∑
t=0

(m2|cTnt − cTn∗|+ ‖st − s∗‖1).

Using (3.30), the ith component of st satisfies

(st − s∗)i = c̃Tp2(Ã
tñ0 − Ãtñ∗)|X2)i +

t−1∑
j=0

t−j−2∑
k=0

(Ski,1)(ΓA
t−j−k−2bf(ỹj)− ΓAt−j−k−2bf(y∗)),

where Ski,1 is the (i, 1) entry of Sk. By the definition of Γ,

(st − s∗)i = c̃Tp2(Ã
tñ0 − Ãtñ∗)|X2)i + (3.35)

t−1∑
j=0

t−j−2∑
k=0

γ1S
k
i,1(h(cTAt−j−k−2b(f(ỹj))− h(cTAt−j−k−2bf(y∗)).
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Using (3.28) with µ = cTAt−j−k−2b > 0

|(st − s∗)i| ≤ |c̃Tp2(Ã
tñ0 − Ãtñ∗)|X2)i|+

m2

t−1∑
j=0

t−j−2∑
k=0

γ1S
k
i,1c

TAt−j−k−2b|(f(ỹj))− f(y∗)|.

Using (3.26) again, we have that

|(st − s∗)i| ≤ |c̃Tp2(Ã
tñ0 − Ãtñ∗)|X2)i|+

m2m1

t−1∑
j=0

t−j−2∑
k=0

γ1S
k
i,jc

TAt−j−k−2b(m2|cTnj − cTn∗|+ ‖sj − s∗‖1).

Summing from t = 0 to M and rearranging we have

M∑
t=0

|(st − s∗)i| ≤
M∑
t=0

|c̃Tp2(Ã
tñ0 − Ãtñ∗)|X2)i|+

m2m1

M∑
t=0

t−1∑
j=0

t−j−2∑
k=0

γ1S
k
i,jc

TAt−j−k−2b(m2|cTnj − cTn∗|+ ‖sj − s∗‖1)

=
M∑
t=0

|c̃Tp2(Ã
tñ0 − Ãtñ∗)|X2)i|+

m2m1

M−1∑
j=0

M∑
t=j+1

t−j−2∑
k=0

γ1S
k
i,jc

TAt−j−k−2b(m2|cTnj − cTn∗|+ ‖sj − s∗‖1).

Since Ãx ≤ Ã1x for all x in the positive cone K1 ⊗K2. the first term converges as
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M →∞. Adding more terms, and again letting M̃ be the first column of (I − S)−1

M∑
t=0

|(st − s∗)i| ≤
∞∑
t=0

|c̃Tp2(Ã
tñ0 − Ãtñ∗)|X2)i|+

m2m1

M−1∑
j=0

(m2|cTnj − cTn∗|+ ‖sj − s∗‖1)
M∑

t=j+1

t−j−2∑
k=0

γ1S
k
i,1c

TAt−j−k−2b

≤
∞∑
t=0

|c̃Tp2(Ã
tñ0 − Ãtñ∗)|X2)i|+

m2m1γ1(M̃)i
pe

M∑
t=0

(m2|cTnt − cTn∗|+ ‖st − s∗‖1).

The last inequality follows from using (3.12). Collecting all of the terms, by the

triangle inequality we have

M∑
t=0

(|p2c
T (nt − n∗)|+ ‖st − s∗‖1) ≤

∞∑
t=0

|c̃Tp2(Ã
tñ0 − Ãtñ∗)|+

p2m1 +m2m1γ1‖M̃‖1
pe

M∑
t=0

(m2|cTnt − cTn∗|+ ‖st − s∗‖1).

Since m1 < p1 and m2 < p2, and using (3.12) there exists an m < 1 such that

p2m1 +m2m1γ1‖M̃‖1
pe

≤ p2m1
1 + γ1‖M̃‖1

pe
≤ p2m1

p1p2

≤ m < 1.

Hence

M∑
t=0

(|p2c
T (nt − n∗)|+ ‖st − s∗‖1) ≤

∞∑
t=0

|c̃Tp2(Ã
tñ0 − Ãtñ∗)|+

m
M∑
t=0

(m2|cTnt − cTn∗|+ ‖st − s∗‖1),

which implies that
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M∑
t=0

(|(p2 −m2)c
T (nt − n∗)|+ ‖st − s∗‖1) ≤ (1−m)−1

∞∑
t=0

|c̃Tp2(Ã
tñ0 − Ãtñ∗)|. (3.36)

This bound is independent of M . Therefore the sequence

{(p2 −m2)c
T (nt − n∗)|+ ‖st − s∗‖1)}∞t=0 ∈ `1(N),

so

lim
t→∞
|cT (nt − n∗)|+ ‖st − s∗‖1) = 0. (3.37)

By supposition (E3) this implies that

lim
t→∞

ñt = ñ∗, (3.38)

as sought. The (ε, δ) conclusion follows from the fact that Ãx ≤ Ã1x for all x ∈ K1,

r(Ã1) < 1 and Holder’s inequality.

�

3.2.3 Density-Dependent Seed Production - Scramble

Competition

In the case where the function h models scramble competition ([4]) the global stability

is not as straightforward. Scramble competition assumes that, when there are many

competitors, the available resources are insufficient for any one competitor. In this

case we no longer require h to be increasing and concave down, since for large y it is

possible that the density of seeds produced decreases, possibly to zero.



75

The key in the proof of Theorem 3.2.1 is the fact that h is sector bounded, i.e.

|h(cTnt)− h(cTn∗)| ≤ m2|cTnt − cTn∗|,

(3.39)

|h(µf(ỹt))− h(µf(y∗))| ≤ m2|µf(ỹt)− µf(y∗)|

for some m2 < p2 and all µ ≥ 0. It’s clear that h does not need to be strictly increasing

for this to occur. For instance, consider the Ricker function proposed in [46]

hR(y) = y exp(−y/cm), (3.40)

where cm elicits the maximum seed production for the population cm exp(−1) (see

Figure 3.2). We will show that some of Theorem 3.2.2 holds for h = hR.

Theorem 3.2.3 Suppose that (E1), (E2), (E3), (E4) and (D1) hold and h = hR.

1) If (c̃T1 (Ĩ − Ã1)
−1b̃)−1 > g0, then the conclusions in part (1) of Theorem 3.2.2

hold.

2) If there exists a solution (p1, p2, y
∗) of (3.15) in (0, g0)× (exp(−2), 1)× (0,∞)

then the conclusions in part (2) of Theorem 3.2.2 hold.

3) If there exists a solution (p1, p2, y
∗) of (3.15) in (0, g0)× (0, exp(−2))× (0,∞)

and f is further assumed to be C1[0,∞), with

r(Ã(1+ln(p2))p2 + f ′(y∗)b̃c̃T(1+ln(p2))p2
) < 1,

then ñ∗ asymptotically stable.

Proof: The proof of (1) is identical to the proof of (1) in Theorem 3.2.2.
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Figure 3.2: A typical Ricker function hR and sectors defined by lines with slopes ±p2

(dotted), with p2 ∈ (exp(−2), 1).
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For (2) note that if there exists a solution (p1, p2, y
∗) of (3.15) in (0, g0) ×

(exp(−2), 1) × (0,∞) and m > 0 such that ỹt > m and cTnt > m for all t ∈ N,

then hR is sector bounded as in (3.39) (Fig. 2). This follows from the fact that

h′R(y) = (1− y

cm
)exp(−y/cm), h′′R(y) =

1

cm
(
y

cm
− 2)exp(−y/cm).

Thus hR has exp(−2) as its maximum negative slope. Thus, if ỹt, c
Tnt > m, hR satisfies

(3.39) for some m2 < p2 and all µ ≥ 0. To see that there exists m > 0 such that

ỹt > m and cTnt > m for all t ∈ N, we note that if ỹt ≤ y∗ and cTnt ≤ cTn∗ or ỹt ≥ y∗

the lower bound follows as in Theorem 3.2.2. If ỹt ≤ y∗ and cTnt ≥ cTn∗ we need to

show that the solution {ỹt}∞t=0 is bounded above. Noting that f(y) ≤ f(y∗) +m1y for

some m1 < p1 and y ≥ 0 and hR(y) ≤ cmexp(−1) for all y ≥ 0 it follows that

c̃T1 ñt ≤ c̃T1 Âñt−1 + cT bf(y∗) + (mcT b+ γ1)cmexp(−1) := c̃T1 Âñt−1 +K,

where

Â :=

 A Bm1

Γ0 S

 , Bm1 :=

[
m1b m1b ... m1b

]
,

and r(Â) < 1. Thus c̃T1 ñt ≤ M for some M <∞. Thus, if ỹt ≤ y∗ and cTnt ≥ cTn∗

we have that f(ỹt) ≥ f(y∗) and hR(cTnt) > min{hR(cTn∗), hR(M)} > 0. Letting w̃Tp2

be defined as in Theorem 3.2.2,

w̃Tp2ñt ≥ min{w̃Tp2ñ0, p2p1w̃
T
p2
b̃cTn∗, w̃Tp2 b̃p1hR(M)}, (3.41)

and similarly for cTnt. Therefore ỹt and cTnt are bounded from below. The remainder

of the proof for (2) is the same as in Theorem 3.2.2.
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For part (3) note that, for p2 ∈ (0, exp(−2)),

h′R(cTn∗) = p2(1 + ln(p2)) < −p2, (3.42)

so we cannot sector-bound hR as we did in (2) of this theorem. The linearization

about ñ∗ yields

ñt+1 = Ãh′R(cTn∗)ñt + f ′(y∗)(h′R(cTn∗)cTnt + ‖st‖1)

= (Ã(1+ln(p2))p2 + f ′(y∗)b̃c̃T(1+ln(p2))p2
)ñt.

Thus if r(Ã(1+ln(p2))p2 + f ′(y∗)b̃c̃T(1+ln(p2))p2
) < 1 then ñ∗ is asymptotically stable, as

sought. �

3.2.3.1 Relaxing Assumption (E3)

As previously alluded to in Section 3.1.3, one may argue that the assumption (E3)

is too restrictive when the plant population is modeled with a vector in Rm. For

example, in some populations only the very largest members reproduce, so c may be

the (vector) functional

cT := [0 0 ... 0 M ]

for some M > 0, which violates (E3). However, using the methods developed in this

chapter, along with the techniques in [76] we can recover the results summarized

Theorems 3.2.1, 3.2.2 and 3.2.3 for X1 = Rm.

Theorem 3.2.4 Let X1 = Rm and assume that (E1), (E2), (E4) and (D1) hold.

Assume further that the plant-only system A+ pbcT is primitive for every p > 0. Then

the results summarized in Theorems 3.2.1, 3.2.2 and 3.2.3 hold.



79

Proof: The proof when the zero vector is the globally stable equilibrium vector is

exactly the same as in Theorems 3.2.1, 3.2.2 and 3.2.3.

