SIMULATION OF TAX REVENUES FROM INDIVIDUALS RECEIVING ADVANCED COLLEGE DEGREES

Dejing Kong

University of Nebraska - Lincoln, nancykong315@hotmail.com

Follow this and additional works at: https://digitalcommons.unl.edu/imsediss

Part of the Finance and Financial Management Commons, Industrial Engineering Commons, and the Other Education Commons

Kong, Dejing, "SIMULATION OF TAX REVENUES FROM INDIVIDUALS RECEIVING ADVANCED COLLEGE DEGREES" (2012). Industrial and Management Systems Engineering -- Dissertations and Student Research. 34. https://digitalcommons.unl.edu/imsediss/34

This Article is brought to you for free and open access by the Industrial and Management Systems Engineering at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Industrial and Management Systems Engineering -- Dissertations and Student Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
SIMULATION OF TAX REVENUES FROM INDIVIDUALS RECEIVING ADVANCED COLLEGE DEGREES

by

Dejing Kong

A DISSERTATION

Presented to the Faculty of

The Graduate College at University of Nebraska

In Partial Fulfillment of Requirements

For the Degree of Doctor of Philosophy

Major: Engineering

Under the Supervision of Professor Michael Riley

Lincoln, Nebraska

August, 2012
State governments always want graduates who received higher education in universities and colleges to stimulate the economic growth of the state. Many state universities want to contribute more to the state’s economy as well, and state universities frequently have relevant economic development activities and offices. The state universities normally receive annual budgeted financial support and occasional special funding from the state government while the state expects contributions to the economic growth and an educated citizen in return. In this research, the economic impact of a graduate degree funded by the state government was considered in the state of Nebraska.

Simulation models were utilized to attain the goal of the research. In the simulation models, the salaries of graduate engineers and the money spent by employed graduate engineers were considered, and the taxes paid by the graduate employees were used as the basic indicator to assess the direct economic impacts
received by the state government. The computer simulation model was validated and verified. The simulation model utilized historical spending data patterns and calculated the Nebraska state and federal income taxes directly paid by graduates and indirectly paid as a result of their spending, and it was economically justified to support the advanced education. The state government can regain their financial support of the university via state taxes paid by the graduates alone. Using spending simulation, it was determined that it was not beneficial for the government to reduce the income tax rates in hope of generating secondary spending to recover the tax losses by a stimulation of spending. Even if the sales taxes obtained by the government were increased, the amount cannot make up for the decreases of the income taxes.
ACKNOWLEDGEMENTS

My research for this dissertation has been a wonderful learning experience. Acknowledgements for my research and dissertation are given to many people.

I am grateful to Dr. Michael W. Riley for providing me the opportunity and resources to work on a topic as exciting as this. It has been great to work with him, a very encouraging and enthusiastic professor. My numerous brainstorming sessions for new ideas with him have always greatly motivated me in my research.

I’d like to thank all the professors on my committee for their great support and guidance throughout my research. And finally my heartfelt thanks to my family and all my friends for their constant encouragement and support.
Table of Contents

ACKNOWLEDGEMENTS .. iii

List of Figures .. vi

List of Tables ... viii

Chapter 1 Introduction ... 1

Chapter 2 Background ... 6
 2.1 Relationship between Education and Economic Growth 6
 2.2 The Economic Impacts of Colleges and Universities in a Local Area 7
 2.3 The Effect of College Quality and Undergraduate Majors 9
 2.4 The Principles of the Simulation ... 12

Chapter 3 Rationales .. 17

Chapter 4 Methodology ... 19
 4.1 Data Collection .. 20
 4.2 Input Analysis .. 21
 4.3 The Basic Function Realization .. 23
 4.3 Model for the Whole Life of Career ... 32
 4.4 Tax Rates Changing ... 33
 4.5 Sensitivity Analysis ... 34

Chapter 5 Input Modeling ... 35
 5.1 Input models for the salaries of different groups of individuals 35
 5.2 Input models for the percentages of salaries changed from one stage to another .. 40
 5.3 Input models for the percentages of expenditures .. 42
 5.4 Estimations of other parameters .. 56

Chapter 6 Verification and Validation ... 57
 6.1 Verification of the models .. 57
 6.2 Validation of the basic model .. 58
 6.3 Validation of the whole life of the career model .. 65
Chapter 7 Performances ..75
7.1 The basic model for individuals disregarding the majors ..75
7.2 The basic model for individuals major in engineering ...77
7.3 The whole life of career model for all individuals disregarding the majors80
7.4 The whole life of career model for the individuals major in engineering82
7.5 Sensitivity Analysis ..83
 7.5.1 Sensitivity Analysis for the Basic Model ...84
 7.5.2 Sensitivity Analysis for the Whole Life of Careers Model90
7.6 Performances with the Tax Rate Changed ...97
Chapter 8 Conclusions ..113
Chapter 9 Contribution to the body of knowledge ...121
REFERENCES ..122
Appendix A: A sample of the raw data for the individuals’ expenditures126
Appendix B: Programming code of the basic model for individuals disregarding their majors ..130
Appendix C: Programming code of the whole life of careers model for individuals who only received bachelors’ degrees disregarding their majors ..135
Appendix D: Programming code of the whole life of careers model for individuals who only received higher degrees disregarding their majors ...143
Appendix E: Notation ..150
List of Figures

Figure 1.1 Flow of money associated with obtaining a graduate degree..........................3
Figure 2.1 Steps in a simulation model...15
Figure 4.1 Flow chart for the contribution of an individual’s income.............................19
Figure 4.2 Cash flows about restaurant for a consumer with a bachelor’s degree..........29
Figure 5.1 Histogram of the individuals’ salaries with bachelor’s degree......................35
Figure 5.2 Histogram of the individuals’ salaries with higher degree............................36
Figure 5.3 Histogram of the individuals' salaries with bachelor’s degree major in engineering..38
Figure 5.4 Histogram of the individuals' salaries with higher degrees major in engineering..39
Figure 5.5 Changes from the 2nd to the 3rd stage...41
Figure 5.6 Changes from the 3rd to the 4th stage...41
Figure 5.7 Changes from the 4th to the 5th stage...42
Figure 6.1 Scatters with the Straight Line for Impact1 when \(r_i=0 \)59
Figure 6.2 Scatters with the Straight Line for Impact2 when \(r_i=0 \)59
Figure 6.3 Scatters with the Straight Line for Impact3 when \(r_i=0 \)59
Figure 6.4 Scatters with the Straight Line for the individuals who were bachelors when \(r_s=1 \) ..61
Figure 6.5 Scatters with the Straight Line for the individuals received higher degrees when \(r_s=1 \) ..61
Figure 6.6 Scatters with markers for the bachelors when \(p_e=1 \) and \(p_s=0.01 \)62
Figure 6.7 Scatters with markers for the individuals with higher degrees when \(p_e=1 \) and \(p_s=0.01 \) ..63
Figure 6.8 Scatters with markers for the bachelors when \(p_e=0 \) and \(p_s=0.5 \)64
Figure 6.9 Scatters with markers for the individuals with higher degrees when \(p_e=0 \) and \(p_s=0.5 \) ...64
Figure 6.10 the Infinite Loop when \(p_e=1 \) ...65
Figure 6.11 Scatters with Straight Line for PW vs. \(\Sigma Taxes \) when \(i=0 \)66
Figure 6.12 Scatters with Straight Line for \(sPW \) vs. \(\Sigma sTaxes \) when \(i=0 \)66
Figure 6.13 Scatters with markers for PW when \(r_{in}=0 \) and in the original model67
Figure 6.14 Scatters with markers for \(sPW \) when \(r_{in}=0 \) and in the original model ...68
Figure 6.15 Scatters with markers of PW when \(r_i=0 \)..69
Figure 6.16 Scatters with markers of \(sPW \) when \(r_i=0 \) ..69
Figure 6.17 Scatters with straight lines of \(sPW \) vs. PW when \(r_i=0 \)70
Figure 6.18 Scatters with straight lines for \(PW_3 \) vs. \(PW_1 \) when \(r_i=1 \)70
Figure 6.19 Scatters with straight lines for PW_3 vs. PW_1 when $p_c=0$71
Figure 6.20 Scatters with straight lines for PW_3 vs. PW_1 when $r_s=0$72
Figure 6.21 Scatters with straight lines for PW_2 vs. PW_{sales} when $r_s=1$72
Figure 6.22 Scatters with makers of PW_2 for $p_s=1$ and $p_s=0.01$73
Figure 6.23 Scatters with makers of PW_2 for $p_e=0$ and $p_e=0.5$74
Figure 7.1 Scatters of Impact2 when $t=1000$...78
Figure 7.2 Changes of Impact1 for all individuals ignoring their majors with p_s......84
Figure 7.3 Changes of Impact2 for all individuals ignoring their majors with p_s......85
Figure 7.4 Changes of Impact3 for all individuals ignoring their majors with p_s......85
Figure 7.5 Changes of Impact1 for the individuals major in engineering with p_s......86
Figure 7.6 Changes of Impact2 for the individuals major in engineering with p_s......86
Figure 7.7 Changes of Impact3 for the individuals major in engineering with p_s......86
Figure 7.8 Changes of Impact1 for all individuals ignoring their majors with p_e......87
Figure 7.9 Changes of Impact2 for all individuals ignoring their majors with p_e......87
Figure 7.10 Changes of Impact3 for all individuals ignoring their majors with p_e......88
Figure 7.11 Changes of Impact1 for the individuals major in engineering with p_e......88
Figure 7.12 Changes of Impact2 for the individuals major in engineering with p_e......89
Figure 7.13 Changes of Impact3 for the individuals major in engineering with p_e......89
Figure 7.14 Changes of PW for all individuals disregarding their majors with i90
Figure 7.15 Changes of sPW for all individuals disregarding their majors with i91
Figure 7.16 Changes of PW for the individuals major in engineering with i91
Figure 7.17 Changes of sPW for the individuals major in engineering with i...........92
Figure 7.18 Changes of PW for all individuals disregarding their majors with p_s......93
Figure 7.19 Changes of sPW for all individuals disregarding their majors with p_s......93
Figure 7.20 Changes of PW for the individuals major in engineering with p_s............94
Figure 7.21 Changes of sPW for the individuals major in engineering with p_s...........94
Figure 7.22 Changes of PW for all individuals disregarding their majors with p_e......95
Figure 7.23 Changes of sPW for all individuals disregarding their majors with p_e95
Figure 7.24 Changes of PW for the individuals major in engineering with p_e.........96
Figure 7.25 Changes of sPW for the individuals major in engineering with p_e.........96
Figure 7.26 Performances of Impact1 for all individuals disregarding their majors with r_s ...98
Figure 7.27 Performances of Impact2 for all individuals disregarding their majors with r_s ...99
Figure 7.28 Performances of Impact3 for all individuals disregarding their majors with r_s ...99
Figure 7.29 Performances of Impact1 for the individuals major in engineering with \(r_s \) .. 100
Figure 7.30 Performances of Impact2 for the individuals major in engineering with \(r_s \) .. 100
Figure 7.31 Performances of Impact3 for the individuals major in engineering with \(r_s \) .. 100
Figure 7.32 Performances of Impact1 with \(r_i \) ... 102
Figure 7.33 Performances of Impact2 with \(r_i \) ... 102
Figure 7.34 Performances of Impact3 with \(r_i \) ... 102
Figure 7.35 Performances of PW for all individuals disregarding their majors with \(r_s \) .. 103
Figure 7.36 Performances of sPW for all individuals disregarding their majors with \(r_s \) .. 104
Figure 7.37 Performances of PW for the individuals major in engineering with \(r_x \) .. 104
Figure 7.38 Performances of sPW for the individuals major in engineering with \(r_x \) .. 105
Figure 7.39 Performance of PW with \(r_i \) .. 107
Figure 7.40 Performances of sPW with \(r_i \) .. 107
Figure 7.41 Total taxes in each year for the individual who received higher degree 108
Figure 7.42 Sales taxes in each year for the individual who received higher degree 108
Figure 7.43 Performances of the present worth for the individuals with higher degrees disregarding their majors with \(r_i \) changing ... 111

List of Tables
Table 1.1 Total fall enrollment in degree-granting institutions, by student level: selected years, 1970 through 2009 [In Thousands] (Department of Education, National Center for Education Statistics., 2011; Digest of Education Statistics, 2010) 2
Table 2.1 Examples of Systems and Their Components (Banks, 2009) 13
Table 4.1 The summary of data for consumers with BD .. 25
Table 4.2 The summary of data for consumers with higher than BD 25
Table 4.3 The summary of data for all consumers units .. 27
Table 4.4 Federal income tax brackets for singles in 2011 28
Table 4.5 State income tax brackets in 2011 .. 29
Table 4.6 Summary of the results ... 31
Table 5.1 Squared error of different distributions for all bachelor' salaries 36
Table 5.2 Squared errors of different distributions for all individuals' salaries with higher degree ... 37
Table 5.3 Squared errors of different distributions for bachelor's salaries major in engineering.

Table 5.4 Squared errors of different distributions for individuals' salaries with higher degrees major in engineering.

Table 5.5 Expenditures' Distributions fitted for the persons with Bachelor's Degree.

Table 5.6 Expenditures' Distributions fitted for the persons with Higher Degree.

Table 5.7 Expenditures' Distributions fitted for the all persons ignoring their education level.

Table 5.8 Transaction from Input Analyzer to Matlab for Weibull distributions.

Table 5.9 Transaction from Input Analyzer to Matlab for Lognormal Dist.

Table 5.10 Expenditures' Distributions for the all individuals younger than 25 years old.

Table 5.11 Expenditures' Distributions for the all individuals from 25 to 34 years old.

Table 5.12 Expenditures' Distributions for the all individuals from 35 to 44 years old.

Table 5.13 Expenditures' Distributions for the all individuals from 45 to 54 years old.

Table 5.14 Expenditures' Distributions for the all individuals from 55 to 64 years old.

Table 5.15 Transaction from Input Analyzer to Matlab for Lognormal distributions.

Table 7.1 Average Economic Impacts for all individuals with the changes of replicates (t).

Table 7.2 Distributions for the random samples of Impact3.

Table 7.3 Average Economic Impacts for individuals major in engineering with the changes of replicates (t).

Table 7.4 Distributions for the random sample of Impact3.

Table 7.5 Average present worth of total taxes.

Table 7.6 Distributions for the random samples of the differences.

Table 7.7 Average present worth of total taxes.

Table 7.8 Distributions for the random samples of the differences.

Table 7.9 Federal income tax rates changed for singles in 2011.

Table 7.10 State income tax rates changed in 2011.

Table 7.11 Performances of impacts for all individuals disregarding their majors with r_i.

37

38

43

44

45

46

48

49

50

51

52

53

54

55

76

76

78

79

80

81

82

83

97

98

101
Table 7.12 Performances of impacts for the individuals major in engineering with \(r_i \)
Table 7.13 Performances of PW for all individuals disregarding their majors with \(r_i \)
Table 7.14 Performances of PW for the individuals major in engineering with \(r_i \)
Table 7.15 Performances of the present worth of the income tax revenues and sales tax revenues for the individuals with higher degrees disregarding their majors with \(r_i \)
Table 7.16 Performances of the present worth of the total tax revenues and the sales tax revenues for the individuals with higher degrees disregarding their majors with \(r_i \)
Chapter 1 Introduction

Positive impacts of graduates to the state and national economy are sought for economic development. State governments want state supported institutions of higher education such as universities and community colleges to be economic engines to stimulate a state's economic growth. Many state universities have offices and functions that are expected to be a positive contributor to economic development. Intellectual property at universities is encouraged to be protected and marketed or developed to create new products, materials and enterprises. One vital economic driver of state institutions is the economic buying power of its students.

State universities are partially funded by the state budget, student tuition and fees, donations and gifts, endowments and contract overhead. This research has a focus on the economic impact measured by income and sales taxes paid by graduate students after they receive an advanced degree from a state university.

Nowadays, there are more and more people who have received higher education degrees. The historical data about the numbers of university students from 1970 to 2009 in the United States are shown in Table 1.1. As noted, the data included unclassified undergraduate and graduate students, and the data through 1995 were for institutions of higher education while the data from 2000 were for degree-granting institutions. As we can see in Table 1.1, in 1970 there were only 8.581 million people who enrolled into higher education, while in 2009 there were 20.427 million people. The total number of students participating in higher education had increased by 138% from 1970 to 2009. In 1970, there were 7.369 million students enrolling into undergraduate study, while there were 17.565 million students in 2009. The number of new undergraduates had increased by 138% from 1970 to 2009. In 1970, there were 1.212 million students enrolling into the graduate school, while there were 2.862
million students in 2009. The number of new graduate students had increased by 136% from 1970 to 2009.

Table 1.1 Total fall enrollment in degree-granting institutions, by student level: selected years, 1970 through 2009 [In Thousands] (Department of Education, National Center for Education Statistics., 2011; Digest of Education Statistics, 2010)

<table>
<thead>
<tr>
<th>Student characteristic</th>
<th>Total</th>
<th>Undergraduate</th>
<th>Post baccalaureate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Institutions of higher education</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1970</td>
<td>8,581</td>
<td>7,369</td>
<td>1,212</td>
</tr>
<tr>
<td>1980</td>
<td>12,097</td>
<td>10,475</td>
<td>1,622</td>
</tr>
<tr>
<td>1985</td>
<td>12,247</td>
<td>10,597</td>
<td>1,650</td>
</tr>
<tr>
<td>1990</td>
<td>13,819</td>
<td>11,959</td>
<td>1,859</td>
</tr>
<tr>
<td>1995</td>
<td>14,262</td>
<td>12,232</td>
<td>2,030</td>
</tr>
<tr>
<td>Degree-granting institutions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>15,312</td>
<td>13,155</td>
<td>2,157</td>
</tr>
<tr>
<td>2001</td>
<td>15,928</td>
<td>13,716</td>
<td>2,212</td>
</tr>
<tr>
<td>2002</td>
<td>16,612</td>
<td>14,257</td>
<td>2,355</td>
</tr>
<tr>
<td>2003</td>
<td>16,911</td>
<td>14,480</td>
<td>2,431</td>
</tr>
<tr>
<td>2004</td>
<td>17,272</td>
<td>14,781</td>
<td>2,491</td>
</tr>
<tr>
<td>2005</td>
<td>17,487</td>
<td>14,964</td>
<td>2,523</td>
</tr>
<tr>
<td>2006</td>
<td>17,758</td>
<td>15,184</td>
<td>2,574</td>
</tr>
<tr>
<td>2007</td>
<td>18,248</td>
<td>15,604</td>
<td>2,644</td>
</tr>
<tr>
<td>2008</td>
<td>19,103</td>
<td>16,366</td>
<td>2,737</td>
</tr>
<tr>
<td>2009</td>
<td>20,427</td>
<td>17,565</td>
<td>2,862</td>
</tr>
</tbody>
</table>

As seen in the degree-granting institutions in Table 1.1, the students in higher education had increased by 33.4% from year 2000 to 2009. The number of new undergraduates had increased by 33.5% from year 2000 to 2009, while the number of new graduate students had increased by 32.7%. The increasing percentage of undergraduates was less than the increasing of graduate students, which meant the percentage of undergraduates interested in graduate studies was decreased from year 2000 to 2009. However, both the numbers of undergraduates and graduate students were increased. There were more and more students in graduate schools, which meant that more investments were needed in the universities including purchases of
hardware devices, software devices, spaces, and so on. When the students received their master's or doctoral degree, they became employed or continued their study further. Eventually, the governments or communities gained financially from them due to employment.

Figure 1.1 Flow of money associated with obtaining a graduate degree

It was a problem whether the governments were glad to see more undergraduates enrolling into graduate schools or not. As shown in Figure 1.1, though the government needed to pay for facilitates and general support for graduate students, they had more taxes paid to the government normally as rewards. The objective in this research was to determine the economic impact to the government taxes received due to an undergraduate student going into the graduate school and receiving an incremental
income because of the graduate education. Economic impact was always utilized to analyze the effect of a policy, program, project, activity or event on the economy of a given area. The activity studied in this research was enrolling into graduate schools. The area studied was additional taxes paid to the Nebraska State government, local government and to the United States government. The measurement of economic impact was always in terms of changes in economic growth, which was associated with jobs and income. The indication of the economic impact utilized in this research was the tax receipts of the US and state & local governments. Under normal circumstances, taxes consisted of income taxes and sales taxes for an individual, and income taxes included federal taxes and state taxes. Part of income taxes should be paid to the federal government, and part of income taxes should be paid to the state & local government. Sales taxes would be paid to the state & local government. If a taxpayer can contribute more to the society, she/he normally can obtain more remuneration. When the taxpayer had more income, she/he would pay more income taxes to the government and have more money to be spent on various kinds of consumptions. With more money spent, sales taxes receipts should be raised. As we can see, it should be worth it for governments to encourage graduate students because of the higher income that would result. The problem of interest in this research is how much impact in terms of primary and secondary taxes are paid by a person with a graduate degree.

By reviewing the previous research methods of the economic impact, mathematical models always were created to predict the impact. Different mathematical models were apt to have different problems, different aspects of the same problem or the problem under different conditions. Different parameters were utilized in different mathematical models. It was not easy to analyze individual cases by utilizing a
mathematical model. In this research, a simulation model was utilized, and the parameters set in the model covered as many aspects as possible. Different situations were simulated by changing the value of parameters in the model and obtaining the results for analysis.

Several commonly used engineering economics methods were introduced into this research to measure the economic impact in different aspects, such as the payback period, net present value and benefit-cost ratio. If an investment was made on something, rewards of the same value would be expected from the investment within certain amount of time. The time when the investment was repaid was defined as the payback period. It was a useful tool because it was easy to understand for most people and simple to apply in the model. It could be an intelligible indicator to represent the speed of an economic impact.

Owing to the utilization of the taxes as the indicators, the changes of tax rates can influence the results. In the real world, tax rates were not invariable, while the government may change the rate and policy every several years. As well, the changes of other uncertain parameters in the simulation model can affect the results of the analysis. Therefore, at the end of the research, sensitivity analysis was utilized to consider these uncertainties. Sensitivity analysis can study how the uncertainties in a model input influenced the output of the model.

Finally, it was detected that it was beneficial for the government to encourage students to enroll into graduate schools. A simulation model was utilized to investigate and compare the economic impact of taxes paid by engineers who had advanced degrees, and the model gave the value of desired parameters under different conditions.
Chapter 2 Background

Graduate education appears to have profound effects on students, and their earnings. It also has economic impacts to the government and society through the increasing of their income and taxes paid.

2.1 Relationship between Education and Economic Growth

Economic growth was defined as a consistent increase of the output per capita in a country (or the income per capita) in a long time period (Hesapcioglu, 1984). Education was always related with one country’s economic growth, since the productivity of workers was a significant factor to influence the economic growth, which can be raised through educating workers. To measure the return of the costs on education was important, and one of the measures was cost-benefit analysis (Cinkir, 2000). Another popular formula to analyze the economic growth was Cobb-Douglas Production Function (1928, 1979), which can be shown as

\[Q = AL^\alpha K^\beta, \]

where

- \(Q \) = total production in a specific time,
- \(L \) = labor input,
- \(K \) = capital input,
- \(A \) = total factor productivity (the part not explained by labor and capital increase in production),
- \(\alpha \) = output elasticity of labor input,
- and \(\beta \) = output elasticity of capital input.

Based on the datasets, \(A, \alpha, \) and \(\beta \) always were estimated by regressing the formula

\[\ln Q = \ln A + \alpha \ln L + \beta \ln K, \]
where datasets of Q, L, and K were historical data. The above expression was transferred to a linear regression model, which was easier to solve. The perfect model would be obtained if $\alpha + \beta = 1$, which meant returns to scale were constant or output increased by the same proportional change with the proportional changes of all inputs. As investigated by Schultz (1961) and Denison (1962), the contribution of education to total productivity caused about two thirds of economic growth except for the labor and capital inputs. As reviewed by Hava and Erturgut (2010), the contribution of education to the economy stood to reason. Another study indicated that a literacy rate of 40% was a pre-condition for exceeding 300 GNP (Gross National Product), and 90% for exceeding 500 GNP by Bowman and Anderson based on 85 countries (Blaug, 1972).

2.2 The Economic Impacts of Colleges and Universities in a Local Area

As reviewed by Siegfried, Sanderson, and McHenry (2007), there were many studies on the economic impacts of colleges and universities. In the initial phases of analyzing this problem, a systematic template to organize the measurement of economic impacts was created by Caffrey and Issacs (1971). Then more and more research was focused on this field, and the analysis became more and more complex and included more and more variables. But the basic procedure to analyze the economic impact was common. First, a summary of expenditures of the college community (students, faculty, staff, and visitors) was obtained. Then multipliers to account for the interdependency of economic activities in a specific area were utilized, such as the impact to a state or to a country. As listed in their studies, colleges and universities always had positive impact to their local areas. For example, Loyola University Chicago created a 1.04 billion economic impact and nearly 15,000 jobs in the Chicago-land area in 1994 [Chicago College News. August 1995,
Another good result was from the University of Georgia System, as it generated $9.7 billion in ‘output impact’. Moreover, it took charge of 2.8 percent of Georgia’s workforce, or 106,831 full- and part-time jobs [www.gatech.edu, January 18, 2005].

An analysis, where inputs included direct employment and payroll, expenditures for equipment, supplies and services, construction costs, expenditures of the local community, support of research, and tuition and fees paid, was conducted by Siegfried, Sanderson, and McHenry (2007). Multipliers always were indicated in a similar pattern, and the impacts could be obtained by summing the inputs with corresponding multipliers. An example of the expression of the multipliers was: “For every $1 in state appropriations for the university, the University of Oregon generates nearly $10 in additional expenditures (www.uoregon.edu, 2004)”.

As represented by Siegfried, Sanderson, and McHenry (2007), there were at least 198 impact studies done covering more than 241 individual institutions. There were several main contributions shown as the followings. A new methodology, which can be utilized for short and long-run flows, was proposed by Beck, Elliott, Meisel, and Wagner (1995), and they also gave alternative ways of thinking about geographic regions. A study to discuss the traditional “economic-base” approach was done by Brown and Heaney (1997). A case study of Xavier University in Cincinnati was created by Blackwell, Cobb, and Weinberg (2002) to discuss traditional and human capital impacts. With the analysis more and more complex, the range of the multipliers was too wide. Leslie and Slaughter (1992) standardized economic impacts by dividing “business volume” by the college budget, since the measures were sensitive to the institution’s budget. The methodology was improved but not significantly for a large range of estimates.
2.3 The Effect of College Quality and Undergraduate Majors

There were many studies to measure colleges’ impacts on earnings in one way or another, while most of them were about the effect of the college’s quality and they gave positive results (Zhang, 2005). Weisbrod and Karpoff (1968), Reed and Miller (1970), Solmon (1975), and Wise (1975) were among the first to investigate the impact of perceived quality of an institution on earnings of its graduates.

In Reed and Miller’s research (1970), the earnings of men with college degrees were studied and multiple regressions equations with dummy variables were utilized to do the analysis. As shown in their study, the rank of the colleges had positive effects on the earnings, and the factors included in the rank of the colleges were: where degrees were received, levels of degree, majors, student ages, and race (nonwhites or whites). The men with bachelor’s degree majoring in engineering, physical sciences, and business and commerce were indicated as the ones with greater monetary rewards, while the holders of higher degrees major in medical sciences and law had greater monetary rewards. The difference at each degree level was over $2,400 per year.

Solmon’s studies (1975) mainly focused on the effects of college quality to the human capital earnings functions. As shown, the quality of institutions of higher education had significant impacts on earnings of those who attended. The subjective evaluation of institutions (the Gourman Index) was utilized to measure quality in some of their estimated equations. A deformation of Cobb-Douglas Production Function was used to study the people no longer in school, and it was

\[
\ln Y_t = \ln Y_0 + a\text{EXP} + b\text{EXPSQ} + c\text{YRS} + d\text{QUAL} + fV_t + u
\]

where

\(\ln Y_t = \) the log of observed earnings,

\(EXP = \) years of experiences in the full-time labor force (from the first job),
EXPSQ = the squared value of EXP (Mincer, 1970),

IQ = the level of ability (presumably affected by a combination of genetics and environment),

QUAL = the quality of college attended,

Vi = occupational dummy i,

fi = the coefficient of Vi,

and u = errors.

Years compared included 1939-1940, 1953-1954, 1959-1960, and 1969-1970. As mentioned in his conclusions, the institutional variables were regarded as relating to student quality, and the part relating to faculty salaries counted as college quality.

The methodology utilized in Wise’s study (1975) was also a regression model, and his model with x as the parameters to be estimated was:

\[
\ln s = a_0 + a_i + b_j + dx_0 + \{r_0 + \alpha_i + \beta_j + \gamma_k + \sum_{i=1}^{s} \delta_i x_j \} t + \varepsilon
\]

where

s = monthly salary,

t = years employed,

d and \(\delta \) = coefficients,

\(a_0 \) = constant,

\(a_i \) = effect of having B.A. degree or not when start work at the firm,

\(b_j \) = effect of the undergraduate major,

\(r_0 \) = average rate of salary increase,

\(\alpha_i \) = effect of undergraduate college in ith selectivity group,

\(\beta_j \) = effect of undergraduate grades in jth interval,

and \(\gamma_k \) = effect of being in kth rank in M.A. class (\(\gamma_0 \) was for B.A. only).
As resulted, job performances were related with academic achievement. The differences in estimated rates of salary increase by college selectivity and college grade point average were large, which was consistent with Weisbrod and Karpoff (1968).

Recent studies by Brewer and his colleagues (Brewer and Ehrenberg, 1996; Brewer, Eide, and Ehreberg, 1999; Eide, Brewer, and Ehrenberg, 1998), and Thomas and his colleagues (Thomas, 2000, 2003; Thomas and Zhang, 2001, 2002) have significantly improved the understanding of the economic effect of college quality. Furthermore, Brewer and his colleagues (1996 and 1999) utilized regression models to analyze the impacts, and Thomas and his colleagues (2000, 2001, 2002, and 2003) used similar models though the variables and formation of the equations were different from each other. All of the previous research showed that college quality had positive and significant effects on graduates’ earning (e.g., Solman and Wachtel, 1975; Pascarella and Terenzini, 1991; Mueller, 1988; Thomas, 2000, 2003).

Though there were many previous studies on the impacts of the education on the economy, they were to detect the economic impacts of a college or university as the community or the education’s effect on several factors related to an individual’s salary. In this research, the object is the economic impact to the government (or community) in the form of taxes paid of an individual who holds a higher degree compared with only a bachelor’s degree. As well, most of the studies were based on regression models utilizing different variables indicated in the literature research, while this study is based on a simulation model which shows the whole process of the cash flows and gives the corresponding impacts to the government (or community). In addition, the developed simulation model was used to perform a sensitivity analysis to consider the possible impact to society (total taxes paid) as result of reducing the
individual tax rate and a variety of levels of increased spending by an individual. This latter application was an attempt to partially answer the question under what circumstances will reduce federal tax rates result in more total federal taxes being paid due to stimulation of other components of society.

2.4 The Principles of the Simulation

The mathematical model needed to embed the factors, while the drastic simplifications were required to keep the equation system solvable. The simulation model can combine more factors into account to detect the impacts one by one. (Pryor, 1973) A simulation is the imitation of the operation of a real-world process or system over time according to Banks and his colleagues (2009). Several authors have discussed when it was appropriate to use simulation as reported by Naylor et al. (1966) and Shannon (1998). Banks (2009) concluded that simulation had the following 11 purposes: to study complex systems, to detect the effect on the model from informational, organizational, or environmental changes observed, to give suggestions to improve the current system, to obtain better outputs by changing inputs, as a pedagogical device to reinforce analytic solution methodologies, to do experiments for new designs or policies before implementation, to verify analytic solutions, to determine a machine’s requirements, to provide training without cost and disruption, to visualize a plan, and to develop a realistic analysis of modern system too complex to be reviewed in any other manners.

The simulation has had wide applications, including manufacturing, wafer fabrication, business processing, construction engineering and project management, logistics with transportation and distribution, military, and health care. Simulation can help to save money by doing an analysis before implementation. For example, the project

A system was defined as a group of objects that were joined together in some regular interactions or interdependence toward the accomplishment of some purpose. A system can always be affected by the changes occurring outside the system, and by the system’s environment (Gordon, 1978). In simulation it is also required to determine the boundary between the system and its environment. In simulation an entity, attribute, activity, state, and event should be defined. An entity was an object of interest in the system. An attribute was a property of an entity. An activity represented a time of specified length. The state of a system was defined to be the collection of variables necessary to describe the system at any time, relative to the objectives of the study. For example, the possible states of a counter in a shop can be busy or idle. An event was defined as an instantaneous occurrence which may change a state of the system. More examples were shown in Table 2.1, including the systems about banking, production, and inventory.

Table 2.1 Examples of Systems and Their Components (Banks, 2009)

<table>
<thead>
<tr>
<th>System</th>
<th>Banking</th>
<th>Production</th>
<th>Inventory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entities</td>
<td>Customers</td>
<td>Machines</td>
<td>Warehouse</td>
</tr>
<tr>
<td>Attributes</td>
<td>Checking-account balance</td>
<td>Speed, capacity, breakdown rate</td>
<td>Capacity</td>
</tr>
<tr>
<td>Activities</td>
<td>Making deposits</td>
<td>Welding, stamping</td>
<td>Withdrawing</td>
</tr>
<tr>
<td>Events</td>
<td>Arrival, departure</td>
<td>Breakdown</td>
<td>Demand</td>
</tr>
<tr>
<td>State Variables</td>
<td>Number of busy tellers, number of customers waiting</td>
<td>Status of machines</td>
<td>Levels of inventory, backlogged demands</td>
</tr>
</tbody>
</table>

The system can be categorized as discrete or continuous. The state variables in a discrete system changed only at a discrete set of points in time, while in a continuous system they were changing over time. “Few systems in practice are wholly discrete or
continuous, but since one type of change predominates for most systems, it will usually be possible to classify a system as being either discrete or continuous” (Law, 2007).

