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A linear extension of a partially ordered set is simply a total ordering of the poset that

is consistent with the original ordering. The linear extension diameter is a measure of how

different two linear extensions could be, that is, the number of pairs of elements that are

ordered differently by the two extensions. In this dissertation, we calculate the linear extension

diameter of grids. This also gives us a nice characterization of the linear extensions that are

the farthest from each other, and allows us to conclude that grids are diametrally reversing.

A linear extension of a poset might be considered “good” if incomparable elements appear

near to one another. The linear discrepancy of a poset is a natural way of measuring just

how good the best linear extension of that poset can be, i.e.

ld(P ) = min
L

max
x || y
|L(x)− L(y)|,

where L ranges over all linear extensions of P mapping P to {1, 2, . . . , |P |}. In certain

situations, it makes sense to weaken the definition of a linear extension by allowing elements

of the poset to be sent to the same integer, while still requiring that x < y implies L(x) < L(y).

This is known as a weak labeling. Similar to linear discrepancy, the weak discrepancy measures

how nicely we can weakly label the elements of the poset. In this dissertation, we calculate the

weak discrepancy of grids, the permutohedron, the partition lattice, and the two-dimensional

Young’s lattice.
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Chapter 1

Introduction

This dissertation focuses on the study of partially ordered sets, specifically their linear

extensions and weak labelings. Special consideration is given to the grid poset. We are

interested in how different two linear extensions can be, and in how good a weak labeling can

be.

A linear extension L of a finite poset P is a total ordering of the elements that respects

the initial partial order. So x <P y in the poset implies x <L y in the linear extension. How

different can two linear extensions be? In other words, what is the greatest number of pairs of

elements that could be ordered differently in two linear extensions? This parameter is known

as the linear extension diameter, led(P ), because it is the diameter of the linear extension

graph, G(P ), of the poset. The vertices of this graph are all linear extensions of P . If we think

of a linear extension as a listing of the elements of P from smallest to largest, then two linear

extensions are adjacent in G(P ) if and only if they swap two adjacent elements. For example,

when P is an antichain (where any two elements are incomparable), any permutation is a

linear extension and the distance between π and σ is the number of inversions of πσ−1, i.e.

the number of pairs (i, j) with 1 ≤ i < j ≤ |P | and πσ−1(i) > πσ−1(j). As an additional
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example, Figure 2.17 shows the grid poset 2× 3 and its linear extension graph G(2× 3).

The graph G(P ) was introduced in a 1991 paper by Pruesse and Ruskey [18], and its

diameter was first studied in 1999 by Felsner and Reuter [8]. The linear extension diameter

of the Boolean lattice, 2n, was not computed until 2011 though, when Felsner and Massow

[7] developed a new method that involved looking at sub-cubes of the lattice. In this thesis, I

generalize their method to extend their results to grids, i.e. products of chains.

The linear extension graph of a grid is a natural and interesting graph to study. While

this graph contains a Hamiltonian path [22], and its minimum and maximum degrees are

known [6], there are still some mysteries to solve. For example, we do not know the number

of vertices. Brightwell and Tetali [4] gave an asymptotic count for the case of the Boolean

lattice, namely

log2 |V (G(2n))|
2n

= log2

(
n

bn/2c

)
− 3

2
log2 e+O

(
log2 n

n

)
,

using the entropy method of Kahn [15].

Although it is a very difficult problem to generate all of the linear extensions of a poset,

and thereby count how many exist, it is easy to find a single (or small number) of linear

extensions. For this reason, one may ask whether certain linear extensions could be deemed

“better” than other ones. Perhaps I need a linear extension for some application, but I would

like to find a good one (or a fair one).

This concept was first introduced in a 2001 paper by Tanenbaum, Trenk, and Fishburn

[21], and is known as linear discrepancy. For this definition, we need to think of a linear

extension as a listing of the elements of the poset, so that L(X) = 1 if X is the smallest

element in the linear extension and L(Y ) = |P | if Y is the largest element.

Definition 1.1. The linear discrepancy is the minimum over all linear extensions of the
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poset of the distance between incomparable elements, i.e.

ld(P ) := min
L

max
X ||Y
|L(X)− L(Y )|,

where L ranges over all linear extensions.

Tanenbaum, Trenk, and Fishburn proved that computing the linear discrepancy of a poset

is an NP-complete problem. In their 2001 paper, they also show some basic relationships

between linear and weak discrepancy, which had been somewhat studied previously in a 1998

paper by Gimbel and Trenk [9]. Weak discrepancy is similar to linear discrepancy, except that

now elements are allowed to be assigned the same labels (while preserving the requirement

that X < Y in P implies L(X) < L(Y )). In this latter paper, Gimbel and Trenk show that

there is a polynomial time algorithm to compute the weak discrepancy of a poset, and that

weak discrepancy is a comparability invariant.

More recently, a 2010 paper of Howard and Young [14] characterizes the posets that have

equal linear and weak discrepancy, and a 2008 paper of Choi and West [5] makes progress in

the direction of computing the linear discrepancy of grids by focusing on asymptotics for three

and four-dimensional grid posets where the dimensions have the same size. In this thesis, we

compute the weak discrepancy of arbitrary-dimensional grid posets, where the dimensions

may have different sizes. We also compute the weak discrepancy of the permutohedron, the

partition lattice, and the two-dimensional Young’s lattice.

To begin, we will introduce the standard notation to be used throughout this thesis, along

with definitions and other background material. We will first discuss the linear extension

diameter problem in Chapter 3. In Section 3.1, we will introduce the proof methods used

for general grids by focusing on the ternary lattice. Then, in Section 3.2, we will prove the

main result for this chapter, calculating the linear extension diameter of grids. Building on
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this foundation, we will also characterize all diametral pairs of G(P ) in this section, and

ultimately, we will show that all grids have the property of being diametrally reversing.

Chapter 4 focuses on calculating the weak discrepancy of various classes of posets. Section

4.1 presents our results on grid posets, and Section 4.2 uses these results to show how we can

calculate the weak discrepancy of the permutohedron. In Section 4.3, we calculate the weak

discrepancy of the partition lattice by proving a more general result about graded posets

with long incomparable chains. Finally, in Section 4.4, we compute the weak discrepancy

of a two-dimensional Young’s lattice and present ideas of how to generalize this result to

higher-dimensional Young’s lattices.

Both chapters conclude with ideas for future work.
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Chapter 2

Background, Definitions, and

Notation

2.1 Partially Ordered Sets

Definition 2.1. A partially ordered set, or poset, P is a set of elements with an ordering ≤

such that for all x, y, z ∈ P , we have

1. x ≤ x (reflexive),

2. x ≤ y and y ≤ x imply x = y (antisymmetric),

3. x ≤ y and y ≤ z imply x ≤ z (transitive).

Specifically, note that there are usually elements x, y ∈ P with x 6≤ y and y 6≤ x. We call

such pairs of elements incomparable, and denote this by x || y.

Whether we are aware of it or not, we encounter partially ordered sets on a daily basis. A

set of tasks to be completed is partially ordered by the fact that some tasks must be done
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before others. The teams in a little league could be partially ordered by record if we allow ties.

Employees in a company are partially ordered by their upward progress along the corporate

ladder. As a final example, patients waiting in an emergency room can be partially ordered

by the severity of their conditions.

Keeping in mind the previous examples, there are some natural properties we would like

a poset to have. If the Huskers are a better team than the Eagles, who are a better team

than the Tribe, then we ought to consider the Huskers a better team than the Tribe. This

motivates the transitivity requirement. In addition, we would like to avoid any catch-22’s. It

doesn’t do us a lot of good to consider scheduling tasks when task A must be done before

task B, but task B must be done before task A. I need to put on clean clothes before I go to

the laundromat, but I need to do laundry before I can put on clean clothes. So, we require

the poset to be antisymmetric. Similarly, when combined with transitivity, the antisymmetry

property helps us avoid longer cyclic catch-22’s. The Huskers are a better team than the

Eagles, who are a better team than the Tribe, who are a better team than the Huskers.

If the poset does not have any incomparable elements, then it is totally ordered and we

call it a chain.

Definition 2.2. A poset is a chain if it is totally ordered.

On the other end of the spectrum, we have antichains, where all of the elements are

incomparable.

Definition 2.3. A poset A is an antichain if x || y for all x, y ∈ A.

Before proceeding, we should clarify that whenever we use the word comparable, it is

with respect to the poset, where one element is less than the other. This is different from

the standard English usage where comparable means similar (and is usually pronounced by

stressing the first syllable). For example, in standard English, one might say that a broken
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toe is comparable to a dislocated finger. But in our ER poset (see 2.6), it is clear that these

are incomparable, because one is not more severe than the other. On the other hand, a

broken toe and a heart attack are comparable ailments.

We often represent a poset with a Hasse diagram, which is a visual representation of

the relations in the poset. In theory, we could draw a directed edge from x to y whenever

x ≤ y, but this would be wasteful. We can take advantage of the transitivity property in

Definition 2.1, and only draw an edge from x to y if y directly covers x, i.e. x ≤ y and there

are no elements z with x ≤ z ≤ y. Furthermore, we can consider drawing these edges upward,

instead of orienting them, because antisymmetry together with transitivity guarantees we

will never get stuck having to draw an upward edge down towards an element.

Definition 2.4. For x 6= y in a poset P , we say x < y if there is an upward path from x to

y in the poset’s Hasse diagram.

a b

c d

e

Figure 2.1: The Hasse diagram of a poset on five elements.

In Figure 2.1, we see that a ≤ c because there is an upward edge from a to c, but we also

have that a ≤ e because we can follow an upward path from a to c to e. In all, this diagram
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gives us the following relations:

a ≤ c, a ≤ e, a ≤ d, b ≤ d, b ≤ e, c ≤ e, and d ≤ e.

For clarity, Figures 2.2 and 2.3 show the Hasse diagrams of a chain on five elements and

an antichain on five elements.

a

b

c

d

e

Figure 2.2: A chain with 5 elements.

a b c d e

Figure 2.3: An antichain with 5 elements.

Figures 2.4, 2.5, and 2.6 show possible Hasse diagrams for three of the real-life examples I

described, to which I will refer back throughout this thesis.

Definition 2.5. Two elements x, y are said to have a meet, called x ∧ y, if there is a unique

maximal element z such that z ≤ x and z ≤ y. Two elements x, y are said to have a join,

called x ∨ y, if there is a unique minimal element w such that x ≤ w and y ≤ w.

Definition 2.6. A poset P is called a lattice if it has the additional properties that for all

x, y ∈ P , x and y have both a meet and a join. It is a distributive lattice if the joins and meets

distribute over one another, i.e. if for all x, y, z ∈ P , we have x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z),

or equivalently x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).
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Bears
4−1−1

Sluggers
3−1−2

Astros
4−2−0

Rays
3−2−1

Twins
2−2−2

Salt Dogs
1−5−0

Redhawks
0−4−2

Figure 2.4: Little League Rankings given by wins–losses–ties, where A ≥ B if A has at least
as many wins as B and at most as many losses.

The poset in Figure 2.7 is not a lattice for two reasons. First, a and b do not have a

join—there are no elements in the poset greater than or equal to both a and b. Second, they

do not have a meet because there are two maximal elements that are less than or equal to

them both, namely c and d. It is easy to see that a finite lattice must have unique minimal

and maximal elements; hence, the posets in Figures 2.4, 2.5, and 2.6 are not lattices. However,

this is not a sufficient condition: the poset in Figure 2.8 takes the previous poset and adds

an element that is the join of a and b, yet even now it is not a lattice because the elements a

and b still do not have a meet. (Similarly, c and d do not have a join.)

Definition 2.7. If a poset has a unique minimal element, then the atoms are the elements

that cover the minimal element.
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Carly
CEO

Rob
R&D Head

Adam
Admin/Financial

Ashley
Accounting

Steve
Stats

Larry
Legal

Figure 2.5: Employees in a company, ordered by supervisors.

Flu

Flu w/high fever

Broken Toe Dislocated Finger

Broken Leg

Severe Allergic Reaction Heart Attack

Figure 2.6: Patients in an ER waiting room, ordered by severity of their conditions.
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a b

c d

e

Figure 2.7: A poset that is not a lattice.

f

a b

c d

e

Figure 2.8: A poset with unique minimal and maximal elements that is not a lattice.

Because every finite lattice has a unique minimal element, it also has a set of atoms. If

every element is the join of a set of atoms, the lattice is known as a finite atomic lattice.

Nevertheless, posets that are not lattices may still have atoms, such as the posets in Figures 2.7
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and 2.8.

Definition 2.8. A poset is graded if its Hasse diagram can be drawn so that each element

appears on a level, and the edges only transverse consecutive levels. The rank of a graded

poset is the minimum number of levels needed to grade the poset.

Every example given so far has been a graded poset, and each has been drawn in a way

so that the levels are easy to see. The poset in Figure 2.9 is not graded; we must have at

least two levels between a and e so that the edges from a to b, b to c, and c to e transverse

different levels, but then we are stuck placing d on one of these two levels, too many levels

away from either a or e. This is also an example of a non-distributive lattice. (For instance,

b ∧ (c ∨ d) = b and (b ∧ c) ∨ (b ∧ d) = c.)

a

b

c d

e

Figure 2.9: A poset that is neither graded nor distributive.
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2.2 Divisibility Poset and Grids

The real-life posets described in the previous section are convenient to think about since we

already have some intuition for how to work with them. Unfortunately, though, they do not

have a lot of structure. We have no idea what the ER poset will look like on a given night at

the hospital. There may be many maximal or minimal elements; in fact, on occasion it may

be disconnected. So we will need to focus instead on mathematical posets which provide lots

of structure, and the goal is that one day we will be able to use all we have learned from these

posets to be able to reason about an arbitrary poset, akin to the real-life ones we encounter.

Often in mathematics, the first natural example to consider is the set of aptly named

natural numbers. If we consider this set with the usual meaning of ≤, then we have a totally

ordered set, which is not a terribly interesting poset on its own. So instead we will consider

the poset where x ≤ y if and only if x divides y; this is an infinite poset called Div(N). One

can check that this poset is a graded, distributive lattice with a unique minimal element

and infinitely many atoms. For each natural number, we get a finite poset corresponding

to that number which we will call Div(n), the divisibility poset of n; more precisely, Div(n)

is the restriction of Div(N) to all numbers which divide n. For some numbers, specifically

prime powers, we still get a chain, but for many numbers, we reap a more complex poset.

For examples, see Figures 2.10 and 2.11.

Consider the divisibility poset of N = pα1
1 p

α2
2 . . . pαn

n , where the pi are distinct primes

and the αi are natural numbers. You may notice that the specific primes {p1, . . . , pn} that

appear in the factorization do not affect the structure of the poset. The divisibility poset of

18 = 2 · 32 is isomorphic to the poset in Figure 2.10. The structure of the poset is completely

determined by the exponents {α1, . . . , αn}.