If h is the identity function the proof of Theorem 3.2.1 is identical to the proof of

Theorem 2.1 (3) in [76], as X1 ⊗X2 = Rm+N and the primitivity of the plant-only

matrix A+ pbcT for all p > 0 implies the primitivity of whole matrix Ã+ pb̃c̃T for all

p > 0.

Assume now that h is not the identity function. To prove that ñ∗ = p1y
∗(Ĩ−Ãp2)−1b̃

is globally stable as in Theorems 3.2.2 and 3.2.3 it suffices to show that there exists a

k such that ỹt is bounded from above and away from zero for all t ≥ k, as the rest of

the proof follows from the techniques above and [76].

The proof of ỹt being bounded above follows from the fact that Ã is bounded

above by Ã1 with r(Ã1) < 1 and

f(ỹt) ≤ f(y∗) +m1ỹt and h(cTnt) ≤ h(cTn∗) +m2c
Tnt

for m1 < p1,m2 < p2 and all t ∈ N (in the contest competition case) or

f(ỹt) ≤ f(y∗) +m1ỹt and hR(cTnt) ≤ cm exp(−1)

for m1 < p1 and all t ∈ N (in the scramble competition case).

As stated, the assumed primitivity of the plant-only matrix A+ pbcT for any p > 0

implies the primitivity of the of the whole matrix Ãp2 + pb̃c̃Tp2 for any p2 > 0. The

Perron-Frobenius theorem implies the existence of a strictly positive left eigenvector

(which we know to be w̃Tp2 := c̃Tp2(Ĩ − Ãp2)
−1). Using the exact same argument as

Theorem 3.2.2 we have

w̃Tp2ñt ≥ min{w̃Tp2ñ0, p2p1w̃
T
p2
b̃cTn∗, p1w̃

T
p2
b̃y∗, p1w̃

T
p2
b̃hR(M)},
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which by Holder’s inequality implies that ||ñt|| is bounded away from zero for all

t ∈ N.

Since ỹt is bounded above, there exists gmin > 0 and hmin > 0 such that, for all

t ∈ N,

f(ỹt) = g(ỹt)ỹt ≥ gminỹt and h(cTnt) ≥ hminc
Tnt

in the contest competition case, or

f(ỹt) = g(ỹt)ỹt ≥ gminỹt and hR(cTnt) ≥ hminc
Tnt

in the scramble competition case. Since Ãp2 + pb̃c̃Tp2 is primitive for any p, p2 > 0 there

exists a k such that (Ãhmin
+ gminb̃c̃

T
hmin

)k consists of strictly positive elements. So, for

t ≥ k

ñt ≥ (Ãhmin
+ gminb̃c̃

T
hmin

)ñt−1 ≥ ... ≥ (Ãhmin
+ gminb̃c̃

T
hmin

)kñt−k.

Since c̃T is non-negative and ||ñt|| is bounded away from zero we have that

ỹt = c̃T ñt ≥ c̃T (Ãhmin
+ gminb̃c̃

T
hmin

)kñt−k

is bounded away from zero for all t ≥ k. The rest of the proof follows from the

techniques of Theorem 3.2.2 and [76]. �

3.2.3.2 Density Dependence in Seed Production Only

Up until now we have assumed in this chapter that the recruitment from seeds to

plants has been density dependent and have considered the effect of assuming whether

or not seed production was density dependent as well. It is reasonable to ask if the

previous results in this chapter hold if seed production was density dependent but the
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recruitment from seeds to plants was density independent. In this case the plant-seed

bank model would be

nt+1 = Ant + psb(h(cTnt) + ||st||1)

s1,t+1 = γ1h(cTnt)

s2,t+1 = γ2s1,t

... (3.43)

sN−1,t+1 = γN−1sN−2,t

sN,t+1 = γNsN−1,t + γN+1sN,t,

where ps is the (constant) establishment probability. Notice that the model (3.43) has

only one nonlinearity, h. As in (3.7) from Section 3.1.3 we can still write this model

concisely as

ñt+1 = Ãñt + b̃h(c̃T ñt). (3.44)

However, the collection (Ã, b̃, c̃) now takes the form

Ã :=

 A B

Ø S

 , b̃ :=



b

γ1

0

...

0


, c̃T :=

[
cT 0 ... 0

]
,

where Ø := [0T 0T ... 0T ]T ∈ L(X1, X2) is a collection of N zero functionals from X1

to R and B := [psb psb... psb] ∈ L(X2, X1) is a collection of N vectors in X1.

Notice that, much like the issue faced in Theorem 3.2.4, c̃T is not a strictly positive

functional. Furthermore, since X1 is not assumed to be Rm, Theorems 3.2.1 and 3.2.4
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do not apply. However, as with Theorem 3.2.4, the issues associated with c̃T not being

strictly positive can be dealt with.

Theorem 3.2.5 Assume that (E1), (E2), (E3), (E4) and (D1) hold. Then the results

summarized in Theorem 3.2.1 hold for the model (3.44).

Proof:

As with Theorem 3.2.4 it suffices to show that there exists a k such that ỹt is from

above and below for all t ≥ k. The boundedness of ỹt from above follows again from

the fact that r(Ã) < 1 and

h(cTnt) ≤ h(cTn∗) +m2c
Tnt

for m2 < p2 and all t ∈ N (in the contest competition case) or

hR(cTnt) ≤ cm exp(−1)

for all t ∈ N (in the scramble competition case).

To prove the ỹt is bounded from below, notice that the functional

w̃T := c̃T (I − Ã)−1 =

[
cT (I − A)−1 ||M1||ps

pe
... ||MN ||ps

pe

]
,

where Mj is the jth column of the matrix (I − S)−1. From this, it follows from the

boundedness of ỹt, by a constant M0, that

w̃T ñt ≥ min{w̃T ñ0, w̃
T b̃m0},

where m0 is either p̃ey
∗ in the contest competition case or h(M0) in the scramble
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competition case. Since w̃T b̃ = 1+γ1||M1||1ps
pe

> 0 and w̃T ñ0 > 0 for any non-zero ñ0 it

follows that ||ñt|| is bounded below from zero by Holder’s inequality for all t.

Finally, since ỹt = c̃T ñ is bounded above by M0, c
Tnt is bounded above by M0.

Thus, there exists an hmin = h(M0)
M0

such that h(cTnt) ≥ hminc
Tnt for all t ∈ N.

Therefore,

c̃T ñt ≥ (Ã+ hminb̃c̃
T )ñt−1, (3.45)

The right hand side of 3.45 is, in vector form,

[
cT (A+ hminbc

T )nt psc
T bs1,t ... psc

T bsN,t

]T
,

which is bounded below by (2cT b)min{hmincmin, ps}||ñt||. Since ||ñt|| is uniformly

bounded from below we have that ỹt = c̃T ñt is uniformly bounded from below for

t ≥ 1. The remainder of the proof of global stability follows, using the methods form

[76].

�

3.3 Example

We show how the results in this chapter can be applied to a model for the annual

plant Sesbania vesicaria with an age-structured seed bank, using data from [46]. S.

vesicaria is a weedy annual legume found in pastures on damp or low sandy soils of

the warm temperate region of the southeastern U.S. ([57]). Both seed production and

seedling establishment (which [46] labels as “survivorship”) are density dependent

(see Fig. 2a and Fig. 2b in [46]). We assume that the plant population is homogenous

(and thus can be represented with a scalar) and the seed bank population has three
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classes: 0-year-old, 1-year-old and greater than or equal to 2-year-old seeds. Thus

X1 = R, X2 = R3 and K1 = R+, K2 = R3
+.

We model seedling-to-plant density dependence by a Michaelis-Menten function

f̃(y) =
αy

β + y
,

which takes into account that there is a limit on the availability of microsites for

seedlings to establish and become adult plants (see Chapter 2 for a discussion of

the form of this density dependence). We consider two types of density dependence

assumptions for the seed production function h. Contest competition will be modeled

with a Michaelis-Menten function

h1(y) =
cmy

cm + y
(3.46)

and scramble competition with a Ricker function

h2(y) = yexp(−y/cm). (3.47)

In [46] the probability of seed dormancy (which is 1− the germination probability)

was found to vary between 0.5 and 0.9 (see Fig. 5 in [46]). We will assume that the

probability of seed dormancy is 0.75, from which it follows that the probability of seed

germination is gp = 0.25 and the abundance of adult plants when there are y available

seeds is then f(y) = f̃(gpy), as a seed must germinate to become a seedling and then

establish to become an adult plant.

We denote the probability of an i-year-old seed surviving a given year with si+1,

where s is the probability that a seed survives its initial year in the seed bank and

i = 0, 1, 2. Note that we are assuming seeds that are older than 2 years old have the
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same survival probability. We assume that s = 0.95 in our example. The resulting

models are

nt+1 = Ant + bf(hi(cnt) + s1,t + s2,t + s3,t)

s1,t+1 = (1− gp)shi(cnt) (3.48)

s2,t+1 = (1− gp)s2s1,t

s3,t+1 = (1− gp)(s3s2,t + s4s3,t), i = 1, 2.

Note that A and c are scalars because the plant population nt is a scalar. Using the

data on Fig. 2a and Fig. 2b in [46] we use the values α = 72.51 and β = 89.17 for

both models, c = 48.64, cm = 211.9 in (3.46) and c = 28.09, cm = 480.95 in (3.47). We

assume that A = 0 because S. vesicaria is an annual plant and hence there are no

plants remaining from the previous year. Since our model only considerers a single

plant stage the juvenile distribution vector becomes the scalar b = 1. The parameters

for the contest competition and scramble competition models fit the digitized data

in [46] for seed production similarly well (AIC 165.53 and 164.78, respectively. See

Figure 3.3).

For both models

g0 = 0.2032915.

In the contest competition model p1 = 0.078 ∈ (0, g0), p2 = 0.089 ∈ (0, 1) and

y∗ = 577.81 > 0, which by Theorem 3.2.2 implies the global asymptotic stability of

ñ∗ = [n∗ s∗]T = p1y
∗[(1− A)−1b

p2(1− gp)sM̃)

pe
]T

= [44.72 137.56 93.09 151.63]T ,
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Figure 3.3: The relationship between per-capita seed production in year t + 1 and
plant density in year t. We digitized the data from Fig. 2b in [46]. The dotted line

represents the function h(y)
y

= cm
cm+y

, which is used to model per-capita seed production

in the contest competition case (AIC = 165.53). The solid line represents the function
hR(y)
y

= exp(−y/cm), which is used in the scramble competition case (AIC = 164.78).
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where pe = c(1 − A)−1b = c = 48.64 is the inverse of the stability radius of the

plant-only system and M̃ is the first column of (I − S)−1, where

S =


0 0 0

(1− gp)s2 0 0

0 (1− gp)s3 (1− gp)s4

 .
In the scramble competition model p1 = 0.101 ∈ (0, g0), p2 = 0.118 < exp(−2) and

y∗ = 363.07 > 0, which by Theorem 3.2.3 implies the asymptotic, but not necessarily

global asymptotic stability of

ñ∗ = [36.58 86.44 58.50 96.76]T , (3.49)

as the spectral radius of Ã(1+ln(p2))p2 + f ′(y∗)b̃c̃T(1+ln(p2))p2
is 0.3461 < 1.

