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Nonlocal theory of dissociative electron attachment to H2 and HF molecules

G. A. Gallup, Y. Xu, and I. I. Fabrikant
Department of Physics and Astronomy, University of Nebraska, Lincoln, Nebraska 68588-0111

~Received 18 August 1997!

We develop a method for calculation of dissociative electron attachment cross sections based on the Fano-
Feshbach projection-operator approach. The coupling between the diabatic state and electron continuum is
calculated with the inclusion of orthogonality scattering and long-range electron-molecule interaction. The
dynamics of nuclear motion in the nonlocal complex potential is treated by semiclassical theory. We apply the
theory to the calculation of dissociative attachment to the H2 and HF molecules. Our results for attachment to
ground-state hydrogen molecules and the near-threshold vibrational enhancement of H2 are essentially the
same as previous nonlocal results. However, the shape of the energy dependence of the cross section for
attachment to vibrationally excited states of H2 is slightly different. The calculated value for the total attach-
ment cross section to the ground state of HF is consistent with the little experimental data available; more
definite conclusions are difficult because of the approximate nature of the experimental results. The results for
the vibrational enhancement are in very good agreement with experiment.@S1050-2947~98!02704-8#

PACS number~s!: 34.80.Gs

I. INTRODUCTION

Dissociative attachment~DA! occurs when an electron is
captured by a molecular target to form a temporary negative
ion that subsequently dissociates into neutral and stable an-
ion fragments. Theoretical descriptions of this process were
developed using the projection-operator approach@1,2# and
the R-matrix approach@3#. The latter is completely equiva-
lent to the projection-operator approach if one uses the
single-pole approximation for theR matrix @4#. An alterna-
tive nonresonant approach was developed on the basis of the
zero-range-potential theory@5# and the effective range theory
@6#.

There are two major difficulties in performingab initio
calculations of DA for an arbitrary molecule. First, the elec-
tronic part of the problem requires calculations of the width
and shift of the negative-ion resonance that appear due to
coupling between the diabatic negative-ion state and electron
continuum. The first state should be calculated using
quantum-chemistry codes, and the second using scattering
codes. In most DA calculations performed so far~for a com-
prehensive review, see Ref.@7#! the width as a function of
energy and internuclear distance was parametrized in a con-
venient analytical form consistent with the threshold laws,
and the parameters fitted to experimental data or results ofab
initio calculations of scattering phase shifts. The second dif-
ficulty is related to the complete treatment of the nuclear
dynamics. After elimination of the electron coordinates, the
problem is reduced to solving the Schro¨dinger equation with
a nonlocal complex potential. The exact treatment of the real
part of the nonlocal complex potential presents certain math-
ematical challenges. Therefore early calculations of DA used
local @8# or ‘‘partly local’’ approximations. In the latter case
the real part of the nonlocal potential is approximated by a
local energy-independent potential@9# or a local energy-
dependent potential@10#.

The first complete treatment of the nonlocal dynamics
was given by Mu¨ndel and Domcke@11# for a model problem.
Subsequently, low-energy DA for H2 @12# and HCl@13# were

calculated. In particular, it was found@12# that a completely
nonlocal treatment of the nuclear dynamics in the2Su

1 reso-
nance of H2 is essential. In these papers the nonlocal part of
the potential is represented in a separable form using the
Lanczos basis of the Morse Hamiltonian. An alternative
semiclassical approach developed from an earlier similar
treatment@14# of the local theory was developed by Kalin
and Kazansky@15#. The suitability of this method is a con-
sequence of the small ratio of the electron mass to the mass
of the molecule, and allows one to avoid manipulations with
rapidly oscillating functions representing highly excited
states and the vibrational continuum, which is a part of the
procedure employed in Refs.@11–13#. A similar treatment of
the nuclear dynamics was proposed@16,17# within the frame-
work of theR-matrix theory, and employed in calculations of
DA to the HCl @17,18# and HF@19# molecules.

All nonlocal calculations performed so far have been
based on a semiempirical or semiphenomenological fit of the
resonance width as a function of energy and internuclear
distance. The semiclassical approach@15# allows one to pro-
ceed with nonlocal calculations in a more straightforward
manner. Although the first calculations@15# were performed
with a parametrized width, it is possible, in principle, to do
the same calculations with the width presented in a numeri-
cal form obtained fromab initio calculations. In the present
paper we develop this procedure and apply it to two simple
diatomic molecules, H2 and HF. These targets present a spe-
cial interest in terms of applications of the nonlocal theory
for two reasons. First, the low-energy DA in these systems is
driven by very wide shape resonances, and nonlocal effects
become especially important in this situation@7#. Second, the
HF molecule possesses a supercritical electric dipole mo-
ment; that is, the moment supports an infinite number of
HF2 states, although in practice the stable HF2 anion does
not exist because of rotational motion. This makes a treat-
ment of the nonlocal dynamics especially challenging. The
only existing DA calculations@19# for HF involve several
approximations, and should be compared with a completeab
initio theory. The present paper makes a major step in this
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direction. Although we still have several semiempirical ad-
justments in the present calculations which are discussed be-
low, we develop a procedure which allows us in principle to
perform the DA calculationsab initio and extend them rela-
tively easily to polyatomic molecules.

It is important to emphasize at this point that the method
we use to treat the nonlocal dynamics in this paper works
only above the DA threshold. Of course, vibrational excita-
tion processes can occur, and are especially interesting, be-
low the DA threshold. Since the treatment of the vibrational
dynamics in this latter case requires a somewhat different
approach, this problem will be discussed in a separate paper.

The structure of the present paper is as follows. Section II
discusses our treatment of the diabatic state and its interac-
tion with the electron continuum. Section III describes the
electron continuum. In particular, we discuss our treatment
of the orthogonality scattering and the potential scattering,
and how the latter influences the width and shift functions.
Section IV summarizes our treatment of the nonlocal vibra-
tional dynamics. In Secs. V and VI we present the DA results
for H2 and HF, respectively. We show that they agree quite
well with the existing experimental data and previous nonlo-
cal ~for H2) andR-matrix ~for HF! calculations.