The common steps in simulation were shown in Figure 2.1 (Shannon, 1975; Gordon, 1978; Law, 2007; Banks, 2009). The study always started with the statement of the problem. And then the objectives indicated the questions answered by the simulation and the overall plan should be determined. Model conceptualization and data collections were the following steps, which can be processed at the same time, and it was better to involve the model user in model conceptualization. After these two steps completed, the information of the real-world systems/problems should be translated into computer languages, and the model can be entered into the computer for processing. Then the prepared computer program for the simulation model should be verified. Verification meant whether the computer program’s performing was proper or not. If it was verified, it can be processed to validation; otherwise, it should go back to model translation. Validation was to compare the simulation model with the actual model behavior. They need to be consistent. Otherwise, the model must be re-conceptualized and data collection re-done. After the model was found to be acceptable, experiments can be designed and run to obtain the results. Analysis should be based on the results, and the analyst can determine whether additional runs were needed or not. Documentation and reporting should be prepared when everything had been completed. The success of the implementation phase depended on the performance of the previous steps.
Figure 2.1 Steps in a simulation model
A simulation model can present a “real world” problem much better than a mathematic model, because it can combine more complicated variables into the model. It required having a clear understanding and idea of the goals and objectives of the problem, and the model can be created to analyze it. It tended to emphasis dynamic, quantitative analysis. It was easier and freer to change the values of the variables in a simulation model, and the results can be obtained with less inconvenience.
Chapter 3 Rationales

Following the steps shown in Figure 2.1, the problem should be stated. As more and more undergraduate graduates prefer to continue to graduate schools, the governments need to invest more on the graduate education theoretically. Some job positions require the employee with a higher degree than bachelors’, and the salaries are higher. It is a reasonable question to ask whether it is worth an additional investment to obtain a master/PhD. Does he/she have positive economic impacts on the government taxes paid and community compared with a person who only has a bachelor’s degree?

To answer these questions, five specific objectives were formulated as follows.

1. Create a chain to show the cash flows for an individual to simulate their expenditures. In this chain, governments that eventually receive the taxes and some businesses in the communities that collect sales were represented to model the expenditures of an individual holding a bachelor’s degree or an advanced degree. Using different values of the parameters with a higher degree, the difference of the economic impacts was obtained.

2. Estimate the economic impact of the income increasing for an individual with the graduate’s degree on the annual taxes paid to governments. As collateral evidence, a regression model indicating the impact on the government income was obtained. The results and the trends of the outputs by changing the inputs were compared between the two models to see whether the simulation model was validated.

3. Estimate the total amount of taxes paid to the government for an individual by simulating the whole life of the career. And then obtain the economic impact of the income changed for an individual with the graduate's degree at the beginning of the career on the total taxes paid to government. The results and the trends of
the outputs by changing the inputs were compared between the two models to see whether the simulation model was acceptable.

4. Detect the trends of the impact to the government with the values of parameters changed.

5. Detect the impact to the government with the tax rate decreased. If the tax rate was decreased, the income after tax would be increased for an individual, and the individual can have more expenditures. Though the government has fewer income taxes, more expenditure can bring more consumer taxes to the government.

In this research, the individuals who were full time employees received bachelors’ degrees or higher were selected to be the subject investigated.
Chapter 4 Methodology

A simulation model was utilized in this research. To achieve the objectives, the model included the income of an individual and his/her expenditures. The developed model defines the variables definition, the variables assignments, the cash flows, functions implementation, and the results.

![Flow chart for the contribution of an individual’s income](image)

Figure 4.1 Flow chart for the contribution of an individual’s income

The main variables in the model were characteristics of individuals (such as ages and education), incomes, income taxes, annual expenditures in various categories, and sales taxes. The cash flow shown in Figure 4.1 represented the income to the individual and the impact of money spent by the individual. Figure 4.1 includes income taxes, sales taxes on consumption of goods and services, payments to workers
and the increased contributions of the workers caused by the individual spending, and the part of investments on expanding their companies contributed by the individual. The dashed lines show the impact of consumer spent on expanded facilities. The individual with different characteristics can have different levels of incomes and patterns of expenditures.

4.1 Data Collection

This research focused on the economic impact on the government/community of a Master’s degree or PhD degree in engineering compared with a Bachelor’s degree in engineering. The impact was focused on the increased taxed paid, and thus the increased taxable income and the taxable expenditures of an individual were the key values. To obtain the useful data, many federal documents available on websites providing survey results and statistics results were reviewed. The US Bureau of Labor Statistics was the most helpful source for the expenditures data, since the historical data there were official and comprehensive. The UNL Career Services office also provided individuals’ immediate incomes into the career and US Bureau of Labor Statistics offered the statistical descriptions of persons’ incomes.

The individuals’ income goes to different cash flow streams, including income taxes to the government, savings, investments, and expenditures. As shown in US Bureau of Labor Statistics (2011), the seven major expenditure categories included for US intergroup were food, housing, apparel and services, transportation, health care, entertainment, and other expenditures. The part of expenditures focused on in this research was the taxable expenditures. The taxable foods included the food away from home and alcoholic beverages. The taxable housing included owned dwellings and some utilities. All apparel and services were taxable. The taxable transportation included vehicle purchases, gasoline, and vehicle rental, leases and licenses. The
taxable health care was the cost of medications. All entertainments were taxable. The main part in the other expenditures focused in this research was the cash contribution, which can result in tax deductions or credits. The money for saving and investments would increase the personal income before taxes, but it was difficult to estimate how much it contributed to the taxable income.

Since analysis of money should include the time value of money through a long time period, this research considers money followed over only one year and the time value of money was not considered. The percentages of expenditures in the after taxes income were calculated from the historical data, and fitted to appropriate distributions. From the percentages and the after taxes incomes, consumptions on each expenditure component can be obtained, and the sales taxes were calculated with the corresponding tax rates. Individuals’ incomes also were also fitted to an appropriate distribution from the historical data. The income taxes were obtained with the corresponding tax rate table for different individuals with different information.

4.2 Input Analysis

Historical data need to be analyzed and then be utilized in the simulation models. Input Analyzer in Arena was utilized to deal with the historical data. The software can give a statistical report for the data imported. In the statistical report, the sample size, the range, the minimum value, and the maximum value were indicated. Several intervals of the data were separated into, and the number of data in each interval called frequency was counted. The histogram was drawn based on the information. As well, in the software, various distributions were fitted for the histogram, and squared errors for each distribution were calculated. The best-fitted distribution can be selected with the smallest squared error.
The parameters generated in Input Analyzer were different from the parameters utilized in MATLAB for some of the distributions including the lognormal distribution, the Weibull distribution, and the triangular distribution. The parameters of the lognormal distribution in Input Analyzer were the mean value and the standard deviation value, while in MATLAB the parameters were the μ and σ in the corresponding normal distribution. The mean value was assumed to be N, and the standard deviation value was set to be M. For the lognormal distribution, there were

\[
\begin{align*}
N &= e^{(\frac{1}{2} \sigma^2)} \\
M^2 &= (e^{\sigma^2} - 1) \times e^{(2\mu + \sigma^2)}.
\end{align*}
\]

By solving the system of equations, the parameters utilized in MATLAB can be obtained as

\[
\begin{align*}
\mu &= \ln N - \frac{1}{2} \times \ln[(\frac{M}{N})^2 + 1] \\
\sigma &= \sqrt{\ln[(\frac{M}{N})^2 + 1]}
\end{align*}
\]

In Input Analyzer, the parameters for Weibull distribution were the scale parameter (λ) and the shape parameter (k). The distribution can be expressed as

\[
f(x; \lambda, k) = \left\{ \begin{array}{ll}
\frac{k}{\lambda} \times \left(\frac{x}{\lambda}\right)^{k-1} \times e^{-\left(\frac{x}{\lambda}\right)^k}, & x \geq 0 \\
0, & x < 0
\end{array} \right.
\]

There was another expression of the Weibull distribution utilized in MATLAB with parameters α and β shown as

\[
f(x; \alpha, \beta) = \left\{ \begin{array}{ll}
\alpha \cdot \beta \cdot x^{\beta-1} \cdot e^{-\alpha x^\beta}, & x \geq 0 \\
0, & x < 0
\end{array} \right.
\]

By the comparison of the two expressions, the parameters can be transported to each other, and they were
\[
\begin{align*}
\alpha &= (1/ \lambda)^k \\
\beta &= k.
\end{align*}
\]

There was no direct statement to generate random number from triangular distributions. The random number from the triangular distribution can be obtained as the value of the variable in the distribution corresponding to the specific cumulative probability generated randomly. The cumulative probability of the triangular distribution was

\[
F(x; a, b, c) = \begin{cases}
\frac{(x-a)^2}{(b-a)(c-a)}, & a \leq x \leq c \\
1 - \frac{(b-x)^2}{(b-a)(b-c)}, & c < x \leq b
\end{cases}
\]

where \(a\) was the lower limit, \(b\) was the upper limit, and \(c\) was the mode in the distribution.

The cumulative probability generated was assumed to be "\(u\)" which was in the range of \([0, 1]\). If \(u\) was larger than \(F(c; a, b, c) = \frac{c-a}{b-a}\), the value of the variable was in the range of \((c, b]\); otherwise, the value of the variable was in the range of \([a, c]\). The value of the variable, \(x\), can be solved from the expression of the cumulative function distribution as

\[
x = \begin{cases}
a + \sqrt{u \cdot (b-a) \cdot (c-a)}, & 0 \leq u \leq \frac{c-a}{b-a} \\
b - \sqrt{(1-u) \cdot (b-a) \cdot (b-c)}, & \frac{c-a}{b-a} < u \leq 1
\end{cases}
\]

Then all distributions fitted in Input Analyzer can be realized in MATLAB.

4.3 The Basic Function Realization

In this research, the impact of education is an important component of the study. The following example is to indicate the effect with different levels of education, Bachelor
(0) and higher than Bachelor (1). It is assumed that the sunk cost of the initial cost of the university is ignored.

The tax revenues obtained by the governments were the main indicator to present the impacts. Total tax revenues received by the governments should be the sum of the tax revenues received by the federal government and the tax revenues received by the state & local government. The tax revenues can be presented by the following equations.

\[TR = FTR + STR \]

\[FTR = r_{ij} \times Income \]

\[STR = r_{is} \times Income + \sum_{j=1}^{18} \left[r_{sj} \times \left(p_{cij} \times (1 - r_{if} - r_{is}) \times Income \right) / (1 + r_{sj}) \right] + \]

\[\sum_{j=1}^{18} \left[r_{sj} \times \left(p_{cij} \times p_{e} \times \sum_{l=1}^{18} \left[p_{cl} \times (1 - r_{ig} - r_{is}) \times Income \right] / (1 + r_{sj}) \right) + \right. \]

\[\sum_{j=1}^{18} \left[r_{sj} \times \left(p_{cij} \times p_{e} \times \sum_{l=1}^{18} \left[p_{cl} \times (1 - r_{ig} - r_{is}) \times Income \right] / (1 + r_{sj}) \right) + \right. \]

where

\(TR \): the total tax revenues;

\(FTR \): the federal tax revenues;

\(STR \): the state tax revenues;

\(Income \): an individual’s income;

\(r_{if} \): the federal income tax rate;

\(r_{is} \): the state income tax rate;

\(r_{sj} \): the sales tax rate;

\(p_{e} \): the percentage of the after taxes income on each category of the expenditures;

\(p_{e} \): the percentage of the direct expenditures paid to the employees in the corresponding places;
p_s: the percentage of the individual’s income to stop adding the indirect contributions. In the model, Income and p_s can be generated randomly from the corresponding distributions obtained from the raw data. The other parameters including $r_{f}, r_{ss}, r_{s}, p_{e}$, and p_s were set to be specific values. The indirect tax revenues received by the government from one individual were stopped to be added when the expenditures of all employees were less than p_s of the individual's income.

Table 4.1 The summary of data for consumers with BD

<table>
<thead>
<tr>
<th>Income before Taxes</th>
<th>Expenditures Categories</th>
<th>Percentages</th>
<th>Consumptions including Taxes</th>
<th>Sales Tax Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>FoodH</td>
<td>$\text{Uniform}(0.048,0.091)$</td>
<td>0</td>
<td>$\text{Percentage} \times \text{IncomeAfterTax}$</td>
<td></td>
</tr>
<tr>
<td>FoodAH</td>
<td>$\text{Uniform}(0.041,0.051)$</td>
<td>7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABev</td>
<td>$\text{Uniform}(0.005,0.010)$</td>
<td>7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OHou</td>
<td>$\text{Uniform}(0.107,0.189)$</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RHou</td>
<td>$\text{Uniform}(0.030,0.090)$</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR&M</td>
<td>$\text{Uniform}(0.049,0.131)$</td>
<td>7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utilities</td>
<td>$\text{Uniform}(0.045,0.088)$</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cloths</td>
<td>$\text{Uniform}(0.027,0.043)$</td>
<td>7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NVeh</td>
<td>$\text{Uniform}(0.022,0.040)$</td>
<td>7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UVeh</td>
<td>$\text{Uniform}(0.016,0.037)$</td>
<td>7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gasoline</td>
<td>$\text{Uniform}(0.021,0.053)$</td>
<td>7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VehIns</td>
<td>$\text{Uniform}(0.012,0.023)$</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HeIns</td>
<td>$\text{Uniform}(0.019,0.026)$</td>
<td>7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIns</td>
<td>$\text{Uniform}(0.018,0.034)$</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ent</td>
<td>$\text{Uniform}(0.039,0.047)$</td>
<td>7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TobP</td>
<td>$\text{Uniform}(0.002,0.011)$</td>
<td>7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>others</td>
<td>$\text{Uniform}(0.034,0.131)$</td>
<td>7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saving</td>
<td>$1 - \sum_{i=1}^{17} \text{percentage}_i$</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The raw data were obtained from annual reports of the US Bureau of Labor Statistics. The history data utilized here was from 2000 to 2010. A sample of the raw data was shown in Appendix A. Part of the expenditure categories shown were taxable and the others were not. By combining some of the categories, there were 18 categories indicating the different directions of their expenditures, including food at home (FoodH), food away home (FoodAH), alcoholic beverages (ABev), owned housing (OHou), rented
housing (RHou), house repair and maintenance (HR&M), utilities, clothes, new vehicle (NVe), used vehicle (UVe), gasoline, vehicle insurance (VehIn), healthcare excluding insurance (HeIn), health insurance (HIn), entertainment (Ent), tobacco products (TobP), other expenditures (others), and saving. The data were the average money consumed on each category. After combining, the money also was added together for each category summarized above.

Table 4.2 The summary of data for consumers with higher than BD

<table>
<thead>
<tr>
<th>Income before Taxes</th>
<th>Expenditures Categories</th>
<th>Percentages</th>
<th>Consumptions including Taxes</th>
<th>Sales Tax Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal Distribution (mean, variance) = Normal (96195, 382263178)</td>
<td>FoodH Uniform(0.039, 0.070)</td>
<td>0</td>
<td>0</td>
<td>7%</td>
</tr>
<tr>
<td></td>
<td>FoodAH Uniform(0.036, 0.046)</td>
<td>0</td>
<td>0</td>
<td>7%</td>
</tr>
<tr>
<td></td>
<td>ABev Uniform(0.006, 0.009)</td>
<td>0</td>
<td>0</td>
<td>7%</td>
</tr>
<tr>
<td></td>
<td>OHou Uniform(0.108, 0.164)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>RHou Uniform(0.020, 0.054)</td>
<td>0</td>
<td>0</td>
<td>7%</td>
</tr>
<tr>
<td></td>
<td>HR&M Uniform(0.066, 0.123)</td>
<td>7%</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Utilities Uniform(0.038, 0.072)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Cloths Uniform(0.022, 0.039)</td>
<td>0</td>
<td>0</td>
<td>7%</td>
</tr>
<tr>
<td></td>
<td>NVe Uniform(0.020, 0.036)</td>
<td>0</td>
<td>0</td>
<td>7%</td>
</tr>
<tr>
<td></td>
<td>UVe Uniform(0.010, 0.034)</td>
<td>0</td>
<td>0</td>
<td>7%</td>
</tr>
<tr>
<td></td>
<td>Gasoline Uniform(0.017, 0.049)</td>
<td>0</td>
<td>0</td>
<td>7%</td>
</tr>
<tr>
<td></td>
<td>VehIn Uniform(0.010, 0.024)</td>
<td>0</td>
<td>0</td>
<td>7%</td>
</tr>
<tr>
<td></td>
<td>HeIn Uniform(0.018, 0.024)</td>
<td>0</td>
<td>0</td>
<td>7%</td>
</tr>
<tr>
<td></td>
<td>HIn Uniform(0.017, 0.033)</td>
<td>0</td>
<td>0</td>
<td>7%</td>
</tr>
<tr>
<td></td>
<td>Ent Uniform(0.038, 0.054)</td>
<td>0</td>
<td>0</td>
<td>7%</td>
</tr>
<tr>
<td></td>
<td>TobP Uniform(0.001, 0.010)</td>
<td>0</td>
<td>0</td>
<td>7%</td>
</tr>
<tr>
<td></td>
<td>others Uniform(0.061, 0.150)</td>
<td>0</td>
<td>0</td>
<td>7%</td>
</tr>
<tr>
<td></td>
<td>Saving $1 - \sum_{i=1}^{17} \text{percentage}_i$</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Utilized the consumption on each category divided by the after tax income, the percentage of each category’s expenditure was obtained. The percentages for each category from year 2000 to 2010 were fitted to an appropriate distribution. The average money spent by person with Bachelor’s Degree (BD) and with higher than BD was shown respectively in the report, and as well as the all consumers units. Uniform distribution was considered to be utilized in this case. A summary of the
The incomes were estimated as normally distributed with the sample mean and variance.

The persons with a degree higher than BD had both larger mean and variance if the income distributions compared to the persons only holding a BD. The other column should be the same based on the consistent policy.

There was also a summary of all consumers’ data, which was not only including the consumer who was a college graduate but also including the consumer who was not a college graduate. The mean of their incomes’ distribution was smaller than the above two means, but the variance was larger than the above two variances.

Table 4.3 The summary of data for all consumers units

<table>
<thead>
<tr>
<th>Income before Taxes</th>
<th>Expenditures Categories</th>
<th>Percentages</th>
<th>Consumptions including Taxes</th>
<th>Sales Tax Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal Distribution (mean, variance) = Normal (56219, 49415145)</td>
<td>FemaleH</td>
<td>Uniform(0.057,0.073)</td>
<td>Percentage (\times) IncomeAfterTax</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>FemaleAH</td>
<td>Uniform(0.041,0.051)</td>
<td>7%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ABev</td>
<td>Uniform(0.007,0.009)</td>
<td>7%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OHou</td>
<td>Uniform(0.102,0.112)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RHou</td>
<td>Uniform(0.042,0.049)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HR&M</td>
<td>Uniform(0.122,0.137)</td>
<td>7%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Utilities</td>
<td>Uniform(0.056,0.062)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cloths</td>
<td>Uniform(0.028,0.045)</td>
<td>7%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NVeh</td>
<td>Uniform(0.020,0.042)</td>
<td>7%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UVeh</td>
<td>Uniform(0.021,0.043)</td>
<td>7%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gasoline</td>
<td>Uniform(0.026,0.044)</td>
<td>7%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VehIns</td>
<td>Uniform(0.015,0.019)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HeIns</td>
<td>Uniform(0.021,0.026)</td>
<td>7%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HIns</td>
<td>Uniform(0.024,0.030)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ent</td>
<td>Uniform(0.041,0.046)</td>
<td>7%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TobP</td>
<td>Uniform(0.005,0.008)</td>
<td>7%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>others</td>
<td>Uniform(0.013,0.108)</td>
<td>7%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Saving</td>
<td>(1 - \sum_{i=1}^{N} percentage_i)</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

The distributions shown in Table 4.3 were utilized for the normal consumers who were not specified by their education levels. The other columns were still kept the same according by the tax policy. For real estates, there was no sales tax but the
mortgage tax stamp and deed taxes. In the first year, when a vehicle was bought, sales taxes should be paid. The tax rate for vehicle was about 7%. As well, motor vehicle taxation should be paid to the government every year for the motor vehicles owned. For the food away home and alcohol beverages, there was also occupation taxes except sales taxes, and the sales taxes were on the sales prices added the occupation taxes on it. The occupation taxes rate were 2.5% in Nebraska, and the occupation taxes were remitted to the city. The sales taxes rate was 7%, and the sales taxes were remitted to Nebraska Department of Revenue.

Table 4.4 Federal income tax brackets for singles in 2011

<table>
<thead>
<tr>
<th>Marginal Tax Rate</th>
<th>Tax Brackets</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0%</td>
<td>$</td>
<td>0 $</td>
<td>8,500</td>
</tr>
<tr>
<td>15.0%</td>
<td>$ 8,500</td>
<td>$ 34,500</td>
<td></td>
</tr>
<tr>
<td>25.0%</td>
<td>$ 34,500</td>
<td>$ 83,600</td>
<td></td>
</tr>
<tr>
<td>28.0%</td>
<td>$ 83,600</td>
<td>$ 174,400</td>
<td></td>
</tr>
<tr>
<td>33.0%</td>
<td>$ 174,400</td>
<td>$ 379,150</td>
<td></td>
</tr>
<tr>
<td>35.0%</td>
<td>$ 379,150</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In this example, the consumers were assumed to be single to simplify the analysis, and the income tax policy for singles in 2011 was utilized. The federal income tax brackets were shown in Table 4.4. The state income tax brackets were shown in Table 4.5. So the effective tax rates can be calculated as shown in Table 4.1, Table 4.2, and Table 4.3. The federal income taxes and the state income taxes can be calculated separately, and the income taxes were the sum of the two parts. Half of the direct expenditures were estimated to be paid to the employees working at the corresponding places in the example. The indirect contribution of an individual was realized in the “while” loop. The indirect contributions would not be added if the increased expenditures of the workers were less than 1% of the individual’s income.
In the loop, the percentages of expenditures were obtained from the distributions for all consumers units, which were not specified by different characteristics.

Table 4.5 State income tax brackets in 2011

<table>
<thead>
<tr>
<th>Effective Tax Rate</th>
<th>Tax Brackets</th>
<th>Over</th>
<th>But Not over</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.56%</td>
<td>$0</td>
<td>$2,400</td>
<td></td>
</tr>
<tr>
<td>3.57%</td>
<td>$2,400</td>
<td>$17,500</td>
<td></td>
</tr>
<tr>
<td>5.12%</td>
<td>$17,500</td>
<td>$27,000</td>
<td></td>
</tr>
<tr>
<td>6.84%</td>
<td>$27,000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

There was an example to show the cash flows about a restaurant for a consumer with a bachelor's degree in Figure 4.2.

Figure 4.2 Cash flows about restaurant for a consumer with a bachelor's degree
One individual can have 18 categories of expenditures including saving, and the employees in the restaurant can get parts of the money as the source of their incomes. The employees would also have those 18 categories of expenditures, and sales tax revenues can be obtained from them as the indirect contributions from the individual. Each employee had those 18 categories of expenditures, and a tree for the expenditures level by level can be created.

All taxes were added together as the contribution of an individual to the government. As shown, the individuals were sorted out by holding BD or higher degree. The impact was indicated as the ratio of the contributions, the ratio of the difference of the contributions and the difference of the income, and the difference between the taxes.

\[
\begin{align*}
impact1 &= \frac{tax1}{tax0} \\
impact2 &= \frac{(tax1 - tax0)}{(income1 - income0)} \\
impact3 &= tax1 - tax0
\end{align*}
\]

where 1 indicated the parameters were for an individual holding higher degree than BD, and 0 indicated the parameters were for an individual holding BD. The results of impacts were shown in Table 4.6 for the total 10 trials.

Because the amount on the consumptions generated in the program was the total amount paid by the individual, if there were sales taxes for the consumptions, and the amount was "C", the sales taxes would be

\[
SalesTaxes = 0.07 \times \frac{C}{1.07}.
\]

For the food away home and alcohol beverage items, the sales taxes were on the sales prices added by the occupation taxes, so the sales taxes calculated would be

\[
SalesTaxes = 0.07 \times 1.025 \times \frac{C}{1.025 \times 1.07} = 0.07 \times \frac{C}{1.07}.
\]
The mean of impact1 was 1.41, and the variance was 0.166. The mean of impact2 was 0.24 with the variance 0.00017. The average difference between taxes was 6125 dollars and the variance was 2.46×10^7. The contributions from an individual with higher degree than BD were increased by 1.41 compared with an individual with BD. With 1 increased for their incomes, 0.24 was expected to be increased as the contribution to the government.

Table 4.6 Summary of the results

<table>
<thead>
<tr>
<th></th>
<th>Income Taxes ($)</th>
<th>Sales Taxes ($)</th>
<th>Taxes ($)</th>
<th>Impact 1</th>
<th>Impact 2</th>
<th>Impact 3 ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BD (0)</td>
<td>Higher (1)</td>
<td>BD (0)</td>
<td>Higher (1)</td>
<td>BD (0)</td>
<td>Higher (1)</td>
</tr>
<tr>
<td>1</td>
<td>12140</td>
<td>16761</td>
<td>3335</td>
<td>4564</td>
<td>15475</td>
<td>21325</td>
</tr>
<tr>
<td>2</td>
<td>8470</td>
<td>20074</td>
<td>2499</td>
<td>5511</td>
<td>10969</td>
<td>25585</td>
</tr>
<tr>
<td>3</td>
<td>13801</td>
<td>15302</td>
<td>3805</td>
<td>4081</td>
<td>17606</td>
<td>19383</td>
</tr>
<tr>
<td>4</td>
<td>14284</td>
<td>25365</td>
<td>3950</td>
<td>6785</td>
<td>18233</td>
<td>32150</td>
</tr>
<tr>
<td>5</td>
<td>10015</td>
<td>16943</td>
<td>2790</td>
<td>4581</td>
<td>12805</td>
<td>21524</td>
</tr>
<tr>
<td>6</td>
<td>16973</td>
<td>17852</td>
<td>4785</td>
<td>4910</td>
<td>21757</td>
<td>22762</td>
</tr>
<tr>
<td>7</td>
<td>16968</td>
<td>21312</td>
<td>4593</td>
<td>5793</td>
<td>21561</td>
<td>27104</td>
</tr>
<tr>
<td>8</td>
<td>13316</td>
<td>17654</td>
<td>3743</td>
<td>4947</td>
<td>17058</td>
<td>22601</td>
</tr>
<tr>
<td>9</td>
<td>14402</td>
<td>17091</td>
<td>3961</td>
<td>4901</td>
<td>18363</td>
<td>21992</td>
</tr>
<tr>
<td>10</td>
<td>13948</td>
<td>14416</td>
<td>3869</td>
<td>4053</td>
<td>17817</td>
<td>18469</td>
</tr>
</tbody>
</table>

There were three outputs in the basic model. The outputs of the impacts (Impact1, Impact2, and Impact3) were selected to provide rapid and discrete comparison between the bachelor's degree and the advanced degree.

For example, a $21,000 annual raise for a person holding a Master’s Degree (MD) can result in approximately $5,040 per year in more total taxes. The taxes here were combined of federal taxes and state taxes together and they were estimated as the values in the state of Nebraska. Using a 5% cost of money and assuming the tax receipts being constant, the present worth of the taxes along \(n \) years can be estimated as
\[PW = A(P / A, i, n) = A \frac{(1 + i)^n - 1}{i(1 + i)^n} \]

where \(i \) was the interest rate, and \(A \) was the annuity amount each year.

Assume a student to obtain the MD were spent $30,000 more by the government which was appropriately one third of the total costs on the degree, which was a present value. The government can be repaid in 8 years, which was got by solving

\[
30000 = 5040 \times (P / A, 5\%, n).
\]

Normally in the real world, the individual income always can be grown year by year. The raise of the income can shorten the payback period, since there were more taxes paid to the government. It can be estimated by modeling the situation along the time. If a consistent rate of the taxes’ growth paid to the government was assumed to be 3\%, utilizing geometric gradient method, the payback period can be estimated by solving

\[
PW = A_1 \frac{1 - (1 + j)^n (1 + i)^{-n}}{i - j},
\]

where \(PW = 30000 \), \(A_1 = 5040 \), \(i = 5\% \), and \(j = 3\% \). The government can be repaid in approximately 7 years, which was one year early.

4.3 Model for the Whole Life of Career

Based on the basic model in Section 4.2, the whole life of career can be simulated. Every 10 years were categorized as one stage. The first stage was in the period less than 25 years old, the second stage was in the period from 25 years old to 34 years old, and the third stage was in the period from 35 years old to 44 years old, and so on. The last stage of the career was defined as the period from 55 years old to 64 years old.
The individuals only with bachelor's degree would begin their career life from 22 years old, and the individuals with higher degree would start their career life from 25 year old. The initial incomes of different groups of people were from different distributions, and the income would be changed every stage by a rate obtained from a corresponding distribution. The distributions of percentages for each consumption category were different in different stages, and the distributions were simulated from the historical data. The annual taxes can be obtained for each year. Using the economic principle, the difference of the present worth of total taxes can be calculated to indicate the economic impact.

The taxes received by the government each year were obtained utilizing the method shown in Section 4.2. The present worth of the taxes received for the whole life of careers can be calculated based on the taxes received each year and the effective annual interest rate.

\[PW = \sum Tax_n \cdot (1 + i)^{-n}, \]

where PW was the net present worth of the taxes received each year, Tax, was the taxes received in the \(n \)th year, and i was the effective annual interest rate.

The economic impact for the whole life of careers was based on the present worth of the taxes. The difference of the present worth between the individual who only received a bachelor's degree and the individual who received a higher degree was utilized to indicate the impact of the higher than bachelor degree.

4.4 Tax Rates Changing

In the example, the individuals were assumed to be single and the income tax rates in 2011 for singles were utilized.

Income tax rates vary depending upon the filing status of the taxpayer. The five categories of filing status were single, married filling a joint return, married filling
separate returns, head of household, and qualifying widower with dependent child. In the future study, these five categories should be included in the model, either as the factor which might affect the contribution, or as the structure of all individuals no contribution on the impacts.

As studies, the tax rates can be changed caused by time or other factors, such as to increase the income of the government, to stimulate consumptions, to stimulate investments. By changing the tax rates or tax policy, the corresponding impacts can be estimated. For example, if the government decreased the income tax rates, there would be more expenditure in the market. For the government, income taxes were reduced but sales taxes should be increased. It was difficult to conclude whether it was beneficial or not for the government’s income.

4.5 Sensitivity Analysis

Sensitivity analysis should be conducted by changing the range of corresponding parameters. The parameters would include the percentage of direct expenditures paying to the workers, and the condition to stop the indirect contributions in the basic model. There was one more parameters changed in the whole career life model, which was the effective annual interest rate utilized for the present worth.

The method to show the sensitivity analysis was the figures of the corresponding indicators changed with the changes of the parameters. If the indicator was changed significantly with the changes of one parameter, the parameter was sensitive for this indicator. If there was no significant shift to the indicator with the changes of the parameter, the parameter was inferred to be insensitive for the parameter.
Chapter 5 Input Modeling

Input models can provide the driving force for a simulation. In the simulation in this research, the input models included the distributions of salaries for different groups of people, percentages of salaries changed from one stage to another, and percentages of expenditures on different categories of consumptions for different groups of people. The resources of the historical data collected were shown in Chapter 4. The models were developed from the data so that simulation can randomly select from the distribution with given parameters.

5.1 Input models for the salaries of different groups of individuals

The input analysis in Arena (Banks, 2009) was utilized to obtain the distributions of history data. The history data included the individual salaries and individual expenditures. Input Analyzer can identify the distributions with data.

![Histogram of the individuals' salaries with bachelor's degree](image)

Figure 5.1 Histogram of the individuals' salaries with bachelor's degree

As indicated by Input Analyzer, different distributions from the census reports were fitted for the salary data of all individuals disregarding their majors who only received bachelor's degree. The histogram to present history data of their salaries was shown in Figure 5.1, and the squared errors for different distributions were shown in Table 5.1.
There were 9650 data points for the individuals’ salaries with bachelor’s degree. The range of their salary was from 1×10^4 dollars to 1.5×10^5 dollars per year. The sample mean of them was 3.41×10^4 dollars per year, and the standard deviation was 1.22×10^4.

Table 5.1 Squared error of different distributions for all bachelor' salaries

<table>
<thead>
<tr>
<th>Functions</th>
<th>Squared Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta</td>
<td>0.00619</td>
</tr>
<tr>
<td>Gamma</td>
<td>0.00816</td>
</tr>
<tr>
<td>Normal</td>
<td>0.00966</td>
</tr>
<tr>
<td>Weibull</td>
<td>0.01250</td>
</tr>
<tr>
<td>Lognormal</td>
<td>0.02850</td>
</tr>
<tr>
<td>Triangular</td>
<td>0.04600</td>
</tr>
<tr>
<td>Exponential</td>
<td>0.04860</td>
</tr>
<tr>
<td>Uniform</td>
<td>0.06950</td>
</tr>
</tbody>
</table>

As seen in Table 5.1, the best distribution with smallest squared error (0.00619) was $1 \times 10^4 + 1.4 \times 10^5 \times BETA(3.63,18.1)$ dollars, where 3.63 was the α value and 18.1 was the β value of the beta distribution.

Figure 5.2 Histogram of the individuals' salaries with higher degree
In the database indicated in Figure 5.2, there were 5837 data points for the individuals' salaries with higher than bachelor's degree disregarding the majors. The range of their salary was from 1×10^4 dollars to 1.8×10^5 dollars per year. The sample mean of them was 4.63×10^4 dollars per year, and the standard deviation was 2×10^4.

Table 5.2 Squared errors of different distributions for all individuals' salaries with higher degree

<table>
<thead>
<tr>
<th>Functions</th>
<th>Squared Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta</td>
<td>0.00494</td>
</tr>
<tr>
<td>Gamma</td>
<td>0.00505</td>
</tr>
<tr>
<td>Weibull</td>
<td>0.01190</td>
</tr>
<tr>
<td>Normal</td>
<td>0.01320</td>
</tr>
<tr>
<td>Lognormal</td>
<td>0.01720</td>
</tr>
<tr>
<td>Triangular</td>
<td>0.03680</td>
</tr>
<tr>
<td>Exponential</td>
<td>0.04340</td>
</tr>
<tr>
<td>Uniform</td>
<td>0.05660</td>
</tr>
</tbody>
</table>

As shown in Table 5.2, the best distribution for all individuals who had higher degree than bachelor's with smallest squared error (0.00494) was $1 \times 10^4 + 1.7 \times 10^5 \times BETA(3.73,13.7)$ dollars, where 3.73 was the α value and 18.1 was the β value of the beta distribution.

Table 5.3 Squared errors of different distributions for bachelor' salaries major in engineering

<table>
<thead>
<tr>
<th>Functions</th>
<th>Squared Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>0.00410</td>
</tr>
<tr>
<td>Beta</td>
<td>0.00438</td>
</tr>
<tr>
<td>Gamma</td>
<td>0.00589</td>
</tr>
<tr>
<td>Weibull</td>
<td>0.01150</td>
</tr>
<tr>
<td>Lognormal</td>
<td>0.02310</td>
</tr>
<tr>
<td>Triangular</td>
<td>0.04960</td>
</tr>
<tr>
<td>Exponential</td>
<td>0.07620</td>
</tr>
<tr>
<td>Uniform</td>
<td>0.07840</td>
</tr>
</tbody>
</table>

After distributions fitted, the best distribution for individuals' salaries with bachelor's degrees was a normal distribution, and the parameters were shown in Table 5.3. As
seen, the distribution with smallest squared error was a normal distribution with the mean being 4.54×10^4 and the standard deviation being 1.03×10^4.

