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 The ability to understand the interactions between plants and the variety of 

pathogens they encounter on a daily basis is an important area of research.  In the 

following work presented in this dissertation, I sought to better understand the mechanisms 

that Turnip crinkle virus (TCV) employs to elude the defense responses of the host plant 

Arabidopsis thaliana.  It was previously determined that TCV coat protein (CP) interacts 

with a transcription factor, TIP, within the about 10 amino acid region near the N-terminus 

of the CP called the R-domain.  When this interaction was disrupted by making single 

amino acid substitutions through the R-domain region, I observed a marked variation in 

symptom severity and alterations in both basal and resistance gene mediated responses.  To 

further explore the effect of the TCV CP-TIP interaction on virus invasiveness and the 

plant defense systems, I analyzed virus accumulation and defense gene expression from the 

susceptible (Col-0) and resistant (Di-17) lines throughout a time course of infection.  I 

discovered that the wildtype TCV (wtTCV) had a transient replicative advantage over CP 

mutants that were not able to bind TIP.  This effect occurred within the first 4 to 6 days of 

infection. Research reported here demonstrates that the ability of wtTCV to bind TIP 



causes a suppression of the basal defense response that facilitates viral invasion of the 

systemic leaves in the susceptible ecotype Col-0.  

 Further experiments confirmed that TIP-CP binding also had an effect on the R-

gene meditated defense conditioned by the HRT (Hypersensitive Response to TCV) gene 

in the resistant line Dijon-17.  This was demonstrated by monitoring virus accumulation 

and symptom development between wtTCV and several CP mutants with altered TIP 

binding ability.  I demonstrate that expression of the TIP gene in the presence or absence 

of the R-gene HRT altered development of disease symptoms and systemic spread of the 

virus.   

A primary outcome of the research reported in this dissertation is the demonstration 

that the interaction of TCV CP with the TIP transcription factor modulates both major 

defense layers of the plant immune system.  These are the basal defense layers referred to 

as Pathogen Triggered Immunity (PTI) defense and the development of systemic acquired 

resistance modulated by R-gene mediated defense referred to as the Effector Triggered 

Immunity (ETI) defense. 
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CHAPTER 1: INTRODUCTION 
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 Understanding the specific molecular interactions between plants and their 

pathogens is an active area of research.  Plants have evolved complex signaling networks 

intended to detect specific pathogens in order to trigger the appropriate defense responses 

(Koornneef and Pieterse, 2008).  A growing body of evidence suggests that plants have 

also evolved intricate mechanisms to exert control over pathogen induced defense 

pathways.  Many studies have shown that constitutive activation of defense signaling 

pathways compromises normal plant growth and overall fitness (Bostock, 2005; 

Koornneef and Pieterse, 2008; Pauwels, Inzé, and Goossens, 2009; Steppuhn and 

Baldwin, 2008; Stout, Thaler, and Thomma, 2006; Van Hulten et al., 2006).  Therefore, it 

is hypothesized that the expression of the majority of defense associated genes are 

dampened by negative regulation and only activated upon pathogen infection (Bostock, 

2005; Ge et al., 2007; Takken, Albrecht, and Tameling, 2006).  The ability of a plant to 

perceive the invading pathogen and signal for the proper defense response involves two 

major layers of defense known as pathogen associated molecular pattern (PAMP) 

triggered immunity (PTI) and effector triggered immunity (ETI`; Jones and Dangl, 2006).  

An additional layer, known as the RNA silencing pathway, is a type of adaptive 

immunity that plays a major role in antiviral and other anti-microbial host related defense 

responses (reviewed in (Ruiz-Ferrer and Voinnet, 2009).  RNA silencing will be 

reviewed further in Chapter 4. 

Turnip crinkle virus (TCV) is a positive sense, RNA plant virus with a genome 

size of 4 kb.  TCV systemically infects the susceptible Arabidopsis thaliana ecotype 

Columbia-0 (Col-0), and does not elicit a resistance response on inoculated leaves.  In the 

resistant A. thaliana ecotype Dijon-17 (Di-17), TCV causes a hypersensitive response 
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(HR), which is analogous to programmed cell death in animals, at the site of infection. 

This is accompanied by a resistance response that sequesters the virus and prevents 

systemic invasion.  It has been documented that Di-17 displays resistance to systemic 

infection in only about 70% of TCV infections (Dempsey, Wobbe, and Klessig, 1993). 

This is likely due to the fact that the TCV resistance response in Di-17 is environmentally 

modulated including being sensitive to photoperiod (Chandra-Shekara et al., 2006).  HR 

and resistance to TCV are determined by the presence of the dominant gene HRT 

(hypersensitive response to TCV) and the recessive allele rrt (regulates resistance to 

TCV; Kachroo et al., 2000).  The coat protein (CP) is the elicitor of the resistance 

response although no direct interaction between HRT and TCV CP has been detected 

despite repeated attempts to demonstrate it (Oh et al., 1995; Wobbe and Zhao, 1998). 

Previous work conducted by Ren et al. (2000), identified a NAC transcription 

factor protein TIP (TCV-Interacting Protein) that was shown to interact directly with 

TCV CP in vitro using a yeast two hybrid screen and with GST pull down experiments. 

TIP-CP interaction was also demonstrated in vivo in N. benthamiana using transiently 

expressed GFP-tagged TIP protein.  This study further demonstrated that TIP-CP 

interaction appeared to affect the HRT mediated resistant defense response in Di-17.  A 

TCV CP mutant R6A, with a single amino acid (aa) substitution in the CP, was created 

that lost its ability to bind to TIP.  Interestingly, infections by R6A also caused more 

severe symptoms in the susceptible line Col-0 and broke resistance in Di-17.  These 

phenotypes were shared by several other aa substitution mutants made in the same region 

near the N-terminus of the CP.  In my studies described in chapter two, I report on the 

results of an in depth examination of infections of the R6A mutant virus.  My data 
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demonstrates that loss of TIP interaction in the case of the TCV mutant R6A was 

primarily associated with loss of the ability of wt TCV to modify the basal defense 

response (PTI) in both the susceptible host Col-0 and the resistant host Di-17. 

 

Pathogen triggered immunity 

 Pathogen Triggered Immunity (PTI) is the primary defense response in plants 

which recognizes common microbial patterns, known as pathogen associated molecular 

patterns (PAMPs), through plant-encoded pathogen recognition receptors (PRR).  The 

recognition of PAMPs stimulates a signaling cascade through the MAP kinase network. 

This signaling results in the activation of transcription factors that leads to massive 

transcriptional reprogramming of defense related genes (Asai et al., 2002).  PAMPs are 

generally indispensable for microbial metabolism or invasive growth and are thus broadly 

conserved among different pathogenic species.  In general, the ability of a healthy host 

organism to recognize any one of the numerous PAMPs provokes an innate immune 

response that prevents most pathogens from invading and causing disease. 

One of the first PRR-PAMP recognition events described was a leucine rich 

repeat (LRR)-receptor kinase known as FLAGELLIN SENSITIVE-2 (FLS2).  FLS2 was 

first identified in Arabidopsis thaliana through screening of the bacterial flagella protein 

flg22 (Gómez-Gómez and Boller, 2000) and was later shown to bind and determine the 

specificity of flagella recognition response (Chinchilla et al., 2006). Following flg22 

detection, FLS2 is internalized by a receptor-mediated endocytosis process that 

presumably has regulatory functions in conjunction with proteins such as BAK1, ERF, 

and MEKK (Chinchilla et al., 2007; Robatzek, Chinchilla, and Boller, 2006; Suarez-
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Rodriguez et al., 2007; Xiang et al., 2008).  FLS2 is believed to function early in 

infection because fls2 mutant lines have increased susceptibility to Pseudomonas 

syringae pv. tomato DC3000 when applied as a topical spray, but not with internal 

infection using syringe agro-infiltration (Zipfel et al., 2004).  Other Arabidopsis PRRs 

recognize different PAMPs such as elongation factor-Tu (EF-Tu) via the LRR-kinase 

called EFR (Kunze et al., 2004; Zipfel et al., 2006).  EF-Tu is a conserved translational 

elongation factor in bacterial cells that mediates the entry of the amino-acylated (charged) 

tRNAs into a free site of the ribosome (Krab and Parmeggiani, 1998). 

 

Effector triggered immunity 

 Successful pathogens have evolved ways to overcome PTI and evade plant 

recognition of their PAMPs in order to establish a suitable environment for growth and 

reproduction, and thus cause disease.  Pathogens encode a range of proteins that can 

block the recognition of PAMPs and manipulate host machinery to favor pathogen 

invasion.  Therefore, pathogen effectors often function as virulence factors during 

infection, and their presence results in a specific kind of disease response.  In turn, plants 

have evolved surveillance systems to recognize the pathogen’s effectors, thereby 

triggering another layer of the plant immune response known as effector triggered 

immunity (ETI).  This second layer of defense, also referred to as resistance (R) protein 

based defense, is more specific and employs R proteins that recognize the presence of 

pathogen effector proteins, also known as avirulence (avr) proteins that can result in the 

hypersensitive response(HR; Jones and Dangl, 2006).   
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 Specific physical characteristics or domains can be commonly found in plant R 

proteins which has allowed for the identification of many putative R genes in plants 

whose genomes have been sequenced such as A. thaliana, Oryza sativa, and Populus 

trichocarpa x deltoides.  These common domains are the coiled coil (CC), Drosophila 

Toll and mammalian interleukin like receptor (TIR), nucleotide binding site (NBS) 

domains, leucine-rich repeat (LRR) domains, and kinase domains.  Five different classes 

of R proteins have been identified based on shared domains and their location within the 

cell (Figure 1-1).  The CC and TIR are located at the N-terminus of the protein and are 

thought to play a role in transcription factor activation and cell death induction, 

respectively (Pan, Wendel, and Fluhr, 2000; Swiderski, Birker, and Jones, 2009).   The 

NBS domain is a highly conserved region in R proteins that also contains blocks of 

sequence that are conserved in both plant and animal proteins (Takken, Albrecht, and 

Tameling, 2006; Van der Biezen and Jones, 1998a).  The animal homologs of NBS 

domains are called NODs (nucleotide-binding oligomerization domain) which have been 

implicated in innate recognition of bacteria and the induction of inflammatory responses 

(Inohara and Nunez, 2003; Kanneganti, Lamkanfi, and Núñez, 2007).  The NBS domain 

functions through the binding of ATP or GTP which results in the activation of a signal 

through the creation of binding sites for downstream signaling molecules and/or the 

conformational change for the formation of NBS-LRR protein multimers (DeYoung and 

Innes, 2006).  LRR domains are found in various proteins and function as sites of protein-

protein interactions, peptide-ligand binding, and protein-carbohydrate interactions 

(DeYoung and Innes, 2006).  Kinase domains are responsible for transferring a phosphate 

from nucleotide triphosphates (often ATP) to one or more amino acid residues in a 
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protein substrate side chain, resulting in a conformational change affecting protein 

function.  These enzymes typically are classified as either serine/threonine specific 

kinases or tyrosine specific kinases (Hanks, Quinn, and Hunter, 1988). 

In order to explain the interaction and specificity between host - pathogen 

resistance and their effectors, Flor (1971) proposed the gene-for-gene model 

hypothesizing that pathogens encode a single gene whose product can be recognized by a 

specific plant encoded protein.  Advances in research in plant-pathogen interaction since 

Flor’s hypothesis have allowed for the realization of coevolutionary mechanisms between 

plants and their pathogens involving many interactions on the molecular level.  Specific 

interactions are now recognized as being either direct or indirect interactions between 

plant encoded resistance (R) genes and pathogen encoded avirulence (avr) genes.  The 

interaction between specific R - avr gene products would potentially result in dramatic 

changes in the infected cell that trigger the defense response, typically the HR, that then 

leads to resistance.  For example, in tobacco (Nicotiana tabacum) the resistance gene N is 

a R gene that encodes a TIR receptor with both NBS and LRR domains (Whitham et al., 

1994).  The N gene encoded protein interacts with the helicase domain of the p50 from 

the tobacco mosaic virus (TMV (Padgett and Beachy, 1993).  This N-p50 interaction was 

shown to be direct and confers resistance against TMV infections in tobacco lines that 

carry the N gene by inducing an HR at the site of infection (Erickson et al., 1999; Ueda, 

Yamaguchi, and Sano, 2006).   

One case of R/Avr protein direct interaction during bacterial infection is 

demonstrated by the binding of the tomato Pto protein and the bacterial effector AvrPto.  

This interaction causes the HR which limits the growth of the pathogen, P. syringae pv. 
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tomato (Scofield et al., 1996).  Another example of the R/Avr protein interaction is 

associated with one of the most aggressive fungal pathogens of maize, Cochliobolus 

carbonum race 1.  C. carbonum race 1 pathogenicity is mapped to a single locus Tox2 

(Scheffer and Ullstrup, 1965) that produces Helminthosporium carbonum (HC) toxin 

(Ullstrup, 1941).  Most maize germplasm is resistant to infection due to the dominant 

gene, Hm1 (H. maydis1), which inactivates HC toxin, and this result is sufficient to 

prevent infection (Johal and Briggs, 1992).   

Though the gene-for-gene theory has been validated by the discovery of many 

specific plant R genes and their corresponding avr genes, it has been proposed that R 

genes can and do in a majority of cases play a more active role in the cell than just 

surveillance for one effector (Dangl and Jones, 2001).  Therefore instead of direct 

interaction between R/avr proteins, it is now known that the majority of these interactions 

are indirect (Jones and Takemoto, 2004; Jones and Dangl, 2006).  The guard hypothesis 

was proposed by van der Biezen and Jones in 1998 to account for the more common 

examples of indirect R/avr interactions.  It predicted that R proteins activate resistance 

within the cell when they interact with other plant proteins that are targeted and modified 

by the invading pathogen effectors (Marathe and Dinesh-Kumar, 2003). This concept 

shifts the view of the possible roles of R genes and their products to a more active one in 

pathogen surveillance.  Instead of viewing R proteins as passively waiting for a specific 

signal or interaction from a pathogen effector, the hypothesis predicts that R proteins act 

like a “guard”, to constantly monitor certain physiological and regulatory processes and 

proteins (“the guardee”) that pathogens generally target to benefit the pathogen’s own 

fitness.  
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One example supporting this view is the interaction of two plant factors, Pto and 

Prf, that govern the AvrPto-triggered resistance to the bacterial pathogen P. syringae pv. 

tomato.  AvrPto, the pathogen effector, interacts with Pto, the guardee, and that 

interaction is recognized by Prf, the guard molecule.  When Prf recognizes and binds to 

the Pto-AvrPto complex, it activates the defense response.  Dangl and Jones (2001) 

reiterated the presence of direct interactions amongst these players and predicted two 

functional scenarios to define this interaction.  One way involves the effector initially 

binding the guardee which results in a conformation change that increases the affinity of 

the complex for the R protein (guard), therefore activating resistance.  The second 

scenario describes R proteins as constitutively forming complexes with their guardees 

which are disrupted by the guardee’s interaction with the effector.  When the guardee 

interacts with the effector, the result is the disassembly of the complex and subsequent 

activation of the R protein.  Studies have also proposed that R proteins monitor the 

activities of multiple effectors by detecting physiological changes of a guardee caused by 

effectors instead of monitoring the complex that results from direct binding of effectors 

to the guardee (Chisholm et al., 2006).  These physiological changes may involve 

covalent modification, such as phosphorylation or de-phosphorylation of a protein, or 

proteolytic cleavage of a protein.  Another example of the guard hypothesis is the RPS2-

mediated resistance to P. syringae DC3000 carrying AvrRpt2, a cysteine protease 

(Mackey et al., 2003).  This resistance is activated by RPS2 when it detects the cleavage 

and elimination of RIN4 (guardee) induced by AvrRpt2 (effector) (Mackey et al., 2003). 

Dangl and Jones (2001) suggested that the guard hypothesis was a useful model to 

explain the TIP-CP interaction associated with Arabidopsis-TCV resistance response 
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reported by Ren et al., 2000.  No direct evidence for interaction has been described 

between CP, the effector of resistance and the mediator of defense HRT (Dempsey et al., 

1997).  However the identification of TIP provided the first example of a direct 

interaction between a viral pathogen avirulence factor and a putative guardee-like 

molecule that fit the guard model of plant host-pathogen interaction (Ren, Qu, and 

Morris, 2000). 

Over the past few years, new data on the indirect recognition of effectors have 

emerged that are inconsistent with the original description of the Guard Model.  It is now 

well documented that many pathogen effectors have multiple targets within the host 

(Zipfel and Rathjen, 2008), and that classical guardee proteins are often dispensable for 

the virulence activities of effectors in plants lacking the R protein (Van der Hoorn and 

Kamoun, 2008; Zhou and Chai, 2008).  New data on additional targets of AvrPto and 

AvrBs3 gave rise to the idea that some host targets of effectors act as decoys to detect 

pathogen effectors via R proteins (Zhou and Chai, 2008; Zipfel and Rathjen, 2008).  A 

new theory, called the Decoy Model, detailed by Van der Hoorn and Kamoun (2008), 

proposed that plants have evolved decoy proteins which act as targets of effectors to 

detect pathogens without disruption of important cell processes.  The Decoy Model 

implies that the effector target monitored by the R protein functions as a decoy that 

mimics the operative effector target.  The decoy, however, only functions in perception of 

pathogen effectors without contributing to pathogen fitness in the absence of its cognate 

R protein.  Therefore, the major difference between the guard model and the decoy model 

is whether or not the pathogen is potentially benefited by the encoded protein that will 

interact with the guarded target (Block and Alfano, 2011). 
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Conceptually, decoys may be evolutionarily related to operative targets or may 

have evolved independently by target mimicry (Van der Hoorn and Kamoun, 2008).  

Both scenarios could be valid for Pto-related defense.  As stated earlier, the effector 

AvrPto, from P. syringae, interacts with Pto but can also inhibit multiple defense-related 

kinases.  Therefore, Pto could have directly evolved from one of these kinase targets, but 

lost its extracellular domains that are not required for AvrPto perception.  This scenario is 

consistent with the observation that Pto is most closely related to the kinase domains of 

receptor-like kinases (Hardie, 1999; Van der Hoorn and Kamoun, 2008).  However, Pto 

may have functioned in a kinase pathway that was not originally targeted by AvrPto but 

evolved to function in effector perception by mimicking the operative targets of Pto 

(target mimicry).  Although the decoy model lacks the experimental evidence that the 

guard hypothesis has for validation, it is consistent with some recent studies (Schornack 

et al., 2008; Xiang et al., 2008; Xing et al., 2007) and presents a possible challenge to the 

current theory behind plant defense against biotic stresses (Van der Hoorn and Kamoun, 

2008).  Regardless of whether the guard or decoy model is supported by further studies, it 

is becoming clear that by monitoring pathogens which are seeking one or more host 

targets will be key in understanding the complexity of plant defense.  Likewise, 

determining how R proteins can detect the effecter and/or the associated enzymatic 

activity of multiple pathogen effectors and signal appropriate defense responses will also 

be a great value in the analysis of plant innate immunity (Chisholm et al., 2006; Dangl 

and Jones, 2001; Van Der Biezen and Jones, 1998b).  My research has sought to elucidate 

the proposed role of TIP as a potential guardee or decoy protein.  My studies 

subsequently showed the binding of TCV CP to TIP was most likely an evolutionary 
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adaptation by TCV to alter the host innate immune response to permit more rapid 

systemic invasion by the virus.  

 

Hypersensitive response 

 The HR is a complex early defense response that causes necrosis and cell death 

that can restrict the growth and spread of a pathogen, eventually leading to the 

development of broad spectrum resistance to the eliciting pathogen as well as other 

related pathogens (Hammond-Kosack and Jones, 1996).  The specificity of this process is 

modulated by R proteins that associate in a race-specific manner with a pathogen 

encoded protein in a direct or indirect manner.  This interaction leads to a change in the 

membrane potential and ion permeability of the host cell plasma membrane resulting in 

localized cell death (Heath, 2000).  One of the first biological responses of the HR is an 

oxidative burst which includes the generation of superoxide anions (O2-), hydrogen 

peroxide (H2O2), and hydroxyl radicals (-OH) (Apostol, Heinstein, and Low, 1989).  The 

oxidative burst has been shown to be a downstream consequence of some R and Avr 

protein interaction signal cascades leading to HR development (Wolfe et al., 2000).  The 

HR is also linked to systemic plant responses by causing an increase in the number of 

secondary signal molecules such as salicylic acid (SA), jasmonic acid (JA), ethylene 

(ET), and auxins in infected and systemic tissue (Heath, 2000).  The HR precedes the 

secondary resistance response, referred to as systemic acquired resistance (SAR).  SAR is 

a heightened state of resistance to a broad spectrum of microbial pathogens in tissues 

distal to the infection site that can last for an extended time period (Kombrink and 

Schmelzer, 2001). The resistance mechanisms that trigger SAR are still unclear. 
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In the case of the Arabidopsis-TCV interaction, HR development can be observed 

in the inoculated leaves of A. thaliana ecotype Di-17 infected with TCV.  The onset of 

HR is elicited by the indirect recognition of the pathogen effector TCV CP by the R 

protein, HRT.  The development of resistance to TCV is also dependent upon other 

proteins in addition to HRT and some abiotic factors as well.  Another genetic locus RRT 

(Regulates Resistance to TCV) was identified that regulates resistance to TCV in Col-0, 

the susceptible host.  To date, this gene and its putative function remain unresolved 

(Kachroo et al., 2000).  In the resistant line Di-17, it is postulated that this gene must be 

present as a recessive locus (rrt) in order for HRT to induce ETI.  The recessive locus rrt, 

and components of the SA pathway, including EDS1, EDS5, PAD4 and SID2, must all be 

present for TCV resistance to be manifested in  Di-17 (Chandra-Shekara et al., 2004).  

Resistance is, however, independent of NPR1, and the JA and ET signaling pathways 

(Figure 1-2) (Kachroo et al., 2000).  More recently, it has also been demonstrated that 

light intensity and duration of the photoperiod following TCV infection can be key 

modulators of TCV infection and resistance, and which components play a role 

downstream of the initial signaling following HRT recognition of CP  (Figure 1-2) 

(Chandra-Shekara et al., 2006). 

 

Systemic acquired resistance  

In addition to the local resistance (HR) that protects host plants from pathogens, 

plants also signal to induce defense responses in systemic tissues after pathogen attack.  

SAR is induced in distal tissues following pathogen infection and confers a long-lasting 

resistance to secondary infections by a broad spectrum of pathogens, not just the 
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pathogen that initially infected the plant (Sticher, Mauch-Mani, and Métraux, 1997).  

Methyl salicylate (methyl-SA) has also been shown to be one of the signals that gets 

translocated to distal tissues inducing SAR (Park et al., 2007; Vlot, Klessig, and Park, 

2008).  Along with methyl-SA, other molecules like JA, glycerolipid-derived factors, and 

PEPs (Phosphoenolpyruvate) have been shown to be translocated as the signals for SAR 

depending on the type of microbial infection (Truman et al., 2007). 

SAR development depends on pathogen recognition, translocation of the 

recognition signal, and the plant’s ability to regulate which defense genes should be 

expressed upon pathogen invasion.  There is sufficient evidence that shows constitutively 

expressed defense genes lead to a decrease in overall plant fitness and size, and therefore 

it is believed that plants have evolved the ability to keep the majority of their defense 

genes under negative regulation to prevent the waste of valuable resources (Felton and 

Korth, 2000).  In our TCV-Arabidopsis model, we have hypothesized that TIP may be 

functioning as a negative regulator of defense and that the interaction of TCV CP with 

TIP stabilizes this negative regulation resulting in TCV being a more invasive pathogen.  

Studies reported in chapter two support this model in both susceptible and resistant lines 

of Arabidopsis.  The mechanism underlying this resistant response is not understood and 

is the focus of this research. 

Other factors, such as environmental conditions must be taken into account when 

studying SAR because abiotic factors like drought, temperature, and light will affect a 

plant’s overall health and defense response (Vlot, Klessig, and Park, 2008).  For instance, 

studies have shown that higher temperatures affect key components in a plant’s defensive 
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response by modulating components such as the SA response which is essential for SAR 

development (Wang et al., 2009b).   

 

Plant defense signaling  

Three major plant hormones are responsible for regulating the major signaling 

networks activated by pathogen recognition: salicylic acid (SA), jasmonic acid (JA), and 

ethylene (ET).  SA signaling is important in establishing local and systemic resistance for 

biotrophic pathogens, while JA and ET signaling are generally stimulated in response to 

necrotrophic pathogens, herbivore predation, wounding, and abiotic factors.  Each of 

these hormones can activate a specific defense signaling pathway which can act 

individually, synergistically, or antagonistically, depending upon the invading pathogen 

(Thomma et al., 2001).  For example, the SA and JA defense pathways are mutually 

antagonistic, and pathogens have evolved ways to exploit this fact and overcome these 

defense responses (Bostock, 2005; Koornneef and Pieterse, 2008; Rojo, Solano, and 

Sanchez-Serrano, 2003).  The resistance response to TCV infection activates the SA 

pathway dependent response, but is independent of NPR1, ET, and JA signaling (Figure 

1-2). 