II. DIABATIC STATE AND ITS INTERACTION
WITH THE CONTINUUM

Resonance theory in electron scattering is usually formu-
lated using projection operators to separate the resonance
state from the background scattering@20,7#. For the purposes
of discussing DA, the resonance state is approximated by a
diabatic state that depends upon the internuclear separation
as a parameter. This state must be ‘‘supported’’ to prevent
variational collapse by a projection onto a restricted portion
of Hilbert space, or, more commonly, must be calculated in
terms of a fixed finite basis. The calculations reported in this
paper use the latter method. The Schro¨dinger equation

HC5EC ~1!

becomes, when separated,

P~E2H !P5PHQ, ~2!

Q~E2H !Q5QHP, ~3!

where

Q5Q†5Q2, ~4!

P5I 2Q. ~5!

We symbolize our diabatic state byub&5ub(R)&, an L2

function normalized to one at allR, and, in terms of this, we
set Q5ub&^bu. In the present work we use forub& a fixed
Gaussian basis wave function of the sort commonly
produced by quantum-chemical calculations such as
GAUSSIAN 92 @21#. What we shall call the primitive con-
tinuum wave function is written

C~rW1•••rWn11!5NAc~rW1•••rWn!gFE~rWn11!, ~6!

whereN is a normalization constant, andA is the antisym-
metrizer. This must still be subjected to the various projec-
tions and modifications described in Sec. III.

In order to use these two functions in our calculations, we
need two matrix elements,viz. ^Cub& and ^CuHub&. They
need to be worked out for a number of different energies, and
we wish to test our calculations using a number of different
assumptions concerningFE . Furthermore, numerical inte-
grations must be used for at least some of the terms in these
matrix elements. All of these considerations led to our devel-
oping a procedure in which a relatively simple one-
dimensional numerical integration together with a sum overl
andm spherical harmonics serves to evaluate the matrix el-
ements.

Specifically, we need to evaluate the integral

^CuHub&5NE c~rW1•••rWn!gFE~rWn11!

3Hb~rW1•••rWn11!dt1•••dtn11 , ~7!

with a similar expression for̂Cub&. In Eq. ~7! it is assumed
thatb is correctly antisymmetrized and normalized. Now de-
fining

H~rW !5NE c~rW1•••rWn!gHb~rW1•••rWn ,rW !dt1•••dtn , ~8!

we may obtain ^CuHub&5*FE(rW)H(rW)dt with a single
three-dimensional integration. A similar procedure serves to
evaluatê Cub&.

When the functions are expressed as multiconfigurational
sums over antisymmtrized products, the integral defined in
Eq. ~8! is an algebraically complicated sum over products of
one- and two-electron integrals and individual orbitals. The
Slater-Condon@22# rules are somewhat complicated in this
case, involving what are the equivalent of three-particle op-
erators. We have found this most easily handled by using the
following formalism. Consider a functionCd that is the
same asC itself except thatFE(rWn11) is replaced byd(rW

2rWn11). In terms of this new function the functionsH(rW)
and the corresponding quantity we callO(rW) are given by

H~rW !5^CduHub&, ~9!

O~rW !5^Cdub&, ~10!

and these quantities depend, otherwise, only upon the inter-
nuclear distance. Obtaining the final matrix elements is then
only a matter of doing the integrations

^CuHub&5E H~rW !FE~rW !dt, ~11!

^Cub&5E O~rW !FE~rW !dt. ~12!

As stated above, these last integrations are actually per-
formed in anlm basis, which is an elementary modification
of the Cartesian forms displayed in Eqs.~11! and ~12!.
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The expansion of̂buC& and ^buHuC& in spherical har-
monics was accomplished using a mixed numerical-
analytical procedure based upon Lebedev optimal spherical
integration formulas@23#. The center of mass was used as the
origin of the spherical polar coordinate system for thelm
basis expansion.

Table I shows typical values for H2 at an internuclear
distance of 1.4 a.u. We show two values somewhat distant
from a nucleus and one close to it. Only the nuclear attrac-
tion term causes difficulties, and these occur when a point is
near or at a nucleus. Since numerical integration procedures
in general require smooth integrands to be useful, a modifi-
cation ofHuC& is required to apply the Lebedev procedure.
This we accomplished by subtracting terms that could be
evaluated analytically, and that eliminated a sharp cusp in
the nuclear attraction terms. The Lebedev procedure could
then be applied to this difference, which was subsequently
corrected with the analytic formulas for the subtracted terms.
It is seen in Table I that, with increasingl , there is a rapid
fall-off in magnitude of the quantities. The exception is the
set of values ofHuC& for a radial distance close to a nuclear
radial distance. In spite of this, there is no difficulty; the
fall-off in magnitude of higher-l waves in low-energy con-
tinuum functions still provides a satisfactory convergence
rate.

This general method is valid forub& andcg functions of
any complexity, and we are working on programs that will
implement this method for multiconfiguration Gaussian
wave functions. The present calculations were performed
with single configuration wave functions. Specifically,cg for
H2 was obtained in a split valence basis based upon the
results of Huzinaga@24# and for HF a Dunning-Hay basis
@25# was used. These same bases were used in each case for
the ub& function. In the latter case Koopmans’ theorem@26#
provides a simple alternative to more complicated stabiliza-
tion or coordinate rotation methods for obtaining the diabatic
state@27#. For both of these molecules we thus use the first
virtual orbital from the Hartree-Fock treatment, in addition to
the occupied orbitals to form the all electron doubletub&
function. It is well known that the use of bases with too great
a flexibility will result in a variational collapse of the virtual
orbitals. The bases here have proved able to give a good
account of both the neutral molecule and quasi-bound state
functions likeub&.

