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Packaged rooftop units (RTUs) are widely used for space conditioning in 

commercial buildings and manufacturing facilities. The typical soft faults related to 

RTUs degrade the system's performance in terms of cooling capacity, power 

consumption, and Coefficient of Performance (COP), detrimentally affecting both the 

equipment and energy consumption and the environment. Previous research in soft fault 

detection for rooftop units lacked classifier validation using lab and field data, developing 

a generalizable algorithm, and analyzing its performance across varying fault intensities. 

Using a simulated data library for multiple rooftop units, this study proposes a 

machine-learning classifier with a reduced set of 9 features (8 quantitative and one 

qualitative) to detect and diagnose typical soft faults in packaged rooftop units equipped 

with fixed orifice metering devices. An existing lab testing set consisting of the same 

training systems was utilized to validate the presented data-driven approach, showing 

significantly better performance than the existing fault detection and diagnosis protocols. 

In addition, the analyzed classifier’s predicting performance improves with increasing 

fault severity. 



 
 

In addition to the above lab validation, a manufacturing facility in Omaha, 

Nebraska, was chosen for field validation of the developed machine-learning algorithm. 

The proposed approach accurately predicted all the refrigerant undercharge fault cases 

from an RTU at that facility, although the RTU significantly differs from the RTUs with 

which the classifier was trained. The lab and field-testing results bolster that the 

considered machine-learning classifier can be generalizable, with some exceptions, for 

detecting the common soft faults from any rooftop unit equipped with a fixed orifice 

metering device. The presented classifier can be used in an industrial assessment for 

diagnosing common soft faults from an RTU, helping to develop additional energy and 

cost savings measures for a facility. 
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Chapter 1. Introduction 

 

1.1 Motivation 

The motivation for this research came after performing several industrial assessments for 

the Nebraska Industrial Assessment Center (NIAC) at the University of Nebraska-

Lincoln (UNL). The assessments require submitting recommendations estimating energy 

and cost savings for an industrial facility. As an NIAC student, several recommendations 

related to the Heating, Ventilation, and Air-Conditioning (HVAC) system of the facilities 

were written in the following topics, 

- Elimination of soft faults from packaged rooftop units 

- Fix or replace faulty economizers of the packaged rooftop units 

- Proper thermostat setpoints 

- Optimum chiller operation 

- Replace electric resistance heating with other sources 

- Use cogged v-belt in the fans of supply, return, and exhaust air systems 

- Heat recovery from the air compressors 

Each of the above recommendations provides significant energy and cost savings 

opportunities for the manufacturing facilities, and thus the motivation to perform a 

research project related to the HVAC system of a facility came afterward. 

Another motivation came after looking for the answers to the question: how to improve 

the productivity of a manufacturing facility? One direct solution can be by developing 

novel manufacturing technologies like Abrasive Flow Machining (AFM) that can 
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effectively automate the finishing process to build precision components (Williams, 

1993). The indirect answer to the above question is related to the HVAC system of a 

facility. A better work environment can improve employees' health and productivity 

through proper ventilation, air quality, thermal comfort, visual comfort, and acoustic 

comfort (Mujan et al., 2019; Seppänen and Fisk, 2006). 

 

1.2 Background: Fault Detection and Diagnosis (FDD) 

In this section, a basic overview of the common soft faults in rooftop units and the Fault 

Detection and Diagnosis will be provided. 

  

1.2.1 Terminology 

In this section, some basic definitions of the common terms used in this dissertation will 

be provided. More detailed explanations of the common terms will be provided in the 

related sections. The basic definitions for some common terms are shown in Table 1. 
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Table 1: Basic terminologies 

Term Definition 

System A set of interacting elements. 

Fault Detection 
Identifying the presence of an abnormality (fault) in a 

system. 

Fault Diagnosis 
Identifying the exact fault type and location in a 

system. 

Fault Detection and 

Diagnosis (FDD) 

Identifying the presence of a fault with its type and 

location. 

Response Variable 
A dependent variable for a set of independent 

variables. 

Machine-Learning (ML) 
A process of fitting mathematical model (algorithm) 

using suitable data. 

Supervised Machine-

Learning 

A computer algorithm trained with known response 

variables. 

Machine-Learning Classifier 
A computer algorithm for predicting qualitative output 

(class). 

Generalized Classifier 
A ML classifier that can be used for predicting 

qualitative output for any type of related systems. 

Support Vector Machine 

(SVM) 

A ML classifier based on finding an optimal decision 

boundary to predict the qualitative output.  

Training Set A dataset used for training a ML algorithm. 

Testing Set 
A dataset used for testing the performance of a ML 

algorithm. 

Confusion Matrix (CM) 

A tabular representation of a ML classifier’s 

performance showing number of classes in both actual 

and predicted scenarios. 

False Alarm 
In the FDD study, a false alarm happens when a ML 

classifier predicts an unfaulty case as faulty. 

Misdiagnosis 

In the FDD study, a misdiagnosis happens when a ML 

classifier predicts the presence of a fault, but a wrong 

fault is predicted. 

Missed Detection 
In the FDD study, a missed detection happens when a 

ML classifier fails to detect the presence of a fault. 

Vapor Compression 

Refrigeration Cycle (VCRC) 

A set of interacting elements that uses a refrigerant to 

absorb and reject heat from and to a space, 

respectively. 

Cooling Capacity The amount of heat absorbed from a space. 

Coefficient of Performance 

(COP) 

The ratio of cooling capacity to the power consumption 

in a VCRC. 

Energy Efficiency Ratio 

(EER) 

At a particular operating condition, it is the ratio of 

heat absorbed (in BTU/hour) from a space to the power 

input (in Watt).  

Soft Fault 
A fault that degrades the system performance without 

shutting off the associated equipment. 
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Term Definition 

Fault Impact Ratio (FIR) 

A representation of the severity of a fault from a 

VCRC. In terms of COP, this is the ratio of the faulty 

COP to the unfaulty COP.  

Feature Selection Selection of suitable inputs for fitting a ML classifier. 

Filter Feature Selection Selection of features without using a ML classifier. 

Wrapper Feature Selection Selection of features using an underlying ML classifier.  

Fixed Orifice (FXO) 

A metering device, used in VCRC, that creates constant 

resistance to refrigerant flow, lowering the refrigerant 

pressure. 

Thermostatic Expansion 

Device (TXV) 

A metering device, used in VCRC, that can create 

variable resistance to refrigerant flow, lowering the 

refrigerant pressure. 

 

 

1.2.2 Vapor Compression Refrigeration Cycle (VCRC) and Rooftop Unit (RTU) 

A system is a set of several interacting elements. A Vapor Compression Refrigeration 

Cycle (VCRC) is a part of an HVAC system found in packaged rooftop units (RTUs), 

split systems, chillers, and other systems. A schematic diagram of the VCRC is shown in 

Figure 1.  
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Figure 1: Schematic of Vapor Compression Refrigeration Cycle (VCRC) 

 

As noticed from Figure 1, the four major interacting elements in VCRC are the 

compressor, condenser, expansion device, and evaporator. The compressor pressurizes 

the vapor refrigerant to an extent higher than the saturation pressure corresponding to 

ambient temperature. This allows the pressurized vapor to undergo a phase change to 

liquid by rejecting heat to the ambient in the condenser. After condensation, the liquid 

refrigerant goes through the expansion device to decrease its pressure below the 

saturation pressure corresponding to the space temperature (i.e., return air temperature). 

This allows the refrigerant to undergo a phase change from liquid to vapor in the 

evaporator by absorbing heat from the space. 
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Based on the ability to control the refrigerant flow, there are two expansion devices: fixed 

area and adjustable area. An example of a fixed area device is a Fixed Orifice (FXO) 

device that allows a fixed refrigerant flow resistance irrespective of cooling load from the 

space. The expansion device of the VCRC in this study is FXO. In contrast to the FXO, 

an adjustable area device (e.g., Thermostatic Expansion Valve, TXV) allows a variable 

amount of refrigerant useful for variable cooling load demand and thus mitigating the 

effect of possible faults (described in the next section) in the system. 

Rooftop Unit (RTU) is a type of HVAC system, typically found in commercial buildings 

and manufacturing facilities, that incorporates a VCRC. This is a type of unitary system 

which comes in a compact package containing all the components of a VCRC. RTU uses 

direct expansion (DX) coils in the evaporator to directly exchange heat between the 

refrigerant and incoming air. Unlike the chilled water coil, DX coil does not require the 

chiller to serve cold water across the evaporator coils. The RTU serves conditioned air in 

single or multi zoned spaces. 

In a typical rooftop unit, there are mainly four air streams: outside air (OA), return air 

(RA), mixed air (MA), and supply air (SA). The OA takes the ambient air, and the RA 

takes the space air. The space air is drawn into the RTU package using a RA fan. The OA 

and RA are then mixed with the required proportion, and the MA first goes through a 

filter followed by a cooling coil and heating coil. The cooling coil is same as the 

evaporator coil (mentioned in VCRC) that absorbs heat from the MA if there is a cooling 

demand from space. The heating coil is either electric or gas fired to heat the MA. The 

conditioned air from the cooling/heating coils is called the SA that is served to different 

zones using a blower fan. 
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1.2.3 FDD Study in VCRC 

There are two types of faults related to VCRC: soft and hard (Breuker and Braun, 1998). 

Soft faults are those that degrade the system performance or reduce the lifetime of the 

equipment, allowing continued system operation. These faults generally go unnoticed by 

the system operators until significant equipment failure or hard faults occur (Yuill and 

Braun, 2013). As a result, soft faults are challenging to diagnose (Rogers et al., 2019). 

This study is focused on the soft faults related to packaged rooftop units (RTUs). Typical 

soft faults related to the RTUs are (Yuill et al., 2014b), 

• Condenser Airflow Reduction (CA) 

• Evaporator Airflow Reduction (EA) 

• Liquid Line Restriction (LL) 

• Non-Condensable Gases (NC) 

• Refrigerant Overcharge (OC) 

• Refrigerant Undercharge (UC) 

• Compressor Valve Leakage (VL) 

 

Proper Fault Detection and Dignosis (FDD) methodology to address the above soft faults 

is necessary as far as the system performance and economics are concerned. Automated 

Fault Detection and Diagnosis (AFDD) works on detecting and diagnosing faults based 

on related fault signatures (Y. Li et al., 2014). Fault signatures are those thermodynamic 

(pressures and temperatures) and electrical parameters related to VCRC that show certain 

changes for a specific fault type. Fault detection involves identifying the presence of 
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faults, and fault diagnosis includes determining the fault type, location, and intensity of 

the faults (Yuill and Braun, 2013). For instance, to detect the presence of faults in unitary 

air conditioning systems, Rossi (2004) considered some specified tolerance limits for 

evaporating temperature, condensing temperature over ambient, and suction superheat. In 

the fault diagnosis step, he performed some collection of diagnostic algorithms for 

recommending corrective action (e.g., adding refrigerant charge). In contrast to this two-

step FDD approach, this study will perform fault detection and diagnosis simultaneously 

in a single step. 

Three main approaches in AFDD are rule-based, physical model-based, and process 

history-based (Behfar et al., 2019). The rule-based approach follows setting up a fixed set 

of rules to detect and diagnose fault types (Chen and Braun, 2001). Physical model-based 

systems deals with formulating complex models associated with a particular system. In 

contrast to these two approaches, the process history-based approach deals with modeling 

statistical learning algorithms that take input data related to several thermodynamic and 

electrical parameters (Ebrahimifakhar et al., 2020) and has gained increased popularity 

nowadays. This study is based on a process history-based approach (also called the data-

driven approach) to develop an AFDD algorithm for predicting the common soft fault 

types in RTUs. 

 

1.3 Background of Study Data 

To predict the faults based on process history/data-driven approach, it first requires 

plenty of input data to train the statistical learning model. However, obtaining 

experimental data is costly and sometimes challenging. A solution to this problem could 
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be to use reliable simulated data. Cheung and Braun (2013a, 2013b) developed gray-box 

models for several unitary VCRC systems (split systems and RTUs) to obtain steady-state 

simulated data in cooling mode. These models were validated by Yuill et al. (2014) for 

their intended purpose: evaluating the performance of an FDD protocol. Since obtaining 

plenty of experimental data with several operating conditions and faults is scarce and 

challenging, the simulated data from the above gray-box models for packaged rooftop 

units (RTU) can be used for developing a generalized statistical learning model for RTUs 

in this study. A gray-box model for a particular VCRC is based on physical law and 

expert knowledge to quantify several output variables for a set of input conditions. As 

shown in Figure 2, the gray-box model has 4 inputs and 12 thermodynamic outputs 

(pressures and temperatures), for each steady-state case. The simulated data consists of 

different combinations of the 4 inputs. 

 

Figure 2: Simplified gray-box model from Cheung and Braun (2013a, 2013b) 

 

In addition to the 12 major outputs, the above gray-box model also estimates other 

secondary outputs like capacity, fault impact ratios, suction superheat, subcooling, and so 

on. 
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Simulated data for three different rooftop units running in cooling mode was considered 

to train the machine learning model for classifying the soft faults in rooftop units. An 

existing lab dataset for the same rooftop units (RTU) operating in steady-state cooling 

mode was used as a testing set to validate the developed statistical learning model. The 

information related to this lab data can be found in Yuill and Braun (2013). The 

simulated and lab data have 14 thermodynamic and one electrical feature shown in Table 

1. The same features are shown in abbreviated forms in Figure 1. 

Table 2: Features of the system 

Feature Type Feature Name 

Temperature 

DB temperature of the return air (TRA, ºC) 

WB temperature of the return air (WBRA, ºC) 

DB temperature of the supply air (TSA, ºC) 

WB temperature of the supply air (WBSA, ºC) 

DB temperature of the ambient air (Tamb, ºC) 

Liquid-line temperature (TLL, ºC) 

Suction temperature (Tsuc, ºC) 

Discharge temperature (Tdischg, ºC) 

DB temperature of the outgoing air from the condenser (Tair,ce, ºC) 

Evaporator temperature (Tsat,e, ºC) 

Condenser temperature (Tsat,c, ºC) 

Pressure 

Liquid-line pressure (PLL, kPa) 

Suction pressure (Psuc, kPa) 

Discharge pressure (Pdischg, kPa) 

Electrical Compressor power consumption (Powercomp, W) 

DB: Dry-Bulb, WB: Wet-Bulb 

The response variable for the above features is the fault classes of eight types (including 

'no fault' or ‘NoF’ as a fault class). The seven types of fault classes are already described 

in Section 1.2.2. 

Field data collected from a rooftop unit at a facility in Omaha, NE, was used to validate 

the developed machine-learning classifier. This RTU was diagnosed with severe 
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refrigerant undercharge fault. Thus, the field validation of the developed machine-

learning classifier was performed for this undercharge fault only. 

The details about the simulated, lab, and field data are shown in Section 3.2. 

      

1.4 Research Objectives 

The research objectives for this study are summarized as follows, 

• Obtain two reduced feature sets using a filter and a wrapper approach. 

• Find the best cost-effective features suitable for a generalized machine learning 

model for packaged RTU for AFDD purposes. The best cost-effective features 

provide a better trade-off between the number of features and machine learning 

accuracy using the simulated testing set. The generalized machine learning model 

(classifier) fitted with the best reduced features will be obtained.  

• Validate the developed model using three testing sets: simulated, lab, and field 

datasets.  

• Test how the proposed model performs with varying fault intensities using 

simulated and lab testing sets and analyze how the model’s predicting 

performance can be improved. 
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1.5 Structure of the Thesis 

Chapter 2 will provide the literature review for FDD in VCRC. 

Chapter 3 will provide the methodology for data preparation, fitting machine learning 

models, and predicting performance using different testing sets (simulated, lab, and field 

data sets). 

Chapter 4 will provide the details about the field testing of the proposed machine-

learning classifier. 

Chapter 5 will provide the predicted performance results using different testing sets and 

make comparisons among them. 

Chapter 6 will summarize the discussion, conclusions, and future research scopes in this 

area. 
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Chapter 2. Literature Review 

 

2.1 Energy Savings Potential from HVAC System 

In most industrial facilities, HVAC energy consumption accounts for significant portion 

of the total energy bills. Also, according to the U.S. Energy Information Administration 

(EIA) (2021), the commercial sector used about 155 billion kWh of electricity for cooling 

in 2020, equaling 12% of total commercial sector electricity consumption. Therefore, 

even a small improvement in the operational efficiency of these units can lead to 

significant reductions in national energy use and carbon emissions. These improvements 

often lead the facility in significant cost savings with lower payback period. As of 

February 2023, Table 4 shows a summary of energy efficiency improvement measures 

related to space conditioning of numerous facilities across the U.S., recommended by the 

Industrial Assessment Center, a program under the U.S. DOE (IAC: Search IAC 

Recommendations, n.d.). 

Table 3: Cost saving measures related to HVAC system of facilities across the U.S. 

Topics 
Number of 

Recommendations 

Cost Savings 

($/year) 

Implementation 

Cost ($) 

Payback 

(year) 

Space 

conditioning 
8,896 $83.07 million $139.34 million 1.7 

    

Packaged rooftop units (RTUs) are those HVAC systems primarily found in commercial 

buildings and manufacturing facilities. RTUs serve more than half of the commercial 

buildings in the US (Schantz, 2015). As mentioned in Yuill and Braun (2013), these 

unitary systems gain increased attention because of their broad applicability without 

being adequately maintained, leading to higher fault incidence over time. As a result, the 
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appearance of faults in an RTU often leads to higher energy consumption (Li and Braun, 

2007) and equipment wear. In most cases, the equipment wear is more significant than 

the economic impact because of the associated faults (Rossi and Braun 1996; Yuill and 

Braun 2017). 

