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Polymers play an essential role in our everyday life due to their employment in a widespread range of
applications. Polymers are used in industries such as space, biomedical, electronics, etc. in which their
electrical and mechanical properties are major aspects which need to be investigated prior to
implementation. When subjected to mechanical stimulations, polymers may exhibit changes in
electrical conductivity which can vary locally within the specimens, especially in those of conducting
polymers. In mechanical investigations a tensile testing machine is used to understand polymers’
strength, elasticity or other mechanical properties. In electrical analysis, using a four-point probe to
examine the electrical resistivity (conductivity) of a material is also frequently applied. However, no
studies have been done to explore the relationship between mechanical manipulations and changes in

electrical properties in situ. The current study explores this relationship.

An electrical conductivity testing system is designed and developed to couple with a tensile testing
machine to measure the electrical conductivity of polymeric specimens while experiencing tensile
loading. The system features a commercial four-point probe sensor, which is automatically controlled to
approach a specimen and to measure the electrical conductivity of that specimen locally in two

directions: longitudinally and transversely to the axis of stress. The method of testing is then



implemented to experiment on specimens of high density polyethylene. Other types of specimens such
as carbon nanotubes/polyethylene composites and metallic surface layer deposited polyethylene are
also tested. Descriptions of the development process of the robotic systems and results of the

execution are presented.
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CHAPTER 1: INTRODUCTION

Polymers, when subjected to mechanical loading, exhibit change in morphological and structural
molecular organization [1]. As a unidirectional stress is applied on a polymeric specimen under a tensile
test, there is reorganization in the molecular structures which results in changes in morphology. For
example, a stretch occurs to the polymer chain in the longitudinal direction while a compression occurs
in the transverse direction to the axis of stress. Other modifications exerted on specimens can include
fractures and also surface modifications. As these modifications begin to occur primarily at the
molecular level, it is reasonable that measuring the surface properties of a loaded specimen would
become a potential tool to analyze such structural modification, regarding polymeric materials

commonly known as non-conductive or insulating materials.

Polymers have been widely used in many applications, such as biomedical applications, packaging,
aerospace applications and many others [14-18]. Biomedical applications of polymers include uses in
prosthetics, various implants, hydrogels in drug delivery and pharmaceuticals, scaffolds for tissue
growth, etc. Polymers are also used in composites to manufacture different components in aerospace
vehicles, including composite overwrapped pressure vessels for space vehicles. Recently, polymers are
becoming incorporated widely in producing organic electronic devices such as organic transistors in
electrical circuits. Although the polymers used in different applications are designed, synthesized, and
manufactured using different methods to produce various configurations, compositions, and functions,
the majority of these applications expose polymers to mechanical stimulation of some sort. For
instance, polymers used in knee or hip implants are subjected to high stresses over a long lifetime.
Polymers used in space applications (e.g., pressure vessels) can obviously undergo a significant stress

history during long-term flights. Also, in plastic electronic devices, a thin film containing a circuit with a



polymeric component needs to be bendable and flexible to be incorporated into the devices. In short,
mechanical stimulations to polymers are the norm. Moreover, mechanical stimulations in materials
tend to generate changes in electrical properties of the materials as well; here the focus is on the

electrical resistivity (conductivity) of the polymers.

Not many studies have been done to study the relationship between mechanical loading and electrical
behavior of polymeric materials in real time. This thesis aims to introduce a pioneering method to study
such relationships. A conductivity testing system is designed and built for synchronous use with a
universal tensile testing machine to measure the electrical resistivity of polymeric specimens via a four-
point-probe method while being loaded in situ. Experiments using this method are applied to different

types of samples to understand the electrical-mechanical relationship.

This thesis presents the project in two different parts. Part A presents the design and manufacturing
process of the conductivity testing system. This part consists of the development of the hardware
system and the control system. The work for this part was mainly conducted at the University of
Nebraska-Lincoln campus. After the hardware was built, integration with the universal testing machine

was done at AMME — LECAP — UNL Laboratory.

Part B of the thesis was also performed at Rouen, France. This part begins with the introduction of
materials selected to perform the experiments. It also includes description of the method of four-point-
probe conductivity testing. Many different types of materials and surface preparations are also
incorporated in this part. Experimental results and discussions of each test are the main focus for this

part of the thesis.



CHAPTER 2: BACKGROUND

2.1 Understanding Fundamental Properties of Materials

2.1.1 Mechanical Properties of Materials

The mechanical properties of materials, their strength, rigidity and ductility, are very important in
determining their fabrication and possible practical applications [2]. In every practical application, the
guestions about the materials being used are always among the first to be considered: how strong, stiff,
ductile, tough, or hard does the material need to be to satisfy the functional needs? These types of

guestions need to be answered before the material is selected to service the functions required.

In order to understand the properties of each material prior to its usage, the results of mechanical tests
of the materials must be obtained. There are many techniques available to discover the mechanical
properties of each material. Each technique is different to appropriately match the type of material.
Common techniques are classified into six categories: impact test, creep test, hardness test, fatigue test
and tensile test [3]. To have a better understanding of each mechanical test, two common parameters

should be mentioned. Engineering stress and engineering strain are defined by the following equations:

Engineering Stress = o = Ai (1)
o

-1,

(2)

Engineering Strain = ¢ = ]
o

where A, is the original cross-sectional area, /, is the original length, and / is the length after the force F

is applied.

The impact test is often used to evaluated the brittleness of a material under a sudden, intense blow in
which the strain rate is extremely rapid. The two common impact tests are the Charpy test and the lzod

test shown in Figure 2.1. In these tests, a heavy pendulum starts at an initial elevation and swings



through to break a specimen, and reach a

lower final elevation. The difference in o s

potential energy can be calculated, and the -

difference is the impact energy absorbed by -~ -
the specimen. From there, one can

understand the toughness of the material,

which is the ability of the material to absorb

energy in an impact.

Fatigue testing is used to characterize the /' ':l_ \ \;( I
/; S I f'il
. . . 7/ 2 H \ \/ //
mode of failure known as fatigue in a e o EARHREE >
<8 Ty
material. A common fatigue test involves a r»\}\, \ /L /AK/‘\/ |
.‘\\ “ /. = <i\t\\.\| g
specimen being subjected to repeated T \j}/j/ /:\
N
stress which is below the yield strength of F ]

the material. Even though the stress is below the yield Figure 2.1: Charpy and Izod test [69]
strength, the material may fail after many cyclic recurrences of the application of stress, which can be in

the form of rotation, bending, or even vibration.

Plastic deformation of a material at high temperatures is known as creep. In Figure 2.2, a creep test
usually involves a constant stress applied to the specimen. The resulting combination of elastic and
plastic stretch depends on the applied stress and the modulus of elasticity of the material. The creep
test can be used to estimate the expected lifetime of a component or a composite under particular

combinations of stress and temperature.



Hardness can be described as the resistance of the material to
wear, cutting, machining, or scratching, etc. Hardness is not an
invariant property of a material since the result is different for
each method of testing. However, using one method of
hardness testing on different materials, one can compare the
materials and provide recommendations for manufacturing, heat
treatment or quality controls. It can be observed that polymer
materials are typically soft, metals have an intermediate

hardness, and ceramics are exceptionally hard.

Constant forca
applied

Extension measured * Heating

over gauge length

element

Themocouple

Constant force
applied

Figure 2.2: A creep test diagram [70]

Finally, tensile testing is the most common mechanical test and is done with many types of materials.

The results of this type of test also provide a wide range of knowledge about the tested material. For the

purpose of this project, the tensile test plays a very important role and is described in detail below.

A tensile test is performed as a normal stress is applied to a specimen and the resistance of the material

to this stress is measured. The test is commonly executed as shown in Figure 2.3:
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Figure 2.3: A tensile test diagram [71]
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A force F is applied unidirectionally to the specimen. The force is known and monitored to obtain the
stress rate. A strain gauge or an extensometer is used to measure the displacement of the specimen to
obtain the strain rate. A stress-strain curve is then generated. This curve is a very crucial tool to
understand the behavior of a material under loading conditions. The typical stress-strain curve for

ductile elastic materials looks as follows:
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Figure 2.4: A common stress/strain curve [72]

Important properties regarding the material being tested can be obtained by this curve.

Modulus of elasticity is a fundamental property for each material, commonly known as Young’s modulus

E. Itis used to describe how stiff a material is. The Young’s modulus is defined as the stress divided by

the strain at the elastic limit, and thus it is also the slope of the stress-strain curve in the elastic region.

o |5



The higher the modulus E, the steeper the slope, and the
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stiffer the material is. By understanding the stiffness of each
material, one can use the material properly to acquire the
desired functionality, especially in terms of force-deflection

behavior of components on the macro scale.
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Another important property that can be obtained by the
tensile test is yield strength. Yield strength is the stress
where the strain rapidly increases with increasing stress. The

slip in the (crystalline) material structure becomes noticeable
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sharkskin can occur on the surface of the sample, generally

Figure 2.5: Transition from stable to sharkskin
during the extrusion process [4] shown in Figure 2.5. During ©*rudate[4]

the extrusion of melted polymer through a capillary, a transition from a smooth surface to a nearly
periodic ridge-like surface distortion has been observed at a critical shear rate or wall shear stress; these

surfaces distortions are known as sharkskin.

Figure 2.5 shows an example of a surface deformation of a LLDPE specimen extruded at bulk

temperature of 140°C [4]. This is an example of a surface effect that can potentially be detected using

the method described in this thesis.



2.1.2 Electrical Properties of Materials

To use a material for electrical or electronic applications, one must clearly understand the electrical
properties of the material, or how the material behaves electrically in given conditions. One of the most
important electrical properties of a material is its electrical resistance R, or expressed in a geometry-

independent way, the resistivity p.

Electrical resistance of a material is a characteristic of the physical properties of the material (size and

shape). Electrical resistance is defined as [6]:

A oA (4)

where:

R is the electrical resistance (Q ohms)

A is the cross-sectional area (m?)

p is the electrical resistivity (Qem)

o is the electrical conductivity, or the reciprocal of p (Q"em™)

Ohm’s law is an experimental observation relating the resistance of a material to voltage across and

current through the material:

V

IR (5)

where:

V is the voltage or potential across the material (V, volts)

| is the current flowing through the material (A, amperes)



Based on the electrical resistance of the material, among other properties, one can determine what
applications the material can be used for. The spectrum of conductivity of solids is remarkably wide,
spanning about twenty-three orders of magnitude [10-11]. Copper and silver have a conductivity of 10®
O'm™. They are the best metallic conductors, and are widely used in manufacturing electrical wires and

contacts. On the other hand, polymers such as polystyrene with a conductivity of 10" Q'm™ are

commonly used as electrical insulators.

Techniques used to measure the electrical conductivity of materials are chosen depending on the
physical characteristics of materials being tested. For materials in liquid form, techniques based on five
electrode designs are often used [7]. In this study, we are focusing in solid materials such as polymers or
conducting polymers, and also thin films. There are several techniques available to measure the
resistivity of a material. For highly resistive materials, advanced equipment such as a resistivity cell is
desired. Using this equipment, it is possible to measure the resistivity/volume resistance up to 4.0E+15
Qecm, or and surface resistivity up to 4.0E+15 Q [8]. The other method which is more widely used is the
four point probe (FPP) method. The more detailed description of how FPP works is included in Section
5.2 of this thesis. In general, FPP is a technique consisting of four pins in line and in contact with a
specimen, a direct current is passed through the two outer pins and the resulting potential difference is
measured between the inner pins. The resistivity of the specimen is essentially calculated based on the
measured current and potential values using factors appropriate to the geometry [9]. Due to its
simplicity and cost effective nature, the FPP will be tried to measure the conductivity of materials in this

study.

2.2 Materials, Applications, and Current Issues

2.2.1 Materials in Aerospace Applications
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Kevlar® Composite Overwrapped Pressure Vessels (COPV) are widely used in space vehicles, and require
monitoring to ensure safety in long-term use [12]. Although strain gauges can be used to detect
increased stress related to either over-pressurization or age-related material weakening, we hypothesize
that changes in surface electrical conductivity could provide a more information-rich and less energy-
consumptive approach. These
pressure vessels in Figure 2.6
have undergone numerous tests
and experiments to improve
safety and reliability of space
vehicles. Significant COPV tests

were performed at Lawrence

Livermore National Labs and
Figure 2.6: NASA composite pressure vessels in space applications [73]

NASA White Sands Test Facility

including morphological changes of the composite fibers under stress, manufacturing changes and their
effects on tensile strength, epoxy resin strain, composite creep, degradation of polyurethane coatings,
and titanium yield characteristics. However, none of the above tests were performed to investigate the
surface electrical conductivity of the composite material, which is potentially related to the aging issue
of the pressure vessels. Therefore, this project addresses goals in NASA’s 2011 Strategic Plan [13]

regarding space technology innovation, particularly in this case new techniques to study and track aging

of space structures.

The study is to examine the surface properties, particularly electrical conductivity, of polymer
composites under loading conditions to understand the characteristics of the material using a new and
different approach. The study also aims to characterize aging through surface electrical conductivity by

comparison of the properties of non-aged composite samples and long-term aged samples where fiber
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strands are already disrupted. This approach addresses three basic objectives — identifying
performance characteristics, obtaining material property data and performing data validation —
recommended in a NASA 2006 Material Issues In Space Shuttle Report [12] on pressure vessels used in
space vehicle applications. This study will benefit future aerospace programs as pressurized tanks of this
type are common to practically all space vehicles and aviation safety remains an omnipresent priority

issue.

2.2.2 Materials in Biomedical Applications

Polymers and polymer composites have been commonly used as biomaterials in recent decades. They
can be used as biomaterials because of their ability to provide appropriate host responses within the

biological environment.