 

Salicylic acid signaling pathway and some of its major components 

Salicylic acid is a small phenolic plant compound that plays a vital role in the 

defense responses against many pathogens.  Infections with biotrophic pathogens induce 

increased levels of SA, which in turn upregulate the expression of many defense-related 

genes (Malamy et al., 1990; Sticher, Mauch-Mani, and Metraux, 1997).  Plants 
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dysfunctional for SA synthesis or defective SA signaling pathways exhibit enhanced 

susceptibility to pathogen infection generally (Glazebrook, 2001).  In Arabidopsis and 

tobacco, SA is also crucial for the establishment of SAR (Durrant and Dong, 2004).  SAR 

is also accompanied by the induction of a set of SA-dependent pathogenesis-related (PR) 

genes and senescence associate genes (Morris et al., 2000) in inoculated and systemic 

tissue (Ryals et al., 1996).  

Many key parts of the SA pathway have been identified in Arabidopsis using the 

extensive Salk mutant library (Figure 1-3).  The SID2 (SA-induction deficient2) gene 

encodes isochorishmate synthase (ICS) and its inactivation (sid2) renders plants defective 

in SA synthesis and unable to activate the SAR (Wildermuth et al., 2001).  EDS5 

(enhanced disease susceptibility-5), EDS1, and PAD4 (phytoalexin deficient-4) encode 

proteins that also contribute to SA production (Falk et al., 1999; Nawrath et al., 2002; 

Zhou et al., 1998).  The EDS1 and PAD4 genes generally participate in defense signaling 

pathways triggered by R genes with TIR-NBS-LRR domains (Falk et al., 1999). The SA 

pathway also requires the function of a downstream component NPR1 (non-expressor of 

PR genes) to trigger the expression of PR genes (Figure 1-3) (Kinkema, Fan, and Dong, 

2000).  A mutation in the NPR1 gene abolishes SA-mediated induction of PR genes as 

well as SAR (Cao et al., 1994).  Other proteins such as WRKY70 have also been shown 

to participate in the SA signal transduction pathway. The presence of SA was found to 

induce WRKY70 expression upon exogenous treatment or pathogen infection (Li, 

Brader, and Palva, 2004).  Controlling the SA-dependent defense responses allows 

bacterial pathogens to inhabit the plant, either in the apoplast or the symplast, and 

multiply within host tissue for several days before causing plant cell death and tissue 
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damage.  Hence, regulation of the SA response is a strategy employed by many 

pathogens to breech the basal defense layer. 

 

Jasmonic Acid and Ethylene Pathways 

 JA, a fatty-acid-derived signaling molecule, is involved in several biotic and 

abiotic aspects of plant biology including pollen and seed development, and defense 

responses to wounding, ozone, insect pests, and microbial pathogens (Liechti and Farmer, 

2006; Staswick, 2008).  A. thaliana mutants that are impaired in JA production or 

perception exhibit enhanced susceptibility to a variety of pathogens, including the fungal 

pathogen Pythium irregulare (Staswick, Yuen, and Lehman, 1998), and bacterial 

pathogens like Erwinia carotovora (Norman-Setterblad, Vidal, and Palva, 2000).  These 

pathogens employ a common necrotrophic virulence strategy that involves rapidly killing 

plant cells to obtain nutrients. Several mutants that exhibit enhanced or constitutive JA 

responses have been identified that exhibit enhanced resistance to necrotrophic 

pathogens, like Botrytis cinerea (reviewed in (Kachroo, 2006)).  A point to note, JA 

induction has been shown to be involved in antiviral defense in only a few cases of virus 

infection such as in Cauliflower Mosaic Virus {CMV(Love et al., 2005)}. 

  The ET signaling pathway on the other hand, involves a relay of signals between 

multiple components, including cross-talk between several different pathways including 

the JA pathway.  ET signaling can lead to root and hypocotyl growth, decreased growth 

in dark conditions, hypocotyl thickening with decreased light, and last but not least, a 

pathogen defense response (Alonso and Stepanova, 2004).  The EIN2 gene is a central 

component of the ethylene signaling pathway  and is recognized as a molecular link 
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between previously distinct hormone response pathways (Alonso and Stepanova, 2004). 

ET itself is involved in the regulation of some of the key genes important for its own 

synthesis, including the ACC synthase (ACS), which controls the first catalytic step in the 

biosynthesis of ET (Kende, 1993; Liang et al., 1995).  Much like the SA pathway, 

necrotrophic and herbivorous pathogens evolved proteins that can regulate or suppress 

the JA and/or the ET pathways in attempts to become more successful pathogens (See 

Figure 1-3 for working model of SA, JA and ET defense pathway). 

 

Turnip Crinkle Virus 

Turnip crinkle virus (TCV) is one of the most studied members of the genus 

Carmovirus in family Tombusviridae.  It has a small single stranded positive sense 4,054 

base genome that encodes five open reading frames (ORFs) which produce five proteins 

(Figure 1-4A).  During replication, two subgenomic RNAs (sgRNA), 1.7kb and 1.45kb in 

size, are synthesized in addition to progeny genomic RNA.  These RNAs have co-linear 

3’ termini and they lack poly (A) tails or tRNA-like structures (Carrington et al., 1989). 

The first gene located toward the 5’ terminus encodes a protein of 28 kDa (p28).  A read-

through protein of 88 kDA (p88) is produced when the p28 amber termination codon is 

suppressed.  The p28 and p88 proteins make up the replicase protein that is responsible 

for RNA replication and sgRNA transcription.  Two smaller ORFs encoding polypeptides 

8 kDa (p8) and 9 kDa (p9) are located in the middle of the genome and are translated 

from the 1.7 sgRNA.  The p8 and p9 proteins are required for cell-to-cell movement in 

plants (Hacker et al., 1992).  The ORF at the 3’ terminus of the genome encodes a 38 
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kDA (p38) protein that is translated from the 1.45 kb sgRNA.  This protein is the viral 

CP, and is the structural protein for the virus (Figure 1-4B). 

 

TCV coat protein 

 The TCV virion shell is composed of 180 copies of the TCV CP.  Each protein 

consists of 351 amino acids (aa) and is arranged into three distinct domains.  The amino-

terminal R domain consists of 52 aa and extends into the interior of the virus particle 

where it is predicted to interact with the viral RNA.  The R domain is connected to the S 

domain via a 29 aa region called the arm.  The S domain forms the shell of the virion and 

is connected to the P domain by a 5 aa residue hinge.  The P domain is made up of 103 aa 

which are projected outward from the virion surface and exposed to the surrounding 

environment (Figure 1-4B) (Carrington et al., 1987; Hogle, Maeda, and Harrison, 1986).  

As mentioned earlier, the primary function of the CP is structural.  The CP has been 

shown to be multifunctional as it is also necessary for movement (Cohen, Gisel, and 

Zambryski, 2000; Hacker et al., 1992; Lin and Heaton, 1999), serves as a virulence factor 

(Heaton et al., 1991; Wang and Simon, 2000; Zhao et al., 2000), and functions as a 

suppressor of RNA silencing (Qu, Ren, and Morris, 2003; Thomas et al., 2003), which 

will be further discussed in Chapter 4.  Multifunctionality has also been observed for 

other plant virus CPs with icosahedral symmetry and single-stranded positive sense RNA 

genomes such as members of genera Bromovirus and Cucumovirus (Calhoun and Rao, 

2008; Callaway et al., 2001; Lewsey et al., 2009; Sasaki et al., 2005). These genera along 

with members of the Tombusvirus have basic N-terminal domains that have been 
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predicted to play an important role in RNA recognition during encapsidation in vivo (Fox, 

Johnson, and Young, 1994) and as a virulence factor (Ren, Qu, and Morris, 2000).   

The role of TCV CP as a modulator of host resistance was initially proposed from 

studies in the Morris lab in which a yeast two-hybrid screen using CP as bait was used to 

isolate and identify a putative component of resistance network called TIP (Ren, Qu, and 

Morris, 2000).  TIP belongs to the NAC transcription factor family, members of this 

family have diverse roles in many aspects of plant growth, development, and defense.  

TIP was isolated because of its ability to bind to the N-terminal region of the R domain of 

the CP (Ren, Qu, and Morris, 2000).  It was further established that TIP localized to the 

nucleus when expressed transiently in N. benthamiana (Ren, Qu, and Morris, 2005). 

 

NAC genes and antiviral defense 

In plants, the NAC [for NAM (no apical meristem), ATAF, CUC (cup-shaped 

cotyledon)] family represents a plant-specific group of transcription factors (Olsen et al., 

2005).  The genomes of Arabidopsis, tobacco, and rice all contain more than 100 genes 

encoding NAC domains (Ooka et al., 2003; Rushton et al., 2008), making it one of the 

largest transcription factor-gene families in plants.  NAC genes were originally identified 

from forward genetic screens as key regulators of developmental processes and more 

recently have also been shown to be involved in the regulation of stress responses in both 

model plants and agronomically important crops (Kim et al., 2006; Olsen et al., 2005; 

Ren, Qu, and Morris, 2000).   

Several NAC proteins have been identified due to their response to pathogen 

infection as either positive or negative regulators.  In Arabidopsis, ATAF1 was 
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demonstrated to be a negative regulator of defense against necrotrophic fungal and 

bacterial pathogens (Wang et al., 2009a).  Specifically, infections by Botrytis cinerea, 

Pseudomonas syringae pv. tomato, or treatments with SA, JA, and the precursor to 

ethylene biosynthesis (1-amino cycloproane-1-caroxylic acid) lead to a down regulation 

of ATAF1 gene expression.  Since ATAF1 is affected by multiple pathogen defense 

associated signaling pathways, it may not directly repress downstream targets but instead 

serve as a node of convergence for PTI by controlling the expression of other unknown 

negative regulators and transcription factors (Wang et al., 2009a).   

Another Arabidopsis NAC gene, ATAF2, is a positive regulator of defense and 

was identified because of its ability to bind to the helicase domain of the TMV 126-/183-

kDa replicase protein(s) (Wang, Goregaoker, and Culver, 2009).  ATAF2 expression is 

induced by pathogen invasion which results in an enhanced basal defense response 

associated with SA-mediated defense signaling.  The interaction with the TMV helicase 

also promotes the proteasome degradation of ATAF2 which leads to a reduced basal 

defense that promotes enhanced systemic invasion of TMV (Wang, Goregaoker, and 

Culver, 2009).  Therefore, the ATAF2-replicase interaction represents a way to suppress 

basal defense and reduce SA’s ability to transcriptionally activate defense-related genes 

in distal parts of the plant, thus promoting TMV invasion.  

Similarly, the Arabidopsis NAC protein TIP was identified because of its ability 

to bind to TCV CP (Ren, Qu, and Morris, 2000).  Specifically it was shown that TIP 

interacts with N-terminal region of the R-domain of TCV CP (Figure 1-4B).  It was 

hypothesized that loss of TIP binding in a series of CP mutant viruses was correlated with 

the loss of the ability to induce an effective ETI response (Figure 1-5).  This observation 
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suggested that CP-TIP interaction was needed for an effective ETI response to TCV 

infections.  It was further determined that TIP has a membrane location signal (Kang 

personal communitcation), hence it is retained in the cytoplasm after translation where it 

is likely to interact with TCV CP inside the plant cell during infection.  I have 

hypothesized that the interaction of TIP with TCV CP causes the release of a truncated 

TIP protein which then migrates to the nucleus where it subsequently represses or blocks 

the defense responses and/or signaling pathways (Kang, personal communication).  It 

was originally thought that the R protein, HRT, might indirectly recognize the CP 

through this interaction causing repression of the PTI response and induction of the 

appropriate ETI response leading to the sequestration of the pathogen at the site of 

infection.  This conclusion was supported by the observation of Ren et al. (2005) that 

each of the CP mutant viruses that were unable to induce an HR and move systemically 

in resistant Di-17 had also lost CP-TIP binding ability.  Moreover, mutants in the same 

region of the CP in which TIP binding was restored induced HR and resistance.  It was 

subsequently shown, using a TIP knockout (ko)  line, that TIP was not essential for HR 

induction and ETI resistance to TCV (Jeong et al., 2008).  This study further showed that 

TIP appeared to have a primary effect  on the basal resistance response and the fine 

tuning of the defense response (Jeong et al., 2008).  Recent data from our lab (Kang, 

personal communication) has shown that the same region of the CP associated with TIP 

binding also contains a nuclear localization signal.  Hence, it appears that the R-domain 

region of the CP likely plays multiple roles as a virulence factor that affects both the PTI 

and ETI defense responses.  This conclusion is supported by the data I will present in the 

next two chapters of this thesis which show that single aa changes in the R-domain of the 
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CP can have very marked and somewhat unpredictable affects on symptom severity and 

differential expression of numerous defense genes in both the susceptible and resistant 

lines of Arabidopsis. 

To summarize, my initial efforts focused on understanding the changes in gene 

expression associated with infections caused by TCV mutants that disrupted TIP 

interaction as reported analyzed by Ren et al. (2000; Figure 1-5).  I began by conducting 

an in depth study on one such mutant, R6A, which had a single aa change at the 6th 

position in the N-terminus of the coat protein where an arginine (R) was changed to an 

alanine (A).  R6A infections in susceptible Col-0 typically caused more severe 

symptoms.  Moreover, R6A also broke resistance in the resistant line carrying the HRT 

gene, (Di-17) and plants became systemically infected with the mutant virus.  Together, 

these observations implicated TIP-CP interactions in both the basal (PTI) and R-gene 

(ETI) layers of the defense response.  These results provoked the counter-intuitive 

question why does loss of interaction of TCV CP with TIP cause more severe symptoms 

in the susceptible Col-0 line?  This question was initially addressed by analyzing gene 

expression differences in infections initiated by wt TCV and the mutant R6A in my MS 

thesis and in an unpublished microarray study.  The Ren et al. (2000) study and the gene 

expression data prompted the formulation of the following hypothesis:   

“The regulation of the Arabidopsis basal defense against TCV is mediated by the 

transcription factor TIP.  TCV has evolved an invasion strategy to repress the host 

basal defense system by altering the nuclear localization of TIP through CP-TIP 

interaction.  The resistant ecotype Di-17 has evolved an R gene (HRT) based 

surveillance system that is also triggered by TCV CP, but not by the same R6A 
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mutant that fails to bind TIP.  This suggests that the signaling pathway modified by 

TIP to induce the basal resistance response communicates with the R-gene based 

resistance pathway.” 

To test this hypothesis, I conducted an in-depth examination of infections by the 

non-TIP binding mutant R6A in susceptible Col-0 (Chapter 2).  I sought to establish if 

CP-TIP binding had a direct role in the regulation of the basal defense response (PTI) by 

assessing if there were measurable differences in virus accumulation between wt TCV 

and R6A in both inoculated and systemic tissue of susceptible Col-0.  In chapter three, I 

expanded these studies and assessed infections by TIP binding and non-TIP binding 

mutants in the resistant line Di-17 to assess if TIP binding had a measurable affect on ETI 

based defense.  Finally in chapter four, I examined if there are any differential effects of 

TCV and TIP-binding mutant infections on the multiple genes associated with the RNA 

silencing pathways in Arabidopsis.  I felt that this was necessary due to the universal 

importance of silencing based defense used against pathogens and the fact that the TCV 

CP functions as a silencing suppressor 
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Figure legends 

Figure 1-1.   Visual representation of R proteins.  This figure depicts five known 

classes of R proteins.  The R proteins are further characterized based on domain regions 

found within the protein and their location within the cell (See text for domain function). 

HRT is a member of the CC-NBS-LRR class of R proteins and conditions the resistance 

response to TCV (Dempsey et al., 1997). 

 

Figure 1-2.` Model of the hypersensitive response and resistance to Turnip Crinkle 

Virus infection.  Inoculation of TCV on resistant Arabidopsis ecotype Dijon-17 results 

in a hypersensitive response (HR) on inoculated tissue and the induction by systemic 

acquired resistance (SAR).  HR development is mediated by CP recognition of HRT in 

the presence of recessive rrt allele.  Signaling for TCV resistance requires a functional 

SA signaling pathway including proteins such as EDS1, PAD4, EDS5, and SID2.  

However resistance is independent of NPR1 and the JA and ET signaling pathway.  The 

light regimen following TCV infection is critical for HR formation and resistance.  

Therefore the pathways required for TCV resistance are complex and differ from the 

resistance pathway induced by other biotrophic and necrotrophic pathogens {Adapted 

from (Chandra-Shekara et al., 2006; Kachroo et al., 2000)}. 

 

Figure 1-3. A working model of the SA, JA and ET pathogen defense pathways in 

Arabidopsis thaliana. In the salicylic acid (SA) pathway (in orange), the SID2 and EDS5 

genes appear to be directly involved in SA biosynthesis, whereas the EDS1, EDS4 and 

PAD4 genes regulate SA synthesis.  The SA pathway can function independently of 
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NPR1 and still signal for the induction of PR1 gene expression.  In general, the SA 

pathway responds to biotrophic organisms.  In the jasmonic acid (JA) pathway (in blue), 

the proteins, COI1 and MPK4, function early in the JA signaling pathway.  JAR1 is 

tentatively placed downstream of COI1 and MPK4 because of the observations that JA 

signaling is only partially blocked in the jar1 mutant and that jar1 plants do not exhibit 

enhanced resistance to P. syringae.  The ethylene (ET) response pathway (in purple) 

signals through many ET receptors (not shown) and EIN2.  Positive regulatory 

interactions between these signaling pathways are indicated by green arrows, antagonistic 

interactions by red lines.  The dashed green arrow indicates potential positive interactions 

between the ET and SA pathways.  Putative positive interactions between the SA and JA 

pathways, and potential negative interactions between the ET and SA pathways, are not 

shown. (Diagram adapted from (Kunkel and Brooks, 2002). 

 

Figure 1-4.  Schematic diagram of TCV genome and TCV CP structure. (A) TCV 

genome consists of 5 ORFs that encode five proteins. The replicase protein is composed 

of p28 and p88.  Systemic movement of the virus requires the function of p8 and p9.  The 

CP of the virus, p38, is the structural protein.  (B) TCV CP has 3 protein domains that are 

connected by arm and hinge regions as diagrammed above.  The R domain is located 

within the virion shell and interacts with the viral genome.  The S domain makes the shell 

of the virion and the P domain is located on its outside surface.  180 subunits of CP or 90 

dimers, as shown next to the linear map of CP, make up the virion shell. 
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Figure 1-5.  Connection between TCV-CP interaction and TCV resistance (Ren et 

al., 2000).  The diagram shows the 25 amino acid (aa) sequence of the N-terminus of the 

R domain of the CP of wild TCV and its mutants.  Mutant viruses with single aa 

substitutions in this region are shown on the left.  Results of a yeast two-hybrid screen 

where TIP/TCV CP binding was evaluated are shown in the next column where a (-) 

depicts no TIP binding and a (+) depicts TIP-TCV CP interaction.  On the right, results of 

infections by TCV and mutant viruses are shown.  The ecotype Col-0 was susceptible (S) 

to all viruses, but susceptibility followed by increased disease symptoms (S+) was 

observed in the non-TIP binding mutants.  The resistant ecotype, Di-17, was resistant (R) 

to TCV and the other TIP binding mutant G14A, but susceptible (S) to all non-TIP 

binding mutants.  These data have been re-examined more thoroughly in Chapter 2. 
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Figure 1-1 
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Figure 1-2 
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Figure 1-3 
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Figure 1-4 
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Figure 1-5 
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Chapter 2: 

TCV coat protein mutants that fail to bind the NAC transcription factor TIP 

display altered virus accumulation and gene expression associated with innate 

immune system and systemic acquired resistance. 
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Abstract 

Turnip crinkle virus (TCV) has previously been shown to interact with a member of the 

NAC family of transcription factors called TCV-interacting protein (TIP) via its coat 

protein (CP).  A fully replication competent mutant virus (R6A) was constructed with a 

single amino acid replacement in the N-terminal region of TCV CP that failed to interact 

with TIP.  R6A caused more severe symptoms in the susceptible Columbia-0 ecotype of 

Arabidopsis thaliana and broke resistance in the resistant Dijon-17 ecotype.  Based on 

these observations, I hypothesized that the interaction of TCV CP with TIP was an 

evolutionary adaptation to suppress the host innate immune response to enhance a more 

rapid systemic invasion of the virus.  I compared the rate of accumulation of TCV and 

R6A in inoculated and systemic leaves over a time course of infection.  The accumulation 

of the R6A mutant was consistently slower relative to wt virus in the susceptible Col-0 

ecotype.  However, this difference disappeared in mutant plants that lacked a fully 

functional salicylic acid defense pathway.  This result suggested that the primary defect 

in R6A was its inability to modulate the SA-associated innate defense response and 

signaling. Similar virus accumulation levels between TCV and R6A were observed in 

infections of Col-0 transgenic lines with constitutively expressed TIP under the control of 

the 35S promoter.  These data support the conclusion that the TIP-CP interaction is 

important in modulating the innate immune response to virus infection in susceptible 

hosts. 
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Introduction 

Plants employ multiple mechanisms to defend themselves against pathogens.  A 

key element of plant defense is by the recognition of the pathogen encoded microbe- 

associated molecular patterns (MAMPs) and subsequent triggering of a MAP kinase 

signaling cascade that will induce the appropriate defense response.  Recent reviews have 

described the plant innate immune system as consisting of two components: one 

component, referred to as pathogen triggered immunity (PTI), uses transmembrane 

pattern recognition receptors (PRRs) to recognize MAMPs, such as flagellin (Felix et al., 

1999).  The other component referred to as effector triggered immunity (ETI) uses the 

polymorphic NB-LRR protein products encoded by most R genes to induce a more 

intense defense response (reviewed in (Boller and Felix, 2009; Jones and Dangl, 2006).  

One such R gene, known as HRT, can mediate disease resistance against Turnip crinkle 

virus (TCV) by the recognition of its coat protein (CP) in Arabidopsis thaliana ecotype 

Dijon-17 (Dempsey et al., 1997).  The HRT protein induces an ETI response which 

includes the hypersensitive response (HR) upon recognition of TCV CP.  This response 

quarantines TCV to the site of infection and prevents systemic spread throughout the 

plant (Dempsey et al., 1997). 

Along with MAMP recognition, plants also use antiviral RNA silencing defense 

to restrict virus replication and movement (Ding and Voinnet, 2007; Loake and Grant, 

2007).  The process of RNA silencing is an adaptive defense strategy wherein viral- 

associated RNAs are used as templates for making complementary siRNAs which in turn 

are used in RNA-induced silencing complexes (RISC) for sequence specific splicing of 

viral RNAs (Baulcombe, 2004; Brodersen and Voinnet, 2006).  In addition to serving as 

http://www.nature.com/nature/journal/v444/n7117/full/nature05286.html
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the elicitor of ETI, the TCV CP also serves as a strong suppressor of the RNA silencing 

pathway (Qu, Ren, and Morris, 2003).  It has also recently been shown to interact with a 

key component of the RNA silencing pathway, ARGONAUTE1 (AGO1`;Azevedo et al., 

2010).  The CP-AGO1 interaction disrupts homeostatic interactions of the four dicer-like 

(DCL) proteins in Arabidopsis and prevents the proper RNA silencing-associated defense 

against TCV (Azevedo et al., 2010).  RNA silencing and the role of TCV CP as a 

silencing suppressor will be covered further in Chapter 4. 

Salicylic Acid (SA) is a small phenolic plant compound that plays a vital role in 

the defense responses against many pathogens in both branches of plant innate immunity. 

Infections by biotrophic pathogens induce increased levels of SA, which in turn 

upregulate the expression of many defense-related genes (Malamy et al., 1990; Sticher, 

Mauch-Mani, and Metraux, 1997).  Plants with dysfunctional SA synthesis, signaling or 

accumulation pathways exhibit enhanced susceptibility to pathogen infection 

(Glazebrook, 2001).  In Arabidopsis and tobacco, SA is also crucial for the establishment 

of systemic acquired resistance (SAR; Durrant and Dong, 2004).  SAR is also 

accompanied by the induction of a set of SA dependent pathogenesis-related (PR) genes 

in inoculated and systemic tissue (Ryals et al., 1996) and senescence-associated genes 

(Morris et al., 2000).  SA is also linked to parts of the senescence pathway like SEN1 

(Schenk et al., 2005) which is one of the factors needed for regulating senescence (Morris 

et al., 2000). 

Many key parts of the SA pathway important for PTI and ETI defense have been 

identified in Arabidopsis using the extensive Salk mutant library (Alonso et al., 2003) .  

