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This work studies the propagation of thermo-mechanical disturbances in bodies made

of viscoelastic materials that might already be loaded such that they are undergoing large

inhomogeneous time varying deformations. In the process of this study we develop the

general equations governing the thermo-mechanical motion of such disturbances and ones

for internally constrained systems, provide the general structure of the solution, match the

solution to existing results for the special case of time harmonic plane waves in elastic bodies

and in viscoelastic bodies under constant homogenous loading, and consider some special

applications.

The results of this work should have applications in the study of anisotropic and in-

homogeneous bodies that are inhomogenously loaded with the possibility that these loads

are time varying, and may become part of tools used for non-invasive and non-destructive

testing of such bodies. Many common materials are anisotropic and inhomogeneous. These

include most polymers, composites, soft and hard tissues, and all kinds of bio-mass. Many

bodies are undergoing static or time varying inhomogeneous loading. Examples can vary

from conditions that result in or from earthquakes and landslides to composites and live

tissues functioning in loaded structures and bio-MEMS.

Some of the contributions of this dissertation are to introduce a full, thermodynamically

consistent, nonlinear viscoelastic model to represent the material, to properly introduce

thermo-mechanical coupling, to remove current limitations on the pre-deformation to be

static, homogenous and around the equilibrium, to remove existing restrictions on the rate

of loading of the perturbations, and to consider perturbations in the presence of material

constraints.
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CHAPTER 1

Introduction

The aim of this dissertation is to study the propagation of infinitesimal thermo-mechanical

time varying perturbations (waves) in a special class of nonlinear viscoelastic materials under

static and time varying, homogeneous and inhomogeneous, pre-deformations. The study

of the theory of infinitesimal thermo-mechanical perturbations on nonlinear viscoelastic

materials and structures is of importance in characterizing the dynamic properties and

addressing the stability issues of viscoelastic materials and structures under complex pre-

loadings and pre-deformations.

1.1 Background on thermo-mechanical dynamic phenomena

Thermo-mechanical dynamic phenomena, for example, vibrations of mechanical structures

and wave propagations in viscoelastic medium in the presence of pre-load and pre-defor-

mation, play an essential part in many engineering fields: geophysics, civil engineering,

seismology, underwater acoustics, non destructive control, bio-sensors, bio-actuators, air-

craft and rocket stability, wave wind and earthquake loaded civil engineering structures,

fatigue failure of turbines, settlement of railway tracks, non destructive testing, etc.

In civil engineering and geophysics, the problems of consolidation and tectonics involve

earth masses that are initially under high stress. The folds and fractures in the sedimentary

layers are the result of differential stress environment in the sediments. In the problems of
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foundation engineering, the influence of initial stress appears in a buoyancy effect, which

amounts to floating a building on its foundation. The initial stress state inside the earth

is mainly due to the pressure of overburden. Crustal rocks are always subjected to stresses

[Garg, 2007]. A dynamical explanation of earthquake phenomena is required in earthquake

research. In this context, the term dynamics implies a consideration of the initial stress

with in the viscoelastic Earth that act to cause fault ruptures and ground displacements.

However, most of the research does not take into account the effects of initial stress on the

wave propagation in viscoelastic medium [Garg, 2007].

Intravascular ultrasound (IVUS), wavelet analysis of radio frequency intravascular ultra-

sound signals, and integrated backscatter intravascular ultrasound [Gorb and Walton, 2010]

are medical imaging methodologies that detect blockage or narrowing of the vessels which

may cause cardiovascular diseases [Rachev, 1997]. These techniques are in vivo invasive

procedures performed through cardiac catheterization that produces detailed images of

the interior walls of the artery to see blood vessels and allows one to detect an obstruc-

tion of the lumen of the artery. The catheter tip emits acoustic sound waves, usually

in the 15-40 MHz range. The catheter also receives and conducts the return echo in-

formation out to the external computerized ultrasound equipment which constructs and

displays a real time ultrasound image of a thin section of the blood vessel surrounding the

catheter tip. However, many of these techniques are still under investigation and at present

none of them can accurately identify a vulnerable plaque and how it is going to develop.

Achieving satisfactory results by means of traditional techniques is very difficult due to

the complex nature of the tissue characterization problem and the imaging characteristics

[Gorb and Walton, 2010]. One of the main problems to solve is to understand the effect

of the basic artery features, such as layered, anisotropic [Holzapfel et al., 2000], heteroge-

neous, pre-stressed [Fung and Liu, 1991], viscoelastic, on ultrasound wave propagation in

the deformed body [Gorb and Walton, 2010].

In the general anisotropic and dissipative media, waves are attenuated differently in

different directions. There has been a recent interest in the anisotropy of seismic atten-

uation as it may provide additional information about subsurface elastic properties. In

particular, velocity and attenuation anisotropy have important implications for fracture
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characterization in exploration seismology Liu et al. and Zhu et al. [E.Liu et al., 2007,

Zhu and Tsvankin, 2007].

In recent years, there has been significant interest in the soft materials with potential ap-

plications in bioMEMS for comfortable cancer detection and treatment Bashir[Bashir, 2004]

and Bhushan [Bhushan, 2007]. A novel shear assay technique and micro patterned biomate-

rial surfaces can be used to characterize cell adhesion, viscoelastic properties, and prestress

of the human asteosarcoma cells on biocompatible surfaces, in an effort to develop tools

for characterizing cancer cell properties Kumar et al [Kumar and Weaver, 2009]. There-

fore, some of the human organs exhibit viscoelastic properties along with initial stress and

demands results for initially stressed viscoelastic medium.

Polydimethylsiloxane (PDMS)-based micropillars (or microcantilevers) have been used

as bio-sensors for cellular force measurement to understand the fundamental physiologi-

cal processes associated with cell growth, division, migration and apoptosis Zhao et al.

[Zhao and Zhang, 2005] and Lin et al. [Lin et al., 2008]. They have also been considered

for use as bio-actuators to drive both solid microstructures and fluids in a microchip without

recourse to electrical power supply [Du et al., 2010]. The measurement accuracy of these

sensitive devices depends on appropriate modeling to convert the micropillar deformations

into the corresponding reaction forces.

Stress fibers in living cells behave as viscoelastic cables that are tensed through the

action of actomyosin motors. It is required to quantify their retraction kinetics in situ, and

to explore their contribution to overall mechanical stability of the cell and interconnected

extra cellular matrix (ECM) [Kumar et al., 2006]. The interplay between the biophysical

properties of the cell and ECM establishes a dynamic, mechanical reciprocity between the

cell and the ECM in which the cell’s ability to exert contractile stresses against the extra-

cellular environment balances the elastic resistance of the ECM to that deformation. It

has become clear that this force balance can regulate a surprisingly wide range of cellular

properties that are all critical to tumorigenesis, including structure, motility, proliferation,

and differentiation, see review by Kumar et al [Kumar and Weaver, 2009].

Damping augmentation is a common approach to vibration control in structures (vibroa-

coustic, vibration fatigue). Viscoelastic materials can be used to design efficient damping
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treatments. The mechanical properties of these materials however depend on frequency,

but also on pre-stress and temperature. The study of viscoelastic medium under the effect

of initial stress will help to design more efficient damping treatments. Vibration control

in machines and structures for situations involving vibration excitations can be carried out

by incorporating viscoelastic materials and applying the principle of vibratory energy dis-

sipation due to damping as a result of deformation of viscoelastic materials [Nakra, 1998].

Recently, Rao [Rao, 2003] discussed recent applications of viscoelastic damping for noise

control in automobiles and commercial airplanes.

Stress relaxation in prestressed laminates with viscoelastic matrices, together with creep

deformation under constant rate loading or large changes in temperature can be used to

develop a technique leading to improvement of damage and penetration resistance of lam-

inated composite structures, such as army vehicles and their armor. Applications of fiber

pre-stress can be explored in compressive pre-stressing of ceramic/FRp armor plates for

improved resistance to projectile penetration [Garg, 2007].

1.2 Review on the study of viscoelastic solids under pre-de-

formation and pre-load

The theory developed in this dissertation permits studying a variety of phenomena in pre-

deforming viscoelastic media. There is a large group of bodies in service that belong to

the category of pre-deforming nonlinear viscoelastic bodies. One can mention, for example,

the rolling resistance of automotive tires and elastomeric engine mounts for a passenger

car [Lion and Kardelky, 2004]. Also, one might use this for studying the deformation of

biological soft tissues such as tendons [Pioletti et al., 1998], and the study of the skin and

possibly the brain, during multiple loading events, such as expected in impact or blast

loading, see the recent review by Hoskins [Hoskins, 2007]. Other possible applications are

in deformation ultrasound and magnetic resonance imaging, which are tools for non-de-

structive evaluation and medical imaging. In particular, this study, for example, could con-

tribute to developing non-invasive methods to investigate properties during medical imaging

[Sinkus et al., 2006]. One key issue to figure out in these problems is the effects of pre-loads
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and pre-deformations on the wave characteristics, such as is seen, for example, by Fatemi

et al. [Fatemi et al., 2003] and Greenleaf et al. [Greenleaf et al., 2003], in which compres-

sion of soft tissues before imaging is shown to increase contrast and reduce de-correlation

noise, but might also provide invaluable information on thermo-mechanical properties, for

example during loading and growth.

There are relatively few studies dedicated to looking at thermo-mechanical waves super-

imposed on finite thermo-mechanical deformations in viscoelastic materials that consider

both homogeneous and inhomogeneous pre-deformations, and temperature perturbations.

Saccomandi [Saccomandi, 2005] derived the equations of small amplitude homogeneous and

inhomogeneous plane shear waves in a homogeneous biaxially deformed Mooney-Rivin vis-

coelastic solids whose elastic part of the stress tensor is modeled through the use of the

Mooney-Rivlin form of the stored energy function, and whose dissipative part is mod-

eled as a Newtonian fluid. Destrade et al. [Destrade et al., 2009] and Quintanilla et al.

[Quintanilla and Saccomandi, 2009] studied the propagation of small amplitude waves in a

large statically deformed nonlinear viscoelastic solid and addressed both material and geo-

metric stability. In this case, the viscoelastic material was characterized by a Cauchy stress

tensor depending only on the left Cauchy Green deformation tensor and on the deforma-

tion rate tensor, as the author mentions, the constitutive model they use can account for

classical effects like creep and recovery, but cannot describe stress relaxation. Rajagopal

et al. [Rajagopal and Saccomandi, 2003] investigated shear wave propagations in a certain

class of nonlinear viscoelastic materials which are modeled the same as in Destrade et al.

[Destrade et al., 2009] and provided some exact solutions for initial data with compact and

non-compact support. Garg [Garg, 2007] used Biot’s theory to study the effect of initial

homogeneous stress on phase velocity and attenuation of plane homogeneous waves in a

general viscoelastic anisotropic medium, and showed that the attenuation is more sensitive

to the initial stress as compared to the propagation velocities. Biot [Biot, 1965] presented

the theory of elasticity and viscoelasticity of initially stressed solids and fluids including the

applications to finite strains. Hayes et al. [Hayes, 1969, Hayes and Rivlin, 1972] discussed

the propagation of a sinusoidal wave of small amplitude in an initially isotropic viscoelastic

solid, which is subjected to a static pure homogeneous deformation, and they applied their
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results to the reflection-refraction problem at the plane interface between two half-spaces

of such materials, subjected to different pure homogeneous deformations. They model the

viscoelastic material as a Rivlin-Ericksen type of material which was detailed in Rivlin et

al. [Rivlin and Wilmanski, 1987] for which the Cauchy stress at a material point at time t

depends not only on the instantaneous value of the deformation gradient, but also on its

time derivatives of various orders. Karnaukhov [Karnaukhov, 1977] presented a thermo-

mechanical theory of small viscoelastic strains imposed on stable initially large strains for

thermo-rheological materials, where the Cauchy stress is the partial derivative of the free

energy with respect to the strain tensor and is represented by a single integral with the inte-

grand depending on the history of the deformation. Rendek et al. [Rendek and Lion, 2010]

and Lion et al. [Lion, 1998, Lion et al., 2009] investigated the dynamic behaviors of non-

linear viscoelastic bodies under finite static pre-deformations superimposed by sinusoidal

loads with small amplitudes. The storage and loss moduli were measured through dynamic

mechanical analysis (DMA) under varying frequencies, pre-deformations and temperatures.

The authors formulated the models for three-dimensional finite deformations by employing a

finite linear viscoelasticity model, by using modified Mooney-Rivlin strain energy function,

or a Neo-Hookean strain energy function with the viscosities depending on the deforma-

tion history. In order to derive the expressions for dynamic moduli, the authors linearised

the constitutive equations with respect to the static pre-deformations. The identification

process of the material constants based on the dynamic moduli was also provided.

Destrade [Destrade, 2000] considered the propagation of finite-amplitude linearly-polar-

ized inhomogeneous transverse plane waves propagate in an incompressible Mooney-Rivlin

rubber-like material maintained in a state of finite static homogeneous deformation. The

author showed that such waves are possible when the directions of the normal to the planes

of constant phase and of the normal to the planes of constant amplitude are orthogonal and

conjugate with respect to the initial left Cauchy-Green strain tensor ellipsoid. Chadwick et

al. [Chadwick et al., 1985] and Borejko [Borejko, 1987] considered the effects of the internal

constraints on the properties of homogeneous and inhomogeneous waves in elastic media

and developed the linearized dynamics of a non-heat-conducting elastic body subject to a

general system of internal constraints and an arbitrary homogeneous pre-strain. Hayes and
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Saccomandi [Hayes and Saccomandi, 2002] considered the propagation of finite amplitude

plane transverse waves in a class of homogeneous isotropic incompressible viscoelastic solids

subject to a homogeneous static deformation. The Cauchy stress in their paper was assumed

as the sum of an elastic part and a dissipative viscoelastic part. The elastic part was of

the form of the stress corresponding to a Mooney-Rivlin material, whereas the dissipative

part was a linear combination of the first and second Rivlin-Ericksen tensors. The authors

found that two finite amplitude transverse plane waves may propagate in every direction

in the deformed body and they provide several exact solutions. Destrade and Saccomandi

[Destrade and Saccomandi, 2004] provided new exact solutions for finite-amplitude, trans-

verse, linearly polarized, inhomogeneous motions superposed upon a finite homogeneous

static deformation. The viscoelastic body is modeled as a Mooney-Rivlin viscoelastic solid,

whose constitutive equation consists of the sum of an elastic part (Mooney-Rivlin hyper-

elastic model) and a viscous part (Newtonian viscous fluid model). The authors found

the conditions for the directions of polarization, of propagation, and of attenuation un-

der which the waves may propagate. Specifically the authors studied solutions including

traveling inhomogeneous finite-amplitude damped waves and standing damped waves.

Fosdick et al. [Fosdick and Yu, 1996] studied the thermodynamics and stability of a vis-

coelastic second grade solid where the rate effects are characterized by two microstructural

coefficients in addition to the Newtonian viscosity. The authors showed the necessary and

sufficient conditions for the material model to be compatible with thermodynamics and the

free energy to be at a local minimum in equilibrium. In the paper the authors constructed

a stability theorem for second grade solids subject to mechanically isolated motions and

showed that the motion of the body relative to its center of mass dissipated in time. Fos-

dick et al. [Fosdick and Yu, 1998] studied the thermodynamics and stability of a history

type viscoelastic solid with an exponentially decaying relaxation function. The authors

constructed a stability theorem for a history type solid undergoing mechanically isolated

motions by showing that the intrinsic motion of the body with respect to the center of mass

is stable in the sense of Lyapunov.
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1.3 Current limitations

In many of the cited studies the constitutive model used to describe the nonlinear vis-

coelastic material response is fairly special. For example, Mooney-Rivlin viscoelasticity,

Newtonian viscosity, initial isotropy and incompressibility are common starting assump-

tions. In this dissertation we start with a fairly general constitutive modeling structure

for the nonlinear viscoelastic response that allows both isotropic and anisotropic response.

Wineman [Wineman, 2009] provided an overview of the current state of the subject of non-

linear viscoelastic solids. The review presented an introduction to the continuum theory

of nonlinear viscoelastic solids, discussing the constitutive equations and illustrating their

application to several problems of technical relevance by showing the solutions to boundary

value problems that have appeared in the literature. The author discussed the formula-

tion of constitutive equations for isotropic, transversely isotropic and orthotropic nonlinear

viscoelastic solids and summarized some proposed constitutive equations for nonlinear vis-

coelastic solids, for example rate and differential type constitutive equations, Green-Rivlin

multiple integral constitutive equations, finite linear viscoelasticity, Pipkin-Rogers consti-

tutive theory, and quasi-linear viscoelasticity, with emphasis on nonlinear single integral

finite linear viscoelastic and Pipkin-Rogers constitutive equations. The author presented

the material symmetry restrictions on the proposed constitutive equations, like isotropy,

transverse isotropy and orthotropy.

Other common limitations in many of the published articles are either the assumptions

that the infinitesimal mechanical perturbations are superimposed only around stable ther-

modynamic equilibrium states, and/or the time rates of the infinitesimal perturbations are

infinitesimal, not allowing the use of the results for states that largely deviate from ther-

modynamic equilibrium of the pre-deformations or when considering high frequency wave

motions. The development provided here does not require making such assumptions.

1.4 Outline

For all the reasons given in the previous section, the synopsis of the present dissertation

can be stated as follows.
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In this dissertation, we look at time varying perturbations in a nonlinear viscoelas-

tic material, with specific examples for wave motions in mind. The results are based on

a general nonlinear thermo-viscoelastic constitutive modeling structure embedded into a

thermodynamically consistent framework, which permits large deformations and also large

deformation rates. The model is capable of capturing continuous material relaxation and for

example, in the linear case, can specialize to a linear viscoelastic model with a continuous

relaxation spectra. Using the proposed constitutive equations, we develop a superposition

method to impose infinitesimal thermo-mechanical perturbations on a loading body. There

are no specific equilibrium requirement on the thermodynamic state of the loading body,

which has not been studied before. Earlier approaches to perturbing the pre-loaded body

either were restricted to small deviations away from thermodynamic equilibrium of the pre-

deformations, did not account for thermo-mechanical coupling effects, or controlled the time

rate of the perturbation relative to the loading.