There are five different groups of biomaterials commonly used: natural materials, metals, ceramics,
polymers, and composites of the other four material classes. A large number of polymers are widely
used in many different biomedical applications because they can be tailored to have a variety of forms
and properties. They can be in solids, fibers, fabrics, films or gels. Polymers are more conducive to
manufacture than the other groups of materials in the sense that they can be easily molded and formed
into complex shapes and structures. However, polymers are much more flexible and weak compared to
metals and ceramics. Therefore, most polymers are rarely seen in orthopedic applications because of
the mechanical demands. Certain polymers can also absorb liquid and swell, and/or leach undesirable
products such as monomers, fillers, plasticizers, and sometimes undesired antioxidants [14].
Sterilization processes can also affect the properties of polymers. This is why the use of polymer
composites is considered preferable. Polymer composites can be combinations of polymers and metals,
polymers and ceramics, etc., since in this way the shortcomings of each homogenous material can be

overcome. Polymer composites can be seen in applications such as hip and knee implants, dental
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applications, ureter prostheses, catheters, vascular grafts, tissue engineering devices, and much more as

shown in Table 2.1 [14-18].

Table 2.1: Common polymers and their applications in biomedical engineering [14]

Polymer

Application

Poly(methyl methacrylate)

Poly(ethylene terephthalate)

Poly(dimethylsiloxane)

Poly(tetrafluoroethylene)

Polyethylene

Polyurethane

Intraocular lens, bone cement, dentures

Vascular graft

Breast prostheses

Vascular graft, facial prostheses

Hip joint replacement

Facial prostheses, blood/device interfaces

A biomaterial has to be determined to be biocompatible with the living environment before it can be

approved for contact with that environment. The biocompatibility characterization of a biomaterial is

very crucial and is among the most important processes in developing any biomedical application. The

biocompatibility can be categorized into two definitions: surface compatibility and structural

compatibility [17].



13

Surface compatibility is the suitability of the implanted surface to
the host tissues. Surface compatibility reflects the chemical,
biological, and physical properties of the biomaterial, and can be
characterized by hydrophilicity, protein immobilization, thickness
and molecular weight of polymer layer, functional group density,
and cell analysis including surface energy and probability of
bacterial attachment on the surface. One useful parameter for

characterizing the surface compatibility is the electrical

conductivity of the surface. Different methods to obtain the Figure 2.7: Akneeimplant with plastic surface [76]

electrical conductivity properties of the surface of a biomaterial will be discussed in detail later.

Structural compatibility relates to the material’s adaptation to the mechanical behaviors of the host
tissues. The structural compatibility of a material is characterized by its mechanical properties such as
bulk strength, ductility and load transmission at the interface area. A useful method to obtain most of
the important mechanical properties related to structural compatibility is the tensile test. As discussed
above, a tensile test can provide information about the stiffness and strength of a material. A simple

tensile test using a universal testing machine is commonly performed to obtain this information.

Many methods have been introduced for measuring the surface electrical conductivity of a biomaterial.
The conductivity of the surface controls the reactions across the interface with biomacromolecules of
the biological system [14]. This phenomenon is extremely important to determine the duration that a
biomaterial can be safely implanted inside a biological environment. One example is the polymer
composite used as bone replacement material shown in Figure 2.7. There have been many studies of
microbial adhesion on the surface of replacement materials, and it has been found that the adherence

rate of pathogens to the biomaterials is very high [18]. Although the explanations of the different
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adherence densities of microbes on different polymers have not been discovered thoroughly, the theory
that is used to explain the microbial adhesion on material surfaces was studied by Coquet et al. in 2002
[19]. The result showed the relation of bacterial adhesion to the level of surface energy, which again
relates to electrical conductivity of the surface of the material. Therefore, the study of surface electrical
conductivity of biomaterials is important to provide strategies in decreasing microbial adherence to

prevent infection in implants.

2.2.3 Materials in Electronic Applications

One other field in which polymers are now becoming a
major studied material is the field of plastic electronic
devices. Plastic or organic electronic devices such as
the one in Figure 2.8 have attracted tremendous
scientific attention due to their characteristics of being
low-cost, mechanically flexible and bendable, and

easily fabricated at ambient conditions over large

areas. Therefore, organic electronics have been
Figure 2.8: Integrated circuit on a flexible plastic substrate [74]
investigated for use as backplanes to power flexible

displays, circuitry in low-cost radio frequency identification tags, and photovoltaic devices in large-area

plastic solar modules [25-29].

The most widely used organic electronic component nowadays is the organic field-effect transistor
(OFET). OFETs have been proposed for applications such as display switches, display drivers, radio
frequency identification tags, and sensors [27]. OFETs are based on processible polymeric solution as
well as small molecular semiconductors [26]. The first organic transistor based on an organic

semiconductor was reported in 1986 [28]. The device was made on an electrochemically grown



15

polythiophene film. Polythiophene is in the family of conducting polymers. Currently, a thin-film
transistor is composed of three basic elements: a thin semiconductor film, an insulating layer, and three
electrodes. With the same principles, OFETs have been fabricated with various device geometries,
which depict different placements of a substrate, dielectric, and semiconducting layers with respect to
each other. For the purpose of an overview of how polymers are used in organic electronics, a common

poly(2,5-thienylene vinylene) (PTV) OFET is shown in Figure 2.9 [26]:

S D
PTV
PMMA (500 nm)

Figure 2.9: Schematic of a top-contact PTV OFET [26]

In this configuration PTV acts as the semiconductor, 500nm spin-coated polymethyl-methacrylate
PMMA as the gate insulator on top of a heavily doped silicon substrate as the gate electrode, and gold
as source and drain electrodes. This is also called the OFET top contact geometry. To characterize the
OFET, a standard |-V graph is obtained to show the drain current versus drain voltage at various gate

voltages.

As mentioned above, one of the advantages of
plastic electronics is their flexibility to bend as an
example displayed in Figure 2.10. As the devices
are more widely manipulated in current
technologies, the possibility of these devices

being subjected to loading and bending will

Figure 2.10: Flexible and bendable plastic electronic [75]
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surely increase. However, since the field is newly developed, studies made on the characteristics of
these devices are not yet abundantly carried out. In particular, it would be insightful to understand the
behaviors of the electrical properties of plastic electronics while being subjected to loading or bending.
This is also another motivation for our study to discover the relationship between electrical conductivity
of materials during mechanical stimulations, in particular the materials used in plastic electronics where

electrical properties are of highest importance.

2.3 Objectives

Understanding the current issues of polymeric materials in several applications such as in space,
biomedical and electronic applications, in which an innovative method that allows a different vision in
the relationship between mechanical stimulations and exerted electrical properties on polymers is
desirable. Therefore, the objectives of our study are:

e To design a robotic system that is able to measure surface conductivity of materials under

loading using a tensile testing machine.

e To test the robotic system on different polymeric specimens under dynamic stimulations.
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PART A: THE DESIGN

CHAPTER 3: DEVELOPMENT OF THE CONDUCTIVITY TESTING SYSTEM
(CTS)

3.1 Overview of the System Mechanics

The desired conductivity testing system (CTS) is to be coupled with a tensile testing machine, particularly
Instron® 3365 (Instron®). The system is mounted to the Instron® machine as an accessory and performs
its test on the sample while mounted on the Instron®. The following description presents the

integration of the Instron® and CTS.

3.1.1 Instron® 3365

Tensile testing is a fundamental materials test in which a sample is subjected to uniaxial tension or
compression until failure [30]. The test can provide much important information about the material of
the sample, such as the amount of force required to break a material, modulus of material, the point of
permanent deformation, stress-strain curves, etc. The information can be used to present a better
understanding of known materials, to develop new materials, or to monitor/maintain the quality of
materials [31]. A common piece of equipment used for tensile testing is the universal testing machine,
which tests materials in tension, compression, or bending. There are both hydraulic powered and

electromagnetically powered (electromechanical) testing machines.

The Instron® 3365 is a universal testing machine which is powered electromagnetically. This
electromechanical machine uses a combination of a motor and gear reduction system to move a

crosshead up and down to provide force to the sample. The speed of the motor controls the speed of
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the crosshead. The following figure shows an overview of the Instron® 3360 Series and its major

components. The 3360 series includes models 3365, 3366, 3667, and 3369 [32].
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Figure 3.1: Schematic of Instron® 3365 [33]

Load cells with different grips are attached to the crosshead. Depending on the material, geometry, and
the strength of test specimens, grips are selected accordingly. In tensile testing, the specimen is held
securely in the jaws of the upper and lower grips. The upper grip is attached to the load cell that is

mobile in the vertical direction, and the lower grip is attached to the fixed base plate of the load frame.
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In compression testing, an anvil is used. The anvil is coupled with the load cell to apply loads to the
specimen which is placed on a table. The diameter and loading capacity of the anvil is important in

compression testing [33].

For the purpose of designing CTS to integrate with the Instron® system, the dimensions of the testing

machine are acquired as shown in Figure 3.2 and Table 3.1.

Table 3.1: Relevant dimensions of Instron® 3365 [33]

Letter Designation Description Dimension - mm
B Overall width 756
C Overall depth 707
D Horizontal test daylight 420
E Vertical test daylight
Maximum 1193
Minimum 71
G Base platen to coupling pin 59
Column cover depth 113

Q Column cover width 128
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Figure 3.2: Relevant dimensions of Instron® 3365 for design of CTS [33]

Understanding the functionality and features of the Instron® machine, CTS was designed and developed

as described below.



21

3.1.2 The Conductivity Testing System (CTS)

CTS is designed as a detachable tool used with the Instron® machine. The system has a site for
attachment to the tensile machine when the electrical conductivity testing is needed for the loading
samples, and can be easily removed when the test is done. Below is the overview of CTS when used

with the Instron®.

Instron® column
for attachment

Polymer specimen
CTS performing

test

Figure 3.3: Overview of CTS coupling with the Instron®
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As shown in the figure above, the mounting arm is customized to attach to the left column of the
Instron® with a 90-degree angle aiming toward the load cell area. At the tip of the arm, a resistivity

sensor is mounted to linearly approach the sample and perform its resistivity test.

CTS is designed to operate in a synchronized manner with the tensile machine. In general, while the
sample is being loaded with a given strain rate, the resistivity sensor will be controlled to perform the
resistivity test on that particular sample. The details of how the system functions and how the test is

done will be discussed in depth in the next section.

3.2 The Design

3.2.1 Overview

CTS is designed to be attached with the Instron® and to coordinate with the machine. CTS consists of
four main parts: linear guide carriage, sensor bracket, front plate, and attachment fasteners. Below is

an overview figure of the designed system.

Figure 3.4: The conductivity testing system CTS
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The following sections will describe in detail the four main parts of CTS. Also included are the analysis of
the design and material selection process for each part. The complete assembly of CTS integrating all

the system components with the Instron® machine will be presented.

3.2.2 Material Selection

Since the sensor bracket has to fit the configuration of a chosen motor shaft and support a particularly
non-standardized type of sensor, it is determined that the sensor bracket should be customized in-
house. Aluminum alloy was chosen to fulfill this task. The technical drawing of this sensor bracket is

shown in Appendix A.

Since the plates have to fit the configuration of the Instron® 3665, it is determined that the plates
should be customized in-house. Again, aluminum alloy was chosen to fulfill this task. The technical

drawings of the plates are shown in Appendix A.

Due to the requirements that the clamping system must fit the configurations of the Instron® 3365 and
the designed CTS, it was determined that the clamping system should be customized in-house to satisfy

the criteria.

3.2.3 Linear Guide Carriage

3.2.3.1 Design Requirements
The linear guide must:

1. Be lightweight, but strong and stiff for being suspended 20 cm above the table surface.

2. Provide a carriage/base to mount motors.

3. Provide mobility to the resistivity sensor.

4. Actuate the sensorin one linear degree of freedom.
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5. Translate accurately the base in a straight-line configuration.

6. Remain steady while operating to prevent any vibration which can affect the measurements.

3.2.3.2 Components

First solution:

Figure 3.5 shows a configuration that was selected to build the linear guide carriage.

Guide
block

Figure 3.5: Linear guide model from McMaster-Carr [34]

This particular linear guide is composed of a steel guide block and rails, with the rails being
ground and hardened. There are seals on both ends of the block which are made of resin with H-NBR
rubber. The seals function to keep dirt out of the lubricants. There are two rails, one on each side, that
help to keep the guide block traveling steadily and accurately without any vibration or disruption
created by contact between the components. The advantages and disadvantages of this configuration

were considered:

1) Advantages:

e Provide a good base for mounting the sensor

e High accuracy in mobility
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e Steady and no vibration in contact

2) Disadvantages:

e Expensive

e Heavy

One of the design requirements for the linear guide mentioned above is that the linear guide must be
lightweight to be suspended about 20cm above a reference surface. This particular linear guide is made
of steel so it is heavy in weight . Also, the total cost of the block and the complementary rails is about
$180. These two shortcomings of weight and cost have potential for improvement. Therefore, another

solution has been found to meet the requirements better and to be more cost effective.

Final solution:

Below is the final design to serve as a linear carriage guide that is used in the final CTS assembly. Based
on the same design requirements, a customized linear guide was designed and manufactured in-house

which can satisfy all the criteria without excessive cost.
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od Taks
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Figure 3.6: Design of linear guide (side view)

Carriage
Block

Figure 3.7: Design of linear guide (top view)

Shaft of Motor 2

Stepper
Motor 2
bracket
Stepper Shaft of Motor 1
Motor 1

Figure 3.8: Design of linear guide (isometric view)
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In this particular design, there are four major components: 4 rod tabs, 2 rods, 1 carriage block, and 1
motor bracket shown in Figure 3.6 to 3.8. All of these components are made of 6061-T6 aluminum.
This material is known to have high strength, low cost (514 for a plate of 0.95 cm x 20cm x 20cm), and

low density (weight of 4.8kg per square meter of 0.95cm aluminum alloy plate).