EDS1 (enhanced disease susceptibility-1) and PAD4 (phytoalexin deficient-4) encode 
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proteins that also contribute to SA production (Falk et al., 1999; Zhou et al., 1998).  The 

EDS1 and PAD4 genes generally participate in defense signaling pathways triggered by R 

genes with TIR-NBS-LRR domains (Falk et al., 1999).  The SA pathway also requires 

the function of a downstream component NPR1 (non-expressor of PR genes) to trigger 

the expression of pathogenesis-related (PR) genes (Kinkema, Fan, and Dong, 2000).  A 

mutation in NPR1 abolishes SA-mediated induction of PR genes as well as SAR (Cao et 

al., 1994).  Controlling the SA-dependent defense responses allows pathogens to inhabit 

the plant cell, either in the apoplast or the symplast, and multiply within host tissue for 

several days before causing plant cell death and tissue damage. Hence, regulation of the 

SA response is a strategy employed by many pathogens to overcome PTI. 

NAM, ATAF, and CUC (NAC) transcription factors are a plant specific group of 

proteins, which contain a highly conserved N-terminal DNA-binding domain and a 

variable C-terminal domain (Olsen et al., 2005).  Recent analyses has identified over 100 

NAC encoding genes in the genomes of Arabidopsis thaliana and Oryza sativa that have 

tissue and stress response specific expression (Fang et al., 2008; Ooka et al., 2003).  NAC 

proteins have been shown to be important components in different aspects of plant 

development, including formation of boundary cells of the meristem, cell division and 

expansion, lateral root development, senescence, secondary cell wall biosynthesis, and 

flowering time (Aida et al., 1997; Kim et al., 2006; Sablowski and Meyerowitz, 1998; 

Souer et al., 1996; Xie et al., 2000; Zhong, Demura, and Ye, 2006).  One member of the 

NAC family, TIP (TCV-interacting protein), was shown to play a key role in binding to 

TCV CP.  This interaction was key for ETI resistance in the resistant A thaliana ecotype 

Di-17.  This binding was also correlated with the level of symptom severity in the 
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susceptible ecotype of Col-0 during infection (Ren, Qu, and Morris, 2000).  Since then, a 

study by Jeong et al. (2008) demonstrated that TIP was not necessary for ETI resistance 

in Di-17 but hypothesized it may still play a role in the innate defense system (Jeong et 

al., 2008).   

To further assess the role of TIP in PTI, I evaluated the differences between wt 

TCV infection and one of its non-TIP binding mutants R6A.  Analyses of virus 

accumulation for both viruses were conducted to observe if there was any effect on their 

fitness with and without TIP interaction.  In this work, I demonstrate that wt TCV’s 

ability to bind TIP gives it a clear advantage over R6A in its ability to down-regulate the 

SA pathway and accumulate to higher titers early in infection.  I also show a correlation 

between TCV accumulation and TIP binding in the susceptible Col-0 ecotype. 

 

Materials and Methods 

Plant growth conditions 

Plants lines of wt A. thaliana Col-0 and Di-17, and knockout (ko) lines in a Col-0 

background of npr1, pad4, jar1 and ein2 were grown in growth chambers at 22°C with 

12hr day cycles in Metro Mix 360 (Sun Gro; British Colombia, Canada).  Transgenic 

lines of antisense TIP (asTIP) and a constitutively up-regulated TIP (UpTIP) line that had 

an additional TIP gene under the control of a 35S promoter were initially grown on 

selective media to verify the presence of inserts.  Their were subsequently transplanted to 

Metro Mix 360 (Sun Gro), and placed in growth chambers under the same conditions as 

stated earlier for wt Col-0 and other previously mentioned lines. 
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Plant inoculations, tissue collection, and RNA isolation 

 Plants were consistently inoculated between the ages 22 to 24 days old.  Three 

leaves were inoculated per plant as illustrated in Figure 2-1.  The virus inocula consisted 

of a buffer solution containing 50 mM Na2HPO4 [pH 7.0] + 1% Celite 545 and purified 

virus transcript at a concentration of 1 ng/µl with a total of 10 ng of virus transcript or 10 

µl of the virus transcript-buffer solution applied to each leaf.  The virus inoculum was 

applied to each leaf by rub inoculation, allowed to stay on the leaf for five minutes, and 

then washed off with nanopure water.  Five to six leaves (apx 0.3g) from different plants 

treated with the same inoculum buffer were collected at each time point and flash frozen 

in liquid nitrogen.  RNA was extracted as previously described (Chomczynski and 

Sacchi, 1987) and RNA samples were subsequently purified using RNeasy columns 

(Qiagen; Valencia, CA, USA). 

 

Virus detection and semi-quantitative RT-PCR 

Detection of viral RNAs was conducted by analysis of 2 µg of total RNA isolated 

from infected plant tissue.  The RNA was separated using electrophoresis in a 1.2% 

agarose/1.8% formaldehyde gel run at 100 mV/cm for 90 minutes at room temperature.  

Separated RNAs were then transferred to a Nylon membrane (Zeta probe blotting 

membranes; Bio-Rad, Hercules, CA, USA) at 4°C at 37mV/cm or 200mA.  Hybridization 

was carried out at 40°C using ULTRAHyb-Oligo (Ambion; Foster City, CA, USA) 

solution according to manufacturer’s directions (Ambion). CP and PR1 were detected 

with the addition of 32P-γ-ATP end-labeled probes (Table 2-2) to the hybridization buffer 

after one hour of pre-hybridization of the membranes with only the ULTRAHyb-Oligo 
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solution.  Probes were generated using T4 polynucleotide kinase according to 

manufacturer’s directions (New England Biolabs; Ipswich, MA, USA).  After overnight 

hybridization (minimum of 12 hours), the membrane was washed three times, 20 min 

each, with 2xSSC, 0.5% SDS at 40°C.   

Reverse transcription PCR (RT-PCR) was conducted to evaluate gene expression.  

DNase treated RNA samples were used to synthesize first strand cDNA by using 

SuperScript III reverse transcriptase (Invitrogen; Carlsbad, CA, USA) and random 

primers according to the manufacturer’s protocol.  The cDNA was then subjected to PCR 

amplification for semi-quantitative analysis with EconoTaq Plus Green 2X Master Mix 

according to the manufacturer’s protocol (Lucigen; Middleton, WI, USA).  The following 

thermal cycling conditions used were: initial denaturation 95°C  for 2 minutes, then 

cycles of denaturation at 95°C for 30 sec, primer annealing at 55°C for 30 sec, and 

followed by an extension phase at 72°C for 1 min.  The numbers of cycles were adjusted 

based on the transcript abundance and expression at a given time point and/or sample.  

The procedure was terminated with a final extension phase of 72°C for 5 minutes 

followed by a hold at 4°C.  The PCR product was then subjected to electrophoresis and 

gene expression was analyzed based on band intensity of the transcripts relative to the 

control gene, Actin2 (ACT2).  The primers (Invitrogen) of the genes used for analysis for 

semi-quantitative PCR are listed in Table 2-1. 

 

Real-time PCR  

Real-time PCR was also used to evaluate gene expression.  The qRT-PCR 

experiment was performed by using the ABI StepOneTM Plus real time PCR machine 
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(Applied Biosystems; Foster City, CA), TaqMan® One-Step RT-PCR master mix, and the 

appropriate predesigned assay.  A PCR master mix was prepared according to the 

manufacture’s instructions along with 10μl TaqMan® RT-PCR Mix (2X; Applied 

Biosystems), 0.5μl TaqMan® RT enzyme mix (40X:Applied Biosystems), and enough 

RNase free water for a final volume of 50μl per well.  The reaction plate was prepared by 

adding the PCR master mix, 1μl TaqMan® labeled probe (Applied Biosystems), 8.5μl 

total RNA at the concentration of 4.71ng/ μl to each well (total RNA per well was 

approximately 40ng).  The final volume of each well was 20μl.  Three wells were also 

assembled for each probe with 8.5μl water instead of RNA to rule out possible 

contamination.  Thermal cycling conditions were 48°C for 30 min and 95°C for 10 min, 

followed by 95°C for 15 sec and 60°C for 1 min for 40 cycles.  Relative expression was 

quantified by using the comparative Ct method with ACT2 as the endogenous control.  

The qRT-PCR procedure was done in triplicate. See table 2-3 for a list of evaluated 

genes. 

 

Enzyme-linked immunosorbent assay (ELISA) 

 Virus titers were evaluated using indirect enzyme-linked  immunosorbent assay 

(ELISA).  Total virions were isolated by grinding 0.3g of leaf tissue in 1ml of ddH20 and 

centrifuging the samples at room temperature for 60 seconds at 12,000rpm.  The 

supernatant was transferred to a new tube and virion levels in the crude extracts were 

determined by using indirect ELISA (Lommel, McCain, and Morris, 1982)   

 ELISA plates were coated by filling wells with 200µl 0.05M carbonate buffer, 

pH9.6 + 0.01% sodium azide and then 50µl crude extract was added to the well.  A serial 
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dilution was done on all samples by taking 50µl from the initial well with the original 

crude extract sample and transferring it to a new well filled with 200µl carbonate buffer 

for a 1:5 dilution ratio.  This was repeated three times, so the final dilution of the sample 

in the fourth well was 1/625 of the concentration of the original sample.  A standard 

ELISA curve of virus concentrations was constructed to help estimate total virion 

concentration in the samples (Figure 2-2). 

 To allow for sufficient coating, the plates were incubated at 37°C for 60 minutes.  

Plates were then washed five times with 30 second incubations using 200 µl PBST 

(Phosphate Buffered Saline with Tween) wash buffer (Agdia; Elkhart, IN, USA).  After 

the final wash, the rabbit anti-TCV antibody solution was added to each well at a 

concentration of 1:1000.  The antibody was diluted in ECI buffer (Agdia).  The plates 

were again incubated at 37°C for 60 minutes and then washed as before.  Next the 

conjugated antibody (goat-anti rabbit with alkaline phosphate (AP) conjugate) was added 

to the wells at a concentration of 1:25,000 in the same ECI buffer (Agdia).  Following 

another 60 minute incubation at 37°C, the plate was again washed before the p-

nitrophenol (PNP) buffer (Agdia) was added to each well.  The plate was incubated at 

room temperature in humid box covered in foil to prevent PNP from reacting with light.  

The plate was read at 405nm and could be read multiple times as long as the negative 

control wells remained below an absorbance reading of 0.200A. 

Virus Gels 

 Virus concentrations were also validated using virus gels.  TCV virions were 

isolated by grinding 0.5g of infected tissue in 1ml of 4°C sodium acetate extraction 

buffer.  Extraction buffer consisted of 0.2M sodium acetate, pH 5.2 and 0.1% β-
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mercaptoethanol.  Virus slurry was transferred to a 2ml tube and incubated on ice for 30 

minutes.  This was followed with a 10 minutes centrifugation at 13,200rpm.  Supernatant 

was poured through miracloth funnel into a 1.5ml microcentrifuge tube.  The virus was 

precipitated by adding 0.25 volumes of  40% polyethylene glycol solution for 30 minutes 

on ice.  After precipitation, the solution was centrifuged for 10 minutes at 13,200 rpm.   

A 5µl sample of the virus extraction solution was then electrophoresed on a 1% agarose 

gel with 1X E buffer.  A 20X stock of E buffer is made of 1.205% tris and 5.71% glycine.  

The gel was run at 60mV/cm for approximately two hours.  Ethidium bromide was used 

to stain and observe the nucleic acid and coomassie blue was used to stain and observe 

the proteins. 

 

Construction of Transgenic lines  

The altered TIP expressing A. thaliana lines were constructed by Dr. Feng Qu.  

The p35-UpTIP construct was made by cloning the full length TIP cDNA into a plasmid 

pRTL2. This plasmid flanked the TIP cDNA insert with the CaMV 35S promoter and a 

polyA signal.  The TIP cassette, including the 35S promoter, TIP cDNA, the 35S polyA 

signal (Figure 1-8) was cut out of pRTL2 and subcloned into the binary vector, pPZP212. 

The resulting construct was used to transform Agrobacterium strain C58C1 as previously 

described in (Bechtold, Ellis, and Pelletier, 1993).  The asTIP down construct was made 

by cloning a partial fragment of the TIP cDNA (nt 1106 – 1637), in reverse orientation, 

into pER8 (between XhoI and SpeI sites), as previously described in (Zuo, Niu, and Chua, 

2000).  The resulting construct (Figure 2-3) was then transformed into Agrobacterium 

and used for Arabidopsis transformation following the same protocol as above. 
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The estradiol promoter was induced by spraying the plant with a 30nM estradiol 

solution once the plants had reached their mature size (age 22 to 24 day).  The estradiol 

solution was applied to plants in a fume hood which were then covered with a dome lid 

and placed back in the growth chamber.  Dome lids were removed after 12 hours.  This 

process was repeated every other day throughout the infection cycle. 

 

Results 

TCV mutant R6A accumulates slower than wt TCV 

 The non-TIP binding coat protein mutant, R6A, displayed the consistent 

phenotype of resistance breaking in Di-17 and more severe symptoms in susceptible Col-

0 compared to wt TCV (Figure 2-4).  This observation suggested that the single aa 

replacement mutation altered both the innate defense response (PTI) in the susceptible 

host and the ETI response in the resistant host.  To test the PTI response, virus 

accumulation was measured by collecting leaf tissue from several plants at multiple time 

points after inoculation of Col-0 with either TCV or R6A.   

Viral RNA transcript accumulation along with total virus titer were both assessed 

as a measurement of viral abundance in inoculated and systemic tissue over the time 

course of these infections.  It was discovered that even though R6A infections caused 

more severe symptoms in Col-0, viral RNA and total virus accumulated more rapidly 

with TCV compared to R6A infections in both inoculated and systemic tissues (Figure 2-

5).  This is most evident by comparing levels of viral RNA accumulation between 

infections at 4 dpi and 6 dpi when TCV genomic and subgenomic RNAs are clearly 

visible while R6A RNAs are not yet present.  By 8 dpi, R6A infected plants were able to 
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recover from the initial PTI response with the levels of genomic and subgenomic RNA 

approaching or exceeding that of wt TCV.  These results were also supported by 

assessing virion accumulation by ELISA which showed that R6A accumulation was 

reduced at 4 and 6 dpi in systemic tissue compared to that of TCV virions (Figure 2-6).   

Similar experiments were conducted in the resistant ecotype Di-17.  This 

confirmed previous results reported by Ren et al., (2000) that R6A was able to break 

resistance and move systemically in 100% of inoculated plants (Figure 2-7a).  This 

differed from wt TCV which showed approximately 25% systemic infection of Di-17 

plants with about 75% being resistant (Dempsey, Wobbe, and Klessig, 1993; Kachroo et 

al., 2000).  This is consistent with the previous reports showing that resistance (ability to 

localize virus in inoculated leaves and prevent systemic infection) is associated with a 

second recessive allele designated rrt (regulates resistance to TCV; (Kachroo et al., 

2000),  and variations in growth conditions upon virus infection (Chandra-Shekara et al., 

2006).  Therefore the detection of wt TCV in the resistant Di-17 systemic leaves, as seen 

in Figure 2-7 a-b, can be explained by systemic infection of about 1 in 4 of the randomly 

selected leaves from the expected 25% escapes that are characteristic of  Di-17 resistance 

response.  Because of the random and unpredictable nature of virus invasiveness in Di-

17, we could not make reliable estimates of TCV titers during the time course 

experiments in Di-17.  Although our results (Figure 2-5 and 2-6) clearly show that R6A 

accumulates more slowly in the susceptible Col-0 line than wt TCV, we could not make a 

similar direct comparative assessment in Di-17 (Figure 2-7 a-b).   However, the results in 

the resistant line Di-17 clearly show that R6A is unable to provoke any resistance 

response resulting in 100% systemic infection and maximal levels of virus accumulated 
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by 8 dpi as determine by indirect ELISA (Figure 2-7b).  This phenotype appears to be 

linked to the inability of the R6A CP to bind to the TIP protein and hence modulate the 

PTI response.  These studies also support the hypothesis that R6A has lost its ability to 

bind TIP and that this was somehow related to its ability to break resistance and invade 

Di-17 systemically. 

 

R6A is as robust as wt TCV when the SA pathway has been compromised 

 The observation that R6A accumulated more slowly in wt Col-0 suggested that 

R6A was either an attenuated virus or that its slower accumulation was related to its 

inability to alter the PTI defense response stimulated upon infection.  To evaluate this, 

knockout (ko) lines of Arabidopsis in the Col-0 background were acquired that lacked 

key components of the three major signaling pathways associated with plant defense.  

These included: the SA defective ko lines npr1 and pad4, the JA defective ko line jar1, 

and the ET defective ko line ein2.  The npr1 mutant carries a single recessive mutation 

that abolishes the induction of SAR as well as the pathogen induced expression of other 

PR genes (Cao et al., 1994; Dong et al., 1991).  The pad4 ko line is unable to synthesize 

SA which is required for SAR and also shows a decrease in PR expression during 

pathogen infection (Zhou et al., 1998).  The jar1 ko line cannot make sufficient JA and 

the plants are more susceptible to necrotrophic pathogens (Staswick, Yuen, and Lehman, 

1998).  The ein2 ko line is defective in ethylene signaling that reduces the overall plant 

size and development, but also causes the plant to be more susceptible to necrotrophic 

pathogens (Alonso and Stepanova, 2004; Bleecker and Schaller, 1996). 
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The mutant plants described above were reared under controlled conditions and 

PCR was conducted on all ecotypes to verify the lack of expression of the specific 

transcripts (Figure 2-8).  The absence of detectable transcripts for NPR1, PAD4, JAR1, 

and EIN2 verified the genotype of these ko lines.  Upon confirmation, an infection time 

course was conducted by collecting systemic leaves from plants that had been inoculated 

with TCV or R6A under the same conditions as described in Materials and Methods.  

Virus accumulation was analyzed by monitoring viral RNA transcript levels by northern 

blot (Figure 2-9).  In contrast to accumulation in wild type plants, R6A and TCV both 

accumulated at equivalent rates in the npr1 ko line and pad4 ko line (Figure 2-9).  This is 

most evident by comparison of the 4 and 6 dpi time points in Col-0 and the ko lines of 

npr1 and pad4 (Figure 2-9).  This result was confirmed by the indirect ELISA results 

measuring virion accumulation (Figure 2-10).  Together these data reinforced the 

conclusion that at a fully functional SA pathway was the primary factor in the initial 

repression of virion accumulation in R6A infections in Col-0.  The fact that no replicative 

advantage was evident in the npr 1 and pad4 ko lines suggests that R6A is as 

replicatively competent as TCV and that its primary defect is likely its inability to shut 

off the SA signaling pathway that leads to an elevated level of basal resistance (PTI).  

This is also supported by examination of the ethidium bromide stained gels which show 

that both TCV and R6A accumulated to significantly higher levels in the defense 

defective mutant lines compared to wild type lines (compare the TCV gRNA levels noted 

by arrows in Figure 2-9).    

Similar time course experiments carried out in JA and ET defective lines showed 

that virus accumulation of both R6A and TCV followed similar patterns to wt Col-0 
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infections (Figure 2-9).  However, in these infections virus accumulated more slowly 

overall compared to wt Col-0 levels at 6 dpi and 8 dpi, yet TCV still displayed a 

replication advantage over R6A (Figure 2-9).  We observed the level of total virions in 

jar1 follow the same trend as Col-0 at 6 dpi, but the total accumulation at 8 dpi appeared 

to be slightly lower which is likely a product of the randomized sampling.  Taken 

together, these observations reinforce our contention that a functional SA pathway is 

important for defense against viral pathogens like TCV and the role of the JA and ET 

signaling pathway is not essential for defense against these viruses.  

The importance of a functional SA pathway in modulating TCV invasion in 

susceptible Col-0 is emphasized by comparing virus accumulation rates in the various 

mutant plant lines.  This is shown in the ELISA data which verified these differences in 

virus accumulation at 6 dpi in all of the Arabidopsis wt and ko lines (Figure 2-11).  These 

data show that TCV has a significant replication advantage over R6A when inoculated 

onto plants with a functional SA defense system.  R6A accumulation is six fold higher in 

the pad4 mutant versus in Col-0.  This is also evident in the npr1 mutant for TCV and 

R6A accumulation where R6A and TCV are accumulating to equivalent levels as TCV in 

wt Col-0 plants.  This data was also confirmed by virus gel analysis which verified that 

intact virions were accumulating faster in TCV infection compared to R6A infections 

(Figure 2-12) at 6 dpi in Col-0 and the jar1 mutant.  However virion accumulation in the 

npr1 and pad4 ko lines were comparable for wt TCV and its mutant R6A (Figure 2-12). 

  

Defense pathway gene expression differences in TCV and R6A infections in 

susceptible Col-0 and resistant Di-17 plants 
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 Gene expression levels during the different virus infections were also assessed in 

an effort to further understand the nature of the observed difference in virus 

accumulation.  Initially, a microarray experiment was conducted to provide a global 

assessment of what genes and/or gene families might be differentially regulated during 

R6A and TCV infections compared to mock inoculated plants.  We found that several 

hundred genes were differentially expressed in TCV and R6A infections at 24 and 48 hrpi 

in two different microarray studies (Donze, 2006) and unpublished data collected by 

Morris,T.J. and Qu, F.  These studies revealed that 461 transcripts were responsive to 

infections of TCV and R6A at the 24 hr time point with 359 being induced and 102 being 

suppressed.  From that data, we selected a subset of genes linked to pathogen resistance 

and followed their expression levels more carefully over a time course.  I reported some 

of this data previously in the my MS thesis (Donze, 2006). 

PR1, a key indicator of activation of the SA pathway, was found to be 

differentially regulated in the resistant and susceptible ecotypes infected with R6A and 

TCV by northern blots (Figure 2-13).  These results show a differential induction of PR1.  

In the susceptible host Col-0, northern analysis revealed a moderate induction of PR1 in 

wt TCV infections in inoculated leaves (IL) at 2 dpi which also appeared later in systemic 

leaves (SL) at 8 dpi.  In the resistant Di-17, PR1 was strongly induced by TCV in IL in 

contrast to a complete lack of PR1 induction by R6A.  This is consistent with previous 

studies for TCV and reflects the induction of HR and SAR in resistant Di-17.  In contrast, 

R6A, caused no detectable PR1 induction in IL, consistent with its inability to induce an 

HR response in inoculated tissue.  
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 We further evaluated expression of PR1 and additional defense related genes 

using the more sensitive semi-quantitative PCR as described in Material and Methods.  In 

susceptible Col-0, PR1 expression followed a similar pattern of gene expression as 

observed in the northern blots with moderate levels detected in IL at 2 dpi and SL at 8 dpi 

(Figure 2-14).  We also analyzed levels of isochorismate synthetase (ICS) mRNA as a 

more direct indicator of SA synthesis (Wildermuth et al., 2001).  Interestingly, it only 

showed significant accumulation in the SL of R6A infections at 8 dpi.  WRKY70 is 

involved in cross talk between the SA and JA pathway and it also appeared to be induced 

to slightly higher levels in R6A infections in the SL at the later time point.  These results 

are consistent with the conclusion that R6A infections induce an enhanced level SA 

pathway associated defense responses which could well account for the slower 

accumulation of R6A in Col-0.  In resistant Di-17, higher levels of both PR1 and ICS 

expression are evident in the IL of TCV infections and absent in R6A infections.  This 

again confirms that TCV strongly induces the SA pathway defense response compared to 

R6A.  No evident differences in WRKY70 expression were seen throughout the time 

course.   An indicator of the JA pathway activation, Pdf1.2, showed a slight and 

somewhat variable increase in both virus infections in inoculated leaves.  

Overall, we found that the expression patterns of the SA pathway marker genes, 

PR1 and ICS, were consistent and supportive of our explanations for the differences 

observed in virus accumulation and in symptoms between the two infections (Figure 2-

14).  It is important to note here that a likely explanation for some of the experimental 

variability in the gene expression results seen in Di-17 TCV infections likely reflects that 

approximately 25% of samples analyzed that came from systemically infected escapes.  
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Differential effect of TCV and R6A infections in Col-0 on TIP expression. 

In order to assess the effect that virus infections might have on the levels of TIP, 

we used the more sensitive quantitative real-time PCR assays to examine TIP expression 

during the time course.  After 48 hrpi, we were unable to see any significant gene 

expression differences in IL among the infections relative to the control (Figure 2-15a).  

However, at 2 dpi and 4 dpi, we were consistently able to observe between 5-6 fold 

increases in levels of TIP in SL in both virus infections. This contrasted to the 2-3 fold 

increase in TIP levels in mock inoculated plants.  This result suggests that TIP levels, 

although induced somewhat by a wound response, show enhanced induction in response 

to systemic virus infection by both viruses (Figure 2-15a).  R6A infections induced TIP 

expression significantly more than wt TCV infections at 2 dpi and 4 dpi time points in SL 

and then declined at 6 dpi.  The temporal pattern of TIP induction during virus infection 

was consistent in 3 separate experiments.  Most interesting was the 8 dpi time point 

where it is evident that TIP levels declined in TCV infections but again increased in R6A 

infections.  We hypothesize that the ability of TCV CP to bind TIP may allow TCV to 

more effectively control TIP expression and, as a consequence, more effectively regulate 

the PTI response.  

 

R6A infections caused enhanced expression of senescence pathway genes. 