In Chapter 2, we present the notation and basics of nonlinear continuum mechanics,

which includes kinematics and balance laws. We also develop the balance equations for

thermo-mechanical perturbations superimposed on a deforming body. For finite material

bodies, we study different types of boundary conditions for the perturbations. In order

to study the propagation of discontinuities, we derive the perturbed jump conditions and

consider two special cases.

Chapter 3 is devoted to presenting the finite deformation thermo-mechanically cou-

pled elasticity theory and developing the perturbation equations for thermo-elastic solids

undergoing large deformations. The propagation of different types of mechanical waves in

an axis-symmetrically deformed thermo-elastic cylinder is also studied, which shows the

potential application of the current work to load sensoring devices.

Chapter 4 presents the thermodynamically based viscoelastic constitutive equations

used in this dissertation. For infinitesimal perturbations on a given changing base history,

we develop the resulting constitutive model for the perturbations, and provide a general

solution for the evolution of the associate internal variables. We consider the example of

a homogeneous pre-deformation, present results for isothermal harmonic waves that are

space attenuating and time damping, and also provide the associated special cases. In



10

particular, we show the relation of this study to the work of Garg [Garg, 2007], Červený et

al. [Červený and Pšenč́ık, 2005], and Biot [Biot, 1965].

Chapter 5 focuses on material constraints in elastic materials and in one-element vi-

soelastic materials. The perturbations with material constraints are developed.

Chapter 6 discusses the propagation of mechanical waves in inhomogenously deforming

viscoelastic bodies. We also look at the propagation of discontinuities (jumps) in deforming

visoelastic bodies.

Chapter 7 summarizes and discusses the results, possible applications and future plans.



CHAPTER 2

Kinematics and balance laws for thermo-mechanical

perturbations

2.1 Introduction

This chapter starts by introducing the notation through the presentation of nonlinear

continuum mechanics. This includes discriptions of the kinematics and balance laws.

Most of this development is based on Negahban [Negahban, 2012]. For more comprehen-

sive treatment the reader is referred to the books on the subject by Truesdell and Noll

[Truesdell and Noll, 1965] and Negahban [Negahban, 2012], among others.

Next, we consider the perturbation of loading history and in the process define the base,

total and perturbation parts of a history, and present the balance laws for the perturbation

terms and the boundary conditions for the perturbations. We also derive the perturbation

equations for the jump conditions, which allow us to later study the propagation of surface

discontinuity.

2.2 Kinematics

We consider a continuous material body with κo denoting the reference configuration and

κ(t) denoting the current configuration at time t. We let X denote the position vector of

particles in the reference configuration and x denote the position in the current configura-
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tion. The motion of the body is given by the function x(X, t), which maps each particle

given by the position X in the reference configuration to its position in the current config-

uration at time t. The deformation gradient F = Grad(x) is a second order tensor which

relates dX and dx through the relation

dx = FdX, (2.1)

where Grad(.) is the gradient relative to changes in position X in the reference configura-

tion.

The relation of the deformation gradient to the nabla operator comes from the relation

dx = dX∇X(x), that gives the relation F = [∇X(x)]T , where the superscript “T” denotes

the transpose. The displacement u(X, t) of each particle is defined by

x(X, t) = X + u(X, t). (2.2)

The relation between the deformation gradient F and the displacement gradient H is given

by F = I + H, where H = Grad(u) = [∇X(u)]T , and has the property du = HdX. The

left Cauchy stretch tensor is given as B = FFT and the right Cauchy stretch tensor is given

as C = FTF.

The velocity v of particle X is calculated from the motion of the body by taking a

material time derivative, which holds X constant, to get

v(t) =
∂x(X, t)

∂t
. (2.3)

The velocity gradient is denoted by L = grad(v) and provides the relation

dv = Ldx, (2.4)

where grad(.) is the gradient relative to changes in position x in the current configuration.

It follows that L = ḞF−1. The relation with the nabla operator comes from dv = dx∇x(v)

which provides L = [∇x(v)]T .

In a similar manner, we take the temperature to be given by a function θ(X, t). De-
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pending on the selected configuration, there are at least two commonly used temperature

gradients. We denote these by G and g and define them through the relations

dθ = GdX = gdx. (2.5)

As can be seen, G is the gradient of temperature with respect to changes of position in

the reference configuration and g is the gradient of temperature with respect to changes of

position in the current configuration so that we have G = Grad(θ) and g = grad(θ), with

the relation G = gF.

2.3 Balance laws

The prediction of material response requires the combination of several elements. In general,

these elements include mathematical models describing the material’s response character-

istics (constitutive equations), specific conditions describing the initial state of the matter

(initial conditions), conditions describing how the specific body is being influenced by its

surrounding (boundary conditions), and laws describing how to combine these elements

(balance laws). The focus of this section will be on the balance laws. These laws have a

special place in the theory of material response since they are the same for all materials, in

contrast to constitutive equations that are different for each material.

The five laws that we collectively call the balance laws include: the conservation of mass,

the balance of linear momentum, the balance of angular momentum, the balance of work

and energy and the entropy production inequality. Each of the balance laws is a general

statement on how all materials will respond over time, and can be used to calculate the

specific response of a particular material body only when augmented by constitutive models

for the specific material, and specific initial and boundary conditions describing the initial

state of the material body and the processing conditions.
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2.3.1 Conservation of mass

Conservation of mass states that the mass in a body will not change if the particles in the

body remain the same. This is mathematically written as

ρJ = ρo, (2.6)

where ρo is material density in the reference configuration, ρ is material density in the

current configuration, and J is the volume ratio of the current configuration relative to the

reference configuration given by J = det(F).

2.3.2 Balance of linear momentum

The law of balance of linear momentum states that the resultant of all applied forces on a

material body is equal to the rate of change of linear momentum for that material body.

This law is written as ∫
S(t)

t(n)dS +

∫
B

bdm =
d

dt
(

∫
B

vdm), (2.7)

where the first integral represents the resultant force due to traction on the surface of the

body S(t), the second integral represents the resultant body force, and the third integral

represents the linear momentum of the body. In this expression b is the body force per

unit mass of the body, t(n) is the traction vector that can be replaced by the Cauchy stress

tensor through the relation t(n) = TT n̂, and the integration over mass can be replaced by

integration over volume through the relation dm = ρdV .

In the current configuration, the differential form of this law can be obtained by assuming

that the law must hold for each part of the body and that the arguments of the integrals

are continuous for every subregion. This results in

div(TT ) + ρb = ρa, (2.8)

where the material time derivative of the velocity is replaced by the acceleration a.

Since the domain of integration for the integral form of this balance law, given in (2.7),

may be changing with time, it is sometimes desirable to work in the reference configuration,
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which has a domain that is unchanged with time. To do this we will use the relation for

the total load applied on the surface of the body given as

P =

∫
S

t(n)dS =

∫
So

t(N)
o dSo, (2.9)

where P is the total resultant load applied on the surface of the body, S is the surface of

the segment in the current configuration and So is its associated surface in the reference

configuration. The traction t
(N)
o is associated with the nominal stress To through the

Cauchy relation t
(N)
o = N̂To.

Changing the volume integrals in (2.7) by using the relation dV = JdVo and introduction

of the conservation of mass ρJ = ρo yield the relation

∫
So

t(N)
o dSo +

∫
Vo

bρodVo =

∫
Vo

aρodVo. (2.10)

This must hold not only for the entire body, but also for any segment of it. Therefore, if

the functions in the arguments are continuous functions of position X, then we obtain the

alternate differential form of this balance law in the reference configuration as

Div(TT
o ) + ρob = ρov̇, (2.11)

where Div(.) is the divergence relative to changes in position X in the reference configura-

tion, To is the nominal or engineering stress in the current configuration given in terms of

the Cauchy stress T and deformation gradient as

To = JF−1T, (2.12)

and b is the specific body force in the current configuration.

2.3.3 Balance of angular momentum

The law of balance of angular momentum states that the resultant moment applied on a

body must equal the rate of change of angular momentum of that material body. This can
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be written as ∫
S(t)

x× t(n)dS +

∫
B

x× bdm =
d

dt
(

∫
B

x× vdm), (2.13)

where the first integral is the moment due to the traction on the surface of the body S(t),

the second integral is the moment due to body forces, and the third integral is the angular

momentum of the body. In this expression, x represents the vector describing the position

of the particle under consideration, either the position of the particle the load is applied

on or the position of the particle for which angular momentum is to be calculated. This

position must be measured relative to a point on an inertial reference frame.

Using the Cauchy relation t(n) = TT n̂ and the divergence and transport theorems and

assuming the arguments of the integral is continuous result in the symmetry of the Cauchy

stress T = TT , which requires that FTo = TT
o FT .

2.3.4 Balance of work and energy

The law of balance of work and energy states that the rate at which heat flows into a body

plus the rate at which work is being done on that body is equal to the rate at which the

kinetic plus internal energy of the body changes. The heat may be added to a body through

the surface or directly to each particle, and the work can be done on a body by traction

forces and by body forces.

The law of balance of work and energy can be written for a body as

−
∫
S(t)

q ◦ n̂dS +

∫
B
rdm+

∫
S(t)

t(n) ◦ vdS +

∫
B

b ◦ vdm =
d

dt

∫
B

(
1

2
v ◦ v + e)dm, (2.14)

where q is the heat flux vector, qn = q ◦ n̂ is the net heat flux out of the body, r is the rate

of heat addition per unit mass inside the body, and e is the internal energy per unit mass

of the body known as the specific internal energy.

It follows, after the application of the divergence theorem, the transport theorem, the

assumption of sufficient continuity in the variables and their derivatives, the balance of

linear momentum, and standard arguments, that the differential form of the balance of
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work and energy can be written as

−div(q) + ρr + tr(TL) = ρė. (2.15)

The balance of energy can be written in terms of integrals over the shape of the body in the

reference configuration and with the use of the engineering stress To and the “engineering”

or “nominal heat flux” qo. Using the relation dm = ρodVo, the engineering traction vector

t
(N)
o and heat flux vector qo, the balance of work and energy (2.14) can be written as

−
∫
So

qo ◦ N̂dSo+

∫
Vo

rρodVo+

∫
So

t(N)
o ◦ vdSo+

∫
Vo

b ◦ vρodVo =
d

dt

∫
Vo

(
1

2
v ◦ v + e)ρodVo.

(2.16)

Introduction of t
(N)
o = TT

o N̂, application of the divergence theorem, and standard assump-

tions of continuity of the arguments result in

−Div(qo) + ρor + tr(ToḞ) = ρoė, (2.17)

where r is the specific radiation in the current configuration, qo is the nominal heat flux

vector in the current configuration, which is related to the heat flux vector q in the current

configuration through the relation qo = JF−1q, and where e is the specific internal energy,

given in terms of the free energy and entropy as e = ψ + θη.

2.3.5 The entropy production inequality

The entropy production inequality, also known as the second law of thermodynamics, states

that the entropy in a material body of fixed mass increases at least as rapidly as entropy

is added to the body through the addition of heat to the body, either by radiation directly

into the body or by heat flow through the boundaries of the body.

The integral form of the entropy production inequality is given by

∫
B

r

θ
dm−

∫
S(t)

1

θ
q ◦ n̂dS ≤ d

dt

∫
B
ηdm, (2.18)

where η is the entropy per unit mass of the body, also known as the specific entropy.
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Using the divergence and transport theorems, one can find the differential form of this

law as

ρ
r

θ
− div(

1

θ
q) ≤ ρη̇. (2.19)

We can introduce the relation e = ψ + ηθ into the entropy production inequality, assume a

strictly positive temperature scale and use the balance of energy to obtain the form known

as the Clausius-Duhem inequality and written as

ρψ̇ − tr(TL) + ρηθ̇ +
1

θ
q ◦ g ≤ 0. (2.20)

As was the case for the previous laws, we can directly transfer the integrals over the current

configuration to integrals over the reference configuration. This process gives the entropy

production inequality (2.18) as

∫
Vo

r

θ
ρodVo −

∫
So

1

θ
qo ◦ N̂dSo ≤

d

dt

∫
Vo

ηρodVo. (2.21)

Following similar steps as above, we arrive at the differential form of this law given by

ρo
r

θ
−Div(

1

θ
qo) ≤ ρoη̇, (2.22)

that must hold at every point in the reference configuration. In a similar process to that

described above, one can introduce the free energy and arrive at a statement of the Clausius-

Duhem inequality to be applied in the reference configuration. This form of the Clausius-

Duhem inequality is given by

ρoψ̇ − tr(ToḞ) + ρoηθ̇ +
1

θ
qo ◦Grad(θ) ≤ 0. (2.23)

2.4 Balance equations for small thermo-mechanical pertur-

bations superimposed on a deforming body

We plan to study the response of a thermo-mechanically deforming body to superimposed

infinitesimal thermo-mechanical perturbations. These perturbations may represent waves,
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for which we seek equations to describe. To construct these equations, we consider two

thermo-mechanical loading histories: a base history and a total history. The total history

is constructed from the base history by adding an infinitesimal thermo-mechanical pertur-

bation. The response of the material to both the base history and the total history can be

obtained from the constitutive equations, and both histories must satisfy the balance laws.

In this section we obtain the general balance laws for the perturbations, their boundary

conditions, and associated jump conditions. We do this by first defining the notation for

describing the base, total and perturbation parts of a history.

2.4.1 Base and total history

In describing the process of perturbation we use two histories. We start with a base history

on which we impose a perturbation to arrive at what we call the total history. We use

a superscript “∗” to describe variables associated with the total history, while we put no

special marking for the variables evaluated for the base history.

The base history is assumed to start at an initial time ti and is described by giving the

history of the motion and temperature up to the current time t. This we write as

H(ti, t) = {[x(X, τ), θ(X, τ)]|ti < τ < t}, (2.24)

where x and θ denote, respectively, the position vector and temperature of a material point

for the base history. We take the term intermediate configuration to denote the configuration

associate with the base history, and u(X, t) = x(X, t) −X as the displacement vector for

the base history.

The total history for the same time interval is described as

H∗(ti, t) = {[x∗(X, τ), θ∗(X, τ)]|ti < τ < t}, (2.25)

where x∗ and θ∗ are, respectively, the position vector and temperature of a material point

for the total history. We take the term current configuration to denote the configuration

associate with the total history, and u∗(X, t) = x∗(X, t)−X as the displacement vector for

the total history.
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The difference between the value of a variable in the total history and the value of the

same variable at the same time in the base history will be designated by adding “δ” to the

left of the variable and will be the perturbation of the variable. For this notation we will

have

u∗(X, t) = u(X, t) + δu(X, t), (2.26)

where δu(X, t) is the perturbation of the displacement vector. In a similar manner we

can define the deformation gradients for the two histories by F(X, t) = Grad(x) and

F∗(X, t) = Grad(x∗) and write

F∗(X, t) = F(X, t) + δF(X, t), (2.27)

where δF(X, t) is the perturbation of the deformation gradient. Following a similar manner

for the temperature and its gradient, we will write

θ∗(X, t) = θ(X, t) + δθ(X, t), (2.28)

G∗(X, t) = G(X, t) + δG(X, t),

where δθ(X, t) is the perturbation of the temperature and δG(X, t) = Grad[δθ(X, t)] is

the perturbation of the temperature gradient. Taking a time derivative gives the following

relations between the associated derivatives of the two histories as

u̇∗(X, t) = u̇(X, t) + δu̇(X, t), (2.29)

Ḟ∗(X, t) = Ḟ(X, t) + δḞ(X, t),

θ̇∗(X, t) = θ̇(X, t) + δθ̇(X, t),

Ġ∗(X, t) = Ġ(X, t) + δĠ(X, t).

We define a relative deformation gradient F̌(X, t), which maps the intermediate configura-

tion to the current configuration, through

F∗(X, t) = F̌(X, t)F(X, t). (2.30)
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Figure 2.1: Deformation gradients in the base history and total history.

This is shown in Fig. 2.1.

The relation between the perturbation of the deformation gradient and the relative

deformation gradient is given by

δF(X, t) = Ȟ(X, t)F(X, t), (2.31)

where Ȟ(X, t) = F̌(X, t) − I is the displacement gradient associated with F̌(X, t). The

volume ratio J is given by J∗ = J̌J , where J̌ = det(F̌) and J∗ = det(F∗).

A proper perturbation Ȟ(X, t) is assumed to be small in comparison to the identity

tensor. This gives

J̌ ≈ 1 + ε̌v, (2.32)

where ε̌v = tr(ε̌) is the infinitesimal volumetric strain of the relative infinitesimal strain
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associated with the relative deformation gradient Ȟ, and given as

ε̌ =
1

2
(Ȟ + ȞT ). (2.33)

For an infinitesimal Ȟ we also know that

F̌−1 ≈ I− Ȟ. (2.34)

2.4.2 Balance laws for the perturbation terms

The material responses for the base history H(ti, t) and for the total history H∗(ti, t) should

each obey the balance laws. We will write these balance equations and with some manipu-

lation show how to obtain equations for the thermo-mechanical perturbation.

For the base history we have the conservation of mass, balance of linear momentum,

and balance of work and energy given by

ρJ = ρo, (2.35)

Div(TT
o ) + ρob = ρoü, (2.36)

−Div(qo) + ρor + tr(ToḞ) = ρoė, (2.37)

and for the total history they are given by

ρ∗J∗ = ρo, (2.38)

Div(T∗To ) + ρob
∗ = ρoü

∗, (2.39)

−Div(q∗o) + ρor
∗ + tr(T∗oḞ

∗) = ρoė
∗, (2.40)

where To = JF−1T and T∗o = J∗F∗−1T∗.