The 4 rod tabs are mounted on the surface of an aluminum plate (the design of this plate is described in
a later section). Each tab is in the shape of a T with a countersink in the middle so that the end of each
rod is accurately located inside each hole. The rod tabs are to secure the rods and keep them steady

and level as the carriage block translates.

The 2 rods are 70mm aluminum cylinders. Each end of the rod is secured by the rod tabs as described

above. The rods are polished to minimize friction while the carriage block slides along them.

The carriage block is a rectangular block with two holes for the rods to pass through. The block is
designed to be in contact with the shaft of a linear stepper actuator, which provides the block linear

motion to translate along the rods. On top of the block is a mount point for a motor bracket.

The motor bracket sits on top of the carriage block and provides a mount point for another stepper
motor to provide the four-point probe sensor another degree of freedom, which will be discussed in a
later section. The motor bracket is an L-shaped component and moves with the carriage block as one

entity.

This final design has been built in-house with a total material cost of $14.83. The design fulfills its design

requirements in a cost-effective way.
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3.2.4 Sensor Bracket

3.2.4.1 Design Requirements

The sensor bracket must:

1. Be lightweight and tolerate a minimum force of 5 N (which is equivalent to the weight of the

sensor attached to the bracket)

2. Support the sensor steadily while operating to prevent any vibration affecting the

measurements.
3. Provide 360 degrees of rotation
4. Provide a base to mount the sensor
5. Fit the configuration of a chosen motor shaft

3.2.4.2 Components

The mechanical analysis of the sensor is presented in this section.

The sensor bracket serves as a mounting base for the four-point probe sensor, which is then
translated and rotated to contact a sample under loading in a tensile testing machine. The four-

point probe sensor has a configuration as shown in Figure 3.9:

“l e
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Figure 3.9: Signatone four-point probe [35]
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This four-point probe sensor is mounted upright on the sensor bracket so that the four pins of the probe
are perpendicular to the surface of the loading sample. (A more detailed explanation of the setup will be

discussed in later sections).

Press-Fit
Motor Area
Shaft
Coupling

Mounting

Base

Figure 3.10: Overview of the sensor bracket

There are two separate parts that make up the sensor bracket in Figure 3.10. The first part is the motor
shaft coupling in Figure 3.11. The coupler has an outer diameter of 9mm and an inner diameter of 5mm.
The shaft of motor 2 is completely inserted through the cylinder, and then fasteners are inserted

through the through hole to provide more stability to the motor shaft and the rest of the bracket.
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Motor

Shaft

Insert Through
hole

Figure 3.11: Motor shaft coupler

The second part of the bracket is the mounting base in Figure 3.12. The mounting base is connected
rigidly with the coupling using a press fit. The mounting base supports the sensor via two mounting
holes underneath the sensor. The middle hole is to run the electrical wires from the sensor to the

corresponding system.

Wire

Area \ hole

Mounting

through holes

Figure 3.12: Mounting base

This entire sensor bracket is then connected to motor 2, which imparts its rotating motion. This
completes the second degree of freedom that the CTS requires. Motor 1 in the linear guide provides the
first (translation) degree of freedom to the carriage block which carries motor 2, which is serially

connected to the sensor bracket to provide the final rotational degree of freedom.
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3.2.5 Plates

3.2.5.1 Design Requirements

The plates must:

1. Be lightweight but strong and stiff enough to be suspended 20cm above the table
2. Fit the configuration of Instron® 3365
3. Provide a base for the linear guide to be mounted

4. Support steadily other components while operating to prevent any vibration affecting the

measurements

5. Provide easy adjustment to adapt to different sizes of the loading specimens.

3.2.5.2 Components

There are two main parts that make up the plate system: the front plate and back plate (as shown in
Figures 3.13 and 3.14). Each is made of 6061-T6 aluminum alloy with a thickness of 9.5mm. The front
plate was customized with two slots that are used to connect with the back plate perpendicularly. They

also have mounting holes so that the rod tabs and the linear guides can be mounted securely on top of

the plate.
8 tapped holes
for mounting
rod tabs and
2 slots for

linear guides
mounting with

back plate

Figure 3.13: Front plate
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The back plate is a bare extruded angle with an L-shaped configuration. The purpose of the angle is that
the top surface of the plate is connected with the front plate, while the other surface is mounted upright
flush with the Instron® machine’s vertical rails. There is a slot on the top surface corresponding with the
two slots on the front plate, and there are four through holes on the other surface so it can be fastened

to the Instron® system.

Slot to connect
with the front
plate

4 through holes
for mounting on
the Instron®

Figure 3.14: Back plate

The front and back plates are connected simply with two fasteners in Figure 3.15. These fasteners
provide a strong connection between the two plates, but also act as quick release so that the plates can

easily be adjusted accordingly to the sizes of the specimens.

Figure 3.15: Front and back plates when connected
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The plates are connected using a slot system so that the configuration can be adapted according to the
geometry of the loading specimens. Specimens being loaded on the tensile testing machine can come in
a variety of shapes and sizes. The details of the physical properties of the specimens will be discussed in
the experimental sections. However, a general schematic of where the plate system and sensor are

placed with respect to the specimen is presented in Figure 3.16.

Plane of attachment
with Instron® (fixed)

Mid planes of

specimen (fixed)

R

Figure 3.16: Schematic of experimental setup (top view)

Two parameters that can be manipulated are d and t. The parameter d can be changed by shifting the
front plate in the x direction. This action is to complement the width of the specimen. In the same
manner, the parameter t can be controlled by shifting the front plate in the z direction. This ensures the
tip of the sensor reaches the surface of the specimen, despite the range of different thicknesses that

specimens may have.

It is important that the sensor is situated in an appropriate position with respect to the specimen (i.e.,
the sensor should be centered along the line of symmetry of the specimen for better measurement).

Adjustment of the plate system is shown in Figure 3.17.
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ks

(a) (b)

(c) (d)

Figure 3.17: The plate system can be adjusted for specimens with: (a) min thickness, min width; (b)
min thickness, max width; (c) max thickness, min width; (d) max thickness, max width; (e) average
thickness, average width.
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3.2.6 Clamping to Instron® 3365

3.2.6.1 Design Requirements

The clamping system must:

1. Adapt to the configurations of the Instron® and the plate system

2. Securely attach the plate system to the Instron® 3365

3. Prevent vibration during operation that can affect the measurements

4. Be easily detachable to modify the position of the system as needed

3.2.6.2 Components

As described in section 3.2.5.2, the back plate is right-angled. One surface of the angle structure is
attached to the Instron® 3365; therefore four through holes are drilled for this attachment. Since the
upright support column of the Instron® 3365 has two T-slots for accommodating accessories, matching
standard T-keys from a commercial supplier (McMaster-Carr) allow attachment to the existing T-slots.
Shoulder bolts are used as fasteners to securely attach the back plate to the Instron® system (i.e., the T-

keys) and to ensure appropriate clearance between the bolts and the through holes.
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Through holes (a)
for attachment

(d)

Figure 3.18: The clamping system and its components: (a) back plate with through holes; (b) T-Key
inserted to the Instron® upright column [38]; (c) shoulder bolt for fastening [39]; (d) assembled clamping
system
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3.3 Final Assembly

Control
system

Plates

Clamping system

Sensor Bracket and Sensor

Figure 3.19: Final assembly of CTS.

The first prototype of CTS has been built to meet all the given requirements shown in Figure 3.19. The
linear guide was the most complex component overall. The final assembly of the linear guide served as
a site for attaching the motors and the sensor bracket, and most of all gave the required degrees of
freedom to the carriage to satisfy the criterion of mobility. The plates and clamping system are more
straightforward and were easily implemented as described in the preceding sections. (The control
system will be described in detail in the following chapter.) The completed system after assembly
weighs 4.5kg. With CTS attached to the Instron®® 3365 shown in Figure 3.20, it successfully matches the
configuration of the Instron® as seen in Figure 3.20. Moreover, CTS exhibits no noticeable vibration or

interruption while operating with the Instron® machine.
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Figure 3.20: CTS coupled with Instron® 3365
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CHAPTER 4: SYSTEM CONTROL

4.1 Design Requirements

CTS has to meet several requirements to achieve functionality, usability, and reliability. A
comprehensive list of specific requirements was compiled before the design work could begin. The list

is as follows:

1. The system must synchronize its operations with the Instron® 3365.

2. The four-point probe sensor must measure the electrical conductivity on the surface of

specimens gripped in the Instron® 3365.

3. The entire system must be automatically controlled by a microcontroller.

4. The system must provide input voltage to the sensor only when the sensor is in contact with the

loaded specimen.

5. The system must terminate input voltage to the sensor before the sensor breaks contact with

the specimen.

6. The input voltage or input current to the four-point probe must be regulated closely so that the
probe is protected from any damage such as burns from electrical arcing (which may be caused

by malfunction of the probe’s internal springs).

7. The system must provide a safety operation which allows every component of the system
(motors, sensors, switches, etc.) to return to their original positions to prevent any damage to

the system and the specimen.
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8. The data acquisition system must capture the measurements from the four-point probe in real

time.

9. The data acquisition system must allow data to be recorded in formats compatible with

common data analysis programs such as Microsoft Excel.

4.2 Microcontroller System

The microcontroller system functions as the principal controller to automate the hardware of CTS
according to its stated requirements. To serve this objective, the microcontroller system consists of six
main components: a Ruggeduino board, a motor shield, a power supply, a relay, microswitches, and
controlling software. Each component will be discussed in detail in the following section; however, the

overall connections are shown in a basic diagram below.
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4.2.1 Ruggeduino

Ruggeduino [40] is a ruggedized Arduino-compatible
microcontroller board (ruggedcircuits) purchased from
Rugged Circuits LLC, Michigan. A regular Arduino board is
an open-source physical computing platform based on a

simple microcontroller board, and a development

environment for writing software for the board (Aruino.cc) Figure 4.2: Ruggeduino [40]
[41]. The Arduino board can be used to take inputs from a variety of switches and sensors, and control a
variety of lights, motors and other physical outputs. The Ruggeduino is an Arduino board but includes

overcurrent and overvoltage protection on all input and output pins.

In this study, the Ruggeduino is used to take inputs from microswitches and to drive one linear stepper
motor, one rotational stepper motor, and a relay. The power input is +5V from a DC power supply. The
Ruggeduino then supplies power to the motor shield, the two stepper motors, the relay, and the
microswitches. A +5V output is supplied to each connector pin on the microcontroller. The language
used to program the board is C++. Programming of the Ruggeduino is the same as for the Arduino Uno,
so the connections between the board and its external circuits are the same as that of the Arduino Uno.

For circuit diagrams, images of the Arduino Uno will be used to replace the Ruggeduino (for simplicity).

4.2.2 Motor shield

A motor shield is a full-featured motor board that can power many simple- to medium-complexity
projects for the Arduino board. The motor shield can be used to power up and control different types of
motors such as servos, bi-directional DC motors, and stepper motors. The motor shield is obtained from

Adafruit Industries, New York [42].
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The motor shield is stacked on top of the Ruggeduino through the 8-pin and 6-pin headers. After the
motor shield and the Ruggeduino are connected, the stepper motors, switches, and relay are connected

to the motor shield.

The linear stepper motor is connected to the DC motor 1 screw terminal, and the rotational stepper
motor is connected to the DC motor 2 screw terminal. No servo motors are used in this study. The

switches and the relay connections are described in later sections.

2 servos
motors
ny et
I .
N o P
e 0% @
DC i E >
" 5 motor 2
motor 1 'Y
Figure 4.3: Motor shield [42]
Reset External
button power

4.2.3 Power supply

This is a 25W single output switching power supply.
This power supply is a universal AC input with a voltage

range of 88-230VAC and output DC voltage of 5V. In

this study, the power supply is used to power the Figure 4.4: 5V Power supply [43]
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Ruggeduino and the motor shield. It also powers the relay with its 5VDC output. The power supply was

obtained from Mean Well USA, Inc., California [43].

4.2.4 Relay
The four-point probe sensor, with its characteristics described in Section 5.2,

CLARE |
LCATID has two pins provided with voltage and two other pins for measuring output

Figure 4.5: LCA710 Relay [44] current, or vice versa. The most important point of note when using the

four-point probe is that the voltage or current input should be provided only after the spring-loaded

pins are in contact. This is to prevent any electrical arc that can damage the probe tips.

Therefore, the relay obtained from IXYS — Clare, Massachusetts [44] is incorporated into the circuit of
the Ruggeduino and microswitches to give control in voltage output to the probe. This particular

LCA710 relay can block voltage up to 60V. It has a pin configuration as shown in Figure 4.6.

Pin 1 is connected to the Ruggeduino as the control pin so that the output voltage can be controlled via

the Ruggeduino coding. Pin 6 is connected to the voltage supply which is blocked prior to transferring.

Pin 5 is connected to the voltage input pins of the 1 o &
+ Contral o— — O + Load
2 } " 5
four-point probe. - Confrol o == j~ — Load
3 4
Do Mot Uss o—1— I

Figure 4.6: Relay wiring diagram [44]

4.2.5 Microswitches

There are two microswitches from Honeywell, New Jersey used in this circuit. The

first microswitch is used to signal the relay that the springs of the four-point probe

Figure 4.7: Microswitch [45]
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are now in contact, so the voltage can be unblocked and transferred to the probe.

An identical microswitch is used to signal when the linear guide has reached the end of its travel.

The two microswitches are connected to the Ruggeduino via output pins, and are mounted on the

mechanical hardware of CTS.

4.2.6 Assembly

The overview electrical assembly of the microcontroller system is shown in Figure 4.8.

Figure 4.8: Assembly of microcontroller system
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4.2.7 Programming

The following schematic describes the logic behind programming of the microcontroller. Stepper motor
1 operates to carry the FPP sensor to approach a loaded specimen. When the sensor is in contact with
the specimen, microswitch 1 signals to return stepper motor 1 to the original position indicated by
microswitch 2. Once FPP sensor is back to the original position, stepper motor 2 rotates the sensor in 90
degrees increment (clockwise or counterclockwise depending on the order of the loop). After that, the

same operation is then carried.