One of the most characteristic features of R6A infections is the enhanced 

symptom severity compared to TCV (Figure 2-4).  The systemic symptoms induced by 

R6A infections also resemble that of a prematurely senescent plant (Buchanan-

Wollaston, 2008).  We also noted in the array study that some genes associated with plant 
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senescence pathways were differentially expressed in TCV versus R6A infections.  To 

further assess this possible link to increased symptom severity, we evaluated SEN1 gene 

expression to see if the senescence pathway was induced more in R6A infections versus 

TCV.  SEN1 regulates signals that link plant defense and senescence responses and hence 

is a useful marker to study in crosstalk between the two responses (Schenk et al., 2005).  

Our results showed that SEN1 gene expression was elevated 8 fold at 2 dpi and 6 fold at 4 

dpi in systemic tissue compared to 2-2.5 fold for TCV infections at the same time points 

(Figure 2-15b).  This temporal pattern of expression, which was consistent in three 

separate experiments, mirrored the pattern of TIP induction.  Although our data does not 

directly link TIP and SEN gene expression differences to the differences observed in 

virus accumulation and symptom severity, it does support the idea that defense induction 

and senescence responses are connected.  Therefore we propose that TCV’s ability to 

bind TIP not only allows it to suppress the SA response and hence evade PTI, but it also 

prevents the senescence pathway from being induced, leading to milder symptoms. 

 

Differential induction of WRKY family transcription factors. 

In addition to WRKY70 (Figure 2-14), we also evaluated WRKY6 gene expression 

in response the different virus infections.  WRKY6 is a transcription factor that belongs to 

a plant specific transcription factor family that has a role as both an activator and 

repressor of defense responses.  It negatively regulates itself and WRKY42, however it is 

also a positive regulator of PR1, NPR1 and SIRK, which are also involved in the 

senescence pathway (Robatzek and Somssich, 2002).  We did observe a slight induction 

of WRKY6 in IL of R6A infections (1.5 fold compared to mock) compared to a 3 fold 
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induction in TCV IL. In TCV SL the levels varied between 1 and 3 fold over mock for 

the duration of the time course. Interestingly, WRKY6 levels were induced 6 fold in R6A 

over mock at 8 dpi (Figure 2-15c).   

Making a connection between viral accumulation, TIP-CP interaction, and basal 

resistance 

 We next wanted to resolve if the higher level of stimulation of the innate defense 

pathway by R6A infection was specifically associated with the inability of R6A CP to 

interact with the TIP transcription factor.  To determine if TIP was playing a direct role in 

basal defense, construction of a knockout line of TIP was attempted in the Col-0 

background, but viable progeny were not recovered.  It was hypothesized that eliminating 

TIP may have resulted in an embryonic lethal plant.  At the time these experiments were 

conducted (2002 by F. Qu, unpublished), there were no TIP knockout lines available in 

the Salk seed source library.  One such TIP ko line was later reported by Jeong et al., 

(2008) and will be discussed later.  To overcome this, an antisense transcript of TIP was 

inserted into the genome under the control of an inducible estradiol promoter.  This 

permitted us to reduce TIP expression levels once the plants reached an adult stage. To 

address the effect of TIP overexpression, Qu created another line with an additional copy 

of TIP inserted into the genome under the control of the constitutive 35S promoter 

(Figure 2-3).  The quantity of TIP transcript synthesized in these lines was verified by 

semi-quantitative PCR (Figure 2-16). Over expression of TIP did not cause any dramatic 

alteration in plant phenotype.  However, we did notice that excess TIP did cause plants to 

flower earlier and likewise antisense TIP plants showed a delay in flower development 

(unpublished data by Basnayake, V.; Figure 2-16).   
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A time course experiment was designed to compare rates of virus accumulation of 

TCV and R6A in these transgenic plants with altered levels of TIP.  Interestingly, there 

was a significant and consistent effect of altered levels of TIP expression on the 

accumulation of the R6A mutant in both the TIP up-regulated and down-regulated 

transgenic plants.  The data presented in Figure 2-17 are representative panels of three 

independent experiments.  In the asTIP lines, in which TIP levels were reduced 

transiently, R6A accumulated to equivalent levels as TCV in inoculated leaves and to 

almost the same levels as TCV at the 4 dpi time point.  This is in contrast to the results in 

Col-0 where R6A is barely detectable in IL and 4 and 6 dpi SL (compare panel 1 and 2 in 

Figure 2-17).  This result demonstrates that absence of TIP appeared to eliminate the 

differential growth rate response between R6A and TCV in Col-0.  This observation 

provides additional evidence that the binding of TCV CP to TIP was indeed responsible 

for the down regulation of basal defense that permitted the more rapid accumulation of  

TCV compared to the R6A mutant in Col-0 susceptible plants. 

The results in the TIP overexpression plants (UpTIP line) showed a similar result 

as the asTIP line when virus accumulation levels were compared in the SL (Figure 2-17, 

panel 3).  It is evident that TCV and R6A accumulated to equivalent levels at the 4 and 6 

dpi time points suggesting that elevated TIP levels also eliminated the advantage that 

TCV displayed over R6A in Col-0 infections.  A likely explanation is that under 

conditions of excess TIP, the ability of TCV CP to sequester a sufficient quantity of TIP 

to compromise the resistance response is negated.  These results from the TIP 

upregulated and downregulated transgenic plants provide additional confirmation of the 

role of TIP in modulating basal defense.  The data supports our hypothesis that TIP is 
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likely a negative regulator of anti-viral defense because its presence in excess would 

simply make the plants more susceptible to both viruses as we observed in the asTIP 

plants.  Curiously, there was an interesting and reproducible difference in accumulation 

of the two viruses in inoculated leaves in the UpTIP line.  R6A accumulation was lower 

than TCV, much as in Col-0 (compare lanes 1 &2 in Fig. 2-17).  Although we currently 

cannot explain this observation, it may reflect the differential induction of genes in IL 

and SL such as TIP and WRKY6 as described previously in Figure 2-15a.  

We also performed some limited analysis of defense gene expression in infections 

of plants with altered levels of TIP expression in an effort to identify if there was an 

altered defense pathway response (Figure 2-18).  The PR1 responses were slightly 

elevated in infections of both R6A and TCV, suggesting a modulation of the SA pathway 

by TIP in response to virus infections in general.  The response of WRK70 also appeared 

to be elevated in TIP-UP lines.  Finally, the response of Pdf1.2, an indicator for the JA 

response, showed greater sensitivity in the elevated TIP expression line, perhaps in 

response to the wounding or the crosstalk/suppression of the SA pathway by the excess 

TIP suppressing the basal defense pathway against viruses. 

 

Making the connection between TIP expression and HRT resistance 

Recently, a knockout line of TIP was described that carried a tDNA insertion in 

the promoter of the gene  (Jeong et al., 2008).  Importantly, Jeong observed that TCV 

accumulated more rapidly in the inoculated leaves of the TIP ko plants (tip), as did the 

unrelated virus Cucumber mosaic virus (CMV), but not the bacterial pathogen 

Pseudomonas syringae pv. tomato (Pst).  They concluded that absence of TIP affected 



 

 

72
basal resistance, a conclusion consistent with our data.  However, they erroneously 

concluded that the absence of TIP had no affect on systemic spread, primarily because 

they did not assay for virus in the systemic leaves until 7 dpi, a time point by which we 

have clearly shown that the PTI induced resistance has broken down.  In this study, they 

also demonstrated that the absence of TIP did not prevent the SA-mediated induction of 

HR by TCV in Arabidopsis lines carrying HRT.  Supportive results were also found by 

another member of the Morris Lab, Sung Hwan Kang, who demonstrated TIP is not 

needed for HR induction in Nicotiana benthamania leaves when co-infiltrated with TCV 

CP and the R-gene HRT in transient assays (data not published).  These results suggested 

that TIP was not required for the ETI response, a conclusion contrary to our observation 

that the R6A mutant, that fails to bind TIP, also fails to induce HR in the resistant Di-17 

line.   

To address this question, we obtained transgenic seeds of the TIP ko plants with 

and without an introgressed HRT gene from the Kachroo lab (previous described in 

Jeong et al., 2008) and conducted a comparative infection time course with  TCV and 

R6A to monitor virus accumulation and gene expression.  TCV systemic accumulation 

occurred in Col-0 (hrt TIP) but not in Di-17 (HRT TIP) with the expected pattern of PR1 

expression and about 25% escapes as described earlier (Fig. 2-19a, panels 1 & 2).  Col-0 

plants with the TIP ko (hrt tip) showed the expected pattern of systemic invasion and a 

complete absence of PR expression in the IL and SL. Surprisingly, the TIP ko Col-0 

plants with HRT introgressed from Di-17 (HRT tip) displayed an unusual phenotype that 

differed from that described by Jeong et al. (2008).  All plants displayed a systemic HR, 

became systemically infected with TCV and showed high levels of PR1 gene expression 
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in the SL.  This result was unexpected because it was not described in the original Jeong 

paper.  We cannot be sure if this is a consequence of the absence of the TIP gene or the 

presence of the RRT gene or some difference in environmental conditions in our 

experiments that affected the spread of the virus.   

We also performed a similar experiment using the mutant R6A and monitored the 

virus transcript accumulation and PR1 transcripts across the same time course.  We again 

saw that R6A was completely unaffected by the presence or absence of HRT and the lack 

of TIP did not affect R6A virus accumulation in wt Col-0 compared to the TIP ko line 

(Figure 2-19b).  This data corroborates our previous findings shown in Figure 2-16.  It 

appears that the lack of TIP in a susceptible plant has little effect on the amount of virus 

accumulating during a PTI event.  However, although TIP is not needed for HR, it does 

affect PTI indirectly because it affects the rate at which the virus moves systemically.  So 

when TIP is absent, TCV moves more quickly and in the presence of HRT causes the 

elevated PR1 response and the resulting systemic HR (Figure 2-19a).  When TIP is 

absent, there is no reduction in the TCV induced PTI response, so TCV moves more 

slowly which permits more time of PR1 elevation and HR development. 

 

Discussion 

In this study, we analyzed the potential mechanisms associated with the 

differential ability of TCV and the mutant R6A to accumulate in susceptible and resistant 

ecotypes of Arabidopsis thaliana.  In a previous study, Ren et al. (2000) described a 

series of single aa substitution mutants of TCV to access the role of TIP in the HR 

response.  The ability of the R domain of TCV CP to bind to TIP, a NAC transcription 
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factor, was shown to correlate with the observed variability in disease symptom severity 

in the susceptible Col-0 and the ability to confer resistance in the resistant Di-17.  It was 

hypothesized that the difference in disease symptoms and resistance breaking was a 

consequence of the inability of the mutant viruses to bind TIP.  One of the mutants, R6A, 

was further evaluated in this chapter to help elucidate the role TCV CP-TIP binding has 

on the PTI response.  Interestingly, although R6A caused an increase in disease 

symptoms, we showed it also accumulated more slowly in inoculated and systemic tissue 

of susceptible Col-0.  The reduced rate of R6A virus accumulation was transient, being 

most evident early in the infection and disappearing at about 8 dpi.  The recovery of the 

virus accumulation by the mutant was attributed to both wt TCV and R6A eliciting a 

similar level of silencing suppressor activity encoded in their CP (Choi et al., 2004).  

Therefore, we concluded that TIP-CP interaction was associated with an earlier PTI event 

such as the induction of SAR or the activation of the senescence pathway. 

We were able to connect the observed phenotype of slower accumulation of R6A 

directly with the innate defense response of the host by identifying two knock out lines 

that had dysfunctional SA pathways.  In pad4 and npr1 mutants, R6A accumulation 

recovered and/or exceeded wt TCV virus accumulation levels.  This provided 

corroboration that not only was R6A as robust as wild type TCV, but also that the R6A 

deficiency was due to its inability to turn off or elude the SA defense pathway and 

subsequent SAR defense response that is characteristic of wt TCV infections.  

These experiments support our contention that TCV has evolved a mechanism to 

specifically down regulate the SA defense pathway thus giving it a distinct advantage 

over non-TIP binding mutants.  They support our hypothesis that TCV actively down 
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regulates this basal defense via the SA pathway through its interaction with TIP, and that 

R6A is unable to do so.  This also raises the unexpected possibility that the increased 

symptom severity associated with R6A may be linked with over-activation of the SA 

defense response.  This phenomenon would be analogous to an inflammation response in 

animal systems due to the over-stimulation of the innate immune response (Ausubel, 

2005; Thorsten et al., 2004).  Together these data also suggest that the SA signaling in 

association with the PTI response is important in partially repressing viral invasion. 

The experiments in which we assessed accumulation of TCV and R6A in plants 

with reduced TIP (asTIP) and elevated TIP (UpTIP) provided additional evidence that 

linked TIP-CP interaction more directly with the differential accumulation.  These 

experiments uncovered that the down regulation of TIP may not play as much of a role in 

the defense against TCV infection as previously hypothesized by Ren et al., 2000.  This 

may be a consequence of genetic redundancy within the NAC transcription factor family 

which has over 100 members.  Therefore eliminating one gene, TIP, might not 

necessarily abolish the resistance modulating function due to compensation by other 

related gene production (Briggs et al., 2006; Pickett and Meeks-Wagner, 1995).   

These experiments showed constitutive overexpression of TIP did affect the virus 

accumulation (Figure 2-17).  When we infected the over expressing TIP plants with TCV 

or R6A, we observed both viruses were able to accumulate to equivalent levels similar to 

what we observed in the ko lines with dysfunctional SA pathways (compare Figure 2-9 

and Figure 2-17).  This suggested that the increased fitness of TCV over the mutant R6A 

was less dependent on the complete absence of TIP in the cell, but more affected by the 

total amount of TIP present during an infection.  These data suggested a working model 
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for TCV infection in the susceptible host (Figure 2-20).  In this model, we propose that 

TCV CP binding to TIP would influence defense signaling in the cell after an infection.  

We further speculate that TIP is a negative regulator of defense signaling based on the 

previous array data.  In addition, because TIP has a membrane localization signal along 

with a nuclear localization signal (Kang, unpublished data), we suggest that it is likely 

localized outside the nucleus in a cellular membrane from which it undergoes controlled 

released by cleavage when the plant is not infected to maintain negative regulation of the 

innate defense responses.  Our model further proposes that TCV CP interaction with TIP 

increases its nuclear localization and subsequently down-regulates defense signaling to 

enhance TCV invasion.  When the R6A mutant lost this ability to enhance TIP’s nuclear 

localization, defense signaling increased leading to a more robust PTI response (depicted 

in Figure 2-20). 

Jeong et al. (2008) described a tip knockout line in Col-0 background that also 

was carrying the R gene, HRT.  This transgenic line was found to be resistant to TCV 

infection.  Therefore, they concluded that TIP did not have a direct role in the R-gene 

resistance to TCV infection  (Jeong et al., 2008).  This conclusion did not rule out 

possible genetic redundancy however, and seed lines that were obtained from the 

Kachroo lab still showed some escape lines.  Therefore our results concerning TCV 

accumulation in the antisense TIP line in which we still saw that wt TCV had an 

accumulation advantage over R6A is still a valid point.  Furthermore our results show 

that virus accumulation differences are still evident when less TIP is expressed.  

It is well known that plants have the capacity to recognize pathogens and in many 

cases there is functional redundancy within multigene families that often complicates 
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genetic attempts to define the role of individual genes (Bouché and Bouchez, 2001).  One 

example of this was found with a wrky6 knockout mutation, which resulted in no obvious 

mutant phenotype yet overexpression of WRKY6 caused a stunted phenotype and a 

significant increase in SA pathway associated genes like PR1 and NPR1 (Robatzek and 

Somssich, 2002).  It is possible that we are observing a similar example.  Excessive TIP 

levels appear to impact the plant’s defense system to a similar extent as seen in the SA 

pathway defective mutant knockout lines of pad4 and npr1 (compare Figures 2-9 and 2-

17).  Here we observe a defective defense signaling system that allows for more virus to 

accumulate at a faster rate than what is observed in wt Col-0.  Yet, reduced amounts of 

the TIP transcription factor appears to have little affect on virus accumulation.  Together 

these data support our conclusion that TIP is a negative regulator of PTI.  If excess TIP 

was causing a reduction in PTI, then both TCV and its non-TIP binding mutant would 

accumulate to similar levels as observed in the npr1 and pad4 knockout line.  

Furthermore if the reduction of TIP presence in the cell has little to no affect on PTI then 

we would expect to see both viruses accumulating in a similar manner as we see in wt 

Col-0.  The data presented here demonstrates the importance of the TCV CP binding TIP 

to suppress the PTI response and how parts of the SA signaling pathway are key 

components in TCV defense.  This supports the hypothesis that TIP is affecting the level 

of the basal response (PTI).   

Also our results provide some evidence for the fact that TIP’s role in an ETI 

response leading to HR may not be the key factor.  Although our data rules out a direct 

role, TIP appears to be important in fine tuning the defense response (discussed more in 

Chapter 3).  Figure 2-19 suggests that lack of TIP in the presence of the HRT during TCV 
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infections, can lead to a systemic HR like response.  It is also important to note that R6A 

is unaffected by the presence or absence of either HRT or TIP.  However, the symptom 

severity of R6A is elevated in the tip ko plants regardless of the presence of HRT.  This 

supports previous gene expression data that TIP is having an effect primarily on the 

senescence pathway.  This may also be shedding light on the balance between the PTI 

and ETI response.  Perhaps the greater invasiveness in the absence of TIP permits TCV to 

invade systemically ahead of the HR response.  This also supports data from Kang 

(personal communication) that the mutation not only effects TIP binding, but some other 

property of TCV, which we now know is nuclear localization (Kang, unpublished). 

In summary, our data demonstrates that TIP expression is important in regulating 

the PTI response and impacts the rate of TCV accumulation in A. thaliana.  We have 

shown that the level of TIP expression affects proper signaling of the SA pathway and 

other defense responses.  Therefore we conclude that TIP is a key player in the PTI 

defense response against TCV.  Further research needs to be done to look at what other 

proteins may have similar or redundant functions to TIP that are able to mask the effects 

of its absence in the ko lines (Jeong et al., 2008).  This idea will be explored further in the 

Chapter 3 with emphasis on the resistant Di-17 line and ETI response. 
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Figure 2-1.  Diagram of inoculated and systemic leaves. The plant shown above 

depicts an example of which three leaves were inoculated through rub inoculation (red 

arrows) and the areas of the uninoculated leaves that were selected for analysis of 

systemically infected tissue (blue arrows).  To be consistent on selection of systemic 

tissue, the newest leaf growth greater than one centimeter in width was selected for 

analysis in all experiments.  The plant shown above is A. thaliana ecotype Col-0.  The 

picture is a representative of typical symptoms of Col-0 infected with TCV at 10dpi 

grown in a growth chamber at 22°C with 12 hr day length. 

 

Figure 2-2. Graph of the standard curve for virus concentration.  A standard curve 

was prepared as a method of plotting virus concentration relative to absorbance.  The data 

from the graph was used to determine the concentration of viruses in the indirect ELISA 

experiments preformed in this chapter.  Starting with a TCV stock concentration of 

.1mg/ml or 100,000 ng/ml, a series of dilutions were made to accurately predict the 

standard curve line.  The indirect ELISA plate was allowed to develop until the OD 

reading of the non-virus mock wells were 0.200.  This value was subtracted from each 

value to account for background and the data points were used to make a standard 

equation. 

 

Figure 2-3. Diagram of plasmids constructed for production of transgenic A. 

thaliana. Two transgenic lines of A. thaliana ecotype Col-0 were constructed to reduce 

or enhance the expression of the TIP gene by Dr. Feng Qu.  The above plasmids were 

transformed into Col-0 by Agrobacterium infiltration (Bechtold, Ellis, and Pelletier, 
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1993) (described further in materials and methods). Shown here are the two constructs of 

the inserts used to transform Col-0 to alter levels of TIP expression.  The asTIP construct 

has reduces the amount of TIP transcript available by taking advantage of plant encoded 

silencing mechanisms and the overexpressed TIP construct is constitutively expressed 

under the control of the CaMV 35S promoter (E35S). 

 

Figure 2-4. Disease symptoms seen in Arabidopsis thaliana infected with TCV.  

Shown is the typical response to the susceptible Col-0 (top) and resistant Di-17 (bottom) 

plants infected with either wild-type TCV or mutant R6A 14 days after inoculation (dpi).   

 

Figure 2-5. Comparison of temporal accumulation of TCV and R6A viral 

transcripts.  A total of 10ng of virus transcript of wt TCV (T) or mutant R6A (R) were 

inoculated onto designated leaves.  Inoculated leaves (IL) were collected at 48 hr post 

inoculation (hrpi) and systemic leaves (SL) were collected at 2, 4, 6, and 8 day post 

inoculation (dpi) as indicated.  Viral RNA levels were monitored by northern blot using a 

probe for CP sequence (described in Materials and Methods section).  Arrows identify 

location of viral genome (vRNA) and subgenomic RNAs (sgRNA).  Panel below the blot 

shows ethidium bromide (EtBr) stained gel showing rRNA bands used as a loading 

control.  This experiment was repeated three times with similar results. 

 

Figure 2-6. Evaluation of total accumulation of TCV and R6A virions over a time 

course of infection. Accumulation of the total TCV and R6A virus particles were 

evaluated in both inoculated (IL) and systemic leaves (SL) of A. thaliana ecotype Col-0 



 

 

89
over the indicated time course.  A total of 10ng of virus transcript of wt TCV (T) or 

mutant R6A (R) were inoculated onto designated leaves.  Virus titers were determined by 

ELISA as described in Materials and Methods section.  Panel shows the average 

absorbance levels of three independent experiments as an indication of the amount of 

virion present in each sample.  Error bars represent standard deviation from the 

absorbance levels of the three experiments. (*) denotes significant difference between 

R6A and TCV at a specific time.  The OD reading of mock was 0.200 was subtracted 

from each value to account for background.  

 

Figure 2-7.  Viral RNA and virus particle accumulation in inoculated and systemic 

leaves of resistant Di-17 inoculated with either TCV or R6A. (a) Viral RNA 

accumulation evaluated by northern blot.  Plants were inoculated following the same 

conditions as described in Figure 2-5. (b) Virus accumulation was evaluated by ELISA 

for inoculated leaves (IL) and systemic leaves (SL). Plants were inoculated under the 

same conditions as described in Figure 2-6. Results are an average of 3 independent 

experiments.  Positive virus detection of TCV in both (a) and (b) is a consequence of the 

random sampling and likelihood of detection one in four plants that could have been 

systemically infected by TCV in Di-17.  Error bars indicate standard deviation from the 

average absorbance levels. * denotes significant difference between R6A and TCV at a 

specific time point. 

 

Figure 2-8. Verification of knockout lines of Arabidopsis thaliana. PCR amplification 

using primers specific for the genes indicated on left was used to verify absence of 
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transcript in the mutant line indicated on top of the figure.  The number of PCR cycles for 

each gene is shown on the right.  Primer sequences are shown in Table 2-1. 

 

Figure 2-9. Comparison of viral RNA accumulation of TCV and R6A in defense 

gene knockout lines.   Designated knockout lines of Arabidopsis thaliana ecotype Col-0 

were inoculated with R6A (R) or TCV (T) as described in Figure 2-5.  Samples were 

taken throughout the time course and viral RNA accumulation was monitored by northern 

blot.  The probe used was specific for the coat protein transcript whose sequence in 

present in the viral genome and both sub-genomic RNAs.  Ethidium bromide stained 

rRNAs used for loading control.  TCV genome can also be seen on EtBr stained gel at 

later time points in systemic tissue.  Note the much elevated levels of TCV genomic RNA 

that can be visually detected in the npr1 and pad4 ko lines compared to the wt Col-0, 

ein2, and jar1. This experiment was repeated 3 times with similar results. 

 

Figure 2-10. Evaluation of total TCV and R6A mutant virion accumulation across a 

time course in defense signaling defective plants.  Plants were inoculated and 

processed under the same conditions as described in Figure 2-6.  The above graphs are 

absorbance levels obtained via indirect ELISA, used to evaluate the virus titer in the SA 

defective mutants.  The virus titers in the SA defective mutants pad4 and npr1 are shown 

above in A and B respectively.  In panel C, we see the absorbance levels in JA defective 

mutant jar1, which still has a functional SA/SAR defense response, across the 

predetermined time course.  Results are an average of 3 independent experiments.  Error 

bars indicate standard deviation from the average absorbance levels. 
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Figure 2-11. Comparison of total TCV and R6A mutant virion accumulation at 6 

dpi in systemic tissue in wild-type and defense signaling defective A. thaliana.  Plants 

were inoculated under the same conditions as described in Figure 2-6.  Absorbance levels 

are used to determine virus titers in crude extract.  Results shown are an average of 3 

independent experiments.  Error bars indicate standard deviation from the average 

absorbance levels. (*) denotes significant difference between R6A and TCV in a specific 

plant type. 

