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Abstract:!: 
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We present a geometric approach to studying greatest accuracy credibility 
theory. Our main tool is the concept of orthogonal projections. We show, for 
example, that to determine the Biihlmann credibility premium is to find the 
coefficients of the minimum-norm vector in an affine space spanned by certain 
orthogonal random variables. Our approach is illustrated by deriving various 
common credibility formulas. Several equivalent forms of the credibility factor 
Z are derived by means of similar triangles. 

Key words and phrases: greatest accuracy credibility theory, Buhlmann cred
ibility premium, credibility factor, affine space, inner product, orthogonal pro
jection, Buhlmann-Straub model 

*Elias S. W. Shiu, Ph.D., AS.A., is Principal Financial Group Foundation Professor of 
actuarial science at the University of Iowa, and visiting Chair Professor of actuarial 
science in the Department of Applied Mathematics, Hong Kong Polytechnic University, 
China. He received a Ph.D. in mathematics from the California Institute of Technology 
in 1975. From 1976 to 1991, he was a professor of actuarial science at the University 
of Manitoba and a consultant for the Great·West life Assurance Company in Winnipeg, 
Canada. He is an editor of Insurance: Mathematics and Economies and a co-editor of 
the North American Actuarial Journal. 

Dr. Shiu's address is: Department of Statistics and Actuarial Science, University of 
Iowa, Iowa City, Iowa 52242-1409, U.S.A. E·mail: eshiu@stat.uiowa.edu 

tFuk Yum Sing, M. Phil., is a visiting lecturer in the Department of Applied Math
ematics, The Hong Kong Polytechnic University. He received his master's degree in 
mathematics from the University of Hong Kong in 1977. He joined the then Hong Kong 
Polytechnic (now The Hong Kong Polytechnic University) in 1976. 

Mr. Sing's address is: Department of Applied Mathematics, The Hong Kong Polytech
nic University, Hung Hom, Hong Kong, CHINA 

*The authors thank the anonymous referees for their insightful comments. Elias 
Shiu gratefully acknowledges the generous support from the Principal Financial Group 
Foundation and Robert J. Myers, F.C.A, F.C.AS., F.S.A. 

197 



198 Journal of Actuarial Practice, Vol. ", 2004 

1 Introduction 

Credibility theory, which is called a cornerstone of actuarial science 
by some authors (Longley-Cook 1962, page 194; Hickman and Heacox 
1999, page 1), is a required part of education syllabi of major interna
tional professional organizations including the Society of Actuaries, the 
Institute and Faculty of Actuaries, and the Casualty Actuarial Society. 
One of the texts recommended by the Society of Actuaries for study
ing credibility theory is Klugman, Panjer, and Willmot (1998). This text 
uses a traditional probability/statistics approach to derive credibility 
formulas. The main purpose of this paper is to present a geometric 
approach to derive and extend some of the results in Klugman, Panjer, 
and Willmot (1998, Sections 5.4.2, 5.4.3 and 5.4.4). 

The main tool used in this paper is the concept of orthogonal projec
tions. Background materials on the inner product, affine space, and in
ner product space of square-integrable random variables are presented 
in Section 2. The assumption of a risk parameter e, conditional on 
which the claims {Xj} are independent, implies that the random vari-
ables {Xj - lE [ Xj Ie]} can be viewed as orthogonal vectors. Section 3 
shows that to determine the credibility premium is to find the coef
ficients of the vector with the smallest length in an affine space con
taining these orthogonal vectors. With the expressions for the optimal 
coeffiCients, Section 4 derives various credibility formulas in the Klug
man, Panjer, and Willmot textbook. For some readers, Section 5 may be 
the most intriguing section in this paper. By means of similar triangles, 
it derives various equivalent forms of the credibility factor Z. Section 
6 presents several more interesting formulas. 