![Histogram of the individuals' salaries with bachelor's degree major in engineering](image)

Figure 5.3 Histogram of the individuals' salaries with bachelor's degree major in engineering

The histogram was shown in Figure 5.3. The minimum salary for them was 1.2×10^4 dollars per year, and the maximum salary was 1.47×10^5 dollars per year for the individuals who just received bachelor's degrees.

Table 5.4 Squared errors of different distributions for individuals' salaries with higher degrees major in engineering

<table>
<thead>
<tr>
<th>Functions</th>
<th>Squared Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>0.00652</td>
</tr>
<tr>
<td>Beta</td>
<td>0.00776</td>
</tr>
<tr>
<td>Weibull</td>
<td>0.00856</td>
</tr>
<tr>
<td>Gamma</td>
<td>0.01190</td>
</tr>
<tr>
<td>Triangular</td>
<td>0.02060</td>
</tr>
<tr>
<td>Lognormal</td>
<td>0.04000</td>
</tr>
<tr>
<td>Uniform</td>
<td>0.05370</td>
</tr>
<tr>
<td>Exponential</td>
<td>0.06190</td>
</tr>
</tbody>
</table>
The best distribution fitted for the annual salaries of individuals with higher degrees major in engineering was also a normal distribution with the smallest squared error equaling 0.00652. As seen in Table 5.4, the square error of the normal distribution was less than the others, and 0.00028 less than the second best distribution, the Beta distribution. There were 510 data points, and the minimum data value was 1.6×10^4 dollars each year. The maximum data value was 1.2×10^5 dollars each year. The maximum data value for the individuals with higher degrees was a little less than the maximum data value for the individuals with bachelor's degrees.

![Figure 5.4 Histogram of the individuals' salaries with higher degrees major in engineering](image)

Figure 5.4 Histogram of the individuals' salaries with higher degrees major in engineering

As indicated in Figure 5.4, the normal distribution was with the mean being 5.31×10^4 and the standard deviation being 1.56×10^4.
5.2 Input models for the percentages of salaries changed from one stage to another

The individuals’ salaries were fitted, and the distributions utilized were shown in Section 5.1. They were the same as the distributions utilized here to generate the initial salaries when he/she went into the career. The whole life of career was divided into five stages. The first stage was for the individual's age less than 25 years. The second stage was for the age from 25 years to 34 years. The third stage was for the age from 35 to 44 years. The fourth stage was for the age from 45 to 54 years. And the fifth stage was for the age from 55 to 64 years. An individual was estimated to retire when he/she became 65 years old, and the career was ended. For an individual who just received a bachelor's degree, it was normal to graduate at 22 years old, so the first stage was for the individual's age from 22 to 24 years. For an individual who received a higher degree, the earliest date to graduate was estimated to be 25 years old, so there were zero years in the first stage.

When the individual started the career, the salary may be changed year by year. In this research, the changes were estimated stage by stage. History data were analyzed and fitted to find a proper distribution to simulate its changes. Since there were only three years in the first stage for the individuals who received bachelor's degrees, the change from the first stage to the second one was ignored in the analysis to keep the consistence between the individuals with bachelor's degrees and with higher than bachelor's degrees. The education level was ignored to analyze the changes of salaries. There were 11 data points for every change to be fitted, and the history data were from 2000 to 2010.
Figure 5.5 Changes from the 2nd to the 3rd stage

As seen in Figure 5.5, the distribution followed by the changes of salaries from the second stage to the third was triangular (1.17, 1.29, 1.36) with the smallest square error being 0.00514.

Figure 5.6 Changes from the 3rd to the 4th stage

As indicated in Figure 5.6, the proper distribution utilized for the changes of salaries from the third stage to the fourth was 1+gamma (0.00938, 5.65) with the smallest
square error being 0.0170. In the gamma distribution, the rate parameter β was 0.00938, and 5.65 was the shape parameter α.

As shown in Figure 5.7, the distribution followed for the changes of salaries from the fourth stage to the fifth stage can be $0.81+0.08 \times \text{beta}(1.23, 0.986)$ with the smallest square error being 0.0343.

5.3 Input models for the percentages of expenditures

The expenditures distributions should be analyzed for different groups of people. For every distribution, there were 11 data points. Each data point indicated the average percentage per person of expenditures for the corresponding category in that year. The data points were for the years from 2000 to 2010 for each distribution.

The results for different groups of individuals categorized by their education levels were shown in Table 5.5, Table 5.6, and Table 5.7. Each set of data were fitted for the following common distributions including Exponential, Beta, Lognormal, Weibull, Gamma, Normal, Triangular, and Uniform distributions. The distribution with smallest squared error was selected to be utilized in the simulation model.
Table 5.5 Expenditures' Distributions fitted for the persons with Bachelor's Degree

<table>
<thead>
<tr>
<th>Categories</th>
<th>Distributions Selected</th>
<th>Squared Error</th>
<th>Histograms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food at Home</td>
<td>0.04+Exponential(0.014)</td>
<td>0.0444</td>
<td></td>
</tr>
<tr>
<td>Food away Home</td>
<td>0.03+Weibull(0.0159,5.29)</td>
<td>0.00174</td>
<td></td>
</tr>
<tr>
<td>Alcohol Beverage</td>
<td>Weibull(0.00868,10.4)</td>
<td>0.0117</td>
<td></td>
</tr>
<tr>
<td>Owned House</td>
<td>0.09+Lognormal(0.0374,0.0205)</td>
<td>0.0655</td>
<td></td>
</tr>
<tr>
<td>Rented House</td>
<td>0.02+Lognormal(0.0183,0.00978)</td>
<td>0.0194</td>
<td></td>
</tr>
<tr>
<td>House Repair & Maintenance</td>
<td>Triangular(0.04,0.11,0.14)</td>
<td>0.232</td>
<td></td>
</tr>
<tr>
<td>Utilities</td>
<td>0.04+0.06*Beta(0.406,1.93)</td>
<td>0.0466</td>
<td></td>
</tr>
<tr>
<td>Cloths</td>
<td>0.02+Lognormal(0.0131,0.0049)</td>
<td>0.0272</td>
<td></td>
</tr>
<tr>
<td>New Vehicle</td>
<td>Triangular(0.02,0.023,0.05)</td>
<td>0.0784</td>
<td></td>
</tr>
<tr>
<td>Used Vehicle</td>
<td>0.01+Lognormal(0.0151,0.00798)</td>
<td>0.0428</td>
<td></td>
</tr>
<tr>
<td>Gasoline</td>
<td>0.01+Lognormal(0.0187,0.00736)</td>
<td>0.0502</td>
<td></td>
</tr>
<tr>
<td>Vehicle Insurance</td>
<td>0.01+Lognormal(0.00519,0.00243)</td>
<td>0.0160</td>
<td></td>
</tr>
<tr>
<td>Healthcare excluding Insurance</td>
<td>0.01+Lognormal(0.011,0.00199)</td>
<td>0.0336</td>
<td></td>
</tr>
<tr>
<td>Health Insurance</td>
<td>0.01+Lognormal(0.0126,0.00368)</td>
<td>0.0197</td>
<td></td>
</tr>
<tr>
<td>Entertainment</td>
<td>0.03+Lognormal(0.0129,0.00302)</td>
<td>0.0498</td>
<td></td>
</tr>
<tr>
<td>Tobacco Product</td>
<td>Lognormal(0.00311,0.00149)</td>
<td>0.0658</td>
<td></td>
</tr>
<tr>
<td>Other Expenditures</td>
<td>0.02+Weibull(0.104,5.18)</td>
<td>0.0572</td>
<td></td>
</tr>
</tbody>
</table>
Table 5.6 Expenditures' Distributions fitted for the persons with Higher Degree

<table>
<thead>
<tr>
<th>Categories</th>
<th>Distributions with Parameters</th>
<th>Squared Error</th>
<th>Histograms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food at Home</td>
<td>0.03+Lognormal(0.015,0.00571)</td>
<td>0.0615</td>
<td></td>
</tr>
<tr>
<td>Food away Home</td>
<td>Normal(0.0405,0.00292)</td>
<td>0.00296</td>
<td></td>
</tr>
<tr>
<td>Alcohol Beverage</td>
<td>0.01*Beta(7.51,3.12248)</td>
<td>0.0211</td>
<td></td>
</tr>
<tr>
<td>Owned House</td>
<td>0.1+Lognormal(0.0202,0.016)</td>
<td>0.0454</td>
<td></td>
</tr>
<tr>
<td>Rented House</td>
<td>0.01+Lognormal(0.0162,0.00656)</td>
<td>0.150</td>
<td></td>
</tr>
<tr>
<td>House Repair & Maintenance</td>
<td>Triangular(0.06,0.109,0.13)</td>
<td>0.232</td>
<td></td>
</tr>
<tr>
<td>Utilities</td>
<td>0.03+Exponential(0.0126)</td>
<td>0.0279</td>
<td></td>
</tr>
<tr>
<td>Cloths</td>
<td>0.01+Lognormal(0.0186,0.00538)</td>
<td>0.00559</td>
<td></td>
</tr>
<tr>
<td>New Vehicle</td>
<td>0.01+0.03*Beta(3.53,2.7)</td>
<td>0.0112</td>
<td></td>
</tr>
<tr>
<td>Used Vehicle</td>
<td>0.04*Beta(5.63,6.74544)</td>
<td>0.0339</td>
<td></td>
</tr>
<tr>
<td>Gasoline</td>
<td>0.01+Lognormal(0.0134,0.00647)</td>
<td>0.0347</td>
<td></td>
</tr>
<tr>
<td>Vehicle Insurance</td>
<td>0.03*Beta(11.7,13.9954)</td>
<td>0.0312</td>
<td></td>
</tr>
<tr>
<td>Healthcare excluding Insurance</td>
<td>0.01+Lognormal(0.00989,0.00157)</td>
<td>0.0185</td>
<td></td>
</tr>
<tr>
<td>Health Insurance</td>
<td>0.01+Lognormal(0.0106,0.00371)</td>
<td>0.0209</td>
<td></td>
</tr>
<tr>
<td>Entertainment</td>
<td>0.03+Lognormal(0.0109,0.00315)</td>
<td>0.149</td>
<td></td>
</tr>
<tr>
<td>Tobacco Product</td>
<td>Lognormal(0.00191,0.00127)</td>
<td>0.0120</td>
<td></td>
</tr>
<tr>
<td>Other Expenditures</td>
<td>0.05+Weibull(0.0882,4.74)</td>
<td>0.0664</td>
<td></td>
</tr>
</tbody>
</table>
Table 5.7 Expenditures' Distributions fitted for the all persons ignoring their education level

<table>
<thead>
<tr>
<th>Categories</th>
<th>Distributions with Parameters</th>
<th>Squared Error</th>
<th>Histograms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food at Home</td>
<td>0.05+Lognormal(0.013,0.00467)</td>
<td>0.0269</td>
<td></td>
</tr>
<tr>
<td>Food away Home</td>
<td>0.04+0.02*Beta(2.42,5.5)</td>
<td>0.0196</td>
<td></td>
</tr>
<tr>
<td>Alcohol Beverage</td>
<td>0.01*Beta(26.3,7.18603)</td>
<td>0.000399</td>
<td></td>
</tr>
<tr>
<td>Owned House</td>
<td>Normal(0.108,0.00323)</td>
<td>0.0627</td>
<td></td>
</tr>
<tr>
<td>Rented House</td>
<td>Triangular(0.04,0.047,0.05)</td>
<td>0.00334</td>
<td></td>
</tr>
<tr>
<td>House Repair & Maintenance</td>
<td>0.12+Exponential(0.00559)</td>
<td>0.0214</td>
<td></td>
</tr>
<tr>
<td>Utilities</td>
<td>0.05+Lognormal(0.00859,0.0018)</td>
<td>0.0145</td>
<td></td>
</tr>
<tr>
<td>Cloths</td>
<td>0.02+Lognormal(0.0138,0.00477)</td>
<td>0.00745</td>
<td></td>
</tr>
<tr>
<td>New Vehicle</td>
<td>0.01+0.04*Beta(2.85,2.53)</td>
<td>0.0532</td>
<td></td>
</tr>
<tr>
<td>Used Vehicle</td>
<td>0.01+Lognormal(0.0201,0.00793)</td>
<td>0.00424</td>
<td></td>
</tr>
<tr>
<td>Gasoline</td>
<td>0.02+Lognormal(0.0136,0.00565)</td>
<td>0.0314</td>
<td></td>
</tr>
<tr>
<td>Vehicle Insurance</td>
<td>0.01+0.01*Beta(8.86,2.66)</td>
<td>0.0171</td>
<td></td>
</tr>
<tr>
<td>Healthcare excluding Insurance</td>
<td>0.02+0.01*Beta(2.43,4.91)</td>
<td>0.00805</td>
<td></td>
</tr>
<tr>
<td>Health Insurance</td>
<td>0.02+Weibull(0.00659,3.02)</td>
<td>0.000641</td>
<td></td>
</tr>
<tr>
<td>Entertainment</td>
<td>Normal(0.0434,0.0015)</td>
<td>0.0414</td>
<td></td>
</tr>
<tr>
<td>Tobacco Product</td>
<td>0.01*Beta(19.9,13.4509)</td>
<td>0.0351</td>
<td></td>
</tr>
<tr>
<td>Other Expenditures</td>
<td>0.09+Lognormal(0.0115,0.00465)</td>
<td>0.0574</td>
<td></td>
</tr>
</tbody>
</table>
The parameter in the exponential distribution generated by Input Analyzer was the mean value. For example, in Table 5.5, the preferred distribution for Food at Home was 0.04+Exponential (0.014), which meant the percentage of expenditures for Food at Home was the sum of 0.04 and a random number generated from an exponential distribution with the mean being 0.014.

The parameters in the normal distribution generated by Input Analyzer were the mean, μ, and the standard deviation, σ. For example, in Table 5.6, the percentage of expenditures for Food away Home was generated randomly from a normal distribution with $\mu = 0.0405$ and $\sigma = 0.00296$, recorded as Normal (0.0405, 0.00296).

The parameters in the triangular distribution were the lower limit, a, the upper limit, b, and the mode, c. For example, in Table 5.5, the percentage of expenditures for House Repair & Maintenance was generated randomly from Triangular (0.04, 0.11, 0.14), where $a = 0.04$, $b = 0.14$, and $c = 0.11$.

Table 5.8 Transaction from Input Analyzer to Matlab for Weibull distributions

<table>
<thead>
<tr>
<th>Groups of Persons</th>
<th>Categories</th>
<th>Expressions</th>
<th>Matlab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bachelor's Degree</td>
<td>Food away Home</td>
<td>0.03+Weibull(0.0159,5.29)</td>
<td>0.03+Weibrnd(3.27×10^9,5.29)</td>
</tr>
<tr>
<td></td>
<td>Alcohol Beverage</td>
<td>Weibull(0.00868,10.4)</td>
<td>Weibrnd(2.75×10^{21},10.4)</td>
</tr>
<tr>
<td></td>
<td>Other Expenditures</td>
<td>0.02+Weibull(0.104,5.18)</td>
<td>0.02+Weibrnd(1.24×10^{5},5.18)</td>
</tr>
<tr>
<td>Higher Degree</td>
<td>Other Expenditures</td>
<td>0.05+Weibull(0.0882,4.74)</td>
<td>0.05+Weibrnd(9.97×10^4,4.74)</td>
</tr>
<tr>
<td>All Persons</td>
<td>Health Insurance</td>
<td>0.02+Weibull(0.00659,3.02)</td>
<td>0.02+Weibrnd(3.86×10^5,3.02)</td>
</tr>
</tbody>
</table>

The parameters in the beta distribution were the two positive shape parameters, typically denoted by α and β. The expected value can be presented as $\frac{\alpha}{\alpha + \beta}$, and the
variance can be \(\frac{\alpha \beta}{(\alpha + \beta)^2(\alpha + \beta + 1)} \). For example, in Table 5.5, the percentage of expenditures for Utilities would be generated based on a random number from a beta distribution with \(\alpha = 0.406 \) and \(\beta = 1.93 \), and it equaled the sum of 0.04 and the random number multiplied by 0.06.

The parameters in the Weibull distribution were the shape parameter (k) and the scale parameter (\(\lambda \)). The mean of the distribution can be shown as \(E(x) = \lambda \Gamma(1 + 1/k) \), and the variance was \(Var(x) = \lambda^2 \Gamma(1 + 2/k) - E^2(x) \). For example, in Table 5.5, the percentage of expenditures for Food away Home can be generated from the equation 0.03+Weibull (0.0159, 5.29). A random number in the expression was from the Weibull distribution with \(\lambda = 0.0159 \) and \(k = 5.29 \). But the parameters in the expression for Weibull distributions, "weibrnd (A, B)", in Matlab were different from the parameters in Input Analyzer of Arena. The value of B equaled the value of k, and the value of A can be expressed as \(A = (1/\lambda)^k \).

Utilizing the same example, the expression in Matlab should be weibrnd \((3.27 \times 10^9, 5.29) \) shown in Table 5.8.

The parameters in the lognormal distribution were the mean value (E) and the standard deviation (S.D.). For example, the percentage of expenditures for Owned House in Table 5.5 was fitted as 0.09+Lognormal (0.0374, 0.0205). It indicated that the percentage would equal the sum of 0.09 and a random number from a lognormal distribution with the mean being 0.0374 and the standard deviation being 0.0205. However, the parameters in Matlab to generate a random number from a lognormal distribution were the mean (\(\mu \)) and the standard deviation (\(\sigma \)) in the corresponding normal distribution.
Table 5.9 Transaction from Input Analyzer to Matlab for Lognormal Dist.

<table>
<thead>
<tr>
<th>Groups of Persons</th>
<th>Categories</th>
<th>Expressions</th>
<th>Input Analyzer</th>
<th>Matlab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bachelor's Degree</td>
<td>Owned House</td>
<td>0.09+Lognormal(0.0374,0.0205)</td>
<td>0.09+Lognrnd(-3.42,0.513)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rented House</td>
<td>0.02+Lognormal(0.0183,0.00978)</td>
<td>0.02+Lognrnd(-4.13,0.501)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cloths</td>
<td>0.02+Lognormal(0.0131,0.0049)</td>
<td>0.02+Lognrnd(-4.40,0.362)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Used Vehicle</td>
<td>0.01+Lognormal(0.0151,0.00798)</td>
<td>0.01+Lognrnd(-4.32,0.496)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gasoline</td>
<td>0.01+Lognormal(0.0187,0.00736)</td>
<td>0.01+Lognrnd(-4.05,0.380)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vehicle Insurance</td>
<td>0.01+Lognormal(0.00519,0.00243)</td>
<td>0.01+Lognrnd(-5.36,0.445)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Healthcare ex. Insurance</td>
<td>0.01+Lognormal(0.011,0.00199)</td>
<td>0.01+Lognrnd(-4.53,0.179)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Health Insurance</td>
<td>0.01+Lognormal(0.0126,0.00368)</td>
<td>0.01+Lognrnd(-4.41,0.286)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Entertainment</td>
<td>0.03+Lognormal(0.0129,0.00302)</td>
<td>0.03+Lognrnd(-4.38,0.231)</td>
<td></td>
</tr>
<tr>
<td>Tobacco Products</td>
<td></td>
<td>Lognormal(0.00311,0.00149)</td>
<td>Lognrnd(-5.88,0.455)</td>
<td></td>
</tr>
<tr>
<td>Higher Degree</td>
<td>Food at Home</td>
<td>0.03+Lognormal(0.015,0.00571)</td>
<td>0.03+Lognrnd(-4.27,0.368)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Owned House</td>
<td>0.1+Lognormal(0.0202,0.016)</td>
<td>0.1+Lognrnd(-4.15,0.698)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rented House</td>
<td>0.01+Lognormal(0.0162,0.00656)</td>
<td>0.01+Lognrnd(-4.20,0.390)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cloths</td>
<td>0.01+Lognormal(0.0186,0.00538)</td>
<td>0.01+Lognrnd(-4.02,0.283)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gasoline</td>
<td>0.01+Lognormal(0.0134,0.00647)</td>
<td>0.01+Lognrnd(-4.42,0.458)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Healthcare ex. Insurance</td>
<td>0.01+Lognormal(0.00989,0.00157)</td>
<td>0.01+Lognrnd(-4.63,0.158)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Health Insurance</td>
<td>0.01+Lognormal(0.0106,0.00371)</td>
<td>0.01+Lognrnd(-4.60,0.340)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Entertainment</td>
<td>0.03+Lognormal(0.0109,0.00315)</td>
<td>0.03+Lognrnd(-4.56,0.283)</td>
<td></td>
</tr>
<tr>
<td>Tobacco Products</td>
<td></td>
<td>Lognormal(0.00191,0.00127)</td>
<td>Lognrnd(-6.44,0.605)</td>
<td></td>
</tr>
<tr>
<td>All Persons</td>
<td>Food at Home</td>
<td>0.05+Lognormal(0.013,0.00467)</td>
<td>0.05+Lognrnd(-4.40,0.348)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Utilities</td>
<td>0.05+Lognormal(0.00859,0.0018)</td>
<td>0.05+Lognrnd(-4.78,0.207)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cloths</td>
<td>0.02+Lognormal(0.0138,0.00477)</td>
<td>0.02+Lognrnd(-4.34,0.336)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Used Vehicle</td>
<td>0.01+Lognormal(0.0201,0.00793)</td>
<td>0.01+Lognrnd(-3.98,0.380)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gasoline</td>
<td>0.02+Lognormal(0.0136,0.00565)</td>
<td>0.02+Lognrnd(-4.38,0.399)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other expenditures</td>
<td>0.09+Lognormal(0.0115,0.00465)</td>
<td>0.09+Lognrnd(-4.54,0.389)</td>
<td></td>
</tr>
</tbody>
</table>
Table 5.10 Expenditures' Distributions for the all individuals younger than 25 years old

<table>
<thead>
<tr>
<th>Categories</th>
<th>Distributions with Parameters</th>
<th>Squared Error</th>
<th>Histograms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food at Home</td>
<td>Normal(0.0869,0.0117)</td>
<td>0.0516</td>
<td></td>
</tr>
<tr>
<td>Food away Home</td>
<td>0.01+Weibull(0.0681,4.72)</td>
<td>0.0896</td>
<td></td>
</tr>
<tr>
<td>Alcohol Beverage</td>
<td>0.01+Gamma(0.00147,5.42)</td>
<td>0.00946</td>
<td></td>
</tr>
<tr>
<td>Owned House</td>
<td>Triangular(0.03,0.0401,0.06)</td>
<td>0.0143</td>
<td></td>
</tr>
<tr>
<td>Rented House</td>
<td>Uniform(0.14,0.2)</td>
<td>0.122</td>
<td></td>
</tr>
<tr>
<td>House Repair & Maintenance</td>
<td>Normal(0.136,0.01)</td>
<td>0.0234</td>
<td></td>
</tr>
<tr>
<td>Utilities</td>
<td>0.05+0.03*Beta(13.2,12.7)</td>
<td>0.0279</td>
<td></td>
</tr>
<tr>
<td>Cloths</td>
<td>0.04+Gamma(0.00323,5.53)</td>
<td>0.00706</td>
<td></td>
</tr>
<tr>
<td>New Vehicle</td>
<td>Triangular(0,0.026,0.08)</td>
<td>0.00301</td>
<td></td>
</tr>
<tr>
<td>Used Vehicle</td>
<td>Triangular(0.02,0.0581,0.11)</td>
<td>0.00164</td>
<td></td>
</tr>
<tr>
<td>Gasoline</td>
<td>Normal(0.0518,0.00887)</td>
<td>0.0534</td>
<td></td>
</tr>
<tr>
<td>Vehicle Insurance</td>
<td>Triangular(0.01,0.0224,0.03)</td>
<td>0.0719</td>
<td></td>
</tr>
<tr>
<td>Healthcare excluding Insurance</td>
<td>Weibull(0.0143,7.06)</td>
<td>0.00178</td>
<td></td>
</tr>
<tr>
<td>Health Insurance</td>
<td>0.01+Weibull(0.00397,3.88)</td>
<td>0.00169</td>
<td></td>
</tr>
<tr>
<td>Entertainment</td>
<td>0.04+Lognormal(0.0119,0.00549)</td>
<td>0.00237</td>
<td></td>
</tr>
<tr>
<td>Tobacco Product</td>
<td>Beta(19.9,15.1839)</td>
<td>0.000577</td>
<td></td>
</tr>
<tr>
<td>Other Expenditures</td>
<td>0.09+Lognormal(0.0308,0.0118)</td>
<td>0.0683</td>
<td></td>
</tr>
</tbody>
</table>
Table 5.11 Expenditures' Distributions for the all individuals from 25 to 34 years old

<table>
<thead>
<tr>
<th>Categories</th>
<th>Distributions with Parameters</th>
<th>Squared Error</th>
<th>Histograms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food at Home</td>
<td>0.05+Gamma(0.00148,7.21)</td>
<td>0.00272</td>
<td></td>
</tr>
<tr>
<td>Food away Home</td>
<td>0.04+Weibull(0.0106,4.93)</td>
<td>0.00144</td>
<td></td>
</tr>
<tr>
<td>Alcohol Beverage</td>
<td>Lognormal(0.00921,0.00101)</td>
<td>0.0260</td>
<td></td>
</tr>
<tr>
<td>Owned House</td>
<td>0.07+Lognormal(0.0336,0.0142)</td>
<td>0.0910</td>
<td></td>
</tr>
<tr>
<td>Rented House</td>
<td>0.04+Weibull(0.0396,5.94)</td>
<td>0.0363</td>
<td></td>
</tr>
<tr>
<td>House Repair & Maintenance</td>
<td>0.09+Weibull(0.0284,4.22)</td>
<td>0.271</td>
<td></td>
</tr>
<tr>
<td>Utilities</td>
<td>0.05+Lognormal(0.00465,0.00124)</td>
<td>0.0117</td>
<td></td>
</tr>
<tr>
<td>Cloths</td>
<td>Normal(0.039,0.00423)</td>
<td>0.0397</td>
<td></td>
</tr>
<tr>
<td>New Vehicle</td>
<td>Triangular(0.01,0.038,0.05)</td>
<td>0.0366</td>
<td></td>
</tr>
<tr>
<td>Used Vehicle</td>
<td>0.02+Lognormal(0.0202,0.00957)</td>
<td>0.00262</td>
<td></td>
</tr>
<tr>
<td>Gasoline</td>
<td>0.02+Lognormal(0.016,0.00743)</td>
<td>0.0176</td>
<td></td>
</tr>
<tr>
<td>Vehicle Insurance</td>
<td>0.01+0.01*Beta(2.47,1.44)</td>
<td>0.0461</td>
<td></td>
</tr>
<tr>
<td>Healthcare excluding Insurance</td>
<td>0.01+Lognormal(0.0034,0.000782)</td>
<td>0.00164</td>
<td></td>
</tr>
<tr>
<td>Health Insurance</td>
<td>0.01+Gamma(0.000258,25.2)</td>
<td>0.00645</td>
<td></td>
</tr>
<tr>
<td>Entertainment</td>
<td>0.03+Gamma(0.000513,25.2)</td>
<td>0.00677</td>
<td></td>
</tr>
<tr>
<td>Tobacco Product</td>
<td>Beta(18.6,12.5365)</td>
<td>0.00427</td>
<td></td>
</tr>
<tr>
<td>Other Expenditures</td>
<td>0.07+0.04*Beta(8.29,7.99)</td>
<td>0.00530</td>
<td></td>
</tr>
</tbody>
</table>
Table 5.12 Expenditures' Distributions for the all individuals from 35 to 44 years old

<table>
<thead>
<tr>
<th>Categories</th>
<th>Distributions with Parameters</th>
<th>Squared Error</th>
<th>Histograms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food at Home</td>
<td>0.05+Lognormal(0.0104,0.00323)</td>
<td>0.0196</td>
<td></td>
</tr>
<tr>
<td>Food away Home</td>
<td>0.04+Lognormal(0.0056,0.00172)</td>
<td>0.0111</td>
<td></td>
</tr>
<tr>
<td>Alcohol Beverage</td>
<td>Lognormal(0.0071,0.000664)</td>
<td>0.00327</td>
<td></td>
</tr>
<tr>
<td>Owned House</td>
<td>0.1+Weibull(0.0206,4.93)</td>
<td>0.0426</td>
<td></td>
</tr>
<tr>
<td>Rented House</td>
<td>0.03+Lognormal(0.0104,0.0029)</td>
<td>0.0654</td>
<td></td>
</tr>
<tr>
<td>House Repair & Maintenance</td>
<td>0.11+Lognormal(0.00752,0.00384)</td>
<td>0.0380</td>
<td></td>
</tr>
<tr>
<td>Utilities</td>
<td>0.05+0.01*Beta(3.4,6.1)</td>
<td>0.00333</td>
<td></td>
</tr>
<tr>
<td>Cloths</td>
<td>0.02+Lognormal(0.0141,0.00434)</td>
<td>0.00760</td>
<td></td>
</tr>
<tr>
<td>New Vehicle</td>
<td>Triangular(0.01,0.038,0.05)</td>
<td>0.0296</td>
<td></td>
</tr>
<tr>
<td>Used Vehicle</td>
<td>0.01+0.04*Beta(4.79,5.17)</td>
<td>0.00481</td>
<td></td>
</tr>
<tr>
<td>Gasoline</td>
<td>0.02+Lognormal(0.0126,0.00581)</td>
<td>0.00571</td>
<td></td>
</tr>
<tr>
<td>Vehicle Insurance</td>
<td>0.01+Weibull(0.00601,5.14)</td>
<td>0.00176</td>
<td></td>
</tr>
<tr>
<td>Healthcare excluding Insurance</td>
<td>0.01+0.01*Beta(18.3,12.5)</td>
<td>0.00233</td>
<td></td>
</tr>
<tr>
<td>Health Insurance</td>
<td>0.01+Lognormal(0.00776,0.00116)</td>
<td>0.00809</td>
<td></td>
</tr>
<tr>
<td>Entertainment</td>
<td>0.03+Lognormal(0.0139,0.00314)</td>
<td>0.0269</td>
<td></td>
</tr>
<tr>
<td>Tobacco Product</td>
<td>Lognormal(0.00568,0.000925)</td>
<td>0.0328</td>
<td></td>
</tr>
<tr>
<td>Other Expenditures</td>
<td>Triangular(0.08,0.094,0.12)</td>
<td>0.0636</td>
<td></td>
</tr>
</tbody>
</table>
Table 5.13 Expenditures' Distributions for the all individuals from 45 to 54 years old

<table>
<thead>
<tr>
<th>Categories</th>
<th>Distributions with Parameters</th>
<th>Squared Error</th>
<th>Histograms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food at Home</td>
<td>0.03+0.05*Beta(8.48,7.35)</td>
<td>0.0354</td>
<td></td>
</tr>
<tr>
<td>Food away Home</td>
<td>Triangular(0.03,0.0403,0.06)</td>
<td>0.0350</td>
<td></td>
</tr>
<tr>
<td>Alcohol Beverage</td>
<td>Normal(0.00698,0.000784)</td>
<td>0.000651</td>
<td></td>
</tr>
<tr>
<td>Owned House</td>
<td>0.1+Lognormal(0.00894,0.0034)</td>
<td>0.00788</td>
<td></td>
</tr>
<tr>
<td>Rented House</td>
<td>Normal(0.0279,0.00237)</td>
<td>0.00518</td>
<td></td>
</tr>
<tr>
<td>House Repair & Maintenance</td>
<td>0.1+Lognormal(0.0132,0.00429)</td>
<td>0.0103</td>
<td></td>
</tr>
<tr>
<td>Utilities</td>
<td>0.05+0.01*Beta(1.79,3.78)</td>
<td>0.00329</td>
<td></td>
</tr>
<tr>
<td>Cloths</td>
<td>0.02+0.03*Beta(1.97,2.99)</td>
<td>0.00249</td>
<td></td>
</tr>
<tr>
<td>New Vehicle</td>
<td>0.01+0.04*Beta(5.92,7.22)</td>
<td>0.00537</td>
<td></td>
</tr>
<tr>
<td>Used Vehicle</td>
<td>0.01+Lognormal(0.0172,0.00786)</td>
<td>0.0562</td>
<td></td>
</tr>
<tr>
<td>Gasoline</td>
<td>0.02+0.03*Beta(2.71,4.1)</td>
<td>0.00507</td>
<td></td>
</tr>
<tr>
<td>Vehicle Insurance</td>
<td>0.01+0.01*Beta(6.71,1.86)</td>
<td>0.0258</td>
<td></td>
</tr>
<tr>
<td>Healthcare excluding Insurance</td>
<td>0.01+Gamma(0.000407,25.2)</td>
<td>0.00447</td>
<td></td>
</tr>
<tr>
<td>Health Insurance</td>
<td>0.01+Gamma(0.000365,25.2)</td>
<td>0.000720</td>
<td></td>
</tr>
<tr>
<td>Entertainment</td>
<td>0.03+0.02*Beta(12.6,12.1)</td>
<td>0.00327</td>
<td></td>
</tr>
<tr>
<td>Tobacco Product</td>
<td>Beta(21.5,14.5575)</td>
<td>0.00287</td>
<td></td>
</tr>
<tr>
<td>Other Expenditures</td>
<td>0.1+Lognormal(0.0189,0.00585)</td>
<td>0.00330</td>
<td></td>
</tr>
</tbody>
</table>
Table 5.14 Expenditures' Distributions for the all individuals from 55 to 64 years old