It is, perhaps, not out of place to comment that, in prin-
ciple, the results from the Feshbach projection procedure
should be completely independent of the specific details of
the Q operator. In practice, real calculations will not behave

so well, but as methods approach the ideal, we expect the
results to be usefully insensitive to our exactQ.

III. POTENTIAL AND ORTHOGONALITY SCATTERING

A. Equation for the continuum state

The basic function with which we start our calculations of
nuclear dynamics is the matrix element describing the inter-
action between the diabatic stateub& and the continuum state
uf̂k

(1)& ~Ref. @7#!,

Vbk5^buHeluf̂k
~1 !&. ~13!

Here uf̂k
(1)& is the solution of the projected Lippman-

Schwinger equation

uf̂k
~1 !&5uk̂~1 !&1Ĝ0

~1 !Voptuf̂k
~1 !&, ~14!

where Vopt is the optical potential describing the electron-
molecule interaction including the exchange and polarization
effects, anduk̂(1)& andĜ0

(1) are given by the equations

uk̂~1 !&5uk&2G0
~1 !ub&^buG0

~1 !ub&21^buk&, ~15!

Ĝ0
~1 !5G0

~1 !2G0
~1 !ub&^buG0

~1 !ub&21^buG0
~1 ! . ~16!

Here uk& is a plane wave andG0
(1) is the free-particle

Green’s function corresponding to the outgoing-wave bound-
ary condition,G0

(1)5(E1 i02H0)21. Equations~15! and
~16! provide the orthogonality of the continuum state to the
diabatic stateub& required in the case of a shape resonance.
Combining these equations, we obtain

uf̂k
~1 !&5uk̂~1 !&1G0

~1 !Voptuf̂k
~1 !&

2G0
~1 !ub&^buG0

~1 !ub&21^buG0
~1 !Voptuf̂k

~1 !&.

~17!

In order to solve this equation, Domcke@28# suggested the
use of a separable expansion forVopt, and this procedure
was implemented in several DA calculations@11–13#. Since
we are interested in the long-range effects inVbk , and the
separable approximation does not work well for long-range
potentials, we use a different approach. By acting with the
operatorE2H0 on both sides of Eq.~17!, we convert it into
an inhomogeneous integrodifferential equation

TABLE I. Typical values ofHub& andub& values for three differentr values and severall values for H2

at the equilibrium internuclear separation. It will be recalled thatub& hassu symmetry.

r 50.36 a.u. r 50.71 a.u. r 51.06 a.u.
l m Hub& ub& Hub& ub& Hub& ub&

1 0 0.014 20 0.054 40 20.057 69 0.177 93 0.001 10 0.297 91
3 0 20.013 02 0.001 75 20.131 09 0.014 26 20.057 17 0.016 82
5 0 0.004 43 0.000 31 20.109 82 0.004 60 20.046 59 0.002 37
7 0 0.002 92 0.000 05 20.125 75 0.001 87 20.016 13 0.000 71
9 0 0.000 46 0.000 00 20.167 38 0.000 51 20.001 20 0.000 26
11 0 20.000 56 20.000 00 20.198 40 20.000 19 0.001 91 20.000 02
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~H01Vopt2E!uf̂k
~1 !&

5ub&^buG0
~1 !ub&21~^buk&1^buG0

~1 !Voptuf̂k
~1 !& !. ~18!

The solution of this equation can be presented in the form

uf̂k
~1 !&5ufk

~0!&1akuf~1!&, ~19!

where ak is a constant, andufk
(0)& and uf (1)& satisfy the

following differential equations:

~H01Vopt2E!ufk
~0!&50, ~20!

~H01Vopt2E!uf~1!&5ub&, ~21!

where the outgoing-wave boundary conditions still hold for
both ufk

(0)& and f (1)&. Substituting Eq.~19! into Eq. ~17!,
and noticing that the integral equations forufk

(0)& and uf (1)&
are

ufk
~0!&5uk&1G0Voptufk

~0!&, ~22!

uf~1!&52G0ub&1G0Voptuf~1!&, ~23!

we obtain

ak52^buf~1!&21^bufk
~0!&. ~24!

The problem is reduced to the numerical integration of the
differential equations~20! and ~21!.

B. Electron-molecule interaction in the continuum

There are many methods for calculating continuum states
for electron-molecule scattering, taking into account electron
exchange and short-range correlation effects at different lev-
els of approximations~see Ref.@29# and references therein!.
Most of them are based on a single-center expansion of the
continuum wave function in spherical harmonics@30#. Nu-
merical realizations of this method alternative to that of di-
rect numerical integration are the complex Kohn variational
method@31# and the linear algebraic method@32#. An impor-
tant feature of the projection-operator approach is that after
calculation of this state we ‘‘project out’’ a substantial part
of the short-correlation effects due to imposing the orthogo-
nality of the continuum state to the bound state. As a result
the background part~or nonresonant part! of the scattering
phase shift is virtually unaffected by short-range correlation
effects. The previous analysis of the electron scattering by
H2 molecule@33# shows that in the low-energy region the
potential scattering contribution to the phase shift is almost
negligible as compared to the orthogonality scattering. This
means that even the long-range polarization effect is not im-
portant in this case, due to the low value of polarizability of
the H2 molecule. However, the case of polar and/or highly
polarizable targets is different, since the coupling between
the diabatic state and the continuum state becomes strongly
energy dependent at low electron energies.

Based on these observations, in the present work for cal-
culations ofufk

(0)& we use the plane-wave approximation for
H2, and include the long-range interaction for HF. In the
latter case we use the model potential employed in our pre-

vious rotational close-coupling calculations@34#

Vopt~r !52
D cosu

r 2 F12expH 2S r

r d
D 3J G

2
QP2~cosu!

r 3 F12expH 2S r

r q
D 4J G

2
a01a2P2~cosu!