Dividing the equations of conservation of mass and subtracting the equations of balance

of linear momentum and the balance of work and energy result in the general perturbation



23

equations

ρ∗J̌ = ρ, (2.41)

Div(δTT
o ) + ρo(δb) = ρoδü, (2.42)

−Div(δqo) + ρoδr + tr(T∗oḞ
∗ −ToḞ) = ρoδė. (2.43)

These equations are general and hold for small or large perturbations.

We now look at the case of infinitesimal perturbations. For example, using the approxi-

mation J̌ ≈ 1+ ε̌v and ignoring higher order terms, the conservation of mass can be written

as

δρ = −ε̌vρ, (2.44)

which only holds for infinitesimal perturbations. For the remaining balance laws we need

to note the relation between the nominal and Cauchy stress, the associated heat fluxes, the

working term, and the internal energy. For example, the perturbation of the nominal stress

is given as

δTo =T∗o −To

=J∗F∗−1T∗ − JF−1T

=J̌JF−1F̌−1(T + δT)− JF−1T

=JF−1(J̌F̌−1 − I)T + J̌JF−1F̌−1δT. (2.45)

For an infinitesimal perturbation we also recall that F̌−1 ≈ I− Ȟ so that

T∗o ≈(1 + ε̌v)JF−1(I− Ȟ)(T + δT)

=JF−1T− JF−1ȞT + ε̌vJF−1T + JF−1δT. (2.46)

Substituting this into the expression for δTo and ignoring higher order terms one obtains

δTo ≈ JF−1(δT− ȞT + ε̌vT). (2.47)
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Substitution of this into the balance of linear momentum gives

Div[J(δT−TȞT + ε̌vT)F−T ] + ρo(δb) = ρoδü. (2.48)

In general, we know that for any arbitrary scalar function φ and second order tensor func-

tions A and B we have the identities

Div(φA) = AGrad(φ) + φDiv(A), (2.49)

Div(AB) = Grad(A) : B + ADiv(B), (2.50)

which are used to write the balance of linear momentum as

[δT−TȞT + tr(Ȟ)T][F−TGrad(J) + JDiv(F−T )]

+ J{[Grad(δT)−TGrad(ȞT ) + T⊗Grad(tr(Ȟ)) + tr(Ȟ)Grad(T)] : F−T

−Grad(T) : (ȞTF−T )}+ ρoδb = ρoδü, (2.51)

where the form of δT is related to the constitutive model used and may be different for

different material models.

In a similar way, the equation of balance of work and energy for the perturbation can

be written as

−Div[JF−1(δq− Ȟq + ε̌vq)] + tr{JF−1[(T + δT− ȞT + ε̌vT) ˙̌HF

+ (δT− ȞT + ε̌vT + TȞ)Ḟ]}+ ρoδr

= ρo[δψ̇ + θ̇δη + ηδθ̇ + (δθ̇)(δη) + θδη̇ + η̇δθ + (δθ)(δη̇)], (2.52)

where δr = r∗ − r. After some manipulation we arrive at

−Div[JF−1(δq− Ȟq + ε̌vq)] + tr[(To + δTo)
˙̌HF] + tr(ToȞḞ)

+ tr(δToḞ) + ρoδr = ρo[δψ̇ + θ̇δη + ηδθ̇ + (δθ̇)(δη) + θδη̇ + η̇δθ + (δθ)(δη̇)], (2.53)

where we use the standard assumptions for the perturbations as δq = q∗−q, δψ = ψ∗−ψ,
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and δη = η∗ − η. In general, we know that for any arbitrary scalar function φ, vector

function u, and second order tensor function A, we have the identities

Div(φu) = Grad(φ) · u + φDiv(u), (2.54)

Div(Au) = uDiv(AT ) + AT : Grad(u), (2.55)

which with the identities (2.49) and (2.50) can be used to write the equation for balance of

work and energy for an inhomogeneous pre-loading as

− [δq− Ȟq + ε̌vq]Div(JF−T )− (JF−T ) : [Grad(δq)− qGrad(ȞT )− ȞGrad(q)

+ q⊗Grad(ε̌v) + ε̌vGrad(q)]

+ tr{JF−1[(T + δT− ȞT + ε̌vT) ˙̌HF + (δT− ȞT + ε̌vT + TȞ)Ḟ]}

+ ρoδr = ρo[δψ̇ + θ̇δη + ηδθ̇ + (δθ̇)(δη) + θδη̇ + η̇δθ + (δθ)(δη̇)], (2.56)

that after reorganization becomes

− [δq− Ȟq + ε̌vq]Div(JF−T )− (JF−T ) : [Grad(δq)− qGrad(ȞT )− ȞGrad(q)

+ q⊗Grad(ε̌v) + ε̌vGrad(q)] (2.57)

+ Jtr[(T + δT− ȞT + ε̌vT) ˙̌H + (δT− ȞT + ε̌vT + TȞ)L]

+ ρoδr = ρo[δψ̇ + θ̇δη + ηδθ̇ + (δθ̇)(δη) + θδη̇ + η̇δθ + (δθ)(δη̇)]. (2.58)

From (2.51) and (2.57) we can clearly see the contributions of the time changing rates of the

base history to the propagations of the superimposed thermo-mechanical perturbations. If

we consider the base history as a static history, i.e. ü = 0 and write (2.51) in components

form in Cartesian coordinates, we reduce (2.51) to the equation derived in Biot [Biot, 1965].

2.4.3 Boundary conditions for the perturbations

A finite body may be subjected to traction boundary conditions, displacement boundary

conditions, temperature boundary conditions and heat flux boundary conditions. These

would exist for the base history and for the total history, as is schematically shown in
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Figure 2.2: Perturbations of the traction, displacement, temperature and heat flux boundary
conditions.

Figure 2.2. We use dAo and N̂ to denote the differential surface area and the associated

unit normal vector in the reference configuration, dA and n̂ to denote the differential surface

area and the associated unit normal vector in the intermediate configuration, dA∗ and n̂∗

to denote the differential surface area and the associated unit normal vector in the current

configuration. t(n)(t) is the traction boundary condition in the intermediate configuration,

and t∗(n
∗)(t) is the traction boundary condition in the current configuration.

For the base history (intermediate configuration) we can show that

n̂ = det(F)
dAo
dA

F−T N̂, (2.59)
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where
dAo
dA

=
1√

det(C)N̂ ◦ (C−1N̂)
. (2.60)

After substituting (2.60) into (2.59), we can get

n̂ =
F−T N̂√

N̂ ◦ (C−1N̂)
. (2.61)

For the total history (current configuration) we can show that

n̂∗ = det(F∗)
dAo
dA∗

F∗−T N̂, (2.62)

where
dAo
dA∗

=
1√

det(C∗)N̂ ◦ (C∗−1N̂)
. (2.63)

After substituting (2.63) into (2.62), we can get

n̂∗ =
F∗−T N̂√

N̂ ◦ (C∗−1N̂)
. (2.64)

We can also relate the unite norms between the intermediate configuration and the current

configuration through

n̂∗ = n̂ + δn̂, (2.65)

where

δn̂ = {N̂ ◦ [F
−1

(ȞT + Ȟ)F−T N̂]

2[N̂ ◦ (C−1N̂)]
3
2

I− ȞT√
N̂ ◦ (C−1N̂)

}(F−T N̂). (2.66)

We obtain the perturbation of the traction boundary condition between the two histories

as

t∗(n
∗) = t(n) + δt(n), (2.67)

where

δt(n) = TT δn̂ + (δTT )n̂. (2.68)
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The displacement boundary condition can be prescribed for the material particles on the

surface of the body. We use Xb to describe the position of the surface particles in the

reference configuration, x(Xb, t) to describe the position of the surface particles in the

intermediate configuration, and x∗(Xb, t) to describe the position of the surface particles

in the current configuration. For the base history, the displacement boundary condition is

given by

u(Xb, t) = x(Xb, t)−Xb. (2.69)

For the total history, the displacement boundary condition is given by

u∗(Xb, t) = x∗(Xb, t)−Xb. (2.70)

Therefore, the perturbation of the displacement boundary condition is given by

δu(Xb, t) = δx(Xb, t), (2.71)

where

δu(Xb, t) = u∗(Xb, t)− u(Xb, t), (2.72)

δx(Xb, t) = x∗(Xb, t)− x(Xb, t).

The temperature boundary condition can be prescribed for the material particles on the

surface of the body. For the base history, the boundary temperature can be written as

θ(Xb, t), and for the total history, the boundary temperature is given as θ∗(Xb, t). We can

calculate the perturbation of the boundary temperatures as δθ(Xb, t) = θ∗(Xb, t)−θ(Xb, t).

We can introduce the heat flux through the surface of the body. We let q(n) represent

the amount of heat that is flowing through the surface with normal n̂, measured per unit

area and per unit time for the base history. This is given by

q(n)(t) = q(t) ◦ n̂(t). (2.73)

In a similar way we define q∗(n
∗) as the heat flux passing through the surface with normal
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n̂∗ for the total history. This is given by

q∗(n
∗)(t) = q∗(t) ◦ n̂∗(t). (2.74)

The perturbation of the heat flux boundary condition is given by

q∗(n
∗) = q(n) + δq(n), (2.75)

where

δq(n) = q ◦ δn̂ + (δq) ◦ n̂, (2.76)

the expression for “δn̂” is given in (2.66).

2.4.4 Perturbed jump conditions

Up to this point we have assumed that all functions are sufficiently smooth and continuous

over all the body so as to allow us to obtain the differential form of the balance laws. Now

let us look at the case when the functions are not sufficiently continuous across a surface.

As a general starting point, let us consider having a surface of discontinuity S̃ for the base

history and its corresponding surface of discontinuity S̃∗ for the total history, as shown in

Figure 2.3. For the general problem, we assume that there is a mapping connecting the two

surfaces so that the relations given in the figure are meaningful, in spite of the fact that

the domains on the two sides of the surface are materially different regions when comparing

the base and total history. For our discussion, we will consider two special cases. First we

consider the effect on the motion of the surface by perturbations on two sides of the surface,

and the constraints between the possible perturbations. Next we consider the case where

there is no jump in the base history, but the perturbation has a discontinuity. In general,

for the base history the jump conditions associated with the conservation of mass, balance

of linear momentum and balance of work and energy across any point of S̃ with normal N̂
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Figure 2.3: Perturbation of the jump conditions.

are, respectively, given by

|[ρ(v − ṽ)]| ◦ N̂ = 0, (2.77)

|[ρv ⊗ (v − ṽ)]| ◦ N̂ =
∣∣[TT

]∣∣ ◦ N̂, (2.78)∣∣∣∣[ρ(e− 1

2
v ◦ v)(v − ṽ)

]∣∣∣∣ ◦ N̂ =
∣∣[vTT − q

]∣∣ ◦ N̂, (2.79)

where we define the bracket “|[.]|” to describe the jump in the variable across the disconti-

nuity such that, for example, |[u]| = u+ − u− for u+ being the value of u on the side that

N̂ points into, and u− being the value of u on the opposite side of S̃. In a similar manner,
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for the total history we will have the jump conditions

|[ρ∗(v∗ − ṽ∗)]| ◦ N̂∗ = 0, (2.80)

|[ρ∗v∗ ⊗ (v∗ − ṽ∗)]| ◦ N̂∗ =
∣∣[T∗T ]∣∣ ◦ N̂∗, (2.81)∣∣∣∣[ρ∗(e∗ − 1

2
v∗ ◦ v∗)(v∗ − ṽ∗)

]∣∣∣∣ ◦ N̂∗ =
∣∣[v∗T∗T − q∗

]∣∣ ◦ N̂∗, (2.82)

over the surface S̃∗ with normal N̂∗, and where v∗ = v + δv, ṽ∗ = ṽ + δṽ, etc.

As described, in the first case we look at the effect and the constraints resulting from

perturbations in the continuous fields on the two sides of a discontinuity. That is, we select

an instant that S̃ = S̃∗ and N̂ = N̂∗, and assume that the fileds on either side of the

discontinuity are perturbed such that u∗− = u− + δu−, u∗+ = u+ + δu+, θ∗− = θ− + δθ−,

θ∗+ = θ+ + δθ+, etc., as shown in the figure. Subtracting the two sets of jump conditions,

while ignoring second and higher order terms, results in the equations

|[ρδ(v − ṽ) + δρ(v − ṽ)]| ◦ N̂ = 0, (2.83)

|[δρv ⊗ (v − ṽ) + ρδv ⊗ (v − ṽ) + ρv ⊗ δ(v − ṽ)]| ◦ N̂ =
∣∣[δTT

]∣∣ ◦ N̂, (2.84)∣∣∣∣[δρ(e− 1

2
v ◦ v)(v − ṽ) + ρ(δe− v ◦ δv)(v − ṽ) + ρ(e− 1

2
v ◦ v)δ(v − ṽ)

]∣∣∣∣ ◦ N̂

=
∣∣[δvTT + vδTT − δq

]∣∣ ◦ N̂. (2.85)

Next, let us select to look at the case where there is no discontinuity in the response of

the base history, but there is a discontinuity in the perturbation. In this case, for the base

history we have ṽ = 0 and u+ = u−, θ+ = θ−, v+ = v−, etc. Once we introduce this into

the jump conditions of the total history using u∗− = u− + δu−, u∗+ = u+ + δu+, etc., we

get the jump conditions for the perturbations as

{ρ |[δ(v − ṽ)]|+ |[δρ]|v} ◦ N̂∗ = 0,

{|[δρ]|v ⊗ v + ρ |[δv]| ⊗ v + ρv ⊗ |[δ(v − ṽ)]|} ◦ N̂∗ =
∣∣[δTT

]∣∣ ◦ N̂∗,{
|[δρ]| (e− 1

2
v ◦ v)v + ρ(|[δe]| − v ◦ |[δv]|)v + ρ(e− 1

2
v ◦ v) |[δ(v − ṽ)]|

}
◦ N̂∗

=
{
|[δv]|TT + v

∣∣[δTT
]∣∣− |[δq]|

}
◦ N̂∗. (2.86)



CHAPTER 3

Thermoelastic solids and wave propagation in thermoelastic

materials

This chapter will focus on thermoelastic response and perturbation equations of the ther-

moelastic solids. We will start this chapter by defining a thermoelastic solid. As is the case

in all of this dissertation, the development will be confined to first-gradient material models.

That is, we focus on models that assume the responses at a material point are characterized

by functions or functionals of position, temperature, and their first spatial gradients.

We will start by making the constitutive models behave as expected when superimposing

rigid body motions. This is followed by a discussion of material symmetry. We then study

the constraint of thermodynamics on the constitutive functions of thermoelasticity. As an

introduction to the decomposition of the deformation into elastic, viscoelastic and thermal

deformations, we look at the separation of the deformation gradient into elastic and ther-

mal parts. Finite deformation thermo-mechanically coupled elasticity theory is presented

and the constraints imposed on the constitutive model is derived for a thermodynamically

consistent model. We then develop the perturbation equations of the thermoelastic con-

stitutive model and consider the examples of infinitesimal wave propagation in a deformed

thermoelastic body. In the last section, we show the potential applications of the current

development to load sensors.
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3.1 Thermoelastic solids

A characteristic of the elastic response is that the unloading response is very close to the

loading response, sufficiently so that the difference can be ignored. We will consider the

response of a thermodynamic body to be the values of its specific free energy ψ, specific

entropy η, Cauchy stress T, and heat flux vector q. We will denote the response by R and

consider it to be a function of the current conditions of the material point, given in terms

of the position in the reference configuration X, and current time t. We write this as

R(X, t) = {ψ(X, t), η(X, t),T(X, t),q(X, t)}. (3.1)

We will select the independent variables to be the current position x, temperature θ, and

their first gradients with respect to space denoted, respectively, as F and G. We use U to

denote this variable set and write it for a given material point and at current time as

U(X, t) = {x(X, t),F(X, t), θ(X, t),G(X, t)}. (3.2)

A thermoelastic material will be defined as one for which its thermodynamic response at

each material point X can be written in terms of the current value of this variable set. We

symbolically write this assumption as

R(X, t) = R†[X,U(X, t)], (3.3)

where R† denotes the function that is used to evaluate R. This assumption must be

modified in the presence of material constraints such as incompressibility or inextensibility.

The absence of time t as an explicit variable in the constitutive response function R† implies

that time does not independently influence the response. This excludes all possibilities of

explicit changes in the constitutive response with time such as aging or curing.

To simplify the presentation, we will frequently omit in the notation the dependence on

(X, t). Therefore, we consider a thermoelastic material to be one that is characterized by
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the following explicit constitutive assumptions

ψ = ψ†(X,x,F, θ,G), (3.4)

η = η†(X,x,F, θ,G),

T = T†(X,x,F, θ,G),

q = q†(X,x,F, θ,G),

where, the superscript “†” is used to distinguish between the material response on the left

of the equality sign and its constitutive model on the right.

We will lay out a set of assumptions on how the material responds under specific condi-

tions, and follow through to see what simplifications in the form of the constitutive response

functions are implied by these assumptions.

3.1.1 The influence of pure rigid body motion on the constitutive re-

sponse

We now consider the alteration of the current distortion of the body by adding a pure rigid

body motion. It will be assumed that the temperature of each material particle stays the

same (i.e., the temperature field rigidly translates and rotates the same as the body does).

