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PHYSICAL REVIEW A VOLUME 57, NUMBER 4 APRIL 1998
Nonlocal theory of dissociative electron attachment to B and HF molecules

G. A. Gallup, Y. Xu, and I. I. Fabrikant
Department of Physics and Astronomy, University of Nebraska, Lincoln, Nebraska 68588-0111
(Received 18 August 1997

We develop a method for calculation of dissociative electron attachment cross sections based on the Fano-
Feshbach projection-operator approach. The coupling between the diabatic state and electron continuum is
calculated with the inclusion of orthogonality scattering and long-range electron-molecule interaction. The
dynamics of nuclear motion in the nonlocal complex potential is treated by semiclassical theory. We apply the
theory to the calculation of dissociative attachment to theahtd HF molecules. Our results for attachment to
ground-state hydrogen molecules and the near-threshold vibrational enhancementiaf ébsentially the
same as previous nonlocal results. However, the shape of the energy dependence of the cross section for
attachment to vibrationally excited states of id slightly different. The calculated value for the total attach-
ment cross section to the ground state of HF is consistent with the little experimental data available; more
definite conclusions are difficult because of the approximate nature of the experimental results. The results for
the vibrational enhancement are in very good agreement with experif8d@t50-294{®8)02704-§

PACS numbds): 34.80.Gs

I. INTRODUCTION calculated. In particular, it was fourjd2] that a completely
nonlocal treatment of the nuclear dynamics in t, reso-
Dissociative attachmerfDA) occurs when an electron is nance of H is essential. In these papers the nonlocal part of
captured by a molecular target to form a temporary negativéhe potential is represented in a separable form using the
ion that subsequently dissociates into neutral and stable ahanczos basis of the Morse Hamiltonian. An alternative
ion fragments. Theoretical descriptions of this process wersemiclassical approach developed from an earlier similar
developed using the projection-operator approdg] and  treatment[14] of the local theory was developed by Kalin
the R-matrix approaci3]. The latter is completely equiva- and Kazansky15]. The suitability of this method is a con-
lent to the projection-operator approach if one uses thesequence of the small ratio of the electron mass to the mass
single-pole approximation for thR matrix [4]. An alterna-  of the molecule, and allows one to avoid manipulations with
tive nonresonant approach was developed on the basis of thigpidly oscillating functions representing highly excited
zero-range-potential theof$] and the effective range theory states and the vibrational continuum, which is a part of the
[6]. procedure employed in Refel1-13. A similar treatment of
There are two major difficulties in performingp initio  the nuclear dynamics was propogé6,17] within the frame-
calculations of DA for an arbitrary molecule. First, the elec-work of theR-matrix theory, and employed in calculations of
tronic part of the problem requires calculations of the widthDA to the HCI[17,18 and HF[19] molecules.
and shift of the negative-ion resonance that appear due to All nonlocal calculations performed so far have been
coupling between the diabatic negative-ion state and electropased on a semiempirical or semiphenomenological fit of the
continuum. The first state should be calculated usingesonance width as a function of energy and internuclear
guantum-chemistry codes, and the second using scatterirttistance. The semiclassical appro&th] allows one to pro-
codes. In most DA calculations performed so(far a com- ceed with nonlocal calculations in a more straightforward
prehensive review, see Réf/]) the width as a function of manner. Although the first calculatioh$5] were performed
energy and internuclear distance was parametrized in a comvith a parametrized width, it is possible, in principle, to do
venient analytical form consistent with the threshold laws,the same calculations with the width presented in a numeri-
and the parameters fitted to experimental data or resuttb of cal form obtained frormab initio calculations. In the present
initio calculations of scattering phase shifts. The second difpaper we develop this procedure and apply it to two simple
ficulty is related to the complete treatment of the nucleadiatomic molecules, Hand HF. These targets present a spe-
dynamics. After elimination of the electron coordinates, thecial interest in terms of applications of the nonlocal theory
problem is reduced to solving the ScHinger equation with  for two reasons. First, the low-energy DA in these systems is
a nonlocal complex potential. The exact treatment of the reallriven by very wide shape resonances, and nonlocal effects
part of the nonlocal complex potential presents certain mathbecome especially important in this situatioh. Second, the
ematical challenges. Therefore early calculations of DA usediF molecule possesses a supercritical electric dipole mo-
local [8] or “partly local” approximations. In the latter case ment; that is, the moment supports an infinite number of
the real part of the nonlocal potential is approximated by eHF~ states, although in practice the stable H&nion does
local energy-independent potentigd] or a local energy- not exist because of rotational motion. This makes a treat-
dependent potentidlLO]. ment of the nonlocal dynamics especially challenging. The
The first complete treatment of the nonlocal dynamicsonly existing DA calculationg19] for HF involve several
was given by Mudel and Domcké¢11] for a model problem. approximations, and should be compared with a compalbte
Subsequently, low-energy DA forH12] and HCI[13] were initio theory. The present paper makes a major step in this
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direction. Although we still have several semiempirical ad-whereN is a normalization constant, ad is the antisym-
justments in the present calculations which are discussed besetrizer. This must still be subjected to the various projec-
low, we develop a procedure which allows us in principle totions and modifications described in Sec. lIl.
perform the DA calculationab initio and extend them rela- In order to use these two functions in our calculations, we
tively easily to polyatomic molecules. need two matrix elementsjiz. (¥ |b) and (W |H|b). They
It is important to emphasize at this point that the methodheed to be worked out for a number of different energies, and
we use to treat the nonlocal dynamics in this paper worksve wish to test our calculations using a number of different
only above the DA threshold. Of course, vibrational excita-assumptions concerningg. Furthermore, numerical inte-
tion processes can occur, and are especially interesting, bgrations must be used for at least some of the terms in these
low the DA threshold. Since the treatment of the vibrationalmatrix elements. All of these considerations led to our devel-
dynamics in this latter case requires a somewhat differenbping a procedure in which a relatively simple one-
approach, this problem will be discussed in a separate papeatimensional numerical integration together with a sum dver
The structure of the present paper is as follows. Section lhnd m spherical harmonics serves to evaluate the matrix el-
discusses our treatment of the diabatic state and its interaements.
tion with the electron continuum. Section Il describes the Specifically, we need to evaluate the integral
electron continuum. In particular, we discuss our treatment

of the orthogonality scattering and the potential scattering, _ - - -

and how the latter influences the width and shift functions. (WIH[DY=N | g(ry---rn)gFe(rnig)