2~r 21r p
2!2

, ~25!

whereD is the molecular dipole moment,Q is the quadru-
pole moment~calculated in the center-of-mass reference
frame!, u is the angle between the electron radius vector and
the molecular axis, anda0 anda2 are, respectively, the iso-
tropic and anisotropic parts of the fixed nuclei polarizability.
The parametersr p , r d , and r q were fitted in Ref.@34# to
reproduce experimentally observed rates for ionization of
Rydberg atoms in their collisions with the HF molecules.
This semiempirical choice of cutoff parameters was em-
ployed in earlier work@35# on electron-molecule scattering.
The DA cross sections calculated in the present paper are
very insensitive to the values of these parameters, and here
they serve just to remove the nonphysical singularities at the
origin by a reasonable choice of the cutoff parameters. In
fact, as we show later, the DA cross sections do not change
substantially if we omit the quadrupole and the polarization
parts of the interaction potential.

We should emphasize that the present approach, which
ignores the short-range interaction for the continuum state, is
justified for calculations of cross sections of resonance pro-
cesses, such as DA and resonant vibrational excitation, and
does not require great computational effort in the continuum-
state part of the problem. On the other hand, this approach
would be invalid for the calculation of elastic scattering.

C. Integration of equations for the continuum state

We now discuss the method of numerical integration of
Eqs.~20! and~21!. If Vopt50, as we assume in the hydrogen
case, thenufk

(0)& is simply the plane wave, anduf (1)& is
obtained by integrating the product of the free-particle
Green’s functionG0 and the diabatic functionub&. Using the
Gaussian basis, we can express the results as a sum of the
error functions with a complex argument. IfVopt is nonzero,
we start with the standard partial-wave expansion for our
bound and continuum wave functions in the coordinate rep-
resentation in the body frame,

fk
~0!~r !54p (

l l 8m

i l 8Yl 8m
* ~ k̂!Ylm~ r̂ !

ull 8
m

~r !

r
, ~26!

f~1!~r !5(
l

Ylmr
~ r̂ !

ul
~1!~r !

r
, ~27!

ub&5(
l

Ylmr
~ r̂ !

x l~r !

r
, ~28!
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wheremr is the projection of the electron angular momentum
for the resonant state.~We assume cylindrical symmetry.!
Functionsull 8(r ) and ul

(1)(r ) satisfy the asymptotic condi-
tions

ull 8
m

~r !;e2 ikrd l l 82eikrSll 8, ~29!

ul
~1!~r !;Sl

~o!eikr , ~30!

whereSll 8 are theS-matrix elements for the potential scat-
tering, and the complex numbersSl

(o) can be related to the
matrix elements for the orthogonality scattering. We obtain
the standard system of coupled equations for the radial func-
tions ul

(1)(r )

F d2

dr2
2

l ~ l 11!

r 2
1k2Gul

~1!~r !22(
l 8

Ull 8~r !ul 8
~1!

~r !

522x l~r !, ~31!

whereUll 8(r ) are the matrix elements of the optical potential
Vopt, and a similar, but homogeneous, system forull 8

m (r ).
Whereas the methods of numerical integration of homo-

geneous systems are well known and could be applied in our
case, a direct numerical integration of the inhomogeneous
system~31! leads to very strong instabilities at higher angu-
lar momenta (l .3) that are related to the behavior of the
singular solution of the homogeneous equation near the ori-
gin ~see Appendix A!. Therefore we have chosen the
Green’s-function method to solve Eqs.~31!. Let us write this
system of equations in the following compact matrix form

u91qu5s, ~32!

where8 means the derivative inr5kr, q is a square matrix,
ands andu are columns. We have the boundary conditions

u→0 as r→0, u→eir l as r→`, ~33!

wherer l5r2 lp/2. Introducing the regularu(r ) and irregu-
lar u(6) solutions of the homogeneous equation with the
asymptotic behavior asr→`,

u~6 !;e6 ir l, u~r !;e2 ir l2eir lS, ~34!

whereS is the potential scattering matrix.u(r ) andu(6) are
square matrices with different columns corresponding to dif-
ferent linearly independent solutions.

These solutions have the following properties proven in
Appendix B:

u~r !u~1 !T5u~1 !u~r !T, ~35!

$u~1 !%8u~r !T2$u~r !%8u~1 !T52i I , ~36!

where the superscriptT denotes the transposition, andI is
the unit matrix. It is easy to verify now by direct substitution
that the solution of Eq.~32! with the boundary conditions
~33! can be written as

u5
1

2i H u~r !~r!E
r

`

u~1 !T~r8!s~r8!dr8

1u~1 !~r!E
0

r

u~r !T~r8!s~r8!dr8J , ~37!

which is an apparent generalization of a similar statement for
a single differential equation. The problem is now reduced to
an integration of the homogeneous equation with subsequent
calculations of numerical quadratures in Eq.~37!.

IV. NUCLEAR DYNAMICS

The wave functionuCkiE
&, describing the nuclear motion

in the dissociating channel, satisfies outgoing-wave boundary
conditions and depends on the total energy of the systemE
and the electron momentumk i in the initial channel. The
Schrödinger equation for this function has the form@7#

~E2Hd!uCkiE
&2FuCkiE

&5Vbki
uv i&, ~38!

whereHd is the Hamiltonian for the nuclear motion in the
diabatic potentialVd(R), uv i& is the initial state of the neutral
molecule, andF is the nonlocal complex potential

F5E k dk dk̂VbkGn
~1 !S E2

1

2
k2DVbk* , ~39!

whereGn
(1)(E) is the Green’s operator for the nuclear mo-

tion in the potential of the neutral moleculeV0(R). The
Lippman-Schwinger form of Eq.~38! is

uCkiE
&5Gd

~1 !~E!~Vbki
uv i&1FuCkiE

&), ~40!

whereGd
(1)(E)5(E1 i02Hd)21. We expanduCkiE

& in the

eigenstatesuv& of the Hamiltonian for the neutral molecule

uCkiE
&5(

v

E bvki
uv&, ~41!