<table>
<thead>
<tr>
<th>Categories</th>
<th>Distributions with Parameters</th>
<th>Squared Error</th>
<th>Histograms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food at Home</td>
<td>0.04+0.04*Beta(5.4,6.19)</td>
<td>0.00486</td>
<td></td>
</tr>
<tr>
<td>Food away Home</td>
<td>Normal(0.0424,0.00384)</td>
<td>0.00262</td>
<td></td>
</tr>
<tr>
<td>Alcohol Beverage</td>
<td>Lognormal(0.00738,0.00078)</td>
<td>0.00421</td>
<td></td>
</tr>
<tr>
<td>Owned House</td>
<td>0.09+Lognormal(0.0185,0.00578)</td>
<td>0.0301</td>
<td></td>
</tr>
<tr>
<td>Rented House</td>
<td>0.01+Weibull(0.0152,5.28)</td>
<td>0.00161</td>
<td></td>
</tr>
<tr>
<td>House Repair & Maintenance</td>
<td>Normal(0.127,0.0122)</td>
<td>0.0612</td>
<td></td>
</tr>
<tr>
<td>Utilities</td>
<td>0.05+Lognormal(0.00818,0.00252)</td>
<td>0.00235</td>
<td></td>
</tr>
<tr>
<td>Cloths</td>
<td>Uniform(0.02,0.04)</td>
<td>0.0231</td>
<td></td>
</tr>
<tr>
<td>New Vehicle</td>
<td>0.01+0.05*Beta(2.56,2.61)</td>
<td>0.0372</td>
<td></td>
</tr>
<tr>
<td>Used Vehicle</td>
<td>Uniform(0.01,0.04)</td>
<td>0.0397</td>
<td></td>
</tr>
<tr>
<td>Gasoline</td>
<td>0.02+0.03*Beta(2.94,4.43)</td>
<td>0.00578</td>
<td></td>
</tr>
<tr>
<td>Vehicle Insurance</td>
<td>0.01+Gamma(0.000301,25.2)</td>
<td>0.000200</td>
<td></td>
</tr>
<tr>
<td>Healthcare excluding</td>
<td>0.02+Lognormal(0.00897,0.00248)</td>
<td>0.00700</td>
<td></td>
</tr>
<tr>
<td>Insurance</td>
<td>0.02+Gamma(0.000485,15.2)</td>
<td>0.00204</td>
<td></td>
</tr>
<tr>
<td>Entertainment</td>
<td>0.03+Gamma(0.000594,23.1)</td>
<td>0.00197</td>
<td></td>
</tr>
<tr>
<td>Tobacco Product</td>
<td>Weibull(0.00656,7.37)</td>
<td>0.00383</td>
<td></td>
</tr>
<tr>
<td>Other Expenditures</td>
<td>0.09+0.03*Beta(1.65,0.886)</td>
<td>0.0340</td>
<td></td>
</tr>
</tbody>
</table>
Table 5.15 Transaction from Input Analyzer to Matlab for Lognormal distributions

<table>
<thead>
<tr>
<th>Groups of Persons</th>
<th>Categories</th>
<th>Expressions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Input Analyzer</td>
<td>Matlab</td>
</tr>
<tr>
<td>Younger than 25 years</td>
<td>Entertainment</td>
<td>0.04+Lognormal(0.0119,0.00549)</td>
</tr>
<tr>
<td></td>
<td>Other Expenditures</td>
<td>0.09+Lognormal(0.0308,0.0118)</td>
</tr>
<tr>
<td>25 years old to 34 years</td>
<td>Alcohol Beverage</td>
<td>Lognormal(0.00921,0.00101)</td>
</tr>
<tr>
<td></td>
<td>Owned Houses</td>
<td>0.07+Lognormal(0.0336,0.0142)</td>
</tr>
<tr>
<td></td>
<td>Utilities</td>
<td>0.05+Lognormal(0.00465,0.00124)</td>
</tr>
<tr>
<td></td>
<td>Used Vehicle</td>
<td>0.02+Lognormal(0.0202,0.00957)</td>
</tr>
<tr>
<td></td>
<td>Gasoline</td>
<td>0.02+Lognormal(0.016,0.00743)</td>
</tr>
<tr>
<td></td>
<td>Healthcare ex. Insurance</td>
<td>0.01+Lognormal(0.0034,0.000782)</td>
</tr>
<tr>
<td></td>
<td>Food at Home</td>
<td>0.05+Lognormal(0.0104,0.00323)</td>
</tr>
<tr>
<td></td>
<td>Food away Home</td>
<td>0.04+Lognormal(0.0056,0.00172)</td>
</tr>
<tr>
<td></td>
<td>Alcohol Beverage</td>
<td>Lognormal(0.0071,0.000664)</td>
</tr>
<tr>
<td></td>
<td>Rented Houses</td>
<td>0.03+Lognormal(0.0104,0.00029)</td>
</tr>
<tr>
<td></td>
<td>House Repair & Maintenance</td>
<td>0.11+Lognormal(0.00752,0.00384)</td>
</tr>
<tr>
<td></td>
<td>Cloths</td>
<td>0.02+Lognormal(0.0141,0.00434)</td>
</tr>
<tr>
<td></td>
<td>Gasoline</td>
<td>0.02+Lognormal(0.0126,0.00581)</td>
</tr>
<tr>
<td></td>
<td>Health Insurance</td>
<td>0.01+Lognormal(0.00776,0.00116)</td>
</tr>
<tr>
<td></td>
<td>Entertainment</td>
<td>0.03+Lognormal(0.0139,0.00314)</td>
</tr>
<tr>
<td></td>
<td>Tobacco Products</td>
<td>Lognormal(0.00568,0.000925)</td>
</tr>
<tr>
<td></td>
<td>Owned Houses</td>
<td>0.1+Lognormal(0.00894,0.00034)</td>
</tr>
<tr>
<td></td>
<td>House Repair & Maintenance</td>
<td>0.1+Lognormal(0.0132,0.00429)</td>
</tr>
<tr>
<td></td>
<td>Used Vehicle</td>
<td>0.01+Lognormal(0.0172,0.00786)</td>
</tr>
<tr>
<td></td>
<td>Other Expenditures</td>
<td>0.1+Lognormal(0.0189,0.00585)</td>
</tr>
<tr>
<td></td>
<td>Alcohol Beverage</td>
<td>Lognormal(0.00738,0.00078)</td>
</tr>
<tr>
<td></td>
<td>Owned Houses</td>
<td>0.09+Lognormal(0.0185,0.00578)</td>
</tr>
<tr>
<td></td>
<td>Utilities</td>
<td>0.05+Lognormal(0.00818,0.00252)</td>
</tr>
<tr>
<td></td>
<td>Health excluding Insurance</td>
<td>0.02+Lognormal(0.00897,0.00248)</td>
</tr>
</tbody>
</table>
Table 5.16 Transaction from Input Analyzer to Matlab for Weibull distributions

<table>
<thead>
<tr>
<th>Groups of Persons</th>
<th>Categories</th>
<th>Expressions</th>
<th>Matlab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Younger than 25 years old</td>
<td>Food away Home</td>
<td>0.01+Weibull(0.0681,4.72)</td>
<td>0.01+Weibrnd(3.22×10^4,4.72)</td>
</tr>
<tr>
<td></td>
<td>Health excluding Insurance</td>
<td>Weibull(0.00868,10.4)</td>
<td>Weibrnd(2.75×10^{11},10.4)</td>
</tr>
<tr>
<td></td>
<td>Health Insurance</td>
<td>0.01+Weibull(0.00397,3.88)</td>
<td>0.01+Weibrnd(2.07×10^9,3.88)</td>
</tr>
<tr>
<td>25 years old to 34 years old</td>
<td>Food away Home</td>
<td>0.04+Weibull(0.0106,4.93)</td>
<td>0.04+Weibrnd(5.44×10^{9},4.93)</td>
</tr>
<tr>
<td></td>
<td>Rented Houses</td>
<td>0.04+Weibull(0.0396,5.94)</td>
<td>0.04+Weibrnd(2.14×10^{8},5.94)</td>
</tr>
<tr>
<td></td>
<td>House Repair & Maintenance</td>
<td>0.09+Weibull(0.0284,4.22)</td>
<td>0.09+Weibrnd(3.37×10^{6},4.22)</td>
</tr>
<tr>
<td>35 years old to 44 years old</td>
<td>Owned Houses</td>
<td>0.1+Weibull(0.0206,4.93)</td>
<td>0.1+Weibrnd(2.05×10^{8},4.93)</td>
</tr>
<tr>
<td></td>
<td>Vehicle Insurance</td>
<td>0.01+Weibull(0.00601,5.14)</td>
<td>0.01+Weibrnd(2.61×10^{11},5.14)</td>
</tr>
<tr>
<td>55 years old to 64 years old</td>
<td>Rented Houses</td>
<td>0.01+Weibull(0.0152,5.28)</td>
<td>0.01+Weibrnd(3.98×10^9,5.28)</td>
</tr>
<tr>
<td></td>
<td>Tobacco Products</td>
<td>Weibull(0.00656,7.37)</td>
<td>Weibrnd(1.23×10^{16},7.37)</td>
</tr>
</tbody>
</table>

The two parameters of the lognormal distribution in Matlab can be presented as

\[
\mu = \ln(E) - \frac{1}{2} \ln\left(\frac{S.D.}{E}\right)^2 + 1, \\
\sigma = \sqrt{\ln\left(\frac{S.D.}{E}\right)^2 + 1}.
\]

For the same example, the percentage of expenditures for Owned House in Table 5.5 can be generated in Matlab utilizing 0.09+lognrnd (-3.42, 0.513) shown in Table 5.9.

\(\mu\) in the corresponding normal distribution was -3.42, and \(\sigma\) was 0.513.

The distributions to generate the percentages of expenditures on each category for different groups of individuals categorized by their ages were shown in Table 5.10,
Table 5.11, Table 5.12, Table 5.13, and Table 5.14. The expressions of different distribution were the same as above in Table 5.5, Table 5.6, and Table 5.7. Transferring the expressions of lognormal distributions and Weibull distributions was required to make them available in Matlab. The transaction results were shown in Table 5.15 and Table 5.16 for lognormal distributions and Weibull distributions, respectively.

5.4 Estimations of other parameters

The federal income tax rates utilized in the model were for the individual single without any child in 2011, and the state income tax rates utilized were updated on March 3rd, 2009 in Nebraska (Nebraska Income Tax Rates). In the model, 50% of the direct expenditures were estimated to be paid to the employees working at the corresponding places. The indirect contribution of an individual was realized in the “while” loop. The indirect contributions would not be added if the increased expenditures of the workers were less than 1% of the individual’s income. The model with the parameters above was called original model which was utilized to be compared in Chapter 6 to validate the model. The numbers of replicates (t) set for the model were 100, 500, 1000, 5000, and 10000 to detect the stability of the results.
Chapter 6 Verification and Validation

All simulation models need to be validated and verified. The normal method to validate a model was to set the parameters in the model to be the limiting values and to detect whether the results were the expected ones. In this part, the two main models, the basic model for only one year and the whole life of career model, were validated. The models to be verified by comparing the taxes obtained from the model and the taxes paid in the real world for a specified person to prove that it was correct.

6.1 Verification of the models

The core of the models was to obtain the income taxes and the sales taxes, and it was focused on the verification of the income taxes and the sales taxes in this section. The categories which had sales taxes were shown in the reports from Nebraska Department of Revenue. The federal income taxes brackets utilized in the research were for the individuals who were single and had no child in 2011, and the state income taxes brackets were also for the individuals single and without children in 2011. The teaching assistant major in engineering in University of Nebraska - Lincoln can earn $16,200 each year, which was a graduate student's wages. Using the model, the federal income taxes were $2,005 each year, and the state income taxes were $578 annually. The monthly federal income taxes should be $167, and it should be $48 as the monthly state income taxes. To check one's payroll, it showed that the monthly federal income tax was $166.25, and the monthly state income tax was $37.48. It was nearly the same for the federal income tax, while there were ten dollars difference between the model and the reality for the state income tax. Because the taxes rates used for the state taxes were estimated effective taxes rates but not the exact taxes rates. The certain error of the model was accepted.
6.2 Validation of the basic model

There were six main parameters in this model. They were individuals' incomes, the income tax rates \((r_i) \), the percentages of expenditures on different categories \((p_c) \), the sales taxes rates \((r_s) \), the percentage of the individual's income to stop adding the indirect contributions \((p_s) \), and the percentage of the direct expenditures paid to the employees in the corresponding places \((p_e) \). The trials to run the model were 5000 times since it should give stationary results and the sample size was not too large to save the time for running the model.

If all individuals' incomes were set to be zero, taxes paid should to be zero, and the economic Impact1 and Impact2 would not exist. The model was run under the condition, it was proved that all taxes paid were zero, Impact1 and Impact2 did not exist, and Impact3 was also zero.

If the income tax rate was set to be zero, the income taxes would be zero, and the impacts to the federal and the state & local governments together and to the state & local government should be the same; if the income tax rate was set to be one, all expenditures and the sales taxes were supposed to be zero. When the income tax rate was set to be zero, the model was run and it showed that all income taxes were zero. The impacts for the federal and the state & local governments together and for the state & local government only were the same indicated in Figure 6.1, Figure 6.2, and Figure 6.3.
As shown in the figures, the slope of the straight lines was 45 degrees which meant that all the values in the horizontal axis were the same with the values in the vertical axis. For all individuals disregarding their majors, the average Impact1 was 1.61 for
the federal and the state & local governments together and the state & local government, the average Impact2 was 0.074, and the average Impact3 was $881.08. When the income tax rate was set to be one, the income taxes equaled to the incomes and the sales taxes were zero. As indicated in the results, all Impact2 were shown to be one, since the income taxes were always the same as the incomes.

If the percentages of expenditures on different categories were zero, the sales taxes should be zero. The model was run, and the sales taxes were zero. For all individuals disregarding their majors, the average values of the economic impacts to the federal and the state & local governments together were 1.62, 0.19, and $2434.3 of Impact1, Impact2, and Impact3, respectively. The average values of the economic impacts to the state & local government were 1.55, 0.036, and $468.0 of Impact1, Impact2, and Impact3, respectively.

If all sales taxes rates were set to be zero, the sales taxes should be zero; if the sales tax rate were set to be one, the sales taxes should be the same as the cost on the corresponding categories. After the model was run, it was shown that the sales taxes were zero, and there were only income taxes utilized for the economic impacts. For all individuals disregarding their majors, the average values of the economic impacts to the federal and the state & local governments together were 1.60, 0.19, and $2346.7 of Impact1, Impact2, and Impact3, respectively. The average values of the economic impacts to the state & local government were 1.54, 0.036, and $454.6 of Impact1, Impact2, and Impact3, respectively.
Figure 6.4 Scatters with the Straight Line for the individuals who were bachelors when $r_1=1$

Figure 6.5 Scatters with the Straight Line for the individuals received higher degrees when $r_1=1$

When the sales taxes rates were set to be one, the results showed that the sales taxes equaled to the sales indicated in Figure 6.4 for the individuals who only received bachelors' degrees and Figure 6.5 for the individuals who received higher degrees. As shown in Figure 6.4 and Figure 6.5, the straight lines were equally spaced between the vertical and horizontal axes. The average impacts for the federal and the state & local governments together were 1.53, 1.81, and 22482 for Impact1, Impact2, and
Impact3, respectively. And the average values for the state & local government were 1.52, 1.66, and $20617 for Impact1, Impact2, and Impact3, respectively. If p_s was set to be zero, the sales taxes should be increased significantly and the program would not be stopped naturally, since there would be more indirect expenditures and the condition to stop the program cannot be reached; if it was set to be one, the sales taxes would be decreased significantly, since there would be any indirect expenditures. When p_s was set to be zero and the model was run, it cannot be stopped naturally, because there were always little indirect contributions after several repetitions but zero cannot be reached.

Figure 6.6 Scatters with markers for the bachelors when $p_s=1$ and $p_s=0.01$

When p_s was set to be one, it indicated that the sales taxes were less than the sales taxes in the original model when $p_s=0.01$ shown in Figure 6.6 for the individuals who were bachelors and Figure 6.7 for the individuals who received higher degrees. In the figures, the label of "sales taxes for BD" and "sales taxes for HD" was for the sales taxes when $p_s=0.01$. As seen in Figure 6.6 and Figure 6.7, the sales taxes calculated when $p_s=0.01$ was in a higher level than when $p_s=1$. The average sales tax paid by the individuals who were bachelors was only $805.05 when $p_s=1$, while it was $1709.19
when $p_s=0.01$. The average sales tax paid by the individuals who received higher degrees was 1042.32 when $p_s=1$, and it was 2384.24 when $p_s=0.01$.

![Figure 6.7 Scatters with markers for the individuals with higher degrees when $p_s=1$ and $p_s=0.01$](image)

If p_e was set to be zero, the sales taxes were supposed to be decreased significantly, since no indirect expenditures were generated; if p_e was set to be one, the sales taxes should be increased significantly and the program cannot be stopped naturally, since all expenditures were supposed to be paid to the employees, there were more indirect expenditures, and the condition to stop the program cannot be reached. When p_e was zero and the model was run, the average sales tax paid by the individuals who only received bachelors' degrees was 842.20, and by the individuals who received higher degrees was 1210.28. Compared with the average levels when $p_e=0.5$, they were lower than 1709.19 and 2384.24, respectively.
Figure 6.8 Scatters with markers for the bachelors when $p_e=0$ and $p_e=0.5$

Figure 6.9 Scatters with markers for the individuals with higher degrees when $p_e=0$ and $p_e=0.5$

The scatters plots were drawn for all the 5000 individuals, and shown in Figure 6.8 and Figure 6.9. As indicated in Figure 6.8 and Figure 6.9, the sales taxes paid when $p_e=0.5$ were in a higher level than when $p_e=0$, which meant that the sales taxes had decreases when p_e was set to be zero. When $p_e=1$, the program went into an infinite loop shown in Figure 6.10.
When \(p_e = 1 \), all expenditures in the upper level were contributed into the lower level as the indirect incomes, and the indirect incomes flew into the expenditures since there was no income taxes counted for the indirect incomes. This was an endless loop. The condition to stop the loop that \(p_s = 0.01 \) would never be reached, and the percentage of contributions was kept as a constant.

As validated by changing the parameters to their limiting values, the results were as expected. The basic model was validated.

6.3 Validation of the whole life of the career model

There were eight main parameters in this model. They were the effective annual interest rate \((i)\), the individuals' initial incomes, the increased rate of the incomes \((r_{in})\), the income tax rate \((r_i)\), the percentages of expenditures on different categories \((p_c)\), the sales taxes rates \((r_s)\), the percentage of the individual's income to stop adding the indirect contributions \((p_s)\), and the percentage of the direct expenditures paid to the employees in the corresponding places \((p_e)\). The trials to run the model were 5000 times since it can give stationary results and the sample size was not too large to save the time for running the model. The model for the individuals who received bachelors' degrees disregarding their majors was utilized to do the validation.
If the effective annual interest rate was zero, the net present worth of taxes would be the sum of all taxes paid each year. The model was run after the interest rate was set to be zero.

![Figure 6.11 Scatters with Straight Line for PW vs. ΣTaxes when i=0](image1)

![Figure 6.12 Scatters with Straight Line for sPW vs. ΣsTaxes when i=0](image2)

As indicated in Figure 6.11 and Figure 6.12, the sum of taxes paid to the federal and the state & local governments together (ΣTaxes) and to the state & local government (ΣsTaxes) each year for 43 years were shown on the horizontal axis, and the net present worth of the taxes paid (shorten by PW and sPW) for 43 years were shown on the vertical axis. The slopes of the straight lines were 45 degrees, which meant that
\(y=x \) for every point on the line. The net present worth of taxes equaled the sum of taxes paid for 43 years for all the 5000 individuals.

If the individual's initial incomes were zero, the present worth of taxes paid should also be zero. The model was run under this condition, and it was proved that all income taxes and sales taxes were zero. The present worth of taxes paid for the federal and the state & local governments together were zero, and were the same with the results for the state & local government only.

If the increased rates of the incomes were zero, the present worth of taxes paid was supposed to be decreased, since fewer incomes were utilized for the expenditures.

![Figure 6.13 Scatters with markers for PW when \(r_n=0 \) and in the original model](image)

When the increased rates of the incomes were set to be zero, the incomes in different stages were the same for a specific individual. The average net present worth for the 43 years to the federal and the state & local governments together (PW) was $77856, which was less than $84479, the average net present worth when the increased rates were not zero in the original model. The average net present worth to the state & local government (sPW) was $29885, which was also less than $31416, the average net present worth in the original model. The scatters of the 5000 individuals separately
were shown in Figure 6.13 for the federal and the state & local governments together and Figure 6.14 for the state & local government.

Figure 6.14 Scatters with markers for sPW when $r_{in}=0$ and in the original model

As indicated in Figure 6.13 and Figure 6.14, the net present worth of the total taxes from the original model were in a little higher level than the net present worth of the total taxes from the model when $r_{in}=0$.

If the income tax rate was set to be zero, the present worth of taxes paid should be less than the original results, and the present worth of taxes for the federal and the state & local governments together and for the state & local government should be the same; if the income tax rate was set to be one, all expenditures and the sales taxes were supposed to be zero. When the income tax rate was fixed to be zero, the average present worth of total taxes paid for 43 years was $23520, which were the same for the federal and the state & local governments together and for the state & local government only, while the average present worth of total taxes paid to the federal and the state & local governments was $84479 from the original model and it was $31416 to the state & local government, which were higher than the results when $r_{i}=0$.
The scatters were shown in Figure 6.15 for the federal and the state & local
governments together and Figure 6.16 for the state & local government when $r_i=0$ for
the 5000 individuals.

![Figure 6.15 Scatters with markers of PW when $r_i=0$](image)

![Figure 6.16 Scatters with markers of sPW when $r_i=0$](image)

As indicated, PW from the original model was in a significantly higher level than
from the model when $r_i=0$, and sPW from the original model was in a little higher
level. The scatters with straight line to compare sPW and PW for the 5000 individuals
were shown in Figure 6.17.
Figure 6.17 Scatters with straight lines of sPW vs. PW when $r_i=0$

As seen in Figure 6.17, the straight line was equally spaced between the vertical and horizontal axes, which meant the present worth of total taxes paid to the federal and the state & local governments were equivalent to the present worth of taxes paid to the state & local government for all the 5000 data points.

Figure 6.18 Scatters with straight lines for PW$_3$ vs. PW$_1$ when $r_i=1$

When the income taxes rate was set to be one, the sales taxes were proved to be zero and the present worth of total taxes (PW$_3$) were the same as the present worth of income taxes (PW$_1$) for all the 5000 individuals indicated in Figure 6.18.

If the percentages of expenditures (p_c) on different categories were zero, the sales taxes should be zero. When the percentages of expenditures on different categories
were set to be zero, the results presented that the present worth of sales taxes were zero for all the 5000 data points, because the present worth of total taxes (PW_3) were equivalent to the present worth of income taxes (PW_1) indicated in Figure 6.19.

![Figure 6.19: Scatters with straight lines for PW_3 vs. PW_1 when $p_c=0$](image)

If all sales taxes rates were set to be zero, the sales taxes should be zero; if the sales tax rate were set to be one, the sales taxes should be the same as the cost on the corresponding categories. When the sales taxes rates were set to be zero, the sales taxes were zero and the net present worth of the sales taxes for 43 years was zero. So the net present worth of the total taxes (PW_3) should be equivalent to the net present worth of the income taxes (PW_1). As indicated in Figure 6.20, on the straight line, all values of PW of the total taxes equaled to the values of PW of the income taxes for the whole sample.
When the sales taxes rates were one, the relationship between the net present worth of sales taxes (PW$_2$) paid for 43 years and the net present worth of sales (PW$_{sales}$) was shown in Figure 6.21 for the 5000 individuals. The slope of the straight line was 45 degrees, and they were equal to each other on the straight line for all the 5000 data points.

If p_s was set to be zero, the sales taxes should be increased significantly and the program would not be stopped naturally, since there would be more indirect expenditures and the condition to stop the program cannot be reached; if it was set to be one, the sales taxes would be decreased significantly, since there would be any indirect expenditures. When the percentage to stop the program was set to be zero, the
program cannot be stopped as inferred. When \(p_s \) was set to be one, the average net present worth of sales taxes (\(PW_2 \)) for the 5000 individuals in their whole life of careers was $9776, which was less than $18881, the average net present worth of sales taxes when \(p_s = 0.01 \).

As indicated in Figure 6.22, the net present worth of sales taxes for the 43 years when \(p_e = 0.01 \) were in a correspondingly higher level than \(p_e = 1 \) for all the 5000 data points. If \(p_e \) was set to be zero, the sales taxes were supposed to be decreased significantly, since no indirect expenditure was generated; if \(p_e \) was set to be one, the sales taxes should be increased significantly and the program cannot be stopped naturally, since all expenditures were supposed to be paid to the employees, there were more indirect expenditures, and the condition to stop the program cannot be reached. When \(p_e \) was zero, the average net present worth of sales taxes (\(PW_2 \)) for the 5000 individuals in their whole life of careers was $8683, which was lower than $18881, the average net present worth of sales taxes when \(p_e = 0.5 \). The scatters with markers were shown in Figure 6.23 to compare the net present worth of sales taxes individual by individual.
As shown in Figure 6.23, the net present worth of sales taxes for the 43 years when \(p_e = 0 \) were in a lower level than the net present worth of sales taxes when \(p_e = 0.5 \) for all then 5000 data points. When \(p_e \) was set to be one, the program cannot be stopped naturally. The reason was the same as described in Section 6.1 for \(p_e = 1 \). There was an endless loop in the program.
Chapter 7 Performances

The simulation models were run utilizing the corresponding input models under the proper conditions described in Chapter 5. The results were from two models for two groups of individuals, which were the group of the individuals disregarding their majors and the group of the individuals major in engineering. The two models were the basic model which detected the economic impacts of a higher degree than a bachelor's for the first year to the career, and the whole life of careers model which gave the economic impact of the higher degree from the first year to the career to the end of the career estimated as 64 years old. The tax revenues for an individual included the direct taxes paid to the government by the individual and the indirect taxes received by the government due to the contributions of the individual’s expenditures.

7.1 The basic model for individuals disregarding the majors

The input models were described in Chapter 5. And the other parameters utilized in the basic model included the percentage of contributions to the employees working at the corresponding places (50%) and the percentage of the indirect expenditures in the individual's salaries to stop the loop (1%). In the loop, the percentages of indirect expenditures for an individual were obtained from the distributions for all consumers units, which were not specified by their education levels shown in Table 5.7.

The numbers of replicates (t) set for the model were 100, 500, 1000, 5000, and 10000 to detect the stability of the results. There were three indicators to present the economic impact, including the ratio between taxes from the individuals holding higher degrees and taxes from the individuals holding only bachelor's degrees (Impact1), the taxes increased every one dollar more received for their incomes...
(Impact2), and the difference of taxes received between from the individuals holding higher degrees and from the individuals only holding bachelor's degrees (Impact3).

\[
\begin{align*}
\text{impact1} & = \frac{\text{tax1}}{\text{tax0}} \\
\text{impact2} & = \frac{(\text{tax1} - \text{tax0})}{(\text{income1} - \text{income0})} \\
\text{impact3} & = \text{tax1} - \text{tax0}
\end{align*}
\]

where 1 indicated the parameters were for an individual holding higher degree than BD, and 0 indicated the parameters were for an individual holding BD.

The model was run under the corresponding conditions, and the results were shown in Table 7.1. The results in Table 7.1 were the average numbers of the random samples.

Table 7.1 Average Economic Impacts for all individuals with the changes of replicates (t)

<table>
<thead>
<tr>
<th>t</th>
<th>Annual Federal and State Taxes</th>
<th>Annual State Taxes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Impact1</td>
<td>Impact2</td>
</tr>
<tr>
<td>100</td>
<td>1.46</td>
<td>0.25</td>
</tr>
<tr>
<td>500</td>
<td>1.55</td>
<td>0.24</td>
</tr>
<tr>
<td>1000</td>
<td>1.59</td>
<td>0.23</td>
</tr>
<tr>
<td>5000</td>
<td>1.61</td>
<td>0.24</td>
</tr>
<tr>
<td>10000</td>
<td>1.58</td>
<td>0.24</td>
</tr>
</tbody>
</table>

Table 7.2 Distributions for the random samples of Impact3

<table>
<thead>
<tr>
<th>Government</th>
<th>t</th>
<th>Distribution</th>
<th>Squared Error</th>
<th>Histogram</th>
</tr>
</thead>
<tbody>
<tr>
<td>Both</td>
<td>5000</td>
<td>Normal ((3.18 \times 10^3, 4.64 \times 10^3))</td>
<td>0.000393</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10000</td>
<td>Normal ((3.06 \times 10^3, 4.58 \times 10^3))</td>
<td>0.000211</td>
<td></td>
</tr>
<tr>
<td>State & Local</td>
<td>5000</td>
<td>Normal ((1.16 \times 10^3, 1.69 \times 10^3))</td>
<td>0.000379</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10000</td>
<td>Normal ((1.09 \times 10^3, 1.67 \times 10^3))</td>
<td>0.000203</td>
<td></td>
</tr>
</tbody>
</table>
As seen, the average ratio for federal and state & local governments together was about 1.6, which meant if the governments can receive 1 dollar from the individual with a bachelor's degree, 1.6 dollars would be contributed to the governments by the individual with a higher degree. The average ratio for the state & local government was about 1.5, when t reached large enough. If one dollar was increased for their income, about 0.2 dollar more would be contributed to the federal and state & local governments together, and about 0.1 dollar more would be obtained by the state & local government. As indicated by the table, when t reached large enough, the difference of taxes received from between the individuals receiving a higher degree and a bachelor's degree became steady. It was about 3×10^3 dollars for the federal and state & local governments together, and about 1×10^3 dollars for the state & local government.

The random samples of Impact3 were fitted in Input Analyzer to find out proper distributions to present the results shown in Table 7.2. Since the sample size was large enough, normal distributions can be utilized to fit the samples. As indicated in Table 7.2, the mean values of the distributions no matter whether t equaled 5000 or 10000 seemed to be equivalent, while the standard deviations when t=10000 were less than the standard deviation when t=5000. When t=10000, the squared errors were smaller. The larger sample size made the results more consistent.

7.2 The basic model for individuals major in engineering

In this model, the distributions to generate incomes were changed, while the percentages on different categories for the groups of individuals were the same as the model in Section 7.1. The replicates set for the model also were 100, 500, 1000, 5000, and 10000 as the model for all individuals. The indicators to show the economic impacts were the same as the indicators in Section 7.1 as well.
As indicated in Table 7.3, the ratio between taxes from the individuals who received higher degrees and taxes from the ones who just received bachelor's degrees was about 1.25 for the federal and state & local governments together, and was also about 1.25 for the state & local government only. For the federal and state & local governments together, 0.25 dollars would be increased on the taxes if one dollar was raised for their incomes. For the state & local government, about 0.1 dollars more can be contributed to the taxes.

Table 7.3 Average Economic Impacts for individuals major in engineering with the changes of replicates (t)

<table>
<thead>
<tr>
<th>t</th>
<th>Impact1</th>
<th>Impact2</th>
<th>Impact3</th>
<th>Annual Federal and State Taxes</th>
<th>Impact1</th>
<th>Impact2</th>
<th>Impact3</th>
<th>Annual State Taxes</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>1.36</td>
<td>0.30</td>
<td>$2537.39</td>
<td>1.37</td>
<td>0.15</td>
<td>$1029.88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>1.25</td>
<td>0.23</td>
<td>$1739.55</td>
<td>1.25</td>
<td>0.08</td>
<td>$669.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>1.26</td>
<td>0.39</td>
<td>$1910.29</td>
<td>1.23</td>
<td>0.24</td>
<td>$680.64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5000</td>
<td>1.24</td>
<td>0.23</td>
<td>$1646.06</td>
<td>1.19</td>
<td>0.08</td>
<td>$479.96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10000</td>
<td>1.28</td>
<td>0.25</td>
<td>$1904.78</td>
<td>1.28</td>
<td>0.10</td>
<td>$752.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

When t=1000, the results of Impact2 were a little abnormal and they were obviously larger than the results in other conditions.

The left graph in Figure 7.1 was for the scatters of Impact2 to the federal and state & local governments together, and the right one was for the results to the state & local government. Obviously, there was one abnormal result for each of them, and it was about 160. Once the abnormal result was deleted from the sample, the mean value of
Impact2 was changed to be 0.23 for the federal and state & local governments together, and it was changed to be 0.08 for the state & local government. They were close enough to their corresponding results when \(t \) was set to be the other values. As well, the variances of the samples were reduced to be 0.00845 and 0.00845 from 25.45 and 25.45, respectively. Since the values were generated randomly, a little abnormal result can be accepted.

When the number of trials reached large enough, the results trended to be steady. The difference of taxes received by the federal and state & local governments together was about 2000 dollars each year, and it was about 700 dollars each year for only the state & local government. They were not changed no matter whether the abnormal point was kept or deleted.

Table 7.4 Distributions for the random sample of Impact3

<table>
<thead>
<tr>
<th>Government</th>
<th>(t)</th>
<th>Distribution</th>
<th>Squared Error</th>
<th>Histogram</th>
</tr>
</thead>
<tbody>
<tr>
<td>Both</td>
<td>5000</td>
<td>Normal ((1.65 \times 10^3, 4.32 \times 10^3))</td>
<td>0.000107</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10000</td>
<td>Normal ((1.9 \times 10^3, 4.39 \times 10^3))</td>
<td>0.000057</td>
<td></td>
</tr>
<tr>
<td>State & Local</td>
<td>5000</td>
<td>Normal ((480, 1.54 \times 10^3))</td>
<td>0.000106</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10000</td>
<td>Normal ((752, 1.57 \times 10^3))</td>
<td>0.000080</td>
<td></td>
</tr>
</tbody>
</table>

As seen in Table 7.4, larger sample size made the squared error less. All random samples of Impact3 were following normal distributions with different parameters' values. The difference of the mean values for the taxes received by the federal and state & local governments together was not large between \(t=5000 \) and \(t=10000 \), and it was only 250 dollars. The difference of the mean values for the taxes received by the
state & local government was also not large, and it was 272 dollars. The standard deviations were very close to each other in the two cases, while the standard deviation was a little less when \(t=10000 \) than when \(t=5000 \).

7.3 The whole life of career model for all individuals disregarding the majors

The indicator to represent the whole life of career utilized in the research was the present worth of taxes, shorten as \(PW \) for the federal and state & local governments together, and \(sPW \) for the state & local government only. The baseline for the present worth was in the year when the individual was 21 years old. The interest rate to obtain the present worth was estimated to be 0.10 to run the model. The other parameters were set the same as described in Chapter 5. The numbers of replicates to run the model were set to be 100, 500, 1000, 5000, and 10000.

