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 An ever-increasing global demand for food, coupled with increasingly volatile 

commodity prices have charged producers with the task of becoming more efficient. As 

such, technologies aimed at producing more with less are continually being developed 

and marketed to producers. However, whether or not these expensive new technologies 

have resulted in improved profitability is still unknown, as the vast majority of studies 

showing their impact on profitability have been performed using hypothetical farms and 

simulations. These studies have shown the potential for increases in profitability from 

use, but their impact in the real world is still uncertain. 

This project uses various fixed effect panel data models to examine the realized 

economic impact of using precision agriculture technologies amongst a sample of 

producers across Nebraska using financial data from 1995-2014. Results of the study 

show the existence of a strong, positive relationship between number of technologies 

used and net farm income, indicating that precision agriculture use is associated with 

higher profitability. However, whether use is driving profitability or profitability is 

driving use remains somewhat unclear. Pre-and-post analysis among users of the 

technologies suggest profitability has in fact increased from use, but the result is not 



 

 

 

 

statistically significant. This may be a consequence of mixed results among users, with 

many factors influencing the level of benefit achievable from use. Nonetheless, an 

obvious learning effect exists for users, with profitability increasing more as experience 

with the technologies increases. This would be expected due to the need to produce data 

regarding within-field variability on which to capitalize, along with the investment in 

learning the ideal use of these relatively complicated technologies. Overall, it is obvious 

that further research regarding the impact of these technologies is of great relevance. 
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CHAPTER 1: INTRODUCTION 

1.1 Statement of the Problem 

As world population and incomes continue to rise, they have and will continue to 

be followed by an increased demand for agricultural commodities, with a limited amount 

of land to cultivate for production. As such, producers are faced with an increased 

pressure for efficiency. The world population reached approximately 7.3 billion as of 

2015, meaning that the world population has increased by nearly one billion in the last 

twelve years (United Nations Department of Economic and Social Affairs, 2015). 

Furthermore, the UN Department of Economic and Social Affairs (2015) also predict the 

world population is estimated to reach over 9.7 billion by 2050. In addition to the 

increased demand from a rising world population, producers are also facing increased 

pressure for efficiency with the recent downturn in commodity prices and increases in 

production expenses (USDA ERS, 2015; Robertson et al., 2012). With commodity prices 

near and below breakeven levels, there is a great need for producers to decrease costs and 

thus lower their breakeven.  

The answer to these problems may lie within technological advancements. For 

purposes of this study, precision agriculture refers to agricultural production technologies 

aimed at increasing operational efficiency and/or managing variability within the field. 

Examples of technologies attempting to improve operational efficiency examined in this 

study include global positioning system (GPS) guidance for farm machinery, either using 

a lightbar or autosteer, automated section control on a planter or sprayer (row shutoff for 

the planter, nozzle shutoff for the sprayer), and telematics. Technologies that allow one to 

manage variability within the field include yield monitors, site-specific soil sampling, 
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variable-rate application of inputs, and various imagery technologies. These technologies 

are believed to have numerous benefits in production agriculture, with a potentially large 

economic impact. They are believed to be able to improve the efficiency of farm 

operations by lowering input costs and have been shown in prior studies to have the 

potential to increase net returns (Schimmelpfenning, 2016; Smith et al., 2013; Shockley 

et al., 2012; Shockley et al., 2011; Mooney et al. 2009; Dillon et al., 2007; Batte and 

Ehsani, 2006; Griffin et al. 2005). In addition to lowering input costs through improved 

accuracy of application, it is also believed that precision agriculture technologies will 

allow farmers to increase production due to the vast amount of information available to 

them; allowing them to produce more output with less input (Sustainable America, 2012). 

Furthermore, some of these technologies are thought to have the potential for reducing 

negative environmental impacts from agriculture by reducing the amount of chemical 

inputs applied (USDA NRCS, 2007). Zilberman et al. (1997) stated that promoting the 

use of precision agriculture technologies will be the key to sustainability in agriculture.  

However, these technologies and potential benefits come at an increased cost. A 

recent survey of Nebraska producers showed that the number one reported reason for not 

using precision agriculture technologies in their operations was the cost of investment 

and that they believe the biggest issue regarding advancements in agriculture production 

technology in the future will be overall affordability and cost (Castle et al., 2015). 

Additionally, some studies have shown certain technologies to have mixed, or even 

negative returns (Boyer et al., 2011; Daberkow and McBride 2003). Lambert and 

Lowenberg-DeBoer (2000) reviewed over 100 studies that have examined the effects of 

precision agriculture technologies, typically individually, in hypothetical or experimental 
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settings. They found that over 60% of such studies reported potential positive net returns 

associated with use, while about 10% reported losses and the rest produced mixed results. 

So, although precision agriculture technologies are viewed by many to have a great 

efficiency and profit increasing potential, there is minimal study as to its realized 

economic impact in the real world. 

 

1.2 Objectives 

The purpose of this study is to examine the whole-farm economic impact of adopting 

precision agriculture technologies for producers across the state of Nebraska. Although 

prior studies have shown specific precision agriculture technologies’ potential to increase 

profits in an experimental setting through different simulations or experiments, to the 

knowledge of the authors, there has only been one limited study to actually examine 

whether or not this potential to increase profits has been realized amongst adopters 

(Olson and Elisabeth, 2003). The objectives of the study are as follows: 

1. Survey Nebraska Farm Business, Inc. clientele in order to assess overall precision 

agriculture technology adoption.  

2. Analyze the relationship between precision agriculture usage and profitability in 

order to determine whether adopters of the technologies have experienced greater 

profitability as compared to non-adopters. 

3. Compare pre-and-post-adoption profitability measures for users of the technology 

in order to examine the realized economic impact of adopters over time. 
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1.3 Organization of Study 

 Chapter 2 provides an explanation of each of the ten precision agriculture 

technologies in question in the study. Chapter 3 provides a review of relevant literature 

regarding the impact of these technologies. Chapter 4 provides the methodology used in 

the study. It explains the methods used for collecting and preparing the necessary data, 

the econometric models used to perform the analysis, and the manipulations made to the 

models in order to produce interpretable results. Chapter 5 provides the various 

estimation results as well as a discussion and interpretation of the results. Finally, 

Chapter 6 contains the conclusions made from this study as well as implications of the 

results and suggestions for further research in the area.   
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CHAPTER 2: DESCRIPTION OF TECHNOLOGIES IN QUESTION 

 This study will examine the economic impact of the use of precision agriculture. 

In order to do so, producers are surveyed as to whether or not they use/have used ten 

different precision agriculture technologies in their farming operation. The technologies 

include: a yield monitor without GPS, a yield monitor with GPS, GPS guidance with a 

lightbar, GPS guidance with autosteer, automated section control (planter row shutoff or 

sprayer nozzle shutoff), grid or management zone soil sampling, imagery technologies 

(aerial, satellite, UAV), telematics (tracking of equipment; wireless data transfer), 

variable rate application of nutrients, and variable rate planting. As alluded to in the 

introduction, the different technologies serve different purposes; some improve the 

efficiency of farming operations and some help manage the variability within fields. 

Although each technology serves a different purpose, many are complementary in nature 

and cannot be used without others. For example, variable-rate application of inputs 

cannot be used properly without using soil sampling to identify high-and-low-

productivity areas, yield monitors to generate yield maps, or both in order to determine 

the ideal distribution of inputs. Furthermore, some technologies are more complex than 

others; simply having a yield monitor affixed in a combine requires far less work and 

understanding than generating prescription maps for variable-rate application or scouting 

fields via use of an unmanned aerial vehicle (UAV). 

 The first two technologies studied are the use of a combine yield monitor without 

and with GPS. A yield monitor is a device that allows the producer to see on-the-go yield 

values throughout the field while harvesting (Risius 2014). Yield monitors used in the 

U.S. work by measuring the amount of grain per a given area by analyzing mass flow 
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(impact) or weight (Hopkins 2009). Mass flow, or impact, yield monitors sense the 

amount of grain hitting a given device (impact plate, paddle, fork) against area covered, 

while a weigh-type yield monitor measures the weight of the grain taken in and thus 

calculates yield based on area covered (Risius 2014; Hopkins 2009). A yield monitor 

without GPS is used simply to give the producer more accurate yield measurements while 

harvesting as opposed to having to estimate yield after completion of a portion of a field 

and attempting to gather an understanding of the high-performing and low-performing 

areas of the field. A yield monitor with GPS is able to take this a step further by 

recording both yield and location within the field, which allows the ability to generate 

yield maps. Yield maps produce a visual display of the high-yielding and low-yielding 

portions of the field, typically with color-coding to display the variation. Yield monitors 

and their corresponding yield maps allow producers to manage the variability within the 

field by determining what areas should be managed more intensively and what areas 

should be managed less intensively. For instance, a yield map can show low spots that 

need improved drainage or terracing, less-fertile areas that should receive less inputs, and 

more-fertile areas that should receive more inputs. If the inputs usually used on the less-

fertile areas could instead be used on the more-fertile areas, it could result in higher 

overall yields with the same amount of inputs. Overall, a combine yield monitor, with or 

without GPS, is a relatively simple precision agriculture technology to adopt that aids in 

managing within-field variability but won’t necessarily increase profitability or 

production on its own; it is more of an information-producing technology that allows the 

producer to evaluate field management decisions and develop plans for improved 

management in the future (Risius 2014). 
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 The next two technologies in question are GPS guidance systems that differ by 

the method of maintaining proper positioning of the equipment within the field. One is a 

GPS guidance system that uses a lightbar to help producers maintain position and the 

other uses automatic steering (autosteer). These guidance systems can be used for any 

typical field operation: planting, applying fertilizer, spraying, and harvesting. In the first 

time using either of the systems on a new field, the producer must manually drive one 

round around the edge of the field or pass through the field in order to establish the path 

to follow. After this is complete and the pattern is set, the GPS guidance systems can be 

used. Producers can then store the paths for each of their individual fields in order to 

utilize them once again in subsequent field operations and following years. The lightbar 

display indicates the correctness of the position of the equipment in the field with 

centered lights indicating proper positioning and off-centered lights showing the direction 

in which the positioning is off, allowing the driver to manually make adjustments to stay 

on the right path and thus reduce overlap of inputs. When using automated guidance, 

after making the first round around the edge of the field or pass through the field, the 

autosteer system actually allows the equipment to drive itself through the field, keeping it 

in the correct position and reducing the overlap of inputs. Both GPS guidance systems are 

designed to improve efficiency of operation by reducing overlap and skips of inputs, 

reducing input costs, increasing machinery field capacity, increasing yield through better 

stands, and lengthening the operator’s workday due to decreased physical stress from no 

longer having to maintain proper positioning manually (Karimi et al., 2012; Shockley et 

al., 2011; Griffin and Lowenberg-DeBoer, 2005). Unlike yield monitors, these 

technologies do allow for direct cost savings and potential increases in production. 
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However, because they come at an increased cost, their profitability is not guaranteed. 