 

Figure 2-12.  Virus gel of TCV and R6A at 6 dpi in wt Col-0 and its mutants.  Virus 

gels experiments, described in materials and methods, were conducted as another way to 

classify virus accumulation of TCV and R6A.  Using wt Col-0 and the mutants npr1, 

pad4 and jar1, we evaluated the amount of virions that accumulated at 6 dpi.  We stained 

gels with ethidium bromide (EtBr) to stain nucleic acids and with coomassie blue (CB) to 

stain for proteins.  The nucleic acid band and the protein band are located in the same 

spot on the gel when images were analyzed, which helps draw the conclusions that intact 

viruses were successfully recovered.  The above panels are representative of two 

independent experiments. 

 

Figure 2-13.  PR1 expression levels in TCV and R6A infections.  Resistant (Di-17) 

and susceptible (Col-0) were infected with TCV or R6A and maintained in a growth 

chamber throughout the duration of the infection.  Approximately six randomly selected 

leaves from either inoculated leaves (IL) or systemic leaves (SL) were collected at 2 days 

post inoculation (dpi) or 2, 4, 6, and 8 dpi respectively.  RNA levels were monitored by 
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northern blot using a PR1 probe (described in Materials and Methods).  EtBr stained gels 

are shown for loading controls.  These results show a differential induction of PR1 a key 

indicator of an activated SA defense pathway.   

 

Figure 2-14. Expression levels of defense related genes between TCV and R6A 

infections.  Multiple genes were selected and evaluated using semi-quantitative RT-PCR.  

The genes that were chosen have previously been linked to defense related pathways in 

A. thaliana:  PR1 and ICS are SA pathway genes and Pdf1.2 is a key indicator of JA 

pathway induction.  PCR cycle numbers are shown to the right of each set of panels 

divided by the two ecotypes of Arabidopsis used in this study, Col-0 (susceptible) and 

Di-17 (resistant). ACT2 expression was used as an endogenous control.  

 

Figure 2-15. Evaluation of relative gene expression levels using Real-time PCR. A. 

thaliana ecotype Col-0 was inoculated with either TCV, R6A transcripts as described in 

Figure 2-5.  Tissue samples were collected and RNA extracted for each time point.  a) 

Expression levels genes were analyzed using One-step Real-time PCR as described in 

Materials and Methods. The relative fold change of three genes, (a) TIP (b) SEN1 and (c) 

WRKY6 are plotted. Fold change is calculated relative to the mock infection of each gene 

at 48hrpi. ACT2 was used as the endogenous control. This graph is the average of results 

obtained for 2 independent experiments. 

 

Figure 2-16. Phenotypes of altered TIP lines.  (a) Semi-quantitative PCR evaluation of 

TIP transcript expression in wild type and TIP altered transgenic lines of Col-0.  The 
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antisense TIP (asTIP) line has a reduced level of TIP transcripts compared to wild type 

Col-0.  Constitutively upregulated TIP (UpTIP) has an increased level of TIP transcript 

compare to Col-0 and asTIP.  ACT2 was used as the endogenous control.  PCR cycle 

number used is shown on the right side of the figure.  (b) Phenotype of mature 6 week old 

transgenic A. thaliana with varying levels of TIP expression. 

 

Figure 2-17.  Differences in viral RNA accumulation in TIP transgenic lines. 

Arabidopsis thaliana Col-0 wt and transgenic lines were infected with either TCV (T) or 

R6A (R).  Viral RNA accumulation was monitored over a time course by northern blot 

analysis of both inoculated (IL) and systemic leaves (SL) at times indicated above each 

panel and described in Figure 2-5.  The probe used was specific for the coat protein 

transcript whose sequence is present in the viral genome and both sub-genomic RNAs. 

Arrows indicate viral RNA genome (vRNA) and subgenomic RNA (sgRNA).  These are 

representative panels of three experiment which yielded consistent results. 

 

Figure 2-18.  Evaluation of gene expression between wt Col-0 and transgenic lines of 

Col-0 with altered levels of TIP expression.  A. thaliana ecotype Col-0 wt and 

transgenic lines were infected with either TCV (T), R6A (R), or Mock (M).  mRNA 

levels of several genes were evaluated at four days post infection in systemic tissue since 

virus accumulation differences were most obvious at that time.  The above panel is 

represents one completed experiment.  There were no obvious trends in any genes 

examined that helped explain the difference in virus accumulation at this time. 
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Figure 2-19. Wt TCV and R6A accumulation and PR1 expression in HRT and TIP 

ko lines.  Col-0 and Di-17 plants along with transgenic Col-0 (tip ko), which has a tDNA 

insertion in the TIP promoter, and HRT tip, which was a cross between the tip ko and Di-

17 (as described in Jeong et al., 2008), were inoculated with (a) TCV and (b) R6A. 

Samples were collected and analyzed as described in Figure 2-5.  PR1 transcripts were 

evaluated using northern blots as described in Figure 2-13.  The lower panel shows plants 

at 8 dpi.    

 

Figure 2-20. Proposed model of the role of TIP-TCV CP interaction during TCV 

infection in the susceptible host Col-0 during a PTI event.  We propose that TCV CP 

(or some other as yet undefined PAMP) is recognized by an as yet uncharacterized toll-

like receptor (an RLK that could be in the plasma membrane or an internal endosomal 

membrane) that provokes SA defense signaling.  This would then lead to a MAPK 

cascade and enhanced basal defense.  Infection by virus with wild type CP results in an 

interaction with the negative regulator TIP that is tethered in an endosomal membrane in 

the cytoplasm, enhancing the rate of its release for migration into the nucleus leading to 

the suppression of basal defense genes.  Infection by the TCV mutant R6A is unable to 

repress the basal defense response because it can’t interact with TIP and enhance its 

release.  This difference in basal defense regulation in the susceptible host gives a 

selective advantage to TCV early in infection. 
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Figure 2-1. 
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Figure 2-2. 

Standard curve of virus concentration using Indirect ELISA

y = 0.1219Ln(x) + 0.173
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Figure 2-3. 
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Figure 2-4. 
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Figure 2-5. 
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Figure 2-6. 
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Figure 2-7. 
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Figure 2-8. 
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Figure 2-9. 
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Figure 2-10. 
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Figure 2-11. 
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Figure 2-12. 
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Figure 2-13. 
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Figure 2-14. 
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Figure 2-15. 
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Figure 2-16. 
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Figure 2-17. 
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Figure 2-18. 
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Figure 2-19. 
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Figure 2-20. 
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Table 2-1. Sequences of probes used for semi-quantitative PCR  

Gene Sequence 

ACT2 Fwd: 5'-GTCTGAGATTTCTCCTGCCG-3' 
 Rev: 5'-CACGGTTAGCCTTTGGGTTA-3' 
EIN2 Fwd: 5’-CTTGGCTTCATCGTGCTACA 
 Rev: 5’-CTTAAGCTGCGGAATGAAGG 
JAR1  Fwd: 5'-ACTAGCGCAGGATGTTGGAG-3' 
 Rev: 5'-AGCGTTTCCATTGAGACCAC-3' 
NPR1  Fwd: TGCATCAGAAGCAACTTTGG 
 Rev: GAGGCAAGAGTCTCACCGAC  
PAD4   Fwd: 5'-TTGTCGATTCGAGACGAGTG-3' 
 Rev: 5'-TTTTTAAATCACTTGGGCGG-3' 
TIP  Fwd: 5'-CCGGCTCAAGATCAACGGTCACG-3' 
 Rev: 5'- CTGCTCAGCACAACCCGGGG -3' 
PR1 Fwd: 5’- AACCAGGCACGAGGAGCGGT 
 Rev: 5’-GTTCACGGCGGAGACGCCAG 
ICS Fwd: 5’-TTCCTCCGGCGTCGTTCGGT 
 Rev: 5’-CCCAAGCAATAGCTGCAGCCAAC 
PDF1.2 Fwd: 5’- TGCTTTCGACGCACCGGCAA  
 Rev: 5’- CCGCAAACCCCTGACCATGTCC 
WRKY70 Fwd: 5’-TGAACCAACTCGTTGAAGGCCATGA 
 Rev: 5’-CAACGGCGGCGAGGGATGAG 
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Table 2-2. Probes for Northern Analysis 

TCV-CP Rev: 5'-CAGGACCGAGAAGTCAGAGG-3' 
 Rev: 5'-GGCCCACCCGACACCACTGG-3' 
 Rev: 5'-CTTGTCTTGACCGAGTTGGT-3' 
PR1 Rev: 5’-GTTCACGGCGGAGACGCCAG 
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Table 2-3. Genes used for Time Course qRT-PCR 

 Gene Name/Description 
Reference 
Sequence 

Transcript 
ID Assay ID 

1 TIP NM_122367.3 AT5G24590 At02185798_s1 
2 SEN1 NM_119743.3 AT4G35770 At02255940_g1 
3 WRKY6 NM_104910.2 AT1G62300 At02216109_gH 
4 ACT2 NM_112764 AT3G18780 At02335270_gH 
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CHAPTER 3 

Turnip crinkle virus coat protein mutants that fail to bind the NAC transcription 

factor TIP display altered hypersensitive response induction and systemic infection. 
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Abstract 

 The coat protein (CP) of turnip crinkle virus (TCV) has previously been shown to 

interact with a member of the NAC family of transcription factors called TCV-interacting 

protein (TIP).  We have shown that this interaction is important in modulating innate 

immune defense (PTI) in susceptible Arabidopsis thaliana ecotype Columbia-0.  Several 

TCV CP mutant viruses were made with a single amino acid replacement across the N-

terminal region shown previously to interact with TIP to evaluate the importance of this 

interaction.  All mutants that failed to bind TIP also broke resistance in the resistant A. 

thaliana ecotype Dijon-17 and invaded systemically.  We hypothesized that a positive 

interaction of TCV CP with TIP was likely required for induction of the resistance 

response that prevented systemic invasion by wild type TCV in Di-17.  To assess this we 

monitored viral RNA accumulation by northern blot analysis and expression levels of 

select host defense-related genes were analyzed using semi-quantitative and real-time 

PCR in wild type TCV and CP mutant infections.  Expression of defense genes varied 

greatly in wild type and mutant virus infections.  This was particularly apparent for one 

of the mutant viruses (R8A) which broke resistance and induced a systemic 

hypersensitive-like response in Di-17.  Another mutant (G14A) which restored the ability 

for CP to bind TIP induced a micro-hypersensitive response in inoculated leaves and 

caused complete resistance to systemic invasion.  These data support the conclusion that 

the R-domain region of the CP and its ability to bind TIP is important in modulating the 

effector triggered immunity responses to virus infection. 
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Introduction 

 Plants have evolved elaborate regulatory networks of genes to defend themselves 

against potential pathogens which are involved in complex signaling based on the type of 

infection.  The defense mechanisms directed against most microbial pathogens involve 

two branches of innate immunity which constitute the plant immune system (Chisholm et 

al., 2006; Jones and Dangl, 2006; Liu and Coaker, 2008).  The first branch involves the 

use of pattern recognition receptors (PRRs) that recognize pathogen associated molecular 

patterns (PAMPs) and initiate a signaling cascade leading to PAMP-triggered immunity 

(PTI).  This typically results in a basal defense response that may or may not effectively 

attenuate pathogen invasion.  PTI is triggered by virulent pathogens on susceptible hosts. 

Successful pathogens have evolved virulence factors (or effectors) that can overcome 

basal resistance and in turn, plants have evolved a second branch, referred to as effector 

triggered immunity (ETI; (Jones and Dangl, 2006).  ETI involves race specific resistance 

mediated by distinct nucleotide binding-leucine rich repeat (NB-LRR) proteins encoded 

by resistance genes (R genes).  This involves recognition of a pathogen effector, or its 

activity, and typically results in a hypersensitive response (HR) at the site of infection, 

followed by the activation of systemic acquired resistance (SAR). 

 Turnip crinkle virus (TCV) is a single stranded positive sense RNA virus that 

induces an HR in Arabidopsis thaliana ecotype Dijon-17 (Di-17).  The resistance (R) 

gene HRT is responsible for HR induction in Di-17 after TCV infection due to the 

indirect recognition of TCV coat protein (Dempsey et al., 1997).  Previous work (Ren, 

Qu, and Morris, 2000) identified a NAC transcription factor (TIP; TCV Interacting 

Protein) that was believed to play a role in defense against TCV infection.  NAC genes 
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are a plant specific group of transcription factors that play important roles in growth, 

development, and defense against both abiotic and biotic stresses (Olsen et al., 2005; 

Ooka et al., 2003).  TIP was identified using a yeast-two hybrid screen where TCV CP 

was used as bait.  It was further discovered that disruption of the N-terminal region of the 

R-domain of the CP and consequently TIP’s ability to bind TCV CP resulted in altered 

phenotypes and resistance to TCV in Di-17.  More recently it was shown that TIP is not 

required for HR induction but was important  in modulating the basal defense  (Jeong et 

al., 2008).  My results reported in Chapter 2 confirmed the role of TIP in PTI defense. 

 To investigate this phenomenon further, we monitored defense gene expression in 

wt TCV infections compared to several additional TCV CP mutants with single amino 

acid substitutions in the TIP binding region of the CP (in addition to R6A and described 

previously in Figure 1-5).  These results supported our hypothesis that the N-terminal 

region on the R-domain of the CP was playing an active role in HR induction that was 

somehow associated with its interaction with TIP. 

 

Materials and Methods 

 

Plant growth conditions 

Plant lines of wt A. thaliana ecotypes Columbia-0 (Col-0) and Di-17 were grown 

in growth chambers at 22°C with 12 hr day cycles in Metro Mix 360 (Sun Gro; British 

Colombia, Canada).  Transgenic Col-0 lines of tip ko (tip) and HRT tip (HRT tip) were 

obtained from the Kachroo lab and described in Jeong et al., 2008.  These transgenic 

lines were grown under the same conditions as the wild type lines. 
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Plant inoculations, tissue collection, and RNA isolation 

 Plants were consistently inoculated between the ages 22 to 24 days old.  Three 

leaves were inoculated per plant as described in Chapter 2 (Figure 2-1).  The virus 

inocula consisted of a buffer solution containing 50 mM Na2HPO4 [pH 7.0] + 1% Celite 

545 and purified virus transcript at a concentration of 1 ng/µl with a total of 10 ng of 

virus transcript or 10µl of the virus transcript-buffer solution applied to each leaf. The 

virus inoculum was applied to each leaf by rub inoculation, allowed to stay on the leaf for 

five minutes, and then washed off with nanopure water.  Five to six leaves (apx 0.3g) 

from different plants treated with the same inoculum buffer were collected at each time 

point and flash frozen in liquid nitrogen.  RNA was extracted as previously described 

(Chomczynski and Sacchi, 1987) and RNA samples were subsequently purified using 

RNeasy columns (Qiagen; Valencia, CA, USA). 

 

Virus detection and RT-PCR 

Virus RNA transcript detection was conducted by analysis of 2 µg of total RNA 

isolated from infected plant tissue.  The RNA was separated using electrophoresis in a 

1.2% agarose/1.8% formaldehyde gel run at 100 mV/cm for 90 minutes at room 

temperature.  Separated RNAs were then transferred to a nylon membrane (Zeta probe 

blotting membranes; Bio-Rad, Hercules, CA, USA) at 4°C at 37mV/cm.  Hybridization 

was carried out at 40°C using ULTRAHyb-Oligo (Ambion; Foster City, CA, USA) 

solution according to manufacturer’s directions (Ambion).  CP and PR1 transcripts were 

detected with the addition of  32P-γ-ATP end-labeled probes (Table 3-2) to the 



 

 

123
hybridization buffer after one hour of pre-hybridization of the membranes with only the 

ULTRAHyb-Oligo solution.  Probes were generated using T4 polynucleotide kinase 

according to manufacturer’s directions (New England Biolabs; Ipswich, MA, USA).  

After overnight hybridization (minimum of 12 hours), the membrane was washed three 

times, 20 min each, with 2xSSC, 0.5% SDS at 40°C.   

Reverse transcription PCR (RT-PCR) was conducted to evaluate gene expression.  

DNase treated RNA samples were used to synthesize first strand cDNA by using 

SuperScript III reverse transcriptase (Invitrogen; Carlsbad, CA, USA) and random 

primers according to the manufacturer’s protocol.  The cDNA was then subjected to PCR 

amplification for semi-quantitative analysis with EconoTaq Plus Green 2X Master Mix 

according to the manufacturer’s protocol (Lucigen; Middleton, WI, USA).  The following 

thermal cycling conditions were used: initial denaturation 95°C  for 2 minutes, then 

cycles of denaturation at 95°C for 30 sec, primer annealing at 55°C for 30 sec, and 

followed by an extension phase at 72°C for 1 min.  The numbers of cycles was adjusted 

based on the transcript abundance and expression at a given time point and/or sample.  

The procedure was terminated with a final extension phase of 72°C for 5 minutes and 

then being held at 4°C.  The PCR product was then subjected to electrophoresis and gene 

expression was analyzed based on band intensity of the transcripts relative to the control 

gene, Actin2 (ACT2).  The primers (Invitrogen) of the genes used for analysis for semi-

quantitative PCR are listed in Table 3-1. 

 

DAB staining 
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HR was visualized by monitoring H2O2 in situ by staining Arabidopsis leaves 

with 3,3-diaminobenzidine (DAB) that had been inoculated with TCV and the  mutant 

viruses.  Leaves were collected 48 hr after rub inoculation with 10 µl of virus at a 

concentration of 1ng/µl.  Three to four leaves per virus treatment were vacuum-infiltrated 

with the DAB solution for 16 minutes.  Leaves then were placed in a plastic box under 

high humidity until brown precipitate was observed.  The DAB staining was then fixed 

with 70% ethanol (warmed).  HR lesions were visualized by light microscopy. 

 

Real time PCR 

Real-time PCR was also used to evaluate gene expression levels. The qRT-PCR 

experiments were performed by using the ABI StepOneTM Plus real time PCR machine 

(Applied Biosystems; Foster City, CA), TaqMan® One-Step RT-PCR master mix, and the 

appropriate predesigned assay.  A PCR master mix was prepared according to the 

manufacture’s instructions along with 10μl TaqMan® RT-PCR Mix (2X; Applied 

Biosystems), 0.5μl TaqMan® RT enzyme mix (40X:Applied Biosystems), and enough 

RNase free water for a final volume of 50μl per well.  The reaction plate was prepared by 

adding the PCR master mix, 1μl TaqMan® labeled probe (Applied Biosystems), 8.5μl 

total RNA at the concentration of 4.71ng/ μl to each well (total RNA per well was 

approximately 40ng).  The final volume of each well was 20μl.  Three wells were also 

assembled for each probe with 8.5μl water instead of RNA to rule out possible 

contamination.  Thermal cycling conditions were 48°C for 30 min and 95°C for 10 min, 

followed by 95°C for 15 sec and 60°C for 1 min for 40 cycles.  Relative expression was 

quantified by using the comparative Ct method with ACT2 as the endogenous controls.  
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The qRT-PCR procedure was performed in triplicate. See table 3-3 for a list of evaluated 

genes. 

 

Results 

Single amino acid substitution mutations in the TIP binding region of the TCV CP 

R-domain caused major differences in symptom severity and virus accumulation in 

Di-17.  To further assess the effect of mutations in the R-domain of the TCV CP on the 

resistance response in Di-17, we selected a set of mutant viruses that showed significant 

differences in symptom severity and systemic invasiveness for a more in depth 

comparative analysis of gene expression differences.  More specifically, we compared 

gene expression differences between wtTCV and the R8A CP mutant virus that failed to 

bind TIP and which induced a systemic HR in Di-17. We also analyzed R6A in addition 

to another non-TIP binding mutant (D13A) that was similar to R6A in that it systemically 

invaded Di-17 without inducing systemic HR.  The fifth mutant analyzed,G14A, was 

selected because the mutation did not affect TIP binding ability (similar to wt TCV) and 

G14A infections in Di-17 elicited a micro HR on inoculated leaves and displayed 100% 

resistance to systematic spread of the virus.  

 The replication competency of each of the mutants was initially assessed by 

inoculation of virus transcripts onto the susceptible host, Col-0.  Each of the mutants 

caused robust infection in the Col-0 as expected (Fig 3-1a).  As described in detail in 

Chapter 2 for R6A, the other non-TIP binding mutants (R8A and D13A) also displayed 

more severe symptoms after prolonged infections.  This is not as evident in the 10 dpi 

plants shown in Fig. 3-1a.  We also examined accumulation levels of virus transcript over 
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a time course by northern blot analysis and each of the mutants accumulated to equivalent 

levels by 8 dpi (Fig. 3-2a) as expected.  We did not, however, assess each of the non-TIP 

mutants in sufficient detail to confirm if their effect on the PTI response was similar to 

that described for R6A.     

 The primary purpose of this study was to explore the basis for the very marked 

symptom differences of the mutants in the resistant line Di-17.  We therefore also 

infected Di-17 plants with virus transcripts and monitored disease progression (Fig. 3-1b 

and c) and virus accumulation (Fig. 3-2b) over a time course.  Wild type TCV infection 

developed visible HR lesions on inoculated leaves at 4-6dpi and approximately 70% of 

plants showed resistance to systemic spread of the virus, a result consistent with previous 

literature (Dempsey, Wobbe, and Klessig, 1993).  The detectable TCV gRNA in Figure 

3-2b at 8 dpi reflects the fact that we sampled six leaves randomly from six different 

plants for RNA extractions prior to symptom development.  Thus it is likely that some of 

the sampled leaves would include tissue from some of the 30% systemically infected 

escapes.  Importantly, the virus accumulation data, shown in Fig. 3-2b, shows very 

clearly that each of the non-TIP binding mutants (R6A, R8A and D13A) accumulated in 

the systemic leaves of Di-17 beginning at 4 dpi and achieved maximal levels of virus 

replication by 8 dpi.  These results provide conclusive evidence that all 3 mutants broke 

the normally resistant phenotype displayed by Di-17 when inoculated with wt TCV.  

Interestingly, the one mutant, in which TIP binding was not affected, failed to accumulate 

at detectable levels in systemic leaves.  Indeed, the G14A inoculated plants showed no 

evidence for systemic invasion in 100% of the inoculated plants at 24 dpi (Fig. 3-1c) and 

resembled the TCV resistant plants at that time point.  The one significant difference 
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between the TCV inoculated Di-17 plants and those inoculated with G14A was the 

absence of a strong PR1 signal in the inoculated leaves that was most evident in the TCV 

inoculated leaves (Figure 3-2b). Careful inspection of these inoculated leaves revealed 

pinpoint local lesions that we interpreted as a microHR response (Figure 3-3).  We also 

observed a detectable PR1 signal in the inoculated leaves of both R8A and R13A that 

was not evident in the R6A systemic leaves.  We interpret this result as evidence for 

induction of an HR-like response in the systemic leaves which was most visibly evident 

in the R8A infections (Fig. 3-1b).  

 

Further evaluation of R8A and G14A in the presence and absence of TIP and HRT 

 We next sought to assess if the two extreme disease phenotypes displayed by 

R8A and G14A, systemic HR and localized micro HR, might be correlated with the 

presence of TIP and/or HRT alone or together in similar genetic backgrounds.  To address 

this question, we again used the transgenic seeds of the TIP ko plants with and without an 

introgressed HRT gene from the Kachroo lab and conducted a comparative infection time 

course with  R8A and G14A similar to what was described for TCV and R6A infections 

in Chapter 2.  In this experiment, we assessed virus accumulation and PR1 expression in 

wt Di-17 (TIP HRT), wt Col-0 (TIP hrt), transgenic Col-0 tip ko (tip hrt) and transgenic 

Col-0 crossed with Di-17 (HRT tip).  In R8A infections, we observed that the presence or 

absence of TIP and/or HRT singly or together did not appreciably affect R8A virus 

accumulation (Figure 3-4a).  However the severity of symptoms was drastically increased 

when HRT and TIP were both expressed in Di-17 as evidenced by the development of 

systemic HR (Fig. 3-4a, panel 2) and enhanced accumulation of PR1.  Unexpectedly, 
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systemic HR failed to develop in both of the tip ko lines whether or not HRT was present 

or absent (Figure 3-4a, panels 3 & 4).  These results clearly suggest that presence of the 

TIP gene along with the HRT gene was necessary for the systemic HR to develop. The 

presence of both HRT and TIP genes in each of these plant lines was confirmed by PCR. 

 Analyses of G14A infections in the four previously described plant types also 

revealed some interesting insights.  First, infections in Col-0 (hrt TIP) showed maximum 

accumulation with almost a complete absence of symptoms (Fig. 3-4b, panel 1). This is 

consistent with infection by a TIP binding mutant that has the capacity to reduce the PTI 

response as demonstrated for the wt TCV in Chapter 2. This conclusion is corroborated 

by the observed slower accumulation and increased symptom severity in the absence of 

the TIP gene whether or not HRT is absent (Col-0, hrt tip) or present (Col-0, HRT tip; Fig. 

3-4b, panels 3 and 4).  Importantly, G14A infections induced rapid containment of the 

virus when both HRT and TIP were present but systemic infection escapes when HRT 

was present and TIP was absent. 