Specifically, Div(N) is the set of elements {px11 p
x2
2 . . . pxnn : 0 ≤ xi ≤ αi for 1 ≤ i ≤ n}
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1

5 7

35 49

245

Figure 2.10: Div(245)

where

px11 p
x2
2 . . . pxnn ≤ py11 p

y2
2 . . . pynn

if and only if xi ≤ yi for all i ∈ [n]. Figures 2.10 and 2.12 show the divisibility poset of 245;

in the latter, each element has been factored.

Furthermore, because the specific primes do not affect the structure of the poset, we

can consider each element px11 p
x2
2 . . . pxnn as simply an ordered n-tuple of its exponents,

(x1, x2, . . . , xn). We will often shorten this n-tuple as x1x2 . . . xn when it makes sense to do

so. Figures 2.11 and 2.13 show the divisibility poset of 30; in the latter, each element is

represented by its exponent tuple.

As might be expected, we switch to studying this family of posets where we are no longer

concerned with the specific primes. The set of posets with n-tuple elements where each entry
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1

2
3

5

6
10

15

30

Figure 2.11: Div(30)

xi in the tuple is bounded between 0 and mi − 1 is precisely the set of n-dimensional grids.

Definition 2.9. The grid poset m1 × · · · × mn is the product of n chains of lengths

m1,m2, . . . ,mn, respectively. We set m1 × · · · × mn := {(xi)n1 : 0 ≤ xi < mi} where

x1x2 . . . xn ≤ y1y2 . . . yn if xi ≤ yi for all i ∈ [n]. For the duration of this thesis, we will refer

to this grid as P (m1, . . . ,mn), or simply P .

Once again, we may occasionally omit the parentheses and commas when writing elements

of P if the context is clear. Writing X = (xi)
n
1 and Y = (yi)

n
1 , we have that the grid is a

distributive lattice with

X ∧ Y = (min(xi, yi))
n
1

and

X ∨ Y = (max(xi, yi))
n
1 .
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5070

5170 5071

5171 5072

5172

Figure 2.12: Div(245), redux.

000

100
010

001

110
101

011

111

Figure 2.13: Div(30), redux.
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We write 0̄ for (0, . . . , 0) and let d(X, Y ) := |{i : xi 6= yi}| be the Hamming metric.

An important and often studied subset of grids is the set of Boolean lattices, 2n. This

is sometimes referred to as the subset lattice because of the canonical bijection between

binary vectors of length n and subsets of [n]. Figure 2.13 is the Boolean lattice 23 which is

isomorphic to the subset lattice in Figure 2.14.

∅

{1}
{2}

{3}

{1, 2}
{1, 3}

{2, 3}

{1, 2, 3}

Figure 2.14: The subset lattice of [3].

2.3 Linear Extensions and Labelings

Let us return to our three real-life examples of posets and consider what properties they

might motivate us to study. In the little league example in Figure 2.4, we could think about

how to rank the teams; perhaps we are deciding how to seed them for a tournament. Of

course, we would want our ranking to respect our partial ordering, and so this is exactly

a question of totally ordering our poset. When we expand our poset by adding relations
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(that respect the antisymmetry condition) until we arrive at a chain, we are creating a linear

extension of a poset.

Definition 2.10. A linear extension of a poset P is a total ordering of the poset that respects

the initial partial ordering.

Remark 2.11. There is a natural correspondence between total orderings of a poset P and

bijective maps φ from P to {1, 2, . . . , |P |} such that X < Y in P implies φ(X) < φ(Y ). We

will often think about linear extensions in this way, as a linear labeling of the poset where

each element receives a unique integer label and larger elements in P have larger labels.

For the little league teams in Figure 2.4, this means that the best team, the Bears, will

be assigned the largest label, 7. So in fact, we are ranking them from worst to best. One

possible linear extension of this poset is shown in Figure 2.15.

In this example, we are fixed in our choices of labels for the Bears, Rays, and Twins. We

have a choice whether the Sluggers or the Astros should be ranked higher, and whether the

Salt Dogs or the Redhawks should be ranked higher. In all, this will give us four different

possible linear extensions.

In general, how many linear extensions of a poset are there? This is actually a very

difficult question. In a larger poset, we may have many pairs of incomparable elements, but

these pairs may be related in intricate ways. For example, the number of linear extensions of

the Boolean lattice is unknown, although good asymptotics are known. (See Chapter 1.)

A second interesting question asks how different two linear extensions can be. If I rank

the little league teams and you rank the little league teams, how much could we possibly

disagree? In other words, how many pairs of teams (A,B) could we have where I thought

team A was better than team B, but you thought team B was better than team A? This is



19

Bears
4−1−1

Sluggers
3−1−2

Astros
4−2−0

Rays
3−2−1

Twins
2−2−2

Salt Dogs
1−5−0

Redhawks
0−4−2

7

5 6

4

3

2 1

Figure 2.15: A linear extension of seven little league teams, represented by a linear labeling.

precisely what the linear extension diameter measures, which will be introduced in the next

section and studied in more detail in Chapter 3.

Finally, which of these linear extensions is the best? How do we determine what best

even means, or how to measure the “fairness” of a linear extension? Once we decide what

this could mean, can we find the best linear extension in a nice way? What does it look like?

These are questions that can be studied by considering the linear discrepancy of a poset,

which I will define and discuss in Section 2.5.

My work in this area has consisted of studying not the linear discrepancy, but the weak

discrepancy of a poset. For this, we need to consider a weak labeling.

Definition 2.12. A weak labeling, L, of a poset P is a mapping from P to Z so that if x < y

in P , then L(x) < L(y).
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Notice that this is a relaxation of the requirements of a linear labeling, as now our labels

may be used multiple times. Hence, every linear labeling is also a weak labeling.

Suppose that we are working with the employee poset in Figure 2.5 and we are asked to

assign pay grades to each worker in the company in such a way that each person’s supervisor

has a higher pay grade than himself or herself. For instance, we want Carly to have a higher

pay grade than Rob, but we don’t much care if Steve makes more money than Larry or Larry

makes more money than Steve. In fact, we don’t mind if they earn the same salary. For

this situation, it would make more sense to use a weak labeling than a linear labeling, and

we would actually be interested in finding a “good” weak labeling. An example of a weak

labeling for the employee poset is given in Figure 2.16.

Carly
CEO

Rob
R&D Head

Adam
Admin/Financial

Ashley
Accounting

Steve
Stats

Larry
Legal

3

22

111

Figure 2.16: Assigning pay grades to employees in a company using a weak labeling.

Is this a “fair” weak labeling? How do we measure its fairness and determine if there are

other weak labelings that are more fair? These questions are considered by studying the

weak discrepancy of the poset. An introduction to weak discrepancy is in Section 2.5 and my
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results appear in Chapter 4.

2.4 Linear Extension Graph

When examining how different two linear extensions of a poset P can be, it will be helpful to

visualize their similarities and differences using the linear extension graph of P . An example

of a linear extension graph is given in Figure 2.17.

Definition 2.13. The linear extension graph of P , denoted G(P ), is the graph that has as

its vertices all linear extensions of P , and two vertices are adjacent if and only if the linear

extensions differ in an adjacent transposition. The linear extension diameter of P , denoted

led(P ), is the diameter of G(P ). A diametral pair of vertices (u, v) of a graph G is a pair of

vertices such that distG(u, v) = diam(G).

a

c

e

b

d

f

P

abcdef

acbdef

acebdf

abcedf

acbedf

G(P )

Figure 2.17: The grid 2× 3 and its linear extension graph.

A diametral pair (L1, L2) of vertices in G(P ) would be two linear extensions that are the

most different. By definition, their distance in the graph is equal to the linear extension

diameter of P .

In Figure 2.17, the linear extensions are written as words, so that abcdef represents the

linear extension a < b < c < d < e < f . We see that led(2 × 3) = 3 and there is a single
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diametral pair, namely the linear extensions abcdef and acebdf . For the little league poset in

Figure 2.4, the linear extension diameter is 2, as discussed previously, and a diametral pair of

linear extensions is shown in Figure 2.18.

Bears
4−1−1

Sluggers
3−1−2

Astros
4−2−0

Rays
3−2−1

Twins
2−2−2

Salt Dogs
1−5−0

Redhawks
0−4−2

7

5 6

4

3

2 1

Bears
4−1−1

Sluggers
3−1−2

Astros
4−2−0

Rays
3−2−1

Twins
2−2−2

Salt Dogs
1−5−0

Redhawks
0−4−2

7

6 5

4

3

1 2

Figure 2.18: A diametral pair of linear extensions for the Little League poset.

In the linear extension on the left, we have chosen to rank the Astros higher than the

Sluggers and the Salt Dogs higher than the Redhawks. Perhaps we decided that the number

of wins should be a tie breaker; the Astros have won more games than the Sluggers so they

should be considered a better team. On the right, we have decided that the number of losses

is more important. The Sluggers have only lost one game while the Astros have lost two. In

each case, our ranking of the Salt Dogs and Redhawks is consistent with our philosophy for

how to rank the Sluggers and Astros.

With grids, we can develop a similar philosophy by prioritizing the dimensions. We must

always start with 0̄ as the lowest element. The next element will be an atom, but which

atom? Conversely, which atom will appear greatest in our linear extension? Once we have an

ordering on the atoms, an atomic ordering if you will, we can generate a linear extension
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that is consistent with our priorities in the atomic ordering. In Chapter 3, we will see that

these linear extensions are exactly what we are looking for.

Formalizing the previous paragraph, let P = P (m1, . . . ,mn). Suppose σ = σ1 . . . σn is a

linear ordering of [n], the index set of P . We define Lσ to be the σ-lexicographic order of

P (a linear extension), namely (xi)
n
1 < (yi)

n
1 in Lσ if and only if there exists k ∈ [n] with

xσi = yσi for i > k and xσk < yσk . Hence, we call the σn index the σ-most important index,

and the σ1 the σ-least. Let rev(σ) := σn . . . σ1 be the reversed priority ordering.

Example 2.14. Consider the grid 2× 2× 3, and let σ = 321. Then Lσ is the ordering

000 < 001 < 002 < 010 < 011 < 012 < 100 < 101 < 102 < 110 < 111 < 112

and Lrev(σ) = L123(= Lid) is given by

000 < 100 < 010 < 110 < 001 < 101 < 011 < 111 < 002 < 102 < 012 < 112.

Example 2.15. Consider the grid 2× 2× 3, and let σ = 213. Then Lσ is the ordering

000 < 010 < 100 < 110 < 001 < 011 < 101 < 111 < 002 < 012 < 102 < 112

and Lrev(σ) = L312 is given by

000 < 001 < 002 < 100 < 101 < 102 < 010 < 011 < 012 < 110 < 111 < 112.

Figure 2.19 shows the grid P (2, 2, 3). The linear extension L213 begins by moving in the

second dimension to 010, then the first to 100. The next smallest element is the join of these

two atoms, namely 110. From there, L213 moves to the next layer in the third dimension
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012

102

112

000

010

100

Figure 2.19: The grid 2× 2× 3.

and builds it up in the same way as the first. We can see that for this σ, we begin with the

front-most square and work our way to the back.

For contrast, the linear extension L312 begins by moving in the third dimension to 001

and then to 002. Next, it jumps to the first dimension to 100, then 101 and 102. Only then

do we move to the second dimension and repeat the process. For this ordering, we first build

up the bottom layer and then move upwards.

A reversal between two linear extensions L and L′ is a pair of elements (x, y) such that

L(x) < L(y) but L′(x) > L′(y). We let R(L,L′) be the set of reversals between L and L′.

The following is a standard result.

Lemma 2.16. The number of reversals between L and L′ equals the distance between L and

L′ in G(P ), i.e. |R(L,L′)| = distG(P )(L,L
′).

Proof. It is easy to see that |R(L,L′)| ≤ distG(P )(L,L
′) =: d. Take a path of length d between

L and L′. Each edge in this path can account for at most one reversal. By the end of the
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path, every reversal between L and L′ must have been accounted for by at least one edge.

Hence, the inequality follows.

To prove equality, we need to show that an efficient path exists; in other words, we need

to show that given two distinct vertices, L and L′, there is always an edge that is incident to

L that leads to a vertex L̂ such that distG(P )(L̂, L
′) < d.

Suppose not. Say that L : x1 < x2 < · · · < xN where the xi are elements of the poset,

and suppose that none of the pairs of adjacent elements are reversals. So, L′(xi) < L′(xi+1)

for all i ∈ [N − 1]. By transitivity, this means L = L′, which contradicts that these were

distinct vertices.

To wrap up this section, we will define a grid restriction that will be useful in the proof

of Theorem 3.18.

Definition 2.17. Let f : [n]→ P(N0) be a function such that f(k) ⊆ {0, 1, 2, . . . ,mk − 1}.

In other words, f is a function that specifies a restriction of each index k to a subset of

{0, 1, . . . ,mk − 1}. We define the sub-grid P [f ] to be {(xk)n1 ∈ P : xk ∈ f(k) for all k}.

Similarly, we write L[f ] for the restriction of a linear extension L of P to P [f ].

Note that P [f ] is isomorphic to the lattice |f(1)| × · · · × |f(n)|. Figure 3.2 shows an

example where P = P (3, 3, 3), f(1) = f(3) = {0, 1, 2}, and f(2) = {1}. If we let L = L321,

then L[f ] would be the linear extension

010 < 011 < 012 < 110 < 111 < 112 < 210 < 211 < 212.
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2.5 Linear, Weak, and t-Discrepancy

Recall the definitions of linear and weak labelings from Section 2.3. We can also define a

weak labeling in the following way.

Definition 2.18. A weak labeling L on a poset P is a strictly increasing function from P to

Z, i.e. it satisfies the following properties:

1. L(x) ∈ Z for all x ∈ P , and

2. x < y ⇒ L(x) < L(y).

Occasionally, it makes sense to give a poset a labeling that is not quite a linear labeling,

but is stronger than a weak labeling. Consider the ER poset in Figure 2.6. A linear labeling

would be akin to ranking the patients by who should be seen first by a doctor, who second,

etc. But if our hospital employs more than one doctor, and hopefully it does, then we should

be able to reuse labels so that multiple patients are seen simultaneously. This is good news

for our heart attack patient and the one with the severe allergic reaction!

However, we certainly cannot treat arbitrarily large numbers of patients simultaneously,

so a weak labeling does not accurately model this situation. Instead, if we have t doctors on

call, we would like to be able to reuse a label at most t times. See Figure 2.20 for an example

of a labeling where we let t = 2.