Existing studies regarding GPS guidance systems will be discussed further in Chapter 3. 

 The next technology in question is automated section control (ASC). ASC 

systems are an effective tool for reducing overlap when planting and spraying; it is used 

in conjunction with GPS in order to track the area already covered by the planter or 

sprayer and prevent the planter/sprayer from applying the input to this area twice. When 

approaching an already-covered area from a different angle, such as in a point-row, the 

ASC system begins shutting off the respective planter rows/sprayer nozzles as they reach 

the previously-covered portion of the field, resulting in more complete coverage with 

reduced overlap. ASC is most effective when used on fields with irregular shape or in-

field obstructions, as there is more opportunity for double-planting or skips when using 

traditional planting methods, as will be discussed further in Chapter 3 (Smith et al., 2013; 

Shockley et al., 2012). ASC on planters and sprayers is a technology that is meant to 

improve the efficiency of operations and thus lowers input cost and reduces the amount 

of time spent in the field. Additionally, using ASC for planting has the potential to 

improve yields by producing better stands from reduced overlap and skipped areas 

(Runge et al., 2014). When used for spraying, ASC has the potential to reduce plant 

damage from double-spraying and also reaching areas that may have been skipped in the 

process of attempting to avoid overlap manually. Overall, the usage of ASC has the 

potential to bring a lot of benefit to any row-crop operation, but whether its increased cost 

is offset by these benefits is somewhat unknown. 

 Grid and management zone soil sampling are technologies aimed at improving 

producers’ management of the variability within the field. The difference between the 
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two is the pattern in which the samples are taken. Grid soil samples are taken in fixed 

increments that form a grid and can be increased or decreased in frequency to form a 

more accurate picture of the field, whereas management zone sampling is more focused 

on sampling different areas in which certain spatial information is known, such as those 

with different soil types, slopes, cropping histories, etc. (University of Nebraska-Lincoln 

Cropwatch). Much like yield monitors, these soil sampling technologies are capable of 

producing maps that can show the high-and-low-performing areas of the field based on 

soil type. Having an understanding of soil variability within the field is vital from an 

agronomic perspective; different soil types respond quite differently to different inputs 

and management practices. Knowing which portions of the field to apply less inputs and 

which portions to apply more inputs gives the potential to target areas of need more 

efficiently and increase productivity through greater production or decreased inputs. 

Again like yield monitors, soil sampling does not directly increase profitability; it’s the 

improved management practices that are derived from soil sampling that are the true 

benefit. 

 The next technology in question is imagery to monitor crop condition (UAV, 

satellite/aerial imagery). Monitoring crop progress is important in determining the timing 

and location of inputs, such as fertilizers and pesticides, as well as for identifying issues 

with plant health and the development of plant disease. The timing of field operations can 

be crucial; applying chemicals too early or too late can result in yield losses. When the 

crop is in its early stages of growth, identifying problem areas within the field is 

relatively easy, as they can mostly be seen from the edge of the field. However, as the 

crop progresses, the view from the edge of the field no longer suffices. So, the traditional 
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methods of crop scouting involve having to physically walk out into the field, which can 

be extremely time-consuming and less than ideal, or to fly over the field, which can be 

expensive. Using imagery technologies may eliminate the need for doing this and can 

save the producer vast amounts of time and potentially deliver a sizeable economic 

benefit (Doering, 2014). Furthermore, some imagery technologies can actually detect the 

temperature and chlorophyll levels of the crop; much more agronomic information than 

simply walking out into the field or flying over it can provide. Use of these imagery 

technologies is similar to yield monitors and soil sampling in that they don’t directly 

provide economic benefits, they provide information for improved management 

practices. However, the use of these technologies is not very widespread due to their 

large investment cost and the fact that regulation regarding their usage is still unsettled.  

 Gartner IT Glossary defines telematics as the use of wireless devices and “black 

box” technologies to transmit data in real time back to an organization. Broadly speaking, 

telematics are used in a large variety of settings, such as monitoring automobile 

maintenance requirements, observing driving performance for car insurance purposes, 

tracking shipping containers, and now even tracking agricultural equipment and 

transferring data on-the-go in the field. Telematics systems in farming offer equipment 

diagnostics, real-time equipment monitoring, and on-the-go wireless data transfer to/from 

the field (Hest, 2010). Additionally, the tracking of information such as speed of the 

equipment in the field and during transport as well as working time is now available to 

producers. When using a GPS-enabled yield monitor as discussed above, telematics 

systems allow the data produced by the yield monitor to be transferred to a separate 

computer in real-time. Furthermore, the tracking of equipment in-field allows for 
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improved management by analyzing performance. Equipment monitoring allows 

producers to track things such as engine temperatures and fluid levels in order to 

diagnose and attempt to alleviate problems before they occur. It is also possible to track 

idle times in equipment in order to reduce fuel consumption in times it’s not needed, etc. 

The full list of possibilities from using telematics systems is yet to be defined, but it is a 

high-cost and complex technology. Hest (2010) quotes Matt Darr, a precision agriculture 

specialist at Iowa State who stated: “(m)aking money with a telematics system requires 

persistence and a plan for making use of data. When you buy autosteer, you begin saving 

immediately. With telematics, unless you put effort into using the data, you aren’t going 

to get much value from it. There is potential there, but you are going to have to go after 

it.” This quote does a very good job of explaining the implications of telematics and other 

high-end technologies available today in farming. Although it is a very powerful 

technology developed to improve efficiency and profitability in farming, it takes a great 

deal of time and learning to put it to its full use and there is a good chance that many 

users fall short. As such, telematics is a particularly interesting technology for which to 

examine the economic impact; it has the potential to improve profitability, but at a high 

investment cost both monetarily and in terms of time. 

The last technology in question is variable-rate application of inputs with an 

automated controller. The first use of variable-rate technology is the variable-rate 

application of nitrogen, phosphorous, potassium, and lime (the most common fertilizers 

used in agricultural production). The second use is variable-rate seeding when planting. 

As alluded to above, producers use other technologies to diagnose the variability within 

the field and generate prescriptions for the ideal rate of inputs to apply to each area of the 
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field. Yield maps, soil maps, and imagery technologies all provide the information that 

allows producers to capitalize on the use of variable-rate application. With all of this 

information provided, the producer can determine what seeding population and/or 

amounts of fertilizer to apply to each area of the field. After the prescription map is 

generated, the producer can drive their equipment through the field and apply the inputs 

at different rates using an automated controller. The controller is programmed to apply 

differing amounts to various locations and automatically uses that programming to apply 

the prescribed rates to the designated areas. Variable-rate application is designed to allow 

producers to reduce their use of inputs on less-productive areas and shift them to areas 

with higher yield potential. For instance, more productive areas of the soil should be 

planted with a higher seed population because they are more likely to be able to support 

the higher plant population, whereas less-productive areas may not. Variable-rate 

application is designed to allow producers to become more efficient with their inputs by 

focusing on areas with greater potential. In theory, the use of variable-rate application 

may allow producers to reduce their input costs and improve their yields (Mooney et al., 

2009). Furthermore, the variable-rate application of nutrients may have benefits for soil 

health that can be recognized for years to come. Variable-rate application has many 

theoretical benefits, but it is a very expensive technology to invest in. Not only does it 

come with the increased purchase and maintenance/support cost, creating optimal and 

effective prescription maps for variable-rate application requires a very large investment 

in terms of a producer’s time.  
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CHAPTER 3: REVIEW OF RELEVANT LITERATURE 

Previous research has shown that producers’ belief that precision agriculture 

technologies will bring increased profitability is an influential factor in the adoption of 

the technologies (Watcharaanantapong et al., 2014; Walton et al., 2008). Additionally, 

the survey of Nebraska producers previously discussed by Castle et al. (2015) showed 

that nearly 70% of respondent adopters believe their profits have increased due to the use 

of precision agriculture. There have been many studies attempting to measure the 

economic benefit of specific technologies, each looking at different factors affecting 

profitability. Many of these studies use hypothetical farms and/or simulations in order to 

determine the potential returns from precision agriculture. Such studies have shown 

potential for consistent increases in net returns under varying circumstances from 

multiple specific technologies, including GPS guidance, automated section control, and 

variable rate application of nutrients (Smith et al., 2013; Shockley et al., 2012; Shockley 

et al., 2011; Mooney et al., 2009; Dillon et al., 2007; Batte and Ehsani, 2006; Griffin et 

al., 2005). Plus, a recent study by the USDA’s Economic Research Service found positive 

impacts on profitability measures associated with the use of soil and yield mapping, GPS 

guidance systems, and variable-rate application of inputs (Schimmelpfenning, 2016).  

However, returns from these technologies are not consistent across all areas. 

Several studies have shown that field characteristics, such as size, shape, and in-field 

obstructions affect returns from use (Smith et al., 2013; Shockley et al., 2012; Batte and 

Ehsani, 2006). The literature shows that the more irregular the field shape, be it from 

hills, trees, waterways, obstructions, etc., the higher the potential for increased profit 

from using automatic section control on a planter or sprayer (Smith et al., 2013; Shockley 
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et al., 2012; Batte and Ehsani, 2006). This is due to the fact that irregularly-shaped fields 

present a higher chance of overlap in applications, so the role of ASC becomes more 

important in reducing said overlap, whereas more square-shaped fields have a lesser 

chance for overlap and thus the usage of ASC is not as relevant. Conversely, the more 

irregular the field shape, the lower the potential benefits from GPS guidance alone (Smith 

et al., 2013). Smith et al. (2013) found that GPS guidance alone has the highest returns 

for more square-shaped fields and the lowest returns for irregularly-shaped fields. Using 

GPS guidance can help reduce overlap when compared to traditional methods of planting, 

but the overlap resulting from irregularities in field shape, such as point rows, is not 

reduced because the individual planter rows/sprayer nozzles do not shut off as they pass 

over already-covered areas. Shockley et al. (2012) found that field shape becomes less 

important when the size of the field increases. Furthermore, spatial variability within the 

field, such as in terms of varying soil type, has been shown to have an effect on the 

profitability of precision agriculture (Osei and Li, 2016). The greater the variability 

within the field, the greater the opportunity to tailor inputs at a site-specific level and the 

less variable the field, the lesser the need to vary inputs. Overall, the literature shows 

precision agriculture technologies’ ability to capitalize on field variability and potentially 

increase profits through reduced levels of inputs and/or increased production.  