Figure 3.4 shows trajectories of the solutions to the models (3.48) with several initial

conditions. Notice that the convergence in the model with the contest competition

assumption is rather quick, while the model with scramble competition has more

pronounced transient dynamics, as one might expect, as the Ricker function h2 is

not monotone. This example illustrates that with different assumptions for density-

dependent seed production one can potentially obtain different stability outcomes

even though the two models fit the available data similarly well. However, since the

population in the right-hand side of Figure 3.4 converges to the equilibrium under

many different initial populations, one may conjecture that there are improvements

to be made to Theorem 3.2.3; that the p2 element of the solution to (3.15) doesn’t

necessarily need to be > exp(−2) for there to be global asymptotic stability for

(3.7), and thus (3.48) with i = 2. However, if the spectral radius of the operator

Ã(1+ln(p2))p2 + f ′(y∗)b̃c̃T(1+ln(p2))p2
is larger than unity, the population does indeed fail
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Figure 3.4: Example simulations of the solutions to the models (3.48) for various
initial conditions. The graph on the left is in the contest competition (3.46) case and
the graph on the right is in the scramble competition (3.47) case. The vertical axis
indicates the total population density (plants + seeds), and the horizontal axis is
time. The dashed line is the equilibrium population calculated using (3.10). Note
that, although the solution sequences are connected by lines, we are not implying that
the solutions behave linearly between (discrete) time-steps.

to achieve a unique, globally stable equilibrium population, which is evident in Figure

3.5, where c = 1500.

This example also illustrates the utility of the solution (p1, p2, y
∗) to the equations

in (3.15). This triple reduces the task of obtaining a formula for, and determining the

stability of, the equilibrium to the solution of a system of three equations in three

unknowns.

3.4 Extensions

So far in this chapter we have proven the global stability of the equilibrium vector

ñ∗ for a class of density-dependent structured plant population models with an age-
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Figure 3.5: The population in (3.48) with i = 2 (contest competition) and c = 1500.
Here, Ã(1+ln(p2))p2 + f ′(y∗)b̃c̃T(1+ln(p2))p2

= 1.15 > 1. Notice that there is no longer a
unique, globally stable equilibrium population, but rather a two-cycle.
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structured seed bank. We showed how these theoretical results can be applied to

a model in the literature. The techniques we used include so-called “small gain”

arguments and the use of different stability radii that are common in engineering

problems involving feedback systems ([64])

We have, to our advantage, used the fact that the data (A, b, c), and subsequently

(Ã, b̃, c̃), are positive. This may not always be true. An interesting mathematical

question arises when one assumes that seed germination (the

seeds
germination−→ seedlings

step), is density dependent and determined by the nonlinear function g, which was

previously called the establishment function. To see the difficulties that arise in this

context assume that the seed population {st}∞t=0 simply evolves as a scalar in R+ and

that the plant population is as before. In this setting the new model becomes

nt+1 = Ant + bf(cTnt + st)

st+1 = sp(1− g(cTnt + st))(c
Tnt + st),

where 0 < sp < 1 is the survival probability of a dormant seed in the soil. For this

model to make sense biologically we have to assume that g0 := limy↘0 g(y) < 1. Like

(3.7), this system can be written as

ñt+1 = Ãñt + b̃f(ỹt), ỹt = c̃T ñt, (3.50)

where

Ã :=

 A 0

spc
T sp

 , b̃ :=

 b

−sp

 , c̃T :=

[
cT 1

]
.
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Note that Ã and c̃ satisfy (A1) and (A3’), respectively, in [64]. However, b̃ isn’t a

positive vector in X1 ⊗ R+, so we cannot use any of the previous results. However,

even though b̃ isn’t a positive vector we can still use similar techniques to prove the

global stability of (3.50) for much of parameter space.

Define

p∗e := (
∞∑
k=0

c̃T Ãkb̃)−1 = (c̃T (Ĩ − Ã)−1b̃)−1.

It is simple to show that p∗e = (1−sp)
( 1
pe
−sp)

, where pe = (cT (I − A)−1b)−1 is again the

stability radius from the system without a seed bank. It’s clear that, for some (sp, pe),

p∗e can be negative and, therefore, while having an analogous equation to the stability

radius for the systems in previous sections, the nonpositivity in the system keeps the

connection from being a straightforward extension. Be that as it may, p∗e will still end

up serving as the bifurcation point for the global stability of a non-negative vector in

X1⊗R for the system (3.50). The reason we can still achieve a non-negative attractor

is that, since g0 < 1, the nonlinear operator

 A+ g(c̃T (·)) g(c̃T (·))

sp(1− g(c̃T (·))cT sp(1− g(c̃T (·))


still is a non-negative operator: It takes non-negative vectors in X1⊗R to non-negative

vectors in X1 ⊗ R.

We will first prove a lemma about the positivity of the terms c̃T Ãkb̃ for k ∈ N.

Lemma 3.4.1 If there exists a k0 such that c̃T Ãk0 b̃ ≥ 0, then c̃T Ãkb̃ ≥ 0 for all

k ≥ k0



92

Proof : Assume c̃T Ãk0b̃ ≥ 0. Then

c̃T Ãk0+1b̃ =

k0∑
j=0

sk0−j+1
p cTAjb− sk0+2

p

= sp(

k0∑
j=0

sk0−jp cTAjb− sk0+1
p )

= sp(c
TAk0b+

k0−1∑
j=0

sk0−jp cTAjb− sk0+1
p )

= sp(c
TAk0b+ c̃T Ãk0 b̃) ≥ 0,

as sought. �

Therefore, even though p∗e can be negative, we know that if one term of the sequence

{c̃T Ãkb̃}∞k=0 is eventually nonnegative, the remaining terms are nonnegative as well.

We will now prove global stability results of a non-negative vector in X1 ⊗ R for

the system (3.50) analogous that of Sections 3.2.1, 3.2.2 and 3.2.3. We will begin by

proving the stability of the zero vector in the case where 1
p∗e
< 1

g0
. This includes the

case where p∗e ≤ 0, which was not possible for the positive system in Sections 3.2.1,

3.2.2 and 3.2.3. We will then assume that 0 < p∗e < g0 and address the possibility

that c̃T Ã0b̃ ≥ 0 (where the stability is a simple Corollary of [64]) and the possibility

that c̃T Ã0b̃ < 0. In the latter case we will assume a particular functional form for f

derived in Chapter 2.

Theorem 3.4.1 Suppose that (D1), (E1), (E2) and (E3) hold, and sp, g0 < 1. If

1
p∗e
< 1

g0
, then the zero vector is a globally stable equilibrium for (3.50) in the sense
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that for every non-negative ñ0 ∈ X1 ⊗ R,

lim
t→∞

ñt = 0.

Furthermore, for every ε > 0, there exists δ > 0 such that ‖ñt‖ < ε for all t ∈ N

whenever ‖ñ0‖ < δ.

Proof: Let N ∈ N and ñ0 be a positive vector in X1 ⊗ R. Note that, since the

nonlinear operator for the system (3.50) is non-negative:

0 ≤
N∑
t=0

c̃T ñt =
N∑
t=0

c̃T Ãtñ0 +
N∑
t=0

t−1∑
j=0

c̃T Ãt−j−1b̃f(c̃T ñj).

Rearranging the summation, one has

=
N∑
t=0

c̃T Ãtñ0 +
N−1∑
j=0

N∑
t=j+1

c̃T Ãt−j−1b̃f(c̃T ñj)

=
N∑
t=0

c̃T Ãtñ0 +
N−1∑
j=0

f(c̃T ñj)
N∑

t=j+1

c̃T Ãt−j−1b̃. (3.51)

The proof now concludes with a sequence of cases.

Case 1: If p∗e ≤ 0 and c̃T Ãkb̃ < 0 for all k ∈ N then one has, using (3.51),

0 ≤
N∑
t=0

c̃T ñt ≤
N∑
t=0

c̃T Ãtñ0 ≤ c̃T (Ĩ − Ã)−1ñ0 <∞. (3.52)

Case 2: If p∗e ≤ 0 and c̃T Ãk0 b̃ > 0 for some k0 ∈ N then one has for N > k0, using

Lemma 3.4.1, (3.51) and the fact that p∗e = (
∞∑
k=0

c̃T Ãkb̃)−1 ≤ 0 :

0 ≤
N∑
t=0

c̃T ñt =
N∑
t=0

c̃T Ãtñ0 +
N−1∑
j=0

f(c̃T ñj)
N∑

t=j+1

c̃T Ãt−j−1b̃
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≤
∞∑
t=0

c̃T Ãtñ0 +
1

p∗e

N−1∑
j=0

f(c̃T ñj) ≤
∞∑
t=0

c̃T Ãtñ0 ≤ c̃T (Ĩ − Ã)−1ñ0 <∞. (3.53)

Case 3: If p∗e > g0 > 0 we can find an m < p∗e such that g(x) ≤ m for all x ≥ 0.

Using (3.51) again we have that

0 ≤
N∑
t=0

c̃T ñt =
N∑
t=0

c̃T Ãtñ0 +
N−1∑
j=0

f(c̃T ñj)
N∑

t=j+1

c̃T Ãt−j−1b̃

≤
∞∑
t=0

c̃T Ãtñ0 +
1

p∗e

N−1∑
j=0

g(c̃T ñj)c̃
T ñj ≤

∞∑
t=0

c̃T Ãtñ0 +
m

p∗e

N−1∑
j=0

c̃T ñj

≤
∞∑
t=0

c̃T Ãtñ0 +
m

p∗e

N∑
t=0

c̃T ñt.

Since m < p∗e we have that (1− m
p∗e

) > 0, which implies

0 ≤
N∑
t=0

c̃T ñt ≤ (1− m

p∗e
)−1c̃T (Ĩ − Ã)−1ñ0 <∞ (3.54)

In (3.52), (3.53), (3.54) we have that the sum
N∑
t=0

c̃T ñt is less than an absolutely

convergent series, independent of N . Thus we can conclude that the sequence

{c̃T ñt}∞t=0 ∈ `1(N), which implies that the terms converge to zero as t → ∞. By

supposition (E3) this implies that

lim
t→∞

ñt = 0,

as sought. The (ε, δ) conclusion follows from the fact that r(Ã) < 1 and Holder’s

inequality. �
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To determine the global stability of a non-zero vector in positive cone of X1 ⊗R

we break the problem further into two cases.

Theorem 3.4.2 Suppose that (D1), (E1), (E2) and (E3) hold, sp, g0 < 1 and cT b ≥

sp. If p∗e < g0 then there exists y∗ such that f(y∗) = p∗ey
∗. The vector ñ∗ given by

ñ∗ = p∗ey
∗(Ĩ − Ã)−1b̃

is a strictly positive globally asymptotically stable equilibrium of the system (3.50) in

the sense that for every positive ñ0 ∈ X1 ⊗ R

lim
t→∞

ñt = ñ∗.