There are many books and survey articles on credibility theory in
cluding: Buhlmann (1970), Kahn (1975), Goovaerts and Hoogstad (1987), 
Heilmann (1988), Straub (1988), Goovaerts et al. (1990), Venter (1990), 
Sundt (1993), Waters (1993), Goulet (1998), Klugman, Panjer, and Will
mot (1998), Herzog (1999), Kaas et al. (2001), and Mahler and Dean 
(2001). These authors use probability theory and other tools to de
velop and explain credibility formulas and concepts. This paper's ap
proach, which de-emphasizes probability theory, may be more appeal
ing to some actuarial practitioners and students. 
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2 Some Mathematical Preliminaries 

2.1 Inner Product Space and Orthogonal Projections 

An inner product space is a vector space V (over the real numbers) 
together with an inner product (also called scalar product or dot prod
uct) defined on V x V. Corresponding to each pair of vectors u and v in 
V, the inner product (u, v) is a real number. The inner product satisfies 
the following axioms: 

1. (u, v) = (v, u); 

2. (eu, v) = e (u, v) for each real number e; 

3. (u + v, w) = (u, w) + (v, w); 

4. (u, u) ~ 0, and (u, u) = ° if and only if u ~O, the zero vector. 

The norm (or length) of a vector u is lIull = v'(u, u). For each pair of 
nonzero vectors u and v, the quantity (u, v) / (1Iullllvll) can be inter
preted as the cosine of the angle between u and v. If (u, v) = 0, we say 
that the vectors are orthogonal and we write u .1 v. Because 

lIu + vl12 = IIul1 2 + IIvll2 + 2 (u, v) , 

the vectors u and v are orthogonal if and only if the Pythagorean equa
tion holds: 

Ilu + vl12 = IIul1 2 + Ilv112. 

Let U be a subspace of an inner product space V and v be an arbitrary 
vector in V. We are interested in finding the vector u in U closest to v 
in the sense that it minimizes the norm IIv - ull. It is not difficult to 
show (Luenberger 1969, page 50, Theorem 1) that, if there is Uo E U 
such that 

Ilv - uoll :5 Ilv - ull for all u E U, 

then Uo is unique. Furthermore, a necessary and sufficient condition 
that Uo E U is a unique minimizing vector in U is th,e following: 

(v - uo) .1 u for all u E U. (1) 

It is easy to see that two conditions, each of which is equivalent to 
condition (1), are 



200 Journal of Actuarial Practice, Vol. 11, 2004 

(v, u) = (uo, u) for all u E U (2) 

and 

IIv - ull 2 = Ilv - uol1 2 + lIuo - ul1 2 for all u E u. (3) 

The vector Uo is called the orthogonal projection of v onto U. 
Consider the special case where U is a one-dimensional subspace 

spanned by a nonzero vector u*. Then it follows from equation (2) that 
the vector Uo is 

(v, u*) * / v u*) u* 
(u*,u*)u = \llvll' lIu*11 Ilvllllu*II' (4) 

With the inner product on the right side of equation (4) being inter
preted as the cosine of the angle between the vectors v and u *, the 
geometric explanation ofthe left side of equation (4) is obvious. 

2.2 Vector with Minimal Norm in an Affine Space 

Let VI, V2, ... , Vm be m vectors in a vector space V. The affine space 
(also called affine set or linear variety) spanned by these vectors is the 

m 
set of vectors of the form 2:: CjVj with real coefficients CI,C2, ... ,Cm 

j=1 
satisfying 

m 

~ Cj = 1. (5) 
j=1 

There is no restriction on the sign of the coefficients. Assuming V is 
an inner product space and the m vectors are nonzero and mutually 
orthogonal, we claim the vector 

with 

m 

W = ~ CjVj, 
j=1 

(6) 

(7) 
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is the vector having the minimal norm in the affine space spanned by 
VI, V2, ... , vm. To see this, we use the assumption that the vectors VI, 
V2, ... , Vm are mutually orthogonal to obtain 

m m 

II L CjVjl12 = L cJIIVjIl2, (8) 
j=I j=I 

which is called Parseval's identity. The optimal coefficients {Cj} are 
then determined by minimizing the right side of equation (8) subject to 
the constraint of equation (5). This optimization problem can be readily 
solved using the method of Lagrange multipliers, and the solution is the 
system of equations (7). 

It follows from equations (6), (7), and (8) that 

1 
IIwl12 = m 1 

k~I IIVkll2 

(9) 

Equation (9) shows that IIwll2 is 11m of the harmonic mean of IIVII1 2, 
Ilv2112, ... , IIvm11 2. 

An alternative approach to deriving the system of equations (7) is to 
show that w is the vector of minimal norm in an affine space iff 

W..L (v-w) (10) 

for all vectors V in the affine space. For further discussion, see Luen
berger (1969, page 64). 