Many studies have also shown that increasing the number of acres in the 

operation has a positive impact on the potential profitability of the technology, indicating 

that larger farmers have a higher incentive for use (Mooney et al., 2009; Dillon et al., 

2007; Batte and Ehsani, 2006; Griffin et al., 2005). Schimmelpfenning (2016) found 

precision agriculture technologies to be used on a considerably higher proportion of crop 
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acres than farms, indicating that larger farmers are more likely to adopt. This result is 

intuitive because larger farmers are able to spread the cost of the equipment over a larger 

number of acres. Furthermore, due to the high investment cost in adopting these 

technologies, relatively large producers may be the only ones for which investment in 

these technologies is feasible. Although differing field and operation characteristics have 

been shown to have an impact on returns from usage of precision agriculture, the use of 

GPS guidance and ASC have both been shown to bring increased returns to producers 

individually, but they are their most effective when used together (Smith et al., 2013).  

Studying the economic impact of precision agriculture across Nebraska is of 

interest due to the enormous diversity in production regions and practices across the state. 

Smith et al. (2013) in their simulations examined part of this potential variation in 

profitability from usage, as their study included fields from the entire state of Kansas as 

well as the three southernmost agricultural districts in Nebraska and one district in 

Colorado. Their study showed the highest return on investment for GPS guidance alone 

for West Central Kansas, followed by Southeast Colorado, and Southwest Kansas; 

districts where fields are predominantly large and regularly-shaped. GPS alone had the 

lowest return on investment in East Central Kansas, followed by Southeast Nebraska, and 

then Southeast Kansas; districts with much smaller and more irregularly-shaped fields 

due to a more hilly terrain. In contrast, when examining the usage of ASC, the rankings 

are the exact opposite; the highest return on investment was in East Central Kansas, 

followed by Southeast Nebraska, and Southeast Kansas, while the lowest returns were in 

West Central Kansas, Southeast Colorado, and Southwest Kansas. However, when using 

both technologies together, the highest return on investment was in East Central Kansas, 
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Southeast Nebraska, and Southeast Kansas. These results show that the benefits from use 

of ASC outweigh those of GPS guidance, and the districts with more hilly and tree-

covered terrain have a higher potential benefit from use as compared to the much flatter 

and less tree-filled fields of the western portions of the states. With these results in mind, 

a study examining whether or not the large hypothesized economic impacts described 

have been realized by producers in Nebraska is of great relevance.  

Although there are many studies showing considerable benefits from different 

GPS systems and automatic section control, the literature has shown mixed results when 

it comes to variable-rate application of nutrients. Boyer et al. (2011) studied whether or 

not variable-rate application of nitrogen would increase yields and profitability in wheat 

production at eight different test plot locations across the state of Oklahoma. These test 

plots were studied over a five-year period and produced mixed results; there were some 

instances in which the variable-rate application resulted in higher returns and some 

instances in which uniform application resulted in lower returns and no statistically 

significant difference was found between the treatments. Daberkow and McBride (2003) 

studied the impact of using remote sensing imagery to determine and use variable-rate 

nitrogen application on sugar beets in the Red River Valley of North Dakota and 

Minnesota and the impact of use was found not to be statistically significant as well. 

However, Lowenberg-DeBoer (1999) studied the usage of variable-rate application of 

phosphorus and potassium as a risk management strategy (reducing production risk) on 

grain farms in the Eastern Corn Belt. Their empirical evidence from on-farm trials 

supported the hypothesis that variable-rate application can have positive benefits by 

reducing production risk. Schimmelpfenning (2016) found variable-rate application use 
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to be associated with increases to operating profits and net returns. However, it is of 

interest to note that these positive returns were the smallest of the three technology 

groups studied, at only 1.1%. Variable-rate application of nutrients, in theory, should be 

able to allow producers to increase yields while decreasing inputs and thus have a 

positive impact on profits, but the literature shows mixed results from on-farm trials, so 

studying benefits realized by adopters in the real world is of great relevance. 

When it comes to yield monitors, the majority of studies are from an agricultural 

engineering perspective; many studies have examined the accuracy of yield monitors 

under varying conditions (Risius, 2014; Grisso et al., 1999; Colvin and Arslan). In a case 

study, Griffin et al. (2008) found producers who used yield monitors and received spatial 

analysis reports have increased confidence in on-farm trials and their subsequent 

management decisions. In their study, Griffin et al. (2008) also stated that prior studies 

have shown the length of time using yield monitors to be a factor in producers’ perceived 

value of their use. Risius (2014) touches on this fact in mentioning the importance of the 

amount of data to yield monitors’ value. He states: “(t)he more data a producer can obtain 

from each individual harvest season, the more evidence that individual has to evaluate 

how different factors affected the harvest results.  From these results, producers can 

determine if the decisions made from the data were financially justified.” This statement 

shows the true nature of yield monitoring in improving profitability; the producer can use 

the data produced to make improved management decisions and the following year’s 

yield information can show the producer whether or not these different management 

decisions paid off. As such, it may be of interest to examine the effect of length of time 

using a yield monitor, as well as other technologies, on profitability. Overall, measuring 
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the direct economic impact of yield monitors proves to be very difficult and studies of 

this nature are lacking. The recent study by Schimmelpfenning (2016) found GPS 

mapping (though including both yield and soil mapping) to have a positive impact on net 

returns and operating profits. These technologies were associated with the largest 

increases in profitability measures of those studied, but the increase was still relatively 

small. Schimmelpfenning’s study may be confounded for the purposes of this review, 

however, as the use of yield and soil mapping are combined and thus it is unknown 

whether or not these increases are more associated with the use of yield mapping, soil 

mapping, or the combination of the two.  

Studies on the benefits of grid or management zone soil sampling mostly focus on 

increased returns from the variable-rate application of nutrients based on the soil samples. 

As such, it’s once again difficult to determine the impact of the soil sampling itself. As 

mentioned above, the 2016 study by Schimmelpfenning showed a positive impact on 

profitability from the use of GPS mapping, but yield and soil mapping were combined, 

making it difficult to comment on the profitability of soil mapping by itself. The main 

thought process is summarized well by Mallarino and Wittry (1999): “(a)n intensive soil 

sampling plan will not be cost-effective unless the intensive sampling and resulting 

change(s) in fertilization method or rates result in higher yields and/or lower rates.” Yohn 

and Wickline (2008) performed a study attempting to determine the differences in cost of 

conventional soil sampling and precision soil sampling on case farms in the state of West 

Virginia. Of the eight fields studied, the precision soil sampling led to cost reductions in 

only three, while conventional soil sampling was cheaper in five. On average, the 

conventional soil sampling was cheaper by $8.62 per acre. The two methods of soil 
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sampling suggested differing rates of applying nutrients in almost all instances. Despite 

the precision soil sampling being more expensive, the authors noted that it is unclear how 

plants respond to having optimum levels of nutrients applied. If the precision sampling 

resulted in improved application that increased yield, the investment may pay for itself, 

but again, these benefits would not be derived solely from improved soil sampling, rather 

a combination of soil sampling and variable-rate application.  

Imagery technologies are also difficult to assess, as they don’t provide direct 

benefits either, but rather provide the information for variable-rate application of inputs 

and the timing of operations. Due to this, their economic benefit is once again very hard 

to measure on its own. Tenkorang and Lowenberg-DeBoer (2008) summarized the 

existing studies on the usage of remote sensing and imagery in agriculture. Of the nearly 

100 studies examined, the vast majority were focused solely on technical aspects of the 

technology and only twelve studies reported an estimated economic benefit from use. 

These studies gave widely-varied estimates of returns from use and were all based on 

returns from adjusting management practices, as with soil sampling. So, once again, the 

direct benefit of this technology is extremely difficult to measure as its benefit is realized 

when used in conjunction with other technologies.  

The technology with the least amount of literature available is telematics. This is 

most likely a function of the fact that it is the newest of the precision agriculture 

technologies examined in this study and that its benefit is also extremely difficult to 

quantify. As of right now, there is no quantitative information available as to telematics’ 

economic impact other than the cost of purchasing and maintaining available systems. 

However, producing data that allows for monitoring efficiency of operations may give 
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producers the ability to save money in the long run by using resources more effectively, 

and machinery diagnostics may allow problems to be detected before breakdowns occur, 

saving money by preventing the need for major repairs (Martindale, 2014).  

As discussed in Chapter 2, many of the technologies in question don’t bring direct 

increases in profitability by themselves, they provide the information that allows for 

improved management practices through the use of other technologies. As such, it’s not 

easy to isolate and measure the economic impact of using things like yield monitors, grid 

or management zone soil sampling, imagery, or telematics. This study aims to examine 

benefits of using multiple precision agriculture technologies as a system, allowing the 

overall economic impact of both information-producing technologies and direct-benefit 

technologies to be assessed.  

 There have been many studies examining the profit potential of specific precision 

agriculture technologies through simulations and/or on farm trials, but a thorough review 

of literature finds only one study attempting to examine the whole-farm profitability of 

using precision agriculture technologies. Olson and Elisabeth (2003) surveyed just over 

200 producers associated with the Southwestern Minnesota Farm Business Management 

Association regarding their use of precision agriculture and these responses were then 

connected with financial data in order to examine the economic impact of use. In their 

study, Olson and Elisabeth (2003) first examined the adoption of precision agriculture 

and then its subsequent impact. To assess the impact of adoption, whole farm rate of 

return to assets was used. Their results showed that the usage of precision agriculture 

actually had a negative impact on return to assets for the entire group of farms, but had no 

significant impact when the farms were separated into subgroups, such as row crop 
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farmers only and by size. However, these results may not be indicative of the true impact 

of use. Due to the fact that the study was performed using production data from the year 

2000, precision agriculture as it is known today did not yet exist and use of any precision 

agriculture technology was very limited. Only 27.8% of their respondents reported using 

at least one precision agriculture technology in their operation and these were likely 

technologies not expected to have a direct impact on profitability themselves. This 

limited amount of use in the sample most likely hindered the results of the study and 

prevented Olson and Elisabeth from being able to perform any further analysis by 

breaking the observed sample into subgroups. Sample limitations aside, the methodology 

and thought process behind Olson and Elisabeth’s work is still quite novel and extremely 

relevant to this study.  