Section IV summarizes our treatment of the nonlocal vibra- L

tional dynamics. In Secs. V and VI we present the DA results XHbD(ry-- rpyq)drg--drpy g, (7

for H, and HF, respectively. We show that they agree quite o . -
well with the existing experimental data and previous nonlo-with a similar expression fof¥|b). In Eq. (7) it is assumed
cal (for H,) andR-matrix (for HF) calculations. thatb is correctly antisymmetrized and normalized. Now de-
fining
Il. DIABATIC STATE AND ITS INTERACTION
WITH THE CONTINUUM H(r):NJ p(ryro)gHb(ry-ry,ndry--dr,, (8

Resonance theory in electron scattering is usually formu-

lated using projection operators to separate the resonangg may obtain<\lf|H|b>=fFE(F)H(F)dT with a single
state from the background scatterii&§,7]. For the purposes  three-dimensional integration. A similar procedure serves to
of discussing DA, the resonance state is approximated by @yaluate(¥|b).

diabatic state that depends upon the internuclear separation when the functions are expressed as multiconfigurational
as a parameter. This state must be “supported” to preven§yms over antisymmtrized products, the integral defined in
variational collapse by a projection onto a restricted portiongq. (8) is an algebraically complicated sum over products of
of Hilbert space, or, more commonly, must be calculated irpne- and two-electron integrals and individual orbitals. The
terms of a fixed finite basis. The calculations reported in thiSSIater-Condor{ZZ] rules are somewhat complicated in this

paper use the latter method. The Scfinger equation case, involving what are the equivalent of three-particle op-
erators. We have found this most easily handled by using the
HY=EV (D following formalism. Consider a function? ; that is the

same asV itself except thatFg(r,. 1) is replaced bys(r

becomes, when separated, - _ ) . >
—rnh+1). In terms of this new function the functiort$(r)

P(E-H)P=PHQ, (2 and the corresponding quantity we cél(F) are given by
Q(E—H)Q=QHP, (3 H(r)=( JH|b), )
where O(r)=(¥4b), (10)
Q=Q"'=Q? 4 and these quantities depend, otherwise, only upon the inter-
nuclear distance. Obtaining the final matrix elements is then
P=1-Q. (5)  only a matter of doing the integrations
We symbolize our diabatic state Bg)=|b(R)), an L? _ - -
function normalized to one at aR, and, in terms of this, we (¥[H[b)= | H(r)Fe(r)dr, (1D
setQ=|b)(b|. In the present work we use fob) a fixed
Gaussian basis wave function of the sort commonly - -
produced by quantum-chemical calculations such as <‘P|b>=f O(r)Fg(r)dr. (12)
GAUSSIAN 92 [21]. What we shall call the primitive con-
tinuum wave function is written As stated above, these last integrations are actually per-

L L R formed in anlm basis, which is an elementary modification
W(ry - rny) =NAG(r - ry)gFe(rni), (6)  of the Cartesian forms displayed in Eq$1) and (12).
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TABLE I. Typical values ofH|b) and|b) values for three different values and severalvalues for H
at the equilibrium internuclear separation. It will be recalled tbathaso, symmetry.

r=0.36 a.u. r=0.71 a.u. r=1.06 a.u.
l m H|b) |b) Hb) |b) H|b) |b)
1 0 0.014 20 0.05440 —0.05769 0.177 93 0.001 10 0.297 91
3 0 —0.01302 0.00175 -—0.13109 0.01426 —0.057 17 0.016 82
5 0 0.004 43 0.00031 -—0.109 82 0.00460 —0.04659 0.002 37
7 0 0.002 92 0.00005 -—-0.12575 0.00187 —0.01613 0.000 71
9 0 0.000 46 0.00000 -—0.167 38 0.00051 -—0.00120 0.000 26
11 0 —0.00056 —0.00000 —0.19840 —0.00019 0.00191 -—0.00002

The expansion ofb|W¥) and (b|H|¥) in spherical har- so well, but as methods approach the ideal, we expect the
monics was accomplished using a mixed numericaltesults to be usefully insensitive to our exazt
analytical procedure based upon Lebedev optimal spherical
integration formula$23]. The center of mass was used as the | pOTENTIAL AND ORTHOGONALITY SCATTERING

origin of the spherical polar coordinate system for the
basis expansion. A. Equation for the continuum state

~Table | shows typical values for Hat an internuclear  The basic function with which we start our calculations of
distance of 1.4 a.u. We show two values somewhat distarjuclear dynamics is the matrix element describing the inter-

from a nucleus and one close to it. Only the nuclear attracaction between the diabatic stk and the continuum state
tion term causes difficulties, and these occur when a point fél(<+)> (Ref. [7])

near or at a nucleus. Since numerical integration procedur
in general require smooth integrands to be useful, a modifi- Vo= (blH.| () 13
cation ofH|¥) is required to apply the Lebedev procedure. o= (B Hel ). (13

This we accomplished by subtracting terms that could bEere |(Aﬁ(k+)> is the solution of the projected Lippman-
I

evaluated analytically, and that eliminated a sharp cusp i A X
chwinger equation

the nuclear attraction terms. The Lebedev procedure cou
then be applied to this difference, which was subsequentl - N . N
corrected \F/)v[i)th the analytic formulas for the subtractedqterms)./ 7Y = k) +GE Vol ), (14