 To summarize, these experiments demonstrate that the presence of TIP appears to 

be necessary in plants for the induction of systemic HR in infections by the non-TIP 

binding mutant R8A.  Moreover, in infections with the TIP binding mutant G14A, the 

presence of the TIP gene also appears to be necessary for increased anti-virus resistance 

because in its absence, G14A invaded systemically.  Taken together these results provide 

evidence that TIP is playing a role in both the PTI and the ETI defense responses against 

TCV infections.  
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Comparison of NHL10 gene expression in Di-17 during TCV and CP mutant virus 

infections 

 In order to better understand the causes of the markedly different symptom and 

resistance phenotypes displayed by the CP mutants in Di-17, I sought to determine which 

defense genes might be being differentially induced during these infections.  To approach 

this, I began by analyzing a select set of defense genes using semi-quantitative RT-PCR 

(sqRT-PCR) prior to initiating more in depth analysis by real-time PCR (qRTPCR).  I 

selected a time course to collect samples that coincided with the earliest visible HR 

formation on inoculated tissue (3dpi) and the earliest appearance of systemic symptoms 

(6 dpi).  To capture expression of potentially induced genes in systemic leaves, I sampled 

systemic tissue at 3 dpi prior to the time we would expect to be able to detect virus in 

systemic tissue and again at 10dpi, which coincided with the appearance of the severe 

systemic HR associated with R8A infections. 

 NHL10 was selected for analysis because it is the Arabidopsis ortholog to HIN1 

from Nicotiana benthamiana that has been shown to be induced by bacteria that elicit an 

HR response (Gopalan, Wei, and He, 1996).  It has been shown that NHL10 is 

upregulated in Arabidopsis infected with avirulent strains of Cucumber mosaic virus  

(Zheng et al., 2004).  It has also previously been recognized as one of the yellow-leaf-

specific clones (YLS9) (Yoshida et al., 2001).  Hence we chose NHL10 as a primary 

monitor of HR induction in the TCV and mutant infections.  NHL10 showed the most 

variable pattern of gene expression in the TCV and mutant CP infections over the time 

course (Figure 3-5 and 3-6).  It was most highly induced in inoculated leaves of TCV and 

R8A at 3 dpi in inoculated tissue, an observation consistent with the appearance of HR 
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like lesions on the inoculated leaves of these infections (Figure 3-5a).  Although we did 

not observe a substantial increase in NHL levels on the inoculated leaves of G14A, we 

did see slight induction in systemic leaves of plants infected with TCV at 3 dpi (Figure 3-

5b).  The highest level of NHL10 induction appeared to occur in systemic leaves of R8A 

infections at 6dpi and 10 dpi, a result consistent with the observation of the development 

of systemic HR.  We also observed significant induction of this gene in the 10dpi 

infections of TCV and less but still detectable induction in D13A infections. (Figure 3-6a 

and b).  We also saw some increase in NHL10 expression in R6A infections at the late 

time point. We think that this was possibly associated with the onset of more severe 

symptom development and induction of senescence associated cell death rather then the 

strict HR-like response observed in R8A infections (Figure 3-6b).  It is interesting to note 

that the extreme resistance associated with the G14A mutant didn’t cause a significant 

increase in NHL10 transcript at any time point in Di-17 other than in the 3dpi systemic 

leaves (Figure 3-5 and 3-6).  We attribute this to the fact that this mutant failed to 

substantially invade either the inoculated or systemic leaves.  

 We also monitored several other orthologs of HIN1 expressed in Arabidopsis 

(NHL1, NHL2, NHL3 and NDR1) to assess if the NHL10 induction was specifically 

correlated with HR induction in Arabidopsis, and that there was not a general trend of 

induction of the NHL gene family.  The other NHL genes did not show any consistent 

differences in the gene expression patterns among the mock and virus infected plants at 

any time point (Figure 3-5 and 3-6).  This supports the conclusion that TCV induces the 

HR associated gene NHL10 and that this was correlated in R8A infections with the 

induction of an HR-like response in systemic tissue.  
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 We confirmed the pattern of differential NHL10 expression in the mutant 

infections using the more sensitive qRTPCR method.  We hypothesized that this method 

might detect more sensitive changes in NHL10 expression in G14A infections, but we 

were unsuccessful in demonstrating this.  However, the qRTPCR results did confirm that 

there was a 60 fold induction over mock of this gene in inoculated leaves of TCV at 3dpi 

and 10 dpi systemic leaves (Figure 3-7a).  Interestingly, in R8A infections, inoculated 

leaves showed about a 20 fold induction at 3 dpi and a remarkable 500 – 1000 fold 

induction in the 6 and 10 dpi infections, respectively.  Taken together, these data suggest 

that there was a strong correlation between the level of expression of NHL10 and the 

amount of tissue displaying visible HR.  This conclusion is consistent with our inability 

to detect elevated expression of this gene in G14A infections which appeared to be 

limited to very small micro lesions on the inoculated leaves.  

 

Comparison of PR1 gene expression in Di-17 during TCV and CP mutant virus 

infections 

PR1 is a key indicator of activation of the SA pathway which is associated with 

the development of resistance to TCV in Di-17 and many other host pathogen 

interactions.  We consistently found that it was also differentially regulated among the 

resistant ecotypes infected with TCV and the CP mutants by northern blots (Figure 3-2).  

In the resistant Di-17, PR1 was strongly induced by TCV in inoculated leaves in contrast 

to a complete lack of PR1 induction in the inoculated tissue by R6A, R8A, D13A and 

G14A.  This is consistent with previous studies for TCV and reflects the induction of HR 

and SAR in resistant Di-17. We also noted some induction in systemic leaves in R8A and 
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D13A infections in these initial studies that appeared to coincide with the onset of the 

severe symptoms (Figure 3-1a, 3-1b, and 3-2).  Hence we felt more careful analysis of 

this gene was also warranted. 

 We further evaluated expression of PR1 using the more sensitive sqRT-PCR 

(Figure 3-5 and 3-6) and real-time PCR (Figure 3-7b).  In Di-17, PR1 expression 

followed a similar pattern of gene expression as NHL 10 (Fig. 3-5 and 3-6). TCV 

induction of PR1 was most evident in inoculated leaves of TCV and R8A and 

subsequently induced in TCV, R8A and R13A infections at 6dpi and 10 dpi in systemic 

tissue.  However, the qRT-PCR analysis revealed some interesting quantitative 

differences in the pattern of PR-1 expression in the mutant virus infections. Induction of 

PR1 over the mock control in the inoculated leaves of TCV and R8A approached 50 and 

20 fold respectively.  Interestingly, PR1 was also induced in the systemically infected 

leaves of TCV and all of the mutant infections by several hundred to several thousand 

fold.  The only exception was G14A infections in which it showed only a 10 fold increase 

at 3 dpi in systemic leaves.  PR1 expression approached more than a 10,000 fold increase 

in systemic leaves of R8A infections at 10 dpi.  The absence of detectable PR1 in G14A 

infections and the extreme level of accumulation in R8A infections prompt speculation 

that its induction may be less associated with the onset of resistance and more so with the 

onset of symptom severity and concomitant cell death accompanied by the onset of HR.  

 

Differential effect of TCV and CP mutant infections on WRKY expression in Di-17 

With the finding that PR1 expression was drastically induced in the non-TIP 

binding mutants, we next examined other transcription factors associated with the SA 
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pathway and antiviral defense.  WRKY70 has been shown to be involved in cross talk 

between the SA and JA pathway and  to upregulate the SA pathway while down 

regulating the JA pathway (Li, Brader, and Palva, 2004).  It has also been associated with 

plant senescence (Ülker, Shahid Mukhtar, and Somssich, 2007).  Our results showed that 

WRKY70 was induced in TCV and R8A infections at 3dpi in inoculated tissue (Figure 3-

5a) but no differences were seen between mock and the virus infections at 3dpi in 

systemic tissue.  The WRKY70 increased expression at 3dpi on inoculated tissue 

coincides with the increase in PR1 gene expression in TCV and R8A infections, however 

there is no evident difference at 3dpi in systemic tissue (Figure 3-5a and b).  There was a 

mild induction of WRKY70 in R8A at 6dpi which is not apparent in the other virus 

infections (Figure 3-6a).  We also saw a reduction in WRKY70 expression in D13A 

infections at 10dpi that we can not currently explain (Figure 3-6b).  These results taken 

together again confirm that TCV strongly induces the SA pathway defense response in 

inoculated leaves compared to R6A and D13A.  It also shows that R8A can activate the 

SA pathway without inducing a localized HR. 

 In addition to WRKY70, we also evaluated WRKY6 gene expression in response 

the different virus infections.  As previously described in Chapter 2, WRKY6 encodes a 

transcription factor that belongs to a plant specific transcription factor family that is 

induced during biotrophic infections (Robatzek and Somssich, 2002).  We observed a 

slight induction of WRKY6 in inoculated leaves in TCV and R8A infections at 3dpi 

(Figure 3-5a and 3-7d).  At 10 dpi in systemic leaves, the levels of WRKY6 were induced 

the most, approximately 30 fold higher during R8A infections (Figure 3-6a and b, Figure 

3-7d).  These results suggest that WRKY6 activation correlates more with the induction of 
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systemic HR and less with the onset of the resistance response that leads to virus 

containment in the IL. 

 

Differential effect of TCV and CP mutant infections on TIP expression in Di-17. 

With the finding that the presence of TIP affected both symptom severity and 

systemic spread of the mutant viruses R8A and G14A in Di-17, we sought to assess the 

effect that virus infections might have on the induction of TIP during an ETI response. 

We used both sqRT-PCR and qRT-PCR assays to look at TIP expression over the time 

course previously described in Figure 3-5 and 3-6 in Di-17.  The sqPCR did not reveal 

any significant difference in TIP expression at any time point (Figure 3-5 and 3-6).  To 

confirm this, we also evaluated the expression using qRTP-CR. The results showed that 

TIP did not appear to be significantly induced over mock in any of the virus infections 

except for a modest 3 fold induction in the SL of the R8A infections (Figures 3-7c).  

These results differ from the results obtained in susceptible Col-0 infected with TCV or 

R6A where TIP was induced to several fold higher levels in systemic leaves of the R6A 

infections. These results suggest that TIP induction may be more important in the PTI 

response than in the ETI response.  

 

Discussion 

 In recent studies, effectors elicited from a bacterial pathogen, have been shown to 

target many parts of the plant immune response network, and in return, plants refine and 

expand their immune system to defend against pathogens (Boller and He, 2009).  In this 

study, we took a closer look at the ETI response against viral pathogens by investigating 
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TCV infections in resistant A. thaliana ecotype Di-17 to determine if we could establish 

any links between the presence and absence of the NAC family member and PTI 

associated protein, TIP (Chapter 2), and the HR associated resistance responses linked to 

HRT expression.  NAC genes have previously been shown to be important players in the 

defense against abiotic and biotic stresses (Jensen et al., 2010; Olsen et al., 2005; Wang, 

Goregaoker, and Culver, 2009) and previous work has shown that disrupting NAC genes 

associated with a virus can alter the resistance of the plant (Yoshii et al., 2009).  The 

results obtained here confirmed those of Ren et al. (2000), by demonstrating that 

mutations in the TIP binding region of TCV CP that affected TIP binding markedly 

affected the disease response in Di-17.   

We further demonstrated that by comparing wt TCV to four CP mutants with 

single aa substitutions, we were able to observe a variable induction of HR and systemic 

defense gene signaling responses.  Previous work on other plant virus pathogens have 

demonstrated that by mutating a single nucleotide caused differences in symptoms and 

HR development when observed (Kim and Palukaitis, 1997).  We were not only able to 

demonstrate the variable defense responses with the TCV CP mutants but we also 

revealed a possible role for TIP in modulating the ETI response to TCV infections.  The 

strongest evidence for this conclusion was the marked differences in disease symptom 

development by the non-TIP binding mutant R8A and the TIP binding mutant G14A.  

When both TIP and HRT were expressed in the ecotype Di-17, we saw an unregulated 

defense response which leads to severe necrosis and accelerated death of the plant during 

R8A infections.  However when HRT was present and TIP was absent, R8A still spread 
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systemically but was unable to induce systemic HR and hence caused a milder systemic 

infection.   

The presence of the TIP gene also appeared to be necessary for the resistance to 

the TCV mutant G14A.  We consistently saw an increase in virus resistance that 

restricted G14A to the site of inoculation in the HRT TIP (Di-17) plants and the 

development of a microHR.  The lack of TIP permitted systemic invasion of G14A plants 

in either the presence or absence of HRT.  These results taken together provide evidence 

that TIP is indeed playing a role in the ETI defense responses against TCV infections, in 

contrast to the demonstration by Jeong et al., (2008) that TIP is not required for the 

induction of HR.  Our results show that the extreme resistance elicited by G14A is lost 

when TIP is eliminated and argues in favor of an important role for TIP in the resistance 

to systemic invasiveness against the virus.  This data allowed us to draw the conclusion 

that HRT alone is unable to prevent systemic invasion of TIP binding TCV mutants.   

However, it further confirms HRT’s role in the formation of the HR (Dempsey et al., 

1997) since we were unable to detect HR necrotic lesions or elevated NHL10 gene 

expression without HRT expression.   

 NHL10 is a protein associated with both HR and late senescence (Zheng et al., 

2005).  In this study, it was used to monitor the HR progression between wt TCV and the 

CP mutants.  The comparison of the effects of different mutant virus infections on 

expression of NHL10 failed to reveal a clear understanding of signal transduction 

pathway leading to the resistance response or the altered symptom phenotypes induced by 

the mutants.  We were, however, able to verify the TCV mutants that produced the most 

extensive HR, such as the systemic HR associated with R8A, showed the highest levels 
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of NHL10 expression in systemic leaves which confirmed a link between induction of 

this gene and the HR response in Di-17.  Taken together, these data suggest that there 

was a strong correlation between the level of expression of NHL10 and the amount of 

tissue displaying visible HR.  This conclusion is consistent with our inability to detect 

elevated expression of this gene in G14A infections which appeared to be limited to very 

small microHR lesions on the inoculated leaves.  

The WRKY gene family consists of 74 members in A. thaliana (Eulgem et al., 

2000), many of which are associated with defense gene responses. We examined WRKY6 

and WRKY70 in some detail  for their possible role in the defense against TCV infection 

since both have been linked to pathogen defense signaling (Robatzek and Somssich, 

2001; Ülker, Shahid Mukhtar, and Somssich, 2007) and both were elevated in susceptible 

Col-0 in the non-TIP mutant infection by R6A (Chapter 2).  We observed a similar result 

in Di-17 infections with both WRKY6 and WRKY70 showing slightly higher induction 

over background levels early in infections that induced HR as opposed to those that did 

not.  However, the most substantial difference was the elevated induction (30 fold) of 

WRKY6 by the mutant R8A later in infections at the onset of severe systemic necrosis. 

Currently, we do not know how much of a role the elevated WRKY6 expression is playing 

in the more severe disease symptoms observed in R8A infections.  This would be an 

interesting candidate gene to monitor disease symptoms and HR induction in its absence 

during viral infections.   

 We were not able to reliably demonstrate a significant induction of TIP over 

mock inoculated leaves in any of the virus infections over the time course in Di-17, 

except for a modest 3 fold induction in the SL of R8A infections at 10dpi.  We concluded 



 

 

138
that TIP is not induced during an ETI response or HR induction. This differs from what 

was observed in the susceptible Col-0 line (Chapter 2, Figure 2-15) to R6A infections, 

where we saw a six fold induction of TIP at 8dpi in R6A infections.  This supports our 

conclusion that the primary role of TIP is in the regulation of PTI and SAR but not HR.  

 In conclusion, we have shown that TIP does indeed have a role in the ETI 

response. Its presence is also necessary for controlling spread of the TCV mutant G14A 

and regulating defense in the presence of HRT during R8A infections.  However, 

although we have solid evidence that CP-TIP binding can lead to a reduced basal defense 

response in Col-0, our data does not permit a clear interpretation of the role of TIP in 

modulating the defense response activated in the presence of the HRT gene.  Moreover, 

we could not clearly identify an interpretable pattern of defense gene responses that 

explains all of our results.  

To summarize briefly, we know TCV CP binds TIP and that this leads to a 

lowered basal defense in Col-0 and likely in Di-17 early in infection.  TCV CP also 

promotes HR in concert with HRT and this leads to systemic resistance, albeit somewhat 

leaky.  The TIP binding mutant G14A induces a rapid HR and complete resistance to 

systemic spread.  In contrast, the three mutants that were unable to bind TIP (R6A, R8A 

and D13A) all broke resistance and moved systemically.  Interestingly, R6A was unable 

to induce HR while R8A induced extreme HR in systemic leaves.  Recent results from 

our lab by Sung-Hwan Kang (PhD student) provides a partial explanation for this 

conundrum.  He has shown definitively that TIP is not required for HR induction in 

assays where both TCV CP and HRT are transiently expressed in N. benthamiana leaves.  

More importantly, he has identified a nuclear localization signal that overlaps the TIP 
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binding region in which we made the mutations.  His results have revealed that those CPs 

that induce HR (TCV, R8A, and G14A) localize to the nucleus in the presence of HRT 

where they form cajal-like bodies, while the R6A mutant that fails to induce HR does not.  

Taken together with our results, it appears that the TIP binding region has two functional 

activities: 1) TIP binding activity that leads to the regulation of basal defense responses, 

and 2) Nuclear localization activity that is necessary for elicitation of HR in the presence 

of the HRT.  

These two sets of results prompt us to formulate the following model for how 

TCV CP might be regulating both the PTI and ETI defense responses (Figure 3-8).  In 

this model, we propose that TCV CP binding to TIP would decrease defense signaling in 

the cell after infection by promoting release of TIP from the endosomal membrane so it 

can traffic to the nucleus where it functions as a negative regulator of the innate defense 

response.  This would promote more rapid invasion in both Col-0 and Di-17 by TCV and 

the TIP binding mutant G14A.  We also now know that TCV CP will cause HR in the 

presence of HRT and, by some as yet unknown mechanism, cause nuclear localization of 

CP into cajal-like bodies.  This event triggers HR and in some cases, resistance to 

systemic spread. Importantly, the presence of TIP was required for elicitation of systemic 

HR by R8A and for the containment of G14A (ie. onset of systemic resistance) in Di-17.  

This observation supports the conclusion TIP is also modulating the enhanced ETI 

defense response associated with HRT.  At this stage, we do not have a clear 

understanding of the defense gene responses that promote this effect. 
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Figure 3-1. Variable symptoms and HR development to TCV infections. Arabidopsis 

thaliana ecotypes Col-0 (susceptible) at 10dpi(a) and Di-17 (resistant) at 10dpi (b) and 

24dpi (c) infected with TCV and mutants R6A, R8A, D13A, and G14A.   

 

Figure 3-2.  Comparison of temporal accumulation of TCV and CP mutant 

transcripts.  Northern analysis of CP transcripts accumulation of TCV and CP mutants 

in A. thaliana ecotype Col-0 (a) and Di-17 (b) in both inoculated and systemic tissue.  A 

total of 10ng of virus transcript of wt TCV or one of the CP mutants R6A , R8A, D13A, 

and G14A were inoculated onto designated leaves.  Inoculated leaves were collected at 

48 hr post inoculation (hrpi) and systemic leaves were collected at 2, 4, 6, and 8 day post 

inoculation (dpi) as indicated.  Viral RNA levels were monitored by northern blot using 

three probes for CP sequence (described in Materials and Methods section) and one probe 

for PR1.  Panel below the blot shows ethidium bromide (EtBr) stained gel showing rRNA 

bands used as a loading control.  This experiment was repeated three times with similar 

results. 

 

Figure 3-3. Variable HR induction associated with TCV infections and CP mutants.  

In situ detection of peroxides using DAB staining on wt Di-17 to determine the extent of 

HR induction upon infection of TCV and its mutants.  Brown pigment is an indication of 

HR induction.   

 

Figure 3-4. TCV mutants R8A and G14A virus accumulation and PR1 expression in 

HRT and TIP ko lines.  Col-0 (hrt TIP) and Di-17 (HRT TIP), transgenic Col-0 (tip ko) 
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with a  tDNA insertion in the TIP promoter and a hybrid (HRT tip) which was a cross 

between the tip ko and Di-17 (as described in Jeong et al., 2008) were each inoculated 

with R8A (a) and G14A (b).  Samples were collected and analyzed as described in Figure 

3-2.  PR1 transcripts were evaluated using northern blots as described in Materials and 

methods.  The lower panel shows plants at 8dpi.  Results from similar experiments done 

with wt TCV and R6A can be seen in Figure 2-19.  

 

Figure 3-5. Expression levels of defense related genes comparing TCV and CP 

mutant infections in Di-17 at 3dpi in inoculated and systemic tissue.  Multiple genes 

were selected and evaluated using semi-quantitative RT-PCR from samples taken at 3dpi 

from (a) inoculated tissue and (b) systemic tissue.  The genes chosen were previously 

shown to be linked to defense related pathways in A. thaliana:  PR1 is an SA pathway 

gene.  WRKY6 is a transcription factor associated with viral defense.  WKRY70 is 

another transcription factor that acts as a regulator between the JA and SA pathway 

during infection.  NHL10 is an ortholog to HIN1 in Nicotiana benthamiana and is an 

indicator of HR.  NHL1, NHL2, NHL3 and NDR1 are homologs of NHL10 but are not 

induced during HR or senescence.  PCR cycle numbers are shown to the right of each 

panel.  ACT2 expression was used as an endogenous control.  This experiment was 

repeated twice with similar results. 

 

Figure 3-6. Expression levels of defense related genes comparing TCV and CP 

mutant infections in Di-17 at 6dpi and 10dpi in systemic tissue.  Multiple genes were 

selected and evaluated using semi-quantitative RT-PCR from systemic leaves taken at (a) 
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6dpi and (b) 10dpi.  See fig. 3-5 for details. This experiment was repeated twice with 

similar results. 

 

Figure 3-7. Evaluation of relative gene expression levels using Real-time PCR.   

A. thaliana ecotype Di-17 was inoculated with TCV, R6A, R8A, D13A or G14A 

transcripts as described in Figure 3-2.  Tissue samples were collected and RNA extracted 

for each time point.  a) Expression levels genes were analyzed using One-step Real-time 

PCR as described in Materials and Methods. The relative fold change of four genes, (a) 

NHL10, (b) PR1, (c) TIP and (d) WRKY6 are plotted here. Fold change is calculated 

relative to the mock infection of each gene at 48hrpi.  ACT2 was used as the endogenous 

control.  This graph is the average of results obtained for two independent experiments. 

 

Figure 3-8. Proposed model of the role of TIP-TCV CP interaction during TCV 

infection in the resistant host Di-17 during a ETI event.  We propose that TCV CP (or 

some other as yet undefined PAMP) is recognized by an as yet uncharacterized toll-like 

receptor (an RLK that could be in the plasma membrane or an internal endosomal 

membrane) that provokes SA defense signaling.  This would then lead to a MAPK 

cascade and enhanced basal defense.  The left side of the diagram depicts the proposed 

PTI response: Infection by virus with wild type CP results in an interaction with the 

negative regulator TIP that is tethered in an endosomal membrane in the cytoplasm, 

enhancing the rate of its release and increasing suppression of basal defense.  The right 

side of the diagram depicts the proposed ETI response:  the R protein HRT is able to 

indirectly recognize TCV CP and subsequently induce an HR and SAR response through 
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a nuclear localization event.  The proposed involvement of TIP in the ETI is shown by 

the yellow arrow which depicts modulation of the SAR defense response induced by HR. 

This interaction would provide a rational for why infections by the TCV non-TIP binding 

mutants are able to evade HRT recognition and therefore are able to spread systemically 

with no localized HR.  This difference in ETI defense regulation in the resistant host 

gives a selective advantage to TCV non-TIP binding mutants (R6A, R8A, and G14A) 

during infection. 
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Figure 3-1.  

a)                                                                            

   
b) 

      
c) 

  
 

 

Di-17 10dpi plants 
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R8A D13A G14A 

   Mock              TCV              R6A 

   R8A               D13A            G14A 

Di-17 24dpi plants 
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   Mock              TCV              R6A 

Col-0 10dpi plants 
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Figure 3-2.  