 

2.2 Soft Faults in Vapor Compression Systems  

In this section, the soft faults discussed in Section 1.2.2 will be discussed in detail. These 

include the typical causes of those soft faults and the impact of those faults on the system 

performance. 

 

2.2.1 Typical Causes of the Soft Faults 

Soft faults typically develop due to the improper maintenance or installation of the 

equipment. Over time, the fault severity increases if the associated faults are left 

unattended. In addition, the other reasons of the seven types of soft faults are discussed in 

Table 5. In Table 5, the typical soft faults are represented in abbreviated forms (refer to 

Section 1.2.3). 
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Table 4: Typical reasons of soft faults 

Fault Typical Reasons 

CA 
Accumulation of dust, grease, pollen, and plant leaves, across the 

surface of the condenser coil. 

EA 
Foreign particles deposited across the evaporator coil, clogged air 

filters, stuck OA and RA dampers, and broken evaporator fan.  

LL 
Clogged refrigerant filter/drier located in between condenser and 

expansion device. 

NC 
Unintentional addition of non-condensable gases during 

installation or refrigerant charging. 

OC Improper overcharging during refrigerant charging 

UC 
Refrigerant leaks resulting from improper installation and old 

components. 

VL 

Loose sealing in suction and discharge valves. In newer 

compressors (scroll type), VL happens due to improper tolerance 

between flanks or leakage through clearance regions. 

 

2.2.2 Impact of Soft Faults on System Performance 

 The system performance of the unitary VCRC is mainly dictated by three parameters, 

namely, Coefficient of Performance (COP), Cooling Capacity (CC), and Sensible Heat 

Ratio (SHR) (Yuill and Mehrabi, 2017). Soft faults in the VCRC can change the system 

performance by altering different thermodynamic and electrical variables, leading to 

degraded system performance. The effect of individual faults on system performance (for 

systems equipped with FXO) is discussed in Table 6. 
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Table 5: Effect of individual fault on system performance 

Fault Impacts on System Performance 

CA 

Increased condensing pressure reduces the capacity and increases the 

compressor power, decreasing the COP (Li and Braun, 2007a; Mehrabi 

and Yuill, 2017; Kim and Lee, 2021). However, a surprising study 

(Mehrabi and Yuill, 2019) for split systems with field-fouled condenser 

coil showed that the CA and condenser fouling are different fault types, 

and the system performance is not significantly degraded by condenser 

fouling, rather in some cases, the system performance improves. 

EA 

The reduced airflow across the evaporator coil decreases the capacity, 

leading to lower suction pressure, leading to lower refrigerant suction 

density, leading to lower compressor power, and thus the impact on COP 

is uncertain (Mehrabi and Yuill, 2017). In another study (Yang et al., 

2007), EA causes reduced EER due to decreased capacity and increased 

fan power. They also found that the selection of air filters also dictates 

how much EER will be decreased.  

LL 

The liquid-line restriction causes the refrigerant mass flow rate to drop in 

FXO equipped system, leading to decreased capacity and decreased COP 

of the system (Du et al., 2015; Mehrabi and Yuill, 2017; Hu et al., 2021). 

These performance degradations become more severe at higher LL fault 

intensities. 
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Fault Impacts on System Performance 

NC 

The addition of non-condensable gases increases compressor power 

consumption and decreases the COP (Kim et al., 2009; Hu and Yuill, 

2022a, 2022b). As a result, compressor lifespan decreases. 

OC 

Compressor power consumption increases due to increased refrigerant 

mass flow rate resulting from overcharging (Mehrabi and Yuill, 2017b). 

In addition to that, liquid refrigerant might enter the suction line, 

damaging and reducing the lifetime of the compressor. 

UC 

Decreased charge level leads to reductions in both capacity and 

compressor power consumption, often leading to decreased COP (Farzad 

and O’Neal, 1991). The lower charge level leads to increased runtime of 

the compressor. The most important effect is probably the increased 

compressor temperature, causing more metal-to-metal wear, decreasing its 

lifetime. 

VL 

The VL results in decreased discharge pressure and increased suction 

pressure, leading to less suction superheat (Mehrabi and Yuill, 2017). If 

the suction superheat is too low, compressor lifetime decreases due to 

handling liquid refrigerant. 

 

2.2.3 Impact of Faults on Energy Consumption 

Previous studies estimated the effect of common faults on system performance. For 

instance, Roth et al. (2004) found more than 100 faults in commercial buildings, and 

based on three performance factors (AECre, Frequfault , and Degradefault), they identified 
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13 key faults (including HVAC system faults) that have a significant impact on the 

building energy consumption. Altogether, the 13 key faults had an additional commercial 

building energy consumption in the range of 0.35 to 1.7 quads. According to Wiggins and 

Brodrick (2012), HVAC system faults introduced between 1% and 2.5% of total 

commercial building energy consumption. They presented several kinds of HVAC FDD 

devices that can reduce labor costs, maintenance costs, electrical demand, and wasted 

energy. Fernandez et al. (2018) estimated national energy savings in the commercial 

building through better control, fault elimination, and better sensing. They found 2.76 

quads of primary energy savings, performed across multiple building types and climates 

in the US. 

To meet the net-zero carbon emission goal by United Nations by 2050, there should be a 

45% reduction of global greenhouse gas emissions by 2030, from 2010 levels (Net Zero 

Coalition | United Nations, n.d.). To achieve that, the commercial sector can play a major 

role by reducing the national energy and demand requirements. Thus, eliminating soft 

faults from the packaged rooftop units in U.S. commercial buildings should be an integral 

part as far as national energy and demand reductions are concerned. 

 

2.3 Details on Fault Detection and Diagnosis (FDD) 

As a supervisory control feature, Fault Detection and Diagnosis (FDD) in HVAC systems 

aim to find subtle faults, determining their type, intensity, and location before they cause 

major equipment malfunctions (Yuill and Braun 2013; Li and Braun 2007). In addition to 

Fault Detection and Diagnosis, there can be an additional step called Fault Evaluation 

where it informs whether the detected fault needs to be eliminated immediately or not 
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(Isermann, 1984). Figure 3 shows a simplified Fault Detection, Diagnosis, and 

Evaluation, adapted from Rossi and Braun (1997). In the fault detection step, it is 

identified whether the system is faulty/unfaulty based on the residuals of measured and 

expected variables. In the fault diagnosis step, upon confirming the presence of fault, the 

specific type of fault is diagnosed based on the directional change of measured and 

expected variables. In the fault evaluation step, it is decided whether the fault should be 

repaired immediately or not. Depending on the type of FDD methods, fault detection and 

diagnosis can be performed separately or simultaneously.  

 

Figure 3: Simplified fault detection, diagnosis, and evaluation 

 

Three kinds of FDD are used for HVAC systems (Katipamula and Brambley, 2005a, 

2005b; Yang et al., 2014). These are quantitative, qualitative, and process-history based. 

The first two approaches are also known as knowledge-based approaches because they 



20 
 

require sound knowledge of the associated systems. In the following sections knowledge 

based and process-history based approaches will be discussed in detail. 

 

2.3.1 Knowledge-Based FDDs 

Quantitative models are based on detailed physics and engineering principles and are thus 

quite complex, often requiring greater computational power and physical knowledge. 

Qualitative model-based FDDs need prior knowledge to develop different rules to 

diagnose various faults. Since both quantitative and qualitative methods require sound 

knowledge of the associated systems, they are also known as knowledge-driven 

approaches. For instance, Rossi and Braun (1997) proposes a rule-based FDD method for 

VCRC which is a combination of both quantitative and qualitative approaches. Their 

method had three major steps, pre-processing, fault detection, and fault diagnostics. In 

pre-processing step, they used a quantitative/steady-state model (developed by Rossi, 

1995) that provides the expected (unfaulty) thermodynamic quantities by solving the 

mass, energy, and momentum balances for any input air conditions. In the fault detection 

step, they identified the presence of faults by comparing the expected and actual 

thermodynamic measurements. In fault diagnostics step, they pin-point the exact fault 

type based on the directional change in thermodynamic properties for that particular fault 

type. In both the later steps, they used some specific set of qualitative rules applicable to 

the systems similar to the system they studied, i.e., the rules were not generalizable to be 

used for all rooftop units.  

Chen and Braun (2001) studied two simple rule-based methods for rooftop units equipped 

with thermostatic expansion valves. One set of simple rules is shown in Table 7. As we 
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can see, to detect and diagnose the faults using these fixed set of rules, it would require 

measuring evaporating and condensing pressures, in order to get the saturated 

temperatures (Tevap, Tcond) for those pressures. Measuring the pressures are costly and 

intrusive to the system, thus it might not be suitable. In addition, the rules listed in Table 

7 may not work well for all operating conditions of the RTU. As a disadvantage of the 

knowledge-based FDD approaches, Behfar et al. (2019) showed that the rule-based 

methods are less reliable when the performance variable cannot be kept steady under 

unfaulty operations. 

Table 6: Simple rules from Chen and Braun (2001) 

 

While validating the gray-box models for unitary air-conditioning systems proposed by 

Cheung and Braun (2013a, 2013b), Yuill et al. (2014b) showed the fault prediction 

performance of the existing commercial FDD protocols in terms of different frequency of 

occurrence rates, like False Alarm Rate (FAR), Misdiagnosis Rate (MR), and Missed 

Detection Rate (MDR). FAR is the percentage of actual unfaulty cases incorrectly 

predicted as faulty; MR is the percentage of total faulty cases incorrectly predicted as a 

fault class different from the actual fault class, and MDR is the percentage of total faulty 

cases incorrectly predicted as unfaulty. The lower values of these frequency of 

occurrence rates represent better performance from an FDD protocols. It is unclear if 

those protocols followed quantitative/qualitative/process-history based FDD approaches. 
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The results (Figure 4) from Yuill et al. (2014b) showed unsatisfactory performance in 

terms of FAR in all except one FDD (FDD E) protocol. The MR and MDR also showed 

variable performance across different FDD protocols. Figure 4 (b,c) shows MR and 

MDR, with respect to different fault severity cases. In these Figures, FDD D shows lower 

MR and MDR values than the other protocols. However, FDD D was a detection only 

protocol (cannot diagnose fault type, hence MR = 0), and it could not pin-point which 

fault is present in the system. Also, although FDD D had a lower MDR value, it showed 

very high FAR values in Figure 4 (c). In addition, some of the protocols are not suitable 

for specific scenarios, marked by predicting “no response” or “no diagnosis”.  
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(a) FAR (b) MR 

 
 

(c) MDR 

 

Figure 4: Performance results from 6 FDD protocols (Yuill et al., 2014b) 

 

2.3.2 Process History Based FDDs 

In contrast to the two knowledge-based approaches, the process-history-based approach 

requires collecting data with relevant features for different operating conditions to fit 

either a black box or gray box model that can predict faults when testing with a new data 

set. The model from the process-history-based approach is developed based on pattern 
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recognition and intra-attribute inherent correlations (Iyengar et al., 2018). This method 

requires plenty of useful data and is thus also called the data-driven method. Examples of 

data-driven FDD studies are Ebrahimifakhar et al. (2020) and Chen et al. (2022), who 

developed machine learning models using full available features and reduced set of 

features, respectively (details in next paragraph). According to Kim and Katipamula 

(2018), the data-driven approach is best-suited for a complicated physical system where 

the system's performance cannot be fully explained using theoretical knowledge. In 

addition, the former two approaches (quantitative and qualitative) might be suitable for 

detecting some specific faults. In contrast, the data-driven method can detect and 

diagnose most of the common faults if relevant data are available. The potential of data-

driven FDD approach was reviewed in details by Mirnaghi and Haghighat (2020). They 

reviewed previous data-driven studies related to supervised, semi-supervised, 

unsupervised, and hybrid algorithms. They found that the data-driven approaches are a 

more promising FDD process for large-scale HVAC systems than the quantitative and 

qualitative approaches. 

Several FDD studies have used data-driven approaches to unitary air conditioning 

systems. For instance, Ebrahimifakhar et al. (2020) compared the predicted performance 

of typical soft faults by fitting several supervised machine learning models using all the 

15 features of simulated data for an RTU (equipped with FXO) from Cheung and Braun 

(2013a, 2013b). Using the simulated testing set, they found that the radial kernel-based 

SVM outperformed all the other machine-learning classifiers. However, the predicting 

performance regarding false alarm rate (FAR) was unsatisfactory (100%) since their 

trained model had few unfaulty cases. Even after increasing their unfaulty cases using an 
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oversampling technique, 12 of the 17 unfaulty cases were still flagged as false alarms 

(refer to the ‘NF’ row in Figure 5). In practical AFDD applications, false alarms are the 

costliest error. 

 

Figure 5: Confusion matrix from Ebrahimifakhar et al. (2020) 

 

To find how the reduction of features affected the predicting performance of SVM 

classifiers fitted using the simulated data for a split system (equipped with TXV), Chen et 

al. (2022) analyzed two separate classifiers using two sets of 10 features, one from 

sequential backward selection (SBS), another from manual selection. They have found 

that, when tested with the same system, the reduction of 5 features has little impact on the 

overall predicting performance of the classifiers. As a continuation of their work, to find 

how the SVM model is generalizable to be used when the model is trained with the 

simulated data of a split air-conditioner but tested with the simulated data from different 
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split systems, Chen et al. (2023) worked with the same two sets of 10 features (using 

Sequential Backward Selection (SBS) and manual selection for classifiers C1 and C2, 

respectively) in addition with the full 15 features (for classifier C3). The list of variables 

in those two reduced sets of 10 features is shown in Table 7. 

Table 7: Feature selection from Chen et al. (2022, 2023) 

Features Selected variables 

SBS* features for C1 TSA, WBSA, PLL, Tsuc, Pdischg, Tdischg, Tair,ce, Tsat,e, WBRA, Tamb 

Manually selected 

features for C2 
TSA, TLL, Tsuc, Tdischg, Tair,ce, Tsat,e, Tsat,c, Power, TRA,Tamb 

*Sequential Backward Selection  

From the above study of Chen et al. (2023), although the systems were similar (R410A 

refrigerant with TXV), the classifiers performed badly when tested with a different 

system (using simulated data) than the system with which the classifier is trained. Figure 

6 demonstrates one such confusion matrix from classifier C2, showing heavily biased 

towards predicting CA (refer to column CA in Figure 6). Thus, future steps from their 

study proposed training the classifier with multiple similar systems with increased 

unfaulty conditions. Also, the obtained feature selection results are only for split system 

air conditioners, requiring similar studies for packaged rooftop units. In addition to that, 

the validation of the machine-learning classifiers using lab/field data needs to be 

performed before using the classifier for practical applications. Also, it is necessary to 

know how the performance of the classifier varies with the fault intensity. 
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Figure 6: Confusion matrix using Classifier C2 from Chen et al. (2023) 

 

Albayati et al. (2022) studied three different fault classification methods for predicting 

five fault classes (4 soft faults and one unfaulty type) for a field-tested RTU with FXO as 

an expansion device, taking 24 selected features. Their studies considered both single 

fault and simultaneous faults occurring at a single time. The first method (capable of 

detecting single/simultaneous faults) proposed an SVM-supervised ML model with an 

average accuracy of 93.5%, with unfaulty prediction accuracy being the lowest (80%) 

among all five classes. This low accuracy for unfaulty classes happened due to minority 

unfaulty classes in their trained model. The second method (for single/simultaneous 

faults) proposed a semi-supervised ML model with an average accuracy of 94.9% and an 

increased unfaulty prediction accuracy of 91.8%. The third method (for single faults) was 

also a semi-supervised model that had an accuracy of up to around 98%, having a False 

Alarm Rate (FAR) of 13.21% (Figure 7). Finally, they proposed a trade-off method that 
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took either Method 1 or 2 based on the individual highest-class accuracy, which provided 

an average accuracy of 95.7%. However, their proposed models are not generalized to be 

applied for detecting faults for all RTUs and thus require further studies for a 

generalizable ML model. 

 

Figure 7: Confusion matrix using Method 3 from Albayati et al. (2022) 

 

2.4 Feature Selection Study 

Feature Selection means finding the suitable set of inputs for fitting the machine-learning 

classifier. In this section, the details about the Feature Selection will be provided. 

 

2.4.1 Need for Feature Selection 

Commercial sectors often have access to a large amount of data related to the HVAC 

system thanks to the developed Building Energy Management System (BEMS) 
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technology. Data from Building Automation Systems can be used in FDD and thus has 

significant potential to improve the energy efficiency in the HVAC system (Granderson 

et al., 2020). However, access to more data means it is required to perform rigorous data 

preprocessing before the data is suitable for fitting machine learning classifiers for FDD 

purposes. The field collected data from BEMS often has both relevant and irrelevant 

features with the presence of outliers, making it more likely to overfit the machine 

learning classifier if accurate data preprocessing is not done (Jung and Sundstrom, 2019). 