It is seen in Table | that, with increasingthere is a rapid ) ) . o

fall-off in magnitude of the quantities. The exception is theWhere Vo is the optical potential describing the electron-
set of values of| W) for a radial distance close to a nuclear molecule interaction |nPIud|ng the exchange and polarization
radial distance. In spite of this, there is no difficulty; the effects, andk(*)) andG§") are given by the equations
fall-off in magnitude of highet-waves in low-energy con-

tinuum functions still provides a satisfactory convergence [k =]k)—GSPb)Y(b|GST b)Y " Xblk),  (15)
rate.
This general method is valid fdb) and 4 functions of ég”=GE,”—GB”Ib)(bIGg+)|b)‘1(b|Gg+). (16)

any complexity, and we are working on programs that will
implement this method for multiconfiguration Gaussian
wave functions. The present calculations were performe

with single configuration wave functions. Specificall, for ary condition,G§,+):(E+iO—HO)‘l. Equations(15) and

Hp was obtained in a split valence basis based upon th?16) provide the orthogonality of the continuum state to the

results of Huzinagd24] and for HF a Dunning-Hay basis . : X ;
[25] was used. These same bases were used in each case al,bat_|c. statgh) requweq in the case_of a shape resonance.
' ombining these equations, we obtain

the |b) function. In the latter case Koopmans’ theorg26]
provides a simple alternative to more complicated stabiliza-
tion or coordinate rotation methods for obtaining the diabatic
state[27]. For both of these molecules we thus use the first " I 4 ~ly
virtual orbital from the Hartree-Fock treatment, in addition to _GE’ )|b><b|G§) )|b> 1<b|G§) )VOP'J i )>'
the occupied orbitals to form the all electron doublle} 7
function. It is well known that the use of bases with too great
a flexibility will result in a variational collapse of the virtual In order to solve this equation, Domck28] suggested the
orbitals. The bases here have proved able to give a goodse of a separable expansion fég,, and this procedure
account of both the neutral molecule and quasi-bound stateas implemented in several DA calculatigrisl—13. Since
functions like|b). we are interested in the long-range effectsvig, and the

It is, perhaps, not out of place to comment that, in prin-separable approximation does not work well for long-range
ciple, the results from the Feshbach projection procedurgotentials, we use a different approach. By acting with the
should be completely independent of the specific details obperatorE—H, on both sides of Eq(17), we convert it into
the Q operator. In practice, real calculations will not behavean inhomogeneous integrodifferential equation

Here |k) is a plane wave antﬁg’) is the free-particle
reen’s function corresponding to the outgoing-wave bound-

|6 =1k™) + 66 Vopd )
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(Ho+Vopi— E)|a)(k+>> vious rotational close-coupling calculatiof4]
_ ~ D cosd r\3
= [b){bIG5"b) X((blk)+ (bl G Vol B ). (19 Vo1 =~ 255 1-e] - -] ||
r d
The solution of this equation can be presented in the form
A QP,(co%) r\4
[6) =16 +ad ¢), (19 T e AT
where a, is a constant, and(”)) and |¢?)) satisfy the ot aP(COSH)
following differential equations: - (25
2, .22
2(re+rp)
(HotVop— E)| ) =0, (20
_ (I _ whereD is the molecular dipole momen is the quadru-
(HotVop—E)|¢')=[b), (1) pole moment(calculated in the center-of-mass reference

frame), 6 is the angle between the electron radius vector and
the molecular axis, andy and «, are, respectively, the iso-
tropic and anisotropic parts of the fixed nuclei polarizability.
The parameters,, ry, andr, were fitted in Ref[34] to
reproduce experimentally observed rates for ionization of
Rydberg atoms in their collisions with the HF molecules.
This semiempirical choice of cutoff parameters was em-
ployed in earlier work 35] on electron-molecule scattering.
The DA cross sections calculated in the present paper are
very insensitive to the values of these parameters, and here
they serve just to remove the nonphysical singularities at the
ak=—<b|¢(1)>*1<b|¢(k°)>. origin by a reasonable choice of the cutoff parameters. In
fact, as we show later, the DA cross sections do not change

The problem is reduced to the numerical integration of thesubstantially if we omit the quadrupole and the polarization
differential equation$20) and (21). parts of the interaction potential.

We should emphasize that the present approach, which
ignores the short-range interaction for the continuum state, is

h thods f lculati i at justified for calculations of cross sections of resonance pro-
ere are many methoas for caiculating continuum Stal€gesqes sych as DA and resonant vibrational excitation, and

for electron-molecule scattering, ta!<ing into account eIECtrO'Boes not require great computational effort in the continuum-
exchange and short-range correlation effects at different levs; oo part of the problem. On the other hand, this approach

els of approximationgsee Ref[29] and references thergin 44 pe invalid for the calculation of elastic scattering.
Most of them are based on a single-center expansion of the

continuum wave function in spherical harmon{&9]. Nu-
merical realizations of this method alternative to that of di-
rect numerical integration are the complex Kohn variational  \yie now discuss the method of numerical integration of
method[31] and the linear algebraic methf82]. An impor- Egs.(20) and(21). If V=0, as we assume in the hydrogen
tant feature of the projection-operator approach is that aﬁeéase ther| ¢(0)> is si?rﬁply ’the plane wave, anh®) is
calculation of this state we “project out” a substantial part obtai7ned bykintegrating the product of t,he free-particle
of the short-correlation effects due to imposing the orthogo- reen’s functiorG, and the diabatic functiofb). Using the
nality of the continuum state to the bound state. As a resul aussian basis v(\)/e can express the results .as a gum of the

the background parfor nonresonant parof the scattering error functions with a complex argument.\lf,; is nonzero
phase shift is virtually unaffected by short-range correlation P 9 " opt '