where the symbol(* means the sum over all discrete vibra-
tional states and integration over the vibrational continuum.
Using the spectral representation forGn

(1) we obtain the fol-
lowing equation forbvki

:

bvki
5^vuGd

~1 !~E!Vbki
uv i&1(

v8

E E k dk dk̂

3
^vuGd

~1 !~E!Vbkuv8&^v8uVbk* uCkiE
&

E1 i02
1

2
k22ev8

, ~42!

whereev are eigenenergies of the neutral molecule.
The following treatment of the vibrational dynamics is

based on the semiclassical approach of Kalin and Kazansky
@15#, although we use a slightly different notation more con-
sistent with that of Domcke@7#. We evaluate all matrix ele-
ments of Eq.~42! in the coordinate representation and as-
sume that the main contribution is given by the Franck-
Condon pointRv defined by the equation

ev2V0~Rv!5E2Vd~Rv!. ~43!
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~Note thatRv also depends on the total energyE.! The cap-
ture amplitudeVbk is weakly dependent on the internuclear
distanceR, and therefore can be factored out from all inte-
grals overR. In particular,

^vuGd
~1 !~E!Vbkuv8&5Vbk~Rv8!^vuGd

~1 !~E!uv8&, ~44!

^v8uVbk* uCkiE
&5Vbk* ~Rv8!^v8uCkiE

&. ~45!

The integral equation forbvki
can be rewritten now in the

closed form

bvki
2(

v8

E ^vuGd
~1 !~E!uv8&Fv8bv8ki

5Vbki
~Rv i

!Qv iv
,

~46!

where

Qv iv
5^vuGd

~1 !~E!uv i& ~47!

and

Fv5E k dk dk̂
uVbk~Rv!u2

E1 i02ev2
1

2
k2

~48!

are the diagonal elements, taken at the Franck-Condon point,
of the kernel of the nonlocal complex potentialF @Eq. ~39!#.
They are related to the partial resonance widthsGv and shifts
Dv in the usual way:

Fv5Dv2
i

2
Gv . ~49!

Equation~46! represents the basic integral equation of the
semiclassical nonlocal theory@15#. It is convenient first to
eliminate the dependence onki using the substitution

bvki
5Vbki

~Rv i
!av , ~50!

which leads to the equation

av2(
v8

E ^vuGd
~1 !~E!uv8&Fv8av85Qv iv

. ~51!

Now we will briefly summarize the algorithm for its solution
referring the reader for more details to the original paper by
Kalin and Kazansky@15#.

First we calculate the matrix elements of the Green’s
function using the quasiclassical representation for the
nuclear wave functions and the stationary phase method. The
major contribution to the integrals is given by the Franck-
Condon point@Eq. ~43!#. If this point lies close to the clas-
sical turning point, the result should be modified using the
Airy function, as discussed in Refs.@14,36,37#. As a result,
one obtains a quasiseparable representation for
^vuGd

(1)(E)uv8& @15#. Equation~51! can then be solved re-
cursively in the region of the discrete spectrum. The solution
is expressed as a linear function of an unknown parameter
depending on the solution in the region of vibrational con-

tinuum. This parameter is determined from the matching
with the continuum function having the proper asymptotic
behavior. The DA cross section is expressed then through the
resulting solution forav .

V. SOME COMPUTATIONAL DETAILS

As discussed in Sec. II, in this paper we calculate the
diabatic state using a single-configuration Hartree-Fock
wave function. Although, as we will show below, this ap-
proach in general gives rather good results for the DA cross
sections, it creates two problems in the limit of large inter-
nuclear distances,R→`. First, the negative-ion energy is not
the eigenenergy of the electronic Hamiltonian, and this leads
to a shifted DA threshold. Second, the diabatic state is not
the eigenstate of the Hamiltonian, and this leads to a nonzero
coupling between the diabatic state and continuum in the
limit R→`. To correct these drawbacks of the single-
configuration approximation, we make two adjustments.
First, we shift our negative-ion curves uniformly~by
20.54 eV for H2 and by20.86 eV for HF! in order to obtain
the experimentally observed DA threshold. Second, we ex-
trapolate our calculated widthG and shiftD to large inter-
nuclear distances forcing them to approach 0 atR→`. With
our basis, the correction to theB2 wave function due to the
presence of a neutral atomA decays as a Gaussian function.
Therefore the coupling parameterVbk decays as exp(2hR2),
whereh50.1233 is the smallest exponent used in our basis.
Therefore the width

G~E,R!52pE dk̂uVbku2 ~52!

at largeR can be parametrized as

G~E,R!5b~E!exp$22h@R2R0~E!#2%, ~53!

whereb(E) andR0(E) are adjustable parameters. Since our
calculated width does not approach 0 atR→`, the param-
etrization~53! creates a certain nonanalyticity inG as a func-
tion of R. This leads to small uncertainties in the DA cross
sections in a narrow region close to the threshold, which will
be discussed in Sec. VI.

Another computational detail has to do with the threshold
behavior ofG as a function of energyE. In the absence of
the long-range dipolar interaction it behaves, according to
the Wigner law, asE3/2 for the H2

2(2Su
1) resonance and as

E1/2 for the HF2(S) resonance. However, HF possesses a
permanent dipole momentD, and the threshold law should
be modified. IfD,Dcr50.6395 a.u., then@38#

G~E!5const3Eb, ~54!

where b depends only on the dipole momentD, and ap-
proaches 0 whenD→Dcr . If D.Dcr , then@38#

G~E!5
const

11e2pm12epmcos~m lnE1g!
, ~55!

wherem depends only onD, andg depends both onD and
the short-range interaction. For the equilibrium internuclear
separation in HFm50.261.
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Although G(E) formally exhibits an infinite number of
oscillations asE→0, for molecules with a moderate dipole
moment, like HF, these oscillations occur within a very nar-
row energy region that is usually narrower than the rotational
constant. The theory should be modified in this region@39#,
and, as a result, no oscillations are found in either inelastic
cross sections or the resonance width. Instead, the width rises
sharply from zero atE50 to a finite value, within the energy
region corresponding to the rotational spacing. Since we are
not interested in this paper in fine-structure effects associated
with the rotational motion, we simply assume thatG is finite
at E50, and obtainG(0) by linear extrapolation. In this case
the shiftD(E) becomes formally logarithmically divergent at
E→0. We have found, however, that this singularity is weak
enough not to affect our results for the cross sections if we,
again, are not interested in a very high-energy resolution. In
practice this means that we can calculateD(E) for any non-
zero E without having instabilities, and obtainD(0) by in-
terpolating between two values corresponding to two close
positive and negative energies.