The first step in any feature selection process involves discarding noisy, non-informative, 

and highly collinear features (i.e., redundant features) from the raw dataset (Llobet et al., 

2006; Chandrashekar and Sahin, 2014). Previous FDD studies in HVAC systems also 

practiced finding the minimum number of features (or, sensors) for detecting faults. For 

example, Rossi et al. (1995) developed a model-based FDD system for detecting 

refrigerant leakage from an experimental RTU, and their sensitivity studies found three 

sensors (or, features) measuring superheat, subcooling, and compressor discharge 

temperatures, sufficient for detecting the refrigerant leakage. In addition, since features 

for the data-driven FDD approach in HVAC systems mainly indicate a list of associated 

sensors, incorporating more features while developing a data-driven FDD classifier 

means that the cost of sensors will also be increased (Kim and Braun, 2020). Sometimes, 

it can be challenging for the manufacturer/facility to bear the increased sensor costs. So, 

it is necessary to perform proper feature selection before fitting the machine learning 

classifier for FDD purposes. 
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2.4.2 Classification of Feature Selection 

There are mainly two kinds of feature selection approach, filter, and wrapper (Kohavi and 

John, 1997; Yan et al., 2018). As shown in Figure 7, Filter approach can be further 

subdivided into ANOVA and Pearson correlation. The filter approach using Pearson 

correlation (used in this study) is independent of machine learning algorithms and 

depends on the correlation among the features to find the effective set of features. The 

Pearson correlation approach filters out the most uncorrelated set of features based on a 

correlation cut-off value (detailed discussion in Section 3.9). On the other hand, the 

wrapper approach can be further subdivided into forward, backward, and stepwise 

eliminations (Figure 8). In contrast to filter approach, feature selection using the wrapper 

approach is based on a training classifier with a specific machine-learning algorithm and 

is thus computationally expensive (Langley, 1994). For example, backward elimination 

starts with full features and recursively eliminates the less important features. It does that 

based on a machine-learning algorithm informing which features are adding less 

knowledge to the trained algorithm, marked by accuracy. 
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Figure 8: Feature selection classification 

 

In this study, the filter approach using Pearson correlation was found to be effective to 

get the reduced set of features. To validate the reduced set of features using the filter 

approach, a separate set of features obtained from a wrapper approach (backward 

elimination) was considered. 

 

2.5 Focus of this Study 

Any successful data-driven classifier for fault prediction in an HVAC system requires 

input data consisting of all possible combinations of operating conditions, fault types, and 

fault intensities (Yuill and Braun, 2016). Also, control over this wide range of 

combinations is necessary so that the FDD classifier can be evaluated under a wide range 

Feature 
Selection

Filter 

ANOVA

Pearson 
correlation

Wrapper

Forward

Backward

Stepwise



32 
 

of conditions (Yuill et al., 2014a). However, obtaining experimental data consisting of all 

the required combinations is challenging since it is labor-intensive, time-consuming, and 

requires technical expertise. One solution can be to perform experiments with labeled and 

unlabeled faults and, using a semi-supervised approach afterward, labeling the unlabeled 

faults can be performed based on the labeled data (Fan et al., 2021; Li et al., 2021). 

However, this approach still requires performing experiments to collect the data. Another 

solution to get the necessary inputs for the machine learning AFDD classifier is using 

simulated data from gray-box models (Cheung and Braun, 2013a, 2013b). This approach 

can simulate the required data and eliminate the need for fault labeling, as the gray-box 

model can generate the inputs for a data-driven FDD approach based on the operating 

conditions, fault type, and fault intensity. If the latter solution is performed, then this will 

be a combination of knowledge-based and data-driven FDD methods. A review study 

conducted by Zhao et al. (2019) concluded that new methods combining both knowledge-

based and data-driven approaches are needed to have added advantage of both of these 

approaches.  

None of the above studies considered investigating the cost-effective set of features to 

develop a generalized machine classifier for packaged RTUs. To develop a generalized 

machine learning classifier with a reduced set of features for packaged rooftop units, this 

study considered three separate simulated data from three RTUs from Cheung and Braun 

(2013a, 2013b). The developed classifier was first tested with unseen simulated data. 

Then, the developed classifier was validated using an existing lab dataset. Finally, the 

developed classifier was validated with field measurement data. The possible 
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comparisons among different predicting performances of the simulated, lab, and field-

measured testing sets were performed, and appropriate conclusions were made.  
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Chapter 3. Methodology 

In this chapter, the methodology related to data pre-processing, feature selection, and 

fitting a machine learning classifier will be discussed in detail.  

 

3.1 Machine Learning (ML) Workflow 

A machine-learning algorithm is a mathematical model fitted using suitable data. It can 

be either classification or regression type. In a classification-based ML, the response 

variable has categorical types (classes), whereas, in a regression-based ML, the response 

variable has continuous/quantitative variables. The ML algorithm in this study is of 

classification type, thus the corresponding ML algorithm is termed as ML classifier. 

A typical machine-learning workflow is shown in Figure 9. 

 

 

Figure 9: Typical machine learning workflow 

 

As shown in Figure 9, the simulated dataset first goes through a data preparation stage 

where relevant features (columns) and appropriate rows are selected. The data 
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preparation also includes shuffling the entire dataset and randomly splitting it into two 

subsets: training and testing sets. Next, depending on the validation approach, the training 

set is divided into sub-training and validation sets (Figure 9). For a machine learning 

algorithm, using suitable sub-training and validation sets, different sub-models 

corresponding to different combinations of tuning parameters are checked (grid search 

discussed later) before finding the best combination (that gives maximum accuracy) of 

the tuning parameters for the final model. Finally, the performance of the final model is 

analyzed using the testing set. In this study, 80% of the simulated data was randomly 

selected for training the final model, and the rest 20% was used for testing the model. 

 

3.1.1 Support Vector Machine 

The Support Vector Machine (SVM) is elaborately discussed in Brereton and Lloyd 

(2010) with examples. This section will discuss the basic methodology of SVM based on 

their work.  

Support Vector Machine is a machine-learning algorithm that can be explained using a 

binary classification problem. In a binary classification algorithm, the observations in the 

training data are separated into two classes. Before learning how the two classes are 

separated using SVM, it is necessary to know two additional classifiers called Maximum 

Margin Classifier (MMC) and Support Vector Classifier (SVC).  

Maximum Margin Classifier is a classifier that linearly separates the two classes (in the 

training data) using a hyperplane. A hyperplane can be considered as a threshold 

boundary (represented by a line in 2-D space) that separates the two classes. The best 

hyperplane is selected in such a way that maximizes the margin. For each class, a margin 
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can be defined as the perpendicular distance between the hyperplane and the closest 

observation for that class. The two margins for the two classes are equal. In MMC, the 

hyperplane completely separates the two classes, i.e., no misclassification occurs. 

Practical binary classification problems often have overlapping observations. Thus, while 

training the classifier, it may not be possible to completely separate the two classes. In 

such cases, linearly separating the observations into two classes would require some 

observations to be misclassified. A classifier with some misclassified observations in the 

training dataset is called a Support Vector Classifier (SVC). Figure 10 shows an example 

of SVC for a two-featured (Variable 1 and Variable 2) classification problem. In this 

figure, the blue circles represent class A, and the red diamonds represent class B. 

 

Figure 10: Understanding Support Vector Classifier (Brereton and Lloyd, 2010) 

 

In Figure 10, the black line represents the hyperplane. Red and blue lines are the two 

marginal lines, for class B and A, respectively. As we can see, since the observations 
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from two classes overlap, it is not possible to completely separate the two classes using a 

line (hyperplane). Thus, the hyperplane is chosen in such a way that misclassifies one 

point of A as B. Ideally, the observations for a class should be lying beyond the marginal 

line for that class. Support vectors are the points that lie on the two marginal lines and 

points lying on the wrong sides of the marginal lines. These points are marked by the 

shapes with a ‘+’ inside. The hyperplane location largely depends on these support 

vectors. Now, when a new point is fed into the above SVC, the classifier determines 

which side of the hyperplane the new point falls on and predict the class accordingly.  

In many practical classification problems, the two classes cannot be linearly separated 

using a hyperplane. Instead, it requires a non-linear boundary to separate the two classes. 

This is called a kernel trick to separate the two classes. The kernel can be of polynomial 

or radial type. The idea is to create new feature(s) from the existing features/predictors 

and non-linearly separate the observations into two classes at higher dimensions. When 

the two classes are separated by a non-linear boundary (at higher dimensions) after 

creating new features from the existing feature set, this is called a Support Vector 

Machine. 

The classification problem studied in this dissertation is a higher-dimensional problem 

with up to 16 dimensions (for 15 thermodynamic and single categorical feature), and 

intuitively, it is not possible to separate the fault classes linearly using a hyperplane 

discussed above. In addition, previous studies showed that the SVM with radial kernel 

works well for classifying faults in VCRC (Ebrahimifakhar et al. (2020) and Chen et al. 

(2022)). Thus, this study will follow SVM with radial kernel as the underlying machine-

learning algorithm for all classifiers. Since the classifiers studied in this dissertation have 
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significantly higher dimensions (up to 16), it is not possible to graphically show the 

classifiers.  

The above description provides the classification as a binary problem (having two 

classes). However, in this study, there are 8 fault classes. Thus, the multi-class SVM 

classification needs to be converted to suitable binary classifiers. Multi-class problems 

can be solved binarily in two ways, One-Vs-One or, One-Vs-All. One-Vs-One is selected 

in this study because previous study by Hsu & Lin (2002) found this as more suitable for 

practical classification. In One-Vs-One classification, since the classifier in this study has 

8 classes, there can be 8C2 or 28 pairs of faults. Thus, 28 SVM classifiers (with radial 

kernel) will be fitted using the appropriate training dataset. For a new testing case, the 

predictions from all 28 SVM classifiers were gathered. The final prediction is the class 

that has the majority of the predictions. In R programming software (R Core Team, 

2022), the package “e1071” is used in this study to perform One-Vs-One classification. 

In contrast to One-Vs-One classification, One-Vs-All classification fits all the classifiers 

for a class Vs the remaining classes. 

 

3.2 Study Data 

As mentioned in Section 1.3, three types of datasets were used in this study. The 

simulated dataset, consisting of three rooftop units, was obtained from a gray-box model 

developed by Cheung and Braun (2013a, 2013b). An existing lab dataset consisting of the 

same three rooftop units was used to validate the developed machine-learning classifier. 

Field data collected from a rooftop unit at a facility in Omaha, NE, was used to validate 

the developed machine-learning classifier. While tested during the late morning hours on 
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July 14, 2023, circuit 1 of this RTU has shown significantly lower subcooling and higher 

superheating values, indicating severe refrigerant undercharge fault in the system (details 

in Chapter 4). In this study, the field validation will only be done considering this UC 

fault. Since this study proposes a reduced set of 9 features (8 measurable, 1 categorical) 

to detect the common soft faults in rooftop units, 8 measurements were logged at specific 

intervals from the above faulty system. During the time between 14:38 to 18:13 on the 

above day, based on the steady-state operating conditions (marked by steady Tsuc and 

Tdischg) of circuit 1 of the faulty RTU, 24 steady-state cases have been considered by 

taking a 5-minute average value for each of the 8 measurements. The details about the 

field testing are mentioned in Chapter 4. Table 8 shows all the RTU information for 

simulated, lab, and field data. The sample simulated and lab data can be observed in 

Appendix G and H, respectively.    

Table 8: Summary of simulated and experimental data 

 

The S4 mentioned above refers to circuit 1 of the field-tested RTU. Although S4 is 

equipped with TXV, it can be treated as an FXO-equipped system because the TXV 

could remain fully open to meet the cooling demand since it has severe UC fault present. 
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Table 9 shows the descriptive statistics of the 15 features for simulated and experimental 

data. For the field data, since this study proposes a machine learning classifier with 8 

measurable and 1 categorical feature, the descriptive statistics are shown for the 8 

variables, and the other 7 variables are showing NA values in Table 9. 

Table 9: Descriptive statistics (mean µ, and standard deviation σ) for each system 

 

NA: Not applicable since not measured.      

 

3.3 Normalizing Compressor Power and Discharge Temperature 

Out of the 15 measurable features described in Table 2, Powercomp significantly varies 

depending on the cooling capacity of an RTU. For instance, the field-tested RTU (S4) has 

a higher mean Powercomp (Table 9) than that of S1, S2, and S3, since S4 has higher 

cooling capacity. Thus, to make a generalizable classifier for any rooftop unit, it is 
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necessary to normalize the compressor power in such a way that accounts the variation of 

compressor power among different RTUs. To do that, this study normalizes the actual 

Powercomp based on the unfaulty Powercomp and used those normalized values as a feature 

instead of the actual Powercomp. Mathematically, normalized compressor power, 

𝑃𝑜𝑤𝑒𝑟𝑐𝑜𝑚𝑝,𝑛𝑜𝑟𝑚 =
𝑃𝑜𝑤𝑒𝑟𝑐𝑜𝑚𝑝

𝑃𝑜𝑤𝑒𝑟𝑐𝑜𝑚𝑝,𝑢𝑛𝑓𝑎𝑢𝑙𝑡𝑦
        …      (3.1)  

 

Where, 

Powercomp = actual compressor power 

Powercomp, unfaulty = unfaulty compressor power for the corresponding compressor 

Thus, we need Powercomp, unfaulty to normalize the actual compressor power based on 

Equation 3.1. The compressor power depends on the compressor lift (difference of 

suction and discharge pressures) and mass flow rate. Since measuring compressor lift and 

mass flow rate are challenging in practical AFDD applications, in this study, compressor 

performance data was utilized to get the Powercomp, unfaulty for a specific compressor model 

with a specific refrigerant type.    

Now, to get the unfaulty compressor power for a rooftop unit, mean power value from the 

compressor performance data from the specific compressor model was utilized (refer to 

Appendix I). The compressor manual shows the unfaulty rated compressor power values 

in tabular form, depending on the evaporating (Tsat,e) and condensing temperature (Tsat,c) 

of a refrigerant. To get the mean unfaulty compressor power value for a refrigerant, mean 

values of Tsat,e and Tsat,c are necessary. For a refrigerant, the mean unfaulty values of Tsat,e 

and Tsat,c are determined based on the corresponding mean unfaulty values from the 
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simulated training data. Therefore, the mean unfaulty compressor power for those 

specific Tsat,e and Tsat,c, is interpolated from the compressor performance data using the 

specific compressor model. It is true that the mean unfaulty values for the Tsat,e and Tsat,c 

in the corresponding training data does not contain all the operating conditions, still this 

approach is suitable instead of measuring costly compressor lift and refrigerant mass flow 

rate.     

Table 10 shows the mean unfaulty compressor power for the four RTU systems. 

Table 10: Mean unfaulty power values 

System Refrigerant 
Compressor 

Model 

Mean 

Tsat, e 

(ºC) 

Mean 

Tsat, c 

(ºC) 

Powercomp, unfaulty 

(W) 

S1 R410a 
Copeland 

ZP32K3E-PFV 
11.22 49.16 2,720.35 

S2 R407c 

Alliance (not 

found), 

Closest model: 

Copeland 

ZRD61KCE-PFV 

7.33 53.83 5,639.18 

S3 R22 
Copeland CRH3-

0275-TFD 
6.97 46.33 3,106.93 

S4 R22 
Copeland 

ZR16M3E-TWD 
6.97 46.33 11,642.65 

 

Therefore, to get the normalized compressor power, the actual compressor power is 

divided with the corresponding unfaulty compressor power mentioned in Table 10. 

Table 9 also shows that the mean Tdischg significantly varies across the three refrigerant 

types in the simulated data (80.71°C Vs. 89.52°C Vs. 101.47°C). Therefore, to get a 

generalizable classifier, just like the normalized compressor power, the actual Tdischg 

needs to be normalized with the unfaulty Tdischg. Again, to get the unfaulty Tdischg, mean 
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discharge temperature of the simulated training set for each refrigerant type is considered. 

Mathematically, normalized discharge temperature, 

𝑇𝑑𝑖𝑠𝑐ℎ𝑔,𝑛𝑜𝑟𝑚 =
𝑇𝑑𝑖𝑠𝑐ℎ𝑔

𝑇𝑑𝑖𝑠𝑐ℎ𝑔,𝑢𝑛𝑓𝑎𝑢𝑙𝑡𝑦
       …     (3.2) 

 

Where, 

Tdischg, unfaulty = Mean unfaulty discharge temperature for the corresponding 

refrigerant 

Table 11 shows the Tdischg, unfaulty for each of the three refrigerant types, computed using 

simulated training data. 

Table 11: Mean unfaulty discharge temperature 

Refrigerant Tdischg, unfaulty (ºC) 

R410a 81.62 

R407c 89.59 

R22 95.61 

  

Therefore, to get the normalized discharge temperature, the actual discharge temperature 

is divided with the corresponding refrigerant’s unfaulty discharge temperature mentioned 

in Table 11. The normalized discharge temperature will be used as a feature instead of the 

actual discharge temperature. 

 

3.4 Standardization of the Features 

After splitting the whole data set into training, and testing sets, the normalization of 

Powercomp and Tdischg were done based on the methods described in Section 3.3. Then, it is 



44 
 

necessary to standardize the training set's features so that each feature has a mean of 0 

and a standard deviation of 1. For any feature X, the standardization of each value of X is 

done by using the following well-known standardization formula, 

 

𝑧 =
(𝑥−µ)

𝜎
      …     (3.3) 

 

Where, 

z = Standardized output corresponding to a value x from Feature X 

x = A value of feature X 

µ = Arithmetic mean of feature X 

σ = Standard deviation of feature X 

Next, the testing set standardization should be performed based on the mean and standard 

deviation of the corresponding feature from the training set. In other words, the testing set 

should be standardized after splitting the whole dataset into training and testing sets. If 

standardization is performed on the entire dataset and then splitting is performed, then 

there exists a leakage of information from the testing set to the training set, which is 

strictly forbidden. In this study, this phenomenon is avoided in the testing set.    

 

3.5 Validation Approach for Fine-Tuning the ML Classifier 

The performance of any ML algorithm depends on the tuning parameters associated with 

that algorithm. As discussed in Section 3.1.1, this study will use a radial kernel-based 
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SVM classifier to fit the ML classifier since previous studies showed satisfactory 

performance with this algorithm. Two tuning parameters related to this classifier are cost 

(C) and gamma. Since both of these parameters are continuous, there can be an infinite 

number of combinations possible to try before obtaining the best combination for a radial 

kernel-based SVM classifier. To avoid that, a grid search method will be performed 

where the set of tuning parameter values are manually selected, as shown in Table 12. 