effects. The previous analysis of the electron scattering b)\éve start with th_e standard parugl-wa\_/e expansion for our
. . ound and continuum wave functions in the coordinate rep-
H, molecule[33] shows that in the low-energy region the

potential scattering contribution to the phase shift is almos[esentatmn in the body frame,

where the outgoing-wave boundary conditions still hold for
both |{®) and ¢M)). Substituting Eq(19) into Eq. (17),
and noticing that the integral equations fgil”)) and| )

are

|61) = K)+ GoVopl 61), (22)
| D)= —Gg|b)+ GoVopl ¢'V), (23)
we obtain

(24

B. Electron-molecule interaction in the continuum

C. Integration of equations for the continuum state

negligible as compared to the orthogonality scattering. This
means that even the long-range polarization effect is not im-
portant in this case, due to the low value of polarizability of
the H, molecule. However, the case of polar and/or highly
polarizable targets is different, since the coupling between
the diabatic state and the continuum state becomes strongly
energy dependent at low electron energies.

Based on these observations, in the present work for cal-
culations of| qb(ko)) we use the plane-wave approximation for
H,, and include the long-range interaction for HF. In the
latter case we use the model potential employed in our pre-

SOy =am > Y (K)Ym(T) ,
S0 =25 Vi, (1)

[0)=2 Yim, (1)

U (r)

i r (0

. ut(r)

(27)

xi(r)

T:

(28)
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wherem, is the projection of the electron angular momentumwhich is an apparent generalization of a similar statement for
for the resonant statéWe assume cylindrical symmetjy. a single differential equation. The problem is now reduced to
Functionsuy;,(r) and ul(l)(r) satisfy the asymptotic condi- an integration of the homogeneous equation with subsequent
tions calculations of numerical quadratures in Eg7).
up (n~e g, —e s, (29
IV. NUCLEAR DYNAMICS
ul(l)(r),vs(o)eikr' (30) H . o .

e wave functlodeiE>, describing the nuclear motion
where S, are theS-matrix elements for the potential scat- in the dissociating channel, satisfies outgoing-wave boundary
tering, and the complex numbe&® can be related to the conditions and depends on the total energy of the sy&em
matrix elements for the orthogonality scattering. We obtainand the electron momentuily in the initial channel. The
the standard system of coupled equations for the radial funcSchralinger equation for this function has the fofi|
tions u{™(r)

(E=Ho)|[Wye)—F|Wie)= Vi |vi), (39

dr? r?

a2 1(+1
{ ( )+k2]”'(”<f>—22 Uy (0 (n) | o -
1’ whereHy is the Hamiltonian for the nuclear motion in the
diabatic potentiaV4(R), |v;) is the initial state of the neutral

==2x(r), (3D molecule, and~ is the nonlocal complex potential

whereU,;(r) are the matrix elements of the optical potential 1

Vopt: @nd a similar, but homogenequs, _systemt_fﬁr(r). F:f k dk d?vkag“( E— §k2> * (39)
Whereas the methods of numerical integration of homo-

geneous systems are well known and could be applied in our

case, a direct numerical integration of the inhomogeneouwhereGﬁ”(E) is the Green’s operator for the nuclear mo-

system(31) leads to very strong instabilities at higher angu-tion in the potential of the neutral molecul,(R). The

lar momenta >3) that are related to the behavior of the Lippman-Schwinger form of Eq.38) is

singular solution of the homogeneous equation near the ori-

gin (see Appendix A Therefore we have chosen the |y gy =G (E) (Vo |vi) +F| Wi g)), (40)

Green’s-function method to solve Eq81). Let us write this ' ! '

system of equations in the following compact matrix form . .

4 q g P WhereGg+)(E)=(E+|O—Hd)‘l. We expand\lfkiE> in the
u’+qu=s, (32 eigenstatesv) of the Hamiltonian for the neutral molecule

wherer means the derivative in=kr, q is a square matrix,
ands andu are columns. We have the boundary conditions P, E)Zib o) (41)
i UK !
v

u—0 as p—0, u—e? as p—oxo, (33

wherzeg:p—.l w/2. Introducing the regulan™ and irregu-  where the symboE | means the sum over all discrete vibra-

lar u*™’ solutions of the homogeneous equation with thetional states and integration over the vibrational continuum.

asymptotic behavior as—<, Using the spectral representation f8f") we obtain the fol-
uH~etin Yy —e-in_ging, (34) lowing equation forbvki:

whereS is the potential scattering matrix(” andu*) are
square matrices with different columns corresponding to dif- bvki=<v|G§f)(E)kai|vi>+if k dk dk
ferent linearly independent solutions.

These solutions have the following properties proven in

’
v

Appendix B: (IG§(E)Vplv Yo' Vi ¥ie)
Uy T=yHyoT, (35 8 E+i0 1k2 , 2
—ZK2—¢,
2 v
(U uOT— Ly (IT=2j] (36)

where the superscripf denotes the transposition, ahds ~ wheree, are eigenenergies of the neutral molecule.

the unit matrix. It is easy to verify now by direct substitution ~ The following treatment of the vibrational dynamics is
that the solution of Eq(32) with the boundary conditions based on the semiclassical approach of Kalin and Kazansky
(33) can be written as [15], although we use a slightly different notation more con-
sistent with that of Domckg7]. We evaluate all matrix ele-
ments of Eq.(42) in the coordinate representation and as-
sume that the main contribution is given by the Franck-