Definition 2.19. A t-labeling of a poset P assigns each element x ∈ P an integer label,

L(x), so that

1. if x < y in P then L(x) < L(y), and

2. each label is used at most t times.
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Flu

Flu w/high fever

Broken Toe Dislocated Finger

Broken Leg

Severe Allergic Reaction Heart Attack

44

33

22 1

Figure 2.20: Patients in an ER waiting room, given a 2-labeling.

Notice that this is a generalization of both linear and weak labelings, as a linear labeling

is simply a t-labeling where t = 1, and a weak labeling is a |P |-labeling (or an ∞-labeling).

For the remainder of this thesis, the word labeling without any qualifiers could refer to any

of these three types.

Now, what makes a linear, weak, or t-labeling a good labeling? We could spend the

rest of this thesis entering into a complex philosophical argument about fairness, but we’ll

leave this to the BCS system debaters. Instead, we will consider a labeling “fair” if it gives

incomparable elements labels that aren’t too far apart. If I were a patient in the ER waiting

room, I would be understanding that those with more severe conditions ought to be treated

before myself. But I might be less understanding if I have to wait for a long time when no

one in the room has a more severe problem than my own.

This measure is called the discrepancy of a labeling, and we can consider this measure for

our three types of labelings.
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Definition 2.20. The discrepancy of a labeling L, called ∆(L), is the maximum difference

between the labels of two incomparable elements, i.e.

∆(L) = max
x || y
|L(x)− L(y)|.

If there are no incomparable elements, then ∆(L) = 0. We say that x and y are a discrepant

pair of L if and only if x || y and |L(x)− L(y)| = ∆(L).

Figure 2.21 shows the grid P (2, 4) with a weak labeling. The discrepancy of this labeling

is 2, which is achieved by the discrepant pair 10 and 03.

00
0

01
1

02
21

10

2

11

3

12

03
3

4

13

Figure 2.21: The grid 2× 4 with a weak labeling.

Definition 2.21. The weak discrepancy of a poset, wd(P ), is the minimum over all weak

labelings of the discrepancy of the labeling, i.e.

wd(P ) := min
L

weak labeling

∆(L) = min
L

weak labeling

max
x || y
|L(x)− L(y)|.
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The linear discrepancy is the minimum over all linear labelings of the discrepancy of the

labeling, i.e.

ld(P ) := min
L

linear labeling

∆(L).

The t-discrepancy is the minimum over all t-labelings of the discrepancy of the labeling, i.e.

dt(P ) := min
L

t-labeling

∆(L).

For the grid in Figure 2.21, have we achieved an optimal labeling? In other words, is the

weak discrepancy of this grid equal to 2 or can we do better with a different labeling? This

labeling is a natural first labeling to try, as it simply labels by level, summing the entries of

each element. However, it is not optimal.

We can bring the labels of our discrepant pair, 10 and 03, closer together by shifting all the

labels of the upper level (where x1 = 1) up by 1. This does not cause any other incomparable

pair of elements to move more than 1 apart. So this new labeling has discrepancy 1, an

improvement. See Figure 2.22 for this new labeling.

This is an optimal labeling, because it is not difficult to show that wd(2×4) ≥ 1. Consider

the element 10 which is incomparable to the chain 01 < 02 < 03. The three elements in this

chain must be assigned different labels by the definition of a weak labeling. So, the best we

can do, with respect to having a low discrepancy, is to assign the element 10 the same label

as the element 02, and ensure that the elements 01 and 03 each have labels that are one away.

In general, how are these three discrepancies related? For a chain Cn, wd(Cn) = ld(Cn) =

dt(Cn) = 0 as there are no incomparable elements. In Figure 2.23, we have a poset where the

three values differ when t = 2.

An easy result from [12] is the following.
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00
0

01
1

02
22

10

3

11

4

12

03
3

5

13

Figure 2.22: The grid 2× 4 with an optimal weak labeling.

a b c

d

1 1 1

2

Weak Labeling

a b c

d

2-Labeling

1 1 2

3

a b c

d

Linear Labeling

1 2 3

4

Figure 2.23: A poset where wd(P ) = 0, d2(P ) = 1, and ld(P ) = 2.

Proposition 2.22. For any poset P and any t ∈ N, we have ld(P ) ≥ dt(P ) ≥ wd(P ).

Proof. For the first inequality, consider a linear labeling L with ∆(L) = ld(P ). Because

t ≥ 1, L is necessarily a t-labeling. Hence, dt(P ) ≥ ∆(L) = ld(P ). Similarly, any t-labeling is

necessarily a weak labeling, so dt(P ) ≥ wd(P ).

For grids, it is straightforward to determine what the discrepant pairs of elements look



31

like, so we will include this result of ours here.

Proposition 2.23. Let P = P (m1, . . . ,mn) for some mi ∈ N. Given any labeling L, if x

and y are a discrepant pair for L with L(y) > L(x), then

x = 0 . . . 0α0 . . . 0

and

y = (m1 − 1) . . . (mi−1 − 1)(α− 1)(mi+1 − 1) . . . (mn − 1)

for some index i and value α. We refer to an element like x as ∆i,α where i is the non-zero

index, and to its discrepant partner y as ∆i,α.

Proof. Let x, y be a discrepant pair for L with L(y) > L(x). Because x || y, there exists an i1

such that xi1 > yi1 and an i2 such that xi2 < yi2 . Suppose there exists another j 6= i1 with

xj > 0. Define

x̂k =

 xk if k 6= j

xk − 1 if k = j
.

Consider L(y) − L(x̂). (Note that x̂ || y because x̂i1 = xi1 > yi1 and x̂i2 ∈ {xi2 , xi2 − 1} so

x̂i2 < yi2 .) Since x̂ < x, we have

L(y)− L(x̂) ≥ L(y)− L(x) + 1.

This is a contradiction. Hence, for only k = i1 do we have that xk > 0. (In particular, only

xi1 > yi1 .)

At this point, we have shown that x = ∆i,α for some i, α. By similar methods, it is seen

that y = ∆i,α.
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Chapter 3

Linear Extension Diameter

In this chapter, we investigate the linear extension diameter of grids. We use methods that

were developed in [7] to calculate the linear extension diameter of the Boolean lattice, which

was a problem that originated in [8]. In Section, 3.1, we look at the specific case of the

ternary lattice, which will help illuminate the methods used in Section 3.2 to prove results

about arbitrary grids.

3.1 Ternary Lattice

The ternary lattice 3n is the n-dimensional grid P (3, . . . , 3), i.e. each element is a vector

{0, 1, 2}n where x1 . . . xn ≤ y1 . . . yn if and only if xi ≤ yi for all i ∈ [n].

Recall from Section 2.4 that Lσ is the σ-lexicographic ordering of P , and that (x, y) is a

reversal between L and L′ if L(x) < L(y) and L′(x) > L′(y). Reversals are ordered pairs of

elements from the poset; hence, to study the linear extension diameter, we will first define a

partition of 3n × 3n that will make it easier to count the number of pairs that are reversals.

We will exhibit a simple way of determining the number of reversals that occur in each part,
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and will use this to calculate the distance between Lσ and Lrev(σ). Then we will show that the

pairs of linear extensions {(Lσ, Lrev(σ))} are exactly the diametral pairs of the linear extension

graph of the ternary lattice.

Fix S, T ∈ 3n. We define a difference vector S4T := D = (d1, . . . , dn) where dk := |sk−tk|,

and an intersection vector S ∧ T := I = (i1, . . . , in) where ik := min{sk, tk}. Also, it will be

helpful to specify the indices where S and T differ, so let SNT := {k : sk 6= tk}.

For this section, it may be clearer to think of σ as a permutation of [n] where σi = σ(i),

instead of an atomic ordering. Then, we say i <σ j if σ−1(i) < σ−1(j). For S, T ∈ 3n, we

write S <σ T if and only if sm < tm where m = maxσ{SNT}.

Example 3.1. If n = 5, σ = 41325, S = (2, 1, 2, 0, 1), and T = (1, 0, 2, 1, 1), then S4T =

(1, 1, 0, 1, 0), SNT = {1, 2, 4}, S ∧ T = (1, 0, 2, 0, 1), m = 2, and T <σ S.

This process of comparing elements creates a linear extension of 3n by putting everything

in σ-lexicographic order. This linear extension is identical to Lσ.

The following definition will give our partition of 3n × 3n. It is a partition because two

elements of our poset will have a unique intersection and symmetric difference, as 3n is in

fact a lattice.

Definition 3.2. For I,D ∈ 3n with ik + dk ≤ 2 for all k ∈ [n], define

CD,I := {(S, T ) : S, T ∈ 3n, S4T = D, S ∧ T = I}.

Notice that the set CD,I is in bijection with the “antipodal corners” of the interval

[I,D + I], namely the set

{A ∈ 3n : ak = ik or ak = ik + dk},
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because each of these elements A appear as an S in an ordered pair of CD,I . In Figure 3.1,

we see the “sub-cube” CD,I where D = (1, 1, 0, 1, 0) and I = (1, 0, 2, 0, 1) as in Example 3.1.

Here, S = (2, 1, 2, 0, 1) and T = (1, 0, 2, 1, 1) are antipodal corners.

11211

10201

1021111201
20201

2021121201

21211

Figure 3.1: The “sub-cube” C11010,10201 in 35.

Also, there is a natural bijection between {X ∈ 3n : xk ∈ {0, dk}} and (I+X,D+I−X) ∈

CD,I , so for many purposes we can assume that I = 0̄. A simple result that follows from this

fact is the following lemma.

Lemma 3.3. Each class CD,I contains exactly 2|D| ordered pairs, where |D| = |{k : dk > 0}|.

Proof. Because of the previous bijection, for each positive entry of D, we can choose whether

to include it in X or not, i.e. we have 2|D| choices.

Furthermore, we can determine the exact number of reversals that appear as an ordered

pair in a particular CD,I simply by considering the size of D.

Lemma 3.4. Let D, I ∈ 3n with D + I ∈ 3n, and let σ be a linear ordering of [n]. Then,

|CD,I ∩R(Lσ, Lrev(σ))| =

 0 if |D| ≤ 1

2|D|−2 otherwise
.
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Proof. Note that S <rev(σ) T if and only if sm̂ < tm̂ where m̂ = minσ(SNT ).

If |D| = 0, then CD,I = {(I, I)}, and so there are no reversals. If |D| = 1, then

CD,I = {(I,D+ I), (D+ I, I)} and we have that I < D+ I in 3n, so there can be no reversals

here either.

Now suppose that |D| ≥ 2. Then m′ := minσ{k : dk > 0} 6= maxσ{k : dk > 0} =: m. A

pair (X, Y ) corresponds to a reversal if and only if ym′ = im′ and ym = im + dm (and hence

xm′ = im′ + dm′ and xm = im). Each other non-zero index in D can be included in X or Y so

there are 2|D|−2 such sets.

Lemma 3.5. There are a total of 1
4
· 3n · (3n − 2n− 1) reversals between Lσ and Lrev(σ).

Proof. Lemma 3.4 tells us the number of reversals in a given corner set CD,I , given the

number of positive entries in D. So, how many corner sets are there with a certain number

of positive entries? We will show there are 3n
(
n
j

)
legal pairs (D, I) with |D| = j.

We first pick the j indices to be positive in D. For the positive entries of D, we have

three choices for how these indices differ in our ordered pairs:

1. dk = 1, ik = 0,

2. dk = 1 = ik, or

3. dk = 2, ik = 0.

For the indices not chosen to be positive in D, we still have three choices, ik = 0, 1, 2. Overall,

there are
(
n
j

)
ways to pick the positive elements in D, and then 3n ways to assign the dk, ik.

From Lemma 3.4, we sum over all j ≥ 2 to get

3n
n∑
j=2

(
n

j

)
2j−2 =

1

22
· 3n · (3n − 2n− 1)
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total reversals between Lσ and Lrev(σ).

Now that we have counted the distance between Lσ and Lrev(σ), we will show that this

is the greatest number of reversals that can occur between two linear extensions of 3n. To

do so, we will show that each corner set CD,I contributes the greatest number of reversals

possible for these particular linear extensions.

Theorem 3.6. The linear extension diameter of the ternary lattice is led(3n) = 1
4
· 3n · (3n −

2n− 1).

Proof. We have led(3n) ≥ 1
4
· 3n · (3n − 2n− 1) by Lemma 3.5.

Let L1 and L2 be two linear extensions of 3n. We will show each CD,I can contribute at

most 2|D|−2 reversals between L1 and L2.

Fix CD,I . In fact, without loss of generality, let I = 0̄. So now, for X ∈ 3n such that

xi = 0 or di for all i, we have (X,D −X) ∈ CD,I . Say X is “down” in a linear extension if

X < D −X. Let F1 be the family of such X which are down in L1, and F2 those down in

L2. Then (X,D −X) ∈ CD,I yields a reversal between L1 and L2 exactly if X is down in L1

but not in L2. Since X down in Li implies that D −X is not down in Li, we can find an

upper bound for |F14F2|, and the number of reversals will be half this quantity.

Because the elements X and D −X in this CD,I all have indices that are 0 or di, there is

a natural bijection between these elements and subsets of D. Note also that these sets are

downwards closed, because of transitivity. So, we can use Kleitman’s Lemma (see Theorem

3.12) to deduce that |F1| · |F2| ≤ 2d|F1 ∩ F2|.

Now, for all Li and X, either X or D −X is down in Li. Hence, |F1| = |F2| = 2d−1. So,

|F1 ∩ F2| ≥ 2d−2 (again by Kleitman’s Lemma).

Also, if X is down in both L1 and L2, then D−X is down in neither, i.e. X ∈ F1 ∩F2 if

and only if D −X /∈ F1 ∪ F2. Therefore, |F1 ∩ F2| = |{D −X : X ∈ F1 ∪ F2}|.



37

Because there are 2d choices for X, we have

|F14F2| = 2d − |F1 ∩ F2| − |{D −X : X ∈ F1 ∪ F2}| ≤ 2d − 2d−2 − 2d−2 = 2d−1.

As discussed above, every reversal is counted twice in F14F2: if (X,D−X) is a reversal,

then both X and D −X are in the set F14F2. Therefore, there are at most 2d−2 reversals

per CD,I .

For a fixed permutation σ of [n], Lσ and Lrev(σ) form a diametral pair of 3n. This gives

us n!
2

diametral pairs, and we will show this is all of them.

Definition 3.7. Let J ⊆ [n] be a set of free indices and f : [n]\J → {0, 1, 2} be any function

that fixes all non-free indices. Define the sub-grid G[J, f ] to be the sub-poset on the elements

{X : xi = f(i) for all i /∈ J}. Similarly, if L is any linear extension of 3n, define L[J, f ] to

be the restriction of L to G[J, f ]. Finally, if CD,I is a corner set of 3n, let CD,I [J, f ] be the

restriction of CD,I to G[J, f ].