 

Table 12: Tuning parameters for radial SVM classifier 

Tuning Parameters 

for Radial SVM 
Range of Values 

Total Number 

of Values 

C 100, 101, 102, …, 109 10 

gamma 10-7, 10-6, 10-5, …, 100 8 

Total tuning combinations 80 

 

To find the best-tuned parameter among all the 80 combinations, it is necessary to follow 

a validation approach for each combination of the tuning parameter. This study performs 

5-fold cross-validation (CV) for each combination of tuning parameters. In a 5-fold CV 

approach, the training set is divided into 5 splits, and 4 of those splits are used for model 

sub-training, and the remaining fold is used for validating the sub-trained model (refer to 

Figure 9). The fitted classifier can be validated based on a performance measure 

discussed later in Section 3.7. 

 

3.6 Performance Metrics 

After fitting the fine-tuned classifier using the training set, its prediction performance 

needs to be tested using a testing set. A confusion matrix is a visual representation of a 

classifier’s performance using a testing set. It consists of rows and columns, where each 
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row represents numbers in a predicted class, and each column represents numbers in an 

actual class. Several performance metrics can be utilized to observe the performance of a 

machine learning classifier. In this study, the performance metrics can be classified into 

two categories: frequency of occurrence rates (Yuill and Braun, 2012) and class 

performance rates (Chen et al., 2022). 

In VCRC, there could be three types of frequency of occurrence rates (Yuill and Braun, 

2012): False Alarm Rate (FAR), Misdiagnosis Rate (MR), and Missed Detection Rate 

(MDR). Lower values for these three rates indicate the better predicting performance of 

the machine learning classifier. For instance, for a typical three-class confusion matrix 

including ‘NoF’ as a class, Figure 11 shows the false alarms, misdiagnoses, missed-

detections, and correct predictions (true positives). 

  

Figure 11: Confusion matrix showing three frequency of occurrence rates 

 

The descriptions of these frequency of occurrence rates are given below. 
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FAR: The percentage of actual unfaulty cases incorrectly predicted as faulty. A false 

alarm happens when an AFDD algorithm incorrectly predicts the presence of a fault 

when there is no fault present (red elements in Figure 11). 

MR: The percentage of total faulty cases incorrectly predicted as a fault class different 

from the actual fault class. A misdiagnosis error happens when the AFDD algorithm 

correctly predicts the presence of a fault, but a wrong fault is predicted (orange elements 

in Figure 11). 

MDR: The percentage of total faulty cases incorrectly predicted as unfaulty. A missed 

detection occurs when an AFDD algorithm fails to detect the presence of a fault (blue 

elements in Figure 11). 

In practical AFDD applications, false alarms are the most serious error because costly 

maintenance can be performed when there is no significant fault present. Misdiagnosis is 

the next serious error because a wrong diagnosis of a fault can again lead to an improper 

maintenance, keeping the actual fault unattended. Thus, as mentioned in Yuill and Braun 

(2013), the order of importance (from most to least important) for the above three metrics 

are FAR, MR, and MDR.  

There could be three class performance rates for analyzing the individual class 

performance from a machine learning classifier: precision, recall, and F1-score. Before 

knowing the definitions of these metrics, it is necessary to know several other metrics 

related to a particular class. For each class, these are defined as follows, 

True Positive (TP): The number of cases that are correctly predicted as that class. 
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False Negative (FN): The number of cases that are incorrectly predicted as other fault 

classes. 

False Positive (FP): The number of cases that are incorrectly predicted as that class. 

True Negative (TN): The number of cases predicted to be any other classes. 

Now, for any class, the three class performance rates can be mathematically defined as, 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
∗ 100%     …      (3.4) 

 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
∗ 100%    …    (3.5) 

 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙)
∗ 100%    …    (3.6) 

 

For a particular class, higher values for the three class performance rates mean better 

predicting performance of the machine learning classifier. In this study, (100-recall) for 

the unfaulty class is the same as the FAR defined above. 

 

3.7 Performance Measures 

Cross-validation for getting the best-tuned parameters can typically be performed based 

on a performance measure called overall accuracy (followed by Ebrahimifakhar et al., 

2020). The overall accuracy is the ratio of the total number of correct predictions from 

the AFDD classifier to the total number of actual cases in the testing set. 



49 
 

So, the best combination of tuning parameters can be obtained that yields the highest 

accuracy among all 80 tuning combinations discussed in Section 3.5. Therefore, the 

subsequent SVM classifier corresponding to the best-tuning parameters is the best-tuned 

SVM classifier (Final Classifier shown in Figure 9). 

 

3.8 Fault Impact Limits 

As mentioned in Yuill et al. (2014), for an RTU, each case (row) of simulated data 

corresponds to a specific operating condition (set of TRA, WBRA, Tamb, and specific fault 

intensity). Applying fault with a particular intensity impacts the RTU performance 

typically indicated by the values of capacity (Q) and Coefficient of Performance (COP). 

So, two Fault Impact Ratios (FIR) exist for capacity and COP, denoted by FIRQ and 

FIRCOP, respectively. As per the definitions by Yuill and Mehrabi (2017), 

 

𝐹𝐼𝑅𝑄 =
𝑄𝑓𝑎𝑢𝑙𝑡𝑒𝑑

𝑄𝑢𝑛𝑓𝑎𝑢𝑙𝑡𝑒𝑑
    …    (3.7) 

𝐹𝐼𝑅𝐶𝑂𝑃 =
𝐶𝑂𝑃𝑓𝑎𝑢𝑙𝑡𝑒𝑑

𝐶𝑂𝑃𝑢𝑛𝑓𝑎𝑢𝑙𝑡𝑒𝑑
   …   (3.8) 

 

Ideally, for an unfaulty operating condition, FIR = 1 for both of the above equations. 

Typically, the lower the FIR values, the more degraded the performance of the RTU for a 

specific faulty condition. In this study, the subtle faulty conditions (dictated by 

reasonable higher FIRCOP limits) will be treated as unfaulty conditions in the simulated 

data. To do that, reasonable lower and upper limits of FIRCOP need to be considered as 

unfaulty conditions. This will also mitigate the minority unfaulty (NoF) cases in the 



50 
 

simulated data, as evident from Table 8. The main idea is to consider some insignificant 

faults to be considered as unfaulty while training the machine-learning classifier. A wider 

limit (e.g., 97 to 103%) will increase the unfaulty cases and a tighter limit (e.g., 99 to 

101%) will potentially neglect the insignificant faults to be considered as unfaulty. Thus, 

a tradeoff between the above two conditions must be met. So, the reasonable lower and 

upper limit of FIRCOP have been selected as 98% and 102%, respectively. So, for any 

case (i.e., row) of the simulated data, if the value of FIRCOP falls between 98% to 102%, 

inclusive, the associated fault class was converted from faulty to unfaulty case. However, 

for the lab data, although FIRCOP is known for all cases, the less significant faulty cases 

will not be considered unfaulty since the impact of fault is unknown.  

To know how the ML classifiers perform at different fault impacts, five fault impact bins 

were considered (Yuill, 2014) based on different ranges of FIRCOP values: ‘>105%’, ‘95-

105%’, ‘85-95%’, ‘75-85%’, and ‘<75%’. 

 

3.9 Feature Selection 

Feature selection can be defined as finding the reduced set of features for which there is a 

reasonable trade-off between the number of features and the prediction performance of 

the ML classifier. Reducing the number of features is also necessary because the cost 

associated with deploying reliable sensors for every feature might not be practical. In this 

study, simulated data for S3 has been considered to find the reduced set of features 

because, as evident from Table 8, it has more unique values for TRA. Thus, simulated S3 

data has more operating conditions than simulated S1 and S2.  
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As mentioned in the Introduction section, two feature selection approaches were 

performed in this study. The filter approach followed in this study is based on the 

correlation among the 15 features. In contrast, the wrapper approach followed in this 

study is of backward elimination type, using radial SVM as its machine learning 

algorithm with a 10-fold CV. The information regarding these two approaches using R 

programming language (R Core Team, 2022) is shown in Table 13. The R codes and 

outputs related to these two approaches are shown in Appendix F.  

 

Table 13: Filter and Wrapper approaches using R software 

Feature 

selection 
R package Functions used Major arguments 

Filter 

caret (Kuhn, 2008) 

findCorrelation() cutoff = 0.90 

Wrapper 

(backward 

elimination) 

rfeControl() 
function = caretFuncs, 

method = ”cv”, number = 10 

rfe() method = ”svmRadial” 

 

  

The filter approach followed in this study provided a set of 8 relatively uncorrelated 

features based on a correlation cut-off value of 90% (0.90 in Table 13). A lower cut-off 

value eliminates more features, and a higher cut-off value retains more features; hence a 

reasonable value of 90% was selected to have a better trade-off. To choose the 

uncorrelated features, absolute values of pairwise correlations were considered. The first 

pair is selected as Tsat,c and PLL because this pair has the highest correlation of 99.10%. 

To eliminate one, the mean absolute correlation of each of these two with other variables 

is considered. Since Tsat,c has a higher mean absolute correlation with the rest of the 

variables than that of the PLL, Tsat,c was eliminated. Next, the pair of PLL and Pdischg is 

selected since it has the next highest correlation of 98.5%. By using the same analysis, 
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PLL was eliminated. Following this order, the next 5 eliminated features are Pdischg, Tair,ce, 

Psuc, Tsat,e, and WBSA. In this way, 7 correlated (or, redundant) features were eliminated, 

and 8 uncorrelated features were obtained.  

Backward elimination has been selected as a wrapper feature selection because previous 

studies (Chen et al. (2022, 2023)) have shown potential with this approach in getting 

statistically justified set of features. Backward elimination starts with full features and 

recursively eliminates less important features. It does that based on a machine-learning 

algorithm informing which features are adding less knowledge to the trained algorithm, 

marked by accuracy. To match with the same number of features, this study takes the top 

8 features from backward elimination and will compare it with that of the 8 uncorrelated 

features.  

Among many factors, the thermodynamic variables of a rooftop unit largely depend on 

the type of refrigerant used in the system. Thus, to fit a generalizable classifier for 

packaged rooftop units, refrigerant type was taken as an additional feature. Thus, in total, 

there are 9 features to fit classifiers using a reduced set of features. 

Three machine learning classifiers were studied to compare the fault-predicting 

performance using the simulated testing set. The three classifiers are listed in Table 14. 

Table 14: Three classifiers for fault prediction 

Classifier Description 

C1 
SVM classifier using 9 features from wrapper approach (backward 

elimination) 

C2 
SVM classifier using 9 relatively uncorrelated features from filter 

approach 

C3 SVM classifier using full 16 features 
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Classifiers C1 and C2 were considered to show which reduced featured classifier (C1 or 

C2) showed better predicting performance. Classifier C3 was considered to compare the 

performance of the reduced featured classifiers (C1 or C2) with the full-featured classifier 

(C3). 

Lab and field validations were performed for the C2 classifier only, as we noticed that 

this classifier performed better than C1 when tested with the simulated data. 

            

3.10 Data Analysis Steps 

In this study, following Figure 9, the whole dataset consists of the simulated data from 

S1, S2, and S3, discussed in Section 3.2. This study aims to develop a generalizable 

machine learning algorithm with a reduced number of features to use in the field to detect 

and diagnose the common fault classes discussed in Section 1.2.3. This generalized ML 

algorithm is like one of those FDD protocols evaluated by Yuill et al. (2014). 

Furthermore, SVM with radial kernel will be used to fit different machine learning 

classifiers since this classifier showed the best performance among all classifiers in a 

previous study (Ebrahimifakhar et al., 2020). 

By following the machine learning workflow shown in Figure 9, the data analysis steps 

were as follows, 

1. The whole dataset consists of simulated data from S1, S2, and S3. Therefore, the 

data has numerous rows and columns. Rows that did not provide meaningful 

values were discarded.  
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2. To increase the 'NoF' cases, fault cases that did not significantly impact the 

performance (evident by FIRCOP) were converted to 'NoF’. A reasonable FIRCOP 

range has been selected from 98% to 102%, to convert any fault to no fault. This 

conversion increases the number of ‘NoF’ cases significantly. 

3. 16 features (including refrigerant type) and one response variable (fault class) 

were taken, and the whole dataset was shuffled. 

4. The shuffled simulated dataset was randomly split into training and testing sets 

following the percentages of 80% and 20%, respectively.  

5. The actual Powercomp and Tdischg were appropriately normalized based on the 

methods discussed in Section 3.3. Next, the features were appropriately 

standardized discussed in Section 3.4. 

6. The SVM classification algorithm (C3) was fitted with the training set with 

appropriate fine-tuning and cross-validation. 

7. The performance of the full featured classifier obtained in step 6 was evaluated 

using the simulated testing set. 

8. Next, feature selection, using both filter and wrapper approaches, has been 

performed to find the most cost-effective reduced set of features. 

9. With the reduced number of 9 features, steps 6 and 7 were repeated to get the 

performance of the two SVM classifiers (C1 and C2) with the reduced set of 9 

features. The results with reduced features (from C1 and C2) were compared with 

the results with 16 featured (C3, obtained in step 7) ones. The final generalized 

classifier, C2, was obtained since it was noticed that this classifier provides the 

best performance among the three. 
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10. An existing lab dataset (consisting of same S1, S2, and S3) was appropriately 

normalized and standardized (refer to step 5) and used as a new testing set. The 

performance of the generalized ML classifier (C2) obtained in step 9 was 

evaluated using this lab testing set. In addition, a comparison has been performed 

with the results obtained from the simulated testing set. 

11. Field measurements (discussed elaborately in the next section) were performed 

for the reduced set of features using filter approach from an industrial facility. The 

generalized ML classifier, C2, obtained in step 9 was validated using the field-

measured data. 

  



56 
 

Chapter 4. Field Testing 

In this section, everything related to the field testing of the proposed machine-learning 

classifier (C2) will be presented. 

 

4.1 Available Program at the UNL 

The field testing was performed under the guidance of two organizations at the 

University of Nebraska-Lincoln (UNL): Nebraska Industrial Assessment Center (NIAC) 

and Partners in Pollution Prevention (P3). The P3 and NIAC programs at the UNL go 

hand in hand since both have common goals to fulfill. 

The NIAC program (About NIAC, n.d.) is funded from the U.S. Department of Energy 

(U.S. DOE). This organization performs one-day energy assessments to small and 

medium manufacturing facilities, aiming to improve energy efficiency in the Midwest 

area. The NIAC is managed by Industrial Assessment Center (IAC) program (Industrial 

Assessment Centers, n.d.) under the U.S. DOE.  

The P3 program (P3: Partners in Pollution Prevention, n.d.) provides pollution 

prevention to Nebraska businesses by minimizing waste and resource conservation. Some 

selected publications from P3 program are Dvorak et al. (2010), Kekilova et al. (2014), 

and Kuppig et al. (2016). 
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4.2 Manufacturing Facility with Rooftop Units 

A suitable manufacturing facility located in Omaha, Nebraska was selected for the field 

validation of the machine-learning classifier. The suitable day for the field validation was 

July 14, 2023. This facility manufactures building drywall components and has a square 

footage of 140,000 ft2 and has 4 rooftop units for air-conditioning the offices and shop 

areas. The 4 RTUs at this facility are marked by RTU 1, RTU 2, RTU 3, and RTU 4. 

Each of the 4 RTUs is a York brand with a model number of Y12AN44A9AA0ABF. The 

nameplate of this model is mentioned in Appendix A. RTU 4 is the same as system S4 

described in Section 3.2. 

As can be related from Section 1.2.2, the RTUs incorporate a VCRC with compressor, 

condenser, thermostatic expansion valve, and evaporator. Since each RTU has 2 

independent cooling circuits (two stages), each RTU has 2 sets of heat exchanger coils 

(condenser and evaporator), 2 compressors, and 2 TXVs. For each RTU, stage 1 meets 

the primary cooling demand, and stage 2 turns on when stage 1 can’t maintain the cooling 

demand alone. Table 15 shows the main equipment inside each RTU package. 

Table 15: List of main equipment inside each field RTU 

Equipment Total Set 
Quantity per Stage 

Stage 1 Stage 2 

Compressor 2 1 1 

Condenser coil 2 1 1 

Condenser fan 4 3 1 

TXV 2 1 1 

Evaporator coil 2 1 1 

Supply air fan/blower 1 NA NA 
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4.3 Detecting and Diagnosing Soft Faults 

Each of the 4 rooftop units is identical and of the same age (installed in 2004). Since 

those RTUs are relatively old, it is expected to be diagnosed with at least one of the 7 soft 

faults discussed in Section 1.2.3. During the field testing, circuit 1 of RTU4 was found to 

be running steadily, thus this circuit was considered for checking any potential soft faults. 

Three types of measuring equipment were used for detecting and diagnosing purposes, 

• Refrigerant pressure sensors: Fieldpiece JL3PR Job Link 

• Refrigerant temperature sensors: Fieldpiece JL3PC Job Link 

• Air temperature sensors: Fieldpiece JL3RH Job Link 

The above sensors are shown in Figure 12. In this figure, from left to right, the first two 

pieces are the air temperature sensors, the next two are the refrigerant pressure sensors, 

and the last two are the refrigerant temperature sensors. 
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Figure 12: One time measuring equipment used (JL3KH6 Job Link, n.d.) 

 

Faults were detected and diagnosed based on expert intuition and simple rules as 

discussed below. 