Let U designate the argument set before the rigid-body motion and let U∗ designate the

argument set after such a rigid body motion is imposed on the current conditions. Any

rigid body motion can be written as

x∗(X, t) = Q(t)[x(X, t)− xo(t)] + xo(t), (3.5)

where Q is an orthogonal second-order tensor describing the rotation and xo is the position

of the point about which the body is rotated. For the motion to be a rigid body motion,

both Q and xo must only be functions of time (i.e., they are the same for all material

points). Taking the gradient of both sides, it is clear that

F∗ = QF, (3.6)
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where F is the deformation gradient associated with the motion x and F∗ is the deformation

gradient associated with the motion x∗. Since the temperature field is assumed to transform

rigidly with the body, the temperature of the material points will not change. That is,

θ∗(X, t) = θ(X, t). (3.7)

It therefore follows that

G∗ = G, (3.8)

where G is the temperature gradient associated with the temperature field θ (i.e., dθ =

G◦dX ), and G∗ is the temperature gradient associated with the temperature field θ∗ (i.e.,

dθ∗ = G∗ ◦dX). A plausible assumption is that such a rigid body motion will leave the free

energy and entropy unchanged and will result in a rotation of the traction vector and the

heat flux. That is, since the relative conditions of the material particles have only changed

by a rigid body rotation, the free energy and entropy are unchanged and the heat flux and

traction vector reorient to reflect the new relative location of the material particles. Any

vector u connected to material points of the body will be transformed to u∗ = Qu by such

a rigid body rotation. Therefore, we will assume that both the traction vector and heat

flux rotate in a similar manner. The combination of these assumptions makes us conclude

that

ψ∗ = ψ, (3.9)

η∗ = η,

t∗(n
∗) = Qt(n),

q∗ = Qq.

These assumptions restrict the form of the constitutive functions. First, we note that a

pure translation can always be selected equal to negative the current location, removing

the current position from the list of arguments by replacing it with zero. We note that

the normal vector n to a material surface before the rigid body rotation transforms to

n∗ = Qn, that the traction t(n) on the material surface with normal n before rotation is
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given by t(n) = TTn, and that traction on the same material surface after the rotation

is given by t∗(n
∗) = T∗Tn∗. Combining these relations with the assumption on how the

traction is to change results in

T∗ = QTQT . (3.10)

Therefore, given the initial response

R = {ψ, η,T,q}, (3.11)

then the response after superimposing a pure rigid body motion is given by

R∗ = {ψ, η,QTQT ,Qq}. (3.12)

Let us now impose these assumptions of how the material should respond onto the response

functions. First we start with the specific free energy. The results will be similar for specific

entropy. Next we will look at Cauchy stress and then the heat flux vector. If ψ∗ = ψ for

every rigid body rotation, then the constitutive function for the specific free energy must

be of a form such that

ψ†(X,QF, θ,G) = ψ†(X,F, θ,G) (3.13)

for every orthogonal Q. If R and U are, respectively, the orthogonal and right symmetric

factors in the polar decomposition of F = RU, and if we take Q = RT , then we can rewrite

this as

ψ = ψ†(X,F, θ,G) = ψ†(X,U, θ,G). (3.14)

Therefore, the constitutive function for the specific free energy will yield the same value for

every deformation gradient F as it would give for its associated U. We now can conclude

that the constitutive function for free energy cannot depend on the orthogonal part R of

the deformation gradient. Since both the specific free energy and specific entropy have the

same values after rigid body rotation, we can rewrite their constitutive functions in terms
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of functions of U, as opposed to F. That is,

ψ = ψ̄†(X,U, θ,G), (3.15)

η = η̄†(X,U, θ,G).

Since U is unaffected by rigid body rotations, these new forms for the constitutive functions

automatically satisfy our assumptions, behaving as expected under rigid body rotations.

Now let us consider the implications of the restrictions on the constitutive function for

Cauchy stress. The assumption T∗ = QTQT imposes a constraint on the constitutive

function for Cauchy stress. This can be written as

T†(X,QF, θ,G) = QT†(X,F, θ,G)QT , (3.16)

which must hold for all orthogonal tensors Q. As above, taking Q = RT and rearranging

the expressions to give

T = T†(X,F, θ,G) = RT†(X,U, θ,G)RT . (3.17)

Defining the rotated stress TR = RTTR, it follows from the above relation that

TR = TR†(X,U, θ,G), (3.18)

where TR† is the function used to calculate the rotated stress. This TR† is actually the

same function as the one used to calculate the Cauchy stress, but when inputting U in

place of F. Therefore, the rotated stress does not depend on the rigid body rotation. The

Cauchy stress is obtained from the rotated stress by the relation T = RTRRT .

Finally, let us look at the simplification imposed on the constitutive equation for the

heat flux. The condition q∗ = Qq requires that

q†(X,QF, θ,G) = Qq†(X,F, θ,G), (3.19)
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which must hold for all orthogonal Q. Again, selecting Q equal to RT yields

q = q†(X,F, θ,G) = Rq†(X,U, θ,G). (3.20)

Therefore, we can introduce the rotated heat flux qR = RTq that has a constitutive repre-

sentation given by

qR = qR†(X,U, θ,G). (3.21)

The heat flux can be calculated by first calculating qR using U, and then using q = RqR.

The right Cauchy stretch is given by C = U2 and can uniquely be inverted, because U

is positive definite, to get U =
√

C. Similarly, the Green strain is E = 1
2(C − I) so that

E = 1
2(U2 − I) and U =

√
I + 2E, again uniquely defined. As a result, we may replace

for U in any of the above constitutive functions and obtain new versions of these functions

that depend on C or E.

3.2 Material symmetry

Material symmetry normally refers to existing symmetry in the structure of the material.

This is the symmetry that exists before we start the thermo-mechanical loading process.

If present, symmetry in the material structure means that certain reorganizations of the

structure are thermomechanically indistinguishable from each other. For example, for an

initially isotropic material, we can rotate the material by any amount before cutting a

testing specimen and will observe the exact same response and obtain the exact same

results, irrespective of the test.

Material symmetry is described by mathematical mappings that reorganize the neigh-

borhood of a point in the reference configuration. Fig. 3.1 shows a schematic of the idea

of reorganizing a material’s neighborhood. For first-gradient materials, these reorganiza-

tions can be represented by second-order transformation tensors, here denoted by M and

shown in Fig. 3.1. Each material symmetry is characterized by a group of transformations

M that take the neighborhood of a material point and reorganize it to materially equiva-

lent neighborhoods (i.e., ones that are indistinguishable in their response from the original
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neighborhood). This group will be denoted by G. As might be expected, the description of

the transformation M is related closely to the reference configuration since these transfor-

mations (the Ms) represent reorganizations of the reference configuration. Let us look at

how changing the reference configuration changes the representation of material symmetry.

If Mκ is a symmetry described relative to configuration κ, and Mκ∗ is the same symmetry

described relative to configuration κ∗, then Noll’s rule states that

Mκ∗ = F̃MκF̃
−1, (3.22)

whereF̃ is the deformation gradient mapping the neighborhood in κ to the associated neigh-

borhood in κ∗. Since each member of the material symmetry group follows Noll’s rule, we

then can write the relation between the groups as

Gκ∗ = F̃GκF̃−1. (3.23)

We note that Noll’s rule refers to changing the reference configuration, but Noll’s rule does

not apply to actually deforming the material. The transformations in the material symmetry

group need not be orthogonal. For example, an isotropic material normally is represented by

the set of orthogonal transformations. This is actually a set of transformations with respect

to a given reference configuration. If we choose to use another reference configuration,

through Noll’s rule we get a new set of transformations representing the same isotropy, but

possibly some of these new transformations may not be orthogonal. This is because Noll’s

rule does not preserve orthogonality of the transformations.

With thermomechanical loading the material’s symmetry can change. For example, by

melting a crystal we can increase its symmetry, or by drawing an isotropic bar we might

make it anisotropic. These types of changes are not what Noll’s rule applies to. By melting

the crystal or drawing the bar, we actually are subjecting the material to thermomechanical

loading that is altering the state of the material, in the process creating a new material with

possibly new symmetries. When changing the reference configuration, we simply are using

a different, but related, mathematical formulation, without subjecting the actual material

to any deformation whatsoever. Since we do not intend to make changes to the reference
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Figure 3.1: Schematic of a material symmetry reorganization of the neighborhood of a
material point by Negahban [Negahban, 2012].

configuration, we will not use the required configuration subscript on the transformations

M, always implied to be transformations of the reference configuration, which also normally

will be the initial configuration.

Let us now consider the restriction imposed by material symmetry. Let us assume that

to is the initial time from which we are to model the response of the material to further

loading. For our first-gradient material, a loading history imposed on the state at to will be

noted by H(to, t) and symbolically represented by

H(to, t) =
t

U(s)
s=to

= {
t

F(s), θ(s),G(s)
s=to

}. (3.24)

A history that is essentially identical to this, but for a reorganization of the neighborhood

by material symmetry transformation M before the loading will be denoted by H̄(to, t) and
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given by

H̄(to, t) =
t

Ū(s)
s=to

= {
t

F̄(s), θ̄(s), Ḡ(s)
s=to

} (3.25)

= {
t

F(s)M, θ(s),G(s)M
s=to

}.

The existing material symmetries at time to can be represented by a material symmetry

group G(to). Each transformation M in G(to) represents a reorganization at time to that

leaves the response identical for the two histories H(to, t) and H̄(to, t), irrespective of history

H(to, t) and the current time t, as shown in Fig. 3.2. Symbolically, we write this as

R(t) = R̄(t) (3.26)

for all pairs of histories H(to, t) and H̄(to, t) related by each symmetry transformation M

in the symmetry group of the material G(to).

3.3 Finite deformation thermoelastic model

In this section we will study thermoelasticity at large deformations, including large rigid

body motions. We will do this in the context of the multiplicative decomposition of the

deformation gradient into an elastic part, that is due to mechanical loading, and a thermal

part, that is due to thermal expansion, given by

F = FeFθ, (3.27)

where Fe is the elastic part, and Fθ is the thermal part. For this separation to have a

meaning, we need to define how to do it. We will do this by giving a method to calculate

the thermal deformation gradient. We will assume the current value of Fθ can be calculated

from an initial value Fθ
o and an evolution equation given as

Lθ = αθ̇, (3.28)
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Figure 3.2: A deformation imposed before or after a material symmetry transformation M
by Negahban [Negahban, 2012].

where α is the coefficient of thermal expansion, a second order tensor function of Fe, Fθ,

and θ. We can use this evolution equation to integrate Ḟθ = LθFθ to get Fθ from Fθ
o.

The next assumption that we will make is that the free energy can be written as

ψ = ψ†[Fe,Fθ,G, θ], (3.29)

so that its derivative can be written as

ψ̇ = ∂Fe(ψ
†) : Ḟe + ∂Fθ(ψ

†) : Ḟθ + ∂θ(ψ
†)θ̇ + ∂G(ψ†) ◦ Ġ. (3.30)
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We now rewrite this in terms of Ḟ by using F = FeFθ. We know that the derivative of F is

Ḟ = ḞeFθ + FeḞθ, (3.31)

so that

Ḟe = ḞFθ−1 − FeḞθFθ−1. (3.32)

If we substitute this into ψ̇, we get

ψ̇ = ∂Fe(ψ
†) : (ḞFθ−1 − FeḞθFθ−1) + ∂Fθ(ψ

†) : Ḟθ + ∂θ(ψ
†)θ̇ + ∂G(ψ†) ◦ Ġ. (3.33)

We now can substitute this into the Clausius-Duhem inequality (2.20) to get

[TeT −TT ] : L + [ρη + ρ∂θ(ψ
†)−∆TθT : α]θ̇ + [ρ∂G(ψ†)] ◦ Ġ + [

1

θ
q ◦ g] ≤ 0, (3.34)

where we have used Ḟθ = LθFθ = αFθθ̇, and we have defined, respectively, the thermody-

namic elastic and thermal stresses as

TeT ≡ ρ∂Fe(ψ†)FeT , (3.35)

TθT ≡ ρ∂Fθ(ψ†)FθT . (3.36)

and the thermal overstress as

∆Tθ = Fe−1TeFe −Tθ. (3.37)

We assume that the entropy, Cauchy stress, and heat flux depend on the same argument

set as we selected for the free energy. As a result, the terms in the square brackets are

independent of the rates L, θ̇, and Ġ, which, given the assumption that this equation must
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hold for all rates, results in the relations

TeT −TT = 0, (3.38)

η + ∂θ(ψ
†)− 1

ρ
∆TθT : α = 0,

ρ∂G(ψ†) = 0,

1

θ
q ◦ g ≤ 0.

It follows that the free energy does not depend on the temperature gradient, so that

ψ = ψ†[Fe,Fθ, θ], (3.39)

and that

TT = TeT = ρ∂Fe(ψ
†)FeT , η =

1

ρ
∆TθT : α− ∂θ(ψ†), (3.40)

which indicate that the stress and the entropy do not depend on the temperature gradient.

Before we impose the effect of rigid body motions, we need to assume how the elastic

and thermal parts of the deformation gradient change with rigid body motions. We know

that as a result of a rigid body motion the deformation gradient F becomes F∗ = QF.

We will assume that the thermal deformation gradient does not change with rigid body

motions, so that we have

Fe∗ = QFe, (3.41)

Fθ∗ = Fθ,

resulting in F∗ = Fe∗Fθ∗ = QFeFθ = QF. The assumption that the free energy does not

change with rigid body motions requires that

ψ†(QFe,Fθ, θ) = ψ†(Fe,Fθ, θ) (3.42)

for every orthogonal Q. Since G does not change with rigid body motions, the assumption
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that the heat flux rotates by Q results in

q†(QFe,Fθ, θ,G) = Qq†(Fe,Fθ, θ,G) (3.43)

for every orthogonal Q. By the selection of Q = ReT , we conclude that

ψ = ψ†(Ue,Fθ, θ), (3.44)

and

q = ReqR
e

(3.45)

for the rotated heat flux qR
e

with the model

qR
e

= qR
e†(Ue,Fθ, θ,G). (3.46)

The material symmetry constraint can be imposed once we assume how the elastic and

thermal deformation gradients change. We assume that F changing to F̃ = FM under the

material symmetry transformation M results in the elastic and thermal parts transforming

to

F̃e = FeM, (3.47)

F̃θ = M−1FθM,

which gives F̃ = F̃eF̃θ = FeMM−1FθM = FM. This results in the condition on the

coefficient of thermal expansion being

α̃ = M−1αM. (3.48)

Assuming that the free energy and heat flux do not change because of a material symmetry
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reorganization before the deformation, we must have

ψ†[FeM,M−1FθM, θ] = ψ†[Fe,Fθ, θ], (3.49)

q†[FeM,M−1FθM, θ,MTG] = q†[Fe,Fθ, θ,G]. (3.50)

The condition on the constitutive model for the coefficient of thermal expansion is

M−1α†[Fe,Fθ, θ]M = α†[FeM,M−1FθM, θ]. (3.51)

Combining the constraint imposed by rigid body motion and the constraint imposed by

material symmetry, for the case of orthogonal M, results in requirements such as

ψ†[MTCeM,MTFθM, θ] = ψ†[Ce,Fθ, θ], (3.52)

MqR
e†[MTCeM,MTFθM, θ,MTG] = qR

e†(Ce,Fθ, θ,G), (3.53)

α†[Ce,Fθ, θ] = Mα†[MTCeM,MTFθM, θ]MT . (3.54)

3.4 Thermo-elastic constitutive models for the perturbations

In the previous section we developed the balance laws and their boundary and jump con-

ditions for the perturbations. We will now evaluate the constitutive equations for these

perturbations. We first start by decomposing the perturbation into elastic and thermal

parts and then derive the perturbation term for the stress, followed by those for the free

energy, entropy and heat flux. Finally, we evaluate the evolution rule for the perturbations

of the internal parameter associated with thermal expansion and then integrate it to obtain

a general solution.

3.4.1 Decomposition of the perturbation into elastic and thermal parts

In the constitutive model, both the base deformation and total deformation are each sepa-

rated into elastic and thermal parts. The constitutive model provides evolution equations

for the thermal parts of each and so in each case leaves the elastic part to be matched

against the applied stress. As will be shown here, we can also set up the perturbation to
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have the same form.

For the base history, the deformation gradient F(t) is decomposed into the elastic de-

formation gradient Fe(t) and the thermal deformation gradient Fθ(t) so that

F(t) = Fe(t)Fθ(t). (3.55)

For the total history, the total deformation gradient F∗(t) is also decomposed into the elastic

deformation gradient Fe∗(t) and the thermal deformation gradient Fθ∗(t) so that

F∗(t) = Fe∗(t)Fθ∗(t). (3.56)

The relations of the elastic and thermal parts for the base history and the total history are

described in Fig. 3.3, where, F̃e(t) and F̃θ(t) are the relative “increment” of elastic and

thermal deformation gradients comparing each pair. The actual change in these deformation

gradients from the base history to the total history is given by

δFe(t) = Fe∗(t)− Fe(t) = F̃e(t)Fe(t)− Fe(t) = H̃e(t)Fe(t), (3.57)

δFθ(t) = Fθ∗(t)− Fθ(t) = F̃θ(t)Fθ(t)− Fθ(t) = H̃θ(t)Fθ(t),

where H̃e(t) = F̃e(t) − I is the displacement gradient for the elastic perturbation and

H̃θ(t) = F̃θ(t) − I is the displacement gradient for the thermal perturbation. As the per-

turbation is small, it can be shown that the increments represent small differences so that

the deformation gradients are close to the identity I. We can also define a direct separation

of the perturbed deformation gradients F̌(t) = F̌e(t)F̌θ(t) and obtain their relations with

the “∼” variables as shown in Fig. 3.3. This allows us to define a consistent set of relations

given by

F̌e(t) ≡ F̃e(t), (3.58)

F̌θ(t) ≡ Fe(t)F̃θ(t)Fe−1(t).

We can introduce the displacement gradient for F̌e(t) = I + Ȟe(t) and F̌θ(t) = I + Ȟθ(t).
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Figure 3.3: Decompositions of the perturbation into elastic and thermal parts.

Solving for these, we get

Ȟe(t) = H̃e(t), (3.59)

Ȟθ(t) = Fe(t)H̃θ(t)Fe−1(t).