  



22 

 

 

 

CHAPTER 4: METHODOLOGY 

4.1 Data Collection and Preparation 

 In order to examine the economic impact of using precision agriculture, 

producers’ technology usage and financial data are needed. The financial data for this 

study come from Nebraska Farm Business Inc. (NFBI). A database containing 

anonymous financial information on producers across the state associated with NFBI is 

used in order to perform the analysis in this study. To produce the technology usage data 

needed, a UNL Institutional Review Board (IRB) approved survey was developed and 

distributed to producers associated with NFBI. Response to this survey was kept 

completely anonymous, as researchers were only given access to a farm ID number, not 

actual producer names or personal information. This farm ID also allows for linkage to 

the financial database given to the researchers by NFBI. The survey asks producers if 

they have ever used the ten technologies discussed above in their farming operation and, 

if yes, the year they began using the technology and year they stopped using the 

technology. A copy of the survey used for data collection is shown in Figure A.1 of the 

Appendix.  

 A total of 109 surveys were mailed out to producers associated with NFBI and 

fifty-nine responses were received, resulting in a relatively high response rate of 54.13%. 

A database of technology usage by year was created, containing the usage of each 

technology, as well as total technology usage, for each respective producer from 1990-

2016. For the various analyses, the data was transformed into more workable forms, 

combining the technology usage and financial data. A summary of producers’ technology 

usage and financial information is shown in Section 5.1.  
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4.2 Financial Variables Used in Study 

  As mentioned above, a database containing financial information for a number of 

producers across Nebraska was received from NFBI. This database contains a large 

number of different liquidity, solvency, profitability, repayment capacity, and financial 

efficiency measures. In order to examine the impact of precision agriculture usage on 

whole-farm profitability, several different profitability and financial efficiency measures 

were used. The first and most obvious financial measure to use in this study is net farm 

income (NFI). NFBI defines this measure as the return to a producer’s labor, 

management, and equity that they have invested in their business; the reward for 

investing unpaid family labor, management, and money in the business instead of 

elsewhere. It is a measure of profitability, as it is the difference between the value of 

goods produced and the cost of the resources used to produce them. Net farm income in 

the database is calculated as: 

𝑁𝐹𝐼 =  𝐺𝑟𝑜𝑠𝑠 𝐶𝑎𝑠ℎ 𝐹𝑎𝑟𝑚 𝐼𝑛𝑐𝑜𝑚𝑒 − 𝑇𝑜𝑡𝑎𝑙 𝐶𝑎𝑠ℎ 𝐹𝑎𝑟𝑚 𝐸𝑥𝑝𝑒𝑛𝑠𝑒𝑠

+/−  𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝐶ℎ𝑎𝑛𝑔𝑒𝑠 − 𝐷𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 

 There are two different versions of NFI available in this database: market-based 

and cost-based. For purposes of this study, cost-based net farm income is used, as it is the 

more accurate, reliable measure of the two. The difference between them is mostly the 

calculation of depreciation. For cost-based NFI, a set, consistent management 

depreciation is used (10% for machinery and equipment, 5% for buildings). For market-

based NFI, the producer is able to choose the value of their equipment with a relatively 

high degree of flexibility, resulting in less consistency in depreciation values, as 

producers can manipulate their levels of depreciation and asset values in order to lower 
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their income tax burden. Thus, cost-based NFI is the more accurate and consistent 

measure, making it the preferred choice for this study.  

 The next financial measures used are financial efficiency measures. NFBI states 

that these measures show how effectively a farm uses assets to generate income, making 

these measures very suitable for the purposes of this study. The financial efficiency 

measures used are ratios which show how gross farm income is used. The first measure 

used is the net farm income ratio (NFIR), which compares profit to gross farm income. 

This shows how much is left after all farm expenses, except for unpaid labor and 

management, are paid. Net farm income ratio is a very good measure for this study, as it 

shows a farm’s efficiency in turning gross income into net income, i.e. profits. 

Furthermore, this efficiency measure is effective in eliminating potential size bias; net 

farm income will likely be higher for larger producers, whereas net farm income ratio 

will not necessarily be higher for larger producers, just for more efficient producers. The 

ratio is calculated as follows: 

𝑁𝐹𝐼𝑅 =
𝑁𝑒𝑡 𝐹𝑎𝑟𝑚 𝐼𝑛𝑐𝑜𝑚𝑒

𝐺𝑟𝑜𝑠𝑠 𝐹𝑎𝑟𝑚 𝐼𝑛𝑐𝑜𝑚𝑒
 

 The second ratio used in analysis is the operating expense ratio (OER). This ratio 

shows the proportion of farm income used to pay operating expenses, not including 

principal or interest. Due to the fact that many studies have shown various precision 

agriculture technologies to decrease operating expenses, this ratio should, in theory, be 

lower for technology users. The operating expense ratio is: 

𝑂𝐸𝑅 =  
𝑇𝑜𝑡𝑎𝑙 𝐹𝑎𝑟𝑚 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝐸𝑥𝑝𝑒𝑛𝑠𝑒𝑠 𝐸𝑥𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 & 𝐷𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛

𝐺𝑟𝑜𝑠𝑠 𝐹𝑎𝑟𝑚 𝐼𝑛𝑐𝑜𝑚𝑒
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4.3 Methods Used for With/Without Analysis 

 4.3.1 Initial With/Without Analysis 

 The first analysis performed in the study examines the differences in profitability 

between users and non-users of precision agriculture technologies in order to determine 

the relationship between technology usage and profitability. However, because only three 

of the fifty-nine respondents had never used any of the technologies, comparing strictly 

those using any technologies and those using none is not feasible. Rather, the total 

number of technologies used becomes the independent variable of interest, acting as a 

measure of the extent of precision agriculture technology use. The high rate of 

technology usage in the sample is most likely due to the fact that the producers associated 

with NFBI are more progressive than the typical producer. Just becoming a client of such 

an organization is an indication that they are inclined to be managerially-focused and thus 

are more likely to be early adopters of technology, resulting in a very low number of 

complete non-adopters.  

The data of interest in this study take the form of panel data. Panel data is defined 

by Hilmer and Hilmer (2014) as data collected for a number of individuals, countries, 

firms, etc., over many different time periods, also known as longitudinal data. In this 

case, the panel data set consists of technology adoption and financial data for fifty-nine 

different individual farms in Nebraska over a twenty-year span, from 1995-2014. As 

such, basic regression methods used for cross-sectional data cannot be used and instead a 

panel data methodology is needed.  
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The two main issues with the data are the potential existence of a time-trend in the 

profitability measures and the potential for bias resulting from consistently high-or-low-

performing farms. Due to the boom in farm incomes in the five-to-ten years prior to 

2014, then large fall in 2014, a relatively large time-trend was expected to be found in the 

financial data. So, net farm income (NFI) was plotted by year from 1995-2014, as shown 

below in Figure 4.1. Various trend lines were fitted to the data and a third-order 

polynomial was found to be the best fit, as it shows a slight decrease through the late 

1990s and a gradual rise until peaking around 2012, then a decrease again. To determine 

whether or not this time-trend was of significance, a regression was performed for the 

third-order polynomial and was found to be significant at the α=1% level. The time-trend 

regression results can be found in Figure A.2 of the Appendix.  

Figure 4.1: Chart of NFI by Year from 1995-2014 

y = -315.72x3 + 2E+06x2 - 4E+09x + 3E+12
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-1000000

-500000

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015

C
o

st
-B

as
ed

 N
et

 F
ar

m
 In

co
m

e 
(i

n
 $

/y
ea

r)

Year

Net Farm Income by Year 1995-2014



27 

 

 

 

 In addition to the time-trend, there is also concern regarding bias in the results due 

to consistently high-performing and low-performing farms. For example, if some farms 

have consistently higher incomes, simply regressing technology usage versus income 

does not suffice, because these farms will have relatively higher incomes regardless of 

their level of technology usage. Additionally, when using NFI as the dependent variable, 

there is an obvious size bias that exists, as larger farms are most likely going to have 

larger NFI and smaller farms are going to have smaller NFI. Once again, simply 

regressing technology usage versus NFI will give a distorted response, because the larger 

farms may have a higher NFI than smaller farms regardless of whether or not the 

technologies used by the large farm have caused them to gain or lose money.  

 In order to address these two potential issues, a fixed-effect panel data model with 

T-1 year dummy variables was used (for the T=20 years from 1995-2014). The year 

dummy variables control for the time-trend by separating the effects of each year from 

the effect of the number of technologies used. The fixed-effect model is a method of 

removing the time-invariant component of the error term in panel data, in this case 

removing the bias of consistently high-and-low-performing farms (and size bias when 

regressing NFI). The fixed-effect model removes the individual effect αi by applying a 

within-transformation to (or “demeaning”) the data and then estimating the quasi-

differenced regression by ordinary least squares (Hilmer and Hilmer, 2014). The within-

transformation is performed by subtracting each individual’s mean value for both the 

independent and dependent variables from each of the individual observations for each 

individual. For further explanation of this method, see Hilmer and Hilmer, 2014. 
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 The first with/without analysis requires the use of one main independent variable 

(the number of precision agriculture technologies used, shown below as x1) and year 

dummy variables to control for the existing time-trend (shown below as 𝛷𝑇). The year 

dummy variables take on a value of 1 in year T and a value of 0 if the observation is for 

any other year. So, each dummy variable used takes on a value of 1 only one time for 

each individual producer. Thus, our original model prior to the within-transformation can 

be written for i = 1, 2, …, N producers across t =1, 2, …, T years as follows: 

 

Equation 4.1:  𝑦𝑖𝑡 =  𝛽1𝑥1,𝑖𝑡 + 𝛷𝑇 + 𝜀𝑖̃𝑡 

Where:  

 𝑦𝑖𝑡 = Various financial measures to be examined (NFI, NFIR, OER). 

 

 Applying the fixed-effect model to equation 4.1 transforms each variable, then OLS 

regression is performed to produce parameter estimates. This model was then estimated for 

the various 𝑦𝑖𝑡 variables using the free, open-source technology software “R”. Results of 

the regression can be found in the Results and Discussion section. 
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4.3.2 Extended With/Without Analysis 

 After performing the initial analysis to determine the relationship between the 

extent of precision agriculture technology usage and profitability, the analysis was taken 

a step further. Due to the fact that not all of the ten technologies are expected to have a 

direct impact on profitability, the independent variable was split into two groups of 

technologies in order to further examine these technologies’ impact. The two groups are: 

1) those technologies whose purpose is to provide information which can allow for 

improved management decisions, but do not themselves have a direct impact on 

profitability and 2) those technologies whose purpose is to directly increase profitability 

by reducing inputs and/or increasing production. The differences between these two types 

of technologies were detailed in Chapter 2, explaining why the technologies were 

assigned to their respective groups.  