For CA and EA:  This can be checked in two ways.  

• Visual inspection of condenser coil, evaporator coil, filters: Condenser and 

evaporator coils were visually checked for any significant fouling. The facility has 

been cleaning their coils and replacing their filters regularly. So, no condenser and 

evaporator fouling were present. 

• Monitoring supply air fans, condenser fans, outside and return air dampers: No 

abnormalities were detected. 
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For LL: This can be checked by monitoring the liquid-line temperatures across the filter-

drier. To check that, two refrigerant temperature sensors (Fieldpiece JL3PC) were 

installed before and after the filter drier. For RTU4 circuit 1, after the compressor of this 

circuit started running, the collected temperatures on every 15 seconds are listed in Table 

16. 

Table 16: Temperature before and after the filter in the liquid-line 

Time 

Temperature 

Before Filter 

(°F) 

Temperature 

After Filter 

(°F) 

0:00 (start) 75 76.4 

0:15 88 84.2 

0:30 106.1 107.1 

0:45 106.9 109.5 

1:00 96.7 100.3 

1:15 93.2 95.8 

1:30 93.9 95 

1:45 95.7 96.8 

2:00 97 98.2 

2:15 97.7 98.6 

2:30 93.6 96 

Average 

(°F) 
94.89 96.17 

   

From Table 16, since the average temperature difference before and after the filter was 

found to be (96.17-94.89)°F = 1.28°F < 3°F, no LL fault is present as per the simple rules 

(Table 7) described in Chen and Braun (2001). 

For NC: NC fault for system equipped with TXV is typically marked by higher 

subcooling values (Chen and Braun, 2001). No NC faults were detected as evident from 

the lower subcooling values discussed while checking for UC fault later. 
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Another procedure for diagnosing NC fault was mentioned in Hu et al. (2021). The non-

condensable gases typically accumulate in the condenser when the RTU is off. Thus, 

when the RTU is off and reaches a steady state, the condenser pressure can be measured. 

The saturated temperature corresponding to this measured pressure can be obtained from 

the corresponding refrigerant (R22) properties. This saturated temperature can be 

compared with the measured condensing temperature. If the difference between these two 

temperatures is more than 1.7°C (3°F), the NC fault is diagnosed. In this study, this 

procedure was not followed since condensing temperature was unfortunately not 

measured, although the saturated condensing temperature (73.15°F) corresponding to the 

measured condensing pressure (142.9 psia) was known in RTU off condition.   

For OC and UC: As mentioned in Chen and Braun (2001), for system equipped with 

TXVs, OC and UC faults are marked by higher and lower subcooling values, 

respectively. In addition to that, for systems equipped with FXO, OC and UC faults are 

also marked by lower and higher suction superheating values, respectively. 

To measure the suction superheating and subcooling for RTU4 circuit 1, the methods 

listed in Appendix B can be followed. Appendix B shows that the suction superheating 

and subcooling values for the above system were calculated as 33.5°F and 2.2°F, 

respectively. Since these values significantly vary compared to the rated unfaulty system 

(discussed in Appendix B), RTU4 circuit 1 is diagnosed with severe UC fault.  

For VL: VL is typically marked by excessive compressor noise. As the compressor noise 

was found normal, no VL is assumed to be in this system. 
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4.4 Installing Data Loggers 

To detect and diagnose the above UC fault using the proposed machine-learning 

classifier, steady-state data needs to be fed into the proposed classifier and observe the 

predicting performance. The proposed machine-learning classifier in this study has 8 

measurable variables. Thus, the 8 measurements need to be logged at sufficient interval 

from the above faulty RTU. To do so, data loggers need to be installed. Following data 

loggers were used in this study (refer to Appendix C for pictures), 

a) Hobo UX120 4-channel (quantity: 2): For measuring TRA, TSA, Tamb, TLL, Tsuc, and 

Tdischg.  

b) PCE-PA 8000 power meter (quantity: 1): For measuring single phase voltage, three 

phase currents, to ultimately get Powercomp.  

c) Extech RHT10 humidity logger (quantity: 1): For measuring TRA and RHRA, to 

ultimately get WBRA. 

In addition, 6 temperature probes were used for the 6 measurements in (a) that connect 

into the two Hobo data loggers. The temperature probes for TRA, TSA, and Tamb, were 

positioned in the corresponding air lines, and temperature probes for TLL, Tsuc, and Tdischg, 

were appropriately insulated and attached with the corresponding refrigerant lines. 

    

4.5 Data Preprocessing    

Data preprocessing involves converting the raw data into features for the machine-

learning classifier. 
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Data from the above sensors of Hobo, PCA-PA 8000, and Extech RHT10 had sampling 

intervals of 1 s, 10 s, and 30 s, respectively. Thus, the data from Hobo and PCA-PA 8000 

needs to be filtered every 30 seconds to match the timing with Extech RHT10.  

To get the Powercomp from single phase voltage and three phase currents (mentioned in 

(b) in Section 4.4), first, for each phase, voltage and current are multiplied for getting the 

phase apparent power (in unit VA). Next, the three phase apparent powers were summed 

to get the total apparent power for the compressor. Since compressor current is measured 

in single phase (instead of three phase), the recorded total power factor showed a very 

low value (around 0.15). Thus, the total apparent power is multiplied with a constant 

power factor of 0.95 to get the value for Powercomp in Watt. 

To get WBRA from the logged TRA and RHRA, the thermodynamic properties of R-22 

refrigerant were utilized. For each set of TRA and RHRA, WBRA can be determined using 

the software called Engineering Equation Solver, EES (Klein, 2018) (refer to Appendix 

D). 

After getting the logged data in its corresponding featured version, the steady state cases 

need to be identified. In this study, the steady state cases were identified by considering 

steady Tsuc and Tdischg values.   

The data for the above 7 thermodynamic measurements were logged for around 5 days 

(from 06/14/2023 to 06/19/2023). However, due to the malfunctioning power meter, 

Powercomp was only calculated for about 9 hours on 06/14/2023. Thus, the steady state 

conditions for the 8 variables need to be considered from those 9 hours range. It was 

found that, from those 9 hours window, the time from 14:38 to 18:15 need to be 
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considered because all the 8 variables only exist in this time range. The logged data for 

the 8 variables in that time window are graphically shown in Appendix E.  

During the time between 14:38 to 18:15 on 06/14/2023, based on the steady-state 

operating conditions (marked by steady Tsuc and Tdischg) of circuit 1 of the faulty RTU, 24 

steady-state cases have been considered by taking a 5-minute average value for each of 

the 8 measurements. The time ranges and the averaged values for these 24 cases are 

shown in Table 22 located in Appendix E. 

After getting the steady state cases for the 8 variables, the data were appropriately 

normalized and standardized as per the methodologies mentioned in Section 3.3 and 

Section 3.4, respectively. After adding the categorical feature of refrigerant type with 

R22 value, the 24 converted steady-state cases (with 9 features) are now ready to be fed 

into the proposed machine-learning classifier and get the predictions. 
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Chapter 5. Results 

The classifier performance results will be discussed for different testing sets. Testing sets 

can be either simulated, experimental, or field measurement data. In the simulated testing 

set, as discussed in Section 3.8, FIRCOP values of 98% to 102% are considered to convert 

the faulty cases to unfaulty cases. However, FIRCOP will not be considered in lab and 

field data because it is impossible to know the fault impact on the performance of the 

VCRC in real life while applying the FDD method. First, feature selection will be 

performed by considering simulated S3 data since this dataset contains more operating 

conditions than S1 and S2. Then, the performance of C1, C2, and C3 with the simulated 

testing set will be provided. Next, the performance of C2 will be analyzed separately for 

simulated and lab testing sets. In addition to this, to validate the features in C2, the top 8 

features from backward elimination will be considered. 

 

5.1 Feature Selection Results 

Using the Filter approach, the 8 relatively uncorrelated features, while analyzing 

randomly selected 70% of the simulated S3 data, are TRA, WBRA, TSA, Tamb, TLL, Tsuc, 

Tdischg, and Powercomp (Appendix F for R code). As we can observe, the obtained features 

are consistent with the knowledge of correlations among the features of a VCRC. These 

uncorrelated features match what Chen et al. (2022, 2023) selected as their 10 manually 

selected features, except they eliminated WBRA and considered Tair,ce, Tsat,e, and Tsat,c. 

Also, the sensors associated with the above 8 features can be easily deployable to an RTU 

in the field for performing the field validation of the machine learning classifier. 
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As justified in Section 3.8, To validate the 8 uncorrelated features, this study will also 

consider a separate set of 8 features obtained using a Wrapper approach called backward 

elimination (with radial kernel-based SVM). Using the same data (70% of simulated S3 

data), the top 8 features obtained using this approach are TSA, PLL, TLL, Psuc, Tsuc, Tdischg, 

Tsat, e, and Powercomp (Appendix F for R code). Compared with the 10 features from SBS 

in Chen et al. (2022, 2023), TLL, Psuc, and Powercomp were absent, and they found WBRA, 

WBSA, Pdischg, Tair,ce and Tamb as additional features. 

As mentioned previously, to make a more generalizable classifier, refrigerant type was 

taken as an additional feature in all associated classifiers. It should also be noted that, 

before fitting any classifier, the values in the columns Powercomp and Tdischg were 

normalized with the unfaulty cases based on the method described in Section 3.4. 

  

5.2 Performance with Simulated Testing Set 

This section will compare the predicted performance of C1, C2, and C3 with the same 

unseen simulated testing set. 

First, before fitting the three classifiers, as described in the Methodology section, the 

subtle fault cases (FIRCOP = [98%, 102%]) in the simulated data were converted to ‘NoF’. 

Among many other factors, the performance of the classifiers will also depend on the 

distribution of the fault classes. The distribution of fault classes in the training data is 

shown in Figure 13. 
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Figure 13: Distribution of fault classes 

 

Figure 13 shows that most of the conversions occurred from LL, and the least occurred 

from CA classes, meaning, in the original simulated data, the LL class has the most subtle 

faults, and the CA class has the least subtle faults, among all the fault classes. Figure 13 

also shows that the converted training set is imbalanced with higher NoF cases. This is 

intentionally done because false alarms are costlier in practical AFDD applications than 

missed detections and misdiagnoses. Higher NoF cases will yield lower FAR at the 

expense of higher MDR, which we will notice in the following section. 
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Next, using the 5-fold CV discussed previously, the best-tuned parameters (C and 

gamma) for the three classifiers are shown in Table 17. Appendices J, K, and L can be 

observed for related R codes and outputs. 

Table 17: Best-tuned parameters for three classifiers 

Classifier C gamma 

C1 105 0.1 

C2 103 0.1 

C3 106 0.001 

 

Using the same simulated testing set, the prediction performance of the three classifiers 

can be expressed as three confusion matrices (CM) shown in Figure 14 (a, b, c). In these 

CMs, the predicted classes are shown along the rows and the actual classes are shown 

along the columns. Any CM can be quickly read by carefully observing the diagonal and 

off-diagonal elements. Higher numbers in the diagonal elements (TP values) and lower 

numbers in the off-diagonal elements indicate better performance from any CM. By 

looking at the lower TP values (diagonal elements) of the CM from C1 (Figure 14 (a)), it 

is evident that this classifier is the worst among all the three classifiers. 
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(a) CM from C1 (b) CM from C2 

  

(c) CM from C3 

 

Figure 14: Three confusion matrices using same simulated testing set 

 

In all the CMs, we could observe a higher number of missed detections (higher values in 

the NoF rows in the three CMs in Figure 14 (a,b,c)). This is expected since the classifiers 

were trained with a higher number of ‘NoF’ cases. 

Using the simulated testing set, the performance metrics in terms of FAR, MR, MDR, 

and accuracy for the three classifiers are shown in Figure 15. This figure shows that the 

FAR from classifier C2 has the lowest (best) value of 12.7% among all three classifiers. 
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The performance in terms of MDR is also best (5.6%) with C2. Clearly, the performance 

of C1 is the worst (higher frequency of occurrence rates and lower accuracy) among the 

three classifiers. Overall, the accuracy of C2 is about 91%, highest among all the three 

classifiers. 

 

Figure 15: Performance metrics of the three classifiers with simulated testing set 

 

Thus, the 9 relatively uncorrelated features are justified as the best-reduced set of features 

for developing the ML algorithm for AFDD applications in packaged rooftop units. The 

corresponding classifier (C2) for the confusion matrix shown in Figure 14 (b) is thus the 

final ML classifier that needs to be validated with lab and field-measured data. 
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Next, the breakdown of each of the above performance metrics with respect to FIRCOP, 

except FAR, will be shown to see how the classifiers perform at different bins of fault 

impact. Five fault impact bins were chosen (Yuill et al., 2014) based on different ranges 

of FIRCOP values: ‘>105%’, ‘95-105%’, ‘85-95%’, ‘75-85%’, and ‘<75%’. The total 

number of cases under the five FIRCOP ranges in the testing set are presented in Figure 16. 

This figure shows that most of the cases fall under the FIRCOP of 95-105%. As expected, 

all the ‘NoF’ cases fall under this range. It also shows that the number of severe fault 

cases (FIRCOP<85%) are really low as compared to the subtle fault cases. 

 

Figure 16: Breakdown of cases with respect to FIRCOP in simulated testing set 

The breakdown of MR, MDR, and accuracy with respect to different FIRCOP bins is 

shown in Figure 17. The breakdown of FAR with respect to FIRCOP will not be shown 
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because the unfaulty cases only occur for the FIRCOP range of ‘95-105%’, thus the false 

alarms only make sense for that range only. Figure 17 (a) shows the MR Vs. FIRCOP for 

the three classifiers. This shows that the MR’s for all the three classifiers are low (<5%) 

in all FIRCOP ranges. Classifier C1 performs worst in all the FIRCOP ranges (Figure 17 

(a,b,c)). Compared to MR, MDR shows higher rates for FIRCOP > 95%. This phenomenon 

is expected as the classifiers are trained with higher number of ‘NoF’ cases, so the 

classifiers are more prone to predicting ‘NoF’ for the faults that are subtle in nature (i.e., 

typically FIRCOP > 95%). In all the performance metrics, the classifier performance 

improves as we move from subtle fault cases to severe fault cases, meaning that the 

classifiers are more accurate in predicting severe faults than subtle faults. 
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(a) MR 
(b) MDR 

 
 

(c) Accuracy 

 

Figure 17: Breakdown of performance metrics in three classifiers 

From the above results, it appears that, for systems like S1, S2, and S3, the classifier C2 

can be treated as the final machine-learning classifier for AFDD in packaged rooftop 

units. This classifier (C2) needs to be validated using lab and field measurement data. 
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5.3 Performance with Lab Testing Set 

 

In this section, using an existing lab testing dataset (consisting of the same three systems 

used for training the classifiers), the predicting performance of the classifier C2 was 

evaluated as this classifier, when tested with the unseen simulated data, shows 

significantly better performance than C1, and almost equal performance as C3. Appendix 

M can be seen for related R codes and outputs.  

In the practical application of FDD, the impact of fault on the COP (FIRCOP) is unknown. 

So, unlike the simulated testing set, FIRCOP = [98%, 102%] will not be considered in the 

lab (and field) testing set to convert any fault class from faulty to unfaulty. Thus, it is 

expected that the classifier prediction for the lab testing set will have a higher MDR than 

that of the simulated testing set due to possible subtle fault cases (FIRCOP closer to 100%) 

in the lab testing set to be predicted as ‘NoF’. 

First, the confusion matrix while validating the final classifier (C2) with the lab testing 

set is shown in Figure 18. 
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Figure 18: Confusion matrix for classifier C2 with lab testing set 

 

Figure 18 shows, as expected since FIRCOP was not considered, there exist many missed 

detections (along the NoF row) when the final classifier (C2) is tested with the lab 

dataset. Most of the missed detections occur for EA cases (#34), followed by UC (#24), 

CA (#17), and so on. Figure 18 also shows that most of the false alarms (#8, along the 

NoF column) occur with VL. Also, most of the misdiagnoses occur for CA and OC cases 

(#7 CA cases misdiagnosed as NC, #7 OC cases misdiagnosed as VL). The CA and NC 

faults typically show similar fault signatures by increased condensing pressure and 

compressor power values. Thus, it’s possible that the 7 CA cases were misdiagnosed as 

NC due to these similar fault signatures. Similarly, OC and VL faults typically show 

similar fault signature by decreased superheating values, thus it’s possible that the 7 OC 

cases were misdiagnosed as VL due to this similar fault behavior.   
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The performance metrics in terms of FAR, MR, MDR, and accuracy, for the simulated 

and lab testing sets, are shown in Figure 19. As observed, when going from simulated to 

lab testing set with classifier C2, FAR almost stays the same (12.7% Vs. 12.5%). 

However, the MR increases from 1.7% to 8.5%, and MDR increases from 5.6% to 

34.2%. As a result, the accuracy dropped from about 91% to 64%. 

 

 

Figure 19: Performance metrics using simulated and lab testing sets 

 

The results from classifier C2 with lab data can be compared with the FDD protocols 

evaluated in Yuill et al. (2014b). This comparison will not necessarily be fair because the 

FDD protocols use different features than C2; they are expected to lose significant 

accuracy if their generalizability is tested with any testing set. Still, this comparison is 
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shown here since those FDD protocols were evaluated using the same lab testing set 

studied in this dissertation.  

From Yuill et al. (2014b), if the FIRCOP threshold of 98% is considered, the best FDD 

protocol in terms of FAR was FDD E (FAR ~ 15%). The range of FAR across the 6 FDD 

protocols were from 15% to 95%. Thus, comparing with those 6 FDD protocols, 

classifier C2 in this study shows slightly better performance in terms of FAR (with FAR 

= 12.5%). When comparing C2 with the 6 FDD protocols in terms of MR, C2 is again 

showing significantly better performance (8.5% with C2 Vs. ~25% with FDD F). 