2.3 Inner Product Space of Random Variables 

For a given sample space, the set of square-integrable random vari
ables (random variables with finite variance) forms an inner product 
space (Luenberger, 1969; Small and McLeish, 1994). For each pair of 
square-integrable random variables X and Y, the inner product is de
fined to be (X, Y) = E [XY]. 

Let 9 be a function such that g(Y) is a square-integrable random 
variable. Then, by the law of iterated expectations, 

(X,g(Y» = E[Xg(Y)] 

= E [E [Xg(Y) IY]] 

= E [E [Xly] g(Y)] 

= (E[XIY],g(Y). 
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Hence, (X - IE [X I Y]) .L 9 (Y), and we have the Pythagorean equation: 

IIX - g(Y)1I 2 = IIX -1E[XIY] 112 + IlIE [XIY] - g(Y)11 2. (11) 

The conditional expectation IE [XI Y] is the orthogonal projection of 
X onto the subspace of square-integrable functions of Y. Note that, by 
the law of iterated expectations, 

IIX -IE [XI Y] 112 = IE [IE [(X -IE [XI y])21Y]] = IE [Var(XIY)) . (12) 

If g(Y) is the constant random variable that takes the value IE [X], i.e., if 
g(Y) == IE [X], then equation (11) is the well-known variance decomposi
tion equation 

Var(X) = IE [Var(XIY)] + Var [IE [XIY]]. (13) 

The above can be generalized in various ways. In particular, we have 
Exercise S.83(a) in Klugman, Panjer, and Willmot (1998): 

IIX - g(X) 112 = IIX -IE [XIX] 112 + IlIE [XIX] - g(X) 112 (14) 

where X denotes the random variables Xl, X2, ... , Xn . Also, equations 
(11), (12), and (13) can be generalized as 

(W-J(Y),X-g(Y) = (W-IE[WIYJ,X-IE[XIY]) 

+ (IE[WIY] -J(Y),IE[XIY] -g(Y), 

(W -IE [WIY]'X -IE [XIY]) = IE [COV [W,XIY]] (15) 

and 

Cov [W,X] = IE [Cov [W,XIY)) + Cov [IE [WIY] ,IE [XIY]], 

respectively. 

3 Greatest Accuracy Credibility Theory 

Following Klugman, Panjer, and Willmot (1998, Chapter 5), let Xj 
denote the claim amount in the ph period, j = 1,2,3, .... In greatest 
accuracy credibility theory the objective is to determine the coefficients 
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(XO, (Xli ... , (Xn of the credibility premium for period (n + 1) given the 
losses in the previous n periods, 

so that the norm 

n 

Pn+l = (Xo + 2: (XjXj 
j=l 

IIXn+1 - Pn+lll 

(16) 

(17) 

is minimized. Because Pn+l is a function of the random variables Xl, 
X2, ... , Xn , we have a special case of equation (14): 

IIXn+I-Pn+111 2-;' IIXn+1 -lE[Xn+IIXI,X2, ... ,Xn] 112 

+ IllE[Xn+IIXI,X2, ... ,Xn ] -Pn+111 2. (18) 

Hence, the credibility premium Pn+l can be determined by minimizing 

(19) 

which is not a surprising result. 
As in Section 5.4 of Klugman, Panjer, and Willmot (1998), we assume 

the existence of a risk parameter random variable 8, conditional on 
which the random variables Xl, X2, ... , Xj, ... are independent. We write 

Thus, 

I1n+I(8) = lE [Xn+l 18] = lE[Xn+118,XI,X2, ... ,Xn ] 

because of the conditional independence assumption. By the law of 
iterated expectations, 

lE [l1n+1 (8) lXI, X2, ... , Xn] = lE [lE [Xn+118, Xl, X2, ... , XnI lXI, X2, ... , Xn] 

= lE [Xn+IIXl,X2, .. . ,Xn]. 

This shows that expression (19) is the same as 

IllE[l1n+d8)IXI,X2, ... ,Xn] -Pn+lli. 