Table 7.5 Average present worth of total taxes

<table>
<thead>
<tr>
<th>t</th>
<th>PW BD</th>
<th>Higher</th>
<th>Difference</th>
<th>sPW BD</th>
<th>Higher</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>$83,427</td>
<td>$122,748</td>
<td>$39,321</td>
<td>$42,570</td>
<td>$11,384</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>$55,265</td>
<td>$73,552</td>
<td>$18,287</td>
<td>$45,778</td>
<td>$12,284</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>$74,311</td>
<td>$99,142</td>
<td>$24,831</td>
<td>$44,349</td>
<td>$11,993</td>
<td></td>
</tr>
<tr>
<td>5000</td>
<td>$84,479</td>
<td>$130,334</td>
<td>$45,855</td>
<td>$42,020</td>
<td>$10,604</td>
<td></td>
</tr>
<tr>
<td>10000</td>
<td>$72,517</td>
<td>$122,904</td>
<td>$50,387</td>
<td>$42,726</td>
<td>$10,299</td>
<td></td>
</tr>
</tbody>
</table>

As seen in Table 7.5, the present worth of taxes received by the federal and state & local governments together for the individuals who only had bachelor's degree in the whole life of the career was about 70 thousand dollars, and it for the state & local government was about 32 thousand dollars 43 years' work. The present worth of taxes received by the federal and the state & local governments together for the individuals with higher degrees in their whole career life was about 122 thousand dollars, and it was about 42 thousand dollars to the state & local government for their 40 years'
work. As represented in the previous sections, when the sample size was large enough, the results trended to be stable.

As indicated in Table 7.5, the differences of the average present worth between the individuals who just received bachelors' degrees and the ones with higher degrees were positive, which meant that the average present worth of the total taxes in the whole life of career from the individuals with higher degrees was more than from the one with only bachelors' degrees. The difference between the total taxes received by the federal and the state & local governments together from the individuals with bachelors' degrees and the individuals with higher degrees was about 45 or 50 thousand dollars, and it was about 10 thousand dollars by the state & local governments. The sample of the PW's differences was utilized to fit different distributions, and the results were shown in Table 7.6.

Table 7.6 Distributions for the random samples of the differences

<table>
<thead>
<tr>
<th>Government</th>
<th>t</th>
<th>Distribution</th>
<th>Squared Error</th>
<th>Histogram</th>
</tr>
</thead>
<tbody>
<tr>
<td>Both</td>
<td>5000</td>
<td>Normal (4.59×10^4, 2.05×10^4)</td>
<td>0.000501</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10000</td>
<td>Normal (5.04×10^4, 2.04×10^4)</td>
<td>0.000208</td>
<td></td>
</tr>
<tr>
<td>State & Local</td>
<td>5000</td>
<td>Normal (1.06×10^4, 2.05×10^4)</td>
<td>0.000491</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10000</td>
<td>Normal (1.03×10^4, 2.04×10^4)</td>
<td>0.000208</td>
<td></td>
</tr>
</tbody>
</table>

All of the samples were following normal distributions with different parameters' values. As seen, when the sample size was large enough, the distributions best fitted were almost the same. The mean values of the distributions for the governments together had 4500 dollars difference between t=5000 and t=10000, and the standard
deviations had only 100 difference. For the state & local government, the difference between \(t=5000 \) and \(t=10000 \) of the mean values was 300 dollars, and it was 100 for the standard deviations. However, as the sample size became larger, the square error became less. The square error was 0.0002 when \(t=10000 \), compared with 0.0005 when \(t=5000 \).

7.4 The whole life of career model for the individuals major in engineering

The distributions best fitted for the incomes of the individuals major in engineering were shown in Chapter 5, and the process to run the model was the same as shown in Section 7.3 with the income distributions for the individuals who were major in engineering. The values of other parameters in the model were set to be the same as in Section 7.3. The results were shown in Table 7.7.

Table 7.7 Average present worth of total taxes

<table>
<thead>
<tr>
<th>(t)</th>
<th>PW BD</th>
<th>Higher</th>
<th>Difference</th>
<th>sPW BD</th>
<th>Higher</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>$87,301</td>
<td>$166,351</td>
<td>$79,050</td>
<td>$45,878</td>
<td>$47,614</td>
<td>$1,736</td>
</tr>
<tr>
<td>500</td>
<td>$114,278</td>
<td>$150,642</td>
<td>$36,364</td>
<td>$43,121</td>
<td>$48,224</td>
<td>$5,103</td>
</tr>
<tr>
<td>1000</td>
<td>$97,010</td>
<td>$110,018</td>
<td>$13,008</td>
<td>$44,444</td>
<td>$51,925</td>
<td>$7,481</td>
</tr>
<tr>
<td>5000</td>
<td>$79,764</td>
<td>$110,232</td>
<td>$30,468</td>
<td>$45,946</td>
<td>$50,741</td>
<td>$4,795</td>
</tr>
<tr>
<td>10000</td>
<td>$99,232</td>
<td>$111,622</td>
<td>$12,391</td>
<td>$44,306</td>
<td>$50,789</td>
<td>$6,483</td>
</tr>
</tbody>
</table>

As indicated in Table 7.7, the average value of the present worth of the taxes received by the federal and state & local governments together from the individuals who were bachelors was in ten thousand dollars, while the average level for the individuals who received higher degrees was in hundred thousand dollars. The difference between them was in ten thousand dollars. The average value of the present worth of the taxes received by the state & local government from the individuals who were bachelors was about 45 thousand dollars, and the average value for the individuals who received
higher degrees was about 50 thousand dollars. The difference between the two groups of people was in thousand dollars and about 5 thousand.

Table 7.8 Distributions for the random samples of the differences

<table>
<thead>
<tr>
<th>Government</th>
<th>t</th>
<th>Distribution</th>
<th>Squared Error</th>
<th>Histogram</th>
</tr>
</thead>
<tbody>
<tr>
<td>Both</td>
<td>5000</td>
<td>Normal (3.05×10^4, 1.93×10^4)</td>
<td>0.000179</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10000</td>
<td>Normal (1.24×10^4, 1.93×10^4)</td>
<td>0.000106</td>
<td></td>
</tr>
<tr>
<td>State & Local</td>
<td>5000</td>
<td>Normal (4.79×10^3, 1.93×10^4)</td>
<td>0.000178</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10000</td>
<td>Normal (6.48×10^3, 1.93×10^4)</td>
<td>0.000105</td>
<td></td>
</tr>
</tbody>
</table>

As known in previous sections, the results should trend to be stable as t was increased. The differences were fitted for different distributions, and the best distributions were shown in Table 7.8. All distributions selected were normal distribution with different parameters, and the squared errors were smaller as t became larger. The mean values were not the same with the change of t, while the order of magnitudes was the same. Because the data were generated randomly, a degree of difference was accepted with the change of t.

7.5 Sensitivity Analysis

The major parameters assumed in the models were the percentage of the individual's income to stop adding the indirect contributions (p_s) and the percentage of the direct expenditures paid to the employees in the corresponding places (p_e). In the whole life of careers model, there was another parameter, which was the effective annual interest rate (i).
7.5.1 Sensitivity Analysis for the Basic Model

The sensitivity analysis was indicated by the average values of Impact1, Impact2, and Impact3 with the changes of p_s and p_e, with the sample size of 5000. The basic values of p_s and p_e were 0.01 and 0.5, respectively, which was marked as the 0% change in the diagrams.

![Impact 1](image)

Figure 7.2 Changes of Impact1 for all individuals ignoring their majors with p_s

The changes of p_s in the basic model was from -50% to 900%. When there were -50% changes to p_s, it was 0.005. When 900% changes were made on p_s, it became 0.1. 0.1 was large enough for p_s, because the indirect impact of an individual was expected.

The changes of the average values of Impact1, Impact2, and Impact3 for the individuals disregarding their majors were shown in Figure 7.2, Figure 7.3, and Figure 7.4, respectively.
Figure 7.3 Changes of Impact2 for all individuals ignoring their majors with p_s

Figure 7.4 Changes of Impact3 for all individuals ignoring their majors with p_s

In the figures, "Impact#_federal and state" was for the impact to the federal and the state & local governments together, and "Impact#_state" was for the impact to the state & local government. As indicated, the undulation of the impacts was irregular and around a specific number for each line. The changes of p_s did not influence the results in the basic model for all individuals disregarding their majors significantly. The changes of the impacts in the basic model for the individuals major in engineering were shown in Figure 7.5, Figure 7.6, and Figure 7.7.
Figure 7.5 Changes of Impact1 for the individuals major in engineering with p_s

Figure 7.6 Changes of Impact2 for the individuals major in engineering with p_s

Figure 7.7 Changes of Impact3 for the individuals major in engineering with p_s
As seen, there was no significant trend of the fluctuations of the impacts for the basic model with the individuals major in engineering. Each impact was up and down around a specific value, and there was no significant effect of the changes of p_s. It was indicated that p_s was an insensitive parameter for the basic model.

The changes of p_e in the basic model was from -90% to 90%. When there were -90% changes to p_s, it was 0.05. When there were 90% changes to p_s, it became 0.95.

Figure 7.8 Changes of Impact1 for all individuals ignoring their majors with p_e

Figure 7.9 Changes of Impact2 for all individuals ignoring their majors with p_e
Figure 7.10 Changes of Impact3 for all individuals ignoring their majors with p_e

The changes of the average values of Impact1, Impact2, and Impact3 were shown in Figure 7.8, Figure 7.9, and Figure 7.10 for the individuals disregarding their majors.

As indicated, there was no significant trend of the undulation of Impact1 with the changes of p_e, while the average values of Impact2 and Impact3 trended to be increased with the increasing of p_e. Impact1 was insensitive to p_e, but Impact2 and Impact3 were sensitive to it in the basic model for the individuals disregarding their majors.

Figure 7.11 Changes of Impact1 for the individuals major in engineering with p_e
The changes of the average impacts in the basic model for the individuals major in engineering were shown in Figure 7.11, Figure 7.12, and Figure 7.13. As shown in Figure 7.11, the lines of Impact1 were shifted up and down with the changes of p_e in a small range. As seen in Figure 7.12 and Figure 7.13, the average values of Impact2 and Impact3 were in the significantly increasing trend with the raise of p_e.

As detected, p_e was a sensitive parameter for Impact2 and Impact3 in the basic model, but insensitive for Impact1.
7.5.2 Sensitivity Analysis for the Whole Life of Careers Model

The sensitivity analysis was indicated by the average values of the net present worth of total taxes paid to the federal and the state & local governments together (PW) and the net present worth of total taxes paid to the state & local government (sPW) with the changes of i, p_s, and p_e with the sample size of 5000. The basic values of i, p_s, and p_e were 0.1, 0.01, and 0.5, respectively, which was marked as the 0% change in the diagrams. As well, the difference of the average of the net present worth of total taxes received between by the federal and the state & local governments and the state & local government was recorded in the figures.

The changes of i in the whole life of careers model was from -90% to 100%. When there were -90% changes made to i, it was 0.01. When 100% changes were made on i, it equaled 0.2. The changes of the average values of PW and sPW were shown in Figure 7.14 and Figure 7.15 for all individuals disregarding their majors.

![Figure 7.14 Changes of PW for all individuals disregarding their majors with i](image-url)
As indicated in Figure 7.14 and Figure 7.15, the average values of PW and sPW trended to be decreased with the increasing of i either for the individuals who were bachelors or for the individuals who received higher degrees. The difference of PW between them was shifted around -30% and 0% changes made to i. The difference of sPW between the two groups of individuals had the same trend as sPW. It was decreased sharply between -90% and -30% changes made, but kept decreasing gently from 0% changes to 100% changes made.

Figure 7.16 Changes of PW for the individuals major in engineering with i
As indicated in Figure 7.16 and Figure 7.17, the average values of PW and sPW for the individuals major in engineering were decreased with the changing of \(i\). The difference of PW and sPW between the two groups of individuals also trended to be decreased, while the deceasing was subdued.

As described above, the effective annual interest rate (\(i\)) was a sensitive parameter in the whole life of career model to affect the indicators, and the indicators trended to be decreased with its increasing.

The changes of \(p_s\) in the whole life of careers model was from -90% to 100%. When there were -90% changes made to \(p_s\), it was 0.001. When 100% changes were made on \(p_s\), it equaled 0.02. The changes of the average values of PW and sPW were shown in Figure 7.18 and Figure 7.19 for all individuals disregarding their majors.
As seen in Figure 7.18 and Figure 7.19, there was no fixed trend of PW and sPW with the changing of p_s. The differences of PW and sPW between the two groups of individuals were not changed too much with p_s. The difference of PW was around $40,000, and the difference of sPW was around $10,000.
As indicated in Figure 7.20 and Figure 7.21, there were no trends on the shift of the PW and sPW for the individuals major in engineering with the changing of p_s. The shift was around a value as well. The difference of PW between the two groups of individuals was shifted around $40,000, but there was an abnormal point when -30% changes were made. The difference of sPW was shifted around $5,000.

As detected, p_s was an insensitive parameter for the whole life of careers model, and the indicators just were shifted up and down in the error range with its changes.

The changes of p_e in the whole life of careers model was from -90% to 80%. When there were -90% changes made to p_e, it was 0.05. When 80% changes were made on
p_e, it equaled 0.9. The changes of the average values of PW and sPW were shown in Figure 7.22 and Figure 7.23 for all individuals disregarding their majors.

![Figure 7.22 Changes of PW for all individuals disregarding their majors with p_e](image1)

![Figure 7.23 Changes of sPW for all individuals disregarding their majors with p_e](image2)

As indicated in Figure 7.22 and Figure 7.23, the average values of PW and sPW trended to be increased with the increasing of p_e. The difference of PW between the two groups of individuals was shifted up and down around $50,000 with the changing of p_e. The difference of sPW was around $10,000 between -90\% and 30\% changes, but had a sharp rise from 30\% changes to 80\%.
As indicated in Figure 7.24 and Figure 7.25, the average values of PW of the total taxes and sPW of the total taxes received from the individuals who received higher degrees trended to be increased with the changing of p_e, but the average value of sPW from the individuals who were bachelors had a sharp decrease when the change was from 30% to 80%. The reason why the abnormal point appeared should be the instability of the random generation. The difference of PW between the two groups of individuals was shifted up and down more sharply than the difference of sPW. And the difference of sPW between the two groups of individuals tended to be increased with the increasing of p_e.

Figure 7.24 Changes of PW for the individuals major in engineering with p_e

Figure 7.25 Changes of sPW for the individuals major in engineering with p_e
As seen, p_e was a sensitive parameter in the whole life of career model for the indicators, and the indicators trended to be increased with its increasing.

7.6 Performances with the Tax Rate Changed

The tax was the way for the governments to receive rewards from the persons, and the tax rate was the direct parameter to influence the taxes. Normally, the government adjusted the tax rate every several years. In this section, the performances of the models were detected with the tax rate changed. There were two different kinds of taxes rates considered in this research, which were the sales tax rate and the income tax rate. The sales tax rate (r_s) utilized as the baseline was 7%, which was for the Lincoln city in Nebraska. The changes made were from -90% to 90%. When -90% changes were made to r_s, it became 0.007, and it was 0.133 with 90% changed to it.

Table 7.9 Federal income tax rates changed for singles in 2011

<table>
<thead>
<tr>
<th>Tax Brackets</th>
<th>Marginal Tax Rate</th>
<th>Over</th>
</tr>
</thead>
<tbody>
<tr>
<td>-90% changes</td>
<td>-30% changes</td>
<td>0% changes</td>
</tr>
<tr>
<td>1%</td>
<td>7%</td>
<td>10.0%</td>
</tr>
<tr>
<td>1.5%</td>
<td>10.5%</td>
<td>15.0%</td>
</tr>
<tr>
<td>2.5%</td>
<td>17.5%</td>
<td>25.0%</td>
</tr>
<tr>
<td>2.8%</td>
<td>19.6%</td>
<td>28.0%</td>
</tr>
<tr>
<td>3.3%</td>
<td>23.1%</td>
<td>33.0%</td>
</tr>
<tr>
<td>3.5%</td>
<td>24.5%</td>
<td>35.0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8,500</td>
</tr>
<tr>
<td></td>
<td></td>
<td>34,500</td>
</tr>
<tr>
<td></td>
<td></td>
<td>83,600</td>
</tr>
<tr>
<td></td>
<td></td>
<td>174,400</td>
</tr>
<tr>
<td></td>
<td></td>
<td>379,150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>379,150</td>
</tr>
</tbody>
</table>

The income tax rate brackets utilized in the research were for the single individuals who had no child. The brackets were not changed for the performance, but only the marginal federal income tax rates for each bracket and the effective state income tax rates of each bracket were changed by -90% and -30% as shown in Table 7.9 and Table 7.10.
The income taxes rates with the corresponding changes were utilized in the model to obtain the performances to detect its effects.

7.6.1 Performances of the Basic Model with the Tax Rate Changed

The performances of the basic model for all the individuals disregarding their majors were obtained when the sales tax rate \(r_s \) was changed, and the results of Impact1, Impact2, and Impact3 were shown in Figure 7.26, Figure 7.27, and Figure 7.28.

![Impact 1](image)

Figure 7.26 Performances of Impact1 for all individuals disregarding their majors with \(r_s \)
Figure 7.27 Performances of Impact2 for all individuals disregarding their majors with r_s

Figure 7.28 Performances of Impact3 for all individuals disregarding their majors with r_s

As indicated in Figure 7.26, the average Impact1 was shifted up and down around 1.59 for the federal and the state & local governments together and around 1.54 for the state & local government. The average Impact2 and the average Impact3 were raised with the increasing of the sales tax rates as shown in Figure 7.27 and Figure 7.28.
Figure 7.29 Performances of Impact1 for the individuals major in engineering
with r_s

Figure 7.30 Performances of Impact2 for the individuals major in engineering
with r_s

Figure 7.31 Performances of Impact3 for the individuals major in engineering
with r_s
The performances of the basic model for the individuals major in engineering were shown in Figure 7.29, Figure 7.30, and Figure 7.31 with the changing of the sales tax rates. As seen in Figure 7.29, the average Impact1 were shifted around 1.25 for the federal and the state & local governments together, and around 1.22 for the state & local government. In Figure 7.30, the average Impact2 were raised with the increasing of \(r_s \), especially from -30% changes to 30% changes. The average Impact3 shown in Figure 7.31 were increased from -90% changes to 30% changes, while it was decreased from 30% changes to 90% changes.

The changes of the three indicators with the changing of the income tax rate (\(r_i \)) were shown in Table 7.11 for all individuals disregarding their majors and Table 7.12 for the individuals major in engineering.

Table 7.11 Performances of impacts for all individuals disregarding their majors with \(r_i \)

<table>
<thead>
<tr>
<th>changes</th>
<th>The federal and the state & local governments together</th>
<th>The state & local government</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Impact1</td>
<td>Impact2</td>
</tr>
<tr>
<td>-90%</td>
<td>1.55</td>
<td>0.07</td>
</tr>
<tr>
<td>-30%</td>
<td>1.58</td>
<td>0.18</td>
</tr>
<tr>
<td>0%</td>
<td>1.61</td>
<td>0.24</td>
</tr>
</tbody>
</table>

Table 7.12 Performances of impacts for the individuals major in engineering with \(r_i \)

<table>
<thead>
<tr>
<th>changes</th>
<th>The federal and the state & local governments together</th>
<th>The state & local government</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Impact1</td>
<td>Impact2</td>
</tr>
<tr>
<td>-90%</td>
<td>1.22</td>
<td>0.10</td>
</tr>
<tr>
<td>-30%</td>
<td>1.27</td>
<td>0.20</td>
</tr>
<tr>
<td>0%</td>
<td>1.24</td>
<td>0.23</td>
</tr>
</tbody>
</table>
As seen in the tables, the average Impact1 was shifted in a small range with the changing of the income tax rate, while the average Impact2 and Impact3 trended to be
decreased as r_i reduced. The abnormal points appeared for the taxes paid to the state & local government. The highest impact occurred when -30% changes were made. The trends can be seen more clearly in Figure 7.32, Figure 7.33, and Figure 7.34. In the figures, "all" was abbreviated for all individuals disregarding their majors, and "eng" was abbreviated for the individuals major in engineering.

As seen, the changing of taxes rates cannot affect Impact1 significantly, while the increasing of the tax rate can raise Impact2 and Impact3.

7.6.2 Performances of the Whole Life of Careers Model with the Tax Rate Changed

The performances of the whole life of careers model for all the individuals disregarding their majors were obtained when the sales tax rate (r_s) was changed, and the results of the present worth of the total taxes for their whole career life paid to the federal and the state & local governments together (PW) and the present worth of the total taxes paid to the state & local government (sPW) were shown in Figure 7.35 and Figure 7.36.

![Graph showing PW performance with r_s]

Figure 7.35 Performances of PW for all individuals disregarding their majors with r_s

As indicated in Figure 7.35, the average PW for the individuals who were bachelors were shifted up and down around $100,000, and the average PW for the individuals
who received higher degrees were also shifted up and down but trended to be increased. So the differences between them trended to be increased with waves when the sales tax rate was increased.

Figure 7.36 Performances of sPW for all individuals disregarding their majors with r_s

As seen in Figure 7.36, the average sPW were raised with r_s increasing, while the differences of sPW between the two groups of individuals were shifted around $10,000.

Figure 7.37 Performances of PW for the individuals major in engineering with r_s
The performances of the whole life of career model for the individuals major in engineering were shown in Figure 7.37 and Figure 7.38 with the changing of the sales tax rates. As shown in Figure 7.37, the average PW were shifted by a large margin, and the differences of PW between the two groups of individuals had the highest value near the baseline. When -90% and 90% changes were made, the differences were changed to be negative, where the difference was always the present worth of taxes from the individuals who received higher degrees subtracting the present worth of taxes from the individuals who were bachelors.

Figure 7.38 Performances of sPW for the individuals major in engineering with r_s

As shown in Figure 7.38, the average sPW were increased with the increasing of the sales tax rate, while the differences between the two groups of individuals were kept around $5,000, except the last point. When 90% changes were made, it had a sharp rise, and became higher than $10,000.

The changes of the indicators in the whole life of careers model with the changing of the income tax rate (r_i) were shown in Table 7.13 for all individuals disregarding their majors and Table 7.14 for the individuals major in engineering.
Table 7.13 Performances of PW for all individuals disregarding their majors with r_i

<table>
<thead>
<tr>
<th>changes</th>
<th>The federal and the state & local governments together</th>
<th>The state & local government</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PW_BD</td>
<td>PW_HD</td>
</tr>
<tr>
<td>-90%</td>
<td>$27,903</td>
<td>$38,904</td>
</tr>
<tr>
<td>-30%</td>
<td>$56,811</td>
<td>$69,414</td>
</tr>
<tr>
<td>0%</td>
<td>$84,479</td>
<td>$130,334</td>
</tr>
</tbody>
</table>

"BD" was abbreviated for "the individuals who were bachelors", and "HD" was for "the individuals who received higher degrees".

Table 7.14 Performances of PW for the individuals major in engineering with r_i

<table>
<thead>
<tr>
<th>changes</th>
<th>The federal and the state & local governments together</th>
<th>The state & local government</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PW_BD</td>
<td>PW_HD</td>
</tr>
<tr>
<td>-90%</td>
<td>$40,275</td>
<td>$45,447</td>
</tr>
<tr>
<td>-30%</td>
<td>$67,331</td>
<td>$110,023</td>
</tr>
<tr>
<td>0%</td>
<td>$79,764</td>
<td>$110,232</td>
</tr>
</tbody>
</table>

As seen in Table 7.13, the average PW paid for the whole life of their careers were decreased with the income tax rate reduced, and the difference of PW between the two groups had the same performance. The average sPW were also fallen with the r_i decreasing. But the differences of sPW for the federal and the state & local governments were increased from 0% to -30% changes made. From -30% to -90% changes made, the differences for the state & local government were raised.
As indicated in Figure 7.39, the performances of PW were increased with the increasing of r_i, except the difference of PW for the individuals major in engineering.

As shown in Figure 7.40, most of the sPW had smooth rise but not by large margins. There was one reaction on the line of the differences for the individuals major in engineering with -30% changes of r_i.

As expected in Chapter 3, the total taxes paid had potential to be increased when the income taxes rates were decreased, because more expenditure was made and more sales taxes should be paid to the governments. But as the indicated above, the present worth was decreased as the income interest rates were decreased. The average taxes
paid in each year separately for the individuals who had higher degree disregarding the major were shown to discuss the details. The sample size was 5000.

![Graph showing total taxes for each year](image1)

Figure 7.41 Total taxes in each year for the individual who received higher degree

As seen in Figure 7.41, the average total taxes which were the sum of the income taxes and the sales taxes were always lower when the -30% changes were made to the income taxes rates in the whole life of the career. The total taxes were decreased when the income taxes rates were declined.

![Graph showing sales taxes for each year](image2)

Figure 7.42 Sales taxes in each year for the individual who received higher degree
As indicated in Figure 7.42, the average sales taxes paid each year were little higher when -30% changes were made to the income taxes rates. It was proved that the expenditures were increased when the income taxes rates were decreased. But the amount of sales taxes' rise cannot make up the drop of the income taxes.

As seen the sales taxes should be increased when the income tax rates were decreased.

A test was done by reducing the income tax rates in a 10% interval using the individuals who received higher degrees disregarding their majors. The results were shown in Table 7.15. Negative changes in tax rates shown in Table 7.15 and Table 7.16 were with respect to current rates.

Table 7.15 Performances of the present worth of the income tax revenues and sales tax revenues for the individuals with higher degrees disregarding their majors with \(r_i \)

<table>
<thead>
<tr>
<th>Income tax rates changed</th>
<th>PW(_2)</th>
<th>percentage of PW(_2) increased</th>
<th>PW(_1)</th>
<th>percentage of PW(_1) increased</th>
<th>sPW(_1)</th>
<th>percentage of sPW(_1) increased</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$24,210</td>
<td>0.00%</td>
<td>$106,124</td>
<td>0.00%</td>
<td>$17,810</td>
<td>0.00%</td>
</tr>
<tr>
<td>-10%</td>
<td>$25,920</td>
<td>7.06%</td>
<td>$79,853</td>
<td>-24.75%</td>
<td>$16,078</td>
<td>-9.73%</td>
</tr>
<tr>
<td>-20%</td>
<td>$26,429</td>
<td>9.16%</td>
<td>$73,173</td>
<td>-31.05%</td>
<td>$14,337</td>
<td>-19.50%</td>
</tr>
<tr>
<td>-30%</td>
<td>$28,024</td>
<td>15.75%</td>
<td>$41,390</td>
<td>-61.00%</td>
<td>$12,398</td>
<td>-30.39%</td>
</tr>
<tr>
<td>-40%</td>
<td>$28,110</td>
<td>16.11%</td>
<td>$48,388</td>
<td>-54.40%</td>
<td>$10,806</td>
<td>-39.33%</td>
</tr>
<tr>
<td>-50%</td>
<td>$28,021</td>
<td>15.74%</td>
<td>$44,889</td>
<td>-57.70%</td>
<td>$8,918</td>
<td>-49.93%</td>
</tr>
<tr>
<td>-60%</td>
<td>$28,674</td>
<td>18.44%</td>
<td>$33,818</td>
<td>-68.13%</td>
<td>$7,127</td>
<td>-59.98%</td>
</tr>
<tr>
<td>-70%</td>
<td>$29,101</td>
<td>20.20%</td>
<td>$29,203</td>
<td>-72.48%</td>
<td>$5,370</td>
<td>-69.85%</td>
</tr>
<tr>
<td>-80%</td>
<td>$29,649</td>
<td>22.47%</td>
<td>$19,794</td>
<td>-81.35%</td>
<td>$3,577</td>
<td>-79.92%</td>
</tr>
<tr>
<td>-90%</td>
<td>$29,832</td>
<td>23.22%</td>
<td>$12,452</td>
<td>-88.27%</td>
<td>$1,772</td>
<td>-90.05%</td>
</tr>
</tbody>
</table>

As indicated in Table 7.15, PW\(_2\) was the present worth of sales tax revenues, PW\(_1\) was the present worth of income tax revenues received by the federal and the state & local governments together, and sPW\(_1\) was the present worth of income tax revenues received by the state & local government. The percentage of the present worth increased was obtained as (the present worth with tax rates changed - the original
present worth)/the original present worth. When income tax rates went down, the income tax revenues were decreased, meanwhile the sales tax revenues were increased. As shown, reduction in income taxes cannot be overcome by increases of the sales taxes paid. More detailed results were shown in Table 7.16.

Table 7.16 Performances of the present worth of the total tax revenues and the sales tax revenues for the individuals with higher degrees disregarding their majors with r_i

<table>
<thead>
<tr>
<th>Income tax rates changed</th>
<th>PW$_2$</th>
<th>percentage of PW$_2$ increased</th>
<th>PW$_3$</th>
<th>percentage of PW$_3$ increased</th>
<th>sPW$_3$</th>
<th>percentage of sPW$_3$ increased</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$24,210</td>
<td>0.00%</td>
<td>$130,334</td>
<td>0.00%</td>
<td>$42,020</td>
<td>0.00%</td>
</tr>
<tr>
<td>-10%</td>
<td>$25,920</td>
<td>7.06%</td>
<td>$105,773</td>
<td>-18.84%</td>
<td>$41,997</td>
<td>-0.06%</td>
</tr>
<tr>
<td>-20%</td>
<td>$26,429</td>
<td>9.16%</td>
<td>$99,602</td>
<td>-23.58%</td>
<td>$40,766</td>
<td>-2.98%</td>
</tr>
<tr>
<td>-30%</td>
<td>$28,024</td>
<td>15.75%</td>
<td>$69,414</td>
<td>-46.74%</td>
<td>$40,423</td>
<td>-3.80%</td>
</tr>
<tr>
<td>-40%</td>
<td>$28,110</td>
<td>16.11%</td>
<td>$76,498</td>
<td>-41.31%</td>
<td>$38,916</td>
<td>-7.39%</td>
</tr>
<tr>
<td>-50%</td>
<td>$28,021</td>
<td>15.74%</td>
<td>$72,910</td>
<td>-44.06%</td>
<td>$36,939</td>
<td>-12.09%</td>
</tr>
<tr>
<td>-60%</td>
<td>$28,674</td>
<td>18.44%</td>
<td>$62,491</td>
<td>-52.05%</td>
<td>$35,801</td>
<td>-14.80%</td>
</tr>
<tr>
<td>-70%</td>
<td>$29,101</td>
<td>20.20%</td>
<td>$58,304</td>
<td>-55.27%</td>
<td>$34,471</td>
<td>-17.97%</td>
</tr>
<tr>
<td>-80%</td>
<td>$29,649</td>
<td>22.47%</td>
<td>$49,444</td>
<td>-62.06%</td>
<td>$33,226</td>
<td>-20.93%</td>
</tr>
<tr>
<td>-90%</td>
<td>$29,832</td>
<td>23.22%</td>
<td>$42,284</td>
<td>-67.56%</td>
<td>$31,604</td>
<td>-24.79%</td>
</tr>
</tbody>
</table>

As indicated in Table 7.16, PW$_3$ was the present worth of total tax revenues received by the federal and the state & local governments together, and sPW$_3$ was the present worth of total tax revenues received by the state & local government. All of the percentages of PW$_2$ increased were positive, while all of the percentages of PW$_3$ and sPW$_3$ increased were negative. It meant that the sales taxes were increased while the total tax revenues were decreased when the income tax rates were reduced. If a 10% change was set to be the significant level, the present worth of sales taxes can be raised significantly when 30% of income tax rates were declined, while the present worth of total tax revenues to the state & local government had a significant drop when 50% of income tax rates were declined. The present worth of total tax revenues
to the federal and the state & local governments was decreased significantly as soon as 10% of income tax rates were declined. There was one point special for PW3 when 40% of income tax rates were declined. PW3 with -40% changes of income tax rates were higher than PW3 with -30% changes, and both of the percentages of decreasing were less than 50%. It can be seen more clearly in Figure 7.43.

Figure 7.43 Performances of the present worth for the individuals with higher degrees disregarding their majors with r_i changing

The total tax revenues were supposed to be increased with the income tax rates falling, while the data showed an opposite results. The sales tax revenues were increased with the income tax rates falling as expected, but the incremental of the sales tax revenues cannot make up the decreases of the income tax revenues. In this research, the innovation or improvement of the communities contributed by the individuals and more money made by the communities because of the work of the individuals were not reflected, which can also give affects to the tax revenues. The affects to the tax revenues should be positive. So it was most possible that the point
that 40% of the income tax rates reduced had the potential to give the most significant increases of the tax revenues.

In addition, when income tax rates were decreased, more expenditure was made by individuals and the corresponding communities can have more sales and profits. Corporate income tax revenues can result more tax revenues to the government due to the increasing of the expenditure.

The increasing of the taxes rates can give a significant rise to the present worth of total taxes in every case, but it cannot influence the difference between the two groups of individuals significantly.
Chapter 8 Conclusions

In this research, the simulation models were utilized to obtain the economic impacts for the government to support an individual to accept the higher than undergraduate education. The mathematical models in the literature research always focused on groups of peoples and the amount of money spent in the given area, while the simulation models in this research were about the individuals and the tax revenues received by the government. Five specified objectives were realized by the simulation models.

The chain to show the cash flows for an individual's expenditures was created, which was the first objective in Chapter 3. In the chain, it was seen that taxes were paid by the individuals and they were received by the government. The taxes received by the federal and the state & local governments were spent in different ways. Hence, specific values of the revenues should be meaningful and useful to understand the direct economic impact to cities, states and federal governments. The taxes revenue was a quantitative and measurable indicator which can link the individuals and the government. It should be varied due to the changes of the individuals' salaries from bachelors to masters or doctors. The taxes revenues were an understandable measure of economic impact. So the taxes received by the government were selected to be the indicators to express the impacts. The tax revenues from one individual in this research included the direct income taxes and the direct sales taxes paid to the government by the individual and also the indirect sales taxes received by the government due to the contributions of the individual's expenditures.

The second objective was to estimate the economic impact of the income increased by receiving a graduate degree for an individual new to the career. It was achieved by the basic model, and it was reflected on the annual tax revenues of the government in the
first year when the individual went into the profession. There were three indicators utilized, including the ratio between the taxes received from the bachelor degreed engineer and the advanced degreed individuals (Impact1), the increases of taxes received by one dollar increased in their salaries (Impact2), and the difference of the taxes between the bachelor degreed engineers and the advanced degreed engineers and other professionals (Impact3). The difference was obtained by utilizing the taxes received from the individuals who received higher degrees and subtracting the taxes from the individuals who only received bachelors’ degrees.

In the basic model, the average level of Impact1 to the federal and the state & local governments together for all individuals disregarding their majors was 1.6, which meant if the individual who had a bachelor’s degree paid one dollar in taxes to the federal and the state & local governments, the individual who received a higher degree would contribute 1.6 dollars per year. The average level of Impact1 to the state & local government was 1.5. For the individuals major in engineering, the average levels of Impact1 both to the federal and the state & local governments and to the state & local government were about 1.3. The average level of Impact2 to the governments together for all individuals was about 0.2, and it was 0.3 for the individuals major in engineering, which meant that if one dollar was increased to the salaries for the individual who received a higher degree, 0.2 dollars more would be contributed in the taxes by a general person and 0.3 dollars more by a person major in engineering. The average levels of Impact2 to the state & local government were 0.1 from either the individuals disregarding their majors or the individuals major in engineering. The average value of Impact3 was about three thousand dollars to the federal and the state & local governments for the individuals disregarding their majors, and it was about one thousand dollars to the state & local governments in the
first year when they went into their career. It was about two thousand dollars to the
federal and the state & local governments for the individuals major in engineering,
and around 0.7 thousand dollars to the state & local government.