It can be shown that F̌e(t) and F̌θ(t) are each close to the identity I, therefore, resulting

in infinitesimal Ȟe(t) and Ȟθ(t). It should be emphasized here that the perturbations of

the kinematic variables obtained in (3.59) can be applied to time changing states, which

obviously include as special cases the static base history. Therefore, we can reduce the

incremental kinematic relations (3.59) to the case studied by [Biot, 1965] where the small

mechanical perturbation is superimposed in the vicinity of the static pre-deformation by

simply holding Fe(t) and Fθ(t) both constant in time during the disturbances.
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Since the perturbations imposed are infinitesimal, after eliminating the second and

higher orders of the infinitesimal terms, we get the following approximations

F̌−1(t) ≈ I− Ȟ(t), (3.60)

F̌e−1(t) ≈ I− Ȟe(t),

F̌θ−1(t) ≈ I− Ȟθ(t),

Ȟe(t) ≈ Ȟ(t)− Ȟθ(t).

3.4.2 Perturbation of the stress by a change in history

In this section we calculate the stress difference between the base and total history. Since the

thermodynamic stresses are only a function of the state, minus the temperature gradient,

given that the changes are small, we can calculate the change by using a Taylor series

expansion.

We start this process by calculating the approximation to δTeT = Te∗T − TeT . The

difference between the thermodynamic elastic stresses from the base history and the total

history is approximated by taking its derivative with respect to each variable and multiplying

it by the change in the variable and finally adding the results to get

δTeT = Ee : δFe + Eθ : δFθ + Eθδθ, (3.61)

where the coefficients are associate tangent moduli with respect to the given variables and

evaluated at the base history. They are defined as

Ee ≡ ∂Fe(TeT ), (3.62)

Eθ = ∂Fθ(T
eT ),

Eθ = ∂θ(T
eT ).

We can now replace for the changes in the variables in terms of the “∼” variables to get

the thermodynamic stresses relative to the values at the same time in the base history from
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the equation

Te∗T = TeT + δTeT (3.63)

= TeT + Ee : (H̃eFe) + Eθ : (H̃θFθ) + Eθδθ.

Recalling the relation TeT = TT , the above equation provides the change in the Cauchy

stress.

Taking account of the symmetry of the Cauchy stress δT = δTT or δTe = δTeT and

eliminating the elastic deformation gradient in favor of F, this can be written as

δT = (EeFθ−TFT ) : (Ȟ− Ȟθ) + (EθFT ) : (FθF−1Ȟθ) + (δθ)Eθ. (3.64)

3.4.3 Perturbations of the free energy, entropy and heat flux vector

The perturbations of the free energy, entropy and heat flux vector are obtained from steps

similar to those described for the stress. We start first by defining the perturbation of the

free energy, entropy and heat flux vector, respectively, as δψ = ψ∗ − ψ, δη = η∗ − η, and

δq = q∗ − q. Noting the dependence of these functions on the state variables, we obtain

first order approximations for these perturbations given by

δψ(t) = ∂Fe(ψ
†) : δFe + ∂Fθ(ψ

†) : δFθ + ∂θ(ψ
†)δθ,

δη(t) = ∂Fe(η
†) : δFe + ∂Fθ(η

†) : δFθ + ∂θ(η
†)δθ,

δq(t) = ∂Fe(q
†) : δFe + ∂Fθ(q

†) : δFθ + ∂G(q†)δG + ∂θ(q
†)δθ, (3.65)

where δG = Grad(δθ) is the gradient of δθ with respect to changes in the reference con-

figuration. It should be noted here that, from specific relations selected to satisfy the

Clausius-Duhem inequality, we can directly obtain the forms for the entropy η∗(t) and η(t),

and in a similar manner choose the possible constitutive functions for q∗ and q taking

account of 1
θq ◦ g ≤ 0 and 1

θ∗q
∗ ◦ g∗ ≤ 0. For example, one simple choice of the heat

flux in the isotropic case is the linear Fourier model considered in Lion and Reese et al.

[Lion, 1997, Reese and Govindjee, 1997].
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3.4.4 Evolution rule for the incremental perturbation of the internal pa-

rameter

In the constitutive equation for the thermo-elastic solid, there is one internal variable that

must evolve based on the state of the material. This variable is the thermal deformation

gradient. The evolution of this variable will be different for the base and the total histories,

and so their difference will change based on how the two change. As such, the variables we

have chosen to describe the perturbation between the internal variables of the two histories

will have evolution equations that reflect the expected difference in the evolutions in the

two histories. We will use the evolutions for the two histories to calculate in this section

the evolution equation for the perturbation variables for the thermal deformation gradient.

We note that the relation between the velocity gradient and the deformation gradient

rate is given by L = ḞF−1 and that similar rules are true for the associated internal variables

so that for the base history we can write Ḟθ = LθFθ. Using this, we can reorganize the

evolution equation given for the thermal deformation gradient during the base history and

obtain

Ḟθ = θ̇αFθ. (3.66)

In a similar fashion, the same evolution equation for the total history is given by

Ḟθ∗ = θ̇∗α∗Fθ∗. (3.67)

The thermal expansion coefficient tensor α(t) is also effected by the thermo-mechanical

perturbation, and this material function for the base history and the total history is related

by

α∗(t) = α(t) + δα(t), (3.68)

where, α∗(t) is the thermal expansion parameter in the total history, α(t) is the thermal

expansion parameter in the base history, and δα(t) is the incremental thermal expansion

parameter from the perturbation. Since α(t) is assumed to be a function of the state of the

material, we define the following coefficients which are the derivatives of α with respect to
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its associate variables and given by

ae ≡ ∂Fe(α†), (3.69)

aθ ≡ ∂Fθ(α†),

αθ ≡ ∂θ(α†),

where, ae and aθ are fourth-order tensor functions, and αθ is a second-order tensor function.

After substituting the increments of the kinematics variables given in (3.57), we obtain

the increment δα for the thermal expansion in terms of the “∼” variables as

δα = ae : (H̃eFe) + aθ : (H̃θFθ) +αθδθ, (3.70)

with the parameters ae, aθ and αθ evaluated in the base history.

The relations for the time derivatives are given by

θ̇∗(t) = θ̇(t) + δθ̇(t), (3.71)

and

Ḟe∗(t) = ˙̃Fe(t)Fe(t) + F̃e(t)Ḟe(t), (3.72)

Ḟθ∗(t) = ˙̃Fθ(t)Fθ(t) + F̃θ(t)Ḟθ(t).

By using equations (3.71) and (3.72) and manipulating the two sets of evaluation equations

(3.66) and (3.67) for the two histories, we get the effects of the perturbation on the thermal

expansion through the following coupled first-order differential equation with the unknown

incremental internal variable H̃θ(t) given by

Ḟθ + ˙̃HθFθ + H̃θḞθ = (θ̇ + δθ̇)(α+ δα)(I + H̃θ)Fθ. (3.73)

We use the relations between Ȟe and H̃e, and Ȟθ and H̃θ given in (3.59), and simplify the

notation in (3.73) by using Γθ(t) ≡ Ȟθ(t)F(t) to denote the unknown variable, and using

δθ(t) and Γ(t) ≡ Ȟ(t)F(t) as the known values. From this, we get the following modified
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equation

Γ̇θ − ḞF−1Γθ (3.74)

= FFθ−1
[
(θ̇ + δθ̇){ae : [(Γ− Γθ)Fθ−1] + aθ : (FθF−1Γθ) +αθδθ}+ (δθ̇)α

]
Fθ

+ (δθ̇)FFθ−1αFθF−1Γθ,

which can be simplified to the form

Γ̇θ(t) = Bθ(t) : Γθ(t) + B(t) : Γ(t) + θ(t). (3.75)

In this simplified form, Bθ(t) and B(t) are fourth-order tensors and θ(t) is a second-order

tensor.

In order to solve the tensor form differential equation (3.75), we should represent the

tensors in a curvilinear coordinate system and then solve the differential equations in the

component form. For simplicity, here we choose an orthonormal base and write the corre-

sponding component form in this base as

Γ̇θij(t) = Bθijkl(t)Γ
θ
kl(t) + Bijkl(t)Γkl(t) + θij(t). (3.76)

To solve this system of first-order differential equations, we organize the unknowns into a

one-dimensional array denoted by χ that takes the form

χ ≡ (Γθ11,Γ
θ
12,Γ

θ
13,Γ

θ
21, ...). (3.77)

To do this, we introduce one transformation Kijk which can transform the components of

Γθ into the one-dimensional array χ through the relation

χi = KijkΓ
θ
jk, (3.78)

where, the values of Kijk are either zero or one, defined by the pattern of χ. The inverse

transformation is given as

Γθij = K−1
ijkχk. (3.79)
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After substituting the transformation (3.79) into (3.76), and then substituting into the time

derivative of (3.78), we get the first-order system of differential equations

χ̇(t) = A(t)χ(t) + f(t), (3.80)

where, the component of the coefficient matrix Amn(t) and the component of the inhomo-

geneous array fm(t) are given as

Amn(t) = KmijB
θ
ijkl(t)K

−1
kln, (3.81)

fm(t) = KmijBijkl(t)Γkl(t) +Kmijθij(t).

From the existence and uniqueness theorem, there exists a unique solution, since the coeffi-

cient matrix [A(t)] and the inhomogeneous array [f(t)] are continuous. The general solution

to the system (3.80) is provided by Myskis [Myskis, 1975] as

χ(t) =

∫ t

ti

Y(t, τ)f(τ)dτ + Y(t, ti)χi, (3.82)

under the initial condition χi = χ(ti), and where,

Y(t, ti) =I +

∫ t

ti

A(τ1)dτ1 +

∫ t

ti

A(τ1)

∫ τ1

ti

A(τ2)dτ2dτ1 (3.83)

+

∫ t

ti

A(τ1)

∫ τ1

ti

A(τ2)

∫ τ2

ti

A(τ3)dτ3dτ2dτ1 + ....

From the general solution for χ(t) given in (3.82) and the inverse transformations from χ(t)

to Γθ(t), we then can calculate the increment of the internal variable Ȟθ(t).

3.5 Wave propagation in incompressible nonlinear elastic ma-

terials under simple shear deformation

Polydimethylsiloxane (PDMS) is modeled as an incompressible elastic material by Negahban

[Negahban, 2012] with the free energy given by ψ = ψ†(I∗1 ). The material function of PDMS
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is given by

ρo
∂ψ

∂I∗1
= 15643(I∗1 − 3)2 − 23730(I∗1 − 3) + 128638. (3.84)

Let us consider PDMS under simple shear. Fig. 3.4 shows the in-plane deformation for

simple shear. The out-of-plane deformation is assumed to be zero. The two coordinate

systems are rectangular and mutually parallel, so that the coordinates are identical to those

described for rectangular systems. The deformation associated with simple shear is written

as

x1 = X1 + γX2,

x2 = X2,

x3 = X3.

(3.85)

The deformation gradient is given by

F = e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3 + γe1 ⊗ e2. (3.86)

The inverse of the deformation gradient is given by

F−1 = e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3 − γe1 ⊗ e2. (3.87)

The right Cauchy stretch tensor is therefore given by

C =
[

e1 e2 e3

]
1 γ 0

γ 1 + γ2 0

0 0 1

⊗


e1

e2

e3

 . (3.88)

The first invariant is given by I1 = tr(C) = 3 + γ2.

The left Cauchy stretch tensor is given by

B = (1 + γ2)e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3 + γe1 ⊗ e2 + γe2 ⊗ e1. (3.89)
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Reference configuration Intermediate configuration 

Figure 3.4: In-plane deformation for simple shear.
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Figure 3.5: PDMS simple shear response.

The Cauchy stress for incompressible materials takes the form

TT = TT
E + pI, (3.90)

where,

TT
E = 2ρo

∂ψ

∂I∗1
(B− I1

3
I), (3.91)

and p is an indeterminate scalar due to the incompressibility.

The simple shear stress of PDMS is given by

T12 = 2(15643γ5 − 23730γ3 + 128638γ). (3.92)

The response of PDMS under simple shear is shown in Fig. 3.5.
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For incompressible materials the perturbation of Cauchy stress is given by

δTT = Ee : δF + δpI. (3.93)

The tangent modulus is defined as Ee ≡ ∂F(TT
E) and can be written in the rectangular

coordinate system as

Eeabcd =2ρo{
∂2ψ

∂I∗21

[2(Fcd −
I1

3
F−1
dc )](Bab −

I1

3
δab)

+
∂ψ

∂I∗1
[Fbdδac + Fadδbc −

2

3
(Fcd −

I1

3
F−1
dc )δab]}, (3.94)

where, for our PDMS model we have ρo
∂2ψ
∂I∗21

= 15643× 2(I∗1 − 3)− 23730.

Since for small perturbation, we have J̌ ≈ 1 + ε̌v for

ε̌v = tr(ε̌),

ε̌ =
1

2
(Ȟ + ȞT ). (3.95)

The perturbation should satisfy the incompressibility constraint, i.e. J̌ = 1. This requires

ε̌v = 0. (3.96)

For an incompressible material under a homogenous base deformation, the perturbation of

balance of linear momentum is given by

[Grad(δT)−TGrad(ȞT )] : F−T = ρoδü, (3.97)

where,

δT = (EeFT ) : Ȟ + δpI. (3.98)

Let us consider a wave motion given by

δu(t) = u cos[ω(t− n ◦ x

c
)]d. (3.99)
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The acceleration of this wave is

δü(t) = −uω2 cos{ω[t− n ◦ (X + u)

c
]}d. (3.100)

The perturbation displacement gradient is given by

Ȟ = u
ω

c
sin[ω(t− n ◦X + n ◦ u

c
)]d⊗ n. (3.101)

The incompressible perturbations should satisfy the balance of linear momentum equation

given in (3.97), that is

{(EeFT ) : Grad(Ȟ) + I⊗Grad(δp)−TGrad(ȞT )} : F−T = ρoδü. (3.102)

We write equation (3.102) in a rectangular coordinate system as

[Grad(δp)]bF
−1
bi

+ uω2 cos[ω(t− n ◦ (X + u)

c
)]

{
Tijnanj

1

c2
+ ρoδai − EeijadFydnjny

1

c2

}
da = 0, (3.103)

where,

Tij = 2ρo
∂ψ

∂I∗1
(Bij −

I1

3
δij) + pδij . (3.104)

We select the perturbation of the undetermined scalar δp in such a form that

[Grad(δp)] = uω2 cos[ω(t− n ◦ (X + u)

c
)]f , (3.105)

where, f is determined from the boundary conditions. Therefore equation (3.103) is written

as

fbF
−1
bi c

2 + (Ti2na − Eei2a2)da + ρoc
2δaida = 0. (3.106)

Let us superimpose the wave given in (3.99) on the PDMS under the simple shear

deformation described in Fig. 3.4. For the wave propagation direction n = e2, there are

two simple shear modes that satisfy the incompressibility constraint (3.96), i.e. in-plane

shear wave and out-of-plane shear wave. For the in-plane shear wave d = e1, the in-plane
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Figure 3.6: In-plane shear wave speed in PDMS under simple shear.

shear wave speed cin is determined from

ρoc
2
in = Ee1212, (3.107)

where, by satisfying equation (3.106) we have

f1 = 0,

f2c
2 = Ee2212,

f3 = 0. (3.108)

Fig. 3.6 shows the effect of the simple shear on the in-plane shear wave speed for the PDMS

we considered.



61

o outc

0 0.5 1 1.5 2 2.5 3 3.5 4
0

500

1000

1500

2000

2500

gamma 

o
u

tp
la

n
e



Figure 3.7: Out-of-plane shear wave speed in PDMS under simple shear.

For the out-of-plane shear wave d = e3, the out-of-plane shear wave speed cout is deter-

mined from

ρoc
2
out = Ee3232, (3.109)

where, by satisfying equation (3.106) we have

f1 = 0,

f2 = 0,

f3 = 0. (3.110)

Fig. 3.7 shows the effect of the simple shear on the out-of-plane shear wave speed for the

PDMS we considered.
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3.6 Wave propagation in axis-symmetrically deformed non-

linear elastic cylinder

In this section we study the axis-symmetric problem of wave propagation in a deformed

nonlinear elastic cylinder under isothermal conditions. In particular, we look at a long

cylinder deformed by a rigid central shaft and held at the outer surface, rigidly fixed, as

shown in Fig. 3.8.

This is a special case of wave propagation in a general thermoelastic deformed body and

will demonstrate how the results can be used. The material considered here is an initially

isotropic nonlinear elastic material. The response functions of such materials are assumed

to depend on three kinematical invariants I∗1 , I∗2 and I∗3 .

To keep the presentation simple, we further assume that the behavior of the material can

be captured by two invariants I∗1 and I∗3 . As an example, we then look at the propagation of

shear waves in polydimethylsiloxane (PDMS). PDMS is a typical nonlinear elastic material

at room temperature and exhibits close to incompressible responses.

As shown in Fig. 3.8, we use (R,Θ, Z) to denote a cylindrical coordinate for the reference

configuration and (r, θ, z) to denote a cylindrical coordinate for the current configuration.

We use (êR, êΘ, êZ) and (êr, êθ, êz) to denote the unit vectors along the reference and

current coordinates. The associated base vectors of the curvilinear coordinates are given

by

e1 = êR, (3.111)

e2 = RêΘ,

e3 = êZ , (3.112)

and by

e∗1 = êr,

e∗2 = rêθ,

e∗3 = êz. (3.113)
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                   denote the coordinates in the reference configuration,  

                   denote the coordinates in the current configuration. 

Problem description: axis-symmetric static determined problem  

( , , )R Z
( , , )r z
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Figure 3.8: Propagation of waves in an axis-symmetric deformed thermo-elastic body.

For our body, we take a cylinder, in the reference configuration, with the height much

longer than the outer radius such that H � Ro. We will further confine our attention to a

response that does not depend on the axial coordinate Z, and we ignore the body force.

First, we will consider the application of an axial load P = −P êZ through the rigid

shaft. Next, we will look at a torque T applied through the rigid shaft. Three types of wave

motion (longitudinal, in-plane shear and out-of-plane shear waves) will be, respectively,

superimposed on these pre-deformations. The wave speeds will be obtained for each mode

and will be shown to vary over space due to the inhomogeneity of the pre-deformations. In

this process we will look at the propagation of shear waves in a PDMS cylinder under axial

loads.