Furthermore, for every ε > 0, there exists δ > 0 such that ‖ñt − ñ∗‖ < ε for all t ∈ N

whenever ‖ñ0 − ñ∗‖ < δ.

Proof: Since, by assumption, c̃T Ã0b̃ = cT b− sp ≥ 0 we have from Lemma 3.4.1 that

c̃T Ãkb̃ ≥ 0 for all k ∈ N. The proof now follows directly from [64]. �

To prove the result for when cT b− sp < 0 we need to compare (3.50) with a model

studied abstractly in Section 3.2.1. Consider the model

nt+1 = Ant + bf(cTnt + st) (3.55)

st+1 = sp(1− g0)(c
Tnt + st),

where g0 := limy↘0 g(y) < 1. Note that, if we write (3.55) in the form

n̂t+1 = Ân̂t + b̂f(ŷt), ŷt = ĉT n̂t, (3.56)
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with

Â :=

 A 0

sp(1− g0)c
T sp(1− g0)

 , b̂ :=

 b

0

 , ĉT :=

[
cT 1

]
,

we have that ñt ≥ n̂t for all t ∈ N. The global stability of a non-negative vector

in X1 ⊗ R is resolved for (3.56) in Section 3.2.1. If p̂e := (ĉT (Î − Â)−1b̂)−1 =

(1− sp(1− g0))pe < g0 then this globally stable vector is positive in X1 ⊗ R.

It is useful to note that if 0 < p∗e < g0 then 0 < p̂e < g0. Since we are assuming

that cT b− sp < 0, not all terms c̃T Ãkb̃ are positive. Our assumptions will therefore be

on the summation
∞∑
k=0

|c̃T Ãkb̃|.

Our final assumption is that the nonlinear function f is of the Michaelis-Menten

type

f(x) =
αx

β + x
. (3.57)

The functional form (3.57) is derived in Chapter 2, modeling the effects of density

dependence on seeds germinating in an environment with limited microsite availability.

Theorem 3.4.3 Suppose that (D1), (E1), (E2) and (E3) hold, f is given by (3.57),

sp, g0 = α
β
< 1 and cT b < sp. If 0 < p∗e < g0 then there exists y∗ such that f(y∗) = p∗ey

∗.

Assume further that

∞∑
k=0

|c̃T Ãkb̃| < | ĉT n̂∗ − y∗

f(ĉT n̂∗)− f(y∗)
| = (β + ĉT n̂∗)(β + y∗)

αβ
, (3.58)

where n̂∗ is the positive, globally stable vector for (3.56). The vector ñ∗ given by

ñ∗ = p∗ey
∗(Ĩ − Ã)−1b̃
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is a strictly positive globally asymptotically stable equilibrium of the system (3.50) in

the sense that for every positive ñ0 ∈ X1 ⊗ R

lim
t→∞

ñt = ñ∗.

Proof: As stated, since 0 < p∗e < g0 it’s true that 0 < p̂e < g0. Thus the globally

stable equilibrium vector n̂∗ of (3.56) is positive in X1 ⊗ R. Assume that ñ0 is a

positive vector in X1 ⊗ R. By (E3) this implies that c̃T ñ0 > 0. Also, since

g0 =
α

β
>

α

β + x
= g(x)

for all x > 0, if c̃T ñ0 > 0 then ñt > n̂t for all t ≥ 2. Therefore, there exists a k0 ∈ N

such that

ñt > n̂∗ (3.59)

for all t ≥ k0. Finally, since the right-hand side of (3.58) is increasing in c̃T ñ, we have

that
∞∑
k=0

|c̃T Ãkb̃| < | c̃T ñ− y∗

f(c̃T ñ)− f(y∗)
| (3.60)

for all ñ ≥ n̂∗.

We can easily verify from (3.50) using [43] that ñ∗ = Ãñ∗ + p∗e b̃c̃
T ñ∗ = Ãñ∗ + b̃f(y∗)

by construction. Thus,

ñt+1 − ñ∗ = Ãñt − Ãñ∗ + b̃f(ỹt)− b̃f(y∗). (3.61)

Let k0 satisfy the condition (3.59). Applying c̃T to (3.61) and summing from k0 to

N > k0 we have
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N∑
t=k0

|c̃T ñt − c̃T ñ∗| ≤
N∑
t=k0

|c̃T Ãt(ñ0 − ñ∗)|+
N∑
t=k0

t−1∑
j=0

|c̃T Ãt−j−1b̃||f(c̃T ñj)− f(y∗)|.

Rearranging the summation we have

≤
N∑
t=k0

|c̃T Ãt(ñ0 − ñ∗)|+
N∑

j=k0

N∑
t=j+1

|c̃T Ãt−j−1b̃||f(c̃T ñj)− f(y∗)|

+

k0−1∑
j=0

N∑
t=k0

|c̃T Ãt−j−1b̃||f(c̃T ñj)− f(y∗)|

=
N∑
t=k0

|c̃T Ãt(ñ0 − ñ∗)|+
N∑

j=k0

|f(c̃T ñj)− f(y∗)|
N∑

t=j+1

|c̃T Ãt−j−1b̃|

+

k0−1∑
j=0

|f(c̃T ñj)− f(y∗)|
N∑
t=k0

|c̃T Ãt−j−1b̃|.

Adding more terms to the summation we have

≤
∞∑
t=0

|c̃T Ãt(ñ0−ñ∗)|+
N∑

j=k0

|f(c̃T ñj)−f(y∗)|
∞∑
k=0

|c̃T Ãkb̃|+
k0−1∑
j=0

|f(c̃T ñj)−f(y∗)|
∞∑
k=0

|c̃T Ãkb̃|.

Since the middle summation is from k0 to N > k0 and the right-hand side of (3.58) is

increasing there exists an m < 1 such that

|f(c̃T ñj)− f(y∗)| ≤ m
|c̃T ñj − y∗|
∞∑
k=0

|c̃T Ãkb̃|
(3.62)

for all j ≥ k0. Using (3.62) and the fact that f is uniformly bounded above by α one
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then has

N∑
t=k0

|c̃T ñt − c̃T ñ∗| ≤ (1−m)−1(
∞∑
t=0

|c̃T Ãt(ñ0 − ñ∗)|+ 2α(k0 − 1)
∞∑
k=0

|c̃T Ãkb̃|) <∞,

which is independent of N > k0. Therefore the sequence {|c̃T ñt − y∗|}∞t=0 ∈ `1(N),

which implies that the terms converge to zero as t → ∞. By supposition (E3) this

implies that

lim
t→∞

ñt = ñ∗,

as sought. �

3.4.1 Sensitivity of ñ∗ to Seed Survival

In Chapter 2 we presented a derivation of the sensitivity of a globally stable equilibrium

population with respect to arbitrary parameters a model of the form (1.3). We will

now present the sensitivity of a positive equilibrium solution ñ∗ in X1 ⊗ R for (3.50)

with respect to the survival probability of a seed in the soil sp.

To determine the sensitivity of ñ∗ = p∗ey
∗(Ĩ − Ã)−1b̃ with respect to sp it is useful

to calculate the terms in ñ∗ explicitly. It’s a simple calculation to show that

(I − Ã)−1b̃ =

[
(I − A)−1b sp

1−sp ( 1
pe
− 1)

]T
. (3.63)

Recall also that

p∗e =
(1− sp)
( 1
pe
− sp)

. (3.64)

From the previous section we need p∗e > 0 to have a ñ∗ be positive, thus 1 > sppe.

However, (3.63) implies also that pe < 1 for ñ∗ to be positive.
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Assume for the sake of explanation that f again has the Michaelis-Menten form

f(x) =
αx

β + x
, (3.65)

for which we can easily calculate

ψ(p∗e) = p∗ey
∗ = α− βp∗e. (3.66)

With (3.63), (3.64) and (3.66) we can calculate dñ∗

dsp
using the product rule. By a

simple calculation:

dñ∗

dsp
= β

pe(1− pe)
(pesp − 1)2

 (I − A)−1b

sp
1−sp ( 1

pe
− 1)

+ p∗ey
∗

 0

1−pe
pe(1−sp)2

 . (3.67)

Since pe < 1 all of the terms in the above equation are positive. Therefore, increasing

sp increases the both the likelihood of population persistence (see (3.64)) and the long-

term population ñ∗. However, increasing sp decreases the likelihood that cT b− sp ≥ 0,

which increases the difficulty of the proof in Theorem 3.4.3.

As noted in Chapter 2 this sensitivity measurement has the ability to tell us how

members of each stage class change in response to changes in specific parameters.

To see this note that, biologically, the first term on the right-hand side of 3.67 is a

proportional change to the entire previous population distribution via an increase in

sp, while the second term is a change in the seed population only. What (3.67) tells

us is that an increase in seed survival probability will increase the plant population by

a factor of β pe(1−pe)
(pesp−1)2

, but will not change the plant population’s structure or stage

distribution, i.e., the relative frequencies of members of each stage class are not altered.
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3.4.2 Toy Example

We will illustrate how to use Theorem (3.4.3) to calculate ñ∗ for a simple example of

a plant population with two stages (young and old), with a scalar seed bank. We will

then use the derivation of the sensitivity of ñ∗ from Section 3.4.1 to determine the

sensitivity of the population to changes in sp. Assume that young plants stay young

with probability a11 < 1 and graduate to become old with probability a21 < 1. Assume

old plants survive with probability a22 < 1 and that young plants produce 0 < c1 seeds

and old plants produce c1 < c2 seeds. We will continue using the Michaelis-Menten

function for f . Our model can be written as in (3.50), where

Ã :=


a11 0 0

a21 a22 0

spc1 spc2 sp

 , b̃ :=


1

0

−sp

 , c̃T :=

[
c1 c2 1

]
.

It’s a simple calculation to show that the linear data (Ã, b̃, c̃) satisfy the conditions of

Theorem (3.4.3) and that c̃T Ã0b̃ = c1− sp. Because average seed production for young

plants can be small (see, for example, [67]), it’s possible that c̃T Ã0b̃ < 0. Therefore, one

may need to check the additional condition in Theorem 3.4.3 to determine whether or

not the population converges to a globally stable equilibrium population. For example,

if a11 = 0.25, a21 = 0.6, a22 = 0.9, c1 = 0.1, c2 = 10, sp = 0.75, α = 10, β = 200 we have

that

c̃T Ã0b̃ = c1 − sp = −0.65 < 0, (3.68)

while

c̃T Ã1b̃ = sp(c2a21 − sp) = 5.5375 > 0, (3.69)
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and

p∗e = 0.003149.

With (3.68), (3.69) and (3.4.2) and Lemma (3.4.1) one can calculate

∞∑
k=0

|c̃T Ãkb̃| = 0.65 +
1

0.003149
+ 0.65 = 318.8333.