It was expected that the government receive more taxes from the individuals who
received masters' or doctoral degrees, because their salaries were always higher than
the individuals who were only bachelors. The results can be used by the government
to more clearly determine the return on investment in higher education especially
engineering.

The third objective in the research was to estimate the total amount of taxes of the
government including the primary and secondary taxes revenues in the whole life of
the career for an individual. It was obtained by the whole life of careers model, and
the present worth of taxes revenues were utilized as the indicator to show the results.
The value of the present worth and the difference of the present worth between the
two groups of individuals were the outputs in this model.

In the whole life of careers model, for all individuals disregarding their majors the
average present worth of total taxes received from the individuals who received
higher degrees were found. The federal and the state & local governments received
approximately $50,000 more than from the individuals who got an incremental salary
increase due to receiving an advanced degree, and of that

$50,000approximately$11,000went to the state & local government. For the
individuals major in engineering, the average difference between the individuals with
higher degrees and the individuals with bachelors' degrees of taxes received by the
federal and the state & local governments was approximately $30,000, and it was
approximately $5000for the state & local governments. As seen in the results, the
average differences of the taxes paid by all individuals ($50,000 and $11,000) were
higher than the average difference by the individuals major in engineering ($30,000 and $5,000). A bachelor's degree major in engineering was valuable and the increase to an advanced degree was relatively small when compared to others. The increment from a non-engineering bachelor's degree to an advanced was eager. The differences of the present worth of total tax revenues between the two groups of individuals were positive as indicated, since the individuals with higher degrees always can earn more. The tax revenues due to higher pay for advanced degrees cascaded through the spending chain even excluding the impact on secondary income taxes or innovations due to advanced education to result in a justification for support of higher education from taxing bodies. Economic analysis of cost of education to the student and contributions by governments in support of education can be made. Clearly more government support for graduate education could be justified based upon the economic returns assuming the addition tax revenues generated could be spent on the sources of the generation rather than other government spending needs. The suggested investments by the government on an advanced degree cannot be higher than the incremental of the total tax revenues. It was recommended that the highest funding on a graduate degree major in engineering should be $30,000 for the federal and the state & local government, and it was $5,000 for the state & local government. If the major can be disregarded, the funding from the federal and the state & local governments should be lower than $50,000, and it should be lower than $11,000 from the state & local government.

As University of Nebraska – Lincoln taken to be the example, the fees were $1504 per year for every graduate student. The resident tuition was $216 per credit hour for the people who were Nebraskan, and the non-resident tuition was $641 per credit hour.

The minimum credits for a single graduate student should be nine hours per semester.
The tuition and fees were $5392 for the resident and $13,042 for the non-resident per year. It requires two years to receive a master’s degree normally. The funding needed to pay the total tuition and fees for a graduate student were $10,784 for the resident and $26,048 for the non-resident. As indicated in the whole life of careers model, the average difference of the present worth of tax revenues received by the federal and the state & local governments were higher than $26 thousand dollars. But the average difference of the present worth of tax revenues received by the state & local government were higher than $10784, but lower than $26048. It was affordable to give funding to the resident graduate student to achieve a master’s degree for the state & local government itself. Funding the non-resident graduate student could lead too much pressure on the state & local government itself. It suggested that the federal government needed to support a non-resident graduate student with the state & local government together. The additional funding support for graduate students would require that their employment be in Nebraska for the tax revenues to be used to recover the investment.

From the results of the two simulation models, the individuals with higher degrees can contribute more tax revenues to the governments than the individuals only with bachelors' degrees. It was suggested that the additional part of the revenues of the governments can be spent to educate more persons to receive advanced degrees. The governments can receive more taxes due to the number of masters or doctors increased. It was beneficial circulation for the governments.

The fourth objective was to obtain the trends of the impact to the governments due to the changing of the parameters' values. The sensitivity analysis was constructed for both of the models to attain it, which was to get the changes of the outputs with the parameters changing. The effective annual interest rate utilized to calculate the
present worth in the whole life of careers model was a sensitive parameter, and it gave
the negative effects, because this parameter was in the denominator in the equation to
calculate the present worth. Both of the models were not sensitive to the percentage of
the individual's income to stop adding the indirect contributions \((p_s)\) in the range
simulated. Most of the outputs in the models were sensitive to the percentage of the
direct expenditures paid to the employees in the corresponding places \((p_e)\), and \(p_e\) can
give positive influences in most cases. Impact1 in the basic model was insensitive to
\(p_e\), and the reason should be the taxes received from the two groups of individuals had
the nearly equivalent increases when \(p_e\) was increased. The model reinforced the
importance of the cost of labor in the eighteen expenditure areas. Lower labor cost
also reduces the income taxes paid to employees in the secondary levels which were
not considered in the model. The sales taxes on the expenditures made by the
secondary employees in the spending chain were considered. Thus the model
emphasized the economic impact of spending through tax revenues.
The fifth objective was to obtain the impact on the tax revenues including the primary
and the secondary tax revenues from one individual to the government with the tax
rate going down. It was reached to obtain the changes of the outputs by reducing the
taxes rates as desired. Most of the outputs in the models were sensitive to the sales tax
rate, and they trended to be raised with the sales tax rate increasing, since the amount
of sales taxes grew and more sales taxes were counted into the total taxes. Impact1 in
the basic model was not sensitive to it, and the reason should be the rise of the sales
tax rate can give closed increases to the taxes from the two groups of individuals.
When the income tax rate was decreased, Impact2 and Impact3 were also decreased in
the basic model, but Impact1 were kept nearly consistent. Most outputs of the whole
life of careers model were dropped with the income tax rate decreasing. The
difference of the present worth of taxes received by the federal and the state & local governments from the individuals major in engineering appeared to be highest when - 30% changes made to the income tax rate. There were only little decreases of the difference of the present worth of taxes received by the state & local government when the income tax rate decreased. The total taxes paid were not increased by decreasing the income tax rate. The main reason should be that the income taxes had more contributions on the total taxes to the governments, and even if the income taxes were decreased, the individuals did not make significantly more expenditures.

As indicated by the whole life of careers model for the individuals who received higher degrees disregarding their majors with the income tax rates reduced in a 10% interval, a reduction in income tax rate for individual did not result in a net tax gain for the government.

There were some limitations in the research. The innovation or improvement that an individual contributed to their community or employer that could impact the local or state economy was not reflected in the model, excepting possible increase in salary for doing a good job. In addition, the same package of distributions of the percentages of the incomes on expenditures was utilized when the income tax rates were changed and spending patterns may have changed. In this research, the tax revenues from only the individuals were focused on. Corporate income tax revenues due to more expenditures should result in more total tax revenues, which was not included in the research. Even though the total tax revenues were not increased by the reduction of the income tax rates, it was recommended that 40% of income tax rates decreased should be the deduction limitation and have the greatest potential to give the most significant increase of the tax revenues for the government.
In addition, the simulation models were run based on several assumptions which led to some other limitations. All individuals in the model were full-time employees with a bachelor’s degree or higher, and all individuals were assumed to be single without children. But there were various individuals in the real world, such as the individuals married without children, and the individuals married with children, thus the many different scenarios including tax deductions and other revenues that could be possible impact tax revenues were not considered. The simplest and most normal situation was selected to be analyzed in the model. It cannot be guaranteed that all graduates can obtain a full time job immediately after graduation. It was assumed that an individual can receive a bachelor’s degree when he/she was 22 years old, and an individual can receive a higher degree when he/she was 25 years old, but the ages at which the degrees were received were varied for different individuals. The higher degree in the research can be a master's degree or a doctoral degree because the raw census data gave the classification in this way, but the situations should be different for the masters from the doctors in the real world. The income tax revenues from the employees in the secondary levels were not counted into the total tax revenues. The future research can focus on the corporate income tax revenues to the governments due to the contributions of the individuals' salaries increased when an advanced degree is received. When more expenditure is made by an individual due to the incremental of the salary, more sales and profits can be obtained by the company. Therefore, there should be more corporate income tax revenues to the governments. Moreover, the individual who has received an advanced degree is expected to bring more innovation or improvement to the company, which can help the company to gain more money. The corporate income tax revenues can also be influenced by one's knowledge.
Chapter 9 Contribution to the body of knowledge

The research presents a simulation model to analyze the economic impacts of a graduate degree to the governments. In the simulation model, the outputs are indicated by the taxes received by the governments. The inputs are the salary, the expenditures patterns, and the taxes rates. The modeling of the spending chain to include the direct and indirect taxes paid as a result of an increase in salary due to obtaining an advanced degree is a new research topic. The spending chain includes eighteen areas of spending for an individual and those same eighteen areas of spending for individuals who have incomes as a result of the original individual’s spending. Each of the eighteen areas of spending were represented by Monte Carlo simulation from a data distribution generated based upon an analysis of data from US Census spending patterns in each category. It is simple to change the values of the parameters and a complete a sensitivity analysis in the simulation model. For different individuals, the model can have different inputs, and generate the corresponding outputs. It is a convenience method to obtain the taxes paid to the governments. The economic impacts of a graduate degree to the governments can be obtained based on the taxes revenues.

The simulation model was created to obtain tax revenues. It can combine more factors into account, and it was not necessary to keep drastic simplifications as the mathematical model to make sure that the equation system can be solved. The model was built based on primary and secondary tax revenues (usually dollars spent in a community was used) to indicate economic impacts. The model of the spending chain using census data was new.
REFERENCES

Appendix A: A sample of the raw data for the individuals' expenditures

<table>
<thead>
<tr>
<th>Item</th>
<th>All consumer units</th>
<th>Less than college graduate</th>
<th>College graduate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>Less than high school graduate</td>
</tr>
<tr>
<td>Number of consumer units (in thousands)</td>
<td>121,107</td>
<td>85,128</td>
<td>17,303</td>
</tr>
</tbody>
</table>

Consumer unit characteristics:

- Income before taxes: $62,481
- Income after taxes: $60,712
- Age of reference person: 45.4

Average number in consumer unit:

- Persons: 2.5
- Children under 18: 6
- Persons 65 and older: 2
- Explained: 1.3
- Vehicles: 1.9

Percent distribution:

- Sex of reference person:
 - Male: 47
 - Female: 53

- Housing tenure:
 - Homeowner: 66
 - With mortgage: 41
 - Without mortgage: 25
 - Renter: 54

- Race of reference person:
 - Black or African-American: 12
 - White, Asian, and all other races: 88

- Hispanic or Latino origin of reference person:
 - Hispanic or Latino: 12
 - Not Hispanic or Latino: 88

- Education of reference person:
 - Elementary (1-8): 5
 - High school (9-12): 35
 - College: 60
 - Never attended and other: 1
 - At least one vehicle owned or leased: 88

Average annual expenditures:

- Total: $48,189
- Bachelor's degree: $39,632
- College graduate: $50,375
- Total: $43,144
- Bachelor's degree: $50,967
- College graduate: $68,189
- Master's, professional, doctoral degree: $63,907
- Total: $75,732

- Food: 6,129
- Food at home: 3,846
- Cereals and bakery products: 562
- Cereals and cereal products: 165
- Bakery products: 337
- Meats, poultry, fish, and eggs: 784
- Beef: 217
- Pork: 149
- Other meats: 117
- Poultry: 138
- Fish and seafood: 117
- Eggs: 46
- Dairy products: 380
- Fresh milk and cream: 141
- Other dairy products: 240
- Fruits and vegetables: 679
- Fresh fruits: 252
<table>
<thead>
<tr>
<th>Item</th>
<th>All consumer units</th>
<th>Less than college graduates</th>
<th>College graduates</th>
<th>Total</th>
<th>Bachelor's degree</th>
<th>Master's professional, doctoral degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other food at home</td>
<td>$1,278</td>
<td>$1,184</td>
<td>$1,117</td>
<td>$1,164</td>
<td>$1,377</td>
<td>$1,503</td>
</tr>
<tr>
<td>Sugar and other sweets</td>
<td>132</td>
<td>124</td>
<td>116</td>
<td>124</td>
<td>121</td>
<td>143</td>
</tr>
<tr>
<td>Fats and oils</td>
<td>103</td>
<td>103</td>
<td>95</td>
<td>96</td>
<td>98</td>
<td>114</td>
</tr>
<tr>
<td>Miscellaneous foods</td>
<td>667</td>
<td>667</td>
<td>562</td>
<td>569</td>
<td>593</td>
<td>712</td>
</tr>
<tr>
<td>Nonalcoholic beverages</td>
<td>333</td>
<td>322</td>
<td>327</td>
<td>321</td>
<td>311</td>
<td>336</td>
</tr>
<tr>
<td>Food prepared by consumer unit on</td>
<td>43</td>
<td>31</td>
<td>19</td>
<td>29</td>
<td>26</td>
<td>42</td>
</tr>
<tr>
<td>Food away from home</td>
<td>2,055</td>
<td>2,026</td>
<td>1,990</td>
<td>2,369</td>
<td>2,695</td>
<td>3,564</td>
</tr>
<tr>
<td>Alcoholic beverages</td>
<td>412</td>
<td>293</td>
<td>141</td>
<td>271</td>
<td>361</td>
<td>411</td>
</tr>
<tr>
<td>Housing</td>
<td>16,557</td>
<td>13,659</td>
<td>10,647</td>
<td>13,378</td>
<td>14,635</td>
<td>16,760</td>
</tr>
<tr>
<td>Shelter</td>
<td>9,812</td>
<td>7,841</td>
<td>6,067</td>
<td>7,616</td>
<td>8,560</td>
<td>9,542</td>
</tr>
<tr>
<td>Owned dwellings</td>
<td>6,377</td>
<td>4,596</td>
<td>2,928</td>
<td>4,534</td>
<td>5,125</td>
<td>5,624</td>
</tr>
<tr>
<td>Mortgage interest and charges</td>
<td>3,351</td>
<td>2,415</td>
<td>1,442</td>
<td>2,249</td>
<td>2,797</td>
<td>3,483</td>
</tr>
<tr>
<td>Property taxes</td>
<td>1,814</td>
<td>1,363</td>
<td>874</td>
<td>1,034</td>
<td>1,444</td>
<td>1,869</td>
</tr>
<tr>
<td>Maintenace, repairs, insurance, other expenses</td>
<td>1,112</td>
<td>819</td>
<td>512</td>
<td>662</td>
<td>683</td>
<td>792</td>
</tr>
<tr>
<td>Rental dwelings</td>
<td>2,695</td>
<td>2,695</td>
<td>2,760</td>
<td>2,961</td>
<td>3,203</td>
<td>3,508</td>
</tr>
<tr>
<td>Other lodging</td>
<td>635</td>
<td>549</td>
<td>140</td>
<td>323</td>
<td>474</td>
<td>515</td>
</tr>
<tr>
<td>Utilities, fuels, and public services</td>
<td>3,660</td>
<td>3,462</td>
<td>3,098</td>
<td>3,525</td>
<td>3,431</td>
<td>3,915</td>
</tr>
<tr>
<td>Natural gas</td>
<td>445</td>
<td>364</td>
<td>352</td>
<td>356</td>
<td>345</td>
<td>447</td>
</tr>
<tr>
<td>Electricity</td>
<td>1,443</td>
<td>1,377</td>
<td>1,299</td>
<td>1,421</td>
<td>1,330</td>
<td>1,478</td>
</tr>
<tr>
<td>Fuel oil and other fuels</td>
<td>149</td>
<td>125</td>
<td>109</td>
<td>139</td>
<td>155</td>
<td>176</td>
</tr>
<tr>
<td>Telephone services</td>
<td>1,178</td>
<td>1,112</td>
<td>944</td>
<td>1,117</td>
<td>1,125</td>
<td>1,323</td>
</tr>
<tr>
<td>Water and other public services</td>
<td>489</td>
<td>453</td>
<td>394</td>
<td>451</td>
<td>472</td>
<td>507</td>
</tr>
<tr>
<td>Household operations</td>
<td>1,097</td>
<td>687</td>
<td>329</td>
<td>642</td>
<td>832</td>
<td>1,026</td>
</tr>
<tr>
<td>Personal services</td>
<td>349</td>
<td>267</td>
<td>86</td>
<td>184</td>
<td>243</td>
<td>375</td>
</tr>
<tr>
<td>Other household expenses</td>
<td>667</td>
<td>480</td>
<td>243</td>
<td>456</td>
<td>560</td>
<td>651</td>
</tr>
<tr>
<td>Housekeeping supplies</td>
<td>512</td>
<td>523</td>
<td>465</td>
<td>500</td>
<td>505</td>
<td>576</td>
</tr>
<tr>
<td>Laundry and cleaning supplies</td>
<td>150</td>
<td>145</td>
<td>162</td>
<td>140</td>
<td>157</td>
<td>162</td>
</tr>
<tr>
<td>Other household products</td>
<td>329</td>
<td>285</td>
<td>233</td>
<td>263</td>
<td>305</td>
<td>372</td>
</tr>
<tr>
<td>Postage and stationery</td>
<td>132</td>
<td>105</td>
<td>105</td>
<td>114</td>
<td>115</td>
<td>147</td>
</tr>
<tr>
<td>Household furnishings and equipment</td>
<td>1,467</td>
<td>1,132</td>
<td>704</td>
<td>1,088</td>
<td>1,256</td>
<td>1,591</td>
</tr>
<tr>
<td>Household textiles</td>
<td>102</td>
<td>89</td>
<td>64</td>
<td>80</td>
<td>64</td>
<td>107</td>
</tr>
<tr>
<td>Furniture</td>
<td>355</td>
<td>267</td>
<td>179</td>
<td>276</td>
<td>264</td>
<td>379</td>
</tr>
<tr>
<td>Floor coverings</td>
<td>36</td>
<td>23</td>
<td>19</td>
<td>32</td>
<td>34</td>
<td>67</td>
</tr>
<tr>
<td>Major appliances</td>
<td>209</td>
<td>169</td>
<td>94</td>
<td>185</td>
<td>195</td>
<td>218</td>
</tr>
<tr>
<td>Small appliances, miscellaneous household equipment</td>
<td>107</td>
<td>91</td>
<td>44</td>
<td>97</td>
<td>99</td>
<td>120</td>
</tr>
<tr>
<td>Miscellaneous household equipment</td>
<td>657</td>
<td>495</td>
<td>313</td>
<td>427</td>
<td>566</td>
<td>774</td>
</tr>
<tr>
<td>Apparel and boys</td>
<td>1,702</td>
<td>1,405</td>
<td>1,323</td>
<td>1,279</td>
<td>1,345</td>
<td>2,210</td>
</tr>
<tr>
<td>Men, 16 and over</td>
<td>362</td>
<td>315</td>
<td>259</td>
<td>264</td>
<td>372</td>
<td>413</td>
</tr>
<tr>
<td>Boys, 2 to 15</td>
<td>304</td>
<td>245</td>
<td>192</td>
<td>195</td>
<td>361</td>
<td>327</td>
</tr>
<tr>
<td>Women and girls</td>
<td>78</td>
<td>73</td>
<td>77</td>
<td>69</td>
<td>71</td>
<td>83</td>
</tr>
<tr>
<td>Women, 16 and over</td>
<td>562</td>
<td>457</td>
<td>369</td>
<td>436</td>
<td>408</td>
<td>741</td>
</tr>
<tr>
<td>Girls, 2 to 15</td>
<td>101</td>
<td>94</td>
<td>101</td>
<td>90</td>
<td>92</td>
<td>102</td>
</tr>
<tr>
<td>Children under 2</td>
<td>91</td>
<td>84</td>
<td>83</td>
<td>81</td>
<td>79</td>
<td>107</td>
</tr>
<tr>
<td>Footwear</td>
<td>363</td>
<td>279</td>
<td>366</td>
<td>236</td>
<td>253</td>
<td>329</td>
</tr>
<tr>
<td>Other apparel products and services</td>
<td>261</td>
<td>221</td>
<td>134</td>
<td>173</td>
<td>181</td>
<td>214</td>
</tr>
<tr>
<td>Transportation</td>
<td>7,577</td>
<td>6,756</td>
<td>4,894</td>
<td>6,455</td>
<td>7,388</td>
<td>8,960</td>
</tr>
<tr>
<td>Vehicle purchases (net outlay)</td>
<td>2,588</td>
<td>2,203</td>
<td>1,364</td>
<td>2,165</td>
<td>2,506</td>
<td>3,570</td>
</tr>
<tr>
<td>Cars and trucks, new</td>
<td>1,219</td>
<td>872</td>
<td>318</td>
<td>860</td>
<td>1,096</td>
<td>1,254</td>
</tr>
<tr>
<td>Cars and trucks, used</td>
<td>1,318</td>
<td>1,203</td>
<td>1,020</td>
<td>1,361</td>
<td>1,301</td>
<td>1,362</td>
</tr>
<tr>
<td>Gasoline and motor oil</td>
<td>2,132</td>
<td>2,041</td>
<td>1,667</td>
<td>1,986</td>
<td>2,155</td>
<td>2,526</td>
</tr>
</tbody>
</table>

See footnotes at end of table.
Table 10. Education of reference person: Average annual expenditures and characteristics, Consumer Expenditure Survey, 2010 — Continued

<table>
<thead>
<tr>
<th>Item</th>
<th>All consumer units</th>
<th>Total</th>
<th>Less than high school graduate</th>
<th>High school graduate</th>
<th>High school graduate with some college</th>
<th>Associate's degree</th>
<th>Total</th>
<th>Bachelor's degree</th>
<th>Master's, professional, doctoral degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other vehicle expenses</td>
<td>$2,646</td>
<td>$2,163</td>
<td>$1,676</td>
<td>$2,031</td>
<td>$2,391</td>
<td>$2,727</td>
<td>$3,178</td>
<td>$3,022</td>
<td>$3,653</td>
</tr>
<tr>
<td>Vehicle finance charges</td>
<td>243</td>
<td>226</td>
<td>141</td>
<td>222</td>
<td>236</td>
<td>346</td>
<td>282</td>
<td>289</td>
<td>271</td>
</tr>
<tr>
<td>Maintenance and repairs</td>
<td>757</td>
<td>665</td>
<td>400</td>
<td>655</td>
<td>705</td>
<td>806</td>
<td>1,077</td>
<td>1,002</td>
<td>1,219</td>
</tr>
<tr>
<td>Vehicle insurance</td>
<td>1,010</td>
<td>955</td>
<td>861</td>
<td>916</td>
<td>965</td>
<td>1,161</td>
<td>1,141</td>
<td>1,030</td>
<td>1,462</td>
</tr>
<tr>
<td>Vehicle rental, leases, licenses, and other charges</td>
<td>425</td>
<td>316</td>
<td>185</td>
<td>288</td>
<td>355</td>
<td>413</td>
<td>677</td>
<td>612</td>
<td>701</td>
</tr>
<tr>
<td>Public transportation</td>
<td>493</td>
<td>292</td>
<td>207</td>
<td>251</td>
<td>354</td>
<td>437</td>
<td>968</td>
<td>834</td>
<td>1,203</td>
</tr>
<tr>
<td>Healthcare</td>
<td>3,157</td>
<td>2,772</td>
<td>2,129</td>
<td>2,920</td>
<td>2,936</td>
<td>3,238</td>
<td>4,699</td>
<td>3,624</td>
<td>4,457</td>
</tr>
<tr>
<td>Health insurance</td>
<td>1,031</td>
<td>1,031</td>
<td>1,252</td>
<td>1,733</td>
<td>1,995</td>
<td>2,111</td>
<td>2,302</td>
<td>2,194</td>
<td>2,412</td>
</tr>
<tr>
<td>Medical services</td>
<td>722</td>
<td>585</td>
<td>403</td>
<td>531</td>
<td>672</td>
<td>805</td>
<td>1,048</td>
<td>916</td>
<td>1,173</td>
</tr>
<tr>
<td>Drugs</td>
<td>485</td>
<td>457</td>
<td>409</td>
<td>454</td>
<td>474</td>
<td>495</td>
<td>552</td>
<td>499</td>
<td>647</td>
</tr>
<tr>
<td>Medical supplies</td>
<td>119</td>
<td>99</td>
<td>65</td>
<td>100</td>
<td>107</td>
<td>127</td>
<td>166</td>
<td>156</td>
<td>186</td>
</tr>
<tr>
<td>Entertainment</td>
<td>2,094</td>
<td>2,011</td>
<td>1,174</td>
<td>1,864</td>
<td>2,425</td>
<td>2,710</td>
<td>3,673</td>
<td>3,366</td>
<td>4,226</td>
</tr>
<tr>
<td>Fees and admissions</td>
<td>581</td>
<td>328</td>
<td>113</td>
<td>296</td>
<td>442</td>
<td>467</td>
<td>1,179</td>
<td>1,002</td>
<td>1,412</td>
</tr>
<tr>
<td>Audio and visual equipment and services</td>
<td>954</td>
<td>889</td>
<td>620</td>
<td>678</td>
<td>543</td>
<td>1,050</td>
<td>1,155</td>
<td>1,144</td>
<td>1,179</td>
</tr>
<tr>
<td>Pets, toys, hobbies, and playground equipment</td>
<td>605</td>
<td>533</td>
<td>369</td>
<td>502</td>
<td>647</td>
<td>678</td>
<td>777</td>
<td>750</td>
<td>828</td>
</tr>
<tr>
<td>Other entertainment supplies, equipment, and services</td>
<td>364</td>
<td>280</td>
<td>152</td>
<td>189</td>
<td>394</td>
<td>495</td>
<td>562</td>
<td>410</td>
<td>727</td>
</tr>
<tr>
<td>Personal care products and services</td>
<td>582</td>
<td>478</td>
<td>352</td>
<td>433</td>
<td>520</td>
<td>683</td>
<td>829</td>
<td>786</td>
<td>907</td>
</tr>
<tr>
<td>Reading</td>
<td>100</td>
<td>70</td>
<td>35</td>
<td>67</td>
<td>90</td>
<td>90</td>
<td>169</td>
<td>143</td>
<td>213</td>
</tr>
<tr>
<td>Education</td>
<td>1,074</td>
<td>579</td>
<td>205</td>
<td>347</td>
<td>912</td>
<td>1,220</td>
<td>2,247</td>
<td>1,906</td>
<td>2,709</td>
</tr>
<tr>
<td>Tobacco products and smoking supplies</td>
<td>362</td>
<td>438</td>
<td>440</td>
<td>503</td>
<td>381</td>
<td>386</td>
<td>183</td>
<td>219</td>
<td>119</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>849</td>
<td>639</td>
<td>452</td>
<td>616</td>
<td>731</td>
<td>778</td>
<td>1,346</td>
<td>1,319</td>
<td>1,376</td>
</tr>
<tr>
<td>Cash contributions</td>
<td>1,633</td>
<td>1,250</td>
<td>882</td>
<td>1,128</td>
<td>1,471</td>
<td>1,644</td>
<td>2,540</td>
<td>2,243</td>
<td>3,058</td>
</tr>
<tr>
<td>Personal insurance and pensions</td>
<td>5,373</td>
<td>3,836</td>
<td>2,236</td>
<td>3,569</td>
<td>4,289</td>
<td>5,700</td>
<td>9,007</td>
<td>7,948</td>
<td>10,857</td>
</tr>
<tr>
<td>Life and other personal insurance</td>
<td>315</td>
<td>231</td>
<td>135</td>
<td>228</td>
<td>249</td>
<td>340</td>
<td>525</td>
<td>489</td>
<td>729</td>
</tr>
<tr>
<td>Pensions and social security</td>
<td>5,054</td>
<td>3,606</td>
<td>2,102</td>
<td>3,441</td>
<td>4,444</td>
<td>6,339</td>
<td>8,462</td>
<td>7,540</td>
<td>10,127</td>
</tr>
</tbody>
</table>

Sources of income and personal taxes:

<table>
<thead>
<tr>
<th>Source of income</th>
<th>All consumer units</th>
<th>Total</th>
<th>Less than high school graduate</th>
<th>High school graduate</th>
<th>High school graduate with some college</th>
<th>Associate's degree</th>
<th>Total</th>
<th>Bachelor's degree</th>
<th>Master's, professional, doctoral degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Money income before taxes</td>
<td>62,481</td>
<td>47,953</td>
<td>33,517</td>
<td>47,929</td>
<td>52,113</td>
<td>62,618</td>
<td>97,060</td>
<td>80,003</td>
<td>112,007</td>
</tr>
<tr>
<td>Wages and salaries</td>
<td>49,568</td>
<td>36,086</td>
<td>22,133</td>
<td>35,854</td>
<td>40,522</td>
<td>53,945</td>
<td>81,466</td>
<td>73,319</td>
<td>50,690</td>
</tr>
<tr>
<td>Self-employment income</td>
<td>2,830</td>
<td>2,199</td>
<td>1,740</td>
<td>2,068</td>
<td>2,433</td>
<td>1,261</td>
<td>4,269</td>
<td>4,000</td>
<td>4,743</td>
</tr>
<tr>
<td>Social Security, private and government retirement</td>
<td>7,173</td>
<td>5,977</td>
<td>6,945</td>
<td>7,512</td>
<td>6,530</td>
<td>5,491</td>
<td>7,636</td>
<td>6,896</td>
<td>8,927</td>
</tr>
<tr>
<td>Interest, dividends, rental income, other property income</td>
<td>1,182</td>
<td>689</td>
<td>340</td>
<td>757</td>
<td>795</td>
<td>794</td>
<td>2,384</td>
<td>2,245</td>
<td>2,529</td>
</tr>
<tr>
<td>Unemployment and workers' compensation, veterans' benefits</td>
<td>634</td>
<td>708</td>
<td>614</td>
<td>784</td>
<td>668</td>
<td>734</td>
<td>457</td>
<td>518</td>
<td>351</td>
</tr>
<tr>
<td>Public assistance, supplemental security income, food stamps</td>
<td>505</td>
<td>651</td>
<td>1,178</td>
<td>625</td>
<td>426</td>
<td>424</td>
<td>161</td>
<td>148</td>
<td>185</td>
</tr>
<tr>
<td>Regular contributions for support</td>
<td>407</td>
<td>343</td>
<td>179</td>
<td>295</td>
<td>402</td>
<td>400</td>
<td>535</td>
<td>568</td>
<td>375</td>
</tr>
<tr>
<td>Other income</td>
<td>192</td>
<td>253</td>
<td>161</td>
<td>194</td>
<td>246</td>
<td>166</td>
<td>166</td>
<td>166</td>
<td>126</td>
</tr>
<tr>
<td>Personal taxes</td>
<td>1,769</td>
<td>713</td>
<td>29</td>
<td>522</td>
<td>1,047</td>
<td>1,498</td>
<td>4,275</td>
<td>3,378</td>
<td>5,841</td>
</tr>
<tr>
<td>Federal income taxes</td>
<td>1,136</td>
<td>327</td>
<td>-136</td>
<td>191</td>
<td>582</td>
<td>829</td>
<td>3,048</td>
<td>2,257</td>
<td>4,429</td>
</tr>
<tr>
<td>2006 Tax duals (year Q20091)</td>
<td>(2)</td>
<td>(1)</td>
<td>(1)</td>
<td>(1)</td>
<td>(1)</td>
<td>(1)</td>
<td>(1)</td>
<td>(1)</td>
<td>(1)</td>
</tr>
<tr>
<td>State and local income taxes</td>
<td>(2)</td>
<td>(1)</td>
<td>(1)</td>
<td>(1)</td>
<td>(1)</td>
<td>(1)</td>
<td>(1)</td>
<td>(1)</td>
<td>(1)</td>
</tr>
<tr>
<td>Other taxes</td>
<td>(2)</td>
<td>(1)</td>
<td>(1)</td>
<td>(1)</td>
<td>(1)</td>
<td>(1)</td>
<td>(1)</td>
<td>(1)</td>
<td>(1)</td>
</tr>
</tbody>
</table>

See footnotes at end of table.
Table 10. Education of reference person: Average annual expenditures and characteristics, Consumer Expenditure Survey, 2010 — Continued

<table>
<thead>
<tr>
<th>Item</th>
<th>All consumer units</th>
<th>Less than college graduate</th>
<th>College graduate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>Less than high school graduate</td>
<td>High school graduate</td>
</tr>
<tr>
<td></td>
<td>60,712</td>
<td>47,148</td>
<td>33,268</td>
</tr>
<tr>
<td>Addenda:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Net change in total assets and liabilities</td>
<td>-54,658</td>
<td>-2,658</td>
<td>-1,163</td>
</tr>
<tr>
<td>Net change in total liabilities</td>
<td>5,968</td>
<td>5,036</td>
<td>2,987</td>
</tr>
<tr>
<td>Other financial information:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other money receipts</td>
<td>555</td>
<td>484</td>
<td>221</td>
</tr>
<tr>
<td>Mortgage principal paid on owned property</td>
<td>-2,015</td>
<td>-1,448</td>
<td>-643</td>
</tr>
<tr>
<td>Estimated market value of owned home</td>
<td>150,083</td>
<td>115,991</td>
<td>77,411</td>
</tr>
<tr>
<td>Estimated monthly rental value of owned home</td>
<td>689</td>
<td>683</td>
<td>481</td>
</tr>
<tr>
<td>Gifts of goods and services</td>
<td>1,029</td>
<td>700</td>
<td>366</td>
</tr>
<tr>
<td>Food</td>
<td>99</td>
<td>52</td>
<td>22</td>
</tr>
<tr>
<td>Alcoholic beverages</td>
<td>14</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>Housing</td>
<td>195</td>
<td>156</td>
<td>103</td>
</tr>
<tr>
<td>Housekeeping supplies</td>
<td>25</td>
<td>22</td>
<td>14</td>
</tr>
<tr>
<td>Household textiles</td>
<td>8</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Appliances and miscellaneous household equipment:</td>
<td>22</td>
<td>16</td>
<td>23</td>
</tr>
<tr>
<td>Major appliances</td>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Small appliances and miscellaneous household equipment</td>
<td>17</td>
<td>13</td>
<td>2</td>
</tr>
<tr>
<td>Miscellaneous household equipment</td>
<td>47</td>
<td>30</td>
<td>17</td>
</tr>
<tr>
<td>Other housing</td>
<td>97</td>
<td>74</td>
<td>65</td>
</tr>
<tr>
<td>Apparel and accessories</td>
<td>212</td>
<td>187</td>
<td>131</td>
</tr>
<tr>
<td>Male, 2 and over</td>
<td>50</td>
<td>42</td>
<td>22</td>
</tr>
<tr>
<td>Female, 2 and over</td>
<td>75</td>
<td>62</td>
<td>36</td>
</tr>
<tr>
<td>Children under 2.</td>
<td>47</td>
<td>43</td>
<td>42</td>
</tr>
<tr>
<td>Other apparel products and services</td>
<td>42</td>
<td>41</td>
<td>37</td>
</tr>
<tr>
<td>Jewelry and watches</td>
<td>17</td>
<td>14</td>
<td>5</td>
</tr>
<tr>
<td>All other apparel products and services</td>
<td>25</td>
<td>27</td>
<td>24</td>
</tr>
<tr>
<td>Transportation</td>
<td>85</td>
<td>64</td>
<td>52</td>
</tr>
<tr>
<td>Health care</td>
<td>21</td>
<td>17</td>
<td>15</td>
</tr>
<tr>
<td>Entertainment</td>
<td>95</td>
<td>72</td>
<td>26</td>
</tr>
<tr>
<td>Toys, games, arts and crafts, and hobbies</td>
<td>38</td>
<td>31</td>
<td>48</td>
</tr>
<tr>
<td>Other entertainment</td>
<td>36</td>
<td>41</td>
<td>12</td>
</tr>
<tr>
<td>Personal care products and services</td>
<td>13</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>Reading</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Education</td>
<td>221</td>
<td>83</td>
<td>16</td>
</tr>
<tr>
<td>All other gifts</td>
<td>50</td>
<td>36</td>
<td>30</td>
</tr>
</tbody>
</table>

1 Value is less than or equal to 0.5.
2 Data are likely to have large sampling errors.
3 No data reported.
4 n.a. Not applicable.