This is a more specific version of Definition 2.17 that has been customized to fit this

section. Figure 3.2 shows the two-dimensional sub-grid of 33 where J = {1, 3} and f(2) = 1.

The following lemma shows that diametral pairs of linear extensions restrict to diametral

pairs when certain indices are fixed.

Lemma 3.8. Let J ⊆ [n] and f : [n] \ J → {0, 1, 2}. If L, L̄ is a diametral pair of 3n, then

L[J, f ] and L̄[J, f ] are a diametral pair of G[J, f ].

Proof. We need to show each CD,I [J, f ] contributes exactly 2|D|−2 reversals between L[J, f ]

and L̄[J, f ].

Fix D, I ∈ 3n such that D|[n]\J = 0, I|[n]\J = f , and dj + ij < 3 for j ∈ J .
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Figure 3.2: The sub-grid of 33 where the second index is fixed as 1.

Consider CD,I of the original, unrestricted grid. This CD,I contains 2|D|−2 reversals, but

since the restriction to this sub-grid keeps the linear extensions in the same order and the

elements of the pairs in CD,I are chosen specifically to all be in G[J, f ], these are also all

reversals in CD,I [J, f ].

Using the previous lemma, we can now show that if two linear extensions are a diametral

pair for 3n, then they must be generated by the σ-lex and rev(σ)-lex ordering for some σ. As

a basic introduction to the structure of the proof, let us first look at the specific case of the

three-dimensional ternary lattice 33, and assume we have already proved the result for the

two-dimensional ternary lattice.

Suppose L1 and L2 are two linear extensions of 33 where there are exactly 1
4
· 33 · (33 − 2 ·

3− 1) = 135 reversals that occur between L1 and L2. Define σ to be the order of the atoms

in L1; let’s use the example that σ = 123 so that in L1 we have 100 < 010 < 001.

To begin, consider restricting to the sub-grids where J = {1, 2} and f(3) = i for
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i ∈ {0, 1, 2}. The previous lemma and induction tell us that in L1 we have

000 < 100 < 200 < 010 < 110 < 210 < 020 < 120 < 220,

001 < 101 < 201 < 011 < 111 < 211 < 021 < 121 < 221,

and

002 < 102 < 202 < 012 < 112 < 212 < 022 < 122 < 222.

Consequentially, to show that L1 = Lσ is simply a matter of showing that 220 < 001 and

221 < 002 in L1. We’ll come back to this, but we need to work with L2 a little first. We

can show that the atoms of L2 are in rev(σ)-lex order by considering the corner sets where

I = 000 and D = d1d2d3 where two of the dk are 1 and one is 0. Because L1 and L2 achieve

the linear extension diameter of 33, we know from Theorem 3.6 that each of these corner sets

must contribute exactly 1 reversal. But this means that the two atoms must appear in a

different order in L2. Hence, the atoms are all reversed in L2.

As a detailed example, consider when D = 101. Then,

C101,000 = {(000, 101), (100, 001), (001, 100), (101, 000)}.

We know that (000, 101) and (101, 000) cannot be reversals because their order is fixed by

the poset structure. We also know that (001, 100) can’t be a reversal because 001 > 100 in

L1. So (100, 001) is a reversal and that means 001 < 100 in L2. Continuing this process with

the other possibilities for D shows that we must have 001 < 010 < 100 in L2.

Then, similar to what we did for L1, we can consider the sub-grid where f(1) = j ∈ {0, 1, 2}
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to see that in L2 we have

000 < 001 < 002 < 010 < 011 < 012 < 020 < 021 < 022,

100 < 101 < 102 < 110 < 111 < 112 < 120 < 121 < 122,

and

200 < 201 < 202 < 210 < 211 < 212 < 220 < 221 < 222.

Finally, consider the corner set where D = 221 and I = 000. For reference,

C221,000 = {(000, 221), (200, 021), (020, 201), (220, 001),

(001, 220), (201, 020), (021, 200), (221, 000)}.

This CD,I must contribute 2 reversals. Because of the structure of the poset, (000, 221) and

(221, 000) cannot be reversals. We also know that 020 < 001 in L1 by restricting the first

entry to 0, and so 020 < 001 < 201 in L1. Similarly, 020 < 200 in L2 so 020 < 200 < 201 in

L2. Hence, (020, 201) and (201, 020) cannot be reversals.

Because 001 < 010 < 220 in L2, we have (220, 001) is not a reversal. Because 200 < 020 <

021 in L1, we have (021, 200) is not a reversal. Hence, both (200, 021) and (220, 001) must be

reversals. So in particular, we have 220 < 001 in L1. We can use similar methods to show

221 < 002 in L1, and 022 < 100 and 122 < 200 in L2.

The proof of the following theorem for the n-dimensional ternary lattice is similar to this

example.

Theorem 3.9. If L1, L2 is a diametral pair of linear extensions of 3n and σ is the order of

the atoms in L, then L1 = Lσ and L2 = Lrev(σ).
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Proof. We’ll induct on n. For n = 1, we have only one linear extension, to which L1 and L2

must both be equal.

For n > 1, first consider CD,I where I = 0̄ and D has two nonzero entries, say da = db = 1.

Call the atom with a 1 in index a va and the atom with a 1 in index b vb. Without loss of

generality, suppose a <σ b. Because |D| = 2, this corner set must contribute 1 reversal, but

(0̄, D) and (D, 0̄) aren’t reversals, and the ordering of the atoms in L1 tells us that (vb, va)

can’t be a reversal. So (va, vb) is a reversal, and we have that vb < va in L2. Hence, all of the

atoms appear in reversed order in L2.

Fix f(σn) = i where 0 ≤ i ≤ 2. By the lemma, the other entries of L1 must be in

σ-lex order. Similarly, fixing f(σ1) = j ∈ {0, 1, 2} shows that the other entries of L2 are in

rev(σ)-lex order. To conclude that L1 = Lσ and L2 = Lrev(σ), we need to show that for all

0 < i ≤ 2, we have

(2)(i− 1)(2) < 0̄i0̄

in L1, where the i is in position σn, and

(2)(j − 1)(2) < 0̄j0̄

in L2, where the j is in position σ1.

Now, consider CD,Ii where D = 2(1)2 and Ii = 0̄(i−1)0̄ (the 1 of D and the nonzero entry

of Ii are in position σn). For any X ∈ 3n with xl ∈ {0, 2} for l 6= σ1 or σn, and xσ1 = 0 = xσn ,

we can consider fixing f(σ1) = 0. Then by induction we have X + Ii < 0̄i0̄ in L1 where i is

in position σn, and so X + Ii < Xc + Ii in L1, where the complement is with respect to D,

i.e. Xc = D −X.

For this same X, we can also show that X + Ii < Xc + Ii in L2 by the following. By

induction and fixing f(σn) = 0, we have that X + Ii < 0̄10̄ in L2 where the 1 is in position
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σ1. Therefore, X + Ii < Xc + Ii in L2 and (X + Ii, X
c + Ii) cannot be a reversal between L1

and L2.

This also shows that (Xc + Ii, X + Ii) cannot be a reversal for any such X. Our corner

set CD,I contains 2n ordered pairs and we have just shown that 2n−2 cannot be reversals.

For each remaining X with xi ∈ {0, di}, the pairs (X + Ii, X
c + Ii) and (Xc + Ii, X + Ii)

cannot both be reversals as either X + Ii < Xc + Ii in L1 or vice-versa. In fact, exactly half

of these must be reversals, since we need 2n−2 reversals to appear in this CD,I . In particular,

since 0̄i0̄ < 2̄(i − 1)2̄ in L2 (with i in position σn), we must have that (2(i − 1)2, 0̄i0̄) is a

reversal. Hence, 2(i− 1)2 < 0̄i0̄ in L1 for each i.

Using similar methods, we can show that we must have 2(j − 1)2 < 0̄j0̄ in L2 (where j is

in position σ1).

3.2 General Grids

In this section, we calculate the linear extension diameter of general grids, where each

dimension can have size larger than 3, and the dimensions may all differ in sizes. Many of

the proofs will be similar to those of the ternary lattice, except for Theorem 3.18 which was

much harder to generalize. Surprisingly, the generalization we eventually developed gives a

much easier proof of Theorem 3.9 and only becomes complicated when mσ1 or mσn equals 2.

In this section, we also change from using the vectors D and I to describe the symmetric

difference and intersection between vectors in the corner sets. Instead, it will be more

straightforward to consider these sets as intervals [B, T ] of the poset. The transition between

these notations is easy: B = I and T = I +D.

Further, in Section 3.2.3, we prove that grids have the additional property of being

diametrally reversing by characterizing the critical pairs.
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3.2.1 Calculating the Diameter

We will first define a partition of P 2. We will use this partition to show that the pairs of

linear extensions {(Lσ, Lrev(σ))} are exactly the diametral pairs of the linear extension graph

of the grid. Then, we will calculate the distance between them.

Definition 3.10. Let B, T ∈ P with B ≤ T . The corner set with bottom B and top T is

the set of pairs CB,T = {(X, Y ) ∈ P 2 : X ∧ Y = B and X ∨ Y = T}. In other words, CB,T is

the set of ordered pairs of opposite corners of the “sub-cube” with minimum element B and

maximum element T . This sub-cube is P [f ] where f(k) = {bk, tk} (see Definition 2.17).

3547

1247

32471547
1249

32491549

3549

Figure 3.3: The “sub-cube” C1247,3549 in 104.

Note that |CB,T | = 2d(B,T ). (Recall that d(B, T ) := |{k : bk 6= tk}|.) Also,

{CB,T : B, T ∈ P,B ≤ T}

is a partition of P 2 since (X, Y ) ∈ CB,T if and only if B = X ∧ Y and T = X ∨ Y .

For any two linear extensions L1 and L2, the set {CB,T ∩ R(L1, L2) : B, T ∈ P,B ≤ T}

is a partition of the reversals between them. We will now show that when L1 = Lσ and

L2 = Lrev(σ), the sets CB,T ∩R(L1, L2) have a predictable cardinality.
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Lemma 3.11. Let B, T ∈ P with B ≤ T , and let σ be a linear ordering of [n]. Then,

|CB,T ∩R(Lσ, Lrev(σ))| =

 0 if d(B, T ) ≤ 1

2d(B,T )−2 otherwise
.

Proof. Fix d = d(B, T ). If d = 0, then B = T and our sub-cube is simply a point, so there

can be no reversals. If d = 1, then our sub-cube is a chain with two elements, and the

ordering is forced for all linear extensions, so once again there can be no reversals.

Now suppose d ≥ 2. Let i be the σ-most important index where B and T differ, and

similarly j the σ-least important. Because B and T differ in at least 2 indices, we have that

i 6= j. Also, we see that X <σ Y if and only if xi < yi, and X <rev(σ) Y if and only if xj < yj .

So a pair (X, Y ) is a reversal exactly if xi < yi and xj > yj . Therefore, two of our choices are

fixed but the other d− 2 are free, and we have 2d−2 reversals in each CB,T with d ≥ 2.

In fact, we will show that for any linear extensions L and L′ and any B ≤ T with B, T ∈ P ,

the corner set CB,T cannot intersect R(L,L′) in a larger set than this. Therefore, Lσ and

Lrev(σ) must be a diametral pair. To do so, we will need the following theorem.

Theorem 3.12 (Daykin’s Extension of Kleitman’s Lemma [2]). If P is a distributive lattice

and A,B ⊂ P, then

|A||B| ≤ |A ∨B||A ∧B|,

where A ∨ B = {a ∨ b : a ∈ A, b ∈ B} and A ∧ B = {a ∧ b : a ∈ A, b ∈ B}. In particular, if

A,B ⊆ P = P (m1, . . . ,mn) are downsets, then

|A||B| ≤ |P ||A ∩B|

since A ∧B = A ∩B.



45

Lemma 3.13. Let L1 and L2 be two linear extensions of P . For every B, T ∈ P with B < T

and d(B, T ) ≥ 2,

|CB,T ∩R(L1, L2)| ≤ 2d(B,T )−2.

In addition, CB,T cannot contain any reversals when d(B, T ) < 2.

Proof. As in the proof of Lemma 3.11, the claim is immediate when d(B, T ) < 2.

Suppose d(B, T ) = d ≥ 2, and fix T . Since CB,T = B+C0̄,T−B, we may assume that B = 0̄

without loss of generality. So now, CB,T = {(X,T −X) : xk = 0 or xk = tk}. Following [7],

we say X is “T -down” in a linear extension if X < T − X in the extension. Let F1 be

the family of such X which are T -down in L1, and F2 those that are T -down in L2. Then

(X,T −X) ∈ CB,T is a reversal between L1 and L2 exactly if X is T -down in L1 but not in

L2. Since X T -down implies that T −X is not, we have that (X,T −X) is a reversal if and

only if X ∈ F1 \ F2 and T −X ∈ F2 \ F1. So, we want to find an upper bound for |F1 M F2|,

which will be twice the number of reversals.

Note that these are downsets, because of transitivity. So, Theorem 3.12 shows that

|F1||F2| ≤ 2d|F1 ∩ F2|. Now, for all Li and X, either X or T −X is T -down in Li. Hence,

|F1| = |F2| = 2d−1. So, |F1 ∩ F2| ≥ 2d−2 by the previous inequality. Also, if X is T -down in

L1 and L2, then T −X is T -down in neither, i.e. X ∈ F1∩F2 if and only if T −X /∈ F1∪F2.

Therefore, |F1 ∩ F2| = |{T −X : X ∈ F1 ∪ F2}|.

Because there are 2d choices for X, we have

|F1 M F2| = 2d − |F1 ∩ F2| − |{T −X : X ∈ F1 ∪ F2}| ≤ 2d − 2d−2 − 2d−2 = 2d−1.

As noted previously, each reversal (X,T − X) counts doubly towards the cardinality of
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|F1 ∩ F2|. Hence,

|CB,T ∩R(L1, L2)| = 1

2
|F1 ∩ F2| ≤ 2d(B,T )−2.

Corollary 3.14. L1 and L2 are diametral pairs of G(P ) if and only if |CB,T ∩R(L1, L2)| =

2d(B,T )−2 for all B, T ∈ P with B ≤ T and d(B, T ) ≥ 2.

Proof. We have just shown that this is the most number of reversals a corner set could

contain, and from Lemma 3.11 we know that this number is achievable.

Corollary 3.15. Let σ be a linear ordering of [n]. Then, Lσ and Lrev(σ) are a diametral pair

for P .

Proof. From Lemma 3.11, we know |CB,T ∩ R(Lσ, Lrev(σ))| = 2d(B,T )−2 for all B < T with

d(B, T ) ≥ 2. Applying Corollary 3.14, we see that Lσ and Lrev(σ) must be as far apart as

possible.