Due to the axis-symmetry and the long bar assumption, the deformations are indepen-
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dent of Θ and Z, and take the forms as

θ = Θ + θ̄(R),

r = R+ r̄(R),

z = Z + z̄(R), (3.114)

where, the specific functions of θ̄(R), r̄(R) and z̄(R) are determined by the boundary con-

ditions and the material properties.

3.6.1 Waves in an elastic cylinder under axial load

For an axial loaded cylinder we have

θ = Θ,

r = R+ r̄(R),

z = Z + z̄(R), (3.115)

and we get

êz = êZ ,

êr = êR,

êθ = êΘ. (3.116)

The deformation gradient is calculated as

F = (1 +
∂r̄

∂R
)êR ⊗ êR +

∂z̄

∂R
êZ ⊗ êR + (1 +

r̄

R
)êΘ ⊗ êΘ + êZ ⊗ êZ . (3.117)

The inverse of the deformation gradient is

F−1 =
1

1 + ∂r̄
∂R

êR ⊗ êR −
∂z̄
∂R

1 + ∂r̄
∂R

êZ ⊗ êR +
R

r
êΘ ⊗ êΘ + êZ ⊗ êZ . (3.118)
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The left Cauchy stretch is given by

B = (1 +
∂r̄

∂R
)2êR ⊗ êR +

∂z̄

∂R
(1 +

∂r̄

∂R
)êZ ⊗ êR + (1 +

∂r̄

∂R
)
∂z̄

∂R
êR ⊗ êZ (3.119)

+ [(
∂z̄

∂R
)2 + 1]êZ ⊗ êZ + (1 +

r̄

R
)2êΘ ⊗ êΘ.

The nominal stress takes the general form

To =
[

êR êΘ êZ

]
To RR To RΘ To RZ

To ΘR To ΘΘ To ΘZ

To ZR To ZΘ To ZZ

⊗


êR

êΘ

êZ

 . (3.120)

The axis-symmetry and the loading give the nominal stress for the base history in the form

To =
[

êR êΘ êZ

]
To RR 0 To RZ

0 To ΘΘ 0

To ZR 0 To ZZ

⊗


êR

êΘ

êZ

 . (3.121)

The boundary conditions we consider for this problem are

r̄(Ri) = 0,

r̄(Ro) = 0,

z̄(Ro) = 0. (3.122)

The problem is statically determinate for the shear. This gives

To RZ(R) =
P

2πRH
. (3.123)

As can be seen, we assume rigid supports on both the inner surface and outer surface of the

cylinder. We also consider the outer surface to be stationary. Also, the shaft is assumed to

uniformly distribute the load on the material.

The balance of linear momentum in the reference configuration is given by the following
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component equations

∂To RR
∂R

+
1

R

∂To ΘR

∂Θ
+
∂To ZR
∂Z

+
1

R
(To RR − To ΘΘ) = 0, (3.124)

∂To RΘ

∂R
+

1

R

∂To ΘΘ

∂Θ
+
∂To ZΘ

∂Z
+

1

R
(To RΘ + To ΘR) = 0,

∂To RZ
∂R

+
1

R

∂To ΘZ

∂Θ
+
∂To ZZ
∂Z

+
1

R
To RZ = 0.

The axis-symmetry simplifies the balance of linear momentum to

∂To RR
∂R

+
∂To ZR
∂Z

+
1

R
(To RR − To ΘΘ) = 0,

1

R

∂To ΘΘ

∂Θ
= 0,

∂To RZ
∂R

+
∂To ZZ
∂Z

+
1

R
To RZ = 0, (3.125)

where, the last two equations are automatically satisfied due to the axis-symmetry, the

static determinacy of the shear and the long bar assumption.

The Cauchy stress has the form

TT = ρ∂F(ψ†)FT = ρ

3∑
n=1

∂ψ†

∂I∗i
∂F(I∗i )FT , (3.126)

where, the invariants are

I1 = tr(C), I2 = tr(C2), I3 = tr(C3),

I∗1 =
I1

J2/3
, I∗2 =

I2

I2
1

, I∗3 = J = det(F), (3.127)

and the derivatives with respect to the deformation gradient F are

∂F(I∗1 ) =
2

J2/3
(F− I1

3
F−T ), (3.128)

∂F(I∗2 ) =
4

I2
1

F(C− I2

I1
I),

∂F(I∗3 ) = JF−T .
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This gives the Cauchy stress in the form

TT = ρ[
2

J2/3

∂ψ

∂I∗1
(B− I1

3
I) +

4

I2
1

∂ψ

∂I∗2
(B2 − I2

I1
B) + J

∂ψ

∂I∗3
I]. (3.129)

If we assume that the free energy takes the simpler form as ψ = ψ†(I∗1 , I
∗
3 ), we will have

TT = ρ[
2

J2/3

∂ψ

∂I∗1
(B− I1

3
I) + J

∂ψ

∂I∗3
I]. (3.130)

The nominal stress can be obtained from

To = det(F)F−1T, (3.131)

where, the components of the nominal stress are given by

To RR =(1 +
r̄

R
)ρref [

2

J5/3

∂ψ

∂I∗1
(1 +

∂r̄

∂R
)2 − I1

3

2

J5/3

∂ψ

∂I∗1
+
∂ψ

∂I∗3
],

To RZ =(1 +
r̄

R
)ρref

2

J5/3

∂ψ

∂I∗1
(1 +

∂r̄

∂R
)
∂z̄

∂R
,

To ZR =− (1 +
r̄

R
)ρref

∂z̄

∂R
[

2

J5/3

∂ψ

∂I∗1
(1 +

∂r̄

∂R
)2 − I1

3

2

J5/3

∂ψ

∂I∗1
+
∂ψ

∂I∗3
]

+ (1 +
∂r̄

∂R
)(1 +

r̄

R
)ρref

2

J5/3

∂ψ

∂I∗1

∂z̄

∂R
(1 +

∂r̄

∂R
),

To ZZ =− (1 +
r̄

R
)ρref

∂z̄

∂R

2

J5/3

∂ψ

∂I∗1
(1 +

∂r̄

∂R
)
∂z̄

∂R

+ (1 +
∂r̄

∂R
)(1 +

r̄

R
)ρref{

∂ψ

∂I∗3
− I1

3

2

J5/3

∂ψ

∂I∗1
+

2

J5/3

∂ψ

∂I∗1
[(
∂z̄

∂R
)2 + 1]},

To ΘΘ =(1 +
∂r̄

∂R
)(1 +

r̄

R
)ρref (

R

r
)[

2

J5/3

∂ψ

∂I∗1
(1 +

r̄

R
)2 − I1

3

2

J5/3

∂ψ

∂I∗1
+
∂ψ

∂I∗3
]. (3.132)

After considering To RZ(R) = P
2πHR

−1 from the static determinacy, we only have the first

equation in (3.125) as

ρo(R+ r̄)
2

J5/3

∂ψ

∂I∗1
(1 +

∂r̄

∂R
)
∂z̄

∂R
=

P

2πH
. (3.133)

Substituting the nominal stress given in (3.132) into the balance of linear momentum
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(3.125) results in

∂To RR
∂R

+
1

R
(1 +

r̄

R
)ρo{

2

J5/3

∂ψ

∂I∗1
(1 +

∂r̄

∂R
)2

− I1

3

2

J5/3

∂ψ

∂I∗1
+
∂ψ

∂I∗3
− (1 +

∂r̄

∂R
)(
R

r
)[

2

J5/3

∂ψ

∂I∗1
(1 +

r̄

R
)2 − I1

3

2

J5/3

∂ψ

∂I∗1
+
∂ψ

∂I∗3
]} = 0,

(3.134)

where,

J = det(F) = (1 +
∂r̄

∂R
)(1 +

r̄

R
),

I1 = (1 +
∂r̄

∂R
)2 + (1 +

r̄

R
)2 + (

∂z̄

∂R
)2 + 1. (3.135)

r̄(R) and z̄(R) are determined by solving equations given in (3.133) and (3.134) under

the boundary conditions provided in (3.122).

For an incompressible material we have J = 1 and therefore we have

r̄ = − dr̄
dR

(R+ r̄), (3.136)

which results in r̄(R) = 0 under the boundary conditions r̄(Ri) = 0 and r̄(Ro) = 0.

For r̄(R) = 0 the invariant can be simplified to

I1 = 3 + (
∂z̄

∂R
)2. (3.137)

For an incompressible material the nonlinear elastic free energy is assumed to take a form

as ψ = ψ†(I∗1 ), and therefore the Cauchy stress is given by

TT = 2ρo
∂ψ

∂I∗1
(B− I1

3
I) + pI, (3.138)

where, p is an indeterminate scalar due to the incompressibility.

For an incompressible material the nominal stress is then given by

To = F−1[2ρo
∂ψ

∂I∗1
(B− I1

3
I) + pI]. (3.139)
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Figure 3.9: The shear deformation of a PDMS cylinder under axial load P .

Equation (3.123) then becomes

∂ψ

∂I∗1

∂z̄

∂R
=

P

4πHρoR
. (3.140)

For the incompressible elastic model for PDMS given in (3.84), equation (3.140) becomes

15643(
∂z̄

∂R
)5 − 23730(

∂z̄

∂R
)3 + 128638

∂z̄

∂R
=

P

4πHR
, (3.141)

where, ∂z̄
∂R is determined for given P and R. For example, Fig. 3.9 shows the inhomogeneous

shear deformations along the radius of the PDMS cylinder under axial load.

The superimposed wave propagates along the radial direction “er” and can be described
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by

δu(t) = u cos[ω(t−
∫
`

d`

c
)]d, (3.142)

where,

δu(t) = u∗(t)− u,

u = x−X,

X = ReR + ZeZ ,

x = rer + zez, (3.143)

and where, d represents the unit dispalcement direction vector, c is the wave speed, and

` = x ◦ er.

The balance of linear momentum for the perturbation, given inhomogeneous base de-

formation, is given by

[(δT)−TȞT ][Div(F−T )]

+ [Grad(δT)−TGrad(ȞT )] : F−T −Grad(T) : (ȞTF−T ) = ρoδü. (3.144)

For

F−T = eR ⊗ eR −
∂z̄

∂R
eR ⊗ eZ + eΘ ⊗ eΘ + eZ ⊗ eZ , (3.145)

we have

Div(F−T ) = 0. (3.146)

The perturbation of Cauchy stress is

δT = (EeFT ) : Ȟ + δpI, (3.147)

and the tangent modulus is defined as

Ee = ∂F(TT
E). (3.148)
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The acceleration of the wave is given by

δü(t) = −uω2 cos[ω(t−
∫
`

d`

c
)]d. (3.149)

The perturbation displacement gradient is given by

Ȟ =u sin[ω(t−
∫
`

1

c
d`)]

ω

c
dReR ⊗ eR

− 1

R
u cos[ω(t−

∫
`

1

c
d`)]dΘeR ⊗ eΘ

+ u sin[ω(t−
∫
`

1

c
d`)]

ω

c
dΘeΘ ⊗ eR

+
1

R
u cos[ω(t−

∫
`

1

c
d`)]dReΘ ⊗ eΘ

+ u sin[ω(t−
∫
`

1

c
d`)]

ω

c
dZeZ ⊗ eR, (3.150)

where, d = dReR + dΘeΘ + dZeZ , and

tr(Ȟ) = u{sin[ω(t−
∫
`

1

c
d`)]

ω

c
+

1

R
cos[ω(t−

∫
`

1

c
d`)]}dR. (3.151)

The superimposed wave motion (3.142) should satisfy the balance of linear momentum

for the incompressible perturbation terms given in (3.144). The component forms of these

equations are written in the e∗i system. For example, the Cauchy stress is given by

T =[2ρo
∂ψ

∂I∗1
(1− I1

3
) + p]e∗1 ⊗ e∗1

+ 2ρo
∂ψ

∂I∗1

∂z̄

∂R
e∗3 ⊗ e∗1

+ 2ρo
∂ψ

∂I∗1

∂z̄

∂R
e∗1 ⊗ e∗3

+ {2ρo
∂ψ

∂I∗1
[(
∂z̄

∂R
)2 + 1− I1

3
] + p}e∗3 ⊗ e∗3

+ [2ρo
∂ψ

∂I∗1
(1− I1

3
) + p]

1

r2
e∗2 ⊗ e∗2, (3.152)
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the gradient of Cauchy stress is

Grad(T) =
∂(Tmn)

∂R
em ⊗ en ⊗ e1 +

T1n

R3
e2 ⊗ en ⊗ e2

+ 2
T22

R
e2 ⊗ e2 ⊗ e1 −

T22

R
e1 ⊗ e2 ⊗ e2 −

T22

R
e2 ⊗ e1 ⊗ e2

+
Tm1

R3
em ⊗ e2 ⊗ e2. (3.153)

The tangent modulus is given by Ee = Exyabe
∗
x ⊗ e∗y ⊗ e∗a ⊗ e∗b , where,

Exyab =2ρo{2
∂2ψ

∂I∗21

(Fab −
I1

3
F−1
ba )(Bxy −

I1

3
Ixy)

+
∂ψ

∂I∗1
[Fybg

−1
xa + Fxbg

−1
ya −

2

3
(Fab −

I1

3
F−1
ba )Ixy]}. (3.154)

The gradient of the perturbation of Cauchy stress is given by

Grad(δT) =
∂(EeFT )

∂αi
: Ȟ⊗ g−1

ij ej + (EeFT ) : Grad(Ȟ) + I⊗Grad(δp). (3.155)

We also have

Grad(ȞT ) =
∂(Ȟnm)

∂R
em ⊗ en ⊗ e1 +

Ȟn1

R3
e2 ⊗ en ⊗ e2

+
Ȟn2

R
e2 ⊗ en ⊗ e1 −

Ȟn2

R
e1 ⊗ en ⊗ e2 +

Ȟ1m

R3
em ⊗ e2 ⊗ e2

+
Ȟ2m

R
em ⊗ e2 ⊗ e1 −

Ȟ2m

R
em ⊗ e1 ⊗ e2, (3.156)

and

Grad(Ȟ) =
∂(Ȟmn)

∂R
em ⊗ en ⊗ e1 +

Ȟ1n

R3
e2 ⊗ en ⊗ e2

+
Ȟ2n

R
e2 ⊗ en ⊗ e1 −

Ȟ2n

R
e1 ⊗ en ⊗ e2 +

Ȟm1

R3
em ⊗ e2 ⊗ e2

+
Ȟm2

R
em ⊗ e2 ⊗ e1 −

Ȟm2

R
em ⊗ e1 ⊗ e2. (3.157)
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In this process we have used the relations

∂(e∗1)

∂R
= 0,

∂(e∗1)

∂Θ
=

e2

R
,

∂(e∗1)

∂Z
= 0,

∂(e∗2)

∂R
=

e2

R
,

∂(e∗2)

∂Θ
= −Re1,

∂(e∗2)

∂Z
= 0,

∂(e∗3)

∂R
= 0,

∂(e∗3)

∂Θ
= 0,

∂(e∗3)

∂Z
= 0. (3.158)

To satisfy the incompressible perturbation condition, i.e. ε̌v = 0, this requires dR = 0.

We consider two types of wave propagating in the axially loaded incompressible cylinder:

in-plane shear wave and out-of-plane shear wave. The wave speeds are evaluated by sub-

stituting the wave equations into equation (3.144) written in the e∗i system.

For the in-plane shear wave, the unit displacement vector d = 1
re
∗
2 = eθ. The accelera-

tion of the wave (3.149) becomes

δü(t) = −uω2 cos[ω(t−
∫
`

d`

c
)]

1

r
e∗2, (3.159)

and the perturbation of the displacement gradient (3.150) becomes

Ȟ =− u
1

r2
cos[ω(t−

∫
`

1

c
d`)]e∗1 ⊗ e∗2

+ u
ω

c

1

r
sin[ω(t−

∫
`

1

c
d`)]e∗2 ⊗ e∗1. (3.160)



74

The gradient of the perturbation displacement gradient (3.157) is simplified to

Grad(Ȟ) =(
∂Ȟ12

∂R
+
Ȟ12

R
)e1 ⊗ e2 ⊗ e1 + (

∂Ȟ21

∂R
+
Ȟ21

R
)e2 ⊗ e1 ⊗ e1

+ (
Ȟ12

R3
+
Ȟ21

R3
)e2 ⊗ e2 ⊗ e2 − (

Ȟ21

R
+
Ȟ12

R
)e1 ⊗ e1 ⊗ e2. (3.161)

We substitute the equations given in (3.159), (3.160) and (3.161) and other associated terms

into the balance of linear momentum for perturbations (3.144), then we can calculate the in-

plane shear wave speed. The in-plane shear wave speed is varying along the radial direction

and given by

c =

√
2
∂ψ

∂I∗1
. (3.162)

The variation of the in-plane shear wave speed in PDMS under axial load is shown in Fig.

3.10.

For the out-of-plane shear wave, the unit displacement vector d = e∗3 = eZ . The

acceleration of the wave (3.149) becomes

δü(t) = −uω2 cos[ω(t−
∫
`

d`

c
)]e∗3, (3.163)

and the perturbation of the displacement gradient (3.150) becomes

Ȟ = u sin[ω(t−
∫
`

1

c
d`)]

ω

c
e∗3 ⊗ e∗1. (3.164)

The gradient of the perturbation displacement gradient (3.157) is simplified to

Grad(Ȟ) =
∂(Ȟ31)

∂R
e3 ⊗ e1 ⊗ e1 +

Ȟ31

R3
e3 ⊗ e2 ⊗ e2. (3.165)

We substitute the equations given in (3.163), (3.164) and (3.165) and other associated terms

into the balance of linear momentum for perturbations (3.144), then we can calculate the

out-of-plane shear wave speed. The out-of-plane shear wave speed is varying along the
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Figure 3.10: In-plane shear wave speed in a PDMS cylinder under axial load P .
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Figure 3.11: Out-of-plane shear wave speed in a PDMS cylinder under axial load P .

radial direction and given by

c =

√
4
∂2ψ

∂I∗21

(
∂z̄

∂R
)2 + 2

∂ψ

∂I∗1
. (3.166)

If no load is applied,

c =

√
2
∂ψ

∂I∗1
. (3.167)

The variation of the out-of-plane shear wave speed in PDMS under axial load is shown in

Fig. 3.11.