MOTOR1 K}—— COUNT=COUNT +1
| ! ' AN

Forward

v

SWITCH 1

l Forward
Backward
ON

AV
RELAY
1
ON — MOTOR2 <}—‘ Even —{ MOTOR2
AV4 !

SWITCH 1

Odd

— OFF _|> MOTOR1 K '— OFF

\\ Backward >

Figure 4.9: Flowchart of Arduino programming

ON
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4.3. Data Acquisition System

4.3.1 Keithley 6415 Programmable Picoammeters

The Keithley 6415 picoammeter [47] is a high-performance system which can measure voltage, current,
resistance and charge. For this study, a Keithley 6415 is used to measure either current or voltage
output from the four-point probe. The Keithley 6415 can also be controlled using the RS-232 interface,

which is convenient to interface with TestPoint™ software.

4.3.2 ELC DC Power Supply AL 991S

The ELC DC Power Supply AL 991S [48] is a digital regulated power supply. It can be regulated with
system designed platforms such as TestPoint™ or LabVIEW. The power supply can provide up to
+15VDC via three different channels. In this study, the power supply inputs voltage to the four-point

probe via digital commands from TestPoint™. It is also compatible with the RS-232 interface.

4.3.3 TestPoint™

The main software that is used for data acquisition is TestPoint™ [49]. It is a software package for
designing test and measurement applications. The use of TestPoint™ in this study is to control the DC
power supply and a picoammeter. TestPoint™ monitors the voltage of the power supply, and when the
program receives data from the picoammeter, it collects and imports the data in Microsoft Excel
spreadsheet format. The schematic of how TestPoint™ is connected with the power supply and the

picoammeter is shown in Figure 4.10.
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Figure 4.10: Diagram of DAQ system
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4.4 System Assembly

The complete assembly of the control system is shown in Figure 4.11.

Instron® Control

Software System Control ! .
(TestPoint™) :

%

D “Powersupply

21 9.8 mm

" 1211 )
—-2uClln

Picoammeter
(KEITHLEY)

Figure 4.11: Complete assembly of the control system

CTS and its control system operate synchronously with the Instron® 3365 and its Bluehill® control
software. The primary intention for the synchronization between the TestPoint™ and Bluehill® software
was to collect data from both systems and to store them in the same spreadsheet file for processing.
TestPoint™ exports the data obtained from the picoammeter in an Excel worksheet. Bluehill® also
collects information such as time, deformation rate, displacement rate, etc., and stores these data in an

Excel file. However, as Bluehill® controls the actuation of the Instron®, data obtained from Bluehill® do
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not get exported into a file until the routine is completed and terminated. After that, the Excel file that
contains raw data from the mechanical test is then free for access. This circumstance leads to the lack
of a destination file for inputs from TestPoint™. While CTS is working during the mechanical
manipulation, TestPoint™ is trying to find an Excel file to save its data, but the file does not exist until

the test is completed. Therefore, the ideal implementation of file synchronization cannot be performed.

A second approach, which is also easier and is the approach ultimately adopted, is to use time
synchronization. In time synchronization, Bluehill® and TestPoint™ collect and store data individually.
By enforcing that the two data files include time and sampling rate information, the desired data can be

copied to a common Excel file and synchronized in a post-processing step.
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PART B: THE EXPERIMENT

CHAPTER 5: EXPERIMENTAL TESTING ON POLYMERS

5.1 Materials and Methods

The next objective of this study is to employ CTS and FPP method on materials of interest while being
tested under the Instron®. As we have presented our motivation in Section 2.2, we are interested in
polymeric materials which are commonly used in applications such as space vehicles, biomaterials, or
plastic electronics. Whereas mechanical stimulations are not dramatically difficult to perform, electrical
resistivity testing is more complex. Therefore, prior to implementation on polymeric specimens,

calibration process was carried out using semiconductive silicon wafers as subjects.

5.1.1 Silicon wafers

Silicon wafers were chosen to be the first samples to be tested under FPP test because they are
semiconductive with known resistivity values. Therefore, silicon wafers are good candidates to
characterize the accuracy of the FPP sensor. Silicon wafers were supplied by the Université de Toulouse
with three different types as shown in Table 5.1.

Table 5.1: Characteristics of silicon wafers

Type Resistivity (Qecm) =p Thickness (um) =t Length (cm) = | Width (cm) =w
1 3.8 E-3 500 1.72 1.65
2 3.45 722 1.42 1.29

3 3000 372 1.11 0.98
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Type 1 and 2 wafers are from ePAK, Austin, Texas, and type 3 is from Fluoroware, Inc., Minnesota. The

wafers are always protected in wafer boxes to prevent any undesired oxidation or contamination.

Three different samples of wafers were subjected to static FPP tests. The purpose of silicon wafer
testing is to determine whether the FPP sensor works appropriately, not to obtain the relationship
between their electrical and mechanical behaviors; thus no mechanical stimulation was needed.
Samples were placed on a clean, flat insulating surface. The FPP sensor was connected to the DC power
supply via a 470Q resistor for current input, and to the ammeter for voltage measurement (see Chapter

4 and Figure 5.4). The FPP sensor was hand-held during these tests for simplicity.

According to ASTM-F84 [9], there are recommended nominal current values for different types of
resistivity. These are shown in Table 5.2. The recommended current values are based on achieving

10mV of specimen voltage between two inner probes with specimen thickness of 0.5mm.

Table 5.2: recommended current inputs for FPP test [9]

Resistivity (Qecm) Current
<0.03 100mA
0.03t0 0.3 25mA
0.3to3 2.5mA
3to 30 250pA
30 to 300 25 pA
300 to 3000 2.5 A
>3000 0.25 pA

To achieve the recommended values of current, a different resistor is used to control the input current

to the outer pins of the FPP sensor. The values of voltage and resistance are as indicated in Table 5.3.
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Table 5.3: Silicon test parameters

Resistivity (Qecm) = p Input Voltage (V) Via Resistance Current Expected
3.8E-3 1-15 110 Q 9mA to 136mA
3.45 1-15 12 kQ 82pAto 1.2mA
3000 1-32 2.5MQ 0.4 pAto 13 pA

As shown in Table 5.1, the dimensions of the silicon wafers matched the criteria for equation 11, and
thus the bulk resistivity p was calculated using equation 11. The reported result is calculated as an
average value of bulk resistivity p from the obtained data. The confidence interval A p of the mean
conductivity value was calculated using the confidence coefficient of 1-a = 0.95. The coefficient of
variation y was calculated as y = A p/ p, and along with A p, was used as an evaluation of random

measurement error.

5.1.2 High Density Polyethylene (HDPE)

The first polymeric material was used for the experiment was high density polyethylene (HDPE) from
Polimeri Europa, Italy. PE is the most widely used mass-produced plastics and is incorporated in
tremendous amount of applications. The target materials used in this study are common polymers, such
as polyethylene (PE). Specimens of PE were prepared in the typical dog-bone shape with dimensions of
110mm X 10mm X 4mm subjected to tensile testing using the Instron® 3365 via Bluehill® testing
software. The specimen is subjected to a tensile test with a deformation rate of 5mm/minute. The
information logged in the Bluehill® software regarding the tensile test includes time, load, displacement,
and deformation percentage (strain). Concurrently, the specimen is subjected to FPP testing via
TestPoint™ software to measure the voltage output as a function of time. Results from both software
packages were then synchronized to develop the relation between the electrical and mechanical

behavior of the specimen.
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For highly resistive materials such as PE, it is recommended to have a very low current input,
approximately 1pA or smaller to make sure not too much voltage potential is induced on the inner pins.
Therefore, the minimum voltage that the power supply can provide (0.1V) and a very large resistor

(1MQ) were coupled to provide a constant current of 0.1 YA input to the two outer pins of the FPP.

5.1.3 Polyethylene/Carbon Nanotubes Composite

Depending on their chemical characteristics, carbon nanotubes with a small diameter are either semi-
conducting or metallic [63]. Recently, carbon nanotubes have been widely used as conductive fillers for
fabricating conductive polymer composites based on both thermoplastic and thermosetting polymers.
Also, one of exciting features of CNTs is that their volume electrical conductivity can be estimated in
longitudinal and transverse directions for molded conductive polymer composites [59]. This particular
feature makes CNTs a suitable candidate for this study because we are interested in examining the
electrical conductivity of polymers in both longitudinal and transverse directions with respect to the

polymer fibers.

299.25g of HDPE was mixed with 0.75g of CNTs and placed inside the extruder to produce a 0.25%wt of

CNTs composite sample as shown in Figure 5.1.
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Figure 5.1: Carbon nanotube composite manufacturing procedure: raw materials of CNTs (a) and small
beads HDPE (b) are proportionally determined and mixed together (c) prior to transfer to a plastic
extruder (c). The melted compound is then pushed through the barrel and collected to continue on the
press molding process (d) to produce the final product of CNTs/HDPE plastic sheet (e) which can be cut
into desired specimen shapes.

5.1.4 Polyethylene with metallic surface layers

A specimen of polyethylene and 5% polypropylene (PEPP) with dimensions of 123 x 34 x 3.3mm was
prepared to have a surface deposit. A 3 x 3 cm area on the surface of the specimen was polished and
deposited with a 10nm layer of chromium. Another similar sample was deposited with a 200nm
chromium layer. The specimens underwent the FPP test to measure the electrical potential with a

constant current input of 21.3mA.
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Figure 5.2: a) PEPP with chromium deposited surface; b) CERAC silver epoxy
cement and catalyst

A specimen of PEPP 5% with dimensions of 123 x 34 x 3.3mm was prepared to have a surface deposit.
Silver-filled epoxy cement was obtained from CERAC Inc., Milwaukee, WI. The silver-filled epoxy cement
is a silver-colored thick paste containing the optimum ratio of silver powder to epoxy resin for maximum
thermal and electrical conductivity. There are two components in the paste: the epoxy cement and

catalyst [68]. The typical volume resistivity given by the manufacturer is less than 0.001 Qecm.

A small quantity of catalyst and epoxy cement were added together and mixed thoroughly. Then the
mixture was spread evenly and smoothly across the clean surface of the PEPP specimen. The specimen
was left overnight at room temperature for drying. The thickness of silver paste on the specimen was

measured to be 0.4mm.

After the specimen was dried and ready to be tested, the specimen was set up on the Instron® to
undergo a tensile test at a rate of 5mm/min. The specimen also was subjected to the FPP test with

constant input current of 32mA. Since the exact value of the volume resistivity of the silver paste was
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not provided, a conservative current of 21.3mA was applied, which is close to but somewhat lower than
the recommended range of 100mA [9] for volume resistivity of semiconductors of >0.3 Qecm. The
recommended value is for semiconductive materials such as silicon wafers, but not metallic materials.
Therefore, caution was exercised in selecting the current input to make sure damage to the FPP was

avoided.

Another specimen of HDPE was used for a different surface preparation. A small
amount of CERAC silver epoxy cement was well mixed with ethanol solvent. The
solution was then brushed on the surface of the HDPE specimen, which was left at
room temperature overnight to ensure the ethanol solvent was completely evaporated
and the silver particles were left as a fine thin layer on the surface of the specimen.
The thickness of the layer was so small that it can be neglected in the study of sheet

resistivity.

After the specimen was dried and ready to be tested, the specimen was set up on the

Instron® to undergo a tensile test at rate of 5mm/min. The specimen was also Figure 5.3: HDPE specimen
with silver/ethanol

. . . d coati
subjected to the FPP test with a constant current input of 32maA. evaporated coating

Last but not least, a dog-bone HDPE specimen was prepared with a layer of silver conductive paint. The
silver conductive paint was purchased from RS Components, Northants, UK. The paint is specified to
have an electrical resistivity of smaller than 0.001Qecm. The paint was easily applied on the surface of
the sample using a small cotton swab or thin brush. The sample was then subjected to the same tensile
and electrical test as described in previous experiments: 5mm/min strain rate and 32mA current input.
Also, previous tests were done just up to 8% of strain for the purpose of acquiring the trend in resistivity

changes. In this experiment, the tensile tests were carried up to 40% of strain or until the specimens
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ruptured. The purpose of extending strain rate is to attain as many data as possible to produce an

accurate characterization of the mechanical/electrical relationship.

5.2 Four-Point Probe Sensor

5.2.1 Four-Point Probe Characteristics

A four-point probe (FPP), also known as four-terminal sensing, is a simple apparatus for measuring the
resistivity of semiconductor samples [53]. It can measure either bulk or thin specimens, in which
different formulas apply to each different case [54]. The FPP technique was originally developed by
Wenner in 1916 to measure the earth’s resistivity used in geophysics. In 1954, Valdes adopted the
technique to measure the resistivity of semiconductor wafers. The technique has also been applied to

characterize electrolytes and to analyze gases [55].

The FPP has four needle-like electrodes in a linear arrangement. Current is delivered to the material via
the outer two electrodes, and the resultant electric potential or voltage is measured via the two inner
electrodes [57]. The four probe tips are set up in such a manner due to geometric factors. All of the
current delivered across the two outer probes flows through the region between the two inner probes
[58]. It is easier to interpret the data obtained by four-point probe measurements as compared to that
of a two-point probe because by using different electrodes for current supply and electric potential
measurement, the contact resistance between the metal electrodes and the material will not appear in

the formulation for resistivity. Figure 5.4 shows how the four-point probe is arranged.
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Figure 5.4: Four-point probe diagram [51]

There are several characteristics of the arrangement that can affect the measurement of the probe.

These characteristics include probe spacing, probe tip material, probe tip radius, and spring pressure.