We have just shown that for each σ, Lσ and Lrev(σ) are a diametral pair of G(P ), and so

we can now count the number of reversals between these to calculate the linear extension

diameter of P .

Theorem 3.16. The linear extension diameter of the grid P (m1, . . . ,mn) is

1

4

(∏
k

mk

)(∏
k

mk −
∑
k

mk + n− 1

)
.

Proof. From Corollary 3.14, we know that

|CB,T ∩R(Lσ, Lrev(σ))| = 2d(B,T )−2

for all B < T with d(B, T ) ≥ 2. Let’s count these pairs (B, T ) with {i : bi 6= ti} = D. We

need to pick a pair of elements from {0, 1, . . . ,mi − 1} for each i ∈ D, and a single element
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from {0, 1, . . . ,mi − 1} for each i /∈ D. Therefore, there are

∑
D⊆[n]
|D|=d

[∏
k/∈D

mk ·
∏
k∈D

(
mk

2

)]

possible pairs for each fixed d ≥ 2.

Then, for each of these pairs with difference d, we have 2d−2 reversals, from Lemma 3.11.

Summing over all d ≥ 2, we get

led(P ) =
n∑
d=2

2d−2
∑
D⊆[n]
|D|=d

[∏
k/∈D

mk ·
∏
k∈D

(
mk

2

)]

=
n∑
d=2

2d−2 1

2d

∑
D⊆[n]
|D|=d

∏
k∈[n]

mk ·
∏
k∈D

(mk − 1)



=
1

4

∏
k∈[n]

mk

 n∑
d=2

∑
D⊆[n]
|D|=d

[∏
k∈D

(mk − 1)

]

=
1

4

∏
k∈[n]

mk

∏
k∈[n]

(1 + (mk − 1))−
∑
k∈[n]

(mk − 1)− 1


=

1

4

∏
k∈[n]

mk

∏
k∈[n]

mk −
∑
k∈[n]

mk + n− 1



3.2.2 Diametral Pairs of G(P )

For a fixed permutation σ, we have shown that Lσ and Lrev(σ) form a diametral pair of P .

This gives us n!/2 diametral pairs, and we will show this is all of them. To do so, we must

expand to looking at all sub-grids of P , rather than simply the sub-cubes. Recall from

the notation section, that P [f ] and L[f ] are the sub-grid and linear extension, respectively,

generated by the restriction function f .
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Lemma 3.17. Let f : [n]→ P(N0) such that f(k) ⊆ {0, 1, 2, . . . ,mk − 1}. If L1 and L2 are

a diametral pair of G(P ), then L1[f ] and L2[f ] are a diametral pair of the linear extension

graph of P [f ].

Proof. We need to show

|CB,T [f ] ∩R(L1[f ], L2[f ])| =

 0 if d(B, T ) ≤ 1

2d(B,T )−2 otherwise

for each B, T ∈ P [f ] with B ≤ T .

Fix such a B and T , and let d := d(B, T ). Notice that CB,T = CB,T [f ] because B, T ∈ P [f ]

implies bk, tk ∈ f(k) for all k, and so any vector in CB,T has bk or tk as each of its entries.

Therefore, each vector that appears as part of a pair in CB,T ∩R(L1, L2) is still in our sub-grid

P [f ]. We also know that |CB,T ∩ R(L1, L2)| = 2d−2 if d ≥ 2 and 0 otherwise, because L1

and L2 are a diametral pair. Moreover, the linear extension restriction keeps the restricted

elements in the same order, so any pair in CB,T ∩R(L1, L2) is also a reversal between L1[f ]

and L2[f ]. Hence, |CB,T [f ] ∩R(L1[f ], L2[f ])| = |CB,T ∩R(L1, L2)|.

The previous lemma allows us to use induction to show that as each dimension of a grid

is built up, the diametral linear extensions maintain the same structure. In other words, for

a diametral pair (L1, L2) to remain a diametral pair under any restriction, as the lemma

requires, we must have that L1 is the σ-lex ordering for some σ, and L2 is its counterpart

Lrev(σ).

Theorem 3.18. If L1 and L2 are a diametral pair of linear extensions of P and σ is the

order of the atoms in L1, then L1 = Lσ and L2 = Lrev(σ).

Proof. From Corollary 3.14, we know |CB,T ∩R(L1, L2)| = 2d(B,T )−2 for d(B, T ) ≥ 2. We can
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also assume mk > 1 for all k, because the cases where some mk = 1 are isomorphic to lattices

with a smaller dimension that have no mk = 1.

We proceed by induction on M :=
∑n

k=1(mk − 1). When M = 1, there is only the trivial

linear extension, to which both L1 and L2 must be equal. When M > 1, let σn be the

σ-most important index (the position where the 1 occurs in the atom that is greatest in σ).

If mσn > 2, then we can piece together two grid restrictions. Let

f1(k) :=

 {0, 1} if k = σn

{0, 1, . . . ,mk − 1} otherwise

and

g1(k) :=

 {1, 2, . . .mk − 1} if k = σn

{0, 1, . . . ,mk − 1} otherwise
.

By induction we have that L1[f1] and L1[g1] are in σ-lex order. Because the atom with a 1 in

position σn is in P [f1] ∩ P [g1], the result that L1 = Lσ follows from transitivity.

Similarly, let σ1 be the σ-least important index (which is also the rev(σ)-most important).

If mσ1 > 2, then we can piece together two grid restrictions once again to show that

L2 = Lrev(σ). Let

f2(k) :=

 {0, 1} if k = σ1

{0, 1, . . . ,mk − 1} otherwise

and

g2(k) :=

 {1, 2, . . .mk − 1} if k = σ1

{0, 1, . . . ,mk − 1} otherwise
.

By induction we have that L2[f2] and L2[g2] are in rev(σ)-lex order. Because the atom with

a 1 in position σ1 is in P [f2] ∩ P [g2], the result that L2 is in rev(σ)-lex order follows from

transitivity.
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We must do a little more work when mσ1 = 2 or mσn = 2. Let us first tackle the case

where mσn = 2. By considering the sub-grids with the restriction functions

f3(k) :=

 {0} if k = σn

{0, 1, . . . ,mk − 1} otherwise

and

g3(k) :=

 {1} if k = σn

{0, 1, . . . ,mk − 1} otherwise
,

in essence decreasing the dimension by 1, we know that elements with the σn index fixed are

in σ-lex order in L1 and rev(σ)-lex order in L2. We only need to show that the maximum

element of L1[f3] is less than the minimum element of L1[g3], and again we will be done by

transitivity. For simplicity, we can assume σ1 = 1 and σn = n. So we would like to show that

(m1 − 1) . . . (mn−1 − 1)0 < 0 . . . 01

in L1. We will follow a similar proof to that of Felsner and Massow from [7].

First, we will show that the atoms are in rev(σ)-lex order in L2. Note that they are in

the right order in L1 by definition. Let X and Y both be atoms and assume X < Y in L1.

Consider CB,T where T = X + Y and B = 0̄. Since d(B, T ) = 2, this particular CB,T must

contain exactly one reversal between L1 and L2. But

CB,T = {(0, T ), (X, Y ), (Y,X), (T, 0)}.

Clearly, (0, T ) and (T, 0) cannot be reversals, and Y < X in L1 implies that (Y,X) cannot be

a reversal either. Hence, (X, Y ) must be a reversal. Therefore, Y < X in L2, and it follows

that all the atoms in L2 are in rev(σ)-lex order.
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Now consider CB,T where T = (mk − 1)nk=1 and B = 0̄. We will show that (X, Y ) ∈ CB,T

cannot be a reversal if x1 = xn = 0, or similarly if y1 = yn = 0. Suppose the first were true,

so σ-lexicographically we have X < Y . In P , we have X < X + 10 . . . 0, and by the function

restriction

f̂(k) :=

 {1, 2, . . .mk − 1} if k = 1

{0, 1, . . . ,mk − 1} otherwise

and induction, we have X+10 . . . 0 < Y in L1. Similarly, in L2, we have X < X+0 . . . 01 < Y .

Therefore neither (X, Y ) nor (Y,X) can be a reversal between L1 and L2.

We give a counting argument to show that all the rest must be reversals or “flipped”

reversals, i.e. (Y,X) where (X, Y ) is a reversal. We know CB,T must contain 2d(B,T )−2

reversals, and that there are 2d(B,T ) pairs in CB,T . We have just shown that 2d(B,T )−1 pairs

cannot be reversals. So the other 2d(B,T ) − 2d(B,T )−1 = 2d(B,T )−1 pairs must all be reversals or

flipped reversals. In particular, (m1 − 1) . . . (mn−1 − 1)0 and 0 . . . 01 must be a reversal or

flipped reversal. But in L2 we have already shown that 0 . . . 01 < 10 . . . 0, so

0 . . . 01 < (m1 − 1) . . . (mn−1 − 1)0

in L2 by transitivity. Hence, we must have

(m1 − 1) . . . (mn−1 − 1)0 < 0 . . . 01

in L1.

Similarly, suppose that mσ1 = 2. This time, consider the sub-grids with the restriction

functions

f4(k) :=

 {0} if k = σ1

{0, 1, . . . ,mk − 1} otherwise
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and

g4(k) :=

 {1} if k = σ1

{0, 1, . . . ,mk − 1} otherwise
.

We know that elements with the σ1 index fixed are in rev(σ)-lex order in L2 and σ-lex order

in L1. We only need to show that the maximum element of L2[f4] is less than the minimum

element of L2[g4], and once more we will be done by transitivity. Again assuming σ1 = 1 and

σn = n, we need to show that

0(m2 − 1) . . . (mn − 1) < 10 . . . 0

in L2.

However, we still know that for T = (mk − 1)nk=1 and B = 0̄, any (X, Y ) ∈ CB,T with

x1 = xn = 0 or y1 = yn = 0 cannot be a reversal between L1 and L2. Therefore, by the

counting argument given above, we must have that 0(m2 − 1) . . . (mn − 1) and 10 . . . 0 are a

reversal. But by assumption we have that 10 . . . 0 < 0 . . . 01 in L1 and so by transitivity,

10 . . . 0 < 0(m2 − 1) . . . (mn − 1).

Therefore, we must have

0(m2 − 1) . . . (mn − 1) < 10 . . . 0

in L2 and by transitivity, L2 is in rev(σ)-lex order.

3.2.3 Critical Pairs

In the study of linear extensions of partially ordered sets, an important concept that appears

frequently is critical pairs. Two elements form a critical pair if they have a special relationship,
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described precisely below; critical pairs are important in dimension theory because to check

if a set of linear extensions forms a realizer (i.e. generates the poset), we only need to check

that every critical pair is reversed in some linear extension in the set.

Definition 3.19. A critical pair of a poset P is an ordered pair (x, y) of incomparable

elements of P such that

1. a < x implies a < y, and

2. b > y implies b > x.

Equivalently, (x, y) is a critical pair if the addition of x < y to the relations of P does not

transitively force any other additional relation. A third way to characterize critical pairs is

that y < x cannot be transitively forced by adding any other relation (besides y < x).

If (x, y) is a critical pair of P , then we say that a linear extension L of P reverses (x, y) if

y < x in L. Note that then nothing can appear between y and x in L. A poset is diametrally

reversing if every linear extension contained in a diametral pair reverses a critical pair. In [7],

Felsner and Massow showed that Boolean lattices are diametrally reversing, and we will now

extend their result to grids.

Corollary 3.20. Grids are diametrally reversing.

Proof. Let L be a linear extension of P that is contained in a diametral pair of G(P ). By

Theorem 3.18, we know that L = Lσ for some ordering σ of [n].

Let σn be the σ-most important index. Then consider X := (xk)
n
1 where xk = 0 for all

k 6= σn and xσn = 1, and Y := (yk)
n
1 where yk = mk − 1 for all k 6= σn and yσn = 0. It’s clear

that (X, Y ) is a critical pair of P . In Lσ, we have X > Y , and so this is actually a reversed

critical pair.
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Remark 3.21. We can easily extend this proof to show there are at least mσn − 1 reversed

critical pairs between Lσ and Lrev(σ). For each i ∈ [mσn−1], we can let xσn = i and yσn = i−1,

and keep xk = 0 and yk = mk − 1 for every k 6= σn. Then (xk)
n
1 and (yk)

n
1 are also reversed.

In the following proposition, we characterize all of the critical pairs of the grid. From the

previous Remark, we can then conclude that there are exactly mσn − 1 reversed critical pairs

between Lσ and Lrev(σ).

Proposition 3.22. Let X = (xk)
n
1 and Y = (yk)

n
1 . If (X, Y ) is a critical pair of P , then

there exists k0 such that xk0 − yk0 = 1, and xk = 0 and yk = mk − 1 for all k 6= k0.

Proof. Suppose (X, Y ) is a critical pair. Because X and Y are incomparable by definition,

there must be an index, say k0, where xk0 > yk0 . If xk0 − yk0 > 1, then the element

X − 0 . . . 1 . . . 0, where we subtract the atom with a 1 in index k0, would be less than X

but not less than Y , which contradicts the definition of a critical pair. So we must have

xk0 − yk0 = 1.

Similarly, suppose xk1 6= 0 for some k1 6= k0. Then we could decrease index k1 in X by

1, and we would have an element that is less than X, but this element is not less than Y ,

because index k0 is still larger than in Y . So we must have xk = 0 for all k 6= k0.

Finally, suppose yk1 < mk1 − 1 for some k1 6= k0. Then the element Y + 0 . . . 1 . . . 0 where

we add the atom with a 1 in index k1 is greater than Y but not greater than X. Hence,

yk = mk − 1 for all k 6= k0.

3.3 Poset of Partially Defined Functions

In this section, we consider a different generalization of the Boolean lattice, called the Poset

of Partially Defined Functions. Although we don’t quite have results for this poset yet, we
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have several promising conjectures. They seem relevant to include here, as they build off our

results for the grid.

Definition 3.23. Fn,k is the poset of partial functions from [n] → Σ where Σ is a set of

(unrelated) elements of cardinality k. (We use ∗ to represent a place where the function is

not defined.) We say f ≤ g iff f(i) = g(i) for each i ∈ [n] where f is defined.

This is a generalization of the Boolean lattice because Fn,1 ∼= 2n. Figure 3.4 shows F2,2

where Σ = {a, b}.

∗∗

∗a ∗ba∗ b∗

aa ab ba bb

Figure 3.4: F2,2 where Σ = {a, b}.