1 o

u= Z‘ u(r)(p)f u(+)T(p!)S(p/)dpr
P

Condon pointR, defined by the equation

+U(+)(p)fopu(')T(p’)S(P')dP']v (37 €,— Vo(R)=E—V4(R,). (43



57 NONLOCAL THEORY OF DISSOCIATIVE ELECTRON ... 2601

(Note thatR, also depends on the total enerfgy The cap- tinuum. This parameter is determined from the matching
ture amplitudeVy,, is weakly dependent on the internuclear with the continuum function having the proper asymptotic
distanceR, and therefore can be factored out from all inte-behavior. The DA cross section is expressed then through the

grals overR. In particular, resulting solution for, .
(v]Gg(E)Vpilv) = ViR, (v |GG (E)|v”),  (44) V. SOME COMPUTATIONAL DETAILS
(0" VEJ ¥ ) =VE(R, (v [Py g). (45) As discussed in Sec. Il, in this paper we calculate the

diabatic state using a single-configuration Hartree-Fock
The integral equation fob,, can be rewritten now in the Wave function. Although, as we will show below, this ap-
closed form : proqch in .general gives rather goqd resul'ts for the DA. cross
sections, it creates two problems in the limit of large inter-
nuclear distance®— . First, the negative-ion energy is not
by, — i(leﬁf)(E)lv VF by = Vi (R, )Qu,o the eigenenergy of the electronic Hamiltonian, and this leads
o to a shifted DA threshold. Second, the diabatic state is not
(46)  the eigenstate of the Hamiltonian, and this leads to a nonzero
coupling between the diabatic state and continuum in the
where limit R—o. To correct these drawbacks of the single-
(+) configuration approximation, we make two adjustments.
Qv =(v[G¢(E)|v}) (47)  First, we shift our negative-ion curves uniformiby
—0.54 eV for H, and by—0.86 eV for HF in order to obtain
and the experimentally observed DA threshold. Second, we ex-
) trapolate our calculated width and shiftA to large inter-
= :j Kk dk ok Vik(R,)| (48) nuclear distances forcing them to approach Rate. With
v our basis, the correction to tig~ wave function due to the
presence of a neutral atoAddecays as a Gaussian function.
Therefore the coupling parametég, decays as exp{7R?),
are the diagonal elements, taken at the Franck-Condon pointhere »=0.1233 is the smallest exponent used in our basis.
of the kernel of the nonlocal complex potentialEq. (39)].  Therefore the width
They are related to the partial resonance widthsand shifts

A, in the usual way: F(E,R):zq-rf dk| V2 (52

0. T2
E+i0—e¢, 2k

Fo=4,—5T,. (49 at largeR can be parametrized as

— _ _ 2
Equation(46) represents the basic integral equation of the I'(E,R)=Db(E)exp[—27[R—Ro(E)]7, (53
semiclassical nonlocal theofl5]. It is convenient first to

eliminate the dependence &nusing the substitution whereb(E) andRy(E) are adjustable parameters. Since our

calculated width does not approach ORat> 0, the param-

by = Vi (R, )a, , (50) etrlzatlon(53)_ creates a certain nonanqufucny]has a func-
! e tion of R. This leads to small uncertainties in the DA cross
which leads to the equation sections in a narrow region close to the threshold, which will

be discussed in Sec. VI.
Another computational detail has to do with the threshold
av_i<U|Gg+)(E)|U,>Fu’av’:Qviv' (51)  behavior ofl" as a function of energg. In the absence of
o the long-range dipolar interaction it behaves, according to
the Wigner law, a€®? for the H,” (2 }) resonance and as
Now we will briefly summarize the algorithm for its solution E2 for the HF (2) resonance. However, HF possesses a
referring the reader for more details to the original paper bypermanent dipole momem, and the threshold law should

Kalin and Kazansky15]. be modified. IfD<D=0.6395 a.u., thef38]
First we calculate the matrix elements of the Green's
function using the quasiclassical representation for the I'(E)=constx E?, (54)

nuclear wave functions and the stationary phase method. The )

major contribution to the integrals is given by the Franck-Where 8 depends only on the dipole momeBt, and ap-
Condon poin{Eq. (43)]. If this point lies close to the clas- Proaches 0 wheD—Dg,. If D>Dg,, then[38]
sical turning point, the result should be modified using the

Airy function, as discussed in Refgl4,36,37. As a result, I(E)= const

one obtains a quasiseparable representation for 1+ €2+ 2e™ cog uInE+y) |
(v|G{T)(E)|v") [15). Equation(51) can then be solved re-

cursively in the region of the discrete spectrum. The solutiorwhere . depends only o, andy depends both od and

is expressed as a linear function of an unknown parametdhe short-range interaction. For the equilibrium internuclear
depending on the solution in the region of vibrational con-separation in HRw=0.261.

(55
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TABLE Il. Potential-curve parameters in a.u.

A a B D B 4r

H, 0.1764 1.0813 0.030 97 0.1466 1.6302
HF 0.2252 1.1735 0.033 07 0.1002 1.8638

Although I'(E) formally exhibits an infinite number of

oscillations a=£— 0, for molecules with a moderate dipole e R%

width and shift (eV)

moment, like HF, these oscillations occur within a very nar-
row energy region that is usually narrower than the rotational
constant. The theory should be madified in this redid®l, ‘ —3_5 T . o o T o s . e .
and, as a result, no oscillations are found in either inelastic energy (eV)

cross sections or the resonance width. Instead, the width rises

sharply from zero aE=0 to a finite value, within the energy ~ FIG. 1. Calculated widtlupper curvesand shift(lower curves
region corresponding to the rotational spacing. Since we aréinctions for b. From top to bottontbottom to top the curves for
not interested in this paper in fine-structure effects associatefi® Width (shift) correspond to the internuclear distandes 1.4,
with the rotational motion, we simply assume tfais finite 16, 1.8, 2.0, 2.2, and 2.4 a.u.

atE=0, and obtaid"(0) by linear extrapolation. In this case

the shiftA(E) becomes formally logarithmically divergent at VI. RESULTS FOR THE H, MOLECULE