Finally we should mention that in the present calculations
the potential-energy curvesV0(R) and Vd(R) were param-
etrized in the form of the Morse potentials

V0~R!5A~ea~R2Re!21!2, ~56!

Vd~R!5Be22bR1D, ~57!

whereRe is the equilibrium internuclear distance. Parameters
entering Eqs.~56! and ~57! are given in Table II for the H2
and HF molecules.

The potential-energy curves for the ground states of H2
and HF are known with high accuracy. For H2, ab initio data
of Kolos and Wolniewitz@40# were used to obtainV0, and
Morse parameters were calculated by a least-square fit. For
HF, parameters were determined from the experimental dis-
sociation energy, vibrational frequency, and equilibrium in-
ternuclear distance of Herzberg@41#.

We obtained the parameters inVd in three steps. First, we
calculated the energies of the negative ion states relative to
the molecular ground states at several internuclear distances
by the single-configuration Hartree-Fock method. We then
added them to the corresponding neutral curves, and fitted
the resultant potential to Morse form. Finally we shifted the
potentials to have the correct electron affinities of H2 and
F2 at infinity.

It should be stressed that the semiclassical theory of dis-
sociative attachment, in contrast to the Lanczos-basis ap-
proach@11,12#, does not require parametrization of the po-
tential curves, and the functionsG(E,R) and D(E,R). On
the other hand, the Morse parametrization allows us to per-
form computations conveniently.

VI. RESULTS FOR THE H 2 MOLECULE

In Fig. 1 we present the widthG and shiftD as functions
of energyE for several internuclear distancesR. The curve
shapes and the numerical values are very close to those of
Ref. @12#. This means that the approximations employed in
the present calculations, namely, the single-configuration ap-
proximation for the diabatic stateub& and neglect of the po-
tential scattering for H2 are not severe, and give a good de-
scription of the low-energySu

1 resonance in H2
2. This

conclusion is confirmed by our DA calculations for H2 in its
ground statev50, presented in Fig. 2 together with the ex-
perimental results@42# and previous nonlocal results@12#. In
addition to the equivalence of two calculations in their
electronic-structure part, we observe their equivalence in the
nuclear-dynamics part; that is, our semiclassical approach
gives the same results for attachment to H2(v50) as the
Lanczos-basis approach of Ref.@12#.

However, for higher vibrational states our results are
slightly different. Whereas our threshold peak values for DA
to H2(v) are basically the same as those of Ref.@12#, our
cross sections as functions ofE for v>2 vary relatively
slowly in the region between 3 and 4.5 eV. This behavior is

TABLE II. Potential-curve parameters in a.u.

A a B D b

H2 0.1764 1.0813 0.030 97 0.1466 1.6302
HF 0.2252 1.1735 0.033 07 0.1002 1.8638

FIG. 1. Calculated width~upper curves! and shift~lower curves!
functions for H2. From top to bottom~bottom to top! the curves for
the width ~shift! correspond to the internuclear distancesR51.4,
1.6, 1.8, 2.0, 2.2, and 2.4 a.u.

FIG. 2. Dissociative attachment from the vibrational ground
state of H2. Solid curve, present results; dashed curve, nonlocal
calculations@12#; circles, experimental data@42#.
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demonstrated in Fig. 3. The relatively stable production of
H2 in this region can be explained in the following way. The
Franck-Condon points determined by Eq.~43! stay well
within the classically allowed region for the nuclear motion
in H2, which makes the Franck-Condon overlaps and the
capture cross section relatively large. At the same time the
kinetic energy of the nuclei at the Franck-Condon point is
also relatively high~about 1.5–2.0 eV! in this energy region;
therefore the survival probability does not drop as fast with
growing energy. This peculiar behavior was not observed in
the earlier local calculations@43#, and is not seen in thev
52 results of the nonlocal calculations@12#. In the latter
work the authors did not go to higherv. It would be inter-
esting if an experimental verification of this observed feature
were possible. The existing experimental data@44# on the
vibrational enhancement of DA to H2, obtained from mea-
suring the temperature dependence of the cross sections, are
inconclusive about the energy dependence of the DA cross
sections for higherv.

Another feature of our cross sections is a set of small
jumps at certain energies~e.g., atE54.8 and 5.4 eV forv
50). These irregularities are caused by a small inaccuracy
of the quasiclassical approximation, occurring when we
switch the quasiclassical phase integral from being calcu-
lated relative to the right turning point to being calculated
relative to the left turning point. It should be stressed that
even for the lightest molecule, H2, this inaccuracy is very
small, and it becomes unnoticeable for heavier molecules,
particularly HF.

Our results on vibrational enhancement at the thresholds
are quite close to those of the other nonlocal calculations
@12#, and are therefore somewhat below the experimental
values@44#. The disagreement increases with growingv, and
perhaps can be attributed to the rotational motion, which was
included neither in the calculations of Ref.@12# nor in ours.
The rotational analysis performed by Wadehra and Bardsley
@43# suggests that rotationally excited H2 molecules have
increased attachment cross section at each electron energy.