What do the diametral pairs of linear extensions of this poset look like? For small n

and k, preliminary results using SAGE suggest that the diametral pairs are also built from

atomic orderings. The poset Fn,k has n · k atoms, but not all of these atoms can be combined

together. For instance, in F2,2 we cannot combine the atoms a∗ and b∗, although we can

combine a∗ with ∗a to get aa, or a∗ with ∗b to get ab. We denote a linear extension that is

the lexicographic extension of the atomic ordering α by Lα.

Example 3.24. For F2,2, let α be the atomic ordering a∗ < ∗a < ∗b < b∗. Then Lα is the

linear extension

∗∗ < a∗ < ∗a < aa < ∗b < ab < b∗ < ba < bb.
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Due to the restrictions of how we can combine atoms, not all atomic orderings lead to

diametral pairs. The atomic ordering must satisfy a particular pattern to ensure that the

atoms are intertwined in as complex a manner as possible. For k = 2, we have a conjecture

as to what this pattern is; for larger k, it is unclear at this point what makes the atomic

orderings that work different from those that don’t.

Conjecture 3.25. Let α = α1 < α2 < · · · < α2n be an atomic ordering of Fn,2. Then Lα

and Lrev(α) are a diametral pair of linear extensions of Fn,2 if α satisfies the following pattern:

1. α1 and α2n have the same defined element (i.e. the same non-∗ index),

2. α2 and α2n−1 have the same defined element,

...

n. αn and αn+1 have the same defined element.

We say α is a diametral atomic ordering if Lα and Lrev(α) form a diametral pair of linear

extensions.

Example 3.26. One diametral atomic ordering for F2,2 is a∗ < ∗a < ∗b < b∗. One diametral

atomic ordering for F3,2 is

a∗∗ < ∗a∗ < ∗∗a < ∗∗b < ∗b∗ < b∗∗.

Another is the atomic ordering

∗b∗ < ∗∗a < a∗∗ < b∗∗ < ∗∗b < ∗a∗ .
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For k > 2, the pattern is unclear. Results from SAGE show that diametral atomic

orderings for F2,3 range from

a∗ < b∗ < ∗a < ∗b < ∗c < c∗

to

∗c < b∗ < ∗b < a∗ < c∗ < ∗a.
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Chapter 4

Weak Discrepancy

Weak discrepancy is the usual mechanism for studying the question, “what is a good weak

labeling?” We consider labelings with low discrepancies to be more fair, and we wish to

calculate the discrepancy of the most fair labeling that exists. Recall Definition 2.21:

Definition 4.1. The weak discrepancy of a poset, wd(P ), is the minimum over all weak

labelings of the discrepancy of the labeling, i.e.

wd(P ) := min
L

weak labeling

∆(L) = min
L

weak labeling

max
X ||Y
|L(X)− L(Y )|.

In this Chapter, we calculate the weak discrepancy of grids, the permutohedron, the

partition lattice, and the two-dimensional Young’s lattice.

4.1 Grids

For this Section, let P := P (m1,m2, . . . ,mn) where the mi are nondecreasing, i.e. m1 ≤ m2 ≤

. . . ≤ mn. Also, without loss of generality, assume mi ≥ 2 for all i. Set T :=
∑n

i=1(mi − 1)
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and T̂ :=
∑n

i=2(mi − 1) = T −m1 + 1.

Lemma 4.2. If L is a weak labeling of P , and x1 . . . xn ≤ y1 . . . yn in P , then L(y1 . . . yn) ≥

L(x1 . . . xn) +
∑n

i=1(yi − xi).

Proof. Consider the chain

x1 . . . xn < (x1 + 1) . . . xn < · · · < y1x2 . . . xn < y1(x2 + 1) . . . xn < · · · < y1 . . . yn,

where each index increases by one until reaching the value of yi.

The proof is then immediate from the fact that this chain has length
∑n

i=1(yi − xi), and

each element must be assigned a different integer in the labeling.

Using this simple lemma, we can now prove that the weak discrepancy of P is T̂ −
⌊
m2

m1

⌋
.

The optimal labeling that is produced coincides with the labeling in Figure 2.22; it is always

the case that we want to “shift” (perhaps “stretch” is better) the first dimension to match

the second.

In the proof, we begin by describing a weak labeling and calculating the discrepancy of

this labeling. The labeling we describe is inspired by the example of labeling the grid 2× 4

in Section 2.5. It is easy to see that this labeling has a lower discrepancy than the canonical

labeling where L(X) =
∑n

k=1 xk. However, it is unexpected that this labeling is the optimal

one, as it is not intuitive at all.

To achieve the lower bound requires examining just the right constraints at just the right

time. There are many relations, and non-relations, between elements of P , but many of them

do not help us. For instance, you will see in the proof of the lower bound that we only need

consider upper bounds on the labels, although it would be easy to also construct similar

lower bounds.
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Theorem 4.3. The weak discrepancy of the grid P (m1, . . . ,mn) is T̂ −
⌊
m2

m1

⌋
, and this is

achieved by the labeling L(X) =
⌊
m2

m1

⌋
· x1 +

∑n
k=2 xk.

Proof. To begin, we will show

wd(m1 × · · · ×mn) ≤ T̂ −
⌊
m2

m1

⌋

by showing that the given labeling achieves this discrepancy.

Consider the labeling L(X) =
⌊
m2

m1

⌋
· x1 +

∑n
k=2 xk. It is clear that this is a weak labeling

of the grid. To calculate ∆(L), the discrepancy of this labeling, we only need to consider

L(∆i,α)− L(∆i,α) for all possible choices of i and α, by Proposition 2.23.

Suppose first that i = 1. Then

L(∆i,α)− L(∆i,α) =

(⌊
m2

m1

⌋
· (α− 1) +

n∑
k=2

(mk − 1)

)
−
⌊
m2

m1

⌋
· α = T̂ −

⌊
m2

m1

⌋
.

Now suppose i 6= 1. Then

L(∆i,α)− L(∆i,α) =

(⌊
m2

m1

⌋
· (m1 − 1) +

n∑
k=2

(mk − 1)− (mi − 1) + (α− 1)

)
− α

=

⌊
m2

m1

⌋
· (m1 − 1) + T̂ −mi < T̂ −

⌊
m2

m1

⌋
,

because
⌊
m2

m1

⌋
· (m1 − 1) <

⌊
m2

m1

⌋
·m1 ≤ m2 ≤ mi.

Therefore, ∆(L) = T̂ −
⌊
m2

m1

⌋
.

Now, let L be any weak labeling of P with ω := ∆(L), and without loss of generality, say
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L(010 . . . 0) = 1. By Lemma 4.2, we see that

L(0(m2 − 1) . . . (mn − 1)) ≥
n∑
i=2

(mi − 1) = T̂ .

Because 10 . . . 0 || 0(m2 − 1) . . . (mn − 1), we must then have

L(0(m2 − 1) . . . (mn − 1))− L(10 . . . 0) ≤ ω

and hence

L(10 . . . 0) ≥ T̂ − ω.

We can continue this process as follows:

The base case, i = 1, is given above. During stage i, we showed L(i0 . . . 0) ≥ i(T̂ − ω).

Now apply Lemma 4.2 to i0 . . . 0 and i(m2 − 1) . . . (mn − 1) to see that

L(i(m2 − 1) . . . (mn − 1)) ≥ (i+ 1)T̂ − iω.

Because (i+ 1)0 . . . 0 || i(m2 − 1) . . . (mn − 1), we must then have

L((i+ 1)0 . . . 0) ≥ (i+ 1)(T̂ − ω).

We continue this process until i = m1 − 1. During this last stage, we show that

L((m1 − 1)0 . . . 0) ≥ (m1 − 1)(T̂ − ω).
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Notice that then

L((m1 − 1)0(m3 − 1) . . . (mn − 1)) ≥ (m1 − 1)(T̂ − ω) + T̂ −m2 + 1

and therefore

L((m1 − 1)0(m3 − 1) . . . (mn − 1))− L(010 . . . 0) ≥ (m1 − 1)(T̂ − ω) + T̂ −m2.

But these elements are incomparable, so

L((m1 − 1)0(m3 − 1) . . . (mn − 1))− L(010 . . . 0) ≤ ω

(m1 − 1)(T̂ − ω) + T̂ −m2 ≤ ω

m1T̂ −m2 ≤ m1ω

T̂ −
⌊
m2

m1

⌋
≤ ω

Hence, our initial labeling attains the best weak discrepancy that it is possible for us to

achieve.

Remark 4.4. The discrepant pairs for this optimal labeling form the set

{(∆1,α,∆1,α) : 1 ≤ α ≤ m1 − 1}.

Corollary 4.5. Theorem 4.3 gives us the following, more specific results:

1. wd(m×m×m3 × · · · ×mn) = T −m = T̂ − 1

2. wd(m× (m+ 1)×m3 × · · · ×mn) = T −m = T̂ − 1
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3. wd(mn) = mn−m− n

4. wd(2n) = n− 2

4.2 Permutohedron

The permutohedron is a beautiful class of posets where the ground set is permutations of [n].

These structures are somewhat grid-like; we will see there is a nice bijection between the set of

permutations of [n] and elements of the grid 2× 3×· · ·×n. However, the permutohedron has

far fewer edges than the grid, and so there is less structure with which to work. Surprisingly,

we will see that enough chains remain to show that the permutohedron must have the same

weak discrepancy as the grid.

Note that we will always write permutations in one-line notation, so that π = 3124 means

π(1) = 3, π(2) = 1, π(3) = 2, and π(4) = 4. We will also often denote π(i) as πi.

Definition 4.6. Define a covering relation on permutations of [n] by π < σ if there exists

an i ∈ [n] such that

1. for all j 6= i, i+ 1, πj = σj,

2. πi = σi+1 and πi+1 = σi,

3. πi+1 > πi.

The weak Bruhat order <B on permutations is the transitive closure of this covering relation.

For example, when n = 3, the above covering relation gives 213 < 231, with i = 2. Figure

4.1 shows the Hasse diagram of the weak Bruhat order on permutations of [3]. Figure 4.2
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shows the permutohedron of [4]; this particular Hasse diagram is why this poset is known as

the permutohedron instead of simply the permutation lattice, as it is a truncated octahedron.

123

132

312

213

231

321

Figure 4.1: The permutohedron of [3].

A well-known fact about permutations is the following proposition.

Proposition 4.7. The set of permutations of [n] is in one-to-one correspondence, by an

inversion count, with the set 2× 3× · · · × n, which we will call the vector representation.

Proof. Given a permutation π in one-line notation, we generate the vector representation,

x1 . . . xn−1 of π by:

xi = |{j < i+ 1 : π−1(j) > π−1(i+ 1)}|,

i.e. xi is the number of elements less than i+ 1 that appear after i+ 1 in the one-line notation.

Each xi is valid, i.e. 0 ≤ xi ≤ i, because there are precisely i elements less than i + 1,

each of which occurs once, so clearly no more than this could appear after i+ 1. Therefore,

x1 . . . xn−1 ∈ 2× · · · × n.

To go the other way, we begin with an element x1 . . . xn−1 ∈ 2× · · · × n. We will show

this is the vector representation of a permutation π by building up π in stages.

First, x1 tells you the relative ordering of 1 and 2. If x1 = 1, we know 1 must appear after

2, while if x1 = 0, then 1 must appear first.
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1234

2134

1324 1243

2143

2314 3124 1342

1423

3214

2413

1432

2341

2431

3142

4123

3241

4213

4132

4231

3421 3412

4312

4321

Figure 4.2: The permutohedron of [4].

At the start of stage i, we have ordered (relatively) the numbers 1, . . . , i. Now, from the

perspective of the element (i+ 1), these elements are all the same because they’re all smaller

than itself, and (i + 1) can then position itself so that there are exactly xi of these lesser

elements following it. Of course this is possible because 0 ≤ xi ≤ i and there are i elements

listed already. Because (i + 1) is larger than every element listed, the position of (i + 1)
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doesn’t affect the values of xj for j < i.

Continue this process to the end of stage n − 1, and π will be written in one-line

notation.

Example 4.8. The permutation 32514 corresponds to the vector (1, 2, 0, 2). From the vector,

we construct the one-line notation in the following stages:

21→ 321→ 3214→ 32514.

There is a second ordering on permutations of [n] that is often studied called the strong

Bruhat order, <S. For this ordering, we have π <S σ if and only if x1 . . . xn < y1 . . . yn as

vectors, where x1 . . . xn represents π in vector notation, and y1 . . . yn represents σ.

The strong Bruhat order on permutations of [n] is isomorphic to the grid 2× · · · × n, so

we have already discussed the weak discrepancy of this poset. Also, we can think of this poset

as the transitive closure of the covering relations: π <S σ if there exists i, j ∈ [n] such that

1. for all k 6= i, j, πk = σk,

2. πi = σj and πj = σi,

3. j > i and πj > πi,

4. for all i < k < j, πk has the same relationship with πi and πj, i.e. πk < πi if and only

if πk < πj.

Note that this last requirement guarantees that the total number of inversions in σ is exactly

one more than the total number in π.
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It is now easy to see that the Hasse diagram of the weak Bruhat order on permutations

of [n], call it Pn, is a subgraph of the grid 2× 3× · · · × n. In Figure 4.1, the only difference

is the missing edge 132→ 231, which is shown in Figure 4.3.

123
00

132
01

312
02

213
10

231
11

321
12

Figure 4.3: The weak Bruhat order on permutations of [n] as a subgraph of P (2, 3, . . . , n).

Although Pn is a sub-grid of P (2, 3, . . . , n), this does not immediately imply that the weak

discrepancy of Pn is bounded above by the weak discrepancy of 2× · · · × n, since the missing

edges means there are more incomparable elements. The following example illustrates this

phenomenon.

Example 4.9. In the Hasse diagrams below, the poset P ′ on the right is a sub-poset of the

one on the left, P . However, P ′ has larger weak discrepancy than P .

b c

a

b′ c′

a′

wd(P ) = 0 wd(P ′) = 1
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Proposition 4.10. The weak discrepancy of Pn is equal to the weak discrepancy of the

grid P (2, 3, . . . , n), i.e. wd(Pn) = n(n−1)
2
− 2, and is achieved by the same labeling, namely

L(x) =
∑n

i=1 xi (where this is the vector representation of the permutation).

Proof. To begin, we will show ∆(L) = n(n−1)
2
− 2, where L is as given above. We no longer

know what all the discrepant pairs of the poset are, but notice that every element is comparable

to the unique maximal element and unique minimal element of the permutohedron.

Between these two labels of 0 and T :=
∑n

i=2(i− 1) = n(n−1)
2

, there are only n(n−1)
2
− 1

unique labels. Therefore, any two incomparable elements must have labels with a difference

of at most n(n−1)
2
− 2. In particular, the elements 10 . . . 0 and 023 . . . (n− 1) are incomparable

and achieve this distance.

Now, we will show that the previous method for lower bounding the weak discrepancy

can still be used, by exhibiting two particular unbroken chains.