E— 0. We have found, however, that this singularity is weak . . . .
enough not to affect our results for the cross sections if we, In Fig. 1 we present the width and shiftA as functions

again, are not interested in a very high-energy resolution. Ir?{l energyEdfor: several .|nt<|arnulclear d'StanCESI The curr\]/e ¢
practice this means that we can calculAfg) for any non- shapes and the numerical values are very close to those o

zero E without having instabilities, and obtait(0) by in- Ref. [12]. This means that the approxi'mations employed in

terpolating between two values corresponding to two closéhe p_rese;nt calculat|0_ns, n_amely, the single-configuration ap-

positive and negative energies proximation for the diabatic sta{e) and neglect of the po-
Finally we should mention that in the present calculationstentlal scattering for blare not severe, and give a good de-

. B + . .
the potential-energy curveg,(R) and V4(R) were param- Scfiption of the low-energy, resonance in k. This
etrized in the form of the Morse potentials conclusion is confirmed by our DA calculations fog kh its

ground statey =0, presented in Fig. 2 together with the ex-
perimental resultf42] and previous nonlocal results2]. In

Vo(R)=A(e*R"Re—1)2, (56)  addition to the equivalence of two calculations in their
electronic-structure part, we observe their equivalence in the
V4R)=Be 2fR+D (57) nuclear-dynamics part; that is, our semiclassical approach

gives the same results for attachment tg(dH=0) as the
Lanczos-basis approach of REL2].
whereR, is the equilibrium internuclear distance. Parameters However, for higher vibrational states our results are
entering Eqs(56) and (57) are given in Table Il for the H  slightly different. Whereas our threshold peak values for DA
and HF molecules. to H,(v) are basically the same as those of Hég], our
The potential-energy curves for the ground states of H cross sections as functions & for v=2 vary relatively

and HF are known with high accuracy. Fog,Hb initio data  slowly in the region between 3 and 4.5 eV. This behavior is
of Kolos and WolniewitZ40] were used to obtaiV,, and

Morse parameters were calculated by a least-square fit. For

HF, parameters were determined from the experimental dis- ©-35 ; » '
sociation energy, vibrational frequency, and equilibrium in-

. 0.30 1
ternuclear distance of Herzbefrg1]. o

We obtained the parameters\y in three steps. First, we 025
calculated the energies of the negative ion states relative tc §
the molecular ground states at several internuclear distance 2°2°
by the single-configuration Hartree-Fock method. We then &,
added them to the corresponding neutral curves, and fittec g
the resultant potential to Morse form. Finally we shifted the ¢0.10
potentials to have the correct electron affinities of Eind go os |
F~ at infinity. ’ .

It should be stressed that the semiclassical theory of dis-  ¢.00 . : .
sociative attachment, in contrast to the Lanczos-basis ap- 30 35 0 ectron emergy (V) 55 6.0
proach[11,12, does not require parametrization of the po-
tential curves, and the functiods(E,R) and A(E,R). On FIG. 2. Dissociative attachment from the vibrational ground

the other hand, the Morse parametrization allows us to pefstate of H. Solid curve, present results; dashed curve, nonlocal
form computations conveniently. calculationg12]; circles, experimental dafa2].
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cross section (1016 cm?2)
width and shift (eV)

1.0 15 20 25 30 35 40 45 50 55 6.0 -5 -4 =3 -2 -1 0 1 2 3 4 5
energy (eV)

electron energy (eV)

FIG. 3. Di iati ttach ¢ i ¢ . i FIG. 4. Calculated widtlupper curvesand shift(lower curve$
. - 9. Dissocialive attachment cross sections for various vibray , otions for HF. From top to bottortbottom to top the curves for
tional states of H

the width (shift) correspond to the internuclear distandes 1.6,

. . . ] 1.8, 2.0, 2.2, and 2.4 a.u.
demonstrated in Fig. 3. The relatively stable production of

H™ in this region can be explained in the following way. The
Franck-Condon points determined by B3 stay well the dipolar interaction, and the shift function formally has a

within the classically allowed region for the nuclear motion L : _ : . .
in H,, which makes the Franck-Condon overlaps and théoganthmlc singularity aE=0 which we simply ignore by

capture cross section relatively large. At the same time thcalculatingA(EO) instead ofA(Q), whereE, is of the order
aptu Vely large. .~ . 0f magnitude of the rotational spacing. To find out how the
kinetic energy of the nuclei at the Franck-Condon point is

also relatively highabout 1.5-2.0 e)in this energy region: long-range interaction affects the DA cross sections, we per-

therefore the survival probability does not drop as fast withformed two additional calculations, one with a plane-wave

rowina enerav. This peculiar behavior was not observed icontinuum state and the other with a continuum state that
g 9 gy P ncludes only dipolar interaction. In Fig. 5 we compare three

tﬁ'; ?zgheltrsl%ia:hzalrfg:]éllggglyfcg;ici?;iéslﬁgg]t Tre]etﬂemletl?tgr sets ofI" and A for the equilibrium internuclear distance.
N ' The plane-wave results give the Wigner |1&4?for I'. For a

WOT" the authors_dld not 90 t_o h_|gher It .WOUld be inter- stronger interaction the width is higher for the whole inves-
esting if an experimental verification of this observed featuretigated range off and R. Therefore we should expect a

were .pOSS'bIe' The existing experlmentql dpdd] on the smaller DA cross section for a stronger interaction in the
vibrational enhancement of DA tojHobtained from mea- continuum

suring the temperature dependence of the cross sections, arépis is confirmed by our DA calculations presented in

inconclusive about the energy dependence of the DA CrosI§ig. 6. The DA cross sections drop substantially after inclu-

sections for highep. . ; ion of the long-range interaction, but the difference between
. Another fea_ture of Our cross sections is a set of smal he two calculations, including the pure dipolar potential and
Jumps at certain ener_gm(e.g., atE=4.8 and 54 e\_/ fow the full potential of Eq.(25), is relatively small.
=0). These irregularities are caused by a small inaccuracy Two features observed in Fig. 6 should be discussed. The
of the quasiclassical approximation, occurring when we
switch the quasiclassical phase integral from being calcu-
lated relative to the right turning point to being calculated 6 - .
relative to the left turning point. It should be stressed that
even for the lightest molecule, ;Hthis inaccuracy is very St
small, and it becomes unnoticeable for heavier molecules,
particularly HF. “r
Our results on vibrational enhancement at the thresholds
are quite close to those of the other nonlocal calculations
[12], and are therefore somewhat below the experimental
values[44]. The disagreement increases with growingnd
perhaps can be attributed to the rotational motion, which was
included neither in the calculations of R¢L2] nor in ours.
The rotational analysis performed by Wadehra and Bardsley 0 . ‘ . ‘
[43] suggests that rotationally excited, Hnolecules have . 0 L energzy () 3 4 5
increased attachment cross section at each electron energy.