 The group of information-producing technologies include: combine yield monitor 

(without GPS), combine yield monitor (with GPS), grid or management zone soil 

sampling, imagery, and telematics. The group of technologies with a direct impact on 

profitability include: GPS guidance with a lightbar, GPS guidance with autosteer, ASC, 

variable-rate application of nutrients, and variable-rate seeding. Thus, instead of an 

independent variable with values ranging from 0-10 technologies used, this analysis uses 

two separate independent variables with values ranging from 0-5 technologies used for 

each category and equation. The resultant model can be written as follows: 
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Equation 4.2: 𝑦𝑖𝑡 =  𝛽1𝑥1,𝑖𝑡 + 𝛽2𝑥2,𝑖𝑡  + 𝛷𝑇 + 𝜀𝑖̃𝑡 

Where: 

 𝑦𝑖𝑡 = NFI of producer i in year t. 

 𝑥1,𝑖𝑡= Number of information-producing technologies used by producer i in year t. 

 𝑥2,𝑖𝑡 = Number of direct-impact technologies used by producer i in year t. 

 

Once again, applying the fixed-effect model to equation 4.2 transforms each 

variable, then OLS regression is performed to produce parameter estimates. The results of 

this regression analysis are shown in the Results and Discussion.  

 

4.4 Methods Used for Before/After Analysis 

 4.4.1 Initial Before/After Analysis 

 The second half of the analysis performed in the study examines the differences in 

profitability before and after adopting precision agriculture. Due to the fact that this 

analysis focuses solely on users of the technology, the three producers not using any of 

the technologies are removed from the data, resulting in a sample of fifty-six producers as 

opposed to the full fifty-nine responses received. As was the case in the with/without 

analysis, these data take the form of panel data, with financial and technology usage on 

the fifty-six individual producers each year from 1995 – 2014. This analysis allows for 

examination of whether or not usage of the technology has actually resulted in increased 

profitability as compared to non-use.  
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 In order to perform this analysis, a binary dummy variable was created for use of 

precision agriculture, taking on a value of zero in years of non-use and a value of one in 

years of use; allowing for the before and after comparison. Precision agriculture use was 

defined as using any of the ten technologies in question. So, each producer’s value was 

zero in each year prior to adopting a precision agriculture technology, then equaled one in 

the year of adoption and each subsequent year. Typically, the first technology adopted 

was a yield monitor, grid soil sampling, or a GPS guidance system. Multiple technologies 

could be adopted at once, but the dummy variable for use still takes on a value of one.  

 Due to the fact that there is a learning curve expected to be present when adopting 

a new technology, an interaction term of technology usage and years of use was created 

to capture this potential effect. To create this interaction term, time t=0 was set to be the 

initial year of use, with each year after taking on a value of t+1, t+2, …, t+k for all k 

years of use. So, a producer who adopted their first technology in 2013 would have a 

years after value of 1 in 2014, whereas a producer who adopted their first technology in 

1995 would have a years after value of 19. This years of use value was then multiplied by 

the precision agriculture usage dummy variable, resulting in values of zero for years of 

non-use and values equal to the years of use for each year in which a technology is being 

used. It should be noted that a few producers started using precision agriculture 

technologies prior to the first year for which financial data is available. Adoption data is 

available starting in 1990, but financial data is not available until 1995. Thus, producers 

who adopted a precision agriculture technology in this period simply have a t=0 in a year 

prior to the beginning of their financial data, resulting in a positive value for the 

interaction term for all years of financial data. For those who had adopted precision 
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agriculture prior to 1990, it is instead assumed that 1990 is their first year of use. These 

individuals then had an interaction term value of 5 at the start of the available financial 

data.  

 Because the dependent variable remains the same as in the with/without analysis, 

the same existence of a time-trend and individual performance bias is expected and must 

be addressed. Again, year dummy variables (Φ𝑇) are used to control for the time trend, 

and a fixed effect panel data model is used, applying within transformations and 

demeaning the data to remove any performance bias. However, in this model, there are 

now two main independent variables of interest: technology usage (x1) and the interaction 

term between usage and length of usage (𝑥1 * 𝑦𝐴). The resultant model can be written as: 

 

Equation 4.3:  𝑁𝐹𝐼𝑖𝑡 =  𝛽1𝑥1,𝑖𝑡 + 𝛽2(𝑥1,𝑖𝑡 ∗ 𝑦𝐴,𝑖𝑡) +  𝛷𝑇 +  𝜀𝑖̃𝑡 

 

 Again, applying the fixed-effect model transforms each of the variables in 

Equation 4.3. The database was then uploaded to R and this model was estimated using 

NFI as the dependent variable. Results of the regression analysis can be found in the 

Results and Discussion. 
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4.4.2 Extended Before/After Analysis 

 As alluded to above, a learning curve is expected for the realized benefits of using 

precision agriculture technologies. Due to the fact that some of these technologies are 

quite complex and the average producer is relatively older and may be less 

technologically-savvy, it is expected to take some time to optimally use the technology 

and thus take some time to realize the maximum benefit from use. So, it is hypothesized 

that as the number of years of use increases, increases in profitability should increase as 

well, which is the purpose of using the interaction term in the first analysis. However, the 

first model assumes this relationship to be linear, which may not be the case.  

In his 2011 book, M. Jaber discusses the enormous number of different learning 

curves in existence, the majority of which are non-linear. Jaber (2011) notes that 

modeling changes in performance as a function of experience has often been done using 

non-linear forms such as S-curves and exponential functions. The author provides two 

early papers (Wright, 1936; Yelle, 1979) in operations management literature that discuss 

this issue. Jaber (2011) then describes a 1998 study by Ployhart and Hakel in which the 

cubic (S-shaped) curve is used to model the individual productivity of salespeople. The 

cubic function’s S-shaped curve has been used to model learning in various 

circumstances. Daller, Turlik, and Weir (2013) performed a review of different learning 

curves as they related to vocabulary skills and provide multiple examples of studies in 

which a cubic function has been shown as best to capture the effect of learning. Although 

these studies are not from agricultural economics literature, their concept is still 

applicable to this study. 
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 Due to the fact that this analysis examines the growth in financial performance 

(NFI) by individual farms using new technologies, this model seems quite relevant. The 

beginning stages of the S-shaped learning curve represent the time in which a person is 

becoming familiar with a task and begin to slowly improve. This is followed by a rapid 

ascent in performance, as the person gains experience and is able to start improving very 

quickly, until reaching a ceiling and their performance begins to plateau. This may very 

well be the case when it comes to precision agriculture usage, as the first few years are 

spent learning the features and proper uses of the technology, as well as collecting the 

necessary data to make improved management decisions, resulting in very slow increases 

or even decreases in profitability until they become familiar with the technology and have 

sufficient data on which to act. Furthermore, because many producers’ first technology 

adopted was an information-producing technology such as a yield monitor or grid soil 

sampling, the first few years may actually show decreases in profitability due to the fact 

that they have paid for the technology but are not expected to receive any immediate, 

direct benefit to profitability from use. Once they have discovered the best uses of the 

technology and have an adequate amount of data collected, they are able to make rapid 

improvements to management decisions and experience large increases in profitability 

until ultimately reaching a ceiling and achieving near-maximum benefit from use. A 

generic form of the S-shaped (sigmoid) learning curve is shown in Figure 4.2 below.  
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Figure 4.2: Generic Sigmoid Learning Curve  

 

  In order to test for the existence of a non-linear learning factor, new polynomial 

interaction terms are added to the original fixed-effect panel data model as independent 

variables, resulting in the following: 

 

Equation 4.4:  

𝑁𝐹𝐼𝑖𝑡 =  𝛽1𝑥1,𝑖𝑡 + 𝛽2(𝑥1,𝑖𝑡 ∗ 𝑦𝐴,𝑖𝑡
3) + 𝛽3(𝑥1,𝑖𝑡 ∗ 𝑦𝐴,𝑖𝑡

2) + 𝛽4(𝑥1,𝑖𝑡 ∗ 𝑦𝐴,𝑖𝑡) + 𝛷𝑇 +  𝜀𝑖̃𝑡 

 

Where: 

 𝑁𝐹𝐼𝑖𝑡 = NFI for producer i during year t. 

𝑥1,𝑖𝑡 = Dummy variable for precision agriculture usage for producer i in year t; 

equal to 1 when producer using at least one technology, equal to 0 when 

not using any.  

𝑦𝐴,𝑖𝑡 = Years of use of precision agriculture for producer i in year t, as defined 

above. 
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𝑥1,𝑖𝑡 ∗ 𝑦𝐴,𝑖𝑡
𝑘 = Interaction term between precision agriculture usage and years of 

use raised to the kth power, ranging from k=1 to k=3 making up the 

third-order polynomial attempting to examine the existence of a 

cubic relationship for learning; equal to the value of 𝑦𝐴,𝑖𝑡
𝑘 during 

years in which producer i is using a precision agriculture 

technology and equal to 0 during years in which no technologies 

are used. 

 

 Again, applying the fixed-effect model transforms each of the variables in 

Equation 4.4. The database including the cubed and squared interaction terms was then 

uploaded to R and the model was run in order to produce interpretable parameter 

estimates. The results of this regression analysis can be found in the Results and 

Discussion section. However, these parameter estimates by themselves are not sufficient 

to make conclusions; further analysis is required. 