We would like to use the chain, in vector representation:

010 . . . 0 < 020 . . . 0 < 0210 . . . 0 < · · · < 023 . . . (n− 1).

In one-line notation, this corresponds to the chain:

1324 . . . n <B 3124 . . . n <B 3142 . . . n <B · · · <B n . . . 4312.

As you can see, each step in this chain is actually a covering relationship (transposition

as defined in Definition 4.6). First, we move element 3 forward, a step at a time, and then

we move element 4 towards the front, and so on. So, this chain is unbroken in Pn, and

L(023 . . . (n− 1)) ≥ L(010 . . . 0) + T − 2.
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We also need to consider the chain:

10 . . . 0 < 1010 . . . 0 < 1020 . . . 0 < · · · < 103 . . . (n− 1).

In one-line notation, this corresponds to the chain:

2134 . . . n <B 2143 . . . n <B 2413 . . . n <B · · · <B n . . . 4213.

Each step here is also a covering relationship, as elements 4 through n successively move

toward the front. So L(103 . . . (n− 1)) ≥ L(10 . . . 0) + T − 3.

Similar to the proof for grids, let L be a weak labeling with L(010 . . . 0) = 1 without loss of

generality, and ω := ∆(L). Then, L(023 . . . (n−1)) ≥ T −2 and because 10 . . . 0 || 023 . . . (n−

1), we must have L(10 . . . 0) ≥ T − 2−ω. Then, L(103 . . . (n− 1)) ≥ T − 2−ω+ T − 3, from

above. But 1034 . . . (n− 1) || 010 . . . 0, so 2T − ω − 5 ≤ ω.

Finally, since ω is an integer, this implies ω ≥ T − 2 = n(n−1)
2
− 2.

4.3 Partition Lattice

We call (X1|X2| . . . |Xk) a partition of a set S if Xi ∩Xj = ∅ for all i 6= j and
⋃k
i=1Xi = S.

The partition lattice of [n] is the set of all partitions of [n] with the following order relation.

Definition 4.11. Define a relation<P on partitions of [n] by (X1|X2| . . . |Xk) <P (Y1|Y2| . . . |Y`)

if and only if there’s a partition π1, . . . , πk of [`] with Xi =
⋃
α∈πi Yα for each i ∈ [k]. (Note

that k < ` necessarily.) We can think of the covering relation as breaking a single set of the

partition into two sets; in this case, k = `− 1.

For n = 5, we have (124|35) <P (12|3|4|5) because we can let π1 = {1, 3} and π2 = {2, 4}.
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However, (12|3|4|5) does not cover (124|35) because two new sets are created. Figure 4.4

shows the partition lattice for n = 4.

1234

12|341|234 134|2 124|3 123|413|2414|23

1|2|34 1|24|3 1|23|4 14|2|3 13|2|412|3|4

1|2|3|4

Figure 4.4: The partition lattice of [4].

Lemma 4.12. If there exist two incomparable chains C1 and C2 in a poset P with |C1| =

|C2| = c, then wd(P ) ≥ c − 1. Moreover, if the poset is graded with rank c + 2, and has

unique maximal and minimal elements, then wd(P ) = c− 1.

Proof. Let C1 = x1 < x2 < · · · < xc and C2 = y1 < y2 < · · · < yc where xi || yj for all

i, j ∈ [c]. For any weak labeling L, we have

(L(yc)− L(x1)) + (L(xc)− L(y1)) = (L(yc)− L(y1)) + (L(xc)− L(x1)) ≥ 2c− 2.

Therefore, L(yc)− L(x1) ≥ c− 1 or L(xc)− L(y1) ≥ c− 1, and so wd(P ) ≥ c− 1.

Note that if we want to minimize the discrepancy, we can assume L(x1) ≤ L(yc) or else

L(xc)− L(y1) ≥ 2c− 1. Similarly, we can assume L(y1) ≤ L(xc).
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Now, if we label the elements of the poset by grade level, we will achieve weak discrepancy

c− 1. Because the maximal and minimal elements are unique, and so are comparable to every

other element, we only need to be concerned with elements in the middle levels. These have

minimal label 1 and maximal label c, so the difference of their labels is at most c− 1.

Corollary 4.13. If Pn is the partition lattice of [n], then wd(Pn) = n− 3. This is achieved

by labeling by grade level, i.e. L(X1| . . . |Xj) = j.

Proof. Let

C1 := (1|23 . . . n) < (1|2|3 . . . n) < · · · < (1|2|3| . . . |(n− 1)n),

where (n− 1) and n are always in the same part, but every other element is detached one at

a time, starting at the beginning.

Let

C2 := (12 . . . (n− 1)|n) < (12 . . . (n− 2)|(n− 1)|n) < · · · < (12|3|4| . . . |n),

where 1 and 2 are always in the same part, but every other element is detached one at a time,

starting at the end.

These chains each contain n− 2 elements, and they are incomparable, as (n− 1) and n

are together in every element in the first chain but never together in the second, and 1 and 2

are always together in the second but never in the first.

We can also easily see that Pn is graded by considering number of parts, and that the

poset has rank n since there could be anywhere from 1 to n parts. Finally, 123 . . . n is the

unique minimal element of grade level 1, and 1|2|3| . . . |n is the unique maximal element of

grade level n.

Therefore, by Lemma 4.12, we have wd(Pn) = n− 3.



72

4.4 Young’s Lattice

The final poset for which we have results is the two-dimensional Young’s lattice. We are

currently working on extending these results to higher-dimensional Young’s lattices.

For this section, we will write a partition (λ1|λ2| . . . |λn) as λ1λ2 . . . λn when it is convenient

and clear to do so.

4.4.1 Two-Dimensional

Definition 4.14. Let λ = λ1 . . . λn be a partition of some integer m such that λ1 ≥ λ2 ≥

· · · ≥ λn. Define the Young’s lattice, Yλ, to be the poset of all partitions (of integers ≤ m)

whose Ferrers diagrams fit inside the Ferrers diagram of λ, i.e. all elements x1 . . . xn with

x1 ≥ · · · ≥ xn and 0 ≤ xi ≤ λi, where the partial ordering is also by inclusion.

1

2

3

4

11

21

31

41

22

32

4233

43

Figure 4.5: The Young’s lattice with λ = 43.

To avoid any confusion, note that the single digit elements of Figure 4.5 have their second
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index equal to 0. For example, the element 2 is really the element x1x2 where x1 = 2 and

x2 = 0.

We begin by characterizing the discrepant pairs of a weak labeling of Yλ; we don’t

necessarily know that two elements will be a discrepant pair, but if two elements are a

discrepant pair then we know what they must look like. This result holds for Young’s lattices

of all dimensions.

Proposition 4.15. If L is a weak labeling of Yλ and x := x1 . . . xn and y := y1 . . . yn are a

discrepant pair of L with L(x) > L(y), then there exists j ∈ [n] such that

1. xi = λi for all i < j,

2. xj = yj − 1,

3. xi = min{yj − 1, λi} for all i > j,

4. y1 = y2 = · · · = yj, and

5. yi = 0 for all i > j.

Proof. Suppose x1 . . . xn and y1 . . . yn are a discrepant pair for L, and assume L(x) > L(y).

Let j = min{i : yi > xi}; this is well-defined because x || y.

First suppose there exists i < j with xi < λi. Then define x′ = x′1 . . . x
′
n as follows.

x′k =

 xk if k 6= i

λi if k = i

Then, L(x′)− L(y) > L(x)− L(y) which is a contradiction. Hence, xi = λi for i < j.

The proof is similar for the other conditions. Condition (2) is necessary so that x 6> y

but xj is as large as possible. Condition (3) is a minimum to ensure that the entries of x are
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non-increasing so that we have x ∈ Yλ. Conditions (4) and (5) similarly construct y as small

as possible while requiring the entries to be non-increasing.

In Figure 4.5, the possible discrepant pairs (x, y) for any weak labeling are: (11, 2), (22, 3),

(33, 4), (4, 11), (41, 22), and (42, 33).

Note that wd(Ykk) = wd(Yk(k−1)) because the difference between the Hasse diagrams is a

single edge going from k(k − 1) to kk. So, we will assume λ1 > λ2 for the remainder of this

section.

We can now calculate the weak discrepancy of a two-dimensional Young’s lattice. This

class of posets is somewhat grid-like; Yλ1λ2 is an induced sub-poset of the grid P (λ2 + 1, λ1).

However, unlike grids, Young’s lattices have a staircase structure. Consider labeling Y43 in

Figure 4.5 by level, a natural starting place. For this example, we want the labels of 11 and 4

to be “close” and the labels of 4 and 33 to be “close.” (These are possible discrepant pairs

that are dependent/related through the element 4.) So we cannot stretch either dimension to

bring one pair of these elements closer together without pushing the other pair apart. In fact,

for Y43, labeling by level is the optimal labeling.

But now consider Y10,4 in Figure 4.6. The possible discrepant pairs are the long diagonals:

(10, 1|1), (10|1, 2|2), (10|2, 3|3), and (10|3, 4|4), and the shorter diagonals: (1|1, 2), (2|2, 3),

(3|3, 4), (4|4, 5), (5|4, 6), (6|4, 7), (7|4, 8), (8|4, 9), and (9|4, 10). For this poset, if we begin with

the canonical weak labeling, then L(1|1) = 2 and L(10) = 10 which are the single discrepant

pair. Therefore, it seems natural to scale the second dimension in order to bring these labels

closer together. However, notice that because of the staircase structure of the poset, we do

not need to shift the label of 2|2 as much as the label of 1|1 (one less in fact, proportionally

speaking), and similarly for 3|3 and 4|4. So, instead of shifting the canonical labeling by

scaling the second dimension, we will shift the labels by different amounts, which will still be

dependent on the entry in the second dimension. For instance, wd(Y10,4) = 6 and here is one
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optimal labeling:

L(x1x2) =


x1 + x2 + 0 if x2 = 0

x1 + x2 + 2 if x2 = 1

x1 + x2 + 3 if x2 ≥ 2

1

2

3

4

5

6

7

8

9

10

11

21

31

41

51

61

71

81

91

10|1

22

32

42

52

62

72

82

92

10|2

33

43

53

63

73

83

93

10|3

44

54

64

74

84

94

10|4

Figure 4.6: The Young’s lattice with λ = 10|4.

The following result formalizes this idea.
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Theorem 4.16. Let i be the largest integer such that
(
i+1

2

)
≤ λ1 − λ2.

1. If i ≤ λ2, then wd(Yλ1λ2) = λ1 − 1 − i, achieved by the labeling L(x1x2) = x1 + x2 +(
i
2

)
−
(
i−x2

2

)
, where we take

(
i−x2

2

)
= 0 for x2 ≥ i− 1.

2. If i > λ2, then wd(Yλ1λ2) = λ1 − 2 − `, achieved by the labeling L(x1x2) = x1 + x2 +

x2`−
(
x2
2

)
, where ` :=

⌈
λ1
λ2+1

+ λ2
2

⌉
− 2.

Proof. First, taking i as defined in the statement of the Theorem, we will consider the labeling

L(x1x2) = x1 + x2 +
(
i
2

)
−
(
i−x2

2

)
. We will show that this labeling achieves a discrepancy of

λ1 − 1− i for any λ. Then, we will prove that this is the best you can do when i ≤ λ2 but

that for large i, it is possible to do better. Finally, we will calculate the discrepancy of the

second labeling for this case, when i > λ2, and show that this is the best possible for this

class of posets.

From Proposition 4.15, we know the possible discrepant pairs are λ1(k − 1) and kk, and

kk and (k + 1) for k ∈ [λ2], along with kλ1 and (k + 1) for λ2 < k ≤ λ1 − 1. We will check

these three types within two cases: when k ≤ i− 1 and when k > i− 1. This is to simplify

the arithmetic when determining whether the term
(
i−x2

2

)
is zero.

First, suppose k ≤ i− 1. The first type of discrepant pair is (λ1(k− 1), kk) for 1 ≤ k ≤ λ2.

The difference between the labels of these elements is

L(λ1(k − 1))− L(kk) = λ1 + k − 1 +

(
i

2

)
−
(
i− k + 1

2

)
−
[
2k +

(
i

2

)
−
(
i− k

2

)]

= λ1 − k − 1−
[(
i− k + 1

2

)
−
(
i− k

2

)]
= λ1 − k − 1− i+ k = λ1 − 1− i.

The second type of discrepant pair is (kk, k + 1) where 1 ≤ k ≤ λ2, which has a labeling
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difference of

L(kk)−L(k+ 1) = 2k+

(
i

2

)
−
(
i− k

2

)
− k− 1 = k− 1 +

(
i

2

)
−
(
i− k

2

)
≤ λ2− 1 +

(
i

2

)
.

The last inequality follows from k −
(
i−k

2

)
≤ k ≤ λ2.

Finally, the third type of discrepant pair is (kλ2, k + 1) where λ2 < k ≤ λ1 − 1. The

difference between the labels of these elements is

L(kλ2)−L(k+1) = k+λ2+

(
i

2

)
−
(
i− λ2

2

)
−k−1 = λ2−1+

(
i

2

)
−
(
i− λ2

2

)
≤ λ2−1+

(
i

2

)
.

Now we will consider the possible discrepant pairs for k > i− 1. Note that for many λ,

several of these cases will overlap, but the most straightforward proof simply calculates all of

these labeling differences to be thorough, since they are fairly straightforward to compute.

For the first type of discrepant pair, (λ1(k− 1), kk) for 1 ≤ k ≤ λ2, we have a difference of

L(λ1(k − 1))− L(kk) = λ1 + k − 1 +

(
i

2

)
−
[
2k +

(
i

2

)]
= λ1 − k − 1 < λ1 − 1− i.

For the second type, (kk, k + 1) where 1 ≤ k ≤ λ2, we have

L(kk)− L(k + 1) = 2k +

(
i

2

)
− k − 1 = k − 1 +

(
i

2

)
≤ λ2 − 1 +

(
i

2

)
.

Finally, for the third type, (kλ2, k + 1) where λ2 < k ≤ λ1 − 1, we have

L(kλ2)− L(k + 1) = k + λ2 +

(
i

2

)
−
(
i− λ2

2

)
− k − 1 ≤ λ2 − 1 +

(
i

2

)
.

Notice that all of these labeling differences are either bounded by λ1−1− i or λ2−1 +
(
i
2

)
;
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therefore, ∆(L) ≤ max{λ1 − 1− i, λ2 − 1 +
(
i
2

)
}. For our choice of i,

λ1 − λ2 ≥
(
i+ 1

2

)
⇒ λ1 − λ2 ≥

(
i

2

)
+ i ⇒ λ1 − 1− i ≥ λ2 − 1 +

(
i

2

)
.