 

 

 

 

 

 

 

 

 

1. 48 hrpi inoculated leaves 
2. 2 dpi systemic leaves 
3. 4 dpi systemic leaves 
4. 6 dpi systemic leaves 
5. 8 dpi systemic leaves 
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Figure 3-3. 
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Figure 3-4. 
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Figure 3-5. 
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Figure 3-6. 
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Figure 3-7.   
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 Figure 3-8. 
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Table 3-1. List of semi-quantitative PCR primers 

Gene Sequence 

ACT2 Fwd: 5'-GTCTGAGATTTCTCCTGCCG-3' 
 Rev: 5'-CACGGTTAGCCTTTGGGTTA-3' 
NHL3 Fwd: 5’-CGGCGGTGGATGCGGTTGTT-3’ 
 Rev: 5’-TCTCCGCCGTCAAGCAGCAC-3’ 
NHL10 Fwd: 5’-AGTCCCACCACCAGCTCCCA-3’ 
 Rev: 5’-GCGGGTAAGGGACGCATCGG-3’ 
NHL2 Fwd: 5’-TCCTCGGAGTCGCCGCTCTT 
 Rev: 5’-GTCGCCGAGCACCACCAGAT 
NHL1 Fwd: 5’-TCCCCACCACCACCACTCACC 
 Rev: 5’-TGCCGGAGACGTTGAAGGCG 
WRKY6 Fwd: 5’-CCGTGTCTCCGTTCGTGCCC-3’ 
 Rev: 5’ -TTCGCCGTCGTGGTGGTTCG-3’ 
NDR1 Fwd: 5’-GTCTCCGTGCGGACAAACCCA 
 Rev: 5’-ACCGTCTGGTTGTTTAGCGGCTT 
PR1 Fwd: 5’- AACCAGGCACGAGGAGCGGT 
 Rev: 5’-GTTCACGGCGGAGACGCCAG 
WRKY70 Fwd: 5’-TGAACCAACTCGTTGAAGGCCATGA 
 Rev: 5’-CAACGGCGGCGAGGGATGAG 
TIP Fwd: 5'-CCGGCTCAAGATCAACGGTCACG-3' 
 Rev: 5'- CTGCTCAGCACAACCCGGGG -3' 
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Table 3-2. Probes for Northern Analysis 

TCV CP Rev: 5'-CAGGACCGAGAAGTCAGAGG-3 
 Rev: 5'-GGCCCACCCGACACCACTGG-3' 
 Rev: 5'-CTTGTCTTGACCGAGTTGGT-3' 
PR1 Rev: 5’-GTTCACGGCGGAGACGCCAG 
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Table 3-3. Genes used for Time Course qRT-PCR 

 Gene Name/Description 
Reference 
Sequence Transcript ID Assay ID 

1 TIP NM_122367.3 AT5G24590 At02185798_s1 
2 NHL10 NM_129157.2 AT2G35980 At02322550_s1 
3 WRKY6 NM_104910.2 AT1G62300 At02216109_gH 
4 PR1 NM_127025.2 AT2G14610 At02170748_s1 
5 ACT2 NM_112764.3 AT3G18780 At02335270_gH 
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CHAPTER 4 

Evaluation of silencing pathway gene expression and miRNA accumulation in 

Turnip crinkle virus infections of Arabidopsis thaliana. 
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Abstract 

 RNA silencing pathways in Arabidopsis is involved in sequence specific 

inhibition of gene expression.  Arabidopsis encodes four Dicer-like proteins (DCL) that 

are responsible for cleaving specific miRNAs, mRNAs or aberrant RNAs for 

incorporation into host RISC complexes and the subsequent slicing of its target.  The coat 

protein (CP) of Turnip crinkle virus (TCV) has previously been shown to be a strong 

suppressor of RNA slicing.  In this chapter, we sought to establish a connection between 

TCVs ability to suppress the endogenous RNA silencing pathways and its ability to bind 

the NAC transcription factor, TIP.  We evaluated the gene expression of key players in 

the RNA silencing pathway between TCV and the fully replication competent mutant 

viruses that don’t interact with TIP.  We hypothesized, based on these observations that 

the interaction of TCV CP with TIP evolved to reduce the host innate immune response 

and favoring a more rapid systemic invasion.  To test whether the mutation and 

associated inability to bind TIP was a factor in effecting the RNA silencing pathway, we 

compared the expression level of select host silencing-related genes by semi-quantitative 

PCR in TCV and mutant R6A infections.  We also compared the rate of virus 

accumulation of wt TCV and  mutant R6A as well as other non-TIP binding mutants in 

both inoculated and systemic leaves of an infection up to 8 dpi.  Though we were unable 

to establish a connection between the RNA silencing pathway and TIP biding with these 

experiments, we did obtain valuable information on gene expression of DCLs and other 

silencing pathway genes during TCV infection 
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Introduction 

RNA silencing, including post-transcriptional gene silencing in plants, RNA 

interference in animals, and gene quelling in fungi, represents a sequence-specific RNA 

degradation mechanism directed against down regulate gene expression and as a defense 

against invasive nucleic acid molecules (Baulcombe, 2004; Dunoyer and Voinnet, 2005; 

Ghildiyal and Zamore, 2009; Voinnet, 2005).  Analyzing the anti-defense strategies 

employed by viruses to overcome this defense system has recently been the focus of 

much research.  Silencing suppressors encoded by viral pathogens have been linked to 

developmental abnormalities when expressed in plants, suggesting their direct 

involvement in symptom development (Voinnet, 2005).  Viral silencing suppressors are 

able to abolish RNA silencing mediated through small interfering RNAs (siRNA), 

however disruption of plant development has been correlated with the ability of silencing 

suppressors to prevent the cleavage and degradation of endogenous siRNAs and 

microRNAs (Baulcombe, 2004; Chapman et al., 2004; Dunoyer et al., 2004).  The 

silencing strategies that are employed by different viral proteins can interfere with steps 

that are common to plant silencing and endogenous silencing pathways which can lead to 

variations in developmental defects that contribute to symptoms and eventually yield 

losses.  A good example of this was shown for the tobamoviruses, Tobacco mosaic virus 

and Tomato mosaic virus, and the potyviruses, Tobacco etch virus and Potato virus Y, 

where it was demonstrated that silencing suppressors were able to alter miRNA 

accumulation and cause abnormalities in plant growth and development (Bazzini et al., 

2007).  Although much work has been done to provide evidence that shows viruses and 

their specific proteins or RNA components can alter the expression of host genes, the 
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extent to which host genome expression is altered and the mechanisms responsible for 

these alterations during viral infections remain largely unknown.  

Turnip crinkle virus (TCV) is a small positive sense RNA virus with a genome of 

4054nt (Carrington et al., 1989). TCV coat protein (CP) is a multifunctional protein that 

is needed for structure and movement but is also a strong silencing suppressor (Qu, Ren, 

and Morris, 2003; Thomas et al., 2003).  It also contributes significantly to the severity of 

TCV symptoms upon infection in the compatible plant-pathogen interactions and is 

essential for resistance in the incompatible interactions (Ren, Qu, and Morris, 2000).  It 

was proposed by Ren et al. (2000), that the variation in resistance and symptoms was the 

result of TCV CP ability to bind to a NAC transcription factor named TIP (TCV 

interacting protein).  This was further confirmed by demonstrating a direct correlation 

between the inability of the R domain of TCV CP mutant viruses to bind TIP that cause a 

break in the resistance in the resistant line Di-17 and cause an increase in symptom 

severity in the susceptible line, Col-0 (Ren, Qu, and Morris, 2000).  More recently, work 

published Jeong et al., 2008, described a tip knockout line of Col-0 into which the 

resistance gene HRT was introgressed, was also resistant to TCV infection.  They 

concluded in this study that the mutant TCV viruses that showed a break in resistance in 

the Ren et al., study was likely due to another as yet uncharacterized defense system 

component and not a direct result of the loss of ability to bind TIP (Jeong et al., 2008).  

As presented in Chapters 2 and 3, our work has shown that the presence of TIP 

does indeed having an effect on TCV infection at both the PTI and ETI levels of the plant 

immune system.  Other major factors affecting the ability for virulent viruses to 

successfully infect their host are suppression of the RNA silencing pathway and 
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manipulating the ability to control the expression of endogenous genes which regulate 

pathogen invasion.  Recently, it was discovered that the TCV CP mimics host-encoded 

glycine/tryptophan (GW)-containing proteins normally required for RNA induced 

silencing complex (RISC) assembly and function (Azevedo et al., 2010).  TCV coat 

protein GW residues bind directly and specifically to Arabidopsis AGO1, which has been  

identified as a major effector of TCV-derived siRNAs (Azevedo et al., 2010).  The 

observation that one of the two functional GW motifs in the CP is in close physical 

proximity (N terminal aa 25-26) to the TIP binding domain (N-terminal aa 1-25) raised 

the possibility of a connection between TIP-CP interaction and silencing suppressor 

function.  

The objective of the studies described in this chapter was to assess any possible 

role of the TCV CP binding TIP in the defense response in Arabidopsis and possible 

association with the RNA silencing defense pathway.  We have shown in the previous 

chapters that TIP is a negative regulator of defense and that the ability of the TCV CP to 

bind TIP enhances this negative regulation which leads to a more successful defense by 

altering basal viral defense components of the PTI response and modulates the ETI 

response in the presence of the resistance gene HRT.  The nature of the resistance 

mechanism that is induced as a consequence of the ability of TCV CP to bind TIP is not 

known.  It has, however, been demonstrated that the silencing suppressor activity of TCV 

CP is not altered in the non-TIP binding mutants R6A and R8A (Choi et al., 2004).  

However, it remains an open question if the basal defense response modulated by TIP-CP 

binding might not be a consequence of altering the expression of one to several 

components of the RNA silencing pathway.  To address this possibility, I examined for 
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any differential effects that TCV and the TIP binding mutants might have on the 

expression of silencing pathway associated genes, endogenous silencing suppressors, and 

two miRNAs during infection. 

 

Materials and Methods 

 

Plant growth conditions 

Plant lines of wt A. thaliana ecotypes Columbia-0 (Col-0) and Di-17 were grown 

in growth chambers at 22°C with 12hr day cycles in Metro Mix 360 (Sun Gro; British 

Colombia, Canada).  Mutant plants dcl2–1, dcl3–1, dcl4–2 have been described 

previously (Hammond, 2005; Qu, Ye, and Morris, 2008) and were provided to the Morris 

lab by Dr. James C. Carrington.  The mutant rdr6–11 was ordered from the Arabidopsis 

Biological Resource Center.  All mutants were verified through genotyping by Dr. Feng 

Qu and grown under the same conditions as wt Col-0.  The transgenic lines of Col-0 

asTIP and UpTIP were previously described in the material and methods section of 

Chapter 2.  The transgenic GFP line was constructed similar to the asTIP line with a GFP 

insert instead of the antisense TIP sequence under the control of the inducible estradiol 

promoter.   

 

Plant inoculations, tissue collection, and RNA isolation 

 Plants were consistently inoculated between the ages 22 to 24 days old.  Three 

leaves were inoculated per plant as described in Chapter 2 (Figure 2-1).  The virus 

inocula consisted of a buffer solution containing 50 mM Na2HPO4 [pH 7.0] + 1% Celite 



 

 

165
545 and purified virus transcript at a concentration of 1 ng/µl with a total of 10ng of virus 

transcript or 10µl of the virus transcript-buffer solution applied to each leaf.  The virus 

inoculum was applied to each leaf by rub inoculation, allowed to stay on the leaf for five 

minutes, and then washed off with nanopure water.  Five to six leaves (apx 0.3g) from 

different plants treated with the same inoculum buffer were collected at each time point 

and flash frozen in liquid nitrogen.  RNA was extracted as previously described 

(Chomczynski and Sacchi, 1987) and RNA samples were subsequently purified using 

RNeasy columns (Qiagen; Valencia, CA, USA). 

 

Virus detection and RT-PCR 

Virus RNA transcript detection was conducted by analysis of 2µg of total RNA 

isolated from infected plant tissue.  The RNA was separated using electrophoresis in a 

1.2% agarose/1.8% formaldehyde gel run at 100 mV/cm for 90 minutes at room 

temperature.  Separated RNAs were then transferred to a nylon membrane (Zeta probe 

blotting membranes; Bio-Rad, Hercules, CA, USA) at 4°C at 37mV or 200mA.  

Hybridization was carried out at 40°C using ULTRAHyb-Oligo (Ambion; Foster City, 

CA, USA) solution according to manufacturer’s directions (Ambion).  CP and PR1 were 

detected with the addition of  32P-γ-ATP end-labeled probes (Table 3-2) to the 

hybridization buffer after one hour of pre-hybridization of the membranes with only the 

ULTRAHyb-Oligo solution.  Probes were generated using T4 polynucleotide kinase 

according to manufacturer’s directions (New England Biolabs; Ipswich, MA, USA).  

After overnight hybridization (minimum of 12 hours), the membrane was washed three 

times, 20 min each, with 2xSSC, 0.5% SDS at 40°C.   
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Reverse transcription PCR (RT-PCR) was conducted to evaluate gene expression.  

DNase treated RNA samples were used to synthesize first strand cDNA by using 

SuperScript III reverse transcriptase (Invitrogen; Carlsbad, CA, USA) and random 

primers according to the manufacturer’s protocol. The cDNA was then subjected to PCR 

amplification for semi-quantitative analysis with EconoTaq Plus Green 2X Master Mix 

according to the manufacturer’s protocol (Lucigen; Middleton, WI, USA).  The following 

thermal cycling conditions were used: initial denaturation 95°C  for 2 minutes, then 

cycles of denaturation at 95°C for 30 sec, primer annealing at 55°C for 30 sec, and 

followed by an extension phase at 72°C for 1 min.  The numbers of cycles was adjusted 

based on the transcript abundance and expression at a given time point and/or sample.  

The procedure was terminated with a final extension phase of 72°C for 5 minutes and a 

hold at 4°C.  The PCR product was then subjected to electrophoresis and gene expression 

was analyzed based on band intensity of the transcripts relative to the control gene, 

Actin2 (ACT2).  The primers (Invitrogen) for the genes used for analysis for semi-

quantitative PCR are listed in Table 4-1. 

 

siRNA detection 

For siRNA analysis, 5–15 µg total RNA was loaded onto a 0.1x TBE, 8 M urea, 

16% polyacrylamide gel and run until the bromophenol blue dye migrated out.  The 

separated RNAs were then transferred to a nylon membrane and hybridized with 32P-

labeled oligonucleotides obtained from Dr. Bin Yu.  The hybridization buffer was 

UltraHyb Oligo from Ambion, and the hybridization temperature was 40°C. After 
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overnight hybridization, the membrane was washed three times, 20 min each, with 2x 

SSC, 0.5% SDS; at 50°C. 

 

Results and Discussion 

 

TCV CP TIP non-binding mutant R6A altered silencing associated gene expression 

in susceptible A. thaliana ecotype Col-0 

 The Dicer gene family in A. thaliana has four members with varying functions. 

Dicer-like(DCL)1 is required for miRNA biogenesis (Finnegan, Margis, and Waterhouse, 

2003; Papp et al., 2003) and was shown to repress antiviral RNA silencing through 

negative regulation of the expression of DCL4 and DCL3 in TCV infections (Qu, Ye, and 

Morris, 2008).  The role of DCL2 is not as well understood but analysis of dcl1, dcl2, and 

dcl3 single mutants suggested that DCL2 was involved in TCV siRNA production and 

was the first DCL shown to play a role in defense against TCV (Xie et al., 2004).  It was 

also shown that dcl2 mutant are more susceptible to TCV infection (Xie et al., 2004) and 

the 22nt TCV siRNAs are reduced in dcl2 (Bouche et al., 2006).  DCL3 produces 

retroelement and transposon siRNAs and is required for chromatin silencing (Xie et al., 

2004).  These siRNAs are longer (24nt) compared to the DCL1 (21nt) products 

(Hamilton et al., 2002; Tang et al., 2003).  Neither DCL1 or DCL3 are involved with 

making TCV siRNAs (Bouche et al., 2006).  DCL4 has been associated with antiviral 

defense and it generates 21nt siRNA (Gasciolli et al., 2005; Xie et al., 2005).  Previous 

work has shown that  DCL4-dependent siRNA generation from a transgenic inverted-

repeat (IR) locus is suppressed in TCV-infected plants or in transgenic plants expressing 
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p38 (Deleris et al., 2006). DCL2 and DCL4 have been found to have hierarchal and 

partially redundant roles and were found to be the major and minor contributors of TCV 

siRNAs respectively (Bouche et al., 2006). 

 To assess if the TIP-non binding mutants had any effect on DCL expression, we 

initially analyzed an infection time course in the susceptible (Col-0) A. thaliana lines 

infected with either wt TCV or non-TIP binding mutant R6A.  R6A differs from TCV in 

one aa in the TIP binding region of the CP and it invades Col-0 more slowly but causes 

more severe disease symptoms and alterations in defense gene expression (Chapter 2).  

Initial results using semi-quantitative PCR showed some differential expression of the 

DCL family of genes in TCV and R6A infections over the time course.  No evident 

differences were observed in IL at 2 dpi.  DCL1, which regulates the miRNA pathway, 

appeared to be more elevated in the mock SL at 4 and 6 dpi.  At 8 dpi, both TCV and 

R6A infections had higher levels of DCL1 and DCL2 than mock.  Interestingly, R6A 

infections had higher levels of expression of DCL2, DCL3, and DCL4 than did TCV 

infections.  This could be indicative of an elevated silencing response in R6A infections 

which could account for the decreased accumulation associated with this mutant as 

previously described in Chapter 2.    

This initial experiment prompted us to next examine temporal expression of the 

DCL genes in response to infections in the transgenic lines in which the levels of TIP 

expression were altered.  We infected the transgenic anti-sense TIP Col-0 line (asTIP) 

under the control of the inducible estradiol promoter and the constitutively up-regulated 

TIP (UpTIP) line (Detailed in Chapter 2).  We used a transgenic line of Col-0 that had a 

GFP transgene under the control of the inducible estradiol promoter as a control for the 
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effect of spraying plants with estradiol on gene expression.  As shown in Figure 4-2, 

DCL1 appeared to be induced later in TCV infections than in R6A infections achieving 

its highest levels at 8 dpi.  This same pattern was most evident for DCL2, and DCL4 in 

the UpTIP infected plants, suggesting a possible role of TIP in modulating DCL 

expression during virus infections.  This was supported by the lack of expression 

differences of any the DCLs in the asTIP infections. 

We also examined DRB4 (Double-Stranded-RNA-Binding Protein 4) expression.  

This protein has been shown to assist DCL4 in the biogenesis of at least one transacting 

siRNA (Adenot et al., 2006), and more recently studies were done that suggested DRB4 

could stabilize the 21-nt viral siRNAs and deliver them to the RISC complex rather than 

being directly involved in siRNA production (Qu, Ye, and Morris, 2008).  With this 

information in hand, we sought to find if any difference in DRB4 gene expression could 

be observed that were related to TCV or its mutant infections.  Interestingly, DRB4 

appeared to be induced throughout the time course in both TCV and R6A infections in 

the asTIP plants.  However, induction of DRB4 was not sustained at the same level in the 

R6A infections compared to TCV infections at 6 and 8 dpi in the UpTIP plants.  These 

results indicate that TIP levels did have some effect on DRB4 induction during the course 

of infection, possibly implicating induction of the silencing pathway genes in the 

differential accumulation of the two viruses.  However, the finding that virus infections 

do indeed cause induction of this gene is supported by recent studies that showed DRB4 

was induced in systemic infections of Turnip yellow mosaic virus (TYMV) in 

Arabidopsis (Jakubiec, Yang, and Chua, 2011). 
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Differential expression of DCL genes in A. thaliana resistant ecotype Di-17 

 We extended our study of DCL expression by assessing induction of the DCL 

genes in TCV and R6A infections of Di-17 over a time course.  We examined infections 

at earlier time points since TCV induces an HR on inoculated tissues that is visible three 

days after infection.  All the DCL’s appeared to be induced in systemic tissue at 2 dpi and 

this response decreased at 4 dpi (Figure 4-3).  The expression levels were similar in the 

mock and virus infections suggesting that the induction may have been as a result of 

wounding caused by rub inoculation.  However, the expression levels in R6A infections 

at these time points were reduced in comparison to mock and TCV infection samples 

(Figure 4-3).  This trend was the opposite of DCL4 expression, where we saw the highest 

induction of this gene in R6A infections rather than mock or wtTCV (Figure 4-3).  Taken 

together, we were unable to interpret these data at this time since as previously reported, 

DCL1 and DCL3 are not associated with TCV antiviral defense (Bouche et al., 2006).  

However, the induction of DCL4 in R6A infections reveals that the TIP non-binding 

mutant may be inducing the antiviral pathway while the wtTCV does not.  However, 

since TCV also induces the HR in Di-17, this may be a moot point. 

  

Comparison of DCL Gene induction by TCV and other CP mutants in susceptible 

(Col-0), resistant (Di-17) and tip ko plants.  

We next performed a more comprehensive analysis of DCL family genes in 

response to infections by each of the CP mutants analyzed in the previous chapters (see 

chapter 1 Figure 1-5).  Because these mutants caused a range of disease symptoms and 

resistance responses associated with both TIP binding and HR mediated resistance, we 
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chose to assess DCL1 because of its association with miRNA processing and DCL4 

because of its direct involvement in TCV associated antiviral silencing.  In all of the 

infections, the DCLs appear to be induced only in the systemic leaves. In the susceptible 

Col-0 line, we observed that TCV, R6A, and R8A all had a similar pattern of DCL1 and 

DCL4 expression (Figure 4-4a).  DCL1 was most evidently induced in systemic tissue at 

2 dpi and 4 dpi for all virus infections. Curiously, the level of DCL1 decreased at 6 dpi in 

some but not all infections and then were restored at 8 dpi (Figure 4-4a).  A similar effect 

was seen in DCL4 expression but the overall expression was again much lower.  We also 

observed that DCL4 expression in D13A and G14A infections mirrored the expression 

we saw in mock infections more closely than in the other viral infections (Figure 4-4a).  

We know from the appearance of disease symptoms (Figure 3-1a) and Northern blots 

(Figure 3-2a) that the plants analyzed in this experiment were all infected.  However the 

pattern of DCL expression observed does not lend itself to an obvious interpretation.  

 In the resistant line of Di-17, the pattern of DCL1 expression in all the infections 

was similar for the CP mutants being highest at 4 dpi. Curiously, the wtTCV infection did 

not show evident DCL1 induction until 8 dpi in this experiment.  This was different from 

what was observed previously in Figure 4-3a where DCL1 expression was highest at 2 

dpi and decreased at 8 dpi in TCV infections.  We were only able to detect modest 

expression of DCL4 in this experiment and there did not appear to be any notable 

differences between the infections.   

 We also examined induction of DCL1 and DCL4 expression in the Col-0 tip ko 

line previously described in Chapter 3.  We saw some evident differences in DCL1 gene 

expression in comparison to infections in wt Col-0 in all the virus and mock infections, 
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suggesting that TIP may have had an effect on expression of silencing pathway genes. 

The only consistent data points between the two experiments of DCL1 expression was in 

TCV infections at 4 dpi and R6A and R8A at 8 dpi (Figure 4-4c).  DCL4 expression was 

significantly reduced with no noticeable difference among the viruses (Figure 4-4c).   

Taken together, we could not consistently identify a coherent and reproducible 

pattern that would connect any of the observed phenotypes of the mutants with DCL gene 

expression.  The patterns of expression of the various DCL genes did seem to respond 

differently to virus infections and the presence or absence of the TIP gene.  However, the 

results were too variable between experiments to draw any concrete conclusions about a 

connection between TIP expression and a silencing-based defense response.  

 

Virus accumulation differences in silencing pathway ko lines 

 In addition to assessing the effect of virus infection on silencing pathway genes, 

we also compared the accumulation of the CP mutants relative to TCV accumulation over 

a time course in Arabidopsis lines deficient in the key antiviral silencing associated genes 

DCL2, DCL3, DCL4 and RDR6.  We reasoned that if the mutants’ symptoms reverted to 

wt in silencing defective plants then it would potentially expose which antiviral pathway 

was most affected by the single aa mutation in the CP.  We grew three dcl ko lines, 

previously described by Qu et al. (2008) and monitored virus accumulation.  We again 

saw the overall trend that TCV accumulated to higher levels earlier in infection than the 

mutant viruses.  These results were consistent with our data on infection in Col-0 

described in chapter 2 showing that TCV had a replicative advantage over the R6A.  This 
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data also showed that removing just one component of the silencing pathway was not 

sufficient to restore the replicative advantage of wt TCV. 

RNA-dependent RNA polymerase 6 (RDR6) is one of 6 putative RDR genes in 

the A. thaliana genome.  RDR6 has previously been implicated in antiviral defense 

(Baulcombe, 2004) and since then it has been shown that RDR6 is one of the key 

components in plant post-transcriptional gene silencing (PTGS), and is likely to function 

with other silencing components in a genetic pathway regulating leaf patterning (Xu et al., 

2006).  In N. benthamiana, RDR6 plays a role in limiting virus particles from entering 

shoot apical meristems, likely through the promotion of viral siRNA production in 

systemic tissues (Qu and Morris, 2005; Schwach et al., 2005).  With this in mind we 

compared the accumulation of TCV and the CP mutants in the rdr6 ko line.  We observed 

similar results to the dcl ko lines, with TCV maintaining a replicative advantage.  Since 

these experiments were performed, it has become clear that there is significant genetic 

redundancy in antiviral silencing pathways (Deleris et al., 2006; Gasciolli et al., 2005).  

Hence our results cannot completely rule out the possibility of the involvement of the 

silencing pathway genes in the absence of testing multiple knock out lines as recently 

reported by Cao et al., (2010).  This more extensive analysis was deemed outside the 

scope of this dissertation. 