To see if (3.58) is satisfied we use the fact that p̂e = (1− sp(1− g0))pe = 0.003587713

to obtain ĉT n̂∗ = α
p̂e
− β = 2587.246. This, coupled with y∗ = α

p∗e
− β = 2975.333 gives

us

4425.217 = | ĉT n̂∗ − y∗

f(ĉT n̂∗)− f(y∗)
| > 318.8333 =

∞∑
k=0

|c̃T Ãkb̃|,

which establishes the global asymptotic stability of the vector

ñ∗ = p∗ey
∗(I − Ã)−1b̃ =

[
12.4935 74.96116 2224.47239

]T
.

which is 3-dimensional, as the plant is modeled with a 2-dimensional vector and the

seed bank is modeled as a scalar (1-dimensional).

Because we have a simple formula for the sensitivity of the population we can easily

calculate how a small increase in seed survival sp = 0.75 will change the equilibrium

population of this plant-seed bank model from ñ∗. We know from the previous section

that the relative proportion of the young plants n∗1 and old plants n∗2 will not change,

they will only increase by a factor of β pe(1−pe)
(pesp−1)2

= 2.511549. On the other hand, the seed

bank population will increase by a factor of 2.511549 and by p∗ey
∗ 1−pe
pe(1−sp)2 = 11867.03.

Therefore, a small increase in the seed survival probability from sp = 0.75 will increase
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the asymptotic seed bank population by

2.511549
sp

1− sp
(

1

pe
− 1) + 11867.03 = 12463.10.

What we’ve shown through the analysis in this section is that once an understanding

of the long-term dynamics of a plant-seed bank model is achieved, the biological

questions boil down to using the relatively simple formula for sensitivities. Therefore,

calculating exactly how the population will react in the long-term to a change in a

particular vital rate is relatively clean and simple.
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Chapter 4

A Stochastic Integral Projection

Model for a Disturbance Specialist

Plant: Seed Depth Matters

4.1 Plant-Seed Bank Model

Many annual plants are disturbance specialists, germinating only in freshly disturbed

soil. In these species the frequency, intensity, timing, and spatial extent of disturbance

can greatly influence the probability of germination and survival of seeds in the seed

bank ([20], [61], [59]). Many of these aforementioned characteristics of disturbances

happen unpredictably, rendering deterministic models like those studied in Chapter

3 inadequate. Disturbances create a more favorable environment for germination by

removing more competitive species ([20], [61], [3], [59]). However, disturbance also

alters the depth distribution of seeds in the seed bank: burying some seeds deep in the

soil where survival is high (and germination rates are low), and relocating other seeds
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closer to the soil surface where germination rates are high (but survival is low) ([61],

[60]). Most attempts at understanding the dynamics of plant-seed bank populations,

including the modeling in Chapter 3, have ignored the effect of seed depth. Therefore,

in this chapter we will develop a stochastic IPM for the population dynamics of a

disturbance specialist plant, explicitly modeling the stochasticity of disturbances and

the variations in survival and germination probabilities of seeds at different depths.

A stochastic IPM describes how a population structured by a continuous state

variable changes in discrete time. We model the following sequence of events: distur-

bance, redistribution of seeds, seed survival, plant recruitment, and production of new

seeds. We consider only disturbances which occur after seeds have been dispersed

because disturbances prior to dispersal have a negligible effect on the seed bank ([61]).

We model disturbance as a single event in one time-step, which can be thought of as

an average of the post dispersal disturbances to the population in a given year.

Disturbance and Redistribution of Seeds

We model disturbances as independent and identically distributed stochastic events

influencing the population dynamics each year. The stochastic process ([8]) governing

disturbances is denoted θ(t, ω), where ω denotes the realization of the sample space Ω

of all possible sequences of disturbance outcomes. At each time t we break up θ(t, ω)

into two random variables θ1(t, ω) and θ2(t, ω). θ1(t, ω) is a Bernoulli random variable

determining whether or not the population is disturbed, which is equal to unity with

the probability of disturbance h and zero with the probability of no disturbance 1− h.

Given a disturbance occurs, θ2(t, ω) determines how deep the disturbance affects the

seeds in the population at time t. For example, if θ2(t, ω) = 0.5D then the disturbance

uniformly redistributes all seeds above one-half of the maximum depth of the seed

bank ([0, D
2

]) and leaves the rest of the seed bank ([D
2
, D]) undisturbed. The depth of

a disturbance is modeled as a truncated exponential distribution with mean depth of
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disturbance ρ. Thus,

Prob{θ2(t, ω) ≤ r|θ1(t, ω) = 1} :=

 1− exp( r
ρ
) : r < D

1 : r = D.

Note that we are going to assume that every disturbance depth that would otherwise

be greater than D is simply a disturbance of depth D, which contributes to the jump

in the above cumulative distribution function.

Using the convention that disturbing the population throughout the interval [0, 0]

is the same as not disturbing it at all, it follows that one could define θ(t, ω) with the

following equation

θ(t, ω) = θ1(t, ω)θ2(t, ω),

for every t = 0, 1, 2, ... Using this definition θ(t, ω) determines both the occurrence and

depth of disturbance for each time t. We define the disturbance kernel K(·, ·, θ(t, ω))

at time t for the stochastic process θ(t, ω), acting on the population u(·), as

∫ D

0

K(x, y, θ(t, ω))u(y) dy := (θ(t, ω))−1

∫ θ(t,ω)

0

u(y) dyχ[0,θ(t,ω)] + u(x)χ[θ(t,ω),D],

(4.1)

with the convention that the first term in the right hand side of (4.1) is equal to zero

when θ(t, ω) = 0 and χ[a,b] is the characteristic function of the interval [a, b], which is

equal to unity when x ∈ [a, b] and zero when x /∈ [a, b]. The first term in the right

hand side of (4.1) is modeling the population being uniformly re-distributed within

the interval [0, θ(t, ω)] and the second term is the population being left alone within

the interval [θ(t, ω), D]. The dimension of K(·, ·, θ(t, ω)) is depth−1 for all θ(t, ω) ∈ Ω.

Survival

Only a fraction of the seeds that do not germinate survive to the next time-step. We
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make the simplifying assumptions that this fraction only depends on the seed’s depth

in the seed bank ([60]), that seeds survive at their lowest rates near the surface of the

soil (due largely to seed predation) and that the likelihood of survival increases as

seed depth increases. The survival function is therefore

s(x) := s0(1− exp(−bx)), (4.2)

where s0 < 1 is the maximum possible survival probability of a seed and b models the

incremental gain in survival probability that occurs through an incremental increase

in seed depth. The function s(·) is dimensionless.

Plant Recruitment

We assume that germination only occurs in the presence of a disturbance, thus the

germination probability is a function of θ(t, ω), i.e.

g(x, θ(t, ω)) :=

 gp(x) : θ(t, ω) 6= 0

0 : θ(t, ω) = 0,

where gp(x) is the probability of a seed of depth x germinating in a given time-step,

given a disturbance. We assume that the probability of a seed germinating is such that

seeds germinate at their highest rate near the surface of the soil and the likelihood of

germination drops off as seed depth increases ([16]). Thus

gp(x) := g0 exp(−ax) (4.3)

where g0 < 1 is the probability of a seed on the surface of the soil germinating and a

models the loss in germination probability that occurs through an incremental increase

in seed depth ([60]). The function g(·, ·) is dimensionless.
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We assume that recruitment is density-dependent and follows a Holling Type II

functional form ([44], we referred to this function as the Michaelis-Menten in Chapters

2 and 3). A derivation of an analogous relationship for a general plant population

is available in Chapter 2, which utilizes the idea of competing for a finite number

of available microsites. The number of plants that result from x seeds(area)−1 is

calculated as follows

f(x) :=
αx

β + x
. (4.4)

As summarized in Chapter 2, the parameter α is the maximum number of adult plants

that can grow in a given area, with dimension plants(area)−1. The parameter β (with

dimension seeds(area)−1) is the half saturation constant. f(·) is the only term in the

model that is density dependent. The dimension of f(·) is plants(area)−1.

Seed Production

We do not implement the size structure of the plants explicitly because we envision

annual plants and the model uses a time-step of one year. Each plant produces an

average number of seeds c which are distributed according to the depth distribution

J(·). We assume that J(·) is a truncated exponential distribution with mean µ << 1

([60]), which ensures that most seeds are set on the surface of the soil. As a consequence

most newly created seeds die if there is no disturbance in the following year. The

dimension of c is seeds(plants)−1 and J(·) has dimension (depth)−1.

Integral Projection Model

Our IPM simulates how the distribution of seeds in the seed bank and the plant

population density of an annual species changes from one year to the next. We do

not present the dynamics of the plant population in our results because the long-

term mean and variance is not a very good measurement of the plant population

due to the number of time-steps the above ground plant population equals zero.
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Let n(x, t, ω) be the density of seeds in the seed bank at time t between depths x

and x + dx, and p(t, ω) be the density of plants in the population at time t, for

t = 0, 1, 2, .... ω denotes the realization in the sample space Ω, which is the collection

of all sequences of possible disturbance outcomes. The dimensions of n(·, ·, ·) and

p(·, ·) are seeds(depth)−1(area)−1 and plants(area)−1, respectively. We assume that

all plants in the population behave like the average plant, so p(t, ·) is simply a

nonnegative number for all t. D is the maximum disturbance depth, thus the function

n(·, t, ·) has the interval [0, D] as its domain for every t. The model is therefore

n(x, t+ 1, ω) =

∫ D

0

∆(x, y, θ(t, ω))(n(y, t, ω) + cJ(y)p(t, ω)) dy (4.5)

p(t+ 1, ω) = f

(∫ D

0

∫ D

0

δ(x, y, θ(t, ω))u(y) dy dx

)
,

for t = 0, 1, 2, ... and n(·, 0, ·) > 0. Here ∆(x, y, θ(t, ω)) := s(x)(1−g(x, θ(t, ω))K(x, y, θ(t, ω))

and δ(x, y, θ(t, ω)) := g(x, θ(t, ω))K(x, y, θ(t, ω)).

The model in (4.5) is not a traditional stochastic IPM (as seen in [19], [34], [65])

in the sense that the (mathematical) operation (defined by the disturbance kernel

above) from one time-step to the next is not necessarily compact for each t. This

is because the identity operator modeled by the Dirac kernel (which occurs when

there is no disturbance at time t) is never compact in a function space ([5]). Because

non-compact operators are often difficult to handle mathematically, the mathematical

properties of this model will require further theoretical attention, which we will reserve

for another manuscript. In this chapter we use simulations to conjecture that as

t → ∞ the population sequence {[n(·, t, ω) p(t, ω)]}∞t=0 converges to a stationary

random population {[n∗(·, ω) p∗(ω)]}, independent of nonzero initial population

{[n∗(·, 0, ω) p∗(0, ω)]}. Thus, for large t, the probability distribution of the population

converges (and thus the long-term population has a constant mean and variance).
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We perform Monte Carlo simulations to analyze how the mean and variance of the

populations change with changes in the disturbance parameters h (the probability of

disturbance) and ρ (the mean depth of disturbance), as well as the fecundity (seeds

per plant) c and the recruitment parameters α and β (from (4.4)).