Appendix B: Programming code of the basic model for individuals disregarding their majors

clear;

% variable definition & initialization
T = 5000; % number of trials
inc0 = zeros (1, T); % the before tax income for the individual with BD
inc1 = zeros (1, T); % the before tax income for the individual with higher than BD
tax0 = zeros (1, T); % total taxes for an individual including inctax and contax
tax1 = zeros (1, T);
stax0 = zeros (1, T); % total taxes for an individual contributing to the state government
stax1 = zeros (1, T);
imp = zeros (3, T); % the ratio between tax1 and tax0, the 3rd row indicates the difference
simp = zeros (3, T); % the impact for the state government
atinc0 = zeros (1, T); % the after tax income
atinc1 = zeros (1, T);
finctax0 = zeros (1, T); % federal income taxes
finctax1 = zeros (1, T);
sinctax0 = zeros (1, T); % state income taxes
sinctax1 = zeros (1, T);
inctax0 = zeros (1, T); % the income taxes
inctax1 = zeros (1, T);

% Assignment for the individuals
inc0 = 10000 + 140000*betarnd(3.63, 18.1, 1, T); % the distribution for all BD
inc1 = 10000 + 170000*betarnd(3.73, 13.7, 1, T); % the distribution for all Higher

% Income Taxes for Single
for i=1:T
 if inc0(i,1) <= 8500
 finctax0(i,1) = 0.10*inc0(i,1);
 elseif 8500 < inc0(i,1) <= 34500
 finctax0(i,1) = 0.10*8500 + 0.15*(inc0(i,1)-8500);
 elseif 34500 < inc0(i,1) <= 83600
 finctax0(i,1) = 0.10*8500 + 0.15*(34500-8500) + 0.25*(inc0(i,1)-34500);
 elseif 83600 < inc0(i,1) <= 174400
 finctax0(i,1) = 0.10*8500 + 0.15*(34500-8500) + 0.25*(83600-34500) + 0.28*(inc0(i,1)-83600);
 elseif 174400 < inc0(i,1) <= 379150
 finctax0(i,1) = 0.10*8500 + 0.15*(34500-8500) + 0.25*(83600-34500) + 0.28*(174400-83600) + 0.33*(inc0(i,1)-174400);
 elseif inc0(i,1) > 379150
 finctax0(i,1) = 0.10*8500 + 0.15*(34500-8500) + 0.25*(83600-34500) + 0.28*(174400-83600) + 0.33*(379150-174400) + 0.35*(inc0(i,1)-379150);
 end;
 if inc0(i,1) <= 2400
 sectax0(i,1) = 0.0256*inc0(i,1);
 elseif inc0(i,1) > 2400
 sectax0(i,1) = 0.0256*(sectax0(i,1) + inc0(i,1));
elseif 2400<inc0(1,i)<=17500
 sinctax0(1,i) = 0.0357*inc0(1,i);
elseif 17500<inc0(1,i)<=27000
 sinctax0(1,i) = 0.0512*inc0(1,i);
elseif inc0(1,i)>27000
 sinctax0(1,i) = 0.0684*inc0(1,i);
end;
inctax0(1,i)=finctax0(1,i) + sinctax0(1,i);
atinc0(1,i)=inc0(1,i) - inctax0(1,i);
tax0(1,i)=tax0(1,i)+inctax0(1,i);
if inc1(1,i) <= 8500
 finctax1(1,i) = 0.10*inc1(1,i);
elseif 8500<inc1(1,i)<=34500
 finctax1(1,i) = 0.10*8500 + 0.15*(inc1(1,i) - 8500);
elseif 34500<inc1(1,i)<=83600
 finctax1(1,i) = 0.10*8500+0.15*(34500-8500)+0.25*(inc1(1,i)-34500);
elseif 83600<inc1(1,i)<=174400
 finctax1(1,i) = 0.10*8500+0.15*(34500-8500)+0.25*(83600-34500)+0.28*(inc1(1,i)-83600);
elseif 174400<inc1(1,i)<=379150
 finctax1(1,i) = 0.10*8500+0.15*(34500-8500)+0.25*(83600-34500)+0.28*(174400-83600)+0.33*(inc1(1,i)-174400);
elseif inc1(1,i)>379150
 finctax1(1,i) = 0.10*8500+0.15*(34500-8500)+0.25*(83600-34500)+0.28*(174400-83600)+0.33*(379150-174400)+0.35*(inc1(1,i)-379150);
end;
if inc1(1,i) <= 2400
 sinctax1(1,i) = 0.0256*inc1(1,i);
elseif 2400<inc1(1,i)<=17500
 sinctax1(1,i) = 0.0357*inc1(1,i);
elseif 17500<inc1(1,i)<=27000
 sinctax1(1,i) = 0.0512*inc1(1,i);
elseif inc0(1,i)>27000
 sinctax1(1,i) = 0.0684*inc1(1,i);
end;
inctax1(1,i)=finctax1(1,i) + sinctax1(1,i);
atinc1(1,i)=inc1(1,i) - inctax1(1,i);
tax1(1,i)=tax1(1,i)+inctax1(1,i);
stax1(1,i)=stax1(1,i)+sinctax1(1,i);

% Expenditures Determination based on income and education
perofcon0(1,1)=0.04+exprnd(0.014); % food at home
perofcon0(2,1)=0.03+weibrnd(3.27*10^9,5.29); % food away home
perofcon0(3,1)=weibrnd(2.75*10^21,10.4); % alcoholic beverages
perofcon0(4,1)=0.09+lognrnd(-3.42,0.513); % owned housing
perofcon0(5,1)=0.02+lognrnd(-4.13,0.501); % rented housing
u1=rand; perofcon0(6,1)=(u1<=(0.11-0.04)/(0.14-0.04)).*(0.04+sqrt((0.14-0.04)*(0.11-0.04)*u1))+(u1>(0.11-0.04)/(0.14-0.04)).*(0.14-sqrt((1-u1)*(0.14-0.04)*(0.14-0.11)));
% house repairing and maintenance
perofcon0(7,1)=0.04+0.06*betarnd(0.406,1.93); % utilities
perofcon0(8,1)=0.02+lognrnd(-4.40,0.362); % clothes
u2=rand; perofcon0(9,1)=(u2<=(0.023-0.02)/(0.05-0.02)).*(0.02+sqrt((0.05-0.02)*(0.023-0.02))*u2)+(u2>(0.023-0.02)/(0.05-0.02)).*(0.05-sqrt((1-u2)*(0.05-0.02)*(0.05-0.023)));
% new vehicle
perofcon0(10,1)=0.01+lognrnd(-4.32,0.496); % used vehicle
perofcon0(11,1)=0.01+lognrnd(-4.05,0.380); % gasoline
perofcon0(12,1)=0.01+lognrnd(-5.36,0.445); % vehicle insurance
perofcon0(13,1)=0.01+lognrnd(-4.53,0.179); % healthcare excluding insurance
d=15
perofcon0(14,1)=0.01+lognrnd(-4.41,0.286); % health insurance
perofcon0(15,1)=0.03+lognrnd(-4.38,0.231); % entertainment
perofcon0(16,1)=lognrnd(-5.88,0.455); % tobacco products
perofcon0(17,1)=0.02+weibrnd(123528.5,5.18); % other expenditures
perofcon = 0; % percentage of all expenditures
for l=1:17
 perofcon = perofcon + perofcon0(l,1);
end;
perofcon0(18,1)=1-perofcon; % percentage of after tax income for saving

perofcon1(1,1)=0.03+lognrnd(-4.27,0.368); % food at home
perofcon1(2,1)=normrnd(0.0405,0.00292); % food away home
perofcon1(3,1)=0.01+betarnd(7.51,3.12248); % alcoholic beverages
perofcon1(4,1)=0.1+lognrnd(-4.15,0.698); % owned housing
perofcon1(5,1)=0.01+betarnd(-4.20,0.390); % rented housing
u3=rand; perofcon1(6,1)=(u3<=((0.109-0.06)/(0.13-0.06))).*(0.06+sqrt((0.13-0.06)*(0.109-0.06)*u3))+(u3>((0.109-0.06)/(0.13-0.06))).*(0.13-sqrt((1-u3)*(0.13-0.06)*(0.13-0.109))); % house repair and maintenance
perofcon1(7,1)=0.03+exprnd(0.0126); % utilities
perofcon1(8,1)=0.01+lognrnd(-4.02,0.283); % clothes
perofcon1(9,1)=0.01+0.03*betarnd(3.53,2.7); % new vehicle
perofcon1(10,1)=0.04*betarnd(5.63,6.74544); % used vehicle
perofcon1(11,1)=0.01+lognrnd(-4.42,0.458); % gasoline
perofcon1(12,1)=0.03*betarnd(11.7,13.9954); % vehicle insurance
perofcon1(13,1)=0.01+lognrnd(-4.63,0.158); % healthcare excluding insurance
perofcon1(14,1)=0.01+lognrnd(-4.60,0.340); % health insurance
perofcon1(15,1)=0.03+lognrnd(-4.56,0.283); % entertainment
perofcon1(16,1)=lognrnd(-6.44,0.605); % tobacco products
perofcon1(17,1)=0.05+weibrnd(99650.37,4.74); % other expenditures
perofcon = 0; % percentage of all expenditures
for l=1:17
 perofcon = perofcon + perofcon1(l,1);
end;
perofcon1(18,1)=1-perofcon; % percentage of after tax income for saving

% main procedure: cash flows
for i=1:t
 expen0=0; % the total expenditures including indirect individuals
 for j=1:18
 con0(j,1) = perofcon0(j,1)*atinc0(1,i);
 expen0 = expen0+con0(j,1);
 if j==1||j==4||j==5||j==7||j==12||j==14||j==18
 contax0(j,1)=0*con0(j,1);
 else
 contax0(j,1)=(0.07/1.07)*con0(j,1);
 end;
 end;
 m=0;
 while expen0 > 0.01*inc0(1,i) % routines stoped when the total expenditures less than 1% of income
 ininc0=0; % the indirect increased income from the expenditures
 m=m+1; % the m th routine
 ininc0 = 0.5*expen0; % assume 50% of the expenditures utilized to increase the workers' income
 % the distribution of overall consumers utilized
 perofcon0(1,m+1)=0.05+lognrnd(-4.40,0.348); % food at home
 perofcon0(2,m+1)=0.04+0.02*betarnd(2.42,5.5); % food away home
 perofcon0(3,m+1)=0.01*betarnd(26.37,18603); % alcoholic beverages
 perofcon0(4,m+1)=normrnd(0.108,0.00323); % owned housing
 end;
end;
u4=rand; perofcon0(5,m+1)=(u4<=(0.047-0.04)/(0.05-0.04))*(0.04+sqrt((0.05-0.04)*(0.047-0.04)*u4))+(u4>(0.047-0.04)/(0.05-0.04))*(0.05-sqrt((1-u4)*(0.05-0.04))*(0.05-0.047))); % rented housing
perofcon0(6,m+1)=0.12+exprnd(0.00559); % house repair and maintenance
perofcon0(7,m+1)=0.05+lognrnd(-4.78,0.207); % utilities
perofcon0(8,m+1)=0.02+lognrnd(-3.43,0.336); % clothes
perofcon0(9,m+1)=0.01+0.04*betarnd(2.85,2.53); % new vehicle
perofcon0(10,m+1)=0.01+lognrnd(-3.98,0.380); % used vehicle
perofcon0(11,m+1)=0.02+lognrnd(-4.38,0.399); % gasoline
perofcon0(12,m+1)=0.01+0.01*betarnd(8.86,2.66); % vehicle insurance
perofcon0(13,m+1)=random('uniform',0.021,0.026); % healthcare excluding insurance
perofcon0(14,m+1)=0.02+weibrnd(3.86*10^6,3.02); % health insurance
perofcon0(15,m+1)=normrnd(0.0434,0.0015); % entertainment
perofcon0(16,m+1)=0.01*betarnd(19.9,13.4509); % tobacco products
perofcon0(17,m+1)=0.09+lognrnd(-4.54,0.389); % other expenditures
perofcon0(18,m+1)=1-perofcon; % percentage of after tax income for saving

expen0=0; % initial the expenditures for the (m+1)th routine
for j=1:18
 con0(j,m+1) = perofcon0(j,m+1)*ininc0;
 expen0 = expen0+con0(j,m+1);
 if j==1||j==4||j==5||j==7||j==12||j==14||j==18
 contax0(j,m+1)=0*con0(j,m+1);
 else
 contax0(j,m+1)=(0.07/1.07)*con0(j,m+1);
 end
end

end

expen1=0; % the total expenditures including indirect individuals
for j=1:18
 con1(j,1) = perofcon1(j,1)*atinc1(1,i);
 expen1 = expen1+con1(j,1);
 if j==1||j==4||j==5||j==7||j==12||j==14||j==18
 contax1(j,1)=0*con1(j,1);
 else
 contax1(j,1)=(0.07/1.07)*con1(j,1);
 end
end

n=0;
while expen1 > 0.01*ininc1(1,i) % routines stoped when the total expenditures less than 1% of income
 ininc1=0; % the indirect increased income from the expenditures
 n=n+1; % the m th routine
 ininc1 = 0.5*expen1; % assume 50% of the expenditures utilized to increase the workers' income
 % the distribution of overall consumers utilized
 perofcon1(1,n+1)=0.05+lognrnd(-4.40,0.348); % food at home
 perofcon1(2,n+1)=0.04+0.02*betarnd(2.42,5.5); % food away home
 perofcon1(3,n+1)=0.01*betarnd(26.3,7.18603); % alcoholic beverages
 perofcon1(4,n+1)=normrnd(0.018,0.00323); % owned housing
 u5=rand; perofcon1(5,n+1)=(u5<=(0.047-0.04)/(0.05-0.04))*(0.04+sqrt((0.05-0.04)*(0.047-0.04)*u5))+(u5>(0.047-0.04)/(0.05-0.04))*(0.05-sqrt((1-u5)*(0.05-0.04))*(0.05-0.047))); % rented housing
 perofcon1(6,n+1)=0.12+exprnd(0.00559); % house repair and maintenance
 perofcon1(7,n+1)=0.05+lognrnd(-4.78,0.207); % utilities
 perofcon1(8,n+1)=0.02+lognrnd(-4.34,0.336); % clothes
perofcon1(9,n+1)=0.01+0.04*betarnd(2.85,2.53); % new vehicle
perofcon1(10,n+1)=0.01+lognrnd(-3.98,0.380); % used vehicle
perofcon1(11,n+1)=0.02+lognrnd(-4.38,0.399); % gasoline
perofcon1(12,n+1)=0.01+0.01*betarnd(8.86,2.66); % vehicle insurance
perofcon1(13,n+1)=random('uniform',0.021,0.026); % healthcare excluding insurance
perofcon1(14,n+1)=0.02+weibrnd(3.86*10^6,3.02); % health insurance
perofcon1(15,n+1)=normrnd(0.0434,0.0015); % entertainment
perofcon1(16,n+1)=0.01*betarnd(19.9,13.4509); % tobacco products
perofcon1(17,n+1)=0.09+lognrnd(-4.54,0.389); % other expenditures
perofcon = 0; % percentage of all expenditures
for l=1:17
 perofcon = perofcon + perofcon1(l,n+1);
end;
perofcon1(18,n+1)=1-perofcon; % percentage of after tax income for saving
expen1=0; % initial the expenditures for the (n+1)th routine
for j=1:18
 con1(j,n+1) = perofcon1(j,n+1)*ininc1;
 expen1 = expen1+con1(j,n+1);
 if j==1||j==4||j==5||j==7||j==12||j==14||j==18
 contax1(j,n+1)=0*con1(j,n+1);
 else
 contax1(j,n+1)=(0.07/1.07)*con1(j,n+1);
 end;
end;
end;
end; % obtain the sum of the expenditures taxes and add it to tax
sumcontax0(1,i)=sum((sum(contax0))');
tax0(1,i)=tax0(1,i)+sumcontax0(1,i);
stax0(1,i)=stax0(1,i)+sumcontax0(1,i);
sumcontax1(1,i)=sum((sum(contax1))');
tax1(1,i)=tax1(1,i)+sumcontax1(1,i);
stax1(1,i)=stax1(1,i)+sumcontax1(1,i);
end;
end;
% obtain the difference between tax0 and tax1
for i=1:t
 imp(1,i) = tax1(1,i)/tax0(1,i);
simp(1,i) = stax1(1,i)/stax0(1,i);
 imp(2,i) = (tax1(1,i)-tax0(1,i))/(inc1(1,i)-inc0(1,i));
simp(2,i) = (stax1(1,i)-stax0(1,i))/(inc1(1,i)-inc0(1,i));
 imp(3,i) = tax1(1,i)-tax0(1,i);
simp(3,i) = stax1(1,i)-stax0(1,i);
end;
impact = mean(imp');
simpact = mean(simp');
% variable definition & initialization
% number of trials
r = 0.10; % the effective annual interest rate
inc = zeros (t, 5); % the before tax income for the individual
tax1 = zeros (t, 3); % annual total taxes for an individual including inctax and contax in the 1st stage (younger than 25)
tax2 = zeros (t, 10); % annual total taxes in the 2nd stage (25 to 24)
tax3 = zeros (t, 10); % annual total taxes in the 3rd stage (35 to 44)
tax4 = zeros (t, 10); % annual total taxes in the 4th stage (45 to 54)
tax5 = zeros (t, 10); % annual total taxes in the 5th stage (55 to 64)
stax1 = zeros (t, 3); % annual total state taxes for an individual including inctax and contax in the 1st stage (younger than 25)
stax2 = zeros (t, 10); % annual total state taxes in the 2nd stage (25 to 24)
stax3 = zeros (t, 10); % annual total state taxes in the 3rd stage (35 to 44)
stax4 = zeros (t, 10); % annual total state taxes in the 4th stage (45 to 54)
stax5 = zeros (t, 10); % annual total state taxes in the 5th stage (55 to 64)
atinc = zeros (t, 5); % the after tax income
inctax = zeros (t, 5); % the income taxes
finctax = zeros (t, 5); % the federal income taxes
sinctax = zeros (t, 5); % the state income taxes

% 18 as the number of categories and 18 estimated as the rountines of the impacts
perofcon = zeros (18, 10);
% percentage of expenditures on each category in rows
con = zeros (18, 10); % expenditures on each category
contax = zeros (18, 10); % tax of corresponding expenditures
sumcontax1 = zeros (t, 3); % annual consumption taxes totally in the 1st stage
sumcontax2 = zeros (t, 10); % annual consumption taxes in the 2nd stage
sumcontax3 = zeros (t, 10); % annual consumption taxes in the 3rd stage
sumcontax4 = zeros (t, 10); % annual consumption taxes in the 4th stage
sumcontax5 = zeros (t, 10); % annual consumption taxes in the 5th stage
PW = zeros(t,3); % the 1st column is for income taxes, the 2nd column is for consumption taxes, the 3rd column is for total taxes
sPW = zeros(t,3);

% begin the replication
for n=1:t

% Assignment for the individuals
inc(n,1) = 10000 + 140000*betarnd(3.63,18.1); % the distribution for salary
inc(n,2) = inc(n,1);
u=rand; perofincrease=(u<=(1.29-1.17)/(1.36-1.17)).*(1.17+sqrt((1.36-1.17)*(1.29-1.17)*u))+(u>(1.29-1.17)/(1.36-1.17)).*(1.36-sqrt((1-1-u)*(1.36-1.17)*(1.36-1.29)));
inc(n,3) = perofincrease*inc(n,2);
inc(n,4) = (1+gamrnd(5.65,0.00938))*inc(n,3);
inc(n,5) = (0.81+0.08*betarnd(1.23,0.986))*inc(n,4);

% Income Taxes for Single
for i=1:5
 if inc(1,i) <= 8500
 finctax(n,i) = 0.10*inc(1,i);
 elseif 8500<inc(1,i)<=34500
 finctax(n,i) = 0.10*8500 + 0.15*(inc(1,i)-8500);
 else
 finctax(n,i) = 0.10*inc(1,i) + 0.15*(inc(1,i)-34500);
 end
end
elseif inc(1,i) <= 83600
 finctax(n,i) = 0.10*8500+0.15*(34500-8500)+0.25*(inc(1,i)-34500);
elseif 83600 < inc(1,i) <= 174400
 finctax(n,i) = 0.10*8500+0.15*(34500-8500)+0.25*(83600-34500)+0.28*(inc(1,i)-83600);
elseif 174400 < inc(1,i) <= 379150
 finctax(n,i) = 0.10*8500+0.15*(34500-8500)+0.25*(83600-34500)+0.28*(174400-83600)+0.33*(inc(1,i)-174400);
elseif inc(1,i) > 379150
 finctax(n,i) = 0.10*8500+0.15*(34500-8500)+0.25*(83600-34500)+0.28*(174400-83600)+0.33*(379150-174400)+0.35*(inc(1,i)-379150);
end;

if inc(1,i) <= 2400
 sinctax(n,i) = 0.0256*inc(n,i);
elseif 2400 < inc(1,i) <= 17500
 sinctax(n,i) = 0.0357*inc(n,i);
elseif 17500 < inc(1,i) <= 27000
 sinctax(n,i) = 0.0512*inc(n,i);
elseif inc(1,i) > 27000
 sinctax(n,i) = 0.0684*inc(n,i);
end;
inctax(n,i) = finctax(n,i)+sinctax(n,i);
atinc(n,i) = inc(n,i)-inctax(n,i);
end;
tax1(n,:) = tax1(n,:)+inctax(n,1);
% add income taxes to total taxes
tax2(n,:) = tax2(n,:)+inctax(n,2);
tax3(n,:) = tax3(n,:)+inctax(n,3);
tax4(n,:) = tax4(n,:)+inctax(n,4);
tax5(n,:) = tax5(n,:)+inctax(n,5);
stax1(n,:) = stax1(n,:)+sinctax(n,1);
% add state income taxes to state total taxes
stax2(n,:) = stax2(n,:)+sinctax(n,2);
stax3(n,:) = stax3(n,:)+sinctax(n,3);
stax4(n,:) = stax4(n,:)+sinctax(n,4);
stax5(n,:) = stax5(n,:)+sinctax(n,5);

% Expenditures Determination based on income for stage 1
for i=1:3
 m=0;
 expen = inc(n,1);
 while expen > 0.01*inc(n,1) % routines stoped when the total expenditures less than 1% of income
 incinc = 0; % the indirect increased income from the expenditures
 m = m+1; % the mth routine
 perofcon(1,m)=normrnd(0.0869,0.0117); % food at home
 perofcon(2,m)=0.01+weibrnd(321770.06,4.72); % food away home
 perofcon(3,m)=0.01+gamrnn(5.42,0.00147); % alcoholic beverages
 u1=rand; perofcon(4,m)=(u1<=(0.0401/(0.06-0.03)).*sqrt((0.06-0.03)*(0.0401-0.03)*u1)+(u1>(0.0401/(0.06-0.03)).*(0.06-0.0264))); % owned housing
 perofcon(5,m)=random('uniform',0.14,0.20); % rented housing
 perofcon(6,m)=normrnd(0.136,0.01); % house repairing and maintenance
 perofcon(7,m)=0.05+0.03*betarnd(13.2,12.7); % utilities
 perofcon(8,m)=0.04+gamrnn(5.53,0.00323); % clothes
 u2=rand; perofcon(9,m)=(u2<=(0.026-0)/(0.08-0)).*(0+sqrt((0.08-0)*(0.026-0)*u2))+(u2>(0.026-0)/(0.08-0)).*(0.08-sqrt((1-u2)*(0.08-0)*(0.08-0.026)));
 u3=rand; perofcon(10,m)=(u3<=(0.0581-0.02)/(0.11-0.02)).*(0.02+sqrt((0.11-0.02)*(0.0581-0.02)*u3))+(u3>(0.0581-0.02)/(0.11-0.02)).*(0.11-sqrt((1-u3)*(0.11-0.02)*(0.11-0.0581)));
 u4=rand; perofcon(11,m)=normrnd(0.0518,0.00887); % gasoline
 u4=rand; perofcon(12,m)=(u4<=(0.0224-0.01)/(0.03-0.01)).*(0.01+sqrt((0.03-0.01)*(0.0224-0.01)*u4))+(u4>(0.0224-0.01)/(0.03-0.01)).*(0.03-sqrt((1-u4)*(0.03-0.01)*(0.03-0.0224)));
 new vehicle
 perofcon(11,m)=normrnd(0.0518,0.00887); % gasoline
 end
end

% used vehicle
perofcon(11,m)=normrnd(0.0518,0.00887); % gasoline

perofcon(13,m)=weibrnd(1.055*10^13,7.06); % healthcare excluding insurance
perofcon(14,m)=0.01+weibrnd(2.07*10^9,3.88); % health insurance
perofcon(15,m)=0.04+lognrnd(-4.53,0.439); % entertainment
perofcon(16,m)=0.02*betarnd(19.9,15.1839); % tobacco products
perofcon(17,m)=0.09+lognrnd(-3.55,0.370); % other expenditures
per = 0; % percentage of all expenditures
for l=1:17
 per = per + perofcon(l,m);
end;
perofcon(18,m)=1-per; % percentage of after tax income for saving

% main procedure: cash flows
if m==1
 expen=0; % the total expenditures including indirect individuals
 for j=1:18
 con(j,m) = perofcon(j,m)*atinc(n,1);
 expen = expen+con(j,m);
 if j==1||j==4||j==5||j==7||j==12||j==14||j==18
 contax(j,m) = 0*con(j,m);
 else
 contax(j,m) = (0.07/1.07)*con(j,m);
 end;
 end;
 else
 ininc = 0.5*expen; % assume 50% of the expenditures utilized to increase the workers’ income
 expen = 0; % initial the expenditures for the m th routine where m is larger than 1
 for j=1:18
 con(j,m) = perofcon(j,m)*ininc;
 expen = expen+con(j,m);
 if j==1||j==4||j==5||j==7||j==12||j==14||j==18
 contax(j,m) = 0*con(j,m);
 else
 contax(j,m) = (0.07/1.07)*con(j,m);
 end;
 end;
 end;
end;
% obtain the sum of the expenditures taxes and add it to tax
sumcontax1(n,i) = sum((sum(contax))');
tax1(n,i) = tax1(n,i)+sumcontax1(n,i);
stax1(n,i) = stax1(n,i)+sumcontax1(n,i);
end;

% Expenditures Determination based on income for stage 2
for i=1:10
 m=0;
 while expen > 0.01*inc(n,2) % routines stopped when the total expenditures less than 1% of income
 ininc = 0; % the indirect increased income from the expenditures
 m = m+1; % the m th routine
 perofcon(1,m)=0.05+gamrnd(7.21,0.00148); % food at home
 perofcon(2,m)=0.04+weibrnd(5.44*10^9,4.93); % food away home
 perofcon(3,m)=lognrnd(-4.53,0.439); % alcoholic beverages
 perofcon(4,m)=0.07+lognrnd(-3.48,0.405); % owned housing
 perofcon(5,m)=0.04+weibrnd(2.14*10^8,5.94); % rented housing
 perofcon(6,m)=0.09+weibrnd(3365089,4.22); % house repairing and maintenance
 perofcon(7,m)=0.05+lognrnd(-5.41,0.262); % utilities
 perofcon(8,m)=normrnd(0.039,0.00423); % clothes
 end;
u5=rand; perofcon(9,m)=(u5<=(0.038-0.01)/(0.05-0.01))*(0.01+sqrt((0.05-0.01)*(0.038-0.01)*u5))+(u5>(0.038-0.01)/(0.05-0.01))*(0.05-sqrt((1-u5)*(0.05-0.01)*(0.05-0.038))); % new vehicle
perofcon(10,m)=0.02+lognrnd(-4.00,0.450); % used vehicle
perofcon(11,m)=0.02+lognrnd(-4.23,0.442); % gasoline
perofcon(12,m)=0.01+0.01*betarnd(2.47,1.44); % vehicle insurance
perofcon(13,m)=0.01+lognrnd(-5.71,0.227); % healthcare excluding insurance
perofcon(14,m)=0.01+gamrnd(25.2,0.000258); % health insurance
perofcon(15,m)=0.03+gamrnd(25.2,0.000513); % entertainment
perofcon(16,m)=0.01*betarnd(18.6,12.5365); % tobacco products
perofcon(17,m)=0.07+0.04*betarnd(8.29,7.99); % other expenditures
per = 0; % percentage of all expenditures
for l=1:17
 per = per + perofcon(l,m);
end;
perofcon(18,m)=1-per; % percentage of after tax income for saving

% main procedure: cash flows
if m==1
 expen=0; % the total expenditures including indirect individuals
 for j=1:18
 con(j,m) = perofcon(j,m)*atinc(n,2);
 expen = expen+con(j,m);
 if j==1||j==4||j==5||j==7||j==12||j==14||j==18
 contax(j,m) = 0*con(j,m);
 else
 contax(j,m) = (0.07/1.07)*con(j,m);
 end;
 end;
else
 ininc = 0.5*expen; % assume 50% of the expenditures utilized to increase the workers' income
 expen = 0; % initial the expenditures for the m th routine where m is larger than 1
 for j=1:18
 con(j,m) = perofcon(j,m)*ininc;
 expen = expen+con(j,m);
 if j==1||j==4||j==5||j==7||j==12||j==14||j==18
 contax(j,m) = 0*con(j,m);
 else
 contax(j,m) = (0.07/1.07)*con(j,m);
 end;
 end;
end;
% obtain the sum of the expenditures taxes and add it to tax
sumcontax2(n,i) = sum((sum(contax))');
tax2(n,i) = tax2(n,i)+sumcontax2(n,i);
stax2(n,i) = stax2(n,i)+sumcontax2(n,i);

% Expenditures Determination based on income for stage 3
for i=1:10
 m=0;
 expen = inc(n,3);
 while expen > 0.01*inc(n,3) % routines stopped when the total expenditures less than 1% of income
 ininc = 0; % the indirect increased income from the expenditures
 m = m+1; % the m th routine
 perofcon(1,m)=0.05+lognrnd(-4.61,0.303); % food at home
 perofcon(2,m)=0.04+lognrnd(-5.23,0.300); % food away home
 perofcon(3,m)=lognrnd(-4.95,0.0933); % alcoholic beverages
perofcon(4,m)=0.1+weibrnd(2.05*10^8,8.493); % owned housing
perofcon(5,m)=0.03+lognrnd(-4.60,0.274); % rented housing
perofcon(6,m)=0.11+lognrnd(-5.00,0.481); % house repairing and maintainance
perofcon(7,m)=0.05+0.01*betarnd(3.4,6.1); % utilities
perofcon(8,m)=0.02+lognrnd(-4.31,0.301); % clothes
u6=rand; perofcon(9,m)=(u6<=(0.038-0.01)/(0.05-0.01)).*(0.01+sqrt((0.05-0.01)*(0.038-0.01)*u6))+(u6>(0.038-0.01)/(0.05-0.01)).*(0.05-sqrt((0.05-0.01)*(0.05-0.038))); % new vehicle
perofcon(10,m)=0.01+0.04*betarnd(4.79,5.17); % used vehicle
perofcon(11,m)=0.02+lognrnd(-4.47,0.439); % gasoline
perofcon(12,m)=0.01+weibrnd(2.61*10^8,11.5,14); % vehicle insurance
perofcon(13,m)=0.01+0.01*betarnd(18.3,12.5); % healthcare excluding insurance
perofcon(14,m)=0.01+lognrnd(-4.87,0.149); % health insurance
perofcon(15,m)=0.03+lognrnd(-4.30,0.223); % entertainment
perofcon(16,m)=lognrnd(-5.18,0.162); % tobacco products
u7=rand; perofcon(17,m)=(u7<=(0.094-0.08)/(0.12-0.08)).*(0.08+sqrt((0.12-0.08)*(0.094-0.08)*u7))+(u7>(0.094-0.08)/(0.12-0.08)).*(0.12-sqrt((1-u7)*(0.12-0.08)*(0.12-0.094))); % other expenditures
per = 0; % percentage of all expenditures
for l=1:17
 per = per + perofcon(l,m);
end;
perofcon(18,m)=1-per; % percentage of after tax income for saving

% main procedure: cash flows
if m==1
 expen=0; % the total expenditures inclding indirect individuals
for j=1:18
 con(j,m) = perofcon(j,m)*atinc(n,3);
 expen = expen+con(j,m);
 if j==1||j==4||j==5||j==7||j==12||j==14||j==18
 contax(j,m) = 0*con(j,m);
 else
 contax(j,m) = (0.07/1.07)*con(j,m);
 end;
end;
else
 ininc = 0.5*expen; % assume 50% of the expenditures utilized to increase the workers' income
 expen = 0; % initial the expenditures for the m th routine where m is larger than 1
for j=1:18
 con(j,m) = perofcon(j,m)*ininc;
 expen = expen+con(j,m);
 if j==1||j==4||j==5||j==7||j==12||j==14||j==18
 contax(j,m) = 0*con(j,m);
 else
 contax(j,m) = (0.07/1.07)*con(j,m);
 end;
end;
end;
% obtain the sum of the expenditures taxes and add it to tax
sumcontax3(n,i) = sum((sum(contax))');
tax3(n,i) = tax3(n,i)+sumcontax3(n,i);
stax3(n,i) = stax3(n,i)+sumcontax3(n,i);
end;