The time of flight of the waves from Ro to Ri can be evaluated from

t =

∫ Ro

Ri

dR

c
. (3.168)
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Figure 3.12: Time of flights of in-plane shear wave and out-of-plane shear wave in the PDMS
cylinder under different axial loads.

Fig. 3.12 shows the time of flights of in-plane shear wave and out-of-plane shear wave in

the PDMS cylinder under different axial loads.

The change of the time of flight ∆t can be obtained from the change of the load applied

∆P by

∆t = −∆P

∫ Ro

Ri

c−2∂(c)

∂P
dR. (3.169)

Load sensor (a forward application)

For an incompressible elastic material, if the nonlinear free energy ψ(I∗1 ) is known, from the

measurement of the time of flight we can evaluate the applied load P . This can be used as

a load sensor.

Considering I∗1 − 3 = ( ∂z̄∂R)2 and I∗3 = J = 1, and the relations between the material
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functions and the deformations given in (??), the deformation field z̄ can be determined as

a function of R and P .

After substituting the deformation function z̄(R,P ) into the forms of time of flight of

the in-plane shear wave and out-plane shear wave measured in experiments, the value of

the load can be calculated. If both waves are considered, the accuracy of the measured load

can be increased.

3.6.2 Waves in an elastic cylinder under torque

Let us look at another example, that is, torque T is applied through the rigid shaft as shown

in Fig. 3.8. The deformation field under torque is described as

r = R+ r̄(R),

θ = Θ + θ̄(R),

z = Z + z̄(R). (3.170)

The relations between the cylindrical vectors in the reference configuration and in the

current configuration are given by

êz = êZ ,

êr = cos(θ̄)êR + sin(θ̄)êΘ,

êθ = cos(θ̄)êΘ − sin(θ̄)êR. (3.171)

The deformation gradient is calculated as

F =[(1 +
∂r̄

∂R
) cos(θ̄)− (R+ r̄)

∂θ̄

∂R
sin(θ̄)]êR ⊗ êR

+ [(1 +
∂r̄

∂R
) sin(θ̄) + (R+ r̄)

∂θ̄

∂R
cos(θ̄)]êΘ ⊗ êR

+
∂z̄

∂R
êZ ⊗ êR + (1 +

r̄

R
) cos(θ̄)êΘ ⊗ êΘ − (1 +

r̄

R
) sin(θ̄)êR ⊗ êΘ + êZ ⊗ êZ . (3.172)
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The left Cauchy stretch is given by

B ={[(1 +
∂r̄

∂R
) cos(θ̄)− (R+ r̄)

∂θ̄

∂R
sin(θ̄)]2 + (1 +

r̄

R
)2 sin2(θ̄)}êR ⊗ êR

+ {[(1 +
∂r̄

∂R
) sin(θ̄) + (R+ r̄)

∂θ̄

∂R
cos(θ̄)][(1 +

∂r̄

∂R
) cos(θ̄)− (R+ r̄)

∂θ̄

∂R
sin(θ̄)]

− (1 +
r̄

R
)2 cos(θ̄) sin(θ̄)}êΘ ⊗ êR

+
∂z̄

∂R
[(1 +

∂r̄

∂R
) cos(θ̄)− (R+ r̄)

∂θ̄

∂R
sin(θ̄)]êZ ⊗ êR

+ {[(1 +
∂r̄

∂R
) cos(θ̄)− (R+ r̄)

∂θ̄

∂R
sin(θ̄)][(1 +

∂r̄

∂R
) sin(θ̄) + (R+ r̄)

∂θ̄

∂R
cos(θ̄)]

− (1 +
r̄

R
)2 sin(θ̄) cos(θ̄)}êR ⊗ êΘ

+ {[(1 +
∂r̄

∂R
) sin(θ̄) + (R+ r̄)

∂θ̄

∂R
cos(θ̄)]2 + (1 +

r̄

R
)2 cos2(θ̄)}êΘ ⊗ êΘ

+
∂z̄

∂R
[(1 +

∂r̄

∂R
) sin(θ̄) + (R+ r̄)

∂θ̄

∂R
cos(θ̄)]êZ ⊗ êΘ

+ [(1 +
∂r̄

∂R
) cos(θ̄)− (R+ r̄)

∂θ̄

∂R
sin(θ̄)]

∂z̄

∂R
êR ⊗ êZ

+ [(1 +
∂r̄

∂R
) sin(θ̄) + (R+ r̄)

∂θ̄

∂R
cos(θ̄)]

∂z̄

∂R
êΘ ⊗ êZ + [1 + (

∂z̄

∂R
)2]êZ ⊗ êZ . (3.173)

The inverse of the deformation gradient is

F−1 =
1

(1 + ∂r̄
∂R)

[cos(θ̄)êR ⊗ êR + sin(θ̄)êR ⊗ êΘ −
∂z̄

∂R
cos(θ̄)êZ ⊗ êR −

∂z̄

∂R
sin(θ̄)êZ ⊗ êΘ]

−R[
∂θ̄

∂R

cos(θ̄)

(1 + ∂r̄
∂R)

+
sin(θ̄)

r
]êΘ ⊗ êR +R[

cos(θ̄)

r
− ∂θ̄

∂R

sin(θ̄)

(1 + ∂r̄
∂R)

]êΘ ⊗ êΘ + êZ ⊗ êZ .

(3.174)

The Cauchy stress takes the form as in (3.130), for this case, it is given by

T =TRRêR ⊗ êR + TΘRêΘ ⊗ êR + TZRêZ ⊗ êR + TRΘêR ⊗ êΘ + TΘΘêΘ ⊗ êΘ

+ TZΘêZ ⊗ êΘ + TRZ êR ⊗ êZ + TΘZ êΘ ⊗ êZ + TZZ êZ ⊗ êZ , (3.175)
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where, I1 = tr(B), and the components are given by

TRR ={[(1 +
∂r̄

∂R
) cos(θ̄)− (R+ r̄)

∂θ̄

∂R
sin(θ̄)]2 + (1 +

r̄

R
)2 sin2(θ̄)− I1

3
}ρo

2

J5/3

∂ψ

∂I∗1

+ ρo
∂ψ

∂I∗3
,

TΘR ={[(1 +
∂r̄

∂R
) sin(θ̄) + (R+ r̄)

∂θ̄

∂R
cos(θ̄)][(1 +

∂r̄

∂R
) cos(θ̄)− (R+ r̄)

∂θ̄

∂R
sin(θ̄)]

− (1 +
r̄

R
)2 cos(θ̄) sin(θ̄)}ρo

2

J5/3

∂ψ

∂I∗1
,

TZR =
∂z̄

∂R
[(1 +

∂r̄

∂R
) cos(θ̄)− (R+ r̄)

∂θ̄

∂R
sin(θ̄)]ρo

2

J5/3

∂ψ

∂I∗1
,

TRΘ ={[(1 +
∂r̄

∂R
) cos(θ̄)− (R+ r̄)

∂θ̄

∂R
sin(θ̄)][(1 +

∂r̄

∂R
) sin(θ̄) + (R+ r̄)

∂θ̄

∂R
cos(θ̄)]

− (1 +
r̄

R
)2 sin(θ̄) cos(θ̄)}ρo

2

J5/3

∂ψ

∂I∗1
,

TΘΘ ={[(1 +
∂r̄

∂R
) sin(θ̄) + (R+ r̄)

∂θ̄

∂R
cos(θ̄)]2 + (1 +

r̄

R
)2 cos2(θ̄)− I1

3
}ρo

2

J5/3

∂ψ

∂I∗1

+ ρo
∂ψ

∂I∗3
,

TZΘ =
∂z̄

∂R
[(1 +

∂r̄

∂R
) sin(θ̄) + (R+ r̄)

∂θ̄

∂R
cos(θ̄)]ρo

2

J5/3

∂ψ

∂I∗1
,

TRZ =[(1 +
∂r̄

∂R
) cos(θ̄)− (R+ r̄)

∂θ̄

∂R
sin(θ̄)]

∂z̄

∂R
ρo

2

J5/3

∂ψ

∂I∗1
,

TΘZ =[(1 +
∂r̄

∂R
) sin(θ̄) + (R+ r̄)

∂θ̄

∂R
cos(θ̄)]

∂z̄

∂R
ρo

2

J5/3

∂ψ

∂I∗1
,

TZZ =[1 + (
∂z̄

∂R
)2 − I1

3
]ρo

2

J5/3

∂ψ

∂I∗1
+ ρo

∂ψ

∂I∗3
. (3.176)
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The nominal stress defined as To = det(F)F−1T is given by

To =(1 +
r̄

R
)[TRR cos(θ̄) + TΘR sin(θ̄)]êR ⊗ êR

+ (R+ r̄){TΘR[
1

r
(1 +

∂r̄

∂R
) cos(θ̄)− ∂θ̄

∂R
sin(θ̄)]

− TRR[
∂θ̄

∂R
cos(θ̄) + (1 +

∂r̄

∂R
)
1

r
sin(θ̄)]}êΘ ⊗ êR

+ (
R+ r̄

R
)[(1 +

∂r̄

∂R
)TZR − TRR

∂z̄

∂R
cos(θ̄)− TΘR

∂z̄

∂R
sin(θ̄)]êZ ⊗ êR

+ (
R+ r̄

R
)[TRΘ cos(θ̄) + TΘΘ sin(θ̄)]êR ⊗ êΘ

+ (R+ r̄){TΘΘ[
1

r
(1 +

∂r̄

∂R
) cos(θ̄)− ∂θ̄

∂R
sin(θ̄)]

− TRΘ[
∂θ̄

∂R
cos(θ̄) + (1 +

∂r̄

∂R
)
1

r
sin(θ̄)]}êΘ ⊗ êΘ

+ (
R+ r̄

R
)[(1 +

∂r̄

∂R
)TZΘ − TRΘ

∂z̄

∂R
cos(θ̄)− TΘΘ

∂z̄

∂R
sin(θ̄)]êZ ⊗ êΘ

+ (
R+ r̄

R
)[TRZ cos(θ̄) + TΘZ sin(θ̄)]êR ⊗ êZ

+ (R+ r̄){TΘZ [
1

r
(1 +

∂r̄

∂R
) cos(θ̄)− ∂θ̄

∂R
sin(θ̄)]

− TRZ [
∂θ̄

∂R
cos(θ̄) +

1

r
(1 +

∂r̄

∂R
) sin(θ̄)]}êΘ ⊗ êZ

+ (
R+ r̄

R
)[(1 +

∂r̄

∂R
)TZZ − TΘZ

∂z̄

∂R
sin(θ̄)− TRZ

∂z̄

∂R
cos(θ̄)]êZ ⊗ êZ , (3.177)

where, J = det(F) = (1 + ∂r̄
∂R)(1 + r̄

R).

Balance of linear momentum in the reference configuration is given as

∂To RR
∂R

+
1

R

∂To ΘR

∂Θ
+
∂To ZR
∂Z

+
1

R
(To RR − To ΘΘ) = 0,

∂To RΘ

∂R
+

1

R

∂To ΘΘ

∂Θ
+
∂To ZΘ

∂Z
+

1

R
(To RΘ + To ΘR) = 0,

∂To RZ
∂R

+
1

R

∂To ΘZ

∂Θ
+
∂To ZZ
∂Z

+
1

R
To RZ = 0. (3.178)
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Boundary conditions are given by

r̄(Ri) = 0,

r̄(Ro) = 0,

θ̄(Ro) = 0,

z̄(Ri) = 0,

z̄(Ro) = 0,

To RΘ(R) =
T

2πR2H
. (3.179)

The axis-symmetry constrains the nominal stress to the form

To ΘZ = 0,

To RZ = 0. (3.180)

The axis-symmetry constrains the balance of linear momentum in the reference configuration

to the form

∂To RR
∂R

+
1

R
(To RR − To ΘΘ) = 0,

∂To RΘ

∂R
+

1

R
(To RΘ + To ΘR) = 0. (3.181)

For incompressible materials i.e. J = 1, we have r = R. If we assume the deformation field

is simple shear, i.e.

θ = Θ + θ̄(R),

z = Z, (3.182)

where, the boundary conditions (3.179) are automatically satisfied. For this deformation

we have I1 = 3 + ( ∂θ̄∂R)2r2.
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The balance of linear momentum for this simple shear field are

∂To RR
∂R

+
1

R
(To RR − To ΘΘ) = 0, (3.183)

and
∂To RΘ

∂R
+

1

R
(To RΘ + To ΘR) = 0, (3.184)

where, after substituting To RΘ = T
2πR2H

into equation (3.184), we get

To ΘR =
T

2πR2H
, (3.185)

where,

To RΘ =2ρo
∂ψ

∂I∗1
[R
∂θ̄

∂R
cos(θ̄)− (

∂θ̄

∂R
)2R

2

3
sin(θ̄)] + ρo

∂ψ

∂I∗3
sin(θ̄),

To ΘR =2ρo
∂ψ

∂I∗1
[R
∂θ̄

∂R
cos(θ̄) + (

∂θ̄

∂R
)3R

3

3
cos(θ̄) + (

∂θ̄

∂R
)2R

2

3
sin(θ̄)] (3.186)

− ρo
∂ψ

∂I∗3
[R
∂θ̄

∂R
cos(θ̄) + sin(θ̄)].

After manipulating equations we obtain the relations between the material functions and

the deformation θ̄(T,R) as

∂ψ

∂I∗1
=

T

4ρoπR3H ∂θ̄
∂R cos(θ̄)

,

∂ψ

∂I∗3
=

T

6ρoπRH cos(θ̄)

∂θ̄

∂R
,

∂2ψ

∂I∗21

= − T

8ρoπR4H( ∂
2θ̄

∂R2R+ ∂θ̄
∂R) ∂θ̄∂R sin(θ̄)

− T

8ρoπR5H cos(θ̄)( ∂
2θ̄

∂R2R+ ∂θ̄
∂R)( ∂θ̄∂R)3

(
∂2θ̄

∂R2
R+ 3

∂θ̄

∂R
),

∂2ψ

∂I∗3∂I
∗
1

=
T

6ρoπR3H ∂θ̄
∂R cos(θ̄)

− T

12ρoπR2H( ∂
2θ̄

∂R2R+ ∂θ̄
∂R) sin(θ̄)

∂θ̄

∂R

− T

12ρoπR3H cos(θ̄)( ∂
2θ̄

∂R2R+ ∂θ̄
∂R) ∂θ̄∂R

(
∂2θ̄

∂R2
R+ 3

∂θ̄

∂R
). (3.187)
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The tangent modulus defined as Ee = ∂F(TT †) has the component form in the e∗i base as

Ee∗ijcd =ρo{−
10

3
F−1∗
ba g∗acg

∗
bd

∂ψ

∂I∗1
(B∗ij −

I1

3
I∗ij) + 2[

∂2ψ

∂I∗21

2(F ∗abg
∗
acg
∗
bd −

I1

3
F−T∗ab g∗acg

∗
bd)

+
∂2ψ

∂I∗1∂I
∗
3

F−1∗
ba g∗acg

∗
bd](B

∗
ij −

I1

3
I∗ij)

+ 2
∂ψ

∂I∗1
(δicδxdF

∗
jyg
∗
xy + F ∗ixδjcδydg

∗
xy −

2F ∗abg
∗
acg
∗
bd

3
I∗ij)

+ [
∂2ψ

∂I∗3∂I
∗
1

(F ∗abg
∗
acg
∗
bd −

I1

3
F−1∗
ba g∗acg

∗
bd) +

∂2ψ

∂I∗23

F−1∗
ba g∗acg

∗
bd]I

∗
ij}, (3.188)

where,

[g∗] =


1 0 0

0 r2 0

0 0 1

 , (3.189)

[I∗] = [g∗−1] =


1 0 0

0 1
r2 0

0 0 1

 , (3.190)

[F ∗] =


cos(θ̄) − sin(θ̄)

r 0

R ∂θ̄
∂R

cos(θ̄)+sin(θ̄)

r

cos(θ̄)−R ∂θ̄
∂R

sin(θ̄)

r2 0

0 0 1

 , (3.191)

[F−1∗] =


cos(θ̄)−R ∂θ̄

∂R sin(θ̄) sin(θ̄)
r 0

−[sin(θ̄)+R ∂θ̄
∂R

cos(θ̄)]

r
cos(θ̄)
r2 0

0 0 1

 , (3.192)

and

[B∗] =


1 ∂θ̄

∂R 0

∂θ̄
∂R

1
r2 + ( ∂θ̄∂R)2 0

0 0 1

 . (3.193)

The superimposed displacement field δu(t) = u∗(t)− u is described as

δu(t) = u cos[ω(t−
∫
`

d`

c
)]d = u cos[ω(t−

∫
`

d`

c
)]die

∗
i , (3.194)
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where, d represents the unit dispalcement direction vector, c is the wave speed varying

along the radial direction, and ` is the wave path.