 

The Hunt for Endogenous Silencing Suppressor Genes 

 Previous work demonstrated that the two silencing suppressors of TCV CP (p38) 

and Turnip mosaic virus (TuMV) HC-Pro required RAV2 for the suppression of target 

degradation via the activity of primary siRNAs (Endres et al., 2010).  RAV2 is part of a 



 

 

174
gene family that comprises six members and encodes an ethylene-inducible transcription 

factor that appears to be a control point for viral suppression of silencing (Endres et al., 

2010).  Therefore we wanted to determine if the non-TIP binding CP mutant, R6A, had 

any effect on RAV2 expression.  We hypothesized that if TCV CP does interact with 

RAV2, then an alteration in the TIP binding region might have an effect on the 

expression of RAV2 which could account for the differences in virus accumulation and 

symptom expression.  We did observe reduced expression of RAV2 at 2 dpi compared to 

both mock and TCV infections but the differences were less evident at 4, 6 and 8 dpi 

between TCV and R6A infections, suggesting that this was not likely a promising 

explanation for the accumulation differences (Figure 4-6).    

We also looked for possible differences in other endogenous silencing suppressors. 

FRY1 and CML38 (At1g76650) have both been classified as endogenous silencing 

suppressors (Anandalakshmi et al., 2000; Gy et al., 2007) and were shown to have 

induced expression by TuMV HC-Pro in a RAV2 dependent manner in A. thaliana 

(Endres et al., 2010).  In the case of TCV infections, we did not observe a consistent 

pattern of induction of these two genes until 8 dpi in systemic tissue.  Interestingly, at 2 

dpi and 6 dpi we did see reduced levels of FRY1 in TCV infections relative to R6A and 

mock.  One additional note to add is that CML38 was significantly upregulated in R6A 

infections versus TCV infections at 24 hrpi (data not shown).  We had another 

calmodulin binding protein (At4g27280) in our microarray data that was consistently 

upregulated in R6A versus TCV infections.  The time course analysis of this calcium-

binding EF hand family protein was very similar to CML38 with a reduction in 

expression relative to mock infections at 2 dpi and an increase in expression in R6A 
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infections at 8 dpi (Figure 4-6).  These results suggest that it would be interesting to do a 

more thorough study on calcium binding proteins to see if other mutants cause altered 

expression of this gene family. 

 I expanded my search of endogenous silencing suppressors that might be affected 

by TCV infections to the 5’ to 3’ exoribonucleases XRN2, XRN3 and XRN4.  Previous 

worked showed that XRN2 and XRN3, along with FRY1, can individually act as post 

transcriptional gene suppressors (Gy et al., 2007).  Other work also demonstrated that 

XRN4 degrades microRNA (miRNA)-guided mRNA cleavage products and also likely 

acts as an endogenous silencing suppressor by degrading RdRp templates (Gazzani et al., 

2004; Souret, Kastenmayer, and Green, 2004).  We saw a similar effect among these 

three genes throughout the time course of the R6A and TCV infections (Figure 4-6).  

There was no altered expression at 2 and 4 dpi and only a minor decrease in expression 

levels at 6 dpi in R6A and TCV infections.  At 8 dpi, we did see an induction of XRN2, 

XRN3 and XRN4 in R6A infections, but we cannot interpret what affect that may be 

having on the differential disease development at this time. 

 

Differences in mi RNA accumulation during TCV infections 

 MicroRNAs (miRNAs) are small encoded RNAs that act as regulators of 

eukaryotic gene expression at the post transcriptional gene level.  Many developmental 

processes are regulated by miRNAs including hormone signaling.  Since we previously 

showed in Chapter 2 that the ability to alter SA pathway signaling through interaction 

with TIP was the main functional difference between R6A and TCV, and that DCL1 

induction was differentially affected when TIP levels were altered (Fig. 4-2), we reasoned 
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that R6A infection might be having an effect on global miRNA levels.  To test this, we 

obtained miRNA probes from Dr. Bin Yu, and tested TCV and R6A infections for 

differential levels of several miRNAs.  The first miRNA accumulation we evaluated was 

miRNA167, which has been shown to oscillate with the diurnal cycle (Sire et al., 2009). 

It also controls patterns of ARF6 and ARF8 expression and regulates both female and 

male reproduction (Wu, Tian, and Reed, 2006).  We found that in the susceptible line 

(Col-0) and in the tip ko line, there was a steady decrease in miRNA167 over time but 

there was no significant difference between wild, mutant or mock infections.  

Interestingly, this effect was less marked in the Di-17 resistant line, but the pattern did 

not indicate any differential effects.  

We also looked that miRNA 171 to determine if the trend we saw in miRNA 167 

was consistent.  The miRNA171 also oscillates diurnally like miRNA167 (Sire et al., 

2009) and it was also shown to have increased accumulation in TMV infected plants 

(Bazzini et al., 2007).  We observed no significant differences in virus infected plants 

compared to mock.  These data taken together permit us to conclude that there was no 

obvious global differences in miRNA levels that would account for the susceptibility or 

symptom differences between TCV and R6A.  It is possible that there might be some 

specific differences in miRNA accumulation which could only be revealed with a more 

extensive miRNA microarray study. 

 

Conclusions 

TCV CP is a multifunctional protein that is involved in both PTI and ETI layered 

defense, as well as being a strong silencing suppressor that prevents the endogenous RNA 
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silencing pathways from degrading TCVs genome.  However, TCV CP mutants that are 

unable to bind to the NAC transcription factor TIP, were shown to have an altered range 

of disease symptoms in the susceptible host and were also able to break resistance in the 

resistant host.  Recently, it was shown that TCV CP mimics host encoded GW containing 

proteins required for RISC assembly and function.  More specifically, a set of two GW 

motifs in the TCV coat protein were shown to be necessary for binding of the CP to 

AGO1 and thus disrupting the antiviral silencing pathway (Azevedo et al., 2010).  What 

makes this interesting in terms of the TCV CP mutants studied in this project, is that the 

GW sequence of TCV CP is located at aa 25-26, in close proximity to the TIP binding 

region of the CP which was mapped with aa #1-25.  Therefore we wanted to see if the 

non-TIP binding mutants had any effect on the silencing pathway induction that could 

shed light on the variability of disease symptoms we observed during infection by the CP 

mutant virus.  

In this chapter, we examined expression in both inoculated and systemic tissue in 

plants with altered levels of TIP gene expression and sought to make a connection 

between the silencing pathway and the role of TIP in the defense responses.  Our results 

were not conclusive and we were therefore not able to draw any definitive conclusions as 

to whether silencing pathway associated genes were being differentially affected by 

wtTCV and the non-TIP binding mutants.  We were however able to demonstrate that the 

differential viral accumulation observed in Col-0 was not due to the altering of the major 

and minor contributors of TCV siRNAs (DCL4 and DCL2, respectively).  

Though much of this work was intended to connect TCV CP ability to bind TIP 

and alterations with the silencing pathway, unfortunately no definitive connections were 
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found at this time.  We did observe some differential gene expression correlating to 

varying levels of TIP expression and altered gene expression in the presence of the 

different mutant viruses that could be a potential area of examination but are currently 

outside the scope of this project. 
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Figure 4-1.  Analysis of DCL gene expression differences during TCV and mutant 

R6A infections in the susceptible host Col-0.  Semi-quantitative RT-PCR analysis of 

the expression of 4 DCL genes in the Arabidopsis thaliana ecotype Col-0 infected with 

TCV (T), R6A (R), or Mock (M).  Samples were collected from systemic tissue at 2 dpi, 

4 dpi, 6 dpi, and 8 dpi.  PCR cycle numbers are shown to the right of each panel. ACT2 

expression was used as an endogenous control. 

 

Figure 4-2. Evaluation of silencing associated pathway gene expression in TCV and 

R6A infections in Col-0 plants with altered levels of TIP expression.  Semi-

quantitative RT-PCR analysis of the expression of 3 DCL genes and DRB4 in transgenic 

lines of A. thaliana ecotype Col-0 with varying levels of TIP expression and infected 

with TCV (T), R6A (R), or Mock (M).  Samples were collected from systemic tissue at 4 

dpi, 6 dpi, and 8 dpi.  Reduced TIP expression (asTIP) and the control (GFP) both had an 

inducible estradiol promoter.  The up-regulated TIP (UpTIP) had an additional copy of 

TIP under the control of the constitutively expressed p35 promoter.  PCR cycle numbers 

are shown to the right of each panel. EF1α expression was used as an endogenous control. 

 

Figure 4-3.  DCL expression in the resistant ecotype Di-17 infected with TCV and 

R6A.  Semi-quantitative RT-PCR analysis of DCL’s expression in wt and transgenic 

lines of A. thaliana ecotype Di-17.  Samples were collected from inoculated tissue at 6 

hrpi and 48 hrpi and from systemic tissue at 2 dpi, 4 dpi, and 8 dpi.  PCR cycle numbers 

are shown to the right of each panel. EF1α expression was used as an endogenous control.  
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Figure 4-4.  Assessment of TCV and CP mutant viruses’ infections on DCL1 and 

DCL4 expression levels in both susceptible (Col-0) and resistant (Di-17) ecotypes of 

A. thaliana. Semi-quantitative RT-PCR analysis of DCL1 and DCL4 expression in (a)wt 

Col-0 and (b)tip ko lines and (c)Di-17.  Tissues samples inoculated with TCV and the CP 

mutants indicated above each panel were analyzed from inoculated leaves (IL) at 48 hrpi 

(lane 1) and systemic leaves (SL at 2 dpi (lane 2), 4 dpi (lane 3), 6 dpi (lane 4), and 8 dpi 

(lane 5).  DCL1 was monitored to assess the effect on miRNA biogenesis and DCL4 was 

monitored to assess the effect on antiviral defense.  PCR cycle numbers are shown to the 

right of each panel.  EF1α expression was used as an endogenous control. 

 

Figure 4-5.  Comparison of temporal accumulation of TCV and CP mutant 

transcripts in silencing pathway defective mutant plants.  Northern analysis of CP 

transcripts accumulation of TCV and CP mutants in A. thaliana ecotype Col-0 ko lines 

that were deficient in key roles in the silencing pathways.  A total of 10ng of virus 

transcript of wt TCV or one of the CP mutants R6A, R8A, D13A, and G14A were 

inoculated onto designated leaves.  Inoculated leaves were collected at 48 hr post 

inoculation (hrpi) and systemic leaves were collected at 2, 4, 6, and 8 day post 

inoculation (dpi) as indicated.  Total RNA (2µg) of each sample was used to evaluate 

viral RNA transcripts levels (described in Materials and Methods section). 

 

Figure 4-6. Evaluation of expression of endogenous silencing suppressor genes 

during TCV and R6A infections in susceptible Col-0.  Semi-quantitative RT-PCR 

analysis was performed on systemically infected tissue to monitor if either TCV (T) or 
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mutant R6A (R) was having a differential effect on the induction of endogenous silencing 

suppressors relative to mock (M) infections.  Samples were collected at 2 dpi, 4 dpi, 6 dpi, 

and 8 dpi.  PCR cycle numbers are shown to the right of each panel.  ACT2 expression 

was used as an endogenous control. 

 

Figure 4-7.  Evaluation of TCV and R6A infections on miRNA167.  MiRNA167 was 

evaluated to see if TCV infection was having an effect on miRNA accumulation across a 

time course looking at both inoculated and systemic tissue.  Samples were collected from 

inoculated tissue at 6 hrpi and 48 hrpi and from systemic tissue at 2 dpi, 4 dpi, and 8 dpi 

from three different plant types (a) wt Col-0, (b) wt Di-17, (c) Col-0 tip ko.  15µg of total 

RNA was used for this analysis with P32
 end labeled probes. 

 

Figure 4-8.  Evaluation of TCV and R6A infections on miRNA171.  MiRNA171 was 

evaluated to see if TCV infection was having an effect on miRNA accumulation across a 

time course looking at both inoculated and systemic tissue.  Samples were collected from 

inoculated tissue at 6 hrpi and 48 hrpi and from systemic tissue at 2 dpi and 4 dpi from 

two different plant types (a) Col-0 and (b) Di-17.  Unless otherwise designated, 15µg of 

total RNA was used for this analysis with P32
 end labeled probes. 

 

 

 

 

 



 

 

187
Figure 4-1.  
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Figure 4-2. 
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Figure 4-3. 
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Figure 4-4. 
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Figure 4-5. 
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Figure 4-6 
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Figure 4-7. 
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Figure 4-8. 
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Table 4-1. List of semi-quantitative PCR primers 

Gene Sequence 

ACT2 Fwd: 5'-GTCTGAGATTTCTCCTGCCG-3' 
 Rev: 5'-CACGGTTAGCCTTTGGGTTA-3' 
DCL1 Fwd: 5'-AGTGGTCTCTAGGGTTTTGCTTGCT-3' 
 Rev: 5'-TCGCATTCGCGGTTTCCACCA-3' 
DCL2 Fwd: 5'-AGACCTCTGCAGAATGCCTGTGGT-3' 
 Rev: 5'-CGCGTCGAGCAAAATGGCAGG-3' 
DCL3 Fwd: 5'-GCACCCGAACCAGCCGTTGA-3' 

  Rev: 5'-CCAGGTGCAGTCCAGCGACG-3' 
DCL4 Fwd: 5'-AGATTGCAGCGAATGAGGTTCTTGT-3' 
 Rev: 5'-AGAGAGGGCCTCAGCAGCCA-3' 
DRB4 Fwd: 5'-TCGAACCAGACCGGATCGCCT-3' 
 Rev: 5'-TCGGGGTTCCATGGGCGACA-3' 
EF1α Fwd: 5'-GCCGAGCGTGAGCGTGGTAT-3' 
 Rev: 5'-TGGCGGCACCCTTAGCTGGA-3' 
RAV2 Fwd: 5'-CTACCGGATGGGAAGCGGCG-3' 
 Rev: 5'-CACTGCCGGTGACGGTGACG-3' 
FRY1 Fwd: 5'-GCTGCTTCACTCGCTGCTCGT-3' 
 Rev: 5'-GCACCAGCGACATGGTCCCAA-3' 
CML38 Fwd: 5'-AGAGGGAAGATTCAGCCGGAGAGA-3' 
 Rev: 5'-TCCAACATCCCATCTCCGTCCGT-3' 
At4g27280 Fwd: 5'-TAACGCTGCGGCGGTTCTGG-3' 
 Rev: 5'-TGTCAATGCCGGCGCGTGAA-3' 
XRN2 Fwd: 5'-TCCTGGCGAGGGGGAACACA-3' 
 Rev: 5'-TGCTGCTCGGTGCCCCTCTT-3' 
XRN3 Fwd: 5'-CCTGGACAGCAGGAGAGGTGCT-3' 
 Rev: 5'-TGGTGGGTTGGGAATCCTCATCT-3' 
XRN4 Fwd: 5'-CGCTTCGCCTGGCAGGTTCA-3' 
 Rev: 5'-GCTGGCCCAGTGGATGAGCG-3' 
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Table 4-2. Probes for Northern Analysis 

TCV CP Rev: 5'-CAGGACCGAGAAGTCAGAGG-3 
 Rev: 5'-GGCCCACCCGACACCACTGG-3' 
 Rev: 5'-CTTGTCTTGACCGAGTTGGT-3' 
miRNA167 5’-ACUUUGACGCUUGUACUAGAU-3’ 
miRNA171 5’-ACUAACUCGGCGCGGUUAUAG-3’ 
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CONCLUDING REMARKS 

Major conclusions 

 In this dissertation, I sought to elucidate the role of the NAC transcription factor, 

TIP, in pathogen trigger immunity (PTI) and effector triggered immunity (ETI) directed 

against Turnip crinkle virus (TCV) infection in Arabidopsis thaliana.  As a starting point, 

I obtained TCV coat protein mutants, previously constructed by Dr. Feng Qu, with single 

amino acid replacement mutations in the region of the CP previously established to 

interact with the TIP protein in vitro.  Several of the mutants I selected for analysis had 

lost the ability to interact with TIP.  One of these mutants that I studied extensively 

(R6A) produced more severe disease in the susceptible Col-0 ecotype and broke 

resistance in the resistant Di-17 ecotype.  Another mutant that had lost ability to bind TIP 

(R8A) also broke resistance but had a systemic hypersensitive response.  Other mutant 

viruses with intermediate phenotypes were also examined including one in which TIP 

binding had been restored (G14A) along with an extreme resistance response in the 

resistant host.  To assess the effect of the mutant on the PTI response, I compared total 

virus concentration of wt and mutant viruses in multiple lines of Arabidopsis thaliana to 

determine the main factors responsible for any differences in the rate of virus 

accumulation.  I also evaluated multiple genes identified as key players in the host 

defense pathways to see if any observed differential gene expression could shed light on 

what was causing the mutant viruses to develop such diverse resistance responses and 

symptom differences.  The results of these studies are detailed in this dissertation and are 

summarized here. 
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1).  TCV coat protein mutant R6A, that lost ability to bind the NAC transcription 

factor TIP, accumulated more slowly than wtTCV and displayed altered defense 

gene expression associated with the innate immune response (PTI) .  Using both 

Northern analysis and ELISA data, I monitored virus accumulation of TCV and the non-

TIP binding mutant R6A to assess if the loss of the ability to bind TIP had an effect on 

replicative efficiency in A. thaliana ecotype Col-0.  Previous work had shown that R6A 

was unable to bind TIP, caused more severe disease in Col-0 and broke resistance in Di-

17.  I demonstrated that TCV was able to accumulate to higher levels early in infection in 

both inoculated and systemic tissue than the mutant R6A.  I also showed that this 

replicative advantage of TCV over R6A was eliminated in plants with either 

compromised salicylic acid (SA) signaling or defective systemic acquired resistance 

(SAR) signaling.  This provided evidence that the inability of R6A to suppress SA 

signaling was likely associated with the loss of its ability to bind TIP.  This conclusion 

was reaffirmed by demonstrating that the TCV and R6A accumulation in plants was also 

not significantly altered in infections of Col-0 plants that constitutively over-expressed 

TIP or in plants in which TIP was transiently down-regulated.  Therefore, my research 

was able to convincingly demonstrate that TCV-CP interaction with the transcription 

factor TIP provided an evolutionary selective advantage to TCV by permitting the virus 

to partially evade the PTI resistance layer by suppressing SA signaling in the susceptible 

host to give it a replicative advantage early in infection. 

 

2).  Turnip crinkle virus coat protein mutants that fail to bind the NAC 

transcription factor TIP also display altered hypersensitive response induction and 
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systemic infection associated with the ETI defense layer.  I further evaluated the 

resistance response observed in Arabidopsis ecotype Di-17 to TCV and the TIP binding 

mutants to determine the possible role of TIP in the ETI response.  Each of the CP TIP 

non-binding mutants examined in this study was shown to be able to invade systemic 

leaves and hence break resistance in Di-17.  However one mutant, R8A, had an unusual 

phenotype in that it caused a systemic hypersensitive response (HR) that is usually 

associated with localization of the infection to the inoculated leaves.  The systemic HR 

response was verified in this study by the demonstration of increased expression of 

NHL10 in systemic leaves.  I also examined another mutant, G14A, in which TIP binding 

activity was restored.  This mutant developed a microHR on inoculated leaves and was 

completely confined to the inoculated leaves.  An article appeared during the course of 

my studies that showed that TIP was not required for the HR response (Jeong et al., 2008). 

My data, however, conflicted with this conclusion in that the results suggested that TIP-

CP interaction seemed to be important in the onset of the ETI based resistance.  I 

completed a thorough analysis of infections of plants in which the R-gene, HRT, has been 

introgressed into a Col-0 tip ko line.  In these experiments I showed that R8A was still 

able to move systemically but it was not able to induce an HR response in the absence of 

the TIP gene.  I was also able to demonstrate that the G14A was not able to induce a 

microHR and was capable of moving systemically in the presence of HRT when the TIP 

gene was absent. These results demonstrate quite convincingly that TIP is indeed playing 

a role in modulating the ETI defense directed against TCV. 
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3).  Altered TIP binding by TCV mutants leads to differences in expression patterns 

of multiple genes involved in defense.  Previous analysis established TIP to be a NAC 

transcription factor with a nuclear localizing signal.  Additional work in our lab showed 

that it is likely sequestered in the cytoplasm by a membrane localization signal and that 

release from the cytoplasm permited nuclear localization and negative regulation of 

defense genes.  To confirm the proposed role of TIP in defense genes regulation, I 

conducted a comparison of gene expression differences of key defense genes in infections 

of TCV and TIP non binding mutant viruses.  A key indicator of the SA pathway, PR1, 

was shown to be differentially induced between TCV and R6A infections in both the 

susceptible and resistant host lines.  I also evaluated WRKY70, which is involved in fine-

tuning the SA-JA response, and WRKY6, which is linked to anti-viral defense.  I 

consistently observed that both of these defense related genes were elevated in R6A 

infections, especially at the later time point of 8 dpi in systemic tissue.  Another 

significantly different finding involved SEN1, which is associated with senescence.  This 

gene was found to be upregulated in R6A infections early in systemic tissue.  I surmise 

that this could account for the increased symptom severity associated with the TIP non-

binding mutants and speculate that it might reflect the outcome of an unregulated innate 

defense response analogous to the inflammatory response in vertebrates.   

 

4). A working model for the role of TIP in the PTI and ETI response against TCV 

infections.  From the data reported in this project, I was able to propose some working 

models for how both the PTI and ETI pathways differentially respond to TCV and non-

TIP binding mutant infections.  I propose that wtTCV infection is facilitated by TCV CP- 
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TIP binding due to enhanced release of the TIP transcription factor and subsequent 

suppression of SA signaling leading to a slower development of SAR.  Because the non-

TIP binding mutants fail to interact with TIP upon initial infection, TIP is not released 

and the PTI induced up-regulation is not suppressed leading to a more rapid and robust 

increase in the initial defense responses resulting in decreased in virus accumulation.  The 

increase in disease symptoms is associated with this elevated defense signaling causing 

an earlier onset of virus associated senescence.  We know, however, that the role of TIP 

in modulating the ETI response is less clear. This is because a previously published a 

report (Jeong et al., 2008) and work from our lab (Kang, personal communication) has 

shown that it is not required for the HR response mediated by HRT.  This would suggest 

that the role of TIP in modulating the basal defense response is in the specific defense 

response that controls the rate of spread of the virus in the infected host.  I attempted to 

address this possibility by exploring a connection between TIP mediated defense 

responses and the silencing pathway, unfortunately I was not able to identify any 

obviously coherent relationship.       

 

Suggestions for future research 

 

1). To confirm which genes are being regulated by TIP.  If TIP is a key player in the 

PTI and ETI in Arabidopsis against TCV, then knowing which genes are under its control 

would contribute greatly to understanding the reason for TCV evolving the ability to bind 

TIP.  This was examined in the presence and absence of virus infection by conducting a 

microarray analysis of wt Col-0 vs tip ko line and wt Col-0 vs constitutively expressed 
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UpTIP.  Experiments like these were attempted prior to obtaining the tip ko line, 

therefore the re-analysis of these lines should prove to be much more informative than 

previous microarray experiments. 

  

2). Determination of the underlying mechanism of how G14A is able to induce a 

microHR and how R8A is able to induce a systemic HR.  In order to understand the 

complex signaling of HR development and virus resistance more comprehensively, it 

would be beneficial to understand how these two phenotypes, extreme resistance vs 

extreme susceptibility, are established.  I have shown that in R8A infection the HR is not 

contained to the inoculated tissue but instead spreads systemically when TIP is expressed.  

And contrary to that extreme HR development, G14A induces a microHR and the virus is 

quarantined to the site of infection with no systemic spread.  However, both R8A and 

G14A act similarly to R6A (as described in chapter 2) when HRT is introgressed into a 

Col-0 tip ko tDNA insertion line.  It would be intriguing to see how the combination of 

TIP, HRT and TCV mutants influences this process.   

 

3). Determine if TIP is affecting the viral accumulation and gene expression during 

infections by viruses other than TCV.  It would be intriguing to know what effect, if 

any, TIP is having on other viruses during infection.  As of now, TCV and CMV are the 

only two viruses known whose viral accumulation increases in the absence of TIP (tip ko) 

at day three post infection.  We know that TIP is a negative regulator of defense and its 

presence and location within the cell during TCV infection has an impact on the defense 
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response and virus accumulation.  Therefore determining how TIP is a key component to 

anti-viral defense would help shed light on the role of this NAC gene. 

 

4). Evaluate if TIP non-binding mutants are still able to interact with AGO1.  As 

mentioned earlier, TCV CP is able to bind to AGO1 via its N-terminal 25-26 GW amino 

acids and disrupt the RISC formation.  This region also overlaps the region that TIP binds 

to on TCV CP (N-terminal aa# 1-25).  Therefore, this could be a contributing cause to the 

differential symptoms that develop between wtTCV and its TIP-non binding mutants.  If 

the binding of AGO1 is affected by TIP binding of the TCV CP then we could 

demonstrate that TIP is indeed having an effect on the silencing pathway. 
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