% Expenditures Determination based on income for stage 4
for i=1:10
 m=0;

expen = inc(n,4);
while expen > 0.01*inc(n,4) % routines stopped when the total expenditures less than 1% of income
ininc = 0; % the indirect increased income from the expenditures
m = m+1; % the m th routine
perofcon(1,m)=0.03+0.05*betarnd(8.48,7.35); % food at home
u8=rand; perofcon(2,m)=(u8<=0.0403/(0.06-0.03))*sqrt((0.06-0.03)*(0.0403-0.03)*u8)+(u8>0.0403/(0.06-0.03)).*(0.06-sqrt((1-u8)*(0.06-0.03))*(0.06-0.0403)) ; % food away home
perofcon(3,m)=normrnd(0.00698,0.000784); % alcoholic beverages
perofcon(4,m)=0.1+lognrnd(-4.78,0.368); % owned housing
perofcon(5,m)=normrnd(0.0279,0.00237); % rented housing
perofcon(6,m)=0.1+lognrnd(-4.38,0.317); % house repairing and maintainance
perofcon(7,m)=0.05+0.01*betarnd(1.79,3.78); % utilities
perofcon(8,m)=0.02+0.03*betarnd(1.97,2.99); % clothes
perofcon(9,m)=0.01+0.04*betarnd(5.92,7.22); % new vehicle
perofcon(10,m)=0.01+lognrnd(-4.16,0.435); % used vehicle
perofcon(11,m)=0.02+0.03*betarnd(2.71,4.1); % gasoline
perofcon(12,m)=0.01+0.01*betarnd(6.71,1.86); % vehicle insurance
perofcon(13,m)=0.01+gamrnd(25.2,0.000407); % healthcare excluding insurance
perofcon(14,m)=0.01+gamrnd(25.2,0.000365); % health insurance
perofcon(15,m)=0.03+0.02*betarnd(12.6,12.1); % entertainment
perofcon(16,m)=0.01*betarnd(21.5,14.5575); % tobacco products
perofcon(17,m)=0.1+lognrnd(-4.01,0.302); % other expenditures
per = 0; % percentage of all expenditures
for l=1:17
 per = per + perofcon(l,m);
end;
perofcon(18,m)=1-per; % percentage of after tax income for saving

% main procedure: cash flows
if m==1
 expen=0; % the total expenditures including indirect individuals
 for j=1:18
 con(j,m) = perofcon(j,m)*atinc(n,4);
 expen = expen+con(j,m);
 if j==1||j==4||j==5||j==7||j==12||j==14||j==18
 contax(j,m) = 0*con(j,m);
 else
 contax(j,m) = (0.07/1.07)*con(j,m);
 end;
 end;
else
 ininc = 0.5*expen; % assume 50% of the expenditures utilized to increase the workers' income
 expen = 0; % initial the expenditures for the m th routine where m is larger than 1
 for j=1:18
 con(j,m) = perofcon(j,m)*ininc;
 expen = expen+con(j,m);
 if j==1||j==4||j==5||j==7||j==12||j==14||j==18
 contax(j,m) = 0*con(j,m);
 else
 contax(j,m) = (0.07/1.07)*con(j,m);
 end;
 end;
end;
end;

% obtain the sum of the expenditures taxes and add it to tax
sumcontax4(n,i) = sum((sum(contax)));
tax4(n,i) = tax4(n,i)+sumcontax4(n,i);
stax4(n,i) = stax4(n,i)+sumcontax4(n,i);
end;

% Expenditures Determination based on income for stage 5
for i=1:10
m=0;
expen = inc(n,5);
while expen > 0.01*inc(n,5) % routines stoped when the total expenditures less than 1% of income
 ininc = 0; % the indirect increased income from the expenditures
 m = m+1; % the m th routine
 perofcon(1,m)=0.04+0.04*betarnd(5.4,6.19); % food at home
 perofcon(2,m)=normrnd(0.0424,0.00384); % food away home
 perofcon(3,m)=lognrnd(-4.91,0.105); % alcoholic beve
 perofcon(4,m)=0.09+lognrnd(-4.04,0.305); % owned housing
 perofcon(5,m)=0.01+weibrnd(3.98*10^9,5.28); % rented housing
 perofcon(6,m)=normrnd(0.127,0.0122); % house repairing and maintainance
 perofcon(7,m)=0.05+lognrnd(-4.85,0.301); % utilities
 perofcon(8,m)=random('uniform',0.02,0.04); % clothes
 perofcon(9,m)=0.01+0.05*betarnd(2.56,2.61); % new vehicle
 perofcon(10,m)=random('uniform',0.01,0.04); % used vehicle
 perofcon(11,m)=0.02+0.03*betarnd(2.94,4.43); % gasoline
 perofcon(12,m)=0.01+gamrnd(25.2,0.000301); % vehicle insurance
 perofcon(13,m)=0.02+lognrnd(-4.75,0.271); % healthcare excluding insurance
 perofcon(14,m)=0.02+gamrnd(15.2,0.000485); % health insurance
 perofcon(15,m)=0.03+gamrnd(23.1,0.000594); % entertainment
 perofcon(16,m)=weibrnd(1.23*10^16,7.37); % tobacco products
 perofcon(17,m)=0.09+0.03*betarnd(1.65,0.886); % other expenditures
 per = 0; % percentage of all expenditures
 for l=1:17
 per = per + perofcon(l,m);
 end;
 perofcon(18,m)=1-per; % percentage of after tax income for saving
end;

% main procedure: cash flows
if m==1
 expen=0; % the total expenditures including indirect individuals
 for j=1:18
 con(j,m) = perofcon(j,m)*atinc(n,5);
 expen = expen+con(j,m);
 if j==1||j==4||j==5||j==7||j==12||j==14||j==18
 contax(j,m) = 0*con(j,m);
 else
 contax(j,m) = (0.07/1.07)*con(j,m);
 end;
 end;
else
 ininc = 0.5*expen; % assume 50% of the expenditures utilized to increase the workers` income
 expen = 0; % initial the expenditures for the m th routine where m is larger than 1
 for j=1:18
 con(j,m) = perofcon(j,m)*ininc;
 expen = expen+con(j,m);
 if j==1||j==4||j==5||j==7||j==12||j==14||j==18
 contax(j,m) = 0*con(j,m);
 else
 contax(j,m) = (0.07/1.07)*con(j,m);
 end;
 end;
end;

% obtain the sum of the expenditures taxes and add it to tax
sumcontax5(n,i) = sum((sum(contax))');
tax5(n,i) = tax5(n,i)+sumcontax5(n,i);
end;

% calculate the present worth of taxes for the whole career life
PW(n,1) = inctax(n,1)*(((1+r)^3-1)/(r*(1+r)^3))+inctax(n,2)*(((1+r)^10-1)/(r*(1+r)^10)+inctax(n,3)*(((1+r)^10-1)/(r*(1+r)^10)+inctax(n,4)*(((1+r)^10-1)/(r*(1+r)^10)+inctax(n,5)*(((1+r)^10-1)/(r*(1+r)^10)));
sPW(n,1) = sinctax(n,1)*(((1+r)^3-1)/(r*(1+r)^3))+sinctax(n,2)*(((1+r)^10-1)/(r*(1+r)^10)+sinctax(n,3)*(((1+r)^10-1)/(r*(1+r)^10)+sinctax(n,4)*(((1+r)^10-1)/(r*(1+r)^10)+sinctax(n,5)*(((1+r)^10-1)/(r*(1+r)^10)));
for i=1:43
 if i<=3
 PW(n,2) = PW(n,2)+sumcontax1(n,i)/((1+r)^i);
PW(n,3) = PW(n,3)+tax1(n,i)/((1+r)^i);
sPW(n,2) = sPW(n,2)+sumcontax1(n,i)/((1+r)^i);
sPW(n,3) = sPW(n,3)+stax1(n,i)/((1+r)^i);
 elseif i>3&&i<=13
 PW(n,2) = PW(n,2)+sumcontax2(n,i-3)/((1+r)^i);
PW(n,3) = PW(n,3)+tax2(n,i-3)/((1+r)^i);
sPW(n,2) = sPW(n,2)+sumcontax2(n,i-3)/((1+r)^i);
sPW(n,3) = sPW(n,3)+stax2(n,i-3)/((1+r)^i);
 elseif i>13&&i<=23
 PW(n,2) = PW(n,2)+sumcontax3(n,i-13)/((1+r)^i);
PW(n,3) = PW(n,3)+tax3(n,i-13)/((1+r)^i);
sPW(n,2) = sPW(n,2)+sumcontax3(n,i-13)/((1+r)^i);
sPW(n,3) = sPW(n,3)+stax3(n,i-13)/((1+r)^i);
 elseif i>23&&i<=33
 PW(n,2) = PW(n,2)+sumcontax4(n,i-23)/((1+r)^i);
PW(n,3) = PW(n,3)+tax4(n,i-23)/((1+r)^i);
sPW(n,2) = sPW(n,2)+sumcontax4(n,i-23)/((1+r)^i);
sPW(n,3) = sPW(n,3)+stax4(n,i-23)/((1+r)^i);
 else
 PW(n,2) = PW(n,2)+sumcontax5(n,i-33)/((1+r)^i);
PW(n,3) = PW(n,3)+tax5(n,i-33)/((1+r)^i);
sPW(n,2) = sPW(n,2)+sumcontax5(n,i-33)/((1+r)^i);
sPW(n,3) = sPW(n,3)+stax5(n,i-33)/((1+r)^i);
 end;
end;
end;
end;
Appendix D: Programming code of the whole life of careers model for individuals who only received higher degrees disregarding their majors

clear;

% variable definition & initialization
 t = 5000; % number of trials
 r = 0.10; % the effective annual interest rate
 inc = zeros (t, 4); % the before tax income for the individual
 tax2 = zeros (t, 10); % annual total taxes in the 2nd stage (25 to 24)
 tax3 = zeros (t, 10); % annual total taxes in the 3rd stage (35 to 44)
 tax4 = zeros (t, 10); % annual total taxes in the 4th stage (45 to 54)
 tax5 = zeros (t, 10); % annual total taxes in the 5th stage (55 to 64)
 stax2 = zeros (t, 10); % annual state total taxes in the 2nd stage (25 to 24)
 stax3 = zeros (t, 10); % annual state total taxes in the 3rd stage (35 to 44)
 stax4 = zeros (t, 10); % annual state total taxes in the 4th stage (45 to 54)
 stax5 = zeros (t, 10); % annual state total taxes in the 5th stage (55 to 64)
 atinc = zeros (t, 4); % the after tax income
 inctax = zeros (t, 4); % the income taxes
 finctax = zeros (t, 4); % the federal income taxes
 sinctax = zeros (t, 4); % the state income taxes
 % 18 as the number of categories and 18 estimated as the routines of the impacts
 perofcon = zeros (18, 10);
 % percentage of expenditures on each category in rows
 con = zeros (18, 10); % expenditures on each category
 contax = zeros (18, 10); % tax of corresponding expenditures
 sumcontax2 = zeros (t, 10); % annual consumption taxes in the 2nd stage
 sumcontax3 = zeros (t, 10); % annual consumption taxes in the 3rd stage
 sumcontax4 = zeros (t, 10); % annual consumption taxes in the 4th stage
 sumcontax5 = zeros (t, 10); % annual consumption taxes in the 5th stage
 PW = zeros(t,3); % the 1st column is for income taxes, the 2nd column is for consumption taxes, the 3rd column is for total taxes
 sPW = zeros(t,3);

% begin the replication
for n=1:t

% Assignment for the individuals
inc(n,1) = 10000 + 170000*betarnd(3.73,13.7); % the distribution for salary
u=rand; perofincrease=(u<=(1.29-1.17)/(1.36-1.17)).*(1.17+sqrt((1.36-1.17)*(1.29-1.17)*u))+(u>(1.29-1.17)/(1.36-1.17)).*(1.36-sqrt((1-u)*(1.36-1.17)*(1.36-1.29)));
inc(n,2) = perofincrease*inc(n,1);
inc(n,3) = (1+gamrnd(5.65,0.00938))*inc(n,2);
inc(n,4) = (0.81+0.08*betarnd(1.23,0.986))*inc(n,3);

% Income Taxes for Single
for i=1:4
if inc(n,i) <= 8500
 finctax(n,i) = 0.10*inc(n,i);
elseif 8500<inc(n,i)<=34500
 finctax(n,i) = 0.10*8500 + 0.15*(inc(n,i)-8500);
elseif 34500<inc(n,i)<=83600
 finctax(n,i) = 0.10*8500+0.15*(34500-8500)+0.25*(inc(n,i)-34500);
elseif 83600<inc(n,i)<=174400
 finctax(n,i) = 0.10*8500+0.15*(34500-8500)+0.25*(83600-34500)+0.28*(inc(n,i)-83600);
elseif 174400<inc(n,i)<=379150

end

end

% End of replication
end
\[\text{finctax}(n,i) = 0.10 \times 8500 + 0.15 \times (34500 - 8500) + 0.25 \times (83600 - 34500) + 0.28 \times (174400 - 83600) + 0.33 \times (\text{inc}(1,i) - 174400); \]

\[\text{else if} \quad \text{inc}(1,i) > 379150 \]

\[\text{finctax}(n,i) = 0.10 \times 8500 + 0.15 \times (34500 - 8500) + 0.25 \times (83600 - 34500) + 0.28 \times (174400 - 83600) + 0.33 \times (379150 - 174400) + 0.35 \times (\text{inc}(1,i) - 379150); \]

\[\text{end}; \]

\[\text{if} \quad \text{inc}(1,i) \leq 2400 \]

\[\text{sinctax}(n,i) = 0.0256 \times \text{inc}(n,i); \]

\[\text{elseif} \quad 2400 < \text{inc}(1,i) \leq 17500 \]

\[\text{sinctax}(n,i) = 0.0357 \times \text{inc}(n,i); \]

\[\text{elseif} \quad 17500 < \text{inc}(1,i) \leq 27000 \]

\[\text{sinctax}(n,i) = 0.0512 \times \text{inc}(n,i); \]

\[\text{elseif} \quad \text{inc}(1,i) > 27000 \]

\[\text{sinctax}(n,i) = 0.0684 \times \text{inc}(n,i); \]

\[\text{end}; \]

\[\text{inctax}(n,i) = \text{finctax}(n,i) + \text{sinctax}(n,i); \]

\[\text{atinc}(n,i) = \text{inc}(n,i) - \text{inctax}(n,i); \]

\[\text{end}; \]

\[\text{tax2}(n,:) = \text{tax2}(n,:) + \text{inctax}(n,1); \quad \% \text{add income taxes to total taxes} \]

\[\text{tax3}(n,:) = \text{tax3}(n,:) + \text{inctax}(n,2); \]

\[\text{tax4}(n,:) = \text{tax4}(n,:) + \text{inctax}(n,3); \]

\[\text{tax5}(n,:) = \text{tax5}(n,:) + \text{inctax}(n,4); \]

\[\text{stax2}(n,:) = \text{stax2}(n,:) + \text{sinctax}(n,1); \quad \% \text{add income taxes to state total taxes} \]

\[\text{stax3}(n,:) = \text{stax3}(n,:) + \text{sinctax}(n,2); \]

\[\text{stax4}(n,:) = \text{stax4}(n,:) + \text{sinctax}(n,3); \]

\[\text{stax5}(n,:) = \text{stax5}(n,:) + \text{sinctax}(n,4); \]

\% Expenditures Determination based on income for stage 1

\% Expenditures Determination based on income for stage 2

\[\text{for} \quad i = 1:10 \]

\[\text{m} = 0; \]

\[\text{expen} = \text{inc}(n,1); \]

\[\text{while} \quad \text{expen} > 0.01 \times \text{inc}(n,1) \quad \% \text{routines stopped when the total expenditures less than 1\% of income} \]

\[\text{ininc} = 0; \]

\[\text{m} = \text{m} + 1; \quad \% \text{the m th routine} \]

\[\text{perofcon}(1,m) = 0.05 + \text{gamrnd}(7.21,0.00148); \quad \% \text{food at home} \]

\[\text{perofcon}(2,m) = 0.04 + \text{weibrnd}(5.44 \times 10^9,4.93); \quad \% \text{food away home} \]

\[\text{perofcon}(3,m) = \text{lognrnd}(-4.53,0.439); \quad \% \text{alcoholic beverages} \]

\[\text{perofcon}(4,m) = 0.07 + \text{lognrnd}(-3.48,0.405); \quad \% \text{owned housing} \]

\[\text{perofcon}(5,m) = 0.04 + \text{weibrnd}(2.14 \times 10^8,8.594); \quad \% \text{rented housing} \]

\[\text{perofcon}(6,m) = 0.09 + \text{weibrnd}(3365089.422); \quad \% \text{house repairing and maintenance} \]

\[\text{perofcon}(7,m) = 0.05 + \text{lognrnd}(-5.41,0.262); \quad \% \text{utilities} \]

\[\text{perofcon}(8,m) = \text{normrnd}(0.039,0.00423); \quad \% \text{clothes} \]

\[\text{u5} = \text{rand}; \quad \text{perofcon}(9,m) = (\text{u5} \leq (0.038 - 0.01)/(0.05 - 0.01)) \times (0.01 + \text{sqrt}((0.05 - 0.01) \times (0.038 - 0.01) \times \text{u5})) + (\text{u5} > (0.038 - 0.01)/(0.05 - 0.01)) \times (0.05 - \text{sqrt}((1 - \text{u5}) \times (0.05 - 0.01) \times (0.05 - 0.038))); \quad \% \text{new vehicle} \]

\[\text{perofcon}(10,m) = 0.02 + \text{lognrnd}(-4.00,0.450); \quad \% \text{used vehicle} \]

\[\text{perofcon}(11,m) = 0.02 + \text{lognrnd}(-4.23,0.442); \quad \% \text{gasoline} \]

\[\text{perofcon}(12,m) = 0.01 + 0.01 \times \text{betarnd}(2.47,1.44); \quad \% \text{vehicle insurance} \]

\[\text{perofcon}(13,m) = 0.01 + \text{lognrnd}(-5.71,0.227); \quad \% \text{healthcare excluding insurance} \]

\[\text{perofcon}(14,m) = 0.01 + \text{gamrnd}(25.2,0.000258); \quad \% \text{health insurance} \]

\[\text{perofcon}(15,m) = 0.03 + \text{gamrnd}(25.2,0.000513); \quad \% \text{entertainment} \]

\[\text{perofcon}(16,m) = 0.01 \times \text{betarnd}(18.6,12.5365); \quad \% \text{tobacco products} \]

\[\text{perofcon}(17,m) = 0.07 + 0.04 \times \text{betarnd}(8.29,7.99); \quad \% \text{other expenditures} \]

\[\text{per} = 0; \quad \% \text{percentage of all expenditures} \]

\[\text{for} \quad l = 1:17 \]

\[\text{per} = \text{per} + \text{perofcon}(1,m); \]

\[\text{end}; \]
% main procedure: cash flows
if m==1
 expen=0; % the total expenditures including indirect individuals
 for j=1:18
 con(j,m) = perofcon(j,m)*atinc(n,1);
 expen = expen+con(j,m);
 if j==1||j==4||j==5||j==7||j==12||j==14||j==18
 contax(j,m) = 0*con(j,m);
 else
 contax(j,m) = (0.07/1.07)*con(j,m);
 end
 end
else
 ininc = 0.5*expen; % assume 50% of the expenditures utilized to increase the workers' income
 expen = 0; % initial the expenditures for the m th routine where m is larger than 1
 for j=1:18
 con(j,m) = perofcon(j,m)*ininc;
 expen = expen+con(j,m);
 if j==1||j==4||j==5||j==7||j==12||j==14||j==18
 contax(j,m) = 0*con(j,m);
 else
 contax(j,m) = (0.07/1.07)*con(j,m);
 end
 end
end
% obtain the sum of the expenditures taxes and add it to tax
sumcontax2(n,i) = sum((sum(contax))');
tax2(n,i) = tax2(n,i)+sumcontax2(n,i);
stax2(n,i) = stax2(n,i)+sumcontax2(n,i);
end

% Expenditures Determination based on income for stage 3
for i=1:10
 m=0;
 expen = inc(n,2);
 while expen > 0.01*inc(n,2) % routines stopped when the total expenditures less than 1% of income
 ininc = 0; % the indirect increased income from the expenditures
 m = m+1; % the m th routine
 perofcon(1,m)=0.05+lognrnd(-4.61,0.303); % food at home
 perofcon(2,m)=0.04+lognrnd(-5.23,0.300); % food away home
 perofcon(3,m)=lognrnd(-4.95,0.0933); % alcoholic beverages
 perofcon(4,m)=0.1+weibrnd(2.05*10^8,4.93); % owned housing
 perofcon(5,m)=0.03+lognrnd(-4.60,0.274); % rented housing
 perofcon(6,m)=0.11+lognrnd(-5.00,0.481); % house repairing and maintenance
 perofcon(7,m)=0.05+0.01*betarnd(3.4,6.1); % utilities
 perofcon(8,m)=0.02+lognrnd(-4.31,0.301); % clothes
 u6=rand; perofcon(9,m)=(u6<=(0.038-0.01)/(0.05-0.01)).*(0.01+sqrt((0.05-0.01)*(0.038-0.01)*u6))+(u6>(0.038-0.01)/(0.05-0.01)).*(0.05-sqrt((1-u6)*(0.05-0.01))*(0.05-0.038))); % new vehicle
 perofcon(10,m)=0.01+0.04*betarnd(4.79,5.17); % used vehicle
 perofcon(11,m)=0.02+lognrnd(-4.47,0.439); % gasoline
 perofcon(12,m)=0.01+weibrnd(2.61*10^11,5.14); % vehicle insurance
 perofcon(13,m)=0.01+0.01*betarnd(18.3,12.5); % healthcare excluding insurance
 perofcon(14,m)=0.01+lognrnd(-4.87,0.149); % health insurance
 perofcon(15,m)=0.03+lognrnd(-4.30,0.223); % entertainment
 perofcon(16,m)=lognrnd(-5.18,0.162); % tobacco products
 end
end
u7 = rand; perofcon(17,m) = (u7 <= (0.094-0.08)/(0.12-0.08)).*(0.08 + sqrt((0.12-0.08)*(0.094-0.08)*u7)) + (u7 > (0.094-0.08)/(0.12-0.08)).*(0.12 - sqrt((1-u7)*(0.12-0.08)*(0.12-0.094)))

% other expenditures
per = 0; % percentage of all expenditures
for l = 1:17
 per = per + perofcon(l,m);
end;

perofcon(18,m) = 1 - per; % percentage of after tax income for saving

% main procedure: cash flows
if m == 1
 expen = 0; % the total expenditures including indirect individuals
 for j = 1:18
 con(j,m) = perofcon(j,m)*atinc(n,2);
 expen = expen + con(j,m);
 if j == 1 || j == 4 || j == 5 || j == 7 || j == 12 || j == 14 || j == 18
 contax(j,m) = 0*con(j,m);
 else
 contax(j,m) = (0.07/1.07)*con(j,m);
 end;
 end;
else
 ininc = 0.5*expen; % assume 50% of the expenditures utilized to increase the workers' income
 expen = 0; % initial the expenditures for the m th routine where m is larger than 1
 for j = 1:18
 con(j,m) = perofcon(j,m)*ininc;
 expen = expen + con(j,m);
 if j == 1 || j == 4 || j == 5 || j == 7 || j == 12 || j == 14 || j == 18
 contax(j,m) = 0*con(j,m);
 else
 contax(j,m) = (0.07/1.07)*con(j,m);
 end;
 end;
 end;
end;

% obtain the sum of the expenditures taxes and add it to tax
sumcontax3(n,i) = sum((sum(contax))')

tax3(n,i) = tax3(n,i) + sumcontax3(n,i)
stax3(n,i) = stax3(n,i) + sumcontax3(n,i);
end;

% Expenditures Determination based on income for stage 4
for i = 1:10
 m = 0;
 expen = inc(n,3);
 while expen > 0.01*inc(n,3) % routines stoped when the total expenditures less than 1% of income
 ininc = 0; % the indirect increased income from the expenditures
 m = m+1; % the m th routine
 perofcon(1,m) = 0.03 + 0.05*betarnd(8.48,7.35); % food at home
 u8 = rand; perofcon(2,m) = (u8 <= (0.0403-0.03)/(0.06-0.03)).*(0.03 + sqrt((0.06-0.03)*(0.0403-0.03)*u8)) + (u8 > (0.0403-0.03)/(0.06-0.03)).*(0.06 - sqrt((1-u8)*(0.06-0.03)*(0.06-0.0403)))
 % food away home
 perofcon(3,m) = normrnd(0.00698, 0.000784); % alcoholic beverages
 perofcon(4,m) = 0.1 + lognrnd(-4.78, 0.368); % owned housing
 perofcon(5,m) = normrnd(0.0279, 0.00237); % rented housing
 perofcon(6,m) = 0.1 + lognrnd(-4.38, 0.317); % house repairing and maintenance
 perofcon(7,m) = 0.05 + 0.01*betarnd(1.79, 3.78); % utilities
 perofcon(8,m) = 0.02 + 0.03*betarnd(1.97, 2.99); % clothes
 perofcon(9,m) = 0.01 + 0.04*betarnd(5.92, 7.22); % new vehicle

perofcon(10,m)=0.01+lognrnd(-4.16,0.435); % used vehicle
perofcon(11,m)=0.02+0.03*betarnd(2.71,4.1); % gasoline
perofcon(12,m)=0.01+0.01*betarnd(6.71,1.86); % vehicle insurance
perofcon(13,m)=0.01+gamrnd(25.2,0.000407); % healthcare excluding insurance
perofcon(14,m)=0.01+gamrnd(25.2,0.000365); % health insurance
perofcon(15,m)=0.03+0.02*betarnd(12.6,12.1); % entertainment
perofcon(16,m)=0.01*betarnd(21.5,14.5575); % tobacco products
perofcon(17,m)=0.1+lognrnd(-4.01,0.302); % other expenditures
per = 0; % percentage of all expenditures
for l=1:17
 per = per + perofcon(l,m);
end;
perofcon(18,m)=1-per; % percentage of after tax income for saving

% main procedure: cash flows
if m==1
 expen=0; % the total expenditures including indirect individuals
 for j=1:18
 con(j,m) = perofcon(j,m)*atinc(n,3);
 expen = expen+con(j,m);
 if j==1||j==4||j==5||j==7||j==12||j==14||j==18
 contax(j,m) = 0*con(j,m);
 else
 contax(j,m) = (0.07/1.07)*con(j,m);
 end;
 end;
else
 ininc = 0.5*expen; % assume 50% of the expenditures utilized to increase the workers' income
 expen = 0; % initial the expenditures for the mth routine where m is larger than 1
 for j=1:18
 con(j,m) = perofcon(j,m)*ininc;
 expen = expen+con(j,m);
 if j==1||j==4||j==5||j==7||j==12||j==14||j==18
 contax(j,m) = 0*con(j,m);
 else
 contax(j,m) = (0.07/1.07)*con(j,m);
 end;
 end;
 % obtain the sum of the expenditures taxes and add it to tax
 sumcontax4(n,i) = sum((sum(contax))');
 tax4(n,i) = tax4(n,i)+sumcontax4(n,i);
 stax4(n,i) = stax4(n,i)+sumcontax4(n,i);
end;

% Expenditures Determination based on income for stage 5
for i=1:10
 m=0;
 expen = inc(n,4);
 while expen > 0.01*inc(n,4) % routines stopped when the total expenditures less than 1% of income
 ininc = 0; % the indirect increased income from the expenditures
 m = m+1; % the mth routine
 perofcon(1,m)=0.04+0.04*betarnd(5.4,6.19); % food at home
 perofcon(2,m)=normrnd(0.0424,0.00384); % food away home
 perofcon(3,m)=lognrnd(-4.91,0.105); % alcoholic beverages
 perofcon(4,m)=0.09+lognrnd(-4.04,0.305); % owned housing
 perofcon(5,m)=0.01+weibrnd(3.98*10^9,5.28); % rented housing
 perofcon(6,m)=normrnd(0.127,0.0122); % house repairing and maintenance
perofcon(7,m)=0.05+lognrnd(-4.85,0.301); % utilities
perofcon(8,m)=random('uniform',0.02,0.04); % clothes
perofcon(9,m)=0.01+0.05*betarnd(2.56,2.61); % new vehicle
perofcon(10,m)=random('uniform',0.01,0.04); % used vehicle
perofcon(11,m)=0.02+0.03*betarnd(2.94,4.43); % gasoline
perofcon(12,m)=0.01+gamrnd(25.2,0.00301); % vehicle insurance
perofcon(13,m)=0.02+lognrnd(-4.75,0.271); % healthcare excluding insurance
perofcon(14,m)=0.02+gamrnd(15.2,0.000485); % health insurance
perofcon(15,m)=0.03+gamrnd(23.1,0.000594); % entertainment
perofcon(16,m)=weibrnd(1.23*10^16,7.37); % tobacco products
perofcon(17,m)=0.09+0.03*betarnd(1.65,0.886); % other expenditures
per = 0; % percentage of all expenditures
for l=1:17
 per = per + perofcon(l,m);
end
perofcon(18,m)=1-per; % percentage of after tax income for saving

% main procedure: cash flows
if m==1
 expen=0; % the total expenditures including indirect individuals
 for j=1:18
 con(j,m) = perofcon(j,m)*atinc(n,4);
 expen = expen+con(j,m);
 if j==1||j==4||j==5||j==7||j==12||j==14||j==18
 contax(j,m) = 0*con(j,m);
 else
 contax(j,m) = (0.07/1.07)*con(j,m);
 end
 end
else
 ininc = 0.5*expen; % assume 50% of the expenditures utilized to increase the workers’ income
 expen = 0; % initial the expenditures for the m th routine where m is larger than 1
 for j=1:18
 con(j,m) = perofcon(j,m)*ininc;
 expen = expen+con(j,m);
 if j==1||j==4||j==5||j==7||j==12||j==14||j==18
 contax(j,m) = 0*con(j,m);
 else
 contax(j,m) = (0.07/1.07)*con(j,m);
 end
 end
end

% obtain the sum of the expenditures taxes and add it to tax
sumcontax5(n,i) = sum((sum(contax))');
tax5(n,i) = tax5(n,i)+sumcontax5(n,i);
stax5(n,i) = stax5(n,i)+sumcontax5(n,i);

% calculate the present worth of taxes for the whole career life
PW(n,1) = inctax(n,1)*(((1+r)^10-1)/(r*(1+r)^10))/((1+r)^3)+inctax(n,2)*(((1+r)^10-1)/(r*(1+r)^10))/((1+r)^13)+inctax(n,3)*(((1+r)^10-1)/(r*(1+r)^10))/((1+r)^23)+inctax(n,4)*(((1+r)^10-1)/(r*(1+r)^10))/((1+r)^33);
sPW(n,1) = sintax(n,1)*(((1+r)^10-1)/(r*(1+r)^10))/((1+r)^3)+sintax(n,2)*(((1+r)^10-1)/(r*(1+r)^10))/((1+r)^13)+sintax(n,3)*(((1+r)^10-1)/(r*(1+r)^10))/((1+r)^23)+sintax(n,4)*(((1+r)^10-1)/(r*(1+r)^10))/((1+r)^33);
for i=1:40
 if i<=10
 PW(n,2) = PW(n,2)+sumcontax2(n,i)/((1+r)^i);
PW(n,3) = PW(n,3)+tax2(n,i)/((1+r)^i);
sPW(n,2) = sPW(n,2)+sumcontax2(n,i)/((1+r)^i);
sPW(n,3) = sPW(n,3)+stax2(n,i)/((1+r)^i);
elseif i>10&&i<=20
 PW(n,2) = PW(n,2)+sumcontax3(n,i-10)/((1+r)^i);
 PW(n,3) = PW(n,3)+tax3(n,i-10)/((1+r)^i);
 sPW(n,2) = sPW(n,2)+sumcontax3(n,i-10)/((1+r)^i);
 sPW(n,3) = sPW(n,3)+stax3(n,i-10)/((1+r)^i);
elseif i>20&&i<=30
 PW(n,2) = PW(n,2)+sumcontax4(n,i-20)/((1+r)^i);
 PW(n,3) = PW(n,3)+tax4(n,i-20)/((1+r)^i);
 sPW(n,2) = sPW(n,2)+sumcontax4(n,i-20)/((1+r)^i);
 sPW(n,3) = sPW(n,3)+stax4(n,i-20)/((1+r)^i);
else
 PW(n,2) = PW(n,2)+sumcontax5(n,i-30)/((1+r)^i);
 PW(n,3) = PW(n,3)+tax5(n,i-30)/((1+r)^i);
 sPW(n,2) = sPW(n,2)+sumcontax5(n,i-30)/((1+r)^i);
 sPW(n,3) = sPW(n,3)+stax5(n,i-30)/((1+r)^i);
end;
end;
end;
Appendix E: Notation

BD: Bachelor's Degree

FTR : the federal tax revenues

HD: Higher than Bachelor's Degree (Higher Degree)

i: the effective annual interest rate

Impact1: the ratio between the tax revenues from the two groups of individuals

Impact2: the increase of tax revenues by one dollar increased in individuals’ income

Impact3: the difference of the taxes revenues between the two groups of individuals

Income : an individual’s salary

pe : the percentage of the after taxes income on each category of the expenditures

pe : the percentage of the direct expenditures paid to the employees in the corresponding places

ps : the minimum percentage of the individual’s income to stop adding the indirect contributions

PW: the net present worth of the tax revenues received by the federal and the state & local governments tougher

PW1: the net present worth of the income tax revenues received by the federal and the state & local governments tougher

PW2: the net present worth of the sales tax revenues received by the federal and the state & local governments tougher
\(PW_3 \): the net present worth of the total tax revenues received by the federal
and the state & local governments tougher

\(r_i \): the income tax rate

\(r_{if} \): the federal income tax rate

\(r_{in} \): the increased rate of the incomes from one state to another

\(r_{is} \): the state income tax rate

\(r_s \): the sales tax rate

\(sPW \): the net present worth of the tax revenues received by the state & local
government

\(sPW_1 \): the net present worth of the income tax revenues received by the state
& local government

\(sPW_2 \): the net present worth of the sales tax revenues received by the state &
local government

\(sPW_3 \): the net present worth of the total tax revenues received by the state &
local government

\(STR \): the state tax revenues

\(t \): the replicates running the model

\(TR \): the total tax revenues