Although FDD D was showing 0% MR, it was a detection only protocol, thus cannot be 

directly compared with classifier C2 which is for both fault detection and diagnosis. 

Lastly, when comparing C2’s performance in terms of MDR, the best comparable 

protocol was FDD B (34.2% with C2 Vs. ~10% with FDD B). However, although FDD 

B had lower MDR (~10%), it had a very high FAR of about 70% (at FIRCOP ~ 98%). 

Similarly, although FDD E had a comparable FAR of about 15%, it had a poor MDR 

value of about 65%. This indicates that the FDD protocols studied in Yuill et al. (2014b) 

did a poor job in finding a better trade-off between FAR and MDR. Although classifier 

C2 in this study has higher MDR, it has shown a significantly better trade-off between 

FAR and MDR, compared to the FDD protocols evaluated in Yuill et al. (2014b).  

Figures 18 and 19 show that higher MDR while tested with the lab data can be largely 

attributed to the 34 missed detections with EA class. Out of these 34 MD’s, 23 of them 

come from lab S3. As we can see, most of the MD’s came from lab S3. From Table 8, 

since lab S3 has 26 cases in lab data, that means, most of the lab S3 cases were miss-

detected. The reason most of the lab S3 cases were miss-detected can be explained in 
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terms of FIRCOP. In our simulated training data, mean FIRCOP (without percentage form) 

for the EA cases in the training S1, S2, and S3 data are 0.94, 0.95, and 0.95, respectively. 

Whereas, mean FIRCOP (without percentage form) for the EA faults for lab S1, S2, and S3 

data are 0.95, 1.03, and 0.91, respectively. As we can see, since mean FIRCOP in lab S3 

data indicate slightly severe EA fault cases than the mean FIRCOP of the training S3 data, 

it is possible that, those 23 severe lab S3 faulty cases were all predicted as ‘NoF’ because 

the classifier might be struggling to detect severe EA fault cases as it was trained with 

subtle EA fault cases. As a result, the classifier might be following its inherent bias of 

predicting those severe EA fault cases as ‘NoF’. If the classifier is trained with severe EA 

fault cases, then those severe lab S3 fault cases could be correctly predicted. 

Figure 20 shows how C2 performed at different fault intensities of the lab data. For better 

comparison, the bar plots in Figure 20 also show the previous performance of C2 with the 

simulated testing set. 
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(a) MR (b) MDR 

  

(c) Accuracy 

 

Figure 20: Breakdown of performance metrics using simulated and lab testing sets 

Figure 20 shows that the performance of C2 in all FIRCOP ranges deteriorates with the lab 

data than the simulated testing set. However, the bar plots for the lab data show almost 

similar patterns as with simulated data, i.e., the performance of C2 generally improves 

with increasing fault intensity. 
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The 6 FDD protocols studied in Yuill (2014) had varying predicting performance across 

different FIRCOP bins. The protocols did not show any predicting patterns unlike what C2 

showed having increasing accuracy with increasing fault severity.  

Overall, the drop in accuracy from the simulated to lab testing set is not as significant as 

what Chen et al. (2023) found when they tested their classifiers with systems different 

than the system their classifiers used for training. 

 

5.4 Analyzing the Inferior Performance of C2 with Lab Testing Set 

To know how generalizable the C2 is, it is necessary to analyze how it performs with 

each lab system (S1/S2/S3). In this section, for each of the three lab systems, the 

performance of C2 to different frequency of occurrence rates (FAR, MR, MDR, and 

accuracy) and individual class performance rates (recall, precision, and F1-score) will be 

analyzed to understand why the performance of C2 with lab data is much inferior to that 

of the simulated testing set. 

Figure 21 shows the classifier C2’s performance for the three lab systems regarding FAR, 

MR, MDR, and accuracy. The performance of C2 in terms of FAR and MR is best with 

lab S3, demonstrated by the lowest FAR and MR values among all lab systems. 

However, the performance of C2 in terms of MDR is worst with lab S3 (highest MDR 

value). It appears that the better performance of FAR with lab S3 is happening in expense 

of higher MDR value. Based on accuracy, if the performance of C2 is ordered from best 

to worst among the three lab systems, it is with S1, followed by S2 and S3. 
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Figure 21: Classifier performance with the three lab systems 

 

Table 18 shows the performance of C2 regarding individual class performance rates 

(recall, precision, and F1-score) for each lab system. In this Table, the cases that do not 

exist (e.g., absence of LL in lab S1) for a system show NA for all recalls. Also, if there 

are no predictions (no FP and TP) for a particular class, the precision value for that class 

is shown as NA. As a result, if any particular class has NA value in either of precision or 

recall, the F-1 score is shown as NA. 
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Table 18: Class performance rates of C2 with lab systems 

Fault 
Precision (%) Recall (%) F-1 score (%) 

S1 S2 S3 S1 S2 S3 S1 S2 S3 

CA 100 100 100 83 25 50 91 40 67 

EA 85 100 100 52 68 12 65 81 21 

LL NA NA 100 NA NA 65 NA NA 79 

NC 0 NA 0 NA NA NA NA NA NA 

NoF 55 48 36 75 88 95 63 62 52 

OC 100 100 NA 25 42 NA 40 59 NA 

UC 87 100 95 80 73 53 83 85 68 

VL 0 0 97 NA NA 91 NA NA 94 

 

The results from Table 18 can be explained by introducing boxplots for the FIRCOP values 

for all classes in each set of the training and lab systems. The box plot of FIRCOP values is 

important because it shows a particular class's distribution of fault intensities. Thus, 

looking at the boxplots, if a classifier is trained with subtle fault cases for a specific class, 

the classifier could struggle to identify that specific class if the testing set appears with 

severe fault cases for that particular class. The boxplots of FIRCOP (without percentage 

form) for the 6 classes in the training and three lab systems are shown in Figure 22. 
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(a) CA, EA, LL 

 

(b) OC, UC, VL 

 
Figure 22: The distribution of FIRCOP in training and lab testing sets 
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Table 19 shows the following results and discussions for the 8 fault classes by analyzing 

Table 18 and Figure 22. 

Table 19: Individual class performance with possible classifier improvement scopes 

Fault Performance Possible Classifier Improvement Scope 

CA 

From Table 18, C2 shows 

best performance with S1 

(F-1 score: 91%) and least 

performance with S2 (F-1 

score: 40%). 

 

Comparing FIRCOP values from Figure 22 (a), 

training S1, S2, and S3 have mostly severe 

fault cases, whereas the lab S1, S2, and S3 

have mostly subtle fault cases, having lab S2 

with more subtle CA cases. This could 

possibly lead C2 having the least performance 

with lab S2. Adding subtle CA fault cases in 

the training data might improve the predicting 

performance of CA faults. 

EA 

From Table 18, C2 is worst 

with S3 (F1-score = 21%) 

among all the three 

systems. Conversely, it 

performs best with S2 (F1-

score = 81%). 

Comparing FIRCOP values from Figure 22 (a), 

the EA cases in the training set have mostly 

subtle fault levels, whereas EA cases in lab S3 

have more severe fault levels than the other 

systems. Thus, the classifier might follow its 

inherent bias toward predicting NoF for the 

majority of the S3 data. This could be why 23 

out of 26 EA cases in S3 were miss-detected 

included in the 34 MD’s in Figure 18. Adding 

severe EA fault cases in the training data might 

improve the predicting performance of EA 

faults. 

LL 

The LL faults only exist for 

lab S3 (34 cases). Table 18 

shows an F1-score of 79%. 

Need more lab testing data of LL faults with 

absent systems to check the predicting 

performance of C2 with those systems.  

NC 

There are no cases for NC; 

thus, the performance with 

lab data with this fault is 

unknown. 

Need more lab testing data of NC faults to 

check the predicting performance of NC faults. 

NoF 

Table 18 shows that C2 is 

almost equally best with S1 

and S3, based on the F1-

score (63% and 62%). It 

shows comparatively bad 

performance with S3 (F-1 

score: 52%). 

The bad precision value (36%) using S3 

mainly occurred due to the 23 missed-

detections of EA faults. As mentioned earlier, 

adding severe EA fault cases in the training 

data might improve the predicting performance 

of EA faults, thus improving the precision of 

NoF class. 
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Fault Performance Possible Classifier Improvement Scope 

OC 

From Table 18, the C2 

shows the worst 

performance with lab S1 

(F-1 score: 40%). 

In Figure 22 (b), lab S1 and S2 mostly show 

subtle OC cases. However, training S1 and S2 

have mostly severe fault cases with S1’s 

FIRCOP on the higher side, and S2’s FIRCOP on 

the lower side. Adding more subtle OC cases 

could improve the predicting performance for 

OC. 

 

Need more lab testing data of OC faults with 

systems like lab S3 to check the predicting 

performance with such kind systems. 

UC 

Comparing C2’s 

performance with lab S3, 

Table 18 shows better F-1 

score with S1 and S2. 

In Figure 22 (b), the UC cases in lab S3 are all 

subtle fault cases, thus 16 out of 34 UC cases 

are missed-detected which can be acceptable as 

those are subtle UC fault cases. 

 

To lower the above missed detections, more 

subtle UC cases can be added to the training 

data.  

VL 

The VL faults only exist for 

lab S3 (33 cases). It has an 

F1-score of 94% (Table 

18). 

The FIRCOP in the training and testing sets 

closely matches with each other (Figure 22 

(b)), thus C2 is showing an acceptable 

predicting performance. 

 

Need more lab testing data of VL faults with 

lab systems like S1 and S2 to check the 

predicting performance with such systems.   

 

From the above analysis, it appears that, for any fault class, the classifier usually shows 

better predicting performance if the classifier is trained with severe fault cases than the 

subtle fault cases for that particular class. 

In addition to the above reasons, the difference in the distribution of the fault cases under 

different ranges of FIRCOP between the simulated and lab testing sets must have some 

impact on the degraded performance of C2 with the lab data. The distribution of fault 

cases under different FIRCOP ranges is shown in Table 20. 
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Table 20: Distribution of cases in testing data sets based on FIRCOP 

Data 
FIRCOP 

Total 
>105% 95-105% 85-95% 75-85% <75% 

Simulated 

# 

Cases 
26 451 227 77 92 873 

% 3% 52% 26% 9% 10% 100% 

Lab 

# 

Cases 
10 223 90 24 14 361 

% 3% 62% 25% 6% 4% 100% 

  

In Table 20, the distribution of data based on FIRCOP is not similar across the two testing 

sets. Both testing sets have most of the cases from FIRCOP of 95-105%. However, the 

percentage of cases of FIRCOP = [95, 105] is higher for the lab testing set (62%) than that 

of the simulated testing set (52%). Also, the percentage of cases of FIRCOP less than 85% 

in the simulated testing set is 19%, higher than that of the lab testing set (10%). From the 

classifier (C2) performance results, the developed ML classifier performs better in 

predicting severe faults than subtle ones. Thus, in the lab testing set, the increased 

percentage of subtle fault cases and the decreased percentage of severe fault cases than 

that of the simulated testing set can lead to some degraded performance while predicting 

the lab testing set.  

It is worth noting that the generalizability of the final classifier with an RTU different 

than S1, S2, and S3 is not tested using lab data but will be analyzed in the following 

section for a field-tested RTU different than S1, S2, and S3. 
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5.5 Performance with Field Testing Set 

In this section, the final classifier’s generalizability will be field tested using S4 (different 

from S1, S2, and S3 in cooling capacity) with refrigerant undercharge faults. Appendix N 

can be seen for related R codes and outputs.  Unlike the lab testing set, the FIRCOP values 

for those UC cases are unknown. However, the obtained UC faults are known to be 

severe fault cases (FIRCOP values much lower than 1) marked by very high superheating 

and low subcooling values. 

As mentioned in the methodology section, 24 steady-state UC cases were identified for a 

field-tested rooftop unit (S4). Figure 23 shows the prediction results in a confusion 

matrix. Since no other fault cases exist for this system, only the associated fault classes 

are shown in this figure. 

 

Figure 23: Confusion matrix with field testing set 
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As we can see, all of the UC cases were accurately predicted by classifier C2. The 

accuracy of the C2 from this field validation is thus found to be 100% with UC fault 

cases. As we can see, although our classifier was developed for RTUs with FXO, it can 

still detect UC faults with a system equipped with TXV, possibly because the RTU has a 

severe UC fault, leading its TXV to remain fully open to meet the cooling load, acting it 

like an FXO. This result could indicate that the classifier C2 could be treated as a 

generalizable classifier for predicting at least severe soft fault from any packaged rooftop 

unit with any of the three refrigerant types (R410a/R407c/R22). 
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Chapter 6. Conclusions and Future Study 

In this section, the summary, potential applications, and the future steps related to this 

research will be presented. 

 

6.1 Summary 

To detect and diagnose the common soft faults in packaged rooftop units, this study 

proposes a machine-learning classifier (SVM classifier) with a reduced set of 9 relatively 

uncorrelated features (8 quantitative features from the filter approach, 1 qualitative 

refrigerant type feature) using the simulated data library from Cheung and Braun (2013a, 

2013b). While analyzing the performance of this classifier with simulated, lab, and field-

testing sets, the classifier shows variable but acceptable level of performance. In addition, 

the proposed classifier could be a generalizable classifier for predicting typical soft faults 

from any RTU equipped with fixed orifice valves. Following conclusions are drawn from 

the whole analysis, 

(1) Feature selection using the filter approach (based on the correlation among 15 

features) provides the most practical reduced set of 8 measurable features than the 

wrapper approach (backward elimination, SVM-radial classifier). 

(2) While checking with the unseen simulated testing set, since the proposed 9 

uncorrelated featured classifier (C2) shows little or no performance degradation 

compared with the full-featured and backward eliminated classifiers, these 9 

features can be considered for fitting the final classifier for packaged rooftop 

units. 
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(3) The final classifier is validated using an existing lab testing set consisting of the 

same training systems and shows an FAR, MR, MDR, and accuracy of 12.5%, 

8.5%, 34.2%, and 64%, respectively. The deteriorated performance with the lab 

testing set can be primarily attributed to varying fault intensities for each training 

and lab testing set class. The higher MDR with the lab testing set can be attributed 

to having the trained data largely imbalanced with unfaulty cases. The 

unconverted subtle faulty cases in the lab data also contributed to higher MDR. 

(4) Higher missed detections from the final classifier can be acceptable since many of 

them were subtle fault cases. 

(5) The final classifier’s performance improves with the increasing fault intensity. 

This is true while tested with both simulated and lab testing sets. 

(6) For a particular fault class and refrigerant type, a classifier trained with severe 

fault cases performs better predicting that class than if the classifier is trained with 

subtle fault cases. 

(7) The developed ML classifier can be generalizable for the three refrigerant types 

(R410a, R407c, R22), accurately detecting most of the severe soft faults from 

packaged rooftop units. 

(8) The proposed classifier could be generalizable for diagnosing severe refrigerant 

undercharge fault for RTU equipped with TXVs. 
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6.2 Potential Applications with Corrective Actions 

The proposed classifier (C2) can be used in an IAC or P3 assessments to detect and 

diagnose the common soft faults from an RTU at a facility. It can also be used to know if 

the RTU is running efficiently. To predict the fault using C2 when the RTU is expected 

to be running cooling mode, it would require the following data logger types: 

• 3 dry-bulb temperatures  

• 1 wet-bulb temperature 

• 3 refrigerant temperatures, and  

• 1 power meter 

In a rooftop unit, the above data loggers need be installed in the following locations listed 

in Table 21. It should be noted that, for personal safety, the unit should be turned off 

before installing the data loggers. 

Table 21: Data loggers with their installing locations for Classifier C2 

Measuring 

Parameters 
Sensor Type Sensor Location 

TRA Dry-bulb temperature Return air duct 

WBRA Wet-bulb temperature Return air duct 

TSA Dry-bulb temperature Supply air duct 

Tamb Dry-bulb temperature Outside air 

TLL Refrigerant temperature 
Refrigerant line just after the 

condenser 

Tsuc Refrigerant temperature 
Refrigerant line just before the 

compressor 

Tdischg Refrigerant temperature 
Refrigerant line just after the 

compressor 

Powercomp Electric power Compressor power cable 
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After installing the above loggers, the rooftop unit can be turned on, and the data loggers 

will start collecting the 8 readings at some specific intervals. The data should be collected 

for an extended period to get all possible operating conditions. After collecting the data, 

the RTU should be turned off to detach the data loggers. The logged data then needs to be 

transferred to a computer, and the data needs to be pre-processed based on the 

methodologies described in Section 3.3, 3.4, and 4.5. The pre-processing also includes 

adding the specific refrigerant type used in the RTU. The pre-processed steady-state 

cases then need to be fed into the Classifier C2 in an R software package. Finally, the 

Classifier C2 will predict the cases as a specific fault type or unfaulty type. In other 

words, there will be a predicted fault type for each steady-state case (operating 

condition). 

The facility could do some preventive maintenance works to keep their RTU fault free. 

Certain routine maintenance tasks, such as cleaning the evaporator and condenser coils 

regularly, could prevent developing CA and EA faults.  

Faults should be detected and diagnosed as early as possible, using any automated tool 

like the proposed classifier discussed in this study. After diagnosing a specific fault type, 

the facility could do some corrective actions to eliminate that fault. For example, UC 

fault could be eliminated by adding appropriate refrigerant amount to the system.   
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6.3 Future Steps  

To improve the predicting performance of the proposed machine-learning classifier, the 

following future steps can be taken, 

(1) Adding subtle CA fault cases in the training data could improve the predicting 

performance with CA faults. 