4.2 Model Analysis

All simulations were done in R ([62]), using numerical integration techniques explained

in [34], with parameter values listed in Table 4.1. The main R codes used are in

Appendix C. In our simulation studies we set the maximum depth D = 1, so that

shallower depths are represented as a proportion of the maximum depth. We considered

two different scenarios for carrying capacity and four different scenarios for fecundity.

The values α = 40, β = 50 were consistent with Fig. 3 in [2] for Wild sunflower

(Helianthus annuus).

For each run we simulation population dynamics for 10000 time-steps and recorded

the total population density for the seed population ||n(·, 10000, ω)||1 =
∫ D

0
n(x, 10000, ω) dx.

We repeated this process 500 times and calculated the long-term mean

Mean =
∑
ω

||n(·, 10000, ω)||1
500

and variance

V ariance =
∑
ω

(||n(·, 10000, ω)||1 −Mean)2

500

of the total seed bank population. In an IPM population size can asymptote to zero, but

never actually reach zero. Thus we defined a quasi-extinction threshold (the minimum

viable population density) to be ||n(·, t, ω)||1 = 50 seed(area)−1 in the seed bank

(personal communication with Diana Pilson), and the quasi-extinction probability as
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the proportion of 100 with initial population density ||n(·, 0, ω)||1 = 500 seed(area)−1

that dropped below 50 seeds(area)−1 at t = 1000. We repeated these calculations

for 90 evenly spaced (h, ρ) combinations in [0, 1]× [0, 1] to explore the effect of the

probability of disturbance h and the mean depth of disturbance ρ on the mean and

variance of the seed bank size, and the quasi-extinction probability.

4.3 Results

Initial exploratory simulations using various parameter combinations suggested that

the probability of disturbance h has a large effect on population dynamics. Figure 4.1

illustrates four typical simulation sample paths: Low fecundity and low disturbance

frequency always resulted in extinction within 1000 years (Figure 4.1(a)). Seeds

require a disturbance to germinate, and in the periods between disturbances seed

density decreased (due to seed mortality). Thus, if the time between disturbances

was too long, and seed production following a disturbance was too low to offset seed

losses due to mortality the population eventually went extinct. Increasing fecundity

while keeping the frequency of disturbance low produced boom and bust dynamics

and delayed population extinction (Figure 4.1(b) and (c)). Plants with high fecundity

contribute many new seeds into the seed bank each time there is a disturbance.

Thus seed density was generally sufficiently high for populations to persist for quite

some time even with long intervals between disturbances. However, when simulating

populations over longer time periods the seed density eventually decreased below

the quasi-extinction threshold, due to the probability of a prolonged streak of years

with no disturbance. High fecundity combined with increased disturbance frequency

produced fluctuations well above the quasi extinction threshold, even if we extended

the simulation interval past the 1000 time-steps shown (Figure 4.1(d)).
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Figure 4.2 illustrates that increasing the probability of disturbance h decreased

the quasi-extinction probability, regardless of ρ. The seeds in the seed bank need

disturbances to germinate, so increasing the disturbance frequency increased the

total seed bank population, which reduced the extinction probability (Figure 4.3).

The higher the fecundity c, the lower the required disturbance frequency to prevent

extinction. Interestingly, increasing the mean depth of disturbance, ρ, actually

increased the quasi-extinction probability for all fecundity values c considered, although

increasing the fecundity decreased the effect of ρ on the quasi-extinction probability.

If fecundity was low the redistribution (which is dependent on ρ) resulted in a smaller

number of newly produces seeds being deposited to larger depth than seeds being

moved close to the surface where they either germinated or died if there was no

disturbance in the following year. How many new seeds that are produced following a

disturbance, M , depended on the maximum number of plants that can establish in a

time-step, which was less than α, and their fecundity, c, so M ≤ cα. Thus the net

effect of this redistribution on seed bank size can be negative, resulting in decreasing

seed bank size with increasing ρ for h values where the quasi-extinction probability is

smaller than one and larger than zero (Figures 4.2 and 4.3).

The carrying capacity of the plant population α had a smaller effect on the

quasi-extinction probability than fecundity c, the frequency of disturbance h, and the

mean depth of disturbance ρ (Figure 4.3 (a) and (c)). This was consistent with the

theoretical results of other similar stochastic population models ([41] and [7]), where

the behavior of a population when rare (i.e. when density dependence is not a factor)

uniquely determined the population’s chance of persistence.

The variance of seed bank size was significantly influenced by the disturbance

probability h and had a roughly parabolic shape for most mean depths of disturbance

ρ (Figure 4.4). The initial increase of the variance with increasing h was consistent



113

with an increasing mean seed bank size, as variance typically increases with the mean

(Figure 4.3). However if h got sufficiently large the carrying capacity of the population

imposed an upper bound to the number of seeds that could be produced within one

time step. This upper bound reduced the variance in seed production because the

population could only have large fluctuations toward the zero function. Thus, for high

h the limit imposed by the carrying capacity increasingly restrained upper fluctuations.

For small ρ the variance did not display a parabolic shape as a function of h. This is

because, for small ρ, the total seed bank populations were small relative to the carrying

capacity, and so the population could have large fluctuations in both directions.

The qualitative effect of h and ρ and on the mean and variance of the long-term

seed bank size remained roughly similar under a range of different parameter scenarios.

Other model parameters basically rescaled the relationships. In general, increasing

the fecundity c and/or the carrying capacity α led to larger means and variances of

the seed bank size (notice the scales in Figures 4.3 and 4.4). For example, an increase

by a factor of ten in α and β led to an increase of almost exactly a factor of ten in

the mean and variance of the total seed bank population.

The probability of disturbance h also affected the distribution of population

densities for large t: increasing h shifted the distribution from skew right (most

populations were very small when disturbance is rare) to skew left (most populations

were very close to the carrying capacity when disturbance is common) (Figure 4.5).

For small h, the seed bank size rarely reached the carrying capacity, and as h→ 0 the

proportion of runs where the population drops below the quasi extinction threshold

increased and more and more of the frequency is concentrated near very small seed

bank sizes. Conversely, when h was larger, the population was almost always being

disturbed (and producing new seeds), and as a consequence the total seed bank size

fluctuated around the carrying capacity, The skewedness became less profound for
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Parameter Value Equation Scenario
Maximum survival s0 0.95 (4.2)
Rate of change in survival b 10 (4.2)
Maximum germination g0 0.95 (4.3)
Rate of change in germination a 10 (4.3)
Mean depth of dispersal µ 0.05 (4.5)
Holling parameters α, β 40, 50 (4.4) “low” carrying capacity
Holling parameters α, β 400, 500 (4.4) “high” carrying capacity
Seed production per plant c 50 (4.5) “low” fecundity
Seed production per plant c 150 (4.5) “medium low” fecundity
Seed production per plant c 500 (4.5) “medium high” fecundity
Seed production per plant c 1000 (4.5) “high” fecundity

Table 4.1: Parameter values for simulations of the model in (4.5).

large h if the maximum plant population α increased, but the fecundity c remained

small, because the seed bank was sufficiently small so that density dependence was

rarely limiting plant recruitment.

4.4 Discussion

We developed an integral projection model that mechanistically incorporated the

stochastic effect of the disturbances on population dynamics of disturbance specialist

plants by explicitly considering the vertical dynamics of seeds in the seed bank. The

model suggested that the probability of a disturbance h was important for long-term

population dynamics, which is consistent with [20], [61], and [59]. In addition to

disturbance frequency, our model illustrated that the mean depth of disturbance ρ

was also a critical component determining population persistence.

We have shown that a model which structures a plant population’s seed bank with

respect to depth can not only provide a mechanistic way of modeling disturbance

intensity but also illustrates the tradeoffs experienced by the seed bank population
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Figure 4.1: Example sample paths of the total seed bank population for four scenarios
with different probability of disturbance h and fecundity c. The mean depth of
disturbance ρ = 0.5 and the Holling parameters α = 40, β = 50.



116

Figure 4.2: Probability of dropping below the quasi-extinction threshold of 50
seeds(area)−1 by time t = 1000, as a function of the probability of disturbance
h with different fecundity c values. The Holling parameters α = 40, β = 50.
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Figure 4.3: The natural logarithm of the mean of the total seed bank population as
a function of h, the probability of disturbance, at time t = 10, 000. Notice for each
plot there exists an h value such that total seed bank population goes from being
a decreasing function of ρ to an increasing function of ρ (for example, in graph (a)
h ∼ 0.5 ). The fecundity and Holling parameter combinations in the above plots are
(a) c = 50, α = 40, β = 50(b) c = 150, α = 40, β = 50 (c) c = 50, α = 400, β = 500 (d)
c = 150, α = 400, β = 500.
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Figure 4.4: The variance of the total seed bank population as a function of h, the
probability of disturbance, at time t = 10, 000. The fecundity and Holling parameter
combinations in the above plots are (a) c = 50, α = 40, β = 50(b) c = 150, α = 40, β =
50 (c) c = 50, α = 400, β = 500 (d) c = 150, α = 400, β = 500.
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Figure 4.5: Histograms of the total seed bank population at t = 1000 of a typical
sample path as the probability of disturbance h varies from 0.25 to 1.
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when survival and germination depend on how deep the seeds are buried. Previous

work has highlighted a lack of knowledge regarding the effect of the vertical distribution

of seeds in the soil on plant population dynamics and encouraged integrating seed bank

dynamics into mathematical models ([2]). Our model has illustrated that incorporating

vertical movement of seeds within the seed bank can affect predicted long-term plant

population viability, and motivates further studies of seed depth as a contributor to

the stochastic population dynamics of disturbance specialist plants.

Our model has provided a new avenue for studying the seed bank of disturbance

specialist plants through representing the seed bank as a function of continuous depth

and characterizing disturbances explicitly by their intensity, building on the models

by [20] and [60]. The two-depth model in [20] considered only one type of disturbance,

thus seedling survival and germination probability is either low in the absence of a

disturbance or high in the presence of a disturbance. They also assumed that fecundity

was independent of the presence of a disturbance and could be either high in a “good

year” or low in a “bad year”. In contrast, the goal of our model was to isolate the effects

of disturbance for disturbance plant species. In addition to disturbance frequency (as

in [20] and [60]), we also examined the effect of different types of disturbances that

influence seeds at different depths on plant population dynamics. Incorporating the

redistribution of seeds in the seed bank explicitly is important because seed survival

and germination are determined by seed depth. We modeled depth as a continuous

variable and by varying only two parameters (h, ρ) we could produce a large number

of potential disturbance outcomes. Using the long-term behavior of the system we are

still able to obtain useful information about the dynamics of the population even with

this larger range of disturbance situations and the implementation of stochasticity and

density dependence. Our model showed that population persistence is an increasing

function of disturbance frequency, which is consistent with the predictions in [20]
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(see Fig 2 (b) in [20]). In this chapter we showed that the mean depth (intensity) of

disturbance also has an effect on the long-term population dynamics of disturbance

specialists, which is not considered in [20].