Probe Spacing

If p is the resistivity of a semi-infinite volume, | is the current flowing between the outer probes, V is the
voltage measured between the two inner probes, and s is the distance consistent between each probe,

then:

p = 21s (6)

~I<
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Probe spacing directly affects the measurement of resistivity. Common probe spacing ranges from

25Miils (0.635mm) to 62.6Mils (1.591mm).

Probe Tip Material

Two common materials used for probe tips are tungsten carbide and 50% osmium alloy with other
platinum group metals such as platinum, rhodium, palladium, etc [58]. Osmium alloy tips are somewhat
softer and less durable, and only in a few instances do they provide sufficiently superior contact to
justify their usage. Osmium metal is lustrous, bluish white, extremely hard, and brittle even at high
temperatures. Although diamond is much harder than osmium, osmium can withstand compression
better than any known material. For those reasons, osmium alloy tips are more expensive than
tungsten tips. Tungsten carbide is a crystalline material that is very hard and can be broken along the

crystal boundaries with horizontal motion of the probe.

Probe Tip Radius

Depending on the materials being tested, the tip radius can be chosen from 1.6mils (40u) to 20mils
(500u). The tip radius must be chosen carefully to correspond to the characteristics of the surface of
the materials being tested, to make sure the tip is seated into the material deep enough to obtain the
accurate properties of the material. It is recommended that for easily contacted films and thin films,

one should use a 5-mil tip radius, 10-mil for very thin films, and less than 5-mil for other applications.

Spring pressure

The spring pressure is the pressure used to force each individual probe tip onto the sample surface to
make electrical or Ohmic contact.
For easily contacted films such as metal films, soft films such as conductive polymers, or very thin films,

the lowest spring pressure is desired to give satisfactory contact.
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For difficult to contact samples such as high resistivity silicon or similar materials which naturally form a

nonconductive layer when exposed to ambient air, high spring pressure is desired.

The range of 10 grams up to 200 grams spring load is commercially available.

Probe configuration
The configuration of the probe used in this study is described in Table 5.4.

Table 5.4: Configuration of the Signatone Four-Point-Probe [35]

Model Spacing Spring Material Tip Radius Termination
Pressure

Four-Point Probe 50 Mil 45Gram Tungsten 1.6 Mil 38cm wire,

In-Line (0.127cm) Carbide (0.0041cm) flying lead

5.2.2 Four-Point Probe Theory

p (Rho) is the resistivity parameter
V is the measured voltage between two inner probes

| is the current flow between two outer probes.

s is the spacing between each adjacent pair of probes. Ideally, s1 =s2=s3=s

If the sample is a semi-infinite volume, then, as described above [58]:

p = 2ms ; (7)

However, practical samples are of finite size. Therefore, correction factors are needed for the

measurement:

p = a2ms % (8)
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where a is the correction factor.

Valdes had derived correction factors for six different boundary configurations in 1954 [54]. Based on
these findings, if the distance from any probe to the nearest boundary is at least 5 times the spacing, no
correction is required. In other words, for samples whose thickness t is at least 5 times the probe

spacing, no correction factor is needed; otherwise, the correction factor a needs to be determined.

Case 1: S£> 5

p = 2ms - if£>5 (9)

Case 2:

u e
IA
Ul

The correction factor a is calculated to be:
t
a=0.72 . (10)
Substituting the factor into the basic equation, we have:

%4 14 .ot w 1
p = a2lms 7—4.53t7 lf;SS and :,;>5 (12)

The value of p obtained is referred as bulk resistivity, and the units are Qecm.
Dividing both sides by the thickness t of the sample, we obtain:

%4

Ry =2=453 if=<5and 2,=>5 (12)

R, is referred as sheet resistivity. R, does not depend on any geometrical dimensions. Sheet resistivity

can be interpreted as the resistance of a square sample and has units of Q/sq or simply Q.
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Equations (12) and (13) are valid under the assumption that the other two dimensions (width and
length) of the sample are also very large compared to the probe spacing. However, if these other
dimensions are not large enough, correction factors should be found in order to produce accurate
measurements.

In general, to measure the sheet resistance of a small test area:

p=453t=FF, if

0|~
v | g

<5 (13)

l
) )7
S

where
(14)
In2
. w
n [smh (?)

sinh (%)]

F1=

and F, is the finite width correction.
o F,=F0 d/s for a circular sample of diameter d
o F,= FZR( l/W ) d/s ) for a rectangular sample of width w and length /

The correction factor F, can be found in [55].

5.2.3 Experimental Setup

The schematic of the FPP electrical circuit is similar to that described in Figure 5.4. As an inexpensive
replacement for the current source, a resistor R is used with an ELC power supply to control the current |

input to the FPP.
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Depending on the material being tested (the anticipated range of resistivity), the value of R can be

appropriately determined. Also, since the ELC power supply can provide up to only £+15VDC, the current

input is limited.

Table 5.5: Reading ranges of ELC power supply [48]

Functions Reading Range Available Ranges

Volts +10uV to 210V 2V, 20V and 200V

Amps +100aA to £21mA 20pA, 200pA, 2nA, 20nA,
200nA,  2pA,  20pA,
200pA, 2mA, and 20mA

Ohms 10mQ to 210 GQ 2kQ, 20kQ, 200kQ, 2MQ,

20MQ, 200MQ, 2GQ,
20GQ, and 200GQ

The method of FPP is an easy-to-apply procedure; however, there are important cautions that should be

aware of to assure accurate results while operating the FPP test. The cautions include [57]:

e The probes must be able to make Ohmic contact with the material.

e Very low-resistance materials (e.g., aluminum, gold, platinum) require the maximum current from

the current source to achieve a reading. Only very thin films (100s of Angstroms up to 1 micron

thickness) can be measured. The current through the probe is best at 10mA, but not over 1A

because of heating effects and excessive current density at the probe tips.

e Materials with high sheet resistivity (e.g., ion implanted silicon wafers, silicon on sapphire) can be

measured using very low currents (values of 1pA or less) and avoiding voltage indication greater

than 200mV.
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e An unclean sample or a sample that has surface doping will lead to inaccurate figures due to an

impeded Ohmic contact or current leakage.

e Ohmic Contact:

V =1IR (15)

o logV =log(IR) (16)

o logV =logl+logR (17)

oy=ax+b (18)

When graphing equation 17, logV is presented as a function of the variable log I. If the curve is linear
and equation 15 holds true, the constant a should take a value very close to 1. Using this theory, we are

checking to see whether the contact is Ohmic by comparing values of a.
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5.3 Results and Discussions

Voltage V (mV)
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Figure 5.5: FPP test results of silicon 0.0038Qecm

Figures 5.5 -5.7 and Table 5.6 show the results of FPP tests with silicon wafers. The average bulk
resistivity found for the nominal 0.0038 Qecm sample was 0.0043 Qecm, with 4.8% variation, as shown
in Table 5.6. The data for this 0.0038 Qecm silicon wafer are graphed in Figure 5.5, showing that as the
current input increases, the voltage output demonstrates a linear trend as expected. The linear fit has a
high coefficient of determination R%. Also, the result shows that the test was conducted in the rage of
Ohmic contact. The Ohmic contact coefficient was 0.89, which is close to the desired value of 1. In
short, the result confirmed that the FPP is capable of giving a good resistivity test for materials that have

bulk resistivity in the range of 10 Qecm.
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In a similar manner, the results obtained for the silicon wafer of 3.45 Qecm (nominal) in Figure 5.6 were
also to verify its compatibility with the FPP test. The Ohmic contact coefficient was slightly higher than
that of the previous silicon wafer at 0.91. This result is acceptable to confirm that the test was in Ohmic
contact. Therefore, the voltage/current curve is also expected to be linear. The average bulk resistivity
was 2.67 Qecm with 4.9% variation. We now can strongly conclude that the FPP test is good for the bulk

resistivity range of 102 to 10" Qecm.
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Figure 5.6: FPP test results of silicon 3.45 Qecm

A higher range of bulk resistivity was also tested with the 3000 Qecm silicon wafer sample. However,
the results for this test are not as favorable. As shown in Figure 5.7, the voltage/current curve does not
follow a linear regression. Also, the average resistivity found for this sample was 40,800 Qecm. This
value is far from the target value of 3000 Qecm. The coefficient of variation is 38%, which represents a
very high random error of the test. The FPP thus appears incapable of measuring resistivity of
3000Qecm in this case. This phenomenon may be explained by the lack of protection among the wires
and points of connections, which lead to major resistance leakage. As the result, the resistance of the

system is now much smaller than the resistance of the sample, which tends to draw the current input
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into the system, instead of passing by the sample. Thus, very small current or even no current was
transferred to the sample so that the FPP test could be conducted. This is also a possible reason why

there appears to be so much noise in this measurement.
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Figure 5.7: FPP test results of silicon 3000 Qecm

Table 5.6: Results of silicon wafers tests with FPP

Measured bulk resistivity Ohmic contact
Silicon Wafers
ptAp (Qecm) v (%) Coefficient
0.0038 Qecm 0.0043 £ 0.0002 4.8 0.897
3.45 Qecm 2.67+0.13 4.9 0.906
3000 Qecm 40,800 + 13,800 34 0.146

In conclusion, the FPP test, using the equipment described, is valid in measuring electrical resistivity of
semiconductors with bulk resistivity in the range of 102 to 10" Qecm. If a higher resistivity needs to be

tested, system must be improved to prevent any resistance leakage.
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A stress-strain curve was obtained for the PE specimen. The ultimate tensile strength observed for HDPE
was 38MPa. The breaking point occurred at 13% deformation. The curve also displays HDPE’s non-
linear behavior. It is known that the non-linear stress/strain curves of HDPE and the modulus values
derived from there are sensitive to rates of load application and are generally linear up to approximately

2% strain, also shown in Figure 5.8.

Stress/Strain Curve of HDPE
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Figure 5.8: a ) Stress/strain curve for a HDPE specimen and b) the specimen
ruptured after 15% of deformation.

These characteristics will be used as the control characteristics of HDPE for later comparison between
plain HDPE specimens and HDPE specimens with surface preparation. The purpose of the comparison is
to determine whether any surface deposit or modification would affect the original characteristics of

HDPE.

For the FPP test, however, no useful measurements of the voltage output from the two inner pins were
recorded. The readings were limited to noise. According to [77], the resistivity of HDPE is suggested to

be 10" to 10%° Qecm. Using equation 11 and this resistivity value, the voltage output was expected to
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be on the order of 10™ V, which cannot be captured by the Keithley ammeter. This explains why only

noise was observed in this test.

As pertaining to the applicability of the method for testing high-resistivity materials, the FPP method is
acceptable for materials (semiconductive and highly conductive) with a volume resistivity within a range
of at least 0.001-6000Qecm [62]. Thus, with the limitation of current input of the power supply and
voltage range detection of the ammeter as well as the leakage of resistance, within the practical

constraints of the FPP method, measuring the resistivity of HDPE is not feasible.

An alternative solution to make the polymer more conductive such that the FPP method can be
appropriately applied is necessary. A first possible solution is to introduce conducting particles into the
polymer mixture. Particulate and fibrous carbon materials such as graphite, black carbon,
carbon/graphite fibers, and recently, carbon nanotubes, are widely used as conductive fillers for

fabricating electrically conductive polymer composites [60, 63-65].
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Figure 5.9: Electrical resistivity of a composite with different content of CNTs [67]
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value of 1pA to the maximum recommended current of 1A (currents higher than 1A are not

recommended for the FPP because they can heat up the FPP and damage it).

The influence of CNT contents on electrical properties of CNT-reinforced polypropylene (PP) composites
was studied in [60]. The volume resistivity of the composites was shown to decrease with increasing
CNT content [67]. The electrical percolation threshold was identified between 1 and 2 wt% CNT, which

was caused by the formation of conductive chains in the composites.

According to this finding, the electrical resistivity of composite PP with 0.25 wt% CNTs is about 10°

Qecm.

A recent study conducted by Wen et al. published in early 2012 also mentioned the electrical
conductivity of composites of carbon nanotubes/polypropylene (CNTs/PP) [66]. The study used CNTs as
conductive fillers in PP composites to study the conductivity differences of the composites using a
processing method of laminating-multiplying elements (divide and recombine polymer melts). They

have shown the volume resistivity of CNT/PP as a function of CNTs concentration as in Figure 5.10:
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Figure 5.10: Electrical resistivity with different content of CNTs [66]



72

PM-O in Figure 5.10 corresponds to the CNT/PP composite processed without the laminate-multiplying
element method and PM-6 is that with the method applied 6 times. The graph shows that using the
new processing method, the percolation threshold of CNT/PP is increased to 3.2 wt%. Also, this study
agrees with [67] that the percolation threshold of CNT/PP without any special processing method is at
about 2-2.7 wt% with volume resistivity of more than 10°> Qecm. At a CNT concentration of 0.25 wt%,

the volume resisitivity is suggested to be in the range of 10" Qecm.

The findings of [66] and [67] seem to be applicable for the PE/CNT composite of 0.25 wt% that was
manufactured for this study. That means the composite we have prepared may also still have very high
resistivity (10° to 10" Qecm) due to its low percentage of CNTs. The only way to decrease the resistivity
of our PE/CNT composite so that the FPP method can be successful is to increase the concentration of
CNTs in the composite. However, in order to manufacture and process composites involving CNTs, a
special laboratory setting is required to provide appropriate and safe conditions for handling CNTs, due

to their carcinogenic nature [61].

Based on these limitations, it is necessary to find a material that can be tested with our currently
available equipment. Moreover, the most important goal first and foremost in this project is to prove
that the developed system is capable of studying the relationship between electrical and mechanical
behaviors of a material. Although limitations prevent carrying out the proof of concept using normal
polymers, the next solution undertaken is to use polymer specimens which have surface preparations of
conductive materials (metals). This solution resolves the need for a conducting sample that fits with the
measurement range of our system, and also provides an opportunity to study the threshold of electrical

conductivity of the conductive surface with respect to applied deformation.