(2) Adding severe EA fault cases in the training data could improve the predicting 

performance of EA faults. 

(3) The lab data has random and bias errors; however, the simulated data only has 

bias errors (Yuill et al., 2014). Thus, training data consisting of both simulated 

and lab data could introduce both error characteristics in the trained classifier, 

improving its overall predicting performance with a new testing set. 

(4) Testing the classifier with the remaining field faulty classes. 

(5) Field testing the classifier with more RTU operating conditions. 

In addition to the above, following studies can be performed to enrich the research 

knowledge in this area, 

(1) Check the generalizability of a new classifier by taking EER instead of refrigerant 

type and normalizing compressor power with the rated cooling capacity. The 

proposed classifier in this dissertation has refrigerant type as a categorical feature, 

and the classifier can only be used for a system that has one of the three 

refrigerants: R410a, R407c, or R22. Thus, by taking EER as a continuous 

variable, the new classifier can be used for systems with any refrigerant type. 
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Also, in this dissertation, the compressor power was normalized with the unfaulty 

compressor power (obtained using compressor performance data) based on a 

specific mean condensing and evaporating temperatures obtained from the 

unfaulty operating conditions of the training data. However, the training data did 

not contain all the practical operating conditions, and thus the calculated unfaulty 

compressor power might not be accurate. To get a more accurate normalization, 

the actual compressor power can be normalized with the rated cooling capacity, 

and this normalized compressor power can be used to fit the above new classifier. 

(2) Developing a classifier that can predict multiple simultaneous faults present in the 

system. 

(3) Developing a classifier that can predict fault type from a TXV-equipped RTU. 

(4) Quantifying the energy and cost savings if a specific fault type is eliminated from 

a system. For instance, if a system has refrigerant undercharge fault, to meet the 

cooling demand, the system could have an increased operating time, although the 

compressor power will be reduced. Since the energy consumption is mainly the 

multiplication of the compressor power and operating time, there could be energy 

saving if the above multiplication provides higher quantity than that of the 

unfaulty condition. This estimation could be possible by using an energy 

modeling software (e.g., EnergyPlus) that could simulate the undercharge fault 

and unfaulty cases. Similar studies could be possible for other faulty cases.   
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APPENDIX A: FIELD DATA- RTU NAMEPLATE 

  

 

Figure 24: RTU nameplate info 
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APPENDIX B: FIELD DATA- UC FAULT DETECTION 

 

1. Measuring Equipment Used 

Two Fieldpiece pressure sensors (Fieldpiece JL3PR Job Link) 

Two Fieldpiece temperature sensors (Fieldpiece JL3PC Job Link) 

2. Installation of the Measuring Equipment 

 

 

Figure 25: Installation of the one-time measuring equipment 

 

  



109 
 

APPENDIX B: FIELD DATA- UC FAULT DETECTION 

 

3. Calculating Superheating (SH) and Subcooling (SC) 

Measured parameters: 

Suction (evaporating) pressure, Psuc = 54.3 psig 

Discharge (condensing) pressure, Pdischg = 199.6 psig 

Suction temperature, Tsuc = 62.5°F 

Liquid line temperature, TLL = 98.8°F 

From R-22 refrigerant properties: 

Evaporating temperature (corresponding to Psuc), Tsat, e = 29°F 

Condensing temperature (corresponding to Pdischg), Tsat, c = 101°F  

Actual SH and SC calculation: 

𝑆𝐻𝑎𝑐𝑡𝑢𝑎𝑙 = Tsuc − Tsat,e 

= 62.5°𝐹 − 29°𝐹 

= 33.5°𝐹 

 

𝑆𝐶𝑎𝑐𝑡𝑢𝑎𝑙 = Tsat,c − 𝑇𝐿𝐿 

= 101°𝐹 − 98.8°𝐹 = 2.2°𝐹 
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APPENDIX B: FIELD DATA- UC FAULT DETECTION 

 

Rated superheating and subcooling temperatures for Copeland Scroll ZR16M3E-TWD 

compressor are 20°F and 15°F, respectively. 

The above calculations show that the actual SH is significantly higher than rated SH, and 

the actual SC is significantly lower than rated SC. Therefore, the field tested RTU is 

diagnosed with severe refrigerant undercharge (UC) fault. 
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APPENDIX C: FIELD DATA- LOGGING EQUIPMENT USED 

 

 

Figure 26: Data loggers used  

 

List of data loggers (shown in Figure 17), 

a) Hobo UX120 4-channel 

b) PCA-PA 8000 power meter  

c) Extech RHT10 humidity logger 
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APPENDIX D: FIELD DATA- GETTING WBRA USING EES 

 

EES software solves WBRA based on measured TRA and RHRA. In the following figures, 

WBRA, TRA, and RHRA are represented by wb, T, and R, respectively.  

 

Figure 27: Screenshot of Equation Window in EES 

 

Figure 28: Screenshot of parametric table showing computed WBRA 
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APPENDIX E: FIELD DATA- LOGGED MEASUREMENTS 

 

 

Figure 29: Temperatures in return, supply, and ambient air 

 

 

Figure 30: Temperatures in liquid line, suction, and discharge 
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APPENDIX E: FIELD DATA- LOGGED MEASUREMENTS 

 

Figure 31: Logged single phase voltage 

 

Figure 32: Logged three-phase current 
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APPENDIX E: FIELD DATA- LOGGED MEASUREMENTS 

 

 

Figure 33: Logged compressor power (considering a power factor of 0.95) 

  



116 
 

APPENDIX E: FIELD DATA- AVERAGED MEASUREMENTS 

Table 22: Averaged steady-state field data 

Date Time Range 
TRA 

(°F) 

WBRA 

(°F) 

TSA 

(°F) 

Tamb 

(°F) 

TLL 

(°F) 

Tsuc 

(°F) 

Tdischg 

(°F) 

Powercomp 

(W) 

2023-06-14 14:38:48 - 

2023-06-14 14:43:48 
75.65 56.94 54.23 91.78 105.55 55.81 182.48 8841.62 

2023-06-14 14:44:18 - 

2023-06-14 14:49:18 
75.8 57.17 54.58 93.32 103.93 56.16 180.19 8754.71 

2023-06-14 14:49:48 - 

2023-06-14 14:54:48 
76.99 57.29 54.84 96.14 103.4 56.46 178.57 8652.67 

2023-06-14 14:55:18 - 

2023-06-14 15:00:18 
76.81 57.43 55.04 93.22 105.98 55.95 180.87 8763.62 

2023-06-14 15:00:48 - 

2023-06-14 15:05:48 
76.2 57.48 55.21 92.11 106.95 56.16 182.71 8908.22 

2023-06-14 15:06:18 - 

2023-06-14 15:11:18 
76.09 57.45 55.26 92.86 105.88 56.25 181.48 8915.81 

2023-06-14 15:11:48 - 

2023-06-14 15:16:48 
75.57 57.37 55.18 92.58 104.24 55.96 179.47 8828.28 

2023-06-14 15:17:18 - 

2023-06-14 15:22:18 
75.98 57.42 55.29 92.47 106.49 55.96 181.67 8926.92 

2023-06-14 15:22:48 - 

2023-06-14 15:27:48 
76.14 57.46 55.43 92.82 105.64 56.12 181.08 8887.41 

2023-06-14 15:28:18 - 

2023-06-14 15:33:18 
76.14 57.35 55.37 93.12 104.06 56.04 178.87 8792.28 

2023-06-14 15:33:48 - 

2023-06-14 15:38:48 
77.12 57.4 55.46 95 105.12 56.03 179.25 8794.85 

2023-06-14 15:39:18 - 

2023-06-14 15:44:18 
75.79 57.38 55.42 92.26 104.93 56.15 180.3 8868.85 

2023-06-14 15:44:48 - 

2023-06-14 15:49:48 
76.07 57.3 55.39 93.49 105.14 55.53 179.19 8819.59 

2023-06-14 15:50:18 - 

2023-06-14 15:55:18 
75.69 57.36 55.41 92.73 105.29 56.29 180.06 8867.53 

2023-06-14 15:55:48 - 

2023-06-14 16:00:48 
75.92 57.28 55.32 92.95 103.92 56.2 177.95 8794.8 

2023-06-14 16:01:18 - 

2023-06-14 16:06:18 
75.39 57.27 55.28 91.36 105.51 55.72 180.08 8912.12 

2023-06-14 16:06:48 - 

2023-06-14 16:11:48 
75.59 57.17 55.32 90.7 106.43 55.75 181.32 8962.3 

2023-06-14 16:12:18 - 

2023-06-14 16:19:18 
75.3 57.2 55.22 91 104.79 55.71 179.85 8883.42 

2023-06-14 17:02:18 - 

2023-06-14 17:07:18 
75.74 57.91 56.15 89.2 106.63 55.46 179.77 8992.9 

2023-06-14 17:07:48 - 

2023-06-14 17:12:48 
75.36 57.46 55.71 89.53 105.06 55.19 179.13 8873.21 

2023-06-14 17:13:18 - 

2023-06-14 17:18:18 
75.28 57.19 55.49 89.17 106.17 55.54 179.95 8948.33 

2023-06-14 17:18:48 - 

2023-06-14 17:23:48 
74.86 57.02 55.27 88.81 105.55 55.13 179.37 8909.43 

2023-06-14 17:24:18 - 

2023-06-14 17:29:18 
75.25 57.02 55.27 89.75 105.77 55.02 179.86 8921.66 

2023-06-14 18:13:18 - 

2023-06-14 18:15:18 
75.74 58.24 56.48 88.62 104.7 54.75 175.9 8894.98 
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APPENDIX F: FEATURE SELECTION 

 

R code using filter approach: 

#‘RTU7’ is a data frame containing all the simulated RTU7 data 

# Read the csv file containing RTU7 (simulated S3) data 

RTU7 <- read.csv("RTU7.csv") 

set.seed(502) 

shuffled_RTU7 = RTU7 [sample(1:nrow(RTU7)), ] 

# Considering 70% of the data as training data and find relevant features for this 70% 

data 

library(caret) 

set.seed(101) 

rowIndex <- createDataPartition(shuffled_RTU7$Fault, p=0.7, list = F) 

train <- shuffled_RTU7 [rowIndex, ]  #this is the data from which the filter approach will 

be applied. 

# Finding out the features that need to be removed based on correlation 

# ensure the results are repeatable 

set.seed(7) 

# load the library 
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APPENDIX F: FEATURE SELECTION 

library(mlbench) 

library(caret) 

# calculate correlation matrix considering the 15 features 

correlationMatrix3 <- cor(train[,1:15]) 

# summarize the correlation matrix 

print(correlationMatrix3) 

# find attributes that are highly corrected 

highlyCorrelated8 <- findCorrelation(correlationMatrix3, cutoff=0.9) 

highlyCorrelated9 <- findCorrelation(correlationMatrix3, cutoff=0.9, names = TRUE) 

# print indexes of highly correlated attributes with both col index and col name 

print(highlyCorrelated8) 

print(highlyCorrelated9) 
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APPENDIX F: FEATURE SELECTION 

 

Output of the above R code: 

 

 

Figure 34: Outputs of filter feature selection 

Therefore, using the filter approach, the features that need to be eliminated are, 

"T_sat_c",  "P_LL", "P_dischg", "T_air_ce", "P_suc", "T_sat_e", and "WB_SA" 
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APPENDIX F: FEATURE SELECTION 

 

R code using wrapper approach: 

set.seed(767) 

subsets.svm2 <- c(1:15) 

rfeCtrl.svm2 <-rfeControl (functions=caretFuncs,method="cv", number=10, 

verbose=TRUE)  

rfProfile.svm2 <- rfe(x=train[,-16], y=train$Fault, sizes = subsets.svm2, 

rfeControl=rfeCtrl.svm2, method="svmRadial") 

rfProfile.svm2 

rfProfile.svm2$optVariables 
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APPENDIX F: FEATURE SELECTION 

 

Output of the above R code: 

 

Figure 35: Outputs of backward feature selection 

 

Therefore, the top 8 features using backward elimination are, 

"T_SA" , "T_suc", "T_dischg", "Power_comp", "T_sat_e", "P_suc", "T_LL", and "P_LL" 
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APPENDIX G: SAMPLE SIMULATED DATA 

 

 

 

Figure 36: Sample simulated data 
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APPENDIX H: SAMPLE LAB DATA 

 

 

Figure 37: Sample lab data 
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APPENDIX I: COMPRESSOR PERFORMANCE DATA 

 

Figure 38: Compressor data for system S11 

 
1 Search by compressor model, ZP32K3E-PFV: https://webapps.emerson.com/online-product-information/ 
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APPENDIX I: COMPRESSOR PERFORMANCE DATA 

 

Figure 39: Compressor data for system S22 

 
2 Search by compressor model, ZRD61KCE-PFV: https://webapps.emerson.com/online-product-

information/ 
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APPENDIX I: COMPRESSOR PERFORMANCE DATA 

 

Figure 40: Compressor data for system S33 

  

 
3 Search by compressor model, CRH3-0275-TFD: https://webapps.emerson.com/online-product-

information/ 
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APPENDIX I: COMPRESSOR PERFORMANCE DATA 

 

Figure 41: Compressor data for system S44 

 
4 Search by compressor model, ZR16M3E-TWD: https://webapps.emerson.com/online-product-

information/ 
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APPENDIX J: CLASSIFIER C1 (BACKWARD FEATURED) 

 

R code: 

#function that returns FAR, MR, MDR, and accuracy 

perf.metrics1 <- function(predicted, actual) { 

library(caret) 

conf.mat1=confusionMatrix(predicted, actual) 

#find FAR 

recall_NoF=conf.mat1$byClass[45] 

FAR=1-recall_NoF 

#find MR 

class.number=5 

true.loc = (class.number-1)*8+class.number 

TP.NoF = conf.mat1$table[true.loc] 

total.actual=sum(conf.mat1$table) 

presence=total.actual-sum(actual=='NoF')-sum(predicted=='NoF')+TP.NoF 

presence1=total.actual-sum(actual=='NoF') 

trueDiag.woNoF=sum(diag(conf.mat1$table))-TP.NoF 
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APPENDIX J: CLASSIFIER C1 (BACKWARD FEATURED) 

Misd=presence-trueDiag.woNoF 

MR=Misd/presence 

#find MDR 

MD=sum(predicted=='NoF')-TP.NoF 

MDR=MD/presence1 

#find accuracy 

sum.TP=sum(diag(conf.mat1$table)) 

accuracy=sum.TP/total.actual 

#find balanced accuracy 

bal_acc=mean(conf.mat1$byClass[41:48], na.rm=TRUE) 

perf=data.frame(FAR=FAR, MR=MR, MDR=MDR, accuracy=accuracy, 

bal_acc=bal_acc) 

return(perf) 

}  

# function for fitting C1 and testing with simulated data 

fun95 <- function(lower, upper, data){    

  for (i in 1:nrow(data)){ 
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APPENDIX J: CLASSIFIER C1 (BACKWARD FEATURED)     

if (data[i, 20]>lower & data[i, 20]<upper){       

data[i, 19]="NoF" 

    } 

  } 

# Load the required library 

library(dplyr) 

# Define the specific numbers for each category 

specific_numbers <- data.frame (Refrigerant = c("R410a", "R407c", "R22"), power_NoF 

= c(2720.35, 5639.18, 3106.93), T_dischg_NoF = c(178.92, 193.26, 204.10)) 

# Merge the specific_numbers data frame with my data based on the category column 

data <- left_join (data, specific_numbers, by = "Refrigerant")  #after this line, 

power_NoF and T_dischg_NoF columns will be created 

# Create the new column by dividing the power column by the corresponding divisor 

data <- data %>% 

  mutate(FIR_power = Power_comp / power_NoF) #after this line, FIR_power column 

will be created. This is the normalized power. 

data <- data %>% 
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APPENDIX J: CLASSIFIER C1 (BACKWARD FEATURED) 

mutate(FIR_T_dischg = T_dischg / T_dischg_NoF) #after this line, FIR_T_dischg 

column will be created 

#convert Refrigerant column into factor   #seems unnecessary 

data$Refrigerant <- factor (data$Refrigerant, levels = c("R410a", "R407c", "R22")) 

library(caret) 

set.seed(101) 

data.shuffle= data[sample(1:nrow(data)), ] 

set.seed(101) 

rowIndex <- createDataPartition (data.shuffle$Fault, p=0.8, list = F) 

train.sim <- data.shuffle[rowIndex, ] 

test.sim <- data.shuffle[-rowIndex, ] 

#take 16 features and 1 response variable (Fault) 

train.sim.15=train.sim[,c(1:10,24,12,13,14,23,18,19)] 

test.sim.15=test.sim[,c(1:10,24,12,13,14,23,18,19)] 

#take 9 backward features (including Refrigerant type as feature) 1 response variable 

(Fault) 

train.sim.8=train.sim.15[,c(3,6,7,8,9,11,13,15,16,17)] 

test.sim.8=test.sim.15[,c(3,6,7,8,9,11,13,15,16,17)] 
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APPENDIX J: CLASSIFIER C1 (BACKWARD FEATURED) 

#preprocess now 

library(caret) 

preProc10  <- preprocess (train.sim.8, method = c("center", "scale")) #preprocessing will 

be done based on mean & sd from train.sim.8 

#Apply the processing to the train and test data 

train.sim.8.scaled <- predict(preProc10, train.sim.8) 

test.sim.8.scaled <- predict(preProc10, test.sim.8) 