The model in [60] was concerned with evaluating the short-term outcomes of

different tilling regimes as weed management strategies. As a consequence, his model

simulated short-term, deterministic sequences of disturbances. In contrast, in our

model disturbances were governed by a stochastic process that was roughly mimicking

an overall, long-term disturbance regime that may not have been planned at all. The

model in [60] predicted that some tilling (disturbance) scenarios can decrease the

seedling density of weed species relative to no-tillage scenarios. For example, rotary

and plow tillages were shown to produce fewer weed seedlings in initial years than no

tillage. In contrast, our model was tailored to disturbance specialist plants in natural

systems, whose seeds do not germinate (and thus seedlings do not emerge) in the

absence of a disturbance.

There are some potential extensions to our model. First, for some species the

maximum germination probability may not be at the surface of the soil ([60]), but

rather at a deeper depth xmax. For example, for larger seeds the highest germination

probability is often at deeper depths in the seed bank. This could be implemented by

replacing the exponential function gp(·) in (4.3) with a Ricker-type function

gR(x) := g0x exp(−ax). (4.6)

In (4.6) the maximum germination probability occurs when xmax = a−1 instead of

xmax = 0, as in (4.3). Having (4.6) instead of (4.3) for the germination function may

reduce seed bank densities when disturbances are infrequent because newly created

seeds near the surface of the soil are less likely to germinate (and thus create no new
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seeds) and the remaining seeds suffer high mortality near the surface. However, the

effect of replacing (4.3) with (4.6) is likely to be small for small enough xmax = a−1,

i.e. as long as the maximum germination probability is achieved sufficiently close to

the surface of the soil.

Second, we could change the way density dependence is incorporated into our

model and assume that seed production is also density dependent, which may be best

represented as scramble competition (i.e. Ricker-type function) as opposed to contest

competition (Holling Type II form) ([46]). Because nonlinear functions like the Ricker

function are not monotone, this extension of our current model may produce more

than one stationary distribution of population sizes. It may also lead to a reduced

long-term population size, compared to a model with constant seed production. This

would occur if the maximum density of plants produced (α) yields a small number of

seeds due to a high level of scramble competition. This situation can occur because

the Ricker function goes to zero as the input (the density of plants) becomes large.

Other possible extensions of our model include keeping track of the age structure of

seeds, incorporating environmental stochasticity in seedling survival and germination

parameters (e.g. “good” and “bad” years as in [20]) and considering seed dispersal

(and thus the lateral position) of the seeds in seed bank.
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Appendix A

Calculating Parameters to Ensure

Common Equilibrium Values in

Chapter 2

This first chapter of the Appendix demonstrates how to find the parameter values

for the seedling recruitment function in the mechanistic model that ensures that the

power function model and mechanistic model in Chapter 2 have a common equilibrium

population. For (2.15), [64] ensures that this equilibrium population exists and is

globally stable, independent of non-zero initial population. To find this equilibrium

population, recall from Section 2.2 that we can write (2.15) in the abstract form (1.3).

Recall also that the stability radius of the data (A, b, c) is

pe = (cT (I − A)−1b)−1,
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and the equilibrium population is given by

n∗ = peγ
∗(I − A)−1b,

where γ∗ is the limiting seed production, which is the solution of the equation

fi(γ) = peγ for i = 1, 2. Using the kernel functions in Table 2 of [67], we compute

that pe = 0.0216, which is independent of the choice of fi. To find the limiting seed

production γ∗ for both models, we simply solve fi(γ) = 0.0216γ for both i = 1, 2.

For the power function model the equation f1(γ) = 0.0216γ becomes

5.0899(γ)1−0.4453 = 0.0216,

from which we obtain γ∗ = 18, 908.01. To match the mechanistic model we need to

choose α and β in the Michaelis-Menten function such that

α

β + 18, 908.01
= 0.0216, (A.1)

while the model fits the data in Fig. 4 of [67] as well as possible. The Michaelis-Menten

function has two parameters, which will allow us to use one parameter to ensure

(A.1) is true, with one additional parameter to fit to data. We will allow β to be

the free parameter, to be fitted to data, and solve for α in terms of β to obtain the

common equilibrium population. In this case α = 0.0216(18, 908.01 + β). Finally,

using nonlinear regression ([62]), we obtain β = 4706 from the data in [67].

The calculation of pe and all other simulations of the IPMs in Chapter 2 use the

numerical integration techniques described in [33]. All numerical techniques were

carried out using the statistical software R ([62]), and codes are available upon request.
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Figure A.1: The relationship between seedling recruitment in year t+ 1 and estimated
seed production in year t. The intersection of the two recruitment functions with
h(x) = pex elicits the equilibrium seed production γ∗. We used this intersection to
find the equilibrium population density in Appendix A.
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Appendix B

Chapter 2 Computer Programs

B.1 Example - Contest Competition

#Program to Simulate the Dyanmics of the Example in Chapter 3

#from Jarry et al. 1995 CONTEST COMPETITION CASE

c0 = 48.64

#This is called "c" in the text

cm = 211.9

alpha = 72.51

beta = 89.17
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A = 0.0

s = 0.95

g_p = 0.25

gam1 = (1 - g_p)*s

gam2 = (1 - g_p)*s^2

gam3 = (1 - g_p)*s^3

gam4 = (1 - g_p)*s^4

alpha = 72.51

beta = 89.17/g_p

#Nonlinear functions

h = function(x){cm*c0*x/(cm + c0*x)}

f = function(x){alpha*x/(beta + x)}

#Number of time-steps

N = 12

#Initializing the population

s1 <- 10
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s2 <- 10

s3 <- 10

p <- 10

#Making vectors to count the total population size

totseeds <- rep(s1 + s2 + s3,N)

totplants <- rep(p,N)

#Simulating the population

for (i in 2:N) {

s11 <- s1

s12 <- s2

s13 <- s3

p1 <- p

s1 <- gam1*(h(p1))

s2 <- gam2*s11

s3 <- gam3*s12 + gam4*s13

p <- A*p1 + f(h(p1) + s11 + s12 + s13)
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totseeds[i] <- s1 + s2 + s3

totplants[i] <- p

}

#Calculating the analytic equilibrium population

pe = (1-A)/c0

S <- matrix(0,3,3)

S[2,1] <- gam2

S[3,2] <- gam3

S[3,3] <- gam4

I <- diag(3)

Sinv <- solve(I - S)

#Solving the three equations in three unknowns

gamma = pe/(1 + gam1*sum(Sinv[,1]))
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p2 = (pe*cm + beta*gamma)/(pe*cm + alpha)

p1 = gamma/p2

p1y = alpha - beta*p1

#The equilibrium population

atotplants <- p1y*(1 - A)^-1

atotseeds <- p1y*gam1*(p2/pe)*sum(Sinv[,1])

equil = rep(atotplants + atotseeds,N)

#Graphics

plot(totplants + totseeds, xlab = "", ylab = "", ylim = c(0,1500))

lines(totplants + totseeds) title(main = "Contest Competition")

title(xlab = "t", ylab = "||n||") lines(equil, lty = 2)

legend("bottomright", legend = "Analytic Equilibrium Population",

lty = 2)

B.2 Example - Scramble Competition

#Program to Simulate the Dyanmics of the Example in Chapter 3
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#from Jarry et al. 1995 SCRAMBLE COMPETITION CASE

c0 = 28.09

#This is called "c" in the text

#For the example where global stability does not hold

c0 = 2000

cm = 480.95

alpha = 72.51

beta = 89.17

A = 0.0

s = 0.95

g_p = 0.25

gam1 = (1 - g_p)*s

gam2 = (1 - g_p)*s^2

gam3 = (1 - g_p)*s^3



132

gam4 = (1 - g_p)*s^4

alpha = 72.51

beta = 89.17/g_p

#Nonlinear functions

h = function(x){c0*x*exp(- c0*x/cm)}

f = function(x){alpha*x/(beta + x)}

#Number of time-steps

N = 12

#Initializing the population

s1 <- 10

s2 <- 10

s3 <- 10

p <- 10
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#Making vectors to count the total population size

totseeds <- rep(s1 + s2 + s3,N)

totplants <- rep(p,N)

#Simulating the population

for (i in 2:N) {

s11 <- s1

s12 <- s2

s13 <- s3

p1 <- p

s1 <- gam1*(h(p1))

s2 <- gam2*s11

s3 <- gam3*s12 + gam4*s13

p <- A*p1 + f(h(p1) + s11 + s12 + s13)

totseeds[i] <- s1 + s2 + s3

totplants[i] <- p

}
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#Calculating the analytic equilibrium population

pe = (1-A)/c0

S <- matrix(0,3,3)

S[2,1] <- gam2

S[3,2] <- gam3

S[3,3] <- gam4

I <- diag(3)

Sinv <- solve(I - S)

#Solving the three equations in three unknowns

gamma = pe/(1 + gam1*sum(Sinv[,1]))

Ind = function(x){x*exp((x*beta - alpha)/(cm*pe)) - gamma}

p1 = uniroot(Ind, c(0, 1))$root

p2 = gamma/p1
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p1y = alpha - beta*p1

#The equilibrium population

atotplants <- p1y*(1 - A)^-1

atotseeds <- p1y*gam1*(p2/pe)*sum(Sinv[,1])

equil = rep(atotplants + atotseeds,N)

#Graphics

plot(totplants + totseeds, xlab = "", ylab = "", ylim = c(0,1500))

lines(totplants + totseeds) title(main = "Scramble Competition")

title(xlab = "t", ylab = "||n||") lines(equil, lty = 2)

legend("bottomright", legend = "Analytic Equilibrium Population",

lty = 2)

#Checking for local stability

A0 <- matrix(0,4,4)

A0[1,1] <- A + (beta/alpha)*(p1^2)*p2*(1 + log(p2))*c0
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A0[1,2] <- (beta/alpha)*(p1^2)

A0[1,3] <- (beta/alpha)*(p1^2)

A0[1,4] <- (beta/alpha)*(p1^2)

A0[2,1] <- gam1*p2*(1 + log(p2))*c0

A0[3,2] <- S[2,1]

A0[4,3] <- S[3,2]

A0[4,4] <- S[3,3]

VA = eigen(A0) Stability = VA$values abs(Stability[1])
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Appendix C

Chapter 3 Computer Programs

C.1 Stochastic IPM Demo Program

#Program to Simulate the Dynamics of the Stochastic IPM for

#the Plant-Seed Bank Population of a Disturbance Specialist

#Parameters Displayed are of a current, but not necessarily

#typical, run

#Parameters

#Dimension of approximating matrices

N = 75;

#Number of time-steps
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M = 1000

# Maximum seed bank depth

D = 1

#Mean disturbance depth

rho = 0.5

#Probability of disturbance

h = 0.35

#Program writting for h as the probability of !no! disturbance, so

h <- 1 - h

#Holling parameters

alpha = 400

beta = 500
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#Fecundity

c0 = 100

#Functions

survival = function(x){(95/100)*(1 - exp(- 10*x))}

germination = function(x){(95/100)*exp(- 10*x)}

f = function(x){alpha*x/(beta + x)}

dispersal = function(x){c0*50*exp(-50*x)}

#Initializing vectors

#Creating Steps/Midpoints z = rep(0,N + 1); w = rep(0,N);

germ = rep(0,N); surv = rep(0,N); c = rep(0,N); germ1 = rep(0,N)

W = D/N

z[1] = 0 for(i in 1:N){

z[i+1] = z[i]+W

}

z[N+1] = D
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for(i in 1:N){

w[i] = (z[i+1] + z[i])/2

}

#Discretizing survival and germination functions for (k in 1:N) {

surv[k] <- survival(w[k])

germ[k] <- germination(w[k])

germ1[k] <- (1 - germination(w[k]))

c[k] <- W*dispersal(w[k])

}

#Initial Populations

Pop = 5000

initseeds = function(x){(Pop)*(1/D)}

initplants = 15 seeds = rep(0,N)

#Discretizing initial population

for (l in 1:N) {

seeds[l] <- W*initseeds(w[l])
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}

plants <- initplants

#Total vectors

totseeds = rep(0,M)

totplants = rep(0,M)

totseeds <- sum(seeds)

totplants <- plants

seeds1 <- rep(0,N)

plants1 <- 0

#Initializing the Stochastic Process

r <- 0

r0 <- 0

#Simulating the population
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for (i in 2:M) {

Dist <- diag(N)

r <- runif(2,0,1)

if (r[1] <= h) {

seeds1 <- surv*(seeds + c*plants)

plants1 <- 0

}

#Creating the Disturbance Kernel

else {

q <- (log(1 - r[2])*(- rho))/D

k <- ceiling(min(c(q*N, N)))

for (j in 1:k) {

for (l in 1:k) {

Dist[j,l] <- 1/k

}

}

seeds1 <- surv*germ1*Dist%*%(seeds + c*plants)

plants1 <- f(sum(germ*Dist%*%(seeds + c*plants)))



143

}

#Plotting the pdf of the seed bank population at each time-step

xx <- seq(0,D, by=1/(N - 1)) plot(xx, seeds1/sum(seeds1), type =

’l’, xlab = "Depth", ylab = "PDF of Seeds")

totseeds[i] <- sum(seeds1)

totplants[i] <- plants1

seeds <- seeds1

plants <- plants1

#Asking if the population is extinct or not

if (totseeds[i] < 1) {

seeds <- rep(0, N)

plants <- 0

}

}

#Plotting the population at the end of the simulation
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plot(totseeds, xlab = " ", ylab = " ", col="black") lines(totseeds)

title(xlab="Year", col.lab="black"); title(ylab="Total Seeds",

col.lab="black"); title(main = "")

C.2 Stochatic IPM Quasi-Extinction Code

#Program to Determine the Quasi-Extinction Probabilities For Various

#Values of rho, as a function of h

#Parameters Displayed are of a current, but not necessarily

#typical, run

# Number of mesh points

N = 20;

# Number of sample paths

M0 = 100

#Number of probability of NO DISTURBANCE h values sampled
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M1 = 30

#Number of rhos values sampled

M2 = 5

# Number of time-steps

M = 1000

#Maximum depth

D = 1

#Holling parameters

alpha = 40

beta = 50

#Fecundity

c0 = 50

#probabilities of NO disturbance (You have to reverse the vectors

#obtained to get the figures in the paper)
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h0 <- seq(0,1, by = 1/29)

#Extinction threshold

thresh <- 50

#Functions for survival, germination, Holling and dispersal

survival = function(x){(95/100)*(1 - exp(- 10*x))}

germination = function(x){(95/100)*exp(- 10*x)}

f = function(x){alpha*x/(beta + x)}

dispersal = function(x){50*c0*exp(-50*x)}

#Initializing vectors

#Creating Steps/Midpoints

z = rep(0,N + 1); w = rep(0,N); germ = rep(0,N);

surv = matrix(0,N,N)

cT = rep(0,N); germ1 = matrix(0,N,N);
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Dist1a <- matrix(0,N,N); Dist2a <- rep(0,N)

W = D/N

z[1] = 0 for(i in 1:N){

z[i+1] = z[i]+W

}

z[N+1] = D

for(i in 1:N){

w[i] = (z[i+1] + z[i])/2

}

#Discretizing survival and germination functions for (k in 1:N) {

surv[k,k] <- survival(w[k])

germ[k] <- germination(w[k])

germ1[k] <- (1 - germination(w[k]))

cT[k] <- W*dispersal(w[k])

}

#Creating intermediate matrices

csurv <- surv%*%cT
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Dist1 <- surv%*%germ1%*%diag(N)

Dist2 <- germ%*%diag(N)

#Initial Populations

Pop = 500

initseeds = function(x){(Pop)*(1/D)}

initplants = 15

seeds = rep(0,N)

#Discretizing initial population

for (l in 1:N) {

seeds[l] <- W*initseeds(w[l])

}

plants <- initplants

#Total vectors

totseeds = rep(0,M)
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totseeds <- sum(seeds)

seeds1 <- rep(0,N)

plants1 <- 0

extinct <- 0

prob <- rep(0,M1)

#Vector of rhos

rhovec = seq(0,1, by = 1/(M2 + 1))

Extinction = matrix(0, M2, M1)

#For the ttt’th particular rho value

for (ttt in 1:M2) {

rho <- rhovec[ttt + 1]

#For the iii’th h value
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for (iii in 1:M1) {

h <- h0[iii]

#For the kkk’th sample path for this h and rho

for (kkk in 1:M0) {

for (l in 1:N) {

seeds[l] <- W*initseeds(w[l])

}

plants <- initplants

#For the i’th time step for this sample path, h and rho

for (i in 2:M) {

Dist1a <- Dist1

Dist2a <- Dist2

r <- runif(2,0,1)

if (r[1] <= h) {

seeds1 <- surv%*%seeds + plants*csurv
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plants1 <- 0

}

#Creating the Disturbance Kernel

else {

q <- (log(1 - r[2])*(- rho))/D

k <- ceiling(min(c(q*N, N)))

for (j in 1:k) {

Dist2a[j] <- germ[j]*(1/k)

for (l in 1:k) {

Dist1a[j,l] <- surv[j,j]*germ1[j,j]*(1/k)

}

}

seeds1 <- Dist1a%*%(seeds + cT*plants)

plants1 <- f(sum(Dist2a%*%(seeds + cT*plants)))

}

#Keeping count of the population

totseeds[i] <- sum(seeds1)

seeds <- seeds1

plants <- plants1
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}

#Determining if the population is extinct or not

if (totseeds[M] < thresh) {

extinct <- extinct + 1

}

}

#Updated extinction probability

prob[iii] <- extinct/M0

extinct <- 0

}

#Recording extinction probabilities

Extinction[ttt,] <- t(prob)

prob <- rep(0,M1)
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print(ttt)

}

#Outputting data

write(Extinction, "ExtC50.txt", sep = ",")

C.3 Stochastic IPM Monte-Carlo Code

#Program to Determine the Long-Term Mean and Variance of the

#Seed-Bank Population as a function of h, with rho chosen

#Parameters Displayed are of a current, but not necessarily

#typical, run

# Number of mesh points

N = 20;

# Number of time-steps

M = 10000
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#Maximum depth

D = 1

#Mean disturbance depth for the Kth run

rho = K*(0.033)

#NOTE HERE THAT K NEEDS TO BE CHOSEN BEFORE SIMULATION

#Holling parameters

alpha = 400

beta = 500

#Fecundity

c0 = 1000

#probabilities of NO disturbance (You have to reverse the vectors

obtained to get the figures in the paper)

h0 <- seq(0,1, by = 1/29)
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#Number of sample paths taken

Reps = 500

#Functions for survival, germination, Holling and dispersal

survival = function(x){(95/100)*(1 - exp(- 10*x))}

germination = function(x){(95/100)*exp(- 10*x)}

f = function(x){alpha*x/(beta + x)}

dispersal = function(x){c0*50*exp(-50*x)}

#Initializing vectors

#Creating Steps/Midpoints

z = rep(0,N + 1); w = rep(0,N);

germ = rep(0,N); surv = rep(0,N); c = rep(0,N); germ1 = rep(0,N)

#Discretizing the interval [0,D]

W = D/N
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z[1] = 0 for(i in 1:N){

z[i+1] = z[i]+W

}

z[N+1] = D

for(i in 1:N){

w[i] = (z[i+1] + z[i])/2

}

#Discretizing survival and germination functions

for (k in 1:N) {

surv[k] <- survival(w[k])

germ[k] <- germination(w[k])

germ1[k] <- (1 - germination(w[k]))

c[k] <- W*dispersal(w[k])

}

#Initial populations

Pop = 5000

initseeds = function(x){(Pop)*(1/D)}



157

initplants = 15

seeds = rep(0,N)

#Discretizing initial population

for (l in 1:N) {

seeds[l] <- W*initseeds(w[l])

}

plants <- initplants

#Vectors keeping track of population during simulation

totseeds = rep(0,M)

totseeds0 = rep(0, Reps)

meantotseeds = rep(0, length(h0))

vartotseeds = rep(0, length(h0))

#Initializing

totseeds[1] <- sum(seeds)
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seeds1 <- rep(0,N)

plants1 <- 0

#Initializing Stochastic Process

r <- 0

r0 <- 0

#Running the simulation

#Here is the jjth probability of no disturbance

for (jj in 1:length(h0)) {

h <- h0[jj]

#Here is the kkth sample path for this h0

for (kk in 1:Reps) {

for (l in 1:N) {

seeds[l] <- W*initseeds(w[l])
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}

#Here is the ith time-step for this sample path and h0

for (i in 2:M) {

Dist <- diag(N)

r <- runif(2,0,1)

if (r[1] <= h) {

seeds1 <- surv*(seeds + c*plants)

plants1 <- 0

}

else {

q <- (log(1 - r[2])*(- rho))/D

k <- ceiling(min(c(q*N, N)))

#Creating the disturbance kernel

for (j in 1:k) {

for (l in 1:k) {

Dist[j,l] <- 1/k

}
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}

seeds1 <- surv*germ1*Dist%*%(seeds + c*plants)

plants1 <- f(sum(germ*Dist%*%(seeds + c*plants)))

}

totseeds[i] <- sum(seeds1)

seeds <- seeds1

plants <- plants1

}

#Counting the total number of seeds for this sample path at time M

totseeds0[kk] <- totseeds[M]

}

#Taking the mean and variance over all the 500 sample paths

meantotseeds[jj] <- mean(totseeds0)

vartotseeds[jj] <- var(totseeds0)
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#This is letting you know how far you are in the simulation, once

you get to 30 you are done.

print(jj)

}

#Since h0 is the probability of no disturbance we need to reverse

the order of these vectors.

#Outputting data, you can reverse the vectors here if you’d like

write(meantotseeds, "mean(K*(0.033)C1000b.txt", sep = ",")

write(vartotseeds, "var(K*(0.033)C1000b.txt", sep = ",")
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