Chromium (Cr) has an electrical conductivity of
7.9 x 10° S/m [78] or resistivity of 1.27 x 10°
Qecm. That means Cr is considered a
conductive material. It was expected that a
layer of Cr would lead to measurable data in
the FPP test because the FPP test is considered

valid for measuring conductivity of

semiconductive  or  metallic  materials.
However, no discernible data were obtained.
The experiment started with the specimen with
the 10nm Cr deposit, and when the test turned
out negative, the Cr layer was increased to
200nm. This test also resulted in a lack of any

stable measurements. The suspected reason

was that the pins of the FPP penetrated the

layer of Cr, such that the tips of the probes
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Figure 5.11: Surface of chromium deposited specimen after FPP
test under Optic Miscroscopy

were in contact with the polymer, but not with the Cr layer. An optical microscopic observation was

performed to understand this. As shown in Figure 5.11, the pins of the FPP did penetrate through the

layer of Cr, leaving indentations in the surface of the PEPP specimen. The black spots on the image

present the polymer portions which were exposed after the FPP test. Therefore, it is concluded that a

200nm layer of Cr on a polymeric specimen is too thin to be tested under the FPP. An increase in

thickness of the layer is desired; however, the time and cost required are prohibitive. The next
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approach is to use an easier method of depositing silver particles in a cement paste form. This method

gives a thicker layer of the metallic material, and the preparation process is not very time consuming.
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Figure 5.12: Results for PEPP silver pasted surface
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The result shown in Figure 5.12 describes the general trend of electrical resistivity of the silver pasted
surface increasing from 0.069 Qecm to highest observed resistivity of 0.91 Qecm. That is a gain of 0.84
Qecm in resistivity after approximately 7% of strain, assuming the strain is uniform throughout the
specimen.  This preliminary result gives a first look at the relationship between the electrical and
mechanical properties of the specimen. However, there are a couple of shortcomings associated with

the results.

The first drawback shown in Figure 5.12 is that the electrical resistivity found in this study started with
0.069 Qecm, which is too high compared to the suggested value. The manufacturer suggested the value
of electrical resistivity of CERAC silver cement is less than 0.001 Qecm. The difference can be explained
by the value of current supplied to the inner pins of the FPP during the test. For such a conductive
material as silver, a higher current input should have been provided to ensure the measurements are in
Ohmic contact. However, since there is no defined value of the electrical resistivity of the silver paste, it

is difficult to determine the necessary value of current input.

As described in Figure 5.12, directional measurements are also shown. The resistivity in the direction
transverse to the direction of stress is always smaller than that along the direction of stress, in both
cases of before and after the deformation increases. That could be explained by the fact that when the
paste was applied to the specimen surface, the direction of spreading could affect the amount of silver
deposited in each direction. Since the direction of spreading was transverse to axis of stress, more silver
particles are deposited in the transverse direction compared to the longitudinal direction , causing the
conductivity to be higher (or lower resistivity). Also, as the strain increases, the layer of silver is
stretched anisotropically causing silver particles spreading more in the direction longitudinal to the
stress axis than in the transverse direction, leading to the rapid increase in resistivity observed between

3% and 5% of strain along the axis of stress. Initially, it was expected to observe a decrease in resistivity
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(increase in conductivity) in transverse direction to loading due to the Poisson’s effect; however, the
opposite result was seen. The resistivity in the transverse direction to the axis of stress also increases.

No exact explanation has been made to depict this phenomenon.

One other observation found to be undesirable is that during the strain test, the silver surface tended to
detach from the PEPP specimen. The reason could be that that epoxy is not adhesive or strong enough
to keep the paste stable on the surface of the polymeric specimen. This observation leads to our next

solution of using the method of evaporation deposit.

The tensile test at 5mm/min was terminated after 10% strain for the sample with ethanol coating silver.
The electrical resistivity of the silver coated surface was found to be in the range of 0.010 to 0.0136
Qecm as seen in Figure 5.13. Compared to the electrical resistivity in the range of 0.069 to 0.91 Qecm
found in the previous PEPP test, even though both specimens used the same silver epoxy cement, the
resistivity found in the silver/ethanol coating was much lower. This could be due to the different
methods of surface preparation; whereas in one method, the silver particles were applied directly on

the surface, the silver was mixed with ethanol prior to the application in the other method.
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Figure 5.13: FPP test results for HDPE silver coated specimen

It was found that the surface layer of silver has an increase in electrical resistivity as the strain increases.
The resistivity gains 0.0036 Qecm after 10% of strain. This result is consistent with the previous result
found in PEPP 5% specimen with silver paste, in which there is an increase in electrical resistivity with an
increase in tensile strain, although the rate of gain in resistivity is different in the two experiments. As
discussed in the previous section, the rate of gain in resistivity in PEPP 5% with silver pasted surface
after about 7% strain is 0.84 Qecm compared to 0.0036 Qecm after 10% in the current case. The
difference in the resistivity increase rate can be, again, due to the different methods of applying silver
particles. More than that, it could be due to the difference in mechanical properties between PEPP and
HDPE samples. At the same strain rate at 7%, the stress required to elongate the sample of PEPP was
much smaller (7MPa in Figure 5.12) than the stress required to elongate the HDPE sample (about 38MPa
in Figure 5.13) . That means it is more difficult to stretch the HDPE sample than the PEPP 5% sample,

leading to less change in resistivity of HDPE sample compared to that observed in PEPP 5%.
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Via the preliminary results that we have found in the two experiments above, we are confident to say
that we are capable of tracking the changes in electrical resistivity of surface metallic deposited
polymers with respect to mechanical manipulations using our innovative CTS and FPP theory. The next
set of experiments are performed to achieve a further goal, in which we are interested in characterizing
the relationship between the mechanical and electrical properties of such specimens by empirically
fitting obtained data. We also introduce another type of silver deposit, which is silver conductive
paint. This paint is easy to apply. Also, since the silver/ethanol evaporation method did not always
produce uniform drying even after overnight open air drying, and sometimes gave residues around the

testing area, the paint can tackle these drawbacks.

The tensile test at a rate of 5mm/min was terminated at 40% strain for the sample with surface silver
paint. As seen in the stress/strain curves for the test in Figure 5.14a, necking occurred at the range of
20% strain. Necking occurred at the area close to the bottom grips in Figure 6.14; however, the area of
measurement was above the affected area in both cases. No significant elongation occurred in the local
vicinity of the FPP test unfortunately, and that is the reason why the tests were terminated at the

mentioned strain.

Figure 5.14: Specimen under FPP and tensile test: (a) specimen position while loading
with necking occurred below the testing area, and (b) specimen after the test
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A specimen of HDPE with silver painted surfaces underwent FPP tests while being subjected to tensile
tests with strain rate of 5mm/min. The result is shown in Figures 5.15. The result agrees with what had
been found in previous experiments with the evaporation-coated specimen, that as the strain increases,
the electrical resistivity obtained also increases. Also, the resistivity in the direction longitudinally to
loading seems to be always higher than that transverse to the loading direction. This finding also agrees
to the result of the HDPE silver coated specimen shown in Figure 5.13. Similarly, this phenomenon could
be explained by the fact that when the specimen is stretched longitudinally, silver particles are moving
farther away from each other as the fibers stretch. Therefore, particles of silver are further apart in the
longitudinal orientation compared to the direction transverse to the fibers, causing the decrease in

conductivity or increase in resistivity (Figure 5.15).

Via this particular experiment, we can also observe another important phenomenon. As shown in Figure
5.15, the stress was homogenously applied to the specimen until it reached 20% strain. At this position
necking occurred, which theoretically alters the amount of stress and strain applied to different
locations of the specimen. Consequently, the test should have been characterized by changes in the
electrical resistivity. However, we observed no significant variation in electrical resistivity of the silver
paint surface. The resistivity remains in a linearly increasing manner as the strain rate increases. No
observation for changes in molecular structures has been displayed via the resistivity test. Therefore,
we can conclude that the FPP test conducted only provides a good inspection of surface modification,

not bulk molecular structure modifications.
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Figure 5.15: FPP test results of HDPE silver painted

The result represented in this study is significant and potentially responds to many current issues of
conducting polymers in a variety of applications. For example, metal electrode materials used in active
polymeric implantable devices are often reported to have poor long-term stimulation and recording
performance. Researchers are looking for solutions to modify these materials for improving the tissue-
electrode interface and increasing the effective lifetime of the implants [20-21]. The outcomes of this
study offer a beneficial insight of how metallic surface modification on a polymer specimen changes its
electrical properties as the polymer undergoes long-term mechanical stimulation. It is essential
information that can assist in studies of biomedical applications involving conducting polymers or
polymers with conductive surfaces such as in therapeutic body-machine interfaces, artificial muscles,

controlled drug release, or even neural recording [21].

There was an attempt to modify the physical configuration of the specimen so that necking/elongation

would occur at the FPP testing area. The attempt was done by decreasing the thickness of specimen
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where the FPP was in contact. However, rupture of the specimen took place immediately after stress
was applied. No further deformation happened to the specimen. Therefore, were not able to study the

electrical resistivity changes of necking area.

One additional set of experiments was performed in order to understand what type of modification
happened to the metallic layer while being loaded. The experiment was done by measuring the
electrical resistivity of the silver paste layer during loading and reloading. The process took place within
the elastic region to create hysteresis loops, which for HDPE are presented in Figure 5.8a, from 0% up to

5% strain. The schematic of this experiment is presented in Figure 5.16.

Stress/Strain Curve for HDPE/Silver Paint - Hysteresis
Loops
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Strain (%)

Figure 5.16: Reload test for HDPE/Silver paint

Two hysteresis loops were created. The specimen was loaded up to 5% strain, then unloaded back to
0% strain and another loop was done in the same manner. Figure 5.17 describes the electrical resistivity

of the specimen for loading and unloading portions, explicitly.
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There is an increase in resistivity for the 1* loading as shown in Figure 5.17a. This result is expected as
we have seen the same trend observed in previous experiments. However, after the 1% loading, there
are no particular trends observed in the 1% unloading and the 2™ loop. Figure 5.17b even shows a slight
decrease in resistivity as the strain decreases; however, it is most likely that the silver layer could
already form cracks, which leads to unpredictable changes in resistivity. In fact, the 2™ loading in Figure
5.17c does not follow the common trend of increasing strain leads to increasing resistivity. Instead,

there is no particular relationship is formed here as well as in the 2" unloading shown in Figure 5.17d.

In short, via the hysteresis loop experiment, we can conclude that it is most likely that stretching the
specimen with silver paste surface layer tends to form cracks or fractures on the layer. This surface

modification can be seen via changes in surface electrical resistivity.



84

CHAPTER 6: CONCLUSION AND FUTURE WORK

A CTS was designed and built to couple with the Instron® 3365 universal testing machine to understand
the relationship between the mechanical and electrical properties of mechanically loaded polymeric
specimens. The system provides an innovative method allowing a pioneering study in material behavior.
Uses of polymers include biomaterial applications, space applications including composite overwrapped
pressure vessels, and recently as target materials incorporated in plastic electronic devices. Polymers in
those applications come in different forms, sizes, shapes, and compositions. However, one of the most
common conditions that the polymers experience is subjection to loading. Studies of polymer behavior
under mechanical loading have been widely performed using universal tensile testing machines.
However, none of the studies have been done to study a critical property of materials in relation to

mechanical loadings: electrical conductivity.

The CTS was designed to attach on the Instron® 3365. The system was controlled using C programming
via an Arduino microcontroller and a data acquisition system integrated with TestPoint™ software. The
CTS consists of a four-point probe (FPP) sensor to conduct the electrical resistivity (conductivity) test on
loaded samples on the system enables study of electromechanical behavior in both transverse and

longitudinal orientations of the specimen.

The FPP test was first conducted on silicon wafers to verify the accuracy of the method, and to find the
valid range of measurements. The result suggested that with the particular equipment resources

available, the range of resistivity that the FPP can accurately measure is 10 to 10" Qecm.

Next, the FPP test was performed on specimens of polyethylene and other polymers. However, no
useful measurements were obtained via this method due to very high resistivity that the polymers

possessed. Carbon nanotubes (CNTs) were then incorporated into the polymers to create a conducting
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composite so that the FPP can produce readable measurements. Within the current laboratory setting,
we were able to produce a PE composite of 0.25% CNTs. The FPP test of this sample turned out to be
unsuccessful. Literature suggested increasing the volume weight of CNTs up to 3 wt% to produce
manageable readings for the FPP test. However, due to the carcinogenicity of CNTs, we were forced to

abandon this method of applying CNTs in our polymeric composites.

Our next approach was to deposit metallic materials on the surface of polymer specimens. Even though
this method does not guarantee an accurate understanding of the electrical behavior of polymers, the
method provides an opportunity to understand the relationship of electrical and mechanical behaviors

of a material in real time, which no studies have allowed before.

Specimens of polyethylene with 5% polypropylene (PEPP) and high density polyethylene (HDPE) were
prepared with a thin layer of metallic material on their surfaces. The metallic materials included
chromium and silver. A 200nm layer of chromium was deposited on a PEPP specimen, but the FPP
penetrated through the layer, resulting in no useful data. Silver particles were then deposited using
three separate methods: silver epoxy cement, silver cement/ethanol evaporated coating, and
conductive silver paint. All specimens with silver layers produced readable measurements. These
experiments allowed identification of a common behavior: as the deformation increases in the
specimens, the resistivity of the metallic surface also increases. We suggest that due to breakdown of
the metallic layer as it is stretched, silver particles move away from each other, causing a decrease in
conductivity or increase in resistivity detected by the FPP. Also, the resistivity longitudinal to the
direction of stress on specimens was always higher than that in the transverse direction. This
phenomenon could be due to the method of applying the silver particles on the specimen’s surface. But
more importantly, it could be due to the local strain in the longitudinal direction being different from

that in the transverse direction.
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A hysteresis loop also was carried out with a specimen of HDPE with silver painted surface. The
specimen underwent loading and unloading while surface electrical conductivity was being measured.
The result possibly confirmed that applying stress on the specimen did alter the surface structure, in
other words, forming cracks on the silver, which is depicted with random and inconsistent observations

in surface electrical resistivity.