Similar to equation (18), we have 
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Illln+d0) - Pn+111 2 = Illln+d0) -lE [lln+d0) lXI, X2, ... , Xn] 112 

+ IllE[lln+d0)IXI,X2, ... ,Xn] -Pn+111 2. (20) 

Therefore, an alternative way to determine the credibility premium is 
to minimize 

(21) 

By equation (15), 

(Xj - Ilj(0),Xk - Ild0») = lE [cov [Xj,XkI0]], 

which is zero because of the conditional independence assumption. 
Hence, the random variables {Xrllj(0)} are mutually orthogonal. This 
fact will playa key role in determining the credibility premium. 

We now follow Klugman, Panjer, and Willmot (1998, Section 5.4) and 
assume that Ilj(0) = 11(0) for j = 1,2,3, ... , and write lE[Il(0)] = 11. 

Thus, lE [Xj] = 11 for j = 1,2,3, ... , and expression (21) becomes 

1111(0) - Pn+III. (22) 

If we fix (Xl, (X2, ... , (Xn, which are the coefficients of {Xj} in Pn+l, 
then the minimum of expression (22) is attained with 

(Xo = lE [11(0) - i (XjXj] = (1 -~ (Xj) 11, 
J~l J~l 

because the mean of a random variable is its orthogonal projection onto 
the subspace of constants. With the definition 

equation (16) becomes 

and, hence, 

n 

Co = 1- L (Xj, 
j~l 

n 

Pn+l = Coil + L (XjXj 
j~l 

n 

(23) 

Pn+l - 11(0) = co[ll- 11(0)] + L (Xj[Xj - 11(0)]. (24) 
j~l 
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It follows from equations (24) and (23) that Pn+l is the credibility pre
mium minimizing expression (22) if and only if Pn+l - 11(8) is the 
minimum-norm vector in the affine space spanned by 11 - 11(8) and 
Xj - 11(8), j = 1,2, ... , n. 

We have pointed out earlier that the {Xj - 11(8)} are mutually or-
thogonal. Also, Xj -11(8) = Xj -JE [Xj18 ] is orthogonal to 11-11(8), 
because 11-11(8) is a function of 8. Therefore, we can apply the system 
of equations (7) to obtain the optimal coefficients: 

1 

(25) 

(26) 

for k = 1,2, ... , n. 
To express the premium in the form Pn+l = (1 - Z)11 + ZX, we set 

(27) 

and 

n XJ" I 2 
_ j=l IIXj -11(8)11 

X = n 1 

k~l IIXk -11(8)11 2 

(28) 

Thus, X is a weighted average of the XjS with the weight attached to Xj 
being inversely proportional to IIXj -11(8) 112. Also, note that 
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11 

Figure 1: Credibility Premium as an Orthogonal Projection 

and, by equation (12), 

IIXj - 11(8)11 2 = E [var [XjI8]]. 

An illustration of this geometric approach to credibility theory is 
shown in Figure 1. The affine space spanned by 11 - 11 (8) and Xj - 11 (8), 
j = 1,2, ... , n, is the linear space spanned by 11 and Xj, j = 1,2, ... , n, 
translated by - 11 (8). The vector Fn+ 1 - 11 (8), being the minimum-norm 
vector in the affine space, is orthogonal to all vectors in the linear space 
spanned by 11 and Xj, j = 1,2, ... , n; see also condition (10). 

4 Applications 

The purpose of this section is to derive some of the results in Klug
man, Panjer, and Willmot (1998, Chapter 5) using the results above. 

(i) In the Biihlmann model as explained in Section 5.4.3 of Klugman, 
Panjer, and Willmot (1998), 

1111 - 11(8) 112 = Var [11(8) 1 = a 
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and 

IIXj -11(e)1I 2 = lE[var[Xjle]] = lE[v(e)] = v. 

Hence, equation (27) becomes 

I! n 
j=l v v n 

Z = 1 n 1 = rn = -v--, 
-+L- -+- a+ n 
a j=l v a v 

and equation (28) is 

n X. n 
L -.l... L Xj 

_ j=l V j=l 

X= I! = 11' 
k=l V 

As a check, we evaluate equation (26), 

1 
~ v Z 1 
()(k=rn= n' 

-+-
a v 

k = 1,2, ... ,n. 

207 

(ii) In the Biihlmann-Straub model as explained in Section 5.4.4 of 
Klugman, Panjer, and Willmot (1998), 

1111 - l1(e) 112 = Var [11(e)] = a 

and 

n 
Hence, with m = L mj, we have from equation (27) 

j=l 

n m· L_1 
j=l V 

Z = 1 n m· 
-+ L_1 
a j=l v 

n 
L mj 

j=l m 
v n =-v-
- + L mj - +m 
a j=l a 
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and from equation (28) 

n m·X· L _J_J 
_ j=l V 

X= n m. 
L _J 

j=l V 

m 

As a check, we evaluate equation (26), 

k=l, ... ,n. 