 

4.4.3 Determining Significance of Parameter Estimates 

 The significance levels on the individual parameter estimates for the polynomial 

interaction terms do not provide any interpretable value by themselves. Instead, the 

significance of the marginal impact of years of use is of interest. The marginal impact of 

years of use shows the impact that adding an additional year of experience will have on 

NFI. If the marginal effect of years of use in a given year is positive and statistically 

significant, it is an indication that adding an additional year of experience with the 

technology will increase NFI further, while years in which the marginal effect is not 

statistically significant indicate that an additional year of experience will not have any 

further impact on NFI.  
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Differentiating Equation 4.3 with respect to years of use results in a marginal 

effect of: 

 

Equation 4.4.1 

𝑀𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝐸𝑓𝑓𝑒𝑐𝑡 =
𝜕𝑁𝐹𝐼𝑖𝑡

𝜕𝑦𝐴,𝑖𝑡
=  3𝛽2(𝑥1,𝑖𝑡 ∗ 𝑦𝐴,𝑖𝑡

2) + 2𝛽3(𝑥1,𝑖𝑡 ∗ 𝑦𝐴,𝑖𝑡) + 𝛽4(𝑥1,𝑖𝑡) 

 

Due to the fact that 𝑥1,𝑖𝑡 = 1 during years of use, the marginal effect of years of 

use becomes:  

 

Equation 4.4.2  

𝑀𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝐸𝑓𝑓𝑒𝑐𝑡 𝐷𝑢𝑟𝑖𝑛𝑔 𝑈𝑠𝑒 =  
𝜕𝑁𝐹𝐼𝑖𝑡

𝜕𝑦𝐴,𝑖𝑡
 =  3𝛽2(𝑦𝐴,𝑖𝑡

2) + 2𝛽3(𝑦𝐴,𝑖𝑡) + 𝛽4 

 

A t-statistic for this equation is then calculated in R for each year (year 1 to 25, 

indicating the maximum possible years of use in the data from 1990-2014). Each 

individual year’s t-statistic is then used to calculate the corresponding p-value in R, 

determining for which years the marginal effect of years of using the technology on NFI 

is and is not statistically significant. The results of the tests for significance in each year 

can be seen in Table 5.2 in the Results and Discussion.   
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CHAPTER 5: RESULTS AND DISCUSSION 

5.1 Summary of Sample Financial and Technology Usage Information 

 As mentioned above, a total of fifty-nine responses were received. A summary of 

the averages of the financial measures in question of these fifty-nine respondents can be 

seen by year in Table 5.1 below.  

 

Table 5.1: Average Financial Measures of Sample by Year 

Year Avg. NFI Avg. NFIR Avg. OER 

1995 $42,246.11 17.49 68.17 

1996 $102,065.83 25.13 61.08 

1997 $62,699.09 22.70 63.14 

1998 $18,740.69 8.22 76.30 

1999 $66,373.19 19.03 66.57 

2000 $96,004.40 22.33 63.85 

2001 $71,273.62 16.25 70.42 

2002 $32,140.44 7.67 79.19 

2003 $94,540.95 19.83 67.77 

2004 $124,035.50 20.76 66.30 

2005 $128,170.05 18.19 69.15 

2006 $159,993.59 23.16 63.98 

2007 $219,767.96 30.06 58.40 

2008 $241,678.74 26.05 62.07 

2009 $180,519.57 21.12 66.65 

2010 $290,020.28 29.81 59.51 

2011 $481,470.09 38.26 52.77 

2012 $366,000.32 24.10 65.62 

2013 $184,520.98 19.68 69.80 

2014 $215,847.32 12.32 75.86 
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As can be seen in the table, the average NFI, NFIR, and OER are quite variable 

over the period, mainly because of the huge run-up in commodity prices from 2007 – 

2012 and subsequent drop in 2013 – 2014. The variability in these measures over the time 

period serve to further highlight the need to control for a time trend using the year 

dummy variables, as explained in the methodology section. Due to the fact that the clients 

of NFBI are all active farmers whose main income source is farming, their income levels 

are likely to be a considerable amount higher than an average of producers across the 

state as would be reported by a USDA agency such as the National Agricultural Statistics 

Service (NASS). The averages typically reported by such agencies are an average of all 

farms, including hobby farmers and those whose main source of income is made outside 

of farming, causing it to be lower than an average of producers making their living 

entirely from farming. Regardless, the trends remain the same for all producers in the 

state, having experienced the same variability in commodity prices throughout the time 

period.  

As alluded to in the review of relevant literature, one of the main issues with the 

only other whole-farm economic impact study on precision agriculture by Olson and 

Elisabeth (2003) was the low usage of precision agriculture in the sample in question. In 

their study, only 27.8% of respondents reported using at least one precision agriculture 

technology in their operation. Fortunately, that is not the case in this study, as by 2014, 

94.9% (56 of 59 respondents) were using at least one precision agriculture technology, as 

can be seen in Figure 5.1 below. This provided the data needed to actually examine the 

realized impact of the technologies.  
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Figure 5.1: Percentage of Sample Using at Least One Technology by Year 

 

 

As shown in Figure 5.1, precision agriculture usage increased quite steadily 

throughout the period studied, moving from only 15.3% users in 1995 to 94.9% users in 

2014. Adoption of the technologies takes the form of a slight S-curve, as would be 

expected with the adoption of new technology, with slow rises in adoption after 

introduction by those ahead of the curve, followed by rapid adoption by the majority, and 

finally a tapering off as all of those who intend to adopt the technology have done so. 

However, use of at least one technology isn’t the only adoption characteristic of 

interest; which technologies are being used is also a very relevant aspect of overall usage. 

Figure 5.2 below shows the percentage of the sample using each of the individual 

technologies by year from 1995-2014. 
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Figure 5.2: Percentage of Sample Using Each Individual Technology by Year 

 

 

As can be seen, grid soil sampling is the most widely used technology by the 

sample, with nearly 85% of respondents reporting use as of 2014, followed by GPS-

enabled yield monitors and autosteer GPS guidance at 71.2% apiece. It’s not a huge 

surprise to see these technologies at the top of the list, as they are relatively simple to use 

and do not require as much effort to produce benefits. The next-highest-used technologies 

as of 2014 are ASC at 57.6%, followed by variable-rate application of nutrients and 

variable-rate planting, tied at 52.5% each. These technologies are relatively new and have 

all seen use increase very rapidly since around 2008. Imagery and telematics are two of 

the least-used technologies with only 18.6% and 11.9% of the sample using them as of 

2014, respectively. These two technologies not only require a relatively high amount of 

work to learn to use properly and receive benefit from, but they have both undergone 
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very recent advancements and will thus take some time to catch on. GPS guidance 

systems with a lightbar and yield monitors without GPS are also relatively less-used as of 

2014, with 30.5% and 16.9% use, respectively. These two technologies have both been 

around for a relatively long period of time and have actually begun to experience a 

decrease in use by the sample, as other technologies may have superseded them in usage.  

This graph provides more than just the adoption of each technology over the time 

period in question; it presents an interesting picture regarding the dynamics of use, with 

new technologies coming out at differing times and being adopted and abandoned at 

varying rates. For instance, yield monitors without GPS, one of the earliest precision 

agriculture technologies, initially gained a significant amount of adopters, but their use 

peaked in the late 1990s and has decreased ever since. Their peak in the late 1990s and 

subsequent decrease is obviously due to the boom in popularity of yield monitors with 

GPS, the newer and superior technology. As can be seen in the graph, the non-GPS yield 

monitor’s peak and decline coincides with the start of a large increase in GPS-enabled 

yield monitor use. A similar story is shown in the graph in terms of GPS guidance 

systems. GPS guidance via lightbar was made available to producers several years prior 

to autosteer systems. Lightbar usage saw considerable increases through the late 1990s 

and early 2000s, but reached a bit of a peak in 2004. From 2004 to 2014, usage of 

lightbars basically stagnated, while usage of autosteer exploded in a very obvious S-

shaped pattern, showing another example a new technological advancement replacing 

existing technology.  
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5.2 Results and Discussion of With/Without Analysis 

5.2.1 Initial With/Without Analysis 

 As explained in Chapter 4, a fixed-effect panel data model was used to examine 

the effect of the number of technologies used on the given profitability measures, with 

year dummy variables controlling for the time trend. These regressions were run in R in 

order to produce parameter estimates and interpretable results.  

 A summary table of the results of the initial with/without analysis is shown below 

in Table 5.2. As can be seen in the table, number of technologies used is estimated to 

have a positive and statistically significant relationship with net farm income, indicating 

that higher technology usage is associated with higher profitability.  

 

Table 5.2: Initial With/Without Regression Results 

Dependent Variable Parameter Estimate  Standard Error t-Value P-Value 

NFI 43,616.0305*** 10,495.5200 4.1557 <0.0001 

NFIR 1.0399 0.6964 1.4932 0.1359 

OER -1.0404* 0.5736 -1.8140 0.0701 

Note: Each row represents the results of each respective regression. Parameter estimates indicate the 

estimated change in the given dependent variable from the use of an additional precision agriculture 

technology. Year dummy variables were also included in each regression to control for the time trend. *** 

indicates statistical significance at the α=1% level, ** indicates significance at the 5% level, and * indicates 

significance at the 10% level. 

 

The parameter estimate of 43,616.03 indicates that the use of an additional 

precision agriculture technology is associated with an increase in net farm income of 
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$43,616.03, with a p-value well within significance at the α = 1% level. These results 

show very clearly the existence of a large, positive relationship between extent of 

technology usage and NFI. The parameter estimate for number of technologies used is 

1.04, indicating that each additional precision agriculture technology used is associated 

with an increase in net farm income ratio of approximately 1%. This result would be 

consistent with hypotheses, as the technology use is expected to improve efficiency and 

profitability, which would make one expect a very clear relationship between use and 

NFIR. However, this parameter estimate falls just outside of statistical significance, with 

a p-value of 0.136. As such, it is difficult to come to any conclusions regarding the 

relationship between the variables.  The results of the OER regression show that the 

number of technologies used has a parameter estimate of -1.04, with statistical 

significance at the α = 10% level. This indicates that using an additional precision 

agriculture technology is associated with a 1.04% decrease in operating expense ratio, 

meaning that the use of precision agriculture is associated with lower operating expenses 

relative to gross farm income. This could be an indication of decreased operating cost 

from more efficient use of inputs (such as reduced overlap, etc.), increased gross farm 

due to greater production, or a combined effect of both.  

Overall, the results of the initial with/without analysis show the existence of a 

strong relationship between higher levels of precision agriculture usage and higher 

profitability. This is evidenced by the positive and statistically significant relationship 

between number of technologies used and NFI, the negative and statistically significant 

relationship between number of technologies used and OER, and the positive but not 

quite statistically significant relationship between number of technologies used and 
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NFIR. However, this half of the analysis only proves the two are related; it does not 

definitely prove that usage of precision agriculture increases profitability. It may be the 

case that producers have adopted the technologies simply because they had the money to 

do so. Thus, whether use drives profitability or profitability drives use remains in 

question at this point in the analysis.  