the width function starts with the finite value Bt=0 due to

width (eV)

FIG. 5. Comparison of the width function for the equilibrium
VII. RESULTS FOR THE HF MOLECULE internuclear separation calculated using various models for the

_ . _ _ ~ e-HF interaction. Solid curve, the plane-wave approximation;
In Fig. 4 we present the width and shift functions obtaineddashed curve, only dipolar interaction included; dot-dashed curve,

with the long-range potentigR5). As we discussed above, the full potential[Eq. ( 25)] included.
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25 T T T T T T T 6 T T T T T T — T

20 t

21 v=2(x10)  v=1(x102)

cross section (10-20 cm2)
cross section (10-16 cm2)
=

0 ; . . . | — 0 , . N
2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 14 16 18 20 22 24 26 28 30 32 34

electron energy (eV) electron energy (eV)

FIG. 6. Dissociative attachment from the vibrational ground FIG. 7. Dissociative attachment for various vibrational states of

state of HF. Curvepw, the plane-wave approximation; curdp, HF. Solid curves, present results; dashed curve, experimental data

only dipolar interaction included; curvéull, the full potential  [46] normalized to 210 2° cn? at the peak; dot-dashed curve,

[Eq. ( 29)] included. present theory averaged over an energy distribution of the width
0.09 eV.

first is small-amplitude oscillations of the cross sections near
the DA threshold. These are related to the inaccuracy of oUL, |- 1ated for nonrotating molecules.
coupling parameter at large internuclear distances discusseé‘-l-he present cross sections are similar to but somewhat
in Sec. V. To confirm this, we varied the paramefein the  pigher than those from the previous nonlocal calculations
extrapolation Eq(53) within broad limits, and found that the [19], performed within the framework of the resonance
averaged cross section remains the same but the positions gf 1 - +ix theory[17]. It is likely that the previous calcula-

maxima and minima change substantially. This creates a S%qng overestimate the long-range interaction by choosing too
uncertainty in our cross sections in the near-threshold regiof 41l a value of th&k-matrix radius. In Fig. 7 we also give

between 2.'48 and 2.55 eV, .bUt re_alistic values of_the DApA cross sections for higher vibrational states. As in the case
cross sections could be obtained simply by averaging thes& H,, we observe a very strong growth of DA with In

spurious oscillations. . . . Table Il we present the theoretical results for this effect, and
The other feature of the cross sections is their sudden dro@ompare them with the experimental data of Allan and Wong

.at the_ vibrational excita’Fion th“.aShOldS’:.S and 6 in the [47]. The present results agree better with the experiment
investigated energy region. This result is physical, and i han theR-matrix calculationg19]

explained by the sudden drops of the negative-ion survival
probabilities at the vibrational excitation thresholds which
were previously observed in DA of HCA5]. Note that these VIIl. CONCLUSIONS

drops are not seen in the plane-wave results nor in the DA L
: We presented a method that allows us to obtain, in a
results for H. This happens becausegrows much slower : . . )
. . . systematic way, DA cross sections for any diatomic mol-
in this case, and does not create such noticeably shar L L i
cule and extend it, without principle difficulties, to poly-

changes in the survival probability. atomic molecules. An important feature of our approach is

In Fig. 7 we present our results, including the full long- that it incorporate.s a full treatment of nuclear dynamics in
range interaction, and their comparison with the experimen- local | tential d theref X licable t
tal data[46]. For this purpose we average our results over theg'orrocal complex potentials and, theretore, IS applicable to

P ; ; . . ., calculations of DA processes driven by wide resonances
energy distribution assuming a Gaussian profile of full width L .
: . . when the local and partly local approximations fail. Further-
0.09 eV. After this averaging the stepwise structure at the : ;
ore, our approach is not as model dependent as previous

vibrational thresholds almost disappears, although one Cars'liudies of nonlocal dynami¢d2,13, and can clearly be ap-
see some indication of it correlating with the experimental” . y R y P
lied to molecules with supercritical dipole moments.

data. The experimental cross sections are normalized to tHE " . ) )
: 50 : In addition to this, our calculations include several modes
estimated peak value of>3210"2° cn?. It decreases with . . : ; .
in the expansion of the coupling parameter in partial waves,

energy much more slowly than the theoretical results, indi- . . i .
and do not assume single-mode dominance like previous

cating perhaps another neggt|ve-|on resonance Conmbu'['nr%’onlocal calculation§13,15 and resonancB-matrix calcu-
to the DA cross section at higher energy. The experimental

threshold for DA is somewhat shifted toward lower energies
due to the effects of rotational motidd6], which are not )
included in the present calculations. According to the resultSE1ON for HF.
of Teillet-Billy and Gauyacd6] for HCI molecule, obtained