(iii) In Example 5.40 of Klugman, Panjer, and Willmot (1998), 

11/.1 - /.1(8) 112 = Var [/.1(8» = a 

and 

Hence, with 

we have 

and 

m* am* 
Z= 1 = l+am*' 

-+m* 
a 

n m·X· L J J 
_ j=l V + wmj 

X= "-:-:-----'-f. mk 
k=l v +wmk 

n m'X' L J J 
j=l V + wmj 

m* 
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As a check, we evaluate equation (26), 

~ v +wmk 
()(k = 1 

-+m* a 

= Z_l_. mk 
m* v +wmk' 

k = l,oo.,n. 

(iv) In Example 5.41 of Klugman, Panjer, and Willmot (1998), 
n 

m = I mj, IIp- p(8)11 2 = Var[p(8)] = a + blm and 
j=l 

IIXj - p(8) W = lE [var(Xj 18)] = w + v Imj. 

Hence, 

and 

m* 
Z= 1 

---+m* 
a+blm 

n m·X' I J J 
_ j=l V + wmj 
X=~---

m* 

(a + blm)m* 
1 + (a + blm)m*' 

As a check, we evaluate equation (26), 

&.k = _-,-v=-+--,-,w_m~k_ = Z _1_ . mk 
1 m* v +wmk' 

-~-+m* 
a+blm 

k=l,oo.,n. 

209 

(v) To solve Exercise 5.51 in Klugman, Panjer, and Willmot (1998), 
consider Xj I {3 j in the exercise as Xj in Section 3 above. 

(vi) To solve Exercise 5.56 in Klugman, Panjer, and Willmot (1998), 
consider Xj ITj in the exercise as Xj in Section 3 above. 

5 Similar Triangles 

Similar triangles are now used to derive several equivalent forms 
for the credibility factor, Z, and, hence, several equivalent forms for 
the credibility premium, 
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11(8) 

Figure 2: Three Similar Right-Angled Triangles 

Pn+1 = ZX + (1 - Z)I1. 

It follows from equation (29) that 

and 

Z = IIPn_+ 1 -1111 
IIX -1111 

1 _ Z = IIX - Pn+11l 
IIX -1111 . 

(29) 

(30) 

(Thus, Z is the ratio of the standard deviation of Pn +1 to that of X.) 
Now, equation (29) is equivalent to 

Pn +1 -11(8) = Z[X -11(8)) + (1 - Z)[I1-I1(8)]. 

As X is an average of {Xj}, we have IE [XI8] = 11((0), from which it fol
lows that [X -11(8) J and [11-11(8)] are orthogonal to each other. Figure 
2 illustrates the geometric relationships among the random variables; 
note that Figure 2 is a slice in Figure 1. 

There are three similar right-angled triangles in Figure 2. We shall 
show that each triangle gives a different form for Z (and for 1 - Z). In 
each triangle, there are two acute angles complementary to each other. 
We shall also show that the square of the cosine of one of the acute 
angles gives the value of the credibility factor Z, while the square of 
the cosine of the other is 1 - Z. 

The three triangles yield three equivalent sets of ratios, 
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IIX - JlII: IIX - Jl(8) II : IIJl(8) - JlII 
= IIX-Jl(8)1I: IIX-Fn+lll: IIJl(8) -Fn+lll 

= IIJl(8) - JlII: IIJl(8) - Fn+lll : IIFn+l - JlII. (31) 

In particular, we have the equation 

IIX - JlII IIJl(8) - JlII 
=" , 

IIJl(8) - JlII II Pn+l - JlII 

which applied to equation (30) yields 

and 

From (30) and (31), we also obtain 

Z = IIFn+l - Jl(8) 112 
IIX - Jl(8) 112 • 

Corresponding to equations (33), (34), and (35), we have 

and 

respectively. 