 

5.2.2 Extended With/Without Analysis  

After performing the initial analysis to determine the relationship between the 

extent of precision agriculture usage and profitability, the analysis was taken a step 

further. As explained above, the independent variable from the initial with/without 

analysis is split into two categories of technologies. The first group of technologies are 

those not expected to have a direct impact on profit and instead are used to produce 

information with which producers can make improved decisions. The second group of 

technologies are those expected to have a direct impact on profits. NFI is used as the 

dependent variable. The results of the extended with/without analysis are shown below in 

Table 5.3. 

   

Table 5.3: Extended With/Without Regression Results 

Variable 
Parameter 

Estimate 

Standard 

Error 
t-Value P-Value 

Direct Impact Techs. Used      60,792.60*** 13,420.50 4.5298 <0.0001 

Info. Producing Techs. Used 10,578.20 19,245.40 0.5496 0.5827 

Note: Parameter estimates indicate the estimated change in NFI from the use of an additional technology in 

the respective categories. Year dummy variables were also included to control for the time trend. *** 

indicates statistical significance at the α=1% level, ** indicates significance at the 5% level, and * indicates 

significance at the 10% level. 
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The analysis was separated this way in order to further examine the relationship 

between technology usage and profitability. As seen in Table 5.3, the number of 

information-providing technologies used has a parameter estimate of 10,578.20, 

indicating that use of an additional information-providing technology is associated with 

an increase in NFI of $10,578.20. However, with a p-value of 0.5827, this result is not 

close to statistical significance. The number of direct-impact technologies used has a 

considerably larger parameter estimate of 60,792.60 and achieves statistical significance 

at the α = 1% level. This means the use of an additional direct-impact technology is 

associated with an increase in NFI of nearly $61,000.  

The large difference in parameter estimates and significance between the two 

groups of technologies helps to further make the case for demonstrating increased 

profitability from use of precision agriculture.  The direct impact technologies’ much 

larger and statistically significant parameter estimate relative to the information-

producing estimate makes a great deal of sense, as the direct-impact technologies are 

expected to be the ones actually leading to increased net farm income. However, this 

analysis does not provide all of the evidence necessary to conclude that use of these 

technologies has led to increased profitability. The fact that the information-providing 

technologies have a much smaller parameter estimate could be due to them being cheaper 

and thus a lower level of profitability being needed to adopt them, whereas the more 

expensive direct-impact technologies may just require a higher level of profitability to 

adopt, resulting in their large estimate. Overall, the results of the extended with/without 

analysis illustrate that the direct-impact technologies drive the strong, positive 

relationship between the extent of precision agriculture usage and profitability (as would 
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be expected), but whether or not use drives profitability or profitability drives use 

remains in question.  

 

5.2.3 Summary of Results of With/Without Analysis 

 Overall, the results of the with/without analysis show the existence of a strong, 

positive relationship between precision agriculture usage and higher profitability. This 

relationship is being largely driven by the technologies expected to have a direct impact 

on profitability, not the information-producing technologies. However, the with/without 

analysis only proves that the two are related. To determine whether use of precision 

agriculture has led to higher profitability or the higher profitability has led to the use of 

precision agriculture, a pre-and-post adoption (before/after) analysis is performed on the 

profitability of users of precision agriculture to examine its realized economic impact 

over time.  

 

5.3 Results and Discussion of Before/After Analysis 

 5.3.1 Initial Before/After Analysis 

As in the with/without analysis, a fixed-effect panel data model was developed to 

examine the impact of using precision agriculture on profitability, again using year 

dummy variables to control for the existing time trend. Interaction terms between the use 

of precision agriculture and length of use are also used, attempting to examine the impact 
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of learning on the benefit received from use. The results of the initial before/after analysis 

are shown in Table 5.4 below.  

 

Table 5.4: Initial Before/After Regression Results 

Variable 
Parameter 

Estimate 
Standard Error t-Value P-Value 

Tech. Use 15,263.5140 38,327.5500 0.3982 0.6906 

Tech. Use * Years Used      13,931.4420** 5,899.2740 2.3615 0.0185 

Note: Year dummy variables were also included to control for the time trend. *** indicates statistical 

significance at the α=1% level, ** indicates significance at the 5% level, and * indicates significance at the 

10% level. 

 

 As can be seen in the table, technology usage has a positive parameter estimate of 

15,263.51, indicating that the usage of precision agriculture is estimated to have 

increased users’ NFI by $15,263.51. However, with a p-value of 0.69, this result is quite 

far from being statistically significant and thus no conclusion regarding the benefit of 

using precision agriculture can be made based on this regression. On the contrary, the 

parameter estimate for the interaction term between precision agriculture usage and years 

of use is significant at the α = 5% level, with its p-value of 0.0185. The interaction term 

has a parameter estimate of 13,931.44, meaning that each additional year of using 

precision agriculture is estimated to increase NFI by nearly $14,000. The value of the 

parameter estimate itself is not necessarily the item of interest, but rather its sign. The 

fact that there is a positive and significant parameter estimate on the interaction term 

shows that the longer precision agriculture is used, the larger the increases in profitability 
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experienced. This shows the existence of a learning effect in using these technologies, as 

expected.  

 

 5.3.2 Extended Before/After Analysis 

 As was detailed previously, the before/after analysis was taken a step further as 

polynomial interaction terms were added to the model in order to test for the existence of 

a non-linear learning relationship between length of usage and net farm income. The 

results of the extended before/after regression can be seen below in Table 5.5 and the 

results of the test for significance of the marginal effect for each year is shown in Table 

5.6.  

 

Table 5.5: Extended Before/After Regression Results  

Variable 
Parameter 

Estimate 
Standard Error t-Value P-Value 

Tech. Use 70,696.8965 45,397.3018 1.5573 0.1199 

Tech. Use * Years Used -11,855.3350 13,426.5875 -0.8830 0.3776 

(Tech. Use * Years Used)2 2,634.6804* 1,372.3366 1.9199 0.0553 

(Tech. Use * Years Used)3 -67.9060 42.4804 -1.5985 0.1104 

Note: Year dummy variables were also included to control for the time trend. *** indicates statistical 

significance at the α=1% level, ** indicates significance at the 5% level, and * indicates significance at the 

10% level. 
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 Using the formulation, technology usage once again has a positive, but much 

larger, parameter estimate; now 70,696.90 as opposed to 15,263.51 in the previous 

regression. Additionally, a huge improvement in p-value is seen on the parameter 

estimate, falling just outside of statistical significance, right around a value of 0.12, 

preventing the ability to make any conclusion regarding the financial benefits realized 

from using precision agriculture. However, this is an indication that the model including 

the polynomial interaction terms has more explanatory power for the effect of precision 

agriculture usage on NFI. 

In terms of the learning effect, the parameter estimates and significance of the 

interaction terms don’t necessarily provide any interpretable results individually, as 

explained in Section 4.4.3. The true measure of interest is the significance of the marginal 

effect of years of use on the equation as a whole. As such, the value of the marginal effect 

is calculated for each year for twenty-five years after adopting a producer’s first precision 

agriculture technology by plugging in the value of each year after adoption of the first 

technology (𝑦𝐴,𝑖𝑡) into equation 4.3.2. The statistical significance of the marginal effect in 

each respective year is then calculated, as explained in Section 4.4.3. The results of the 

tests of marginal effect by year are shown in Table 5.6 below.  
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Table 5.6: Estimated Marginal Effect of Years of Using Precision Agriculture 

Year of Use Marginal Effect t-Stat P-Value 

1 -6,789.693 -0.607 0.728 

2 -2,131.487 -0.228 0.590 

3  2,119.283 0.789 0.215 

4  5,962.617 0.868 0.193 

5  9,398.515* 1.492 0.068 

6  12,426.977** 2.036 0.021 

7  15,048.003*** 2.441 0.007 

8  17,261.593*** 2.720 0.003 

9  19,067.747*** 2.909 0.002 

10  20,466.465*** 3.041 0.001 

11  21,457.747*** 3.135 0.001 

12  22,041.593*** 3.192 0.001 

13  22,218.003*** 3.203 0.001 

14  21,986.977*** 3.141 0.001 

15  21,348.515*** 2.976 0.002 

16  20,302.617*** 2.687 0.004 

17  18,849.283** 2.289 0.011 

18  16,988.513** 1.831 0.034 

19  14,720.307* 1.376 0.085 

20  12,044.665 0.964 0.168 

21  8,961.587 0.612 0.270 

22  5,471.073 0.319 0.375 

23  1,573.123 0.079 0.469 

24 -2,732.263 -0.118 0.547 

25 -7,445.085 -0.281 0.611 

  Note: Marginal effect indicates estimated effect an additional year of experience with precision 

 agriculture will have on NFI. *** indicates statistical significance at the α=1% level, ** indicates 

 significance at the 5% level, and * indicates significance at the 10% level. 
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The values for the marginal effect in the table indicate the estimated change in 

NFI that would result if an additional year of experience was added in that given year. 

For example, the estimated marginal effect in the first year indicates that NFI is expected 

to decrease by $6,789.69 when going from one year of experience with precision 

agriculture to two years of experience. The negative marginal effects in years one and 

two indicate that NFI is actually expected to decrease in the beginning years of using 

precision agriculture. This may be the result of producers typically adopting information-

producing technologies first, such as yield monitors or site-specific soil sampling. These 

technologies don’t provide any increases to profitability by themselves, as was shown in 

Table 5.3 and subsequently discussed. Their purpose is to gather data that the producer 

will be able to act on in the future. So, the producer is paying to purchase and maintain 

these technologies without receiving any real benefit until enough information is gathered 

on which to act; possibly explaining the negative marginal effects in the beginning. The 

marginal effect turns positive after three years of use, indicating that, after three years, an 

additional year of use would increase NFI by $2,119.28. After this, marginal effect 

remains positive and increases at a decreasing rate until reaching a peak in year 13. 

During this span, NFI is expected to continue growing with increased experience, 

indicating rapid growth from learning the technologies and acquiring actionable data. 

After reaching the peak in year 13, the marginal effect remains positive but the estimates 

decrease until ultimately turning negative once again between the 23rd and 24th year after 

beginning use. This is indicative of diminishing marginal returns from use of the 

technology, as the maximum benefit is approached.  
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Nonetheless, the marginal effect of years of use only achieves statistical 

significance beginning five years after adoption and remains significant through 19. The 

lack of statistical significance in the first four years after use means that adding an 

additional year of experience with precision agriculture is not expected to change 

profitability during this time. This is most likely a combination of both a lag in benefit 

due to lack of actionable data as well as a learning effect. In the first few years, it is not 

surprising to see a lack of improvements to profitability from use, especially if only using 

information-producing technologies. The estimate for the marginal effect is positive in all 

of the years in which statistical significance is achieved, showing that in these years, 

profitability is continually increasing with experience. This is indicative of a learning 

effect, with producers becoming better with the technologies over time and most likely 

adopting more of them during this span. Additionally, more and more years of data 

should be expected to result in more and more increases to profitability, as the producer is 

able to become increasingly better at managing within-field variability with the improved 

information. The final marginal effect of statistical significance indicates that adding an 

additional year of experience will increase profitability after 19 years of use, but not 20. 