In the long run, microscale experiments could also be performed to determine the underlying cause of
changes in resistivity and whether the change relates to the degree of disorder in material structures.
Another interesting approach would be studying the mechanical-electrical relationship in conducting
polymers (or conducting carbon-based polymer composites). To study conducting polymer composites
using CNTSs, an increase of CNT volume in the composite to at least 2% is desirable. Also, there are many
other carbon-based materials such as black carbon, graphite powders, etc., that can be incorporated
into the composite to increase the electrical conductivity. The potential for future studies using the

basic concept of this study is great.

A few modifications are suggested to benefit future studies. First, it is necessary to implement a more
advanced data acquisition system, in particular the current source and voltage meter. If studying
polymeric materials is desired, a current source that can provide a direct low current in the range of
micro to even picoamperes is critical. A low current is best to understand electrical properties of
polymers which have very high resistivity values. A more sensitive and advanced voltage meter would
also be beneficial. A voltage meter that can detect smaller changes in current input and give a stable
reading is preferred in the study of FPP methods. Also, in relation to hardware system, more protection
should be applied to all the electrical components to ensure that there would be no leakage of
resistance occurring during testing. This step assures the current input would be directly applied on the

sample and not to the system.
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A second approach is to use a commercial test fixture according to ASTM D 991 — Rubbery Property -
Volume Resistively of Electrically Conductive and Antistatic Products. This method is used to evaluate
the electrical behavior of nonconductive materials such as rubber products. In particular, model 831 D
991 Test Fixture [79] from Electro-Tech System Inc., is one of several commercial systems that can

measure volume resistivity of non-conducting materials up to 10 MQ in resistance.

In summary, the presented work has been shown to prove that the CTS is capable of measuring the
electrical conductivity of a specimen while being mechanically stimulated under a tensile test.
Specimens can potentially be different types of materials including polymeric materials, but limited to
polymers with metallic surface modifications due to constraints in available testing equipment and
protection for electronic components. However, we are optimistically anticipating that CTS would be
able to perform experiments on desired materials subsequent to improvements that have been

suggested throughout this paper.
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ARDUINO CODING:
#include <AFMotor.h>
AF_Stepper motorl(64, 1);
AF_Stepper motor2(100, 2);
int moveCnt =0;

int stepCnt = 0;

int done = 0;

int pause =0;

int forward = 1;

int newMove = 1;

const int buttonPin = 2;
const int ledPin = 10;

const int backupPin = 9;

/l

void setup()

{

Serial.begin(9600); // set up Serial library at 9600 bps

Serial.printin("Stepper test!");

pinMode(buttonPin, INPUT);

pinMode(backupPin, INPUT);

pinMode(ledPin, OUTPUT);
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motor2.setSpeed(100);
motorl.setSpeed(200);
motor2.release();

motorl.release();

void loop()

{

if (!done)
{

if (digitalRead(buttonPin))

{
digitalWrite(ledPin, HIGH);
delay(2000);
Serial.printin("Button Pin");
digitalWrite(ledPin, LOW);
motor2.step(100, BACKWARD, SINGLE);
stepCnt = stepCnt - 100;
newMove =1;

forward = 0;
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else if (digitalRead(backupPin))
{
Serial.printin(moveCnt);
delay(2000);
if (newMove)

{

moveCnt = moveCnt + 1;

} if (moveCnt%?2)

{ motorl.step(530, BACKWARD, SINGLE);
}

else

{

motorl.step(530, FORWARD, SINGLE);
}

forward = 1;

motor2.step(150, FORWARD, SINGLE);

stepCnt = stepCnt + 100;

if(moveCnt == 4)

{

done =1;

Serial.printin("STOP!");

}

newMove = 0;
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else if (forward)

Serial.printin("FORWARD");
motor2.step(100, FORWARD, SINGLE);

stepCnt = stepCnt + 100;

else

Serial.printin("BACKWARD");

motor2.step(100, BACKWARD, SINGLE);

stepCnt = stepCnt - 100;
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APPENDIX B:

Technical Details of Commercial Components
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214
0-2.14
252W
120mvpp
108 ~132¥
L
0.5%
0.5%

A000ms, 30MsH1SYAC 2 Al load
T4 ms! 11 VA at full oad
125 ~ 373VDC (Withstand S00VAC sume for Ssec. Without damaps)

| 154

| 158~ 1620

RE25-15
15W

1.7A

0~ 174

25 5W
120mVip-p
135~ 16.5¢
0%

0 5%
0.5%

&35%

Pmtection wpe - Hiccup mode, recovers automatically afer fault condifionis mmaved
7 25 - 20 25V

10~ 500Hz. 5 10min.Meycle. pariod for Gimin. aach along XY, 2 axes
ULBER5E-1, TUY ENBISSI-1 approved

UP-FG:15KVAC OP-FGH SOVAC
I1P-00F, WP-FG. OVPF G- 100M Ohms { SO0VDC 1257/ T0% RH
Compilance f ENSS022 (CISPR22) Class B

Compiiance B ENE1000-4-2,3.4.5 6.8.11; ENVSO204. light ndusrylavel_ criteria A
MIL-HOBE-21 TF (257

. 2=

ure.

CBC¢

RS-25-24 RS-2548
24V 48

114 057A
0-1.14 0-~0.5TA
26.4W 27360
120mp-p 200mip-p
22~ 2.6V 42~ 50V
A o
0.5% +0.5%
0.5% 0.5%
| s 854
TR ] 552~ 64 8

EMC direcives. For guidance on how o perform fhese EMG tests, pease reler to "EM testing of companent power suppies.”

(&= avalkable on Mipy S msamwel oo

Fily Nama RS -25-5PEC T0M-10-18
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‘ME IAN IWELL 25W Single Output Switching Power Supply RS-25 series

M Mechanical Specification Casa Mo 931A  Unidnm
—
55 105
78
14 max
Tarminal Pin No. Assignmani
Pim Mo | Assignement | Pin ko, Bagigrment T — T k]
1 AT ] DC OUTRUT -V 2 -
7 RN B DC OUTPUT +V B "
— [im|
3 Fig =+
({3 275
M Block Diagram 350 BOKHZ
M RECTIFIERS POWER . RECTIFIERS "
® “—  rfER 1 & M swimcHEms [T & o
FILTER FILTER J_
- 1
FG = " L | DETECTRON [ | :|:
- mmm_ rl» T CRCUIT =
M Derating Curve W Static Characteristics (24V)
B=ET
2r L
- ]
At 1m 5
a0F 4 E 2
i M - 2m _.E,_
b w
aar b B ar H @ 7
g -
z .l ] = {m E
g & &
= our 180 =
S mf - 3 3
ar 1 26
i 1 .I .l - 1 1 1 1 1 1 1 1 1 1 1 1
w0 S THORIZONTAL) G180 W0 W0 40 W0 W0 M Dm0 M0 264
AMBIENT TEMPERATURE (C) INPUT VOLTAGE (VAC) 60Hz

Fily Nama: RS -25-5FEC a1



Subminiature Snap Action Switch

D3M

Saves Wiring Effort, Production Steps, and
Time

» Easy wiring ensured through the Quick-Connect Terminals
« External actuator mounts in either of two directions
» Horizontal layout of terminals saves mounting space

* Same internal mechanism as the OMRON SS Subminiature
Snap Action Switch

* RoHS Compliant

Ordering Information

OMmRON

b

Actuator Actuator mounting position |Contact type Model
Pin plunger — SPST-NC D3M-01
— - SPST-NO D3M-01-3
Hinge lever High ratio operating position SPST-NC D3M-01K1
SPST-NO D3M-01K1-3
o Standard operating position SPST-NC D3M-01L1
SPST-NO D3M-01L1-3
Hinge roller lever High ratio operating position SPST-NC D3M-01K2
SPST-NO D3M-01K2-3
% Standard operating position SPST-NC D3M-01L2
SPST-NO D3M-01L2-3
Simulated roller lever High ratio operating position SPST-NC D3M-01K3
SPST-NO D3M-01K3-3
Standard operating position SPST-NC D3M-01L3
SPST-NO D3M-01L3-3

H Connectors

Refer to Wiring under the Precautions section of this data sheet.

1046 Subminiature Snap Action Switch D3M
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Specifications

B Characteristics

Permissible operating speed (see note 1)

0.1 mm/sto 1 m/s

Permissible operating

Mechanical

400 operations/min max.

frequency

Electrical

60 operations/min max.

Insulation resistance

100 M min. at 500 VDC

Contact resistance (initial value)

100 m£2 max. including connector and 50-mm AWG28 lead wire resistance

Dielectric strength

Between terminals of the
same polarity

1,000 VAC at 50/60 Hz for 1 min

Between charged metal part
and ground

1,500 VAC at 50/60 Hz for 1 min

Between non-charged metal
part and each terminal

1,500 VAC at 50/60 Hz for 1 min

Vibration resistance

Malfunction (See Note 2.)

10 to 55 Hz, 1.5-mm double amplitude for 1 ms max. with contacts closed or open.

Shock resistance

Destruction

1,000 m/s? (approx. 100G)

Malfunction (See Note 2.)

300 m/s? (approx. 30G) for 1 ms max. with contacts closed or open.

Life expectancy

Mechanical

500,000 operations (at full-stroke operating speed of 10 mm/s at a frequency
of 60 operations/min)

Electrical

200,000 operations (at full-stroke operating speed of 10 mm/s at a frequency of
30 operations/min)

Enclosure rating P00

Degree of protection against electric shock Class |

Proof tracking index (PTI) 175

Ambient temperature |Operating -25°C to 85°C (with no icing)
Ambient humidity Operating 85% max.

Weight

Approx. 2 g (pin plunger model)

Note: 1. The permissible operating speed applies to pin plunger models.

2. If a lever actuator model is used, the above vibration resistance conditions will apply when the actuator is in the maximum over-travel

position.

B Operating Characteristics

Characteristics Part number
D3M-01 D3M-01K1 D3M-01L1 D3M-01K2 D3M-01L2 D3M-01K3 D3M-01L3
D3M-01-3 D3M-01K1-3 |D3M-01L1-3 |D3M-01K2-3 |D3M-01L2-3 |D3M-01K3-3 |D3M-01L3-3
Max. operating force (OF) | 153 gf 51 gf 102 gf 51 gf 102 gf 51 of 102 gf
Min. reset force (RF) 25 gf 6 gf 10 gt 6 gf 10 gf 6 gf 10 gf
Min. pretravel (PT) 0.6 mm — — — — — —
Min. overtravel (OT) 0.4 mm 1.2 mm 0.7 mm 1.2 mm 0.7 mm 1.2 mm 0.7 mm
Max. movement 0.1 mm 0.8 mm 0.6 mm 0.8 mm 0.6 mm 0.8 mm 0.6 mm
differential (MD)
Max. free position (FP) — 14.0 mm 11.5mm 19.7 mm 17.2 mm 16.2mm 13.6 mm
Operating position (OP) |8.4+0.3 mm 10.0£0.8 mm |9.2+0.6 mm 15.7+0.8 mm [14.9£0.6 mm [12.2+0.8 mm |11.3+0.6 mm

Note: 1. A tolerance of +0.4 mm applies to all of the above dimensicns unless otherwise specified.
2. The operating characteristics apply when each actuator is moved in the direction indicated by the arrow and “A.”

B Contact Fo

SPST-NC

rm

NG

CoM

SPST-NO

NO

I

COM

Subminiature Snap Action Switch D3M
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TSFNA25-150-21-050-LW4

« Permanent Magnet Stepper Motor Actuator

» Precise Motion at a Low Cost

» 30 Newton of Force

» 25 mm diameter

» Screw travels through the motor
» Inexpensively create linear travel

Specifications

ltem

Specifications

Step Angle Accuracy

+8% (full step, no load)

Resistance Accuracy

JALEn,

- —
— ]
£10% BLK AO—— l—l
Inductance Accuracy
+20% RED
O Y
Temperature Riss 20° T Max B T
RED YEL
Ambient Temperature -20°C to +50°C Fid [
Insulation Resistance
100MOMin. 500VDC
Diglectric Strength 500VAC for one minute
Shaft Radial Play 0.06Max. (450 g-load) YEL RED
Shaft Axial Play 0.08Max. {450 g-load)
Screw Typs M35
Maodel Step & of Voltage Current Resistance Force Trawvel Screw
Angle Wires per Phase | Per Phase Type
(deg) v (&) {ohms) (M) {rnim)
TSFNAZ25-150-21-050-LW4 15 4 12 0.5 24 30 40 M35
i T B _""H-..H\
— — ; / e \
| T B\
o Ln:‘ L"-I:'_-' |ll |".| |’.-:-;P= , X "|
8l - nj ‘P_'_H"_ ;
L1 | L \\%__{f__//;\" { !
! L \\ a_.-f/ i -lI
i , \\“'“ A~ /
I ! , Sl A
] 0~40 - 2 \\ /
- (R R | N 1 ~—
15 &

a0

910 E. Orangefair Ln. Anaheim, CA 92801 Tel (714) 992-6990 Fax (714) 992-0471
www.anaheimautomation.com
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TGM24-056-19-5V-020A-64R-LW4

Permanent Magnet Stepper GearMotor
High torque in a Small Package at a Low Cost

AA NAHEIM

UTOMATION

300 g-cm of Toergque
E4:1 gear Ratio
24 mm diameter

Specifications LW
Hem Spacifications B \'
Step Angle Accuracy 7% jfull St=p, no load) |_I
Reslstance ACCurscy 0%
nductance Ancuracy 200 ieliow s H
Temperabure Rlse BO" T Max