1- Z = IIX::- Jl(8)11 2 

IIX - Jll1 2 ' 

1 _ Z = IIJl(8) - Fn+1112 
IIJl(8) - Jll1 2 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 

(38) 

The usual credibility premium equation is obtained by applying equa
tions (33) and (36), 
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p _ 1IJ.l(8) - J.l1l 2 X IIX - J.l(8) 112 
n+l - IIX - J.l1l2 + IIX _ J.l1l2 J.l (39) 

_ Var [J.l(8)] X E [Var [XI8]] 
- Var [X] + Var [X] J.l. 

(40) 

The credibility premium can thus be viewed as a weighted average of X 
and J.l, with weights distributed according to the Pythagorean equation 

or its equivalent variance-decomposition equation 

Var [X] = E [Var[XI8]] + Var [E(XI8)]. 

Equation (39) follows from equations (6) and (7), with m = 2, Vl 
[X - J.l (8)] , and V2 = [J.l - J.l(8)]. 

The cosine of the angle between [J.l(8) - J.l] and [X - J.l] is the cor
relation coefficient between J.l(8) and X, which we call PX,Jl(El)' Hence, 
it follows from equation (33) that Z is the square of the correlation 
coefficient, i.e., 

Z - 2 
- PJl(El),X' 

and the credibility premium is 

~ 2 - 2 
Pn+l = PJl(Ell,XX + (1 - PJl(El),X)J.l. 

Also, it follows from equation (34) that the credibility factor Z is the 
square of the correlation coefficient between J.l(8) and Fn+1, 

Z = p2 A • 

Jl(El),Pn +! 

We remark that 

Cov [X, J.l(8)] = COV [E [XI8], J.l(8)] = 1IJ.l(8) - J.l1l 2, 

which may be viewed as a consequence of equation (2). Also, 

[ 
~ ] ~ 2 COV Pn+l,J.l(8) = IIPn+l - J.l1I . 



Shiu and Sing: Credibility Theory and Geometry 213 

6 Miscellaneous Equations and Remarks 

We conclude this paper with some equations that readily follow from 
the discussion above. These equations provide further insights for un
derstanding credibility theory. 

From the ratios (31) we can obtain 

11J.1(8) - J.1I1IIX - J.1(8) II = 11J.1(8) - Pn+lIIIIX - J.111. (41) 

If we divide both sides of equation (41) by 2, then the two sides of the 
equation represent two ways for finding the area of the largest triangle 
in Figure 2. Another consequence of the ratios (31) is 

1 1 1 
1IJ.1(8) - Pn+1 1l2 = 1IJ.1(8) - J.1112 + IIX - J.1(8) 11 2 ' 

which also follows from equation (9). 
From equation (32) we see that Var [J.1(8)] is the geometric mean of 

Var [X] and Var [Pn +1 J. Let us rewrite equations (33) and (34) as 

Var [J.1(8)] = ZVar [X] 

and 

var[Pn+d = ZVar[J.1(8)], 

respectively. Applying equation (42) to (43) yields 

Var [Pn +1 ] = Z2Var [X] , 

which is also a consequence of equation (30). 

(42) 

(43) 

Recall that Pn + 1 is the solution in minimizing (17). Thus, it follows 
from equation (3) that 

IIXn+l -J.111 2 = IIXn+1-Pn +1 1l2 + IIPn+1 -J.111 2, , 

or 

Also, if we write expression (17) as 
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IIXn+l - [ZX + (1 - Z)I1] II = II (Xn+l - 11) - Z(X - 11) II, 

we see from the left side of equation (4) that the coefficient of (X - 11) 
is 

Z _ (Xn+l - I1,X - 11) _ Cov [Xn+l'X] 
- (X - I1,X - 11) - Var(X) 

(44) 

Equation (44) can be found in Fuhrer (1989, equation 1). Fuhrer 
(1989, page 84) derived the equation without assuming the existence of 
the risk parameter 8; he also made some interesting remarks concern
ing the equation. A parameter-free approach to credibility theory can 
be found in Jones and Gerber (1975) and in Section 6.3 of Gerber (1979). 
Jones and Gerber (1975) also provided an appendix entitled "credibility 
theory '" in the light of functional analysis." 

For further discussions on credibility and geometry, we refer the 
reader to De Vylder (1976a, 1976b, 1996), Gisler (1990), Hiss (1991), 
Jones and Gerber (1975), Norberg (1992), and Taylor (1977). We also 
recommend the book by Small and McLeish (1994). 
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