For the longitudinal wave d = d1e
∗
1 = d1êr = êr, the wave speed c is varying along the

radius and given by

c2 =
∂ψ

∂I∗1
{2 cos2(θ̄) sin(θ̄)R

∂θ̄

∂R
[
2R4

9
(
∂θ̄

∂R
)2 − 1− 4R2

9
(
∂θ̄

∂R
)2 − R2

3
]

+ cos(θ̄) sin2(θ̄)[
2R2

3
− 4R6

9
(
∂θ̄

∂R
)4 − 8R4

9
(
∂θ̄

∂R
)2 +

4R2

3
(
∂θ̄

∂R
)2 +

4R4

9
(
∂θ̄

∂R
)4 + 2]

− sin3(θ̄)
∂θ̄

∂R
R3[

4R2

9
(
∂θ̄

∂R
)2 +

8

3
] + cos3(θ̄)[

4R2

9
(
∂θ̄

∂R
)2 +

8

3
] + 2R

∂θ̄

∂R
sin(θ̄)}

+
∂2ψ

∂I∗23

[cos(θ̄)−R ∂θ̄

∂R
sin(θ̄)][cos2(θ̄) +R

∂θ̄

∂R
cos(θ̄) sin(θ̄)(R2 − 1) +R2 sin2(θ̄)]

+
∂2ψ

∂I∗21

{cos2(θ̄) sin(θ̄)(
∂θ̄

∂R
)3R3[

4R2

9
(
∂θ̄

∂R
)2 − 2

3
− 2R4

9
(
∂θ̄

∂R
)2 +

2R2

3
]

+
2R4

9
(
∂θ̄

∂R
)4[R3 ∂θ̄

∂R
sin3(θ̄)− cos3(θ̄)]

+ sin2(θ̄) cos(θ̄)(
∂θ̄

∂R
)2R2[

2R2

3
(
∂θ̄

∂R
)2 − 2R4

9
(
∂θ̄

∂R
)4

+
2R6

9
(
∂θ̄

∂R
)4 − 8R4

9
(
∂θ̄

∂R
)2 + 4− 4R2]}. (3.195)

If no load is applied, i.e. θ̄(R) = 0,

c2 =
∂ψ

∂I∗1

8

3
+
∂2ψ

∂I∗23

. (3.196)

For the in-plane shear wave d = d2e
∗
2 = êθ, the wave speed c is varying along the radius

and given by

c2 =
∂ψ

∂I∗1
{2 cos(θ̄) sin2(θ̄)R2[

4

3
− 2R2

9
(
∂θ̄

∂R
)2(R2 − 1)− R2

3
] +

4R5

3
sin3(θ̄)

∂θ̄

∂R

+ 2 cos2(θ̄) sin(θ̄)
∂θ̄

∂R
R3(R2 − 1

3
) + 2R2 cos3(θ̄)− 2

∂θ̄

∂R
R sin(θ̄)}

+
∂2ψ

∂I∗21

(
∂θ̄

∂R
)2{sin2(θ̄) cos(θ̄)R6[4− 2

9
(
∂θ̄

∂R
)2 +

2R2

9
(
∂θ̄

∂R
)2]

− 2R7

3

∂θ̄

∂R
sin3(θ̄) + 4R4 cos3(θ̄)− 2R5

3

∂θ̄

∂R
cos2(θ̄) sin(θ̄)}

+
∂2ψ

∂I∗23

sin2(θ̄) cos(θ̄)R2(1−R2). (3.197)
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If no load is applied, then

c2 = 2
∂ψ

∂I∗1
R2. (3.198)

For the out-plane shear wave d = d3e
∗
3 = e∗3, the wave speed c is varying along the radius

and given by

c =

√
2
∂ψ

∂I∗1
cos(θ̄), (3.199)

after considering equations (3.187), we obtain

c =

√
T

2ρoπR3H ∂θ̄
∂R

. (3.200)

If no load is applied,

c =

√
2
∂ψ

∂I∗1
. (3.201)

The time of flight of the waves propagating from Ro to Ri is evaluated as

t =

∫ Ro

Ri

dR

c
. (3.202)

Torque sensor-forward application

If the nonlinear elastic free energy ψ(I∗1 , I
∗
3 ) is known, for the wave propagation in the simple

shear deformation field under the unknown torques, from the measurement of the time of

flights, we can evaluate the applied torque T , which can be used as the torque sensor.

Considering I∗1 = 3 + ( ∂θ̄∂R)2R2 and I∗3 = 1, and the relations between the material

functions and the deformations given in (3.187), the deformation field θ̄ can be determined

as a function of R and T .

After substituting the deformation θ̄(T,R) into the form of time of flights for the lon-

gitudinal wave, in-plane shear wave, and out-plane shear wave, that can be measured from

experiments, then the value of the torque can be calculated.



CHAPTER 4

Thermo-viscoelastic solids and wave propagation in these

materials

Viscoelastic materials are those which show stress relaxation at all magnitudes of loading,

even at very small loads. Models normally describing viscoelasticity show rate-dependent

response and even yielding-like behavior without the use of a yield function. As such, they

normally are characterized as a different class of material response. Mechanical analogs to

describe the phenomenon seen in viscoelasticity are constructed from springs and viscous

dampers. For a nonlinear response, the components of these analogs can be nonlinear.

We start the chapter by looking at the nonlinear viscoelastic constitutive model which is

constructed from a continuous series of standard linear solids put in parallel. In this process,

we consider the effects of rigid body rotation and the constraints of material symmetry. We

then derive the viscoelastic constitutive models for the thermo-mechanical perturbations.

As a special example, we present the equations for perturbations on a homogeneous pre-

deformation, and consider the examples of attenuating and non-attenuating plane harmonic

waves.

4.1 Viscoelastic solids

The results in this section are developed for a thermodynamically based nonlinear viscoelas-

tic material model. As will be seen, the model is of single integral form, and can be shown
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Figure 4.1: An infinite element analog constructed from elements in parallel that each
separates into a thermal, viscoelastic, and elastic element in series.

to specialize at the limit of infinitesimal deformations to a general single integral linear

thermodynamic viscoelastic response. The analog to the model we use is visualized by an

infinite number of elements put in parallel as shown in Figure 4.1. We take s to denote a

continuous variable used to parameterize these elements so that each s denotes a different

element, and where −∞ < s <∞. Each s is assumed to represent a nonlinear viscoelastic

element, but for the purpose of understanding the model each can be visualized as the sum

of a thermal, a nonlinear viscoelastic Kelvin-Voigt, and a nonlinear elastic element in series.

As shown in Figure 4.1, the deformation gradient F for each element s is assumed to be

composed of three parts given by

F = Fe
sF

ve
s Fθ

s, (4.1)
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where Fe
s is the elastic deformation gradient, Fve

s is the viscoelastic deformation gradient

and Fθ
s is the thermal deformation gradient, paralleling the idea proposed for the struc-

ture of each element, but in a nonlinear multiplicative decomposition. The multiplicative

decomposition of the deformation gradient, originally suggested by Lee [Lee, 1969] in the

context of elastoplasticity, has also been applied in nonlinear viscoelasticity by Sidoroff

[Sidoroff, 1974] and others. As will be shown at the end of this section, the constitutive

assumptions that follow lead to the fact that the decomposition F = Fe
sF

ve
s Fθ

s is uniquely

related to the decomposition F = Fe
sF

θ
sF

ve
s for each given loading history. The parallel

results for a theory based on the decomposition F = Fe
sF

θ
sF

ve
s are given in the appendix.

The response of each element s is assumed to be fully described by the values of the

associated elastic, viscoelastic, and thermal deformation gradients plus the values of tem-

perature and temperature gradient. As such, the model is assuming limited influence of

elements on each other. One can define a state Ss for each element s as

Ss ≡ [Fe
s,F

ve
s ,F

θ
s, θ,G], (4.2)

which fully describes the response of the element. As is commonly done, we start by

assuming equal presence of state variables in all the response functions so that we take the

response functions for the specific free energy ψ, the specific entropy η, the Cauchy stress

T and the heat flux vector q given by the equations

ψs(t) ≡ ψ†s[Fe
s(t),F

ve
s (t),Fθ

s(t), θ(t),G(t)],

ηs(t) ≡ η†s[Fe
s(t),F

ve
s (t),Fθ

s(t), θ(t),G(t)],

Ts(t) ≡ T†s[F
e
s(t),F

ve
s (t),Fθ

s(t), θ(t),G(t)],

qs(t) ≡ q†s[F
e
s(t),F

ve
s (t),Fθ

s(t), θ(t),G(t)], (4.3)

where the superscript “†” denotes the constitutive function used to calculate the specific

quantity. We next assume the total response is the sum of the response in the elements to
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obtain the single integral models

ψ(t) ≡
∫ ∞
−∞

ψs(t)ds,

η(t) ≡
∫ ∞
−∞

ηs(t)ds,

T(t) ≡
∫ ∞
−∞

Ts(t)ds,

q(t) ≡
∫ ∞
−∞

qs(t)ds. (4.4)

As in common, we require the material response to satisfy the second law of thermodynam-

ics. This was given in the form of the Clausius-Duhem inequality in equation (2.20), that

must hold for all admissible processes. For this equation we need the expression of the rate

of change of the free energy. We can calculate this from the assumed constitutive form and

write

ψ̇(t) =

∫ ∞
−∞

ψ̇s(t)ds, (4.5)

where

ψ̇s(t) = ∂Fes(ψ
†
s) : Ḟe

s + ∂Fves (ψ†s) : Ḟve
s + ∂Fθs(ψ

†
s) : Ḟθ

s + ∂θ(ψ
†
s)θ̇ + ∂G(ψ†s) ◦ Ġ. (4.6)

For convenience, we define, respectively, the thermodynamic elastic, back, and thermal

stresses as

TeT
s ≡ ρ∂Fes(ψ

†
s)F

eT
s ,

TbT
s ≡ ρ∂Fves (ψ†s)F

veT
s ,

TθT
s ≡ ρ∂Fθs(ψ

†
s)F

θT
s , (4.7)

and, respectively, define the over stresses from the back and thermal stresses as

∆Tb
s ≡ Fe−1

s Te
sF

e
s −Tb

s, (4.8)

∆Tθ
s ≡ Fve−1

s Fe−1
s Te

sF
e
sF

ve
s −Tθ

s. (4.9)
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We also use the identity

Les = L− Fe
sL

ve
s Fe−1

s − Fe
sF

ve
s LθsF

ve−1
s Fe−1

s , (4.10)

where Les ≡ Ḟe
sF

e−1
s , Lves ≡ Ḟve

s Fve−1
s , and Lθs ≡ Ḟθ

sF
θ−1
s . Once we introduce all these into

the Clausius-Duhem inequality, we arrive at

[

∫ ∞
−∞

TeT
s ds−TT ] : L−

∫ ∞
−∞

∆TbT
s : Lves ds

−
∫ ∞
−∞

∆TθT
s : Lθsds+ ρθ̇

∫ ∞
−∞

[ηs + ∂θ(ψ
†
s)]ds+

1

θ
q ◦ g ≤ 0, (4.11)

which must hold for all admissible processes. We add one additional assumption by taking

the form of thermal expansion as

Lθs ≡ αsθ̇, (4.12)

where αs, a function of the state Ss, represents the coefficient of thermal expansion for

element s. A sufficient, but not too restrictive, condition to satisfy the Clausius-Duhem

inequality is then given by assuming each element is dissipative and that its free energy

does not depend on the temperature gradient. This sufficient condition can be written as

T =

∫ ∞
−∞

Te
sds,

η = −
∫ ∞
−∞

[∂θ(ψ
†
s)−

1

ρ
∆TθT

s : αs]ds,

−∆TbT
s : Lves ≤ 0,

1

θ
qs ◦ g ≤ 0. (4.13)

A fairly general viscoelastic model can be developed by taking for each element a nonlinear

evolution equation (flow law) of the form

Lves ≡ Cs : ∆TbT
s , (4.14)

where Cs is a fourth order coefficient function depending on the state Ss at the current

time, excluding dependence on the temperature gradient. This is the form we consider for
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our study, which, from the Clausius-Duhem inequality, must always satisfy

∆TbT
s : Cs : ∆TbT

s ≥ 0, (4.15)

for every admissible over stress ∆Tb
s. In our development we also leave off the dependence

on the temperature gradient for all variables other than the heat flux vector.

A simplification of the model for a finite number of elements can be easily obtained by

changing the integrals to sums over a finite number of individual elements. Also, addition

of a thermo-elastic element in parallel with the continuous system can easily express the

equilibrium stress for systems that do not include a back stress in the elements (i.e., systems

that have elements that resemble the Maxwell fluid).

There are some possible choices available in the literature for modeling the evolutions

of viscoelastic flows. For example, for the case of isotropy, Lion [Lion, 1997] and Reese

and Govindjee [Reese and Govindjee, 1998, Reese and Govindjee, 1997] proposed thermo-

dynamical consistent constitutive models for finite deformation viscoelasticity that utilize

nonlinear evolution laws by employing nonlinear viscosities which can be shown to be spe-

cial forms of the viscoelastic flow coefficient function Cs we introduced above. Their models

are based on an additive split of the Helmholtz free energy into an equilibrium and a non-

equilibrium part and multiplicative decomposition of the deformation gradient F into an

elastic part Fe and an inelastic part Fi as F = FeFi, where Fi is the internal parameter to

be determined from the evolution equations.

The assumptions we used to create the viscoelasticity theory have a special structure

that relates the models formulated based on the decomposition F = Fe
sF

ve
s Fθ

s to models

constructed based on the decomposition F = Fe
sF

θ
sF

ve
s . To see this relation, consider

having two theories that start from similar assumptions, but one is based on the former

decomposition and the other is based on the latter. For each we would have a flow rule

and thermal expansion rule. The flow rules for Lves and L ve
s would each be given by the

associated variables defining the state, but would not depend on the rates. The thermal
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expansions would be given by

Lθs = αsθ̇, (4.16)

L θ
s = αsθ̇, (4.17)

where, again, αs and αs would each be given by the associated variables defining the state,

but would not depend on the rates. If we now consider the relation Fve
s Fθ

s = Fθ
sF

ve
s and

take its time derivative, we would get

Ḟve
s Fθ

s + Fve
s Ḟθ

s = Ḟ θ
sF ve

s + Fθ
sḞ

ve
s , (4.18)

which could be rewritten as

Lves Fve
s Fθ

s + Fve
s LθsF

θ
s = L θ

sFθ
sF

ve
s + Fθ

sL
ve
s F ve

s . (4.19)

We can now introduce the thermal expansion rules to get

Lves Fve
s Fθ

s + Fve
s αsF

θ
s θ̇ = αsF

θ
sF

ve
s θ̇ + Fθ

sL
ve
s F ve

s . (4.20)

If we examine the terms, only the second and third terms depend on the rate of loading,

which in this case is characterized by the temperature rate. If we assume the temperature

rate can be selected arbitrarily, then the relation can only be satisfied if the first term equals

the fourth term, and the second term equals the third term. This gives

Lves Fve
s Fθ

s = Fθ
sL

ve
s F ve

s , (4.21)

Fve
s αsF

θ
s = αsF

θ
sF

ve
s , (4.22)

and can be reorganized to get the relations

αs = Fve
s αsF

ve−1
s , (4.23)

Fθ
sL

ve
s F θ−1

s = Lves . (4.24)
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Examination of the relations brings us to the conclusion that if one constructs the thermal

expansion and flow rule for one assumed decomposition, then the values of the thermal

expansion and flow rule for the other decomposition are uniquely defined. Since we can

integrate these equations for each given loading history to get the corresponding thermal

and viscoelastic deformation gradients, this result states that for each loading history the

two decompositions are uniquely related. Therefore, models based on one decomposition

will be closely related to models based on the other, and would use state parameters that

could be calculated, even though not algebraically, from each other.

4.2 Superposition of rigid body rotations

How the “internal parameters” Fve
s and Fθ

s are influenced by rigid body motions strongly

influences how the resulting thermodynamic model behaves. In particular, it can be shown

that certain selections result in expressions that are consistent with other imposed con-

ditions, such as the symmetry of Cauchy stress that results from the balance of angular

momentum. This section will look at one such selection and its influence on the resulting

expressions.

Let us look at the expected effect of imposing rigid body rotations on the history. As can

be seen in Fig. 4.2, pure rigid body rotations move points on the body on arcs of spheres

defined by the particular point on the body, the center of rotation, and the specified rotation.

Given the motion of a body as x(X, t), a motion derived from this by superimposing rigid

body rotations about xo(s) can be written as

x∗(X, s) = Q(s)[x(X, s)− xo(s)] + xo(s), (4.25)

where Q(s) is an orthogonal tensor representing a rigid body rotation, and s takes values

from the starting time to to the current time t. Consider a general first gradient material

having a response R(X, t) given by

R(X, t) = {ψ(X, t), η(X, t),T(X, t),q(X, t)}, (4.26)
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Figure 4.2: Rigid body rotation of the current configuration by Negahban [Negahban, 2012].

when subjected to the history described by x(X, s) and the response R∗(X, t) given by

R∗(X, t) = {ψ∗(X, t), η∗(X, t),T∗(X, t),q∗(X, t)}, (4.27)

when subjected to the history described by x∗(X, s). It would be expected that the rigid

body rotations should not alter the value of the specific free energy and specific entropy.

The influence of rigid body motions on the stress is normally dictated by the influence of

rigid body motions on the traction. Normally, a rigid body motion is assumed to reorient

the traction by the amount of the rigid body rotation. As shown in Fig. 4.3, if the body

is rotated by a rigid body rotation given by the orthogonal transformation Q, then any

normal n̂ transforms to n̂∗ = Qn̂ and the traction on the surface with normal n̂ given by tn

changes to t∗(n
∗) = Qt(n). This can be shown to require that the Cauchy stress T changes
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to the Cauchy stress T∗ = QTQT . As for the traction, the heat flux vector is assumed to

rotate by the amount of the rigid body rotation so that we can write

R∗(X, t) = {ψ(X, t), η(X, t),Q(t)T(X, t)QT (t),Q(t)q(X, t)}. (4.28)

The general response functional R† for the first gradient material can be written as

R(X, t) = R†
t

[X,x(X, s),F(X, s), θ(X, s),G(X, s)]
s=to

. (4.29)

This same response functional should give R∗(X, t) when introducing into it the “∗” history

so that we should have

R∗(X, t) = R†
t

[X,Q(s)[x(X, s)− xc(s)] + xc(s),Q(s)F(X, s), θ(X, s),G(X, s)]
s=to

. (4.30)

Assumptions of invariance to rigid