VII. RESULTS FOR THE HF MOLECULE

In Fig. 4 we present the width and shift functions obtained
with the long-range potential~25!. As we discussed above,

the width function starts with the finite value atE50 due to
the dipolar interaction, and the shift function formally has a
logarithmic singularity atE50 which we simply ignore by
calculatingD(E0) instead ofD(0), whereE0 is of the order
of magnitude of the rotational spacing. To find out how the
long-range interaction affects the DA cross sections, we per-
formed two additional calculations, one with a plane-wave
continuum state and the other with a continuum state that
includes only dipolar interaction. In Fig. 5 we compare three
sets ofG and D for the equilibrium internuclear distance.
The plane-wave results give the Wigner lawE1/2 for G. For a
stronger interaction the width is higher for the whole inves-
tigated range ofE and R. Therefore we should expect a
smaller DA cross section for a stronger interaction in the
continuum.

This is confirmed by our DA calculations presented in
Fig. 6. The DA cross sections drop substantially after inclu-
sion of the long-range interaction, but the difference between
the two calculations, including the pure dipolar potential and
the full potential of Eq.~25!, is relatively small.

Two features observed in Fig. 6 should be discussed. The

FIG. 3. Dissociative attachment cross sections for various vibra-
tional states of H2.

FIG. 4. Calculated width~upper curves! and shift~lower curves!
functions for HF. From top to bottom~bottom to top! the curves for
the width ~shift! correspond to the internuclear distancesR51.6,
1.8, 2.0, 2.2, and 2.4 a.u.

FIG. 5. Comparison of the width function for the equilibrium
internuclear separation calculated using various models for the
e-HF interaction. Solid curve, the plane-wave approximation;
dashed curve, only dipolar interaction included; dot-dashed curve,
the full potential@Eq. ~ 25!# included.
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first is small-amplitude oscillations of the cross sections near
the DA threshold. These are related to the inaccuracy of our
coupling parameter at large internuclear distances discussed
in Sec. V. To confirm this, we varied the parameterh in the
extrapolation Eq.~53! within broad limits, and found that the
averaged cross section remains the same but the positions of
maxima and minima change substantially. This creates a 5%
uncertainty in our cross sections in the near-threshold region
between 2.48 and 2.55 eV, but realistic values of the DA
cross sections could be obtained simply by averaging these
spurious oscillations.

The other feature of the cross sections is their sudden drop
at the vibrational excitation thresholds,v55 and 6 in the
investigated energy region. This result is physical, and is
explained by the sudden drops of the negative-ion survival
probabilities at the vibrational excitation thresholds which
were previously observed in DA of HCl@45#. Note that these
drops are not seen in the plane-wave results nor in the DA
results for H2. This happens becauseG grows much slower
in this case, and does not create such noticeably sharp
changes in the survival probability.

In Fig. 7 we present our results, including the full long-
range interaction, and their comparison with the experimen-
tal data@46#. For this purpose we average our results over the
energy distribution assuming a Gaussian profile of full width
0.09 eV. After this averaging the stepwise structure at the
vibrational thresholds almost disappears, although one can
see some indication of it correlating with the experimental
data. The experimental cross sections are normalized to the
estimated peak value of 2310220 cm2. It decreases with
energy much more slowly than the theoretical results, indi-
cating perhaps another negative-ion resonance contributing
to the DA cross section at higher energy. The experimental
threshold for DA is somewhat shifted toward lower energies
due to the effects of rotational motion@46#, which are not
included in the present calculations. According to the results
of Teillet-Billy and Gauyacq@6# for HCl molecule, obtained
by the effective-range theory, the cross sections depend very
weakly on the rotational quantum numberJ at a given im-
pact energy~in contrast with calculations@43# for H2). How-
ever, rotationally excited molecules have a lower DA thresh-
old, and this makes the DA peak not as sharp as that

calculated for nonrotating molecules.
The present cross sections are similar to but somewhat

higher than those from the previous nonlocal calculations
@19#, performed within the framework of the resonance
R-matrix theory@17#. It is likely that the previous calcula-
tions overestimate the long-range interaction by choosing too
small a value of theR-matrix radius. In Fig. 7 we also give
DA cross sections for higher vibrational states. As in the case
of H2, we observe a very strong growth of DA withv. In
Table III we present the theoretical results for this effect, and
compare them with the experimental data of Allan and Wong
@47#. The present results agree better with the experiment
than theR-matrix calculations@19#.

VIII. CONCLUSIONS

We presented a method that allows us to obtain, in a
systematic way, DA cross sections for any diatomic mol-
ecule and extend it, without principle difficulties, to poly-
atomic molecules. An important feature of our approach is
that it incorporates a full treatment of nuclear dynamics in
nonlocal complex potentials and, therefore, is applicable to
calculations of DA processes driven by wide resonances
when the local and partly local approximations fail. Further-
more, our approach is not as model dependent as previous
studies of nonlocal dynamics@12,13#, and can clearly be ap-
plied to molecules with supercritical dipole moments.

In addition to this, our calculations include several modes
in the expansion of the coupling parameter in partial waves,
and do not assume single-mode dominance like previous
nonlocal calculations@13,15# and resonanceR-matrix calcu-

FIG. 6. Dissociative attachment from the vibrational ground
state of HF. Curvepw, the plane-wave approximation; curvedip,
only dipolar interaction included; curvefull, the full potential
@Eq. ~ 25!# included.

FIG. 7. Dissociative attachment for various vibrational states of
HF. Solid curves, present results; dashed curve, experimental data
@46# normalized to 2310220 cm2 at the peak; dot-dashed curve,
present theory averaged over an energy distribution of the width
0.09 eV.

TABLE III. Vibrational enhancement in the threshold DA cross
section for HF.

Present Theory@19# Expt. @47#

sv51 /sv50 28 38 21
sv52 /sv50 315 566 300
sv53 /sv50 2019 4484
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lations @19#. This should improve our results for differential
dissociative attachment and vibrational excitation cross sec-
tions compared to those from single-angular-mode calcula-
tions @19#. Another advantage of the present formalism com-
pared to the resonanceR-matrix approach@17–19# is that we
do not need an additional fitting procedure to reproduceab
initio results for eigenphases.