Amblent Temparature

-201"C o +50°C

neulation Reslstance

100K M. SDOVDC

J:"-‘W
E

E
Dikekeciric Sirength EOTWAC far ane minuhe Drenge Pink.
Keods| Eiep Gear ol Volage Currank Haolding Distant
Angle Ratlo VWirag p=r Phacs Torgus Torgus
d=g1 [ [EX] [ K] ig-am|
ToMI4-058-90-5V-0204-84F-Lwd | 3623 | 6401 4 3 Q.20 300 130
0.3 alto,
l:|1I:I 0 o_ga 2t . alto.l
» y
#a-u 15 \ ;
. 15 \ B3-p15
610.2 —] [ \ -
r Y L 65401
— || \ _jéf'ﬁ& =
— || L o "\E A
f I 3 VI
I L1 "_-1* i
W
]
r; &
- ~ 142
A ., B
4 - 2.7 %
/
ULi0GlAaWGEa#-

10 E. Orangefair Ln. Anaheim, CA 92801

Tel (T14) 992-6990 Fax (714) 9920471

www.anaheimautomation.com
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SIGHNATONC

Lucas/ Signatone Corporation — Since 1968
393-J Tomkins Court « Gilroy, California 95020-3632 « USA
Tel: 408-848-2851 -« Fax: 408-848-5763
e-mail; sales@signatone.com web: www.signatone.com

Lucas/Signatone Four Point Probe
Part Numbers

Standard Head (Delrin)

= Standard, flying lead termination
= 15" wire, 9 pin D sub, for Pro4
= 6" wire, 9 pin D sub, for QuadPro
= 36" wire with 4 banana jacks

36" Coaxial wire with 4 BNC connectors
36" Coaxial wire with 2 BNC connectors

S
Y
spa- L | J | | | | | | ¢
c

R = 1.6 mil radius tip
F =5 mil radius tip
B = 10 mil radius tip

T = Tungsten Carbide
O = Osmium

045 = 45 gram spring pressure
085 = 85 gram spring pressure
180 = 180 gram spring pressure

40 = 40 mil spacing between tips
50 = 50 mil spacing between tips
62 = 62.5 mil spacing hetween tips

SP4-62085TRY
Sample Part Numbers:

HT4-501800RY

High Temperature or High Resistance Head (Macor) S = Standard, flying lead termination
Y = 15" wire, 9 pin D sub, for Pro4

Q = 6" wire, 9 pin D sub, for QuadPro
HT4 - ‘ H H 1 H 8 H 0 H H H ‘ J = 36" wire with 4 banana jacks
HR4 N = 36" Coaxial wire with 4 BNC connectors
[ C=36"Coaxial wire with 2 BNC connectors
X = 36" Triax wire with 4 TRX connectors
D = 8" Triax wire with 2 TRX connectors

R = 1.6 mil radius tip
F =5 mil radius tip
B = 10 mil radius tip

T = Tungsten Carbide
O = Osmium

180 = 180 gram spring pressure

50 = 50 mil spacing between tips
SP4 ordering info 2010 rev. 1-21 62 = 62.5 mil spacing between tips 1



The SP4 probe head is designed for use with

Lucas/Signatone and other resistivity probing

systems for the measurement of thin films and

materials. The SP4 head has several configuration

parameters permitting users to define the probe head E_E_H

best for their application.

Spacing between tips
0.0625 inches (62)
0.050 inches (50)
0.040 inches (40)

Pressure on each probe tip

45 grams  (045)
85 grams (085)
180 grams (180)

Probe tip material
Osmium (0)
Tungsten Carbide (T)

Tip radius

0.0016 inches [1.6mil](R)
0.005 inches 5miy  (F)
0.010 inches (1o miy (B)

Dimensions (inches)

SP4 Four Point Probe Head

Front View

SP4 ordering info 2010 rev. 1-21

—

-—

—

4X 04

Electrical Connection opftion

Flying lead termination, 15" wire (
9 pin D sub with 15” wire (
9 pin D sub with 6” wire (
4 36" wires with Banana Jacks  (
4 36" coax wires with BNC (
2 36”7 coax wires with BNC (
4 36" Triax wire with TRX (HT4) (
2 8" Triax wire with TRX (HT4) (

* for direct connection to various meters

Ordering Model Maker Information

116

SP4-[Spacing][Pressure][Material][Radius][Termination]

Sample Part Number: SP4-40085TRS

.24 —~

75

Top View

.04
Side View y

[



Use the L-4PQM to mount the
SP4 and HT4 probe heads to any
late model Lucas / Signatone
Corp. resistivity test stand.

117

Mounting Options

L-4PQM Quick Mounting Block S
55 I 2X .22
.28
| !
Back View
Mounting Holes ; 1 i

2X 6-32 UNC -2B | .28
Use these dimensions
to create your own

.14 CABLE EXIT — 33 mounting device.

Photo: L-4PQM quick mounting
block, holding SP4-62085TRQ
mounted to our QuadProS-A8
resistivity test station.

A

FAQ: How do I choose the best SP4 or HT4 for my application?

SELECTING THE BEST 4 POINT PROBE HEAD
FOR YOUR APPLICATION

Choosing the right probe head is a matter of selecting the best spring pressure, probe tip radius, material and
probe tip spacing for your application. The following is a guide for making the best selection; however,
experience has shown best results are achieved by using guidelines to select the initial probe head, then
experimenting with different spring pressures or materials to match the characteristics of your application.

Spring Pressure: The spring pressure is the pressure used to force each individual probe tip onto the sample
surface to make electrical or ohmic contact. Lucas Signatone offers 45 gram, 85 gram and 180 gram spring
pressures for standard probe heads (SP4 series) for testing below temperatures of 90 degrees C. Probe heads
for use at higher temperatures (the HT4 series) have 180 gram spring pressures. The physical characteristics of
the sample determine the correct spring pressure as follows:

A For easily contacted films such as metal films or soft films such as conductive polymers or very
thin films, start with the lowest spring pressure that gives satisfactory contact, usually 45 grams.

SP4 ordering info_2010 rev. 1-21 3
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B. For difficult to contact samples such as high resistivity silicon or similar materials which naturally
form a nonconductive layer when exposed to an air ambient, start with the high spring pressure
of 180 grams. Note: Nonconductive layers may form when samples experience high
temperatures; therefore, HT4 high temperature probes use 180 gram spring pressures.

C. For intermediate or unknown films start with an 85 gram spring pressure probe.

Probe Tip Radius: Lucas Signatone probe tips are micro-machined to have the shape of a section of a sphere
at the tip. 1.6 mil, 5 mil, and 10 mil tip radii are available. Generally the large tip radius probes are more
robust, but it is more difficult to make good electrical contact with these probes. Use the following guide for the
selection of tip radius:

A For easily contacted films and thin films start with a 5 mil tip radius.
B. For very thin films start with a 10 mil probe tip radius.
C. All other applications start with the standard 1.6 mil probe tip radius.

Probe Tip Material: Lucas Signatone offers 4 point probes with tips of either Tungsten Carbide or Osmium.
Tungsten Carbide is a crystalline material that is very hard and can be broken along the crystal boundaries with
horizontal motion of the probe. Osmium is an amorphous material and is also hard, but is more forgiving to small
horizontal motion. It is believed that Osmium will give longer performance or more touch downs than Tungsten
carbide, but it is slightly more expensive. Also, Osmium has the physical characteristic (work function) such that
it can make better contact with some exotic materials. The following is suggested:

A For laboratory and low volume usage start with Tungsten Carbide.
B. For production environment probing or contacting many points on the sample consider Osmium.
Also, consider trying Osmium to improve contact.

Probe Spacing: The probes have a constant spacing, S, between each of the 4 tips. Lucas Signatone products
use software with correction algorithms allowing for probing near the edge of the sample (to within a proximity of
4 x S) with 1% accuracy. Generally larger probe tip spacings give better results. Please use the following guide.

A For samples with geometry greater than 0.5 inch in diameter use 0.0625 inch (62.5 mils)
spacing.

B. For smaller samples or for probing closer than 0.25 inch to the edge use 0.040 (1mm or 40 mils)
spacing.

http://www.fourpointprobe.com/applications/resistivity.asp

$$$ SP4 / HT4 Pricing $$$

For pricing, please configure the part number by using the above information, then

send us an e-mail at: Sales@Signatone.com

SP4 ordering info 2010 rev. 1-21 4



Four Point Probe Theory

Resistivity. Rhio. is a particularly important semiconductor parameter because it can be related directly to the
impurity content of a sample: the four point probe is the apparatus typically used to determine bulk Resistivity.

The mobility of the carriers depends upon temperature, crystal defect density, and ALL impurities present. Hall
Effect Measurements can determine the mobility of the carriers in a given sample to allow for more accurate
dopant concentration measurements, but Hall measurements are usually destructive to the sample.

The four point probe contains four thin collinearly placed tungsten wire probes which are made fo contact the
sample under test. Current 1 is made to flow between the outer probes. and voltage Fis measured between the
two inner probes, ideally without drawing any current. If the sample is of semi-infinite volume and if the inter-
probe spacing is §1 = 52 = §3 = s, then it can be shown that the Resistivity of the semi-infinite volume is given
by:

Rhoo = (Pis) VA1)

The subscription in the preceding equation indicates the measured value of the Resistivity and is equal to the
actual value, Rho, only if the sample is of semi-infinite volume. Practical samples, of course, are of finite size.
Hence. in general. Rhio | = Rhoo. Correction factors for six different boundary configurations have been derived
by Valdes (1). These show that in general. if . the distance from any probe to the nearest boundary. is at least
5s. no correction is required. For the cases when the sample thickness is 5s, we can compute the true Resistivity
from:

Rho=a 2 Pis V/I=Rhoo (2)

Where & is the thickness correction factor which is plotted (on page 3). From an examination of the plot we see
that for values of £/s >= 5 times the probe spacing. no correction factor is needed. Typical probe spacings are 25-
60 mils and the wafers used in most cases are only 10-20 mils, so unfortunately we cannot ignore the correction
factor. Looking again at the plot, however, we see that the curve is a straight line for values of #s <=0.5. Since
it is a log-log plot the equation for the line must be of the form:

a=K (1/s)"m (3)
where K is the value of @ at (#/5) = 1. and m is the slope. Inspection of the plot shows that in this case m = 1. K
is determined to be 0.72 by extrapolating the linear region up to the value at (#5) — I. (The exact value can be
shown to be 142 In 2).) Hence for slices equal to or less than one half the probe spacing a = 0.72 1/5.
When substituted into the basic equation we get:

Rho=a2PisVA=4.531V/, (t/s) <= 0.5 (4)
All samples we will be using in the lab satisfy the one-half relationship so we can use the above formula to
determine Rho. We will perform Resistivity measurements on the starting material for each experiment. The
value of r obtained will be referred to as the bulk Resistivity. and the units are Ohm-cimn.
If both sides of the Equation (4) are divided by ¢ we get:

Rs=Rho/t=4.53 V/ fort/s <= 0.5 (5)

which we refer to as sheet resistance. When the thickness 7 is very small, as would be the case for a diffused
layer. this is the preferred measurement quantity. Note that Rs is independent of any geometrical dimension and

SP4 ordering info 2010 rev. 1-21 7
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is therefore a function of the material alone. The significance of the sheet resistance can be more easily seen if
we refer to the end-to-end resistance of a rectangular sample. From the familiar resistance formula:

R =Rho 1wt (6)
we see that if w =1 (a square) we get:
R=Rho/t=Rs

Therefore, Rs may be interpreted as the resistance of a square sample, and for this reason the units of Rs are
taken to be ohims-per-square or ohm/sq. Dimensionally this is the same as ohms but this notation serves as a
convenient reminder of the geometrical significance of sheet resistance.

So far in our discussion of Resistivity measurements we have assumed that the size of our sample is large
compared to the probe spacing so that edge effects could be ignored. This is usually the case for the bulk
Resistivity measurement. However, our sheet resistance measurements will be made on a “test area” on our
wafer and the test area dimensions (nominally 2.9 by 5.8mum) are not that large compared to the probe spacing
(25 mils). In order to get accurate measurements we will need to correct for the edge effects. In general then:

Rs=CV/I(T)

where C is the correction factor. Note that for d/s > 40, C = 4.53. the value we had as the multiplier in Equation

(5).
References:

1. Valdes, L.G., Proc. LR.E.. 42 pp. 420-427 (February 1954)
2. Smits, F. M., “Measurements of Sheet Resistivity with the Four Point Probe.” BSTI, 37, p. 371 (1958).
(Same as BT Monograph. 3894, Part 2).
Courtesy of:
ECE344: Theory and Fabrication of Integrated Circuits
Electrical and Computer Engineering
University of Tllinois — Urbana/Champaign
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LCATIO Unils
Ekcking v=lage & Vo
Load Currant: 1 A
(MR [H 4]
Featurss
= Low OrrFesistance: 0,507
High Cumrent Handling Copakify: 14
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High Raliabilicy
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Mo EMIRF| Gersration

Machines Inzertable, Wave Soldsroble

Surfoce Mount and Tops & Feel Versions &woilabls

Applications

* |rsrumamiation

= Mukbiplesosrs

= Dlaln Acguisition

= Elsciranio Swilching

= D Suboystams

= Ml=imns (Watt-Hour, Waler, Gas)

M=dical Equipmert—Patient/Equipment |sclaion
Saourity

Heroopace

Irdustial Cantralz
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LCAT10
Single Pole, H-nmlall; Open

Description

Thes LCATAD iz @ 804, 14, 0500, normally cpen
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onTesilance and high curent handing capabiiy. It
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Approvals
= L R=oognized Componank Fle EFESTD
= 024 Cortified Component: Certificals 1175723
= EMABC 8085801 Cadilisd Companert:
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