Moreover, the labeling difference between λ1 and 11 is tight, so ∆(L) = λ1 − 1− i.

Next, we will show that if i ≤ λ2, this is the best we can do.

Suppose that i ≤ λ2, and that L is a weak labeling with ∆(L) ≤ λ1− i−2 and L(λ1) = λ1

without loss of generality.

Then since λ1 || 11, we must have L(11) ≥ λ1 − (λ1 − i − 2) = i + 2. This implies

L(λ11) ≥ (i+ 2) + (λ1 − 1), and so

λ1 − i− 2 ≥ L(λ11)− L(22) ≥ (i+ 2) + (λ1 − 1)− L(22)

⇒ L(22) ≥ (i+ 2) + (i+ 2)− 1.

Continuing this process, for i ≤ λ2, we get L(ii) ≥ i(i+ 2)−
(
i
2

)
= 1

2
i(i+ 5). (Note that

this is the same i we defined previously.)

Then, by reasoning similar to Lemma 4.2,

L((λ1 − 1)λ2) ≥ (λ1 − 1− i) + (λ2 − i) + L(ii)

= (λ1 − 1− i) + (λ2 − i) +
1

2
i(i+ 5) = λ1 + λ2 − 1 +

(
i+ 1

2

)
.

Finally, this implies L((λ1 − 1)λ2)− L(λ1) ≥ λ2 − 1 +
(
i+1

2

)
. Because λ1 − λ2 <

(
i+2

2

)
, we

have λ1 − λ2 − i − 1 <
(
i+1

2

)
and λ2 − 1 +

(
i+1

2

)
> λ1 − i − 2. This is strict, so we have a

contradiction. L cannot possibly have a smaller discrepancy than λ1 − i− 1.

Therefore, for i ≤ λ2, wd(Yλ) = λ1 − i− 1.
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Now suppose that i > λ2. Consider the labeling L(x1x2) = x1 + x2 + x2`−
(
x2
2

)
, where

` :=
⌈

λ1
λ2+1

+ λ2
2

⌉
− 2. We will show that this labeling has a lower discrepancy than the

previous one for these particular λ, and that this labeling is optimal.

Once more, we’ll consider the labelings of the possible discrepant pairs.

For (λ1(k − 1), kk) with 1 ≤ k ≤ λ2, we have

L(λ1(k − 1))− L(kk) = λ1 + k − 1 + (k − 1)`−
(
k − 1

2

)
−
[
2k + k`−

(
k

2

)]

= λ1 − k − 1− `+ k − 1 = λ1 − 2− `.

For (kk, k + 1) with 1 ≤ k ≤ λ2, we have

L(kk)− L(k + 1) = 2k + k`−
(
k

2

)
− (k + 1) = k(`+ 1)−

(
k

2

)
− 1.

This is a quadratic, concave-down function with a vertex at k = `+ 3
2
. But notice that since

i > λ2 and
(
i+1

2

)
≤ λ1 − λ2, we have

λ1 − λ2 ≥
(
λ2 + 1

2

)
≥ 1

2
(λ2

2 + 1) ⇒ λ1 ≥
1

2
(λ2 + 1)2 ⇒ λ1

λ2 + 1
≥ 1

2
(λ2 + 1)

⇒ λ1

λ2 + 1
+
λ2

2
≥ λ2 +

1

2
⇒ λ1

λ2 + 1
+
λ2

2
− 1

2
≥ λ2 ⇒ `+

3

2
≥ λ2.

Hence, when k ≤ λ2, this function is increasing with respect to k, and therefore maximized

when k = λ2 giving λ2(`+ 1)−
(
λ2
2

)
− 1.
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Now we must show

λ2(`+ 1)−
(
λ2

2

)
− 1 ≤ λ1 − 2− `

⇔ `(λ2 + 1) ≤ λ1 − λ2 − 1 +

(
λ2

2

)
⇔ ` ≤

⌊
λ1 − λ2 − 1 +

(
λ2
2

)
λ2 + 1

⌋

⇔ λ1

λ2 + 1
+
λ2

2
− 2 ≤

λ1 − λ2 − 1 +
(
λ2
2

)
λ2 + 1

⇔ λ1 +

(
λ2 + 1

2

)
− 2(λ2 + 1) ≤ λ1 − λ2 − 1 +

(
λ2

2

)
⇔ 0 ≤ 1.

Finally, consider the third type of discrepant pair, namely (kλ2, k + 1) when λ2 < k < λ1:

L(kλ2)− L(k + 1) = k + λ2 + λ2`−
(
λ2

2

)
− k − 1 = λ2(`+ 1)−

(
λ2

2

)
− 1,

which we just showed was at most λ1 − 2− `. Hence, the discrepancy of this labeling is at

most λ1 − 2− `.

To conclude, suppose we could do better than this, i.e. let L be another weak labeling

with ∆(L) ≤ λ1 − 3− ` and L(λ1) = λ1 without loss of generality.

Then since λ1 || 11, L(11) ≥ L(λ1) − (λ1 − 3 − `) = ` + 3. This implies L(λ11) ≥

(`+ 3) + (λ1 − 1), and so

λ1 − 3− ` ≥ L(λ11)− L(22) ≥ (`+ 3) + (λ1 − 1)− L(22)

⇒ L(22) ≥ (`+ 3) + (`+ 3)− 1.
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Continuing this process, we get L(λ2λ2) ≥ λ2(`+ 3)−
(
λ2
2

)
. Then,

L((λ1 − 1)λ2) ≥ (λ1 − 1− λ2) + λ2(`+ 3)−
(
λ2

2

)
= λ1 − 1 + λ2(`+ 2)−

(
λ2

2

)
.

Finally, this implies L((λ1 − 1)λ2)− L(λ1) ≥ λ2(`+ 2)− 1−
(
λ2
2

)
. The only thing left to

show to arrive at a contradiction is that

λ2(`+ 2)− 1−
(
λ2

2

)
> λ1 − 3− `

⇐ λ2

(
λ1

λ2 + 1
+
λ2

2

)
−
(
λ2

2

)
> λ1 − 2− `

⇔ λ2λ1

λ2 + 1
+
λ2

2

2
− λ2

2 − λ2

2
> λ1 − 2− `

⇔ λ2λ1

λ2 + 1
+
λ2

2
> λ1 − 2− `

⇔ ` >
λ1

λ2 + 1
− λ2

2
− 2,

which is true by definition of `.

Therefore, for i > λ2, wd(Yλ) = λ1 − 2− `.

4.4.2 Higher Dimensional

It would be interesting to generalize this result to higher-dimensional Young’s lattices. As

a step in this direction, Figure 4.7 shows a three-dimensional Young’s lattice, namely Y941.

The following is a proof that the weak discrepancy of this poset is 9, whereas the canonical

labeling has a discrepancy of 10.
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1

2

3

4

5

6

7

8

9

11

91

22

33

44

111

911

221

921

331

931

441

541

641

741

841

941

Figure 4.7: The Young’s lattice with λ = 941.

First consider the canonical labeling:

Lc(x1x2x3) = x1 + x2 + x3.

From Proposition 4.15, we can list the possible discrepant pairs and calculate their discrep-

ancies, which are included in Table 4.1. This shows that ∆(Lc) = 10; however, we can do

better.
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j = 1 Discrepancy j = 2 Discrepancy j = 3 Discrepancy

(111, 2) 1 (9, 11) 7 (94, 111) 10

(221, 3) 2 (911, 22) 7

(331, 4) 3 (921, 33) 6

(441, 5) 4 (931, 44) 5

(541, 6) 4

(641, 7) 4

(741, 8) 4

(841, 9) 4

Table 4.1: Determining the discrepancy of Lc for Y941.

Proposition 4.17. The weak discrepancy of the Young’s lattice Y941 equals 9, and is achieved

by the labeling

L(x1x2x3) =

 x1 + x2 + x3 + 0 if x3 = 0

x1 + x2 + x3 + 1 if x3 = 1
.

Proof. Table 4.2 shows that the discrepancy of this labeling is 9.

Now suppose L′ is any weak labeling of Y941 and that ∆(L′) =: ω. Without loss of generality,

suppose L′(111) = 3. Then L′(911) ≥ 11 and since 911 || 22, we have L′(22) ≥ 11− ω. This

implies that L′(94) ≥ 20− ω. But 94 || 111, and hence,

ω ≥ L(94)− L(111) ≥ 17− ω.

Therefore, ω ≥ 9 necessarily.
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j = 1 Discrepancy j = 2 Discrepancy j = 3 Discrepancy

(111, 2) 2 (9, 11) 7 (94, 111) 9

(221, 3) 3 (911, 22) 8

(331, 4) 4 (921, 33) 7

(441, 5) 5 (931, 44) 6

(541, 6) 5

(641, 7) 5

(741, 8) 5

(841, 9) 5

Table 4.2: Determining the discrepancy of L for Y941.

4.5 Future Directions

As discrepancy is a fairly new area of study with respect to partially ordered sets, there are

many open questions left to tackle. A few variations such as t-discrepancy, fractional weak

discrepancy, or total linear discrepancy have only been looked at in the last two to three

years. There are also many interesting and natural variations one can consider that have not

been studied at all. We present several of these here.

4.5.1 t-Discrepancy

Recall from Section 2.5 that a t-labeling of a poset P is a function L from P to Z such that

X < Y in P implies L(X) < L(Y ) and |L−1(a)| ≤ t for each a ∈ Z, i.e. each label can be

used up to t times. Then the t-discrepancy, denoted dt(P ), is the minimum over all t-labelings
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of the discrepancy of the labeling; in other words,

dt(P ) := min
L

max
X ||Y
|L(X)− L(Y )|,

where L ranges over all t-labelings of P .

In [12], Howard and Trenk calculate the t-discrepancy of the union of disjoint chains,

represented by the sum m1 +m2 + · · ·+mn.

Theorem 4.18. (Howard, Trenk, 2010) Let P = m1 + m2 + · · · + mn where m1 ≥

m2 ≥ · · · ≥ mn and let t ≥ 2 be an integer. Furthermore, let q =
⌈
m1+···+mn

t

⌉
and

M = max
{
m2,

⌈
m2+···+mn

t−1

⌉}
. Then

dt(P ) =

 q − 1 if q > m1

d(m1 +M)/2e − 1 if q ≤ m1

Can this result be used to get insight into calculating the t-discrepancy of grids which are

products of chains as opposed to disjoint sums? Can it be extended to give bounds on the

t-discrepancy of the permutohedron or the partition lattice?

4.5.2 Fractional Weak Discrepancy

A further generalization of weak discrepancy allows labels to be real numbers, while requiring

that labels of comparable elements be at least 1 apart.

Definition 4.19. A fractional weak labeling of a poset P is a function L from P to R such

that X < Y in P implies L(X) + 1 ≤ L(Y ). The fractional weak discrepancy, wdF (P ), is the

minimum over all fractional weak labelings of the maximum difference between the labels of
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incomparable elements, i.e.

wdF (P ) = min
L

max
X ||Y
|L(X)− L(Y )|

where L ranges over all fractional weak labelings.

This variation of weak discrepancy was introduced in a 2007 paper by Shuchat, Shull, and

Trenk [19], where they showed that for any poset P , wdF (P ) is in fact rational, and all the

labels may be taken to be rational numbers. Hence, it makes sense to call it the fractional

weak discrepancy.

In their paper, Shuchat, Shull, and Trenk also proved that an optimal fractional weak

labeling will produce an optimal weak labeling if one takes the ceiling of each label. Our

results for the weak discrepancy of grids and Young’s lattice appear that they would translate

over nicely to fractional weak discrepancy. If we simply remove the ceilings in each of these

results, will an optimal fractional weak labeling result?

4.5.3 Other Variations

The ER waiting room example given in Figure 2.6 motivates several new variations of labelings

and discrepancy. Suppose first that we have t doctors on call, so labels may be used up to t

times as in a standard t-labeling. However, we don’t ever want a doctor to be waiting around

without a patient. So we want to loosen the requirement that comparable elements are given

distinct labels, yet maintain that labels of larger elements are at least as large as smaller

ones.

Definition 4.20. Let t ≥ 2 be an integer. A t-loose labeling of a poset P is a map from

P to Z such that |L−1(a)| ≤ t for all a ∈ Z, and if X < Y in P , then L(X) ≤ L(Y ). The
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t-loose discrepancy, `t(P ), is the minimum over all t-loose labelings of the maximum difference

between the labels of incomparable elements, i.e.

`t(P ) = min
L

max
X ||Y
|L(X)− L(Y )|,

where L ranges over all t-loose labelings of P .

Proposition 4.21. For any poset P and t ∈ N, we have `t(P ) ≤ dt(P ).

Proof. Let L be a t-labeling of P such that ∆(L) = dt(P ). L is necessarily a t-loose labeling,

as each label is used at most t times, and if X < Y in P , then L(X) < L(Y ). Therefore,

`t(P ) ≤ ∆(L) = dt(P ).

Corollary 4.22. For any poset P and t ∈ N, we have `t(P ) ≤ ld(P ).

Proof. See Proposition 2.22.

However, there is no clear relationship between the t-loose discrepancy of a poset and

its weak discrepancy. Figure 4.8 shows a poset where the weak discrepancy is smaller than

the 2-loose discrepancy, and Figure 4.9 exhibits a poset where the weak discrepancy is larger

than the 3-loose discrepancy. Is there a poset for which `2(P ) < wd(P )? Are there posets

with dt(P ) < `t−1(P )?

It would also be interesting to study weighted posets. Suppose each element x in a poset

P is given a weight w(x). Then, we could construct a t-weighted labeling by requiring

∑
x∈P

L(x)=a

w(x) ≤ t

for each a ∈ Z. This is analogous to saying that a patient in our ER may require multiple

doctors simultaneously. Alternately, we could define a t-weighted labeling by requiring



88

a
0

b
1

c
1

d
1

2
e

a
0

b
0

c
1

d
1

2
e

Figure 4.8: A poset with smaller weak discrepancy than 2-loose discrepancy. On the left is
an optimal weak labeling and on the right is an optimal 2-loose labeling.
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Figure 4.9: A poset with larger weak discrepancy than 3-loose discrepancy. On the left is an
optimal weak labeling and on the right is an optimal 3-loose labeling.

an element x with weight w(x) to be assigned w(x) consecutive labels. Then, t-weighted

discrepancy would need to specify whether we are comparing two elements’ smallest, largest,

or average labels. This is like saying that one patient may take longer to treat than another.

Finally, what if we allow our labels to come from someplace other than N or R? We could

consider labeling by ordered pairs, or perhaps by another poset entirely. Suppose we labeled

a poset P by another poset Q; then we could require that X < Y in P implies L(X) < L(Y )

in Q. What might result from this projection?
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