Our calculations for DA to H2, and their agreement with
previous nonlocal results@12#, demonstrate the reliability of
the single-configuration approach for a calculation ofub&,
and the insignificance of the potential scattering in this case.
~The orthogonality scattering is important, however!. For the
HF molecule the single-configuration approximation is more
severe, and leads to unphysical oscillations in the cross sec-
tion in a narrow energy region above threshold. Neverthe-
less, the uncertainty remains within about 5%, and there are
no difficulties in principle in extending our calculations to
the multiconfigurational version. The potential scattering for
HF is particularly important because of the strong dipolar
interaction. Adding the quadrupole and polarization interac-
tions leads to small but noticeable changes in the DA cross
sections. Therefore the inclusion of the full electron-
molecule interaction into the calculations of the continuum
state might be important for dipolar and highly polarizable
targets. In the present work we use a semiempirical potential
for HF, but in future we plan to employ existing methods for
ab initio calculations of the continuum state@29#.

We should therefore note that the procedure implemented
in the present work cannot be qualified as anab initio study
because it still contains some semiempirical adjustments: the
choice of the neutral potential curve consistent with experi-
mental data or otherab initio calculations, semiempirical ad-
justment of the negative-ion curve, and the semiempirical
form of the potential fore-HF scattering. However, there is
no difficulty in principle doing all calculationsab initio by
employing the present method.

The good agreement of calculated enhancement in the
threshold DA cross sections for HF with the experimental
results of and Allan and Wong@47# demonstrates the reliabil-
ity of our method for a calculation of DA to molecules with
relatively high, supercritical dipole moments. On the other
hand, the calculated cross section decreases faster with en-
ergy than the experimental cross section of Abouaf and
Teillet-Billy @46#, which perhaps indicates the existence of
another resonance at higher energies.
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APPENDIX A: INSTABILITIES IN INTEGRATION
OF INHOMOGENEOUS EQUATIONS

For simplicity we consider a single differential equation
of the type

u91Fk22
l ~ l 11!

r 2
22V~r !Gu5brl 11g~r !, ~A1!

whereg(r ) is a regular function~e.g., a Gaussian! that de-
cays exponentially atr @1. A general solution, regular at the
origin, is

u~r!5
u1~r!

k F E
0

r

u2~r8!s~r8!dr81CG
2

u2~r!

k E
0

r

u1~r8!s~r8!dr8, ~A2!

where C is an arbitrary constant, r5kr, s(r)
5br l 11g(r/k)/kl 13, andu1 and u2 are the regular and ir-
regular solutions of the homogeneous equation defined by
the following behavior near the origin:

u1~r!;
r l 11

~2l 11!!!
, u2~r!;

~2l 21!!!

r l
. ~A3!

Consider now the first term in Eq.~A2! at k!r!1 or 1
!r !1/k. Sinceg(r ) decays exponentially, we can extend
the integration limit tò and obtain

E
0

r

u2~r8!s~r8!dr8'E
0

`~2l 21!!!

~r8! l

b~r8! l 11

kl 13
g~r8/k!

5
b~2l 21!!!

kl 11 E
0

`

rg~r !dr. ~A4!

Whereas the integral on the right-hand side is a regular num-
ber, the quantity (2l 21)!!/kl 11 is enormously large for
higher l and low enoughk. This large contribution tou
should be compensated for by the constantC for the physical
solution. In principle this may be taken care of by matching
the regular solution, obtained from the outward integration,
with the solution with the required asymptotic behavior, ob-
tained from the inward integration. However, due to the sub-
traction of two very large contributions, this procedure in
practice leads to a significant loss of accuracy. Therefore
direct numerical integration of Eq.~A1! is unstable.

APPENDIX B: SOME PROPERTIES OF SOLUTIONS
OF HOMOGENEOUS DIFFERENTIAL EQUATIONS

Consider a homogeneous system of coupled differential
equations similar to Eq.~32!,

u91qu50, ~B1!

whereq is a real symmetric matrix. Letu1 andu2 be any two
solutions of Eq.~B1!. Introduce the generalized Wronskian

W~u1 ,u2!5~u1
T!8u22~u1

T!u28 , ~B2!

and what we will call the adjoint Wronskian,

WA~u1 ,u2!5u18u2
T2u28u1

T . ~B3!
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Using Eq.~B1!, we see immediately thatW850, i.e., W is
independent ofr , and can be calculated in the limitr→0 or
r→`. In all important casesW is just a constant times the
unit matrix. In particular, ifu15u(1) andu25u(2), from Eq.
~33! we haveW52i I . For two identical matricesW50, and
we have an identity

~u1
T!8u15~u1

T!u18 , ~B4!

which means thatu18u1
21 is a symmetric matrix forany so-

lution u1. In particular, ifu1 is a regular solution, we obtain
the symmetry of theR matrix.

Now multiply Eq. ~B2! by (u1
T)21 from the left and by

(u2)21 from the right. We obtain

~u1
T!21~u1

T!82u28u2
215W~u1

T!21u2
21 . ~B5!

The matrices on the left are both symmetric, and therefore so
is the right one:

u2u1
T5u1u2

T . ~B6!

Using this property, we immediately obtain that the adjoint
WronskianWA(u1 ,u2) @Eq. ~B3!#, is also a constant times
the unit matrix. Substitutingu15u(1), u25u(r ), we obtain
Eq. ~35!.

Next consider

WA~u~1 !,u~r !!5~u~1 !!8~u~r !!T2~u~r !!8~u~1 !!T. ~B7!

Using the relation

u~r !5u~2 !2u~1 !S ~B8!

and the symmetry of theS matrix, we obtain

WA~u~1 !,u~r !!5WA~u~1 !,u~2 !!. ~B9!

Now calculatingWA at r→`, we finally obtain

WA~u~1 !,u~r !!52i I , ~B10!

which proves Eq.~36!.
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