#tuning & fitting model 

library(caret) 

grid <-  expand.grid(C=c(1, 10, 10^2,10^3,10^4,10^5,10^6,10^7,10^8,10^9), 

sigma=c(1e-07,1e-06,1e-05,1e-04,1e-03,1e-02,1e-01,1))  #grid search 

set.seed(1234) 

svmrad.caret <- train(Fault ~ ., data = train.sim.8.scaled, method = "svmRadial", 

tuneGrid = grid, trControl = trainControl(method = "cv", number = 5, verboseIter = 

TRUE)) 

best.para=svmrad.caret$bestTune 

#fitting model using e1071 package 

library(e1071) 
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APPENDIX J: CLASSIFIER C1 (BACKWARD FEATURED) 

model = svm(Fault~.,data=train.sim.8.scaled, gamma=svmrad.caret$bestTune[1], 

cost=svmrad.caret$bestTune[2]) 

#predict using train data 

pred1 = predict(model, newdata = test.sim.8.scaled[,-10])   

#confusion matrix 

conf.matx1 = table(pred1, test.sim.8.scaled[,10]) #whole lab data 

acc1 = 1-mean(pred1 !=test.sim.8.scaled[,10])  #whole lab data 

metrics=perf.metrics1(pred1, test.sim.8.scaled[,10]) 

newList <- list("train.sim" = train.sim, "test.sim" = test.sim, "data.shuffle" = data.shuffle, 

"train.sim.15" = train.sim.15, "test.sim.15" = test.sim.15, "preProc"=preProc10, 

"train.sim.8.scaled" = train.sim.8.scaled, "test.sim.8.scaled" = test.sim.8.scaled, 

"best.para"=best.para, "model"= model,"pred" = pred1, 

"con_mat_whole"=conf.matx1,"acc_whole"=acc1, "metrics"=metrics) 

return(newList) 

} 

#Inputting FIR_COP thresholds and raw simulated data (‘sim.data.347.1’) 

mru116_0.98_1.02_wo_smote= fun95(0.98, 1.02, sim.data.347.1) 

mru116_0.98_1.02_wo_smote$con_mat_whole 
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APPENDIX J: CLASSIFIER C1 (BACKWARD FEATURED) 

mru116_0.98_1.02_wo_smote$best.para 

mru116_0.98_1.02_wo_smote$metrics 

 

Outputs from the above R code: 

 

Figure 42: Outputs from classifier C1 
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APPENDIX K: CLASSIFIER C2 (UNCORRELATED FEATURED) 

R code: 

# function for fitting C2 and testing with simulated data 

fun83 <- function (lower, upper, data){    

  for (i in 1:nrow(data)){ 

    if (data[i, 20]>lower & data[i, 20]<upper){ 

data[i, 19]="NoF" 

    } 

  } 

# Load the required library 

library(dplyr) 

# Define the specific numbers for each category 

specific_numbers <- data.frame (Refrigerant = c("R410a", "R407c", "R22"), power_NoF 

= c(2720.35, 5639.18, 3106.93), T_dischg_NoF = c(178.92, 193.26, 204.10)) 

# Merge the specific_numbers data frame with my data based on the category column 

data <- left_join (data, specific_numbers, by = "Refrigerant")  #after this line, 

power_NoF and T_dischg_NoF columns will be created 

# Create the new column by dividing the power column by the corresponding divisor 

data <- data %>% 
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APPENDIX K: CLASSIFIER C2 (UNCORRELATED FEATURED) 

   

mutate(FIR_power = Power_comp / power_NoF) #after this line, FIR_power column will 

be created. This is the normalized power. 

data <- data %>% 

  mutate(FIR_T_dischg = T_dischg / T_dischg_NoF) #after this line, FIR_T_dischg 

column will be created 

#convert Refrigerant column into factor   #seems unnecessary 

data$Refrigerant <- factor (data$Refrigerant, levels = c("R410a", "R407c", "R22")) 

library(caret) 

set.seed(101) 

data.shuffle= data[sample(1:nrow(data)), ] 

set.seed(101) 

rowIndex <- createDataPartition (data.shuffle$Fault, p=0.8, list = F) 

train.sim <- data.shuffle[rowIndex, ] 

test.sim <- data.shuffle[-rowIndex, ] 

#take 16 features and 1 response variable (Fault) 

train.sim.15=train.sim[,c(1:10,24,12,13,14,23,18,19)] 

test.sim.15=test.sim[,c(1:10,24,12,13,14,23,18,19)] 
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APPENDIX K: CLASSIFIER C2 (UNCORRELATED FEATURED) 

#take 9 uncorrelated features (including Refrigerant type as feature) and 1 response 

variable (Fault) 

train.sim.8=train.sim.15[,c(1,2,3,5,7,9,11,15,16,17)] 

test.sim.8=test.sim.15[,c(1,2,3,5,7,9,11,15,16,17)] 

#preprocess now 

library(caret) 

preProc10  <- preprocess (train.sim.8, method = c("center", "scale")) #preprocessing will 

be done based on mean & sd from train.sim.8 

#Apply the processing to the train and test data 

train.sim.8.scaled <- predict(preProc10, train.sim.8) 

test.sim.8.scaled <- predict(preProc10, test.sim.8) 

#tuning & fitting model 

library(caret) 

grid <-  expand.grid(C=c(1, 10, 10^2,10^3,10^4,10^5,10^6,10^7,10^8,10^9), 

sigma=c(1e-07,1e-06,1e-05,1e-04,1e-03,1e-02,1e-01,1))  #grid search 

set.seed(1234) 
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APPENDIX K: CLASSIFIER C2 (UNCORRELATED FEATURED) 

svmrad.caret <- train(Fault ~ ., data = train.sim.8.scaled, method = "svmRadial", 

tuneGrid = grid, trControl = trainControl(method = "cv", number = 5, verboseIter = 

TRUE)) 

best.para=svmrad.caret$bestTune 

#fitting model using e1071 package 

library(e1071) 

model = svm(Fault~.,data=train.sim.8.scaled, gamma=svmrad.caret$bestTune[1], 

cost=svmrad.caret$bestTune[2]) 

#predict using train data 

pred1 = predict(model, newdata = test.sim.8.scaled[,-10])   

#confusion matrix 

conf.matx1 = table(pred1, test.sim.8.scaled[,10]) #whole lab data 

acc1 = 1-mean(pred1 !=test.sim.8.scaled[,10])  #whole lab data 

metrics=perf.metrics1(pred1, test.sim.8.scaled[,10]) 

newList <- list("train.sim" = train.sim, "test.sim" = test.sim, "data.shuffle" = data.shuffle, 

"train.sim.15" = train.sim.15, "test.sim.15" = test.sim.15, "preProc"=preProc10, 

"train.sim.8.scaled" = train.sim.8.scaled, "test.sim.8.scaled" = test.sim.8.scaled, 

"best.para"=best.para, "model"= model,"pred" = pred1, 

"con_mat_whole"=conf.matx1,"acc_whole"=acc1, "metrics"=metrics) 
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APPENDIX K: CLASSIFIER C2 (UNCORRELATED FEATURED) 

return(newList) 

} 

#Inputting FIR_COP thresholds and raw simulated data (‘sim.data.347.1’) 

mru104_0.98_1.02_wo_smote= fun83(0.98, 1.02, sim.data.347.1) 

mru104_0.98_1.02_wo_smote$con_mat_whole 

mru104_0.98_1.02_wo_smote$best.para 

mru104_0.98_1.02_wo_smote$metrics 

Outputs from the above R code: 

 

Figure 43: Outputs from classifier C2 

  



140 
 

APPENDIX L: CLASSIFIER C3 (FULL FEATURED) 

 

R code: 

# function for fitting C3 and testing with simulated data 

fun94 <- function (lower, upper, data){    

  for (i in 1:nrow(data)){ 

    if (data[i, 20]>lower & data[i, 20]<upper){ 

data[i, 19]="NoF" 

    } 

  } 

# Load the required library 

library(dplyr) 

# Define the specific numbers for each category 

specific_numbers <- data.frame (Refrigerant = c("R410a", "R407c", "R22"), power_NoF 

= c(2720.35, 5639.18, 3106.93), T_dischg_NoF = c(178.92, 193.26, 204.10)) 

# Merge the specific_numbers data frame with my data based on the category column 

data <- left_join (data, specific_numbers, by = "Refrigerant")  #after this line, 

power_NoF and T_dischg_NoF columns will be created 

# Create the new column by dividing the power column by the corresponding divisor 
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APPENDIX L: CLASSIFIER C3 (FULL FEATURED) 

data <- data %>%   

mutate(FIR_power = Power_comp / power_NoF) #after this line, FIR_power column will 

be created. This is the normalized power. 

data <- data %>% 

  mutate(FIR_T_dischg = T_dischg / T_dischg_NoF) #after this line, FIR_T_dischg 

column will be created 

#convert Refrigerant column into factor   #seems unnecessary 

data$Refrigerant <- factor (data$Refrigerant, levels = c("R410a", "R407c", "R22")) 

library(caret) 

set.seed(101) 

data.shuffle= data[sample(1:nrow(data)), ] 

set.seed(101) 

rowIndex <- createDataPartition (data.shuffle$Fault, p=0.8, list = F) 

train.sim <- data.shuffle[rowIndex, ] 

test.sim <- data.shuffle[-rowIndex, ] 

#take 16 features and 1 response variable (Fault) 

train.sim.15=train.sim[,c(1:10,24,12,13,14,23,18,19)] 

test.sim.15=test.sim[,c(1:10,24,12,13,14,23,18,19)] 
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APPENDIX L: CLASSIFIER C3 (FULL FEATURED) 

#preprocess now 

library(caret) 

preProc10  <- preprocess (train.sim.15, method = c("center", "scale")) #preprocessing 

will be done based on mean & sd from train.sim.15 

#Apply the processing to the train and test data 

train.sim.15.scaled <- predict(preProc10, train.sim.15) 

test.sim.15.scaled <- predict(preProc10, test.sim.15) 

#tuning & fitting model 

library(caret) 

grid <-  expand.grid(C=c(1, 10, 10^2,10^3,10^4,10^5,10^6,10^7,10^8,10^9), 

sigma=c(1e-07,1e-06,1e-05,1e-04,1e-03,1e-02,1e-01,1))  #grid search 

set.seed(1234) 

svmrad.caret <- train(Fault ~ ., data = train.sim.15.scaled, method = "svmRadial", 

tuneGrid = grid, trControl = trainControl(method = "cv", number = 5, verboseIter = 

TRUE)) 

best.para=svmrad.caret$bestTune 

#fitting model using e1071 package 

library(e1071) 
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APPENDIX L: CLASSIFIER C3 (FULL FEATURED) 

model = svm(Fault~.,data=train.sim.15.scaled, gamma=svmrad.caret$bestTune[1], 

cost=svmrad.caret$bestTune[2]) 

#predict using train data 

pred1 = predict(model, newdata = test.sim.15.scaled[,-17])   

#confusion matrix 

conf.matx1 = table(pred1, test.sim.15.scaled[,17]) #whole lab data 

acc1 = 1-mean(pred1 !=test.sim.15.scaled[,17])  #whole lab data 

metrics=perf.metrics1(pred1, test.sim.15.scaled[,17]) 

newList <- list("train.sim" = train.sim, "test.sim" = test.sim, "data.shuffle" = data.shuffle, 

"train.sim.15" = train.sim.15, "test.sim.15" = test.sim.15, "preProc"=preProc10, 

"train.sim.15.scaled" = train.sim.15.scaled, "test.sim.15.scaled" = test.sim.15.scaled, 

"best.para"=best.para, "model"= model,"pred" = pred1, 

"con_mat_whole"=conf.matx1,"acc_whole"=acc1, "metrics"=metrics) 

return(newList) 

} 

#Inputting FIR_COP thresholds and raw simulated data (‘sim.data.347.1’) 

mru115_0.98_1.02_wo_smote= fun94(0.98, 1.02, sim.data.347.1) 

mru115_0.98_1.02_wo_smote$con_mat_whole 
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APPENDIX L: CLASSIFIER C3 (FULL FEATURED) 

mru115_0.98_1.02_wo_smote$best.para 

mru115_0.98_1.02_wo_smote$metrics 

Outputs from the above R code: 

 

 

Figure 44: Outputs from classifier C3 
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APPENDIX M: TESTING C2 WITH LAB DATA 

 

R code: 

# Create a function to preprocess ‘data2’ and predict from C2 

fun84 <- function(data2, preproc, model){    

specific_numbers <- data.frame(Refrigerant = c("R410a", "R407c", "R22"), power_NoF 

= c(2720.35, 5639.18, 3106.93), T_dischg_NoF = c(178.92, 193.26, 204.10)) 

library(dplyr) 

# Merge the specific_numbers dataframe with your_data 

data2 <- left_join(data2, specific_numbers, by = "Refrigerant")  #after this line, 

power_NoF and T_dischg_NoF columns will be created 

# Create the new column by dividing the power column by the corresponding divisor 

data2 <- data2 %>% 

mutate(FIR_power = Power_comp / power_NoF) #after this line, FIR_power column will 

be created 

data2 <- data2 %>% 

  mutate(FIR_T_dischg = T_dischg / T_dischg_NoF) #after this line, FIR_T_dischg 

column will be created 

#convert Refrigerant column into factor #seems unnecessary 



146 
 

APPENDIX M: TESTING C2 WITH LAB DATA 

data2$Refrigerant <- factor(data2$Refrigerant, levels = c("R410a", "R407c", "R22")) 

library(caret)     

data.lab.8 <- data2[,c(1,2,3,5,7,9,24,23,18,19)] 

data.lab.8$Fault <- factor(data.lab.8$Fault, levels = c("CA", "EA", 

"LL","NC","NoF","OC","UC","VL")) 

data.lab.8.scaled <- predict(preproc, data.lab.8) 

library(e1071) 

#predict the lab data 

pred1 = predict(model, newdata = data.lab.8.scaled[,-10])  #predict whole lab data 

#confusion matrix 

conf.matx1 = table(pred1, data.lab.8.scaled[,10]) #whole lab data 

acc1 = 1-mean(pred1 !=data.lab.8.scaled[,10])  #whole lab data 

metrics=perf.metrics1(pred1, data.lab.8.scaled[,10]) 

newList <- list("data2" = data2,"lab.8" = data.lab.8, "lab.8.scaled" = data.lab.8.scaled, 

"model"= model,"pred" = pred1, "con_mat_whole"=conf.matx1,"acc_whole"=acc1, 

"metrics"=metrics) 

  return(newList) 

} 
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APPENDIX M: TESTING C2 WITH LAB DATA 

#Inputting raw lab data (‘dat.lab.updated2’), preprocessing info, and model C2 to ‘fun84’ 

mru105_0.98_1.02_wo_smote=fun84(dat.lab.updated2, 

mru104_0.98_1.02_wo_smote$preProc, mru104_0.98_1.02_wo_smote$model) 

mru105_0.98_1.02_wo_smote$con_mat_whole 

mru105_0.98_1.02_wo_smote$metrics 

Outputs from the above R code: 

 

Figure 45: Outputs of C2 while tested with lab data 
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APPENDIX N: TESTING C2 WITH FIELD DATA 

 

R code: 

# Create a function to preprocess ‘data2’ and predict from C2 

fun85 <- function(data2, preproc, model){ 

data2$Refrigerant="R22" #total 11 columns 

data2 = data2[,c(1:9,11,10)] #rearrange columns 

library(dplyr) 

# Create the new column by dividing the power column by the corresponding divisor 

data2 <- data2 %>% 

  mutate(FIR_power = Power_comp / 11642.65) #after this line, FIR_power (12th col) 

column will be created 

data2 <- data2 %>% 

  mutate(FIR_T_dischg = T_dischg / 204.10) #after this line, FIR_T_dischg (13th col) 

column will be created 

data2 <- data2[,c(2:7,13,12,10,11)] #rearrange those 10 columns     

data.lab.8 <- data2 

#convert Refrigerant column into factor 
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APPENDIX N: TESTING C2 WITH FIELD DATA 

data.lab.8$Refrigerant <- factor(data.lab.8$Refrigerant, levels = c("R410a", "R407c", 

"R22")) 

data.lab.8$Fault <- factor(data.lab.8$Fault, levels = c("CA", "EA", 

"LL","NC","NoF","OC","UC","VL")) 

data.lab.8.scaled <- predict(preproc, data.lab.8) 

# predict using lab data 

pred1 = predict(model, newdata = data.lab.8.scaled[,-10])  

#confusion matrix 

conf.matx1 = table(pred1, data.lab.8.scaled[,10]) #whole lab data 

acc1 = 1-mean(pred1 !=data.lab.8.scaled[,10])  #whole lab data 

metrics=perf.metrics1(pred1, data.lab.8.scaled[,10]) 

newList <- list("data2" = data2, "lab.8" = data.lab.8, "lab.8.scaled" = data.lab.8.scaled, 

"model"= model, "pred" 

=pred1,"con_mat_whole"=conf.matx1,"acc_whole"=acc1,"metrics"=metrics) 

return(newList) 

} 

#Inputting field data (‘data_field_UC_5min_SS’), preprocessing info, and model C2 to 

‘fun84’ 
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APPENDIX N: TESTING C2 WITH FIELD DATA 

mru106_0.98_1.02_wo_smote=fun85(data_field_UC_5min_SS, 

mru104_0.98_1.02_wo_smote$preProc, mru104_0.98_1.02_wo_smote$model) 

mru106_0.98_1.02_wo_smote$con_mat_whole 

mru106_0.98_1.02_wo_smote$metrics 

Outputs from the above R code: 

 

Figure 46: Outputs of C2 while tested with field data 
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