TABLE lll. Vibrational enhancement in the threshold DA cross

by the effective-range theory, the cross sections depend very Present Theory19] Expt. [47]
weakly on the rotational quantum numhgrt a given im-  o,_,/0,-¢ 28 38 21
pact energyin contrast with calculationgt3] for H,). How-  ¢,_,/0,_, 315 566 300
ever, rotationally excited molecules have a lower DA threshv, _, /0, _, 2019 4484

old, and this makes the DA peak not as sharp as that
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lations[19]. This should improve our results for differential 1(1+1)
dissociative attachment and vibrational excitation cross sec- u”+| k- >— —2V(r) u=br'*ig(r), (A1)
tions compared to those from single-angular-mode calcula- r

tions[19]. Another advantage of the present formalism com- ] ] ]
pared to the resonanématrix approactil7—19 is thatwe  Whereg(r) is a regular functiorfe.g., a Gaussiarthat de-
do not need an additional fitting procedure to reprodaice  C@Ys exponentially at>1. A general solution, regular at the

initio results for eigenphases. origin, 1s

Our calculations for DA to B, and their agreement with
previous nonlocal resulfsl2], demonstrate the reliability of u(p)= ui(p) fpuz(p’)s(p’)dp’+C
the single-configuration approach for a calculation|lof, K 0

and the insignificance of the potential scattering in this case. (o) (7
(The orthogonallty_scattenng is important, ho_wev_d?ror_the p f uy(p")s(p')dp’, (A2)
HF molecule the single-configuration approximation is more k Jo
severe, and leads to unphysical oscillations in the cross sec-
tion in a narrow energy region above threshold. Neverthewhere C is an arbitrary constant, p=kr, s(p)
less, the uncertainty remains within about 5%, and there are-bp' **g(p/k)/k'*3, andu, andu, are the regular and ir-
no difficulties in principle in extending our calculations to regular solutions of the homogeneous equation defined by
the multiconfigurational version. The potential scattering forthe following behavior near the origin:
HF is particularly important because of the strong dipolar
interaction. Adding the quadrupole and polarization interac- p'tt (21—-1)11
tions leads to small but noticeable changes in the DA cross ui(p)~ @+’ Ux(p)~———.  (A3)
sections. Therefore the inclusion of the full electron- B p
molecule interaction into the calculations of the continuum
state might be important for dipolar and highly polarizable
targets. In the present work we use a semiempirical potentiaf
for HF, but in future we plan to employ existing methods fort
ab initio calculations of the continuum staf29]. a1
We should therefore note that the procedure implemented J' fx(ZI — D! bip’) (p'IK)
in the present work cannot be qualified asadminitio study (p") K'+3 glp
because it still contains some semiempirical adjustments: the
choice of the neutral potential curve consistent with experi- b(2l-1)!!
mental data or otheab initio calculations, semiempirical ad- :TL rg(r)dr. (A4)
justment of the negative-ion curve, and the semiempirical
form of the potential fore-HF scattering. However, there is
no difficulty in principle doing all calculationab initio by
employing the present method.
The good agreement of calculated enhancement in th
threshold DA cross sections for HF with the experimental

results of and Allan and Worig 7] demonsrates the reliabil- the regular solution, obtained from the outward integration,

ity of our method for a calculation of DA to molecules with with the solution with the required asymptotic behavior, ob-

relatively high, supercritical dipole moments. On the Othertained from the inward integration. However, due to the sub-

hand, the calculated cross section decreases faster with ?éction of two very large contributions, this procedure in

$rg|3|/ ttrl?lrl] tFA?G]expﬁrlhmenta;]I Cross d_se§t|or:hof A.b?uaf anf ractice leads to a significant loss of accuracy. Therefore
eliet-oilly , Which perhaps indicates the existence ol y; ot hymerical integration of E¢AL) is unstable.
another resonance at higher energies.

U

Consider now the first term in EdA2) at k<p<<1 or 1
r<1/k. Sinceg(r) decays exponentially, we can extend
e integration limit toe and obtain

P
. Us(p')s(p’)dp'~

Whereas the integral on the right-hand side is a regular num-
ber, the quantity (P—1)!!/k'"* is enormously large for
higher | and low enoughk. This large contribution tau
Should be compensated for by the constardior the physical
solution. In principle this may be taken care of by matching

APPENDIX B: SOME PROPERTIES OF SOLUTIONS
OF HOMOGENEOUS DIFFERENTIAL EQUATIONS
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in part by TIAA-CREF. solutions of Eq(B1). Introduce the generalized Wronskian

u’+qu=0, (B1)

W(uy,u,)=(ul) u,— (uhHus, B2
APPENDIX A: INSTABILITIES IN INTEGRATION ( 1 2) ( l) 2 ( 1) 2 ( )

OF INHOMOGENEOUS EQUATIONS and what we will call the adjoint Wronskian,

For simplicity we consider a single differential equation A LT
of the type W?3(uyg,up) =uju,—usuy . (B3)



2606

Using Eq.(B1), we see immediately tha' =0, i.e.,W is
independent of, and can be calculated in the linmit-0 or
r—oo, In all important casedV is just a constant times the
unit matrix. In particular, iu;=u") andu,=u("), from Eq.
(33) we haveW=2il . For two identical matriceg/=0, and
we have an identity
(up)’ur=(upuy, (B4)
which means thatiju; ! is a symmetric matrix fomny so-
lution u4. In particular, ifu, is a regular solution, we obtain
the symmetry of thdR matrix.
Now multiply Eq. (B2) by (u])~* from the left and by
(u,) ~1 from the right. We obtain
(u) ~H(ug)’

—ubuy t=W(uj) " tu, t. (B5)
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Using this property, we immediately obtain that the adjoint
WronskianWA(u;,u,) [Eq. (B3)], is also a constant times
the unit matrix. Substitutingi;=u(*), u,=u(", we obtain
Eq. (35).

Next consider

WA(U(+),U<r)) - (u(+))/(u(f))T_ (u(r))/(u(+))T_ (B7)

Using the relation

The matrices on the left are both symmetric, and therefore so

is the right one:

UpU]=UqUJ. (B6)

uM=u"—us (B8)
and the symmetry of th& matrix, we obtain
WAL ™)y = WAL, u)). (B9)
Now calculatingW” atr —c, we finally obtain
WA M) =2il, (B10)

which proves Eq(36).
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