Thus, moving from 19 years of use to 20 is expected to increase profitability, but moving 

from 20 years to 21 is not. This may be an indication of maximum benefit being 

achieved, showing that an additional year of experience is not going to provide any 

further improvements to profitability.  

A graph of the parameter estimates for technology use is shown below in Figure 

5.10. The range of years in which the marginal effect achieves statistical significance is 

indicated by the black box in the figure.  
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Figure 5.3: Graph of Extended Before/After Parameter Estimates 

 

As can be seen, the graph takes the form of an S-curve, relatively similar to the 

generic learning curve seen in Figure 4.2. However, the longer, more gradual rise from 

beginning to end is an indication that learning the proper usage of precision agriculture 

and thus receiving maximum benefit takes a relatively long time, as a more shallow 

learning curve is indicative of a difficult-to-learn task, despite the common phrasing of 

“steep learning curve” (Givens, 2014). This point is further driven home by the fact that 

the marginal effect remains positive and statistically significant until year 20, indicating a 

rather lengthy investment of time to achieve maximum benefit. This result is intuitive 

both because it takes time to produce the data on which to act and because some of these 

technologies can be quite complex and should be expected to require a relatively long 

time to learn to use optimally.   
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5.3.3 Summary of Results of Before/After Analysis 

 Overall, the before/after analysis results in positive but not statistically significant 

estimated effects on NFI from usage of precision agriculture. The second model, resulting 

in an S-shaped learning curve effect is shown to be the better fit, but technology usage 

itself still does not achieve significance. As such, precision agriculture’s realized effect 

on profitability remains somewhat unclear. However, a significant learning effect is 

shown to exist in both models, proving that profitability from using precision agriculture 

technologies increases with time. This learning effect is expected to take the form of a 

relative S-curve; likely a combination of needing to gather usable data in early years, as 

well as taking the time to learn the optimal use of the technologies. 
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CHAPTER 6: CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH 

6.1 Conclusions from Study 

 Various fixed-effect panel data models were used to examine the realized whole-

farm economic impact of using precision agriculture among producers in Nebraska. 

Necessary data for this study come from surveying producers across the state associated 

with NFBI regarding their adoption of precision agriculture from 1990-2014. Financial 

data for these producers from 1995-2014 was made available through collaboration with 

NFBI. The analysis was separated into two halves; the first examining the relationship 

between extent of technology usage and profitability and the second examining pre-and-

post effects of technology usage over time among adopters. 

 The first half of the analysis found a positive and significant relationship between 

extent of technology usage and profitability. Thus, we are able to conclude that higher 

levels of technology usage are associated with higher profits. However, this result alone 

does not prove that using precision agriculture has resulted in higher profitability; 

producers could just be adopting the technology in times of high profitability. The second 

half of the analysis attempts to address this issue and determine whether use is driving 

profitability or profitability is driving use. The two different models used in the 

before/after analysis resulted in positive estimated effects on NFI due to precision 

agriculture usage, suggesting that use of the technologies has in fact increased 

profitability. However, these positive estimates are not statistically significant. As such, 

we are unable to conclude that the usage of precision agriculture has led to increased 

profitability; the picture remains unclear.  
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 From the analysis, we are able to conclude that profitability increases with 

experience using the technologies, as both models examining the pre-and-post adoption 

relationships produced positive and significant parameter estimates for the interaction 

term(s) between precision agriculture usage and years of use. Overall, the model 

including polynomial interaction terms is a better fit than the model using a linear 

interaction term, indicating the existence of a non-linear learning effect from use, with 

the curve taking on a relative S-shape. This result makes sense, with producers not 

receiving much benefit from use while needing to collect actionable data and learn the 

optimal use of the technologies in the first few years, followed by a relatively long-term 

span of improvements in profitability before ultimately reaching the near-maximum 

benefit to profitability from use.  

 Overall, the results of this study prove that farms with higher profits have been 

using more precision agriculture technologies but it remains unclear whether they have 

achieved this profitability from using the technologies or have begun using the 

technologies because of the profitability. There is likely a mix of both going on with 

producers, as there are many different factors affecting the profitability of these 

technologies (as explained in Chapter 3) and differing levels of technological-savviness. 

It is clear that further study regarding the economic impact of these technologies is 

needed, as the investment in precision agriculture is quite costly, both monetarily and in 

terms of time spent learning proper use, but whether or not its use has paid off for 

adopters remains unclear.  
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6.2 Limitations of Study and Directions for Future Research 

While this study produces interesting results, it faces many limitations. The most 

obvious improvement to the study would be increasing sample size. Although the 

response rate for the survey was quite high at over 54%, a sample of only 59 producers 

limits the amount of data available for analysis. Increasing sample size using the given 

NFBI population of interest would be an improvement and collecting other sources of 

data representing more producers would also be very desirable. 

Although this study makes the most of the available technology adoption and 

financial data, the model is still limited. The year dummy variables attempt to control for 

changes in the farm economy over the time period and the fixed effect model attempts to 

control for any time-invariant bias among individuals. However, there are other factors 

that exist that could be addressed to build a more comprehensive model, including off-

farm income, cropping patterns, production practices, field characteristics and variability, 

producer characteristics, etc. Including these variables could help to create a clearer 

picture of the impact precision agriculture has had and which factors have influenced its 

profitability. Doing so would require a considerably larger sample, however, as splitting 

the already limited sample even further would lessen explanatory power.  

It would also be of interest to take the families of technologies examined in this 

study a step further and examine the realized economic impact of the technologies 

individually in order to determine which have shown the highest/lowest benefit. Though 

the results of the study show the direct-impact technologies to be driving the strong 

positive relationship that was found between higher levels of precision agriculture usage 

and higher profitability, it would be of interest to know which specific technologies are 
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driving this relationship. Knowing which technologies have had the highest and lowest 

impacts on profitability would be of great interest to row crop producers in making their 

investment decisions in times of such tight margins.  

Examining the learning curve associated with use of these technologies further 

would also be of interest. The extensive review of literature shows that there have been 

no prior studies investigating this learning effect, so all such subsequent study would be 

of great relevance. Though this study shows the existence of a learning effect from use, it 

assumes this learning effect to be the same for all producers. With different producers 

having different levels of experience with technology, education, etc., the learning curve 

is likely not the same for everyone. Thus, it would be of interest to explore these potential 

differences, perhaps determining the relative steepness/shallowness of the learning curve 

by different producer characteristics and for different technologies.  

Overall, this study serves as a foundation for examining the realized economic 

impact of precision agriculture technology. As mentioned, studies using real-world 

financial data to examine the realized impact of precision agriculture are extremely 

limited at this point, making the methods and results of this study quite novel. 

Furthermore, this study provides a framework for examining the learning effect 

experienced by producers adopting precision agriculture technologies; a previously un-

researched topic that should be expanded upon.  
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APPENDIX 

Figure A.1: Survey Used for Data Collection 

NFBI Client, 

This brief survey is asking for information regarding your usage of precision agriculture technologies in your 

operation. Your response to this survey is very important and will help provide an understanding of the costs 

and benefits associated with using these technologies. There will be no monetary compensation or direct 

benefits available for participation. However, the results of this study will be made available to the public, 

which may help producers like you make decisions regarding technology usage in the future. 

Your response to this survey is voluntary and will be kept completely confidential. A farm ID number is 

asked for in order to link survey responses to selected farm financial data collected by NFBI in order to 

examine the realized economic impact of using these technologies over time. Researchers will only have 

access to the data and the anonymous farm ID number; only NFBI will have access to the information linking 

this ID number to individual producers. NFBI will control the data given to researchers and remove any 

information identifying individual producers. Individual data will not be made public; only aggregated data 

will be published. There are no known risks in participating in this study.  

Your decision whether or not to participate in this survey will not affect your relationship with the University 

of Nebraska-Lincoln or NFBI in any way. This study is being conducted for a UNL graduate thesis and is 

not being conducted by NFBI. Completion of this survey implies your consent to participate in this research 

project, while not completing this survey implies that you do not consent to participating. With this in mind, 

please be as honest as possible when answering the following questions.  

This survey should take no longer than five minutes to complete. Once the survey is completed, please send 

it back in the pre-paid envelope provided to you. We thank you in advance for your participation.  

Sincerely, 

 

 

 

 

Tina Barrett  Michael H. Castle 

Director Graduate Student 

Nebraska Farm Business Inc. Department of Agricultural Economics 

Phone: (402) 464-6324 Phone: 660-202-0906 

Email: tbarrett2@unl.edu Email: michael.castle@huskers.unl.edu  

 

 

 

 

Dr. Bradley D. Lubben Dr. Joe D. Luck 

Extension Policy Specialist Extension Precision Agriculture Engineer 

Department of Agricultural Economics Department of Biological Systems Engineering 

Phone: 402-472-2235 Phone: 402-472-1488 

Email: blubben2@unl.edu Email: jluck2@unl.edu  

 

 

If you have any questions regarding researchers’ conduct or compliance, please contact: 

UNL Research Compliance Services Office 

Phone: 402-472-6965 

Email: irb@unl.edu      
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Figure A.2: Results of Third-Order Polynomial Time Trend Regression 

 

 

 

 

Regression Statistics     

Multiple R 0.336881991     

R Square 0.113489476     

Adjusted R Square 0.109866136     

Standard Error 277082.8886     

Observations 738     

      

ANOVA      

 df SS MS F 
Significance 

F 

Regression 3 7.21418E+12 2.40473E+12 31.32178459 4.64769E-19 

Residual 734 5.63528E+13 76774927134   

Total 737 6.3567E+13    

  Coefficients Standard Error t Stat P-value 

Intercept 2.54436E+12 5.85733E+11 4.343895124 1.5968E-05 

Time -3807255303 876357980.9 -4.344406494 1.59318E-05 

Time^2 1898977.317 437059.3711 4.34489555 1.58973E-05 

Time^3 -315.7201578 72.65681363 -4.345362011 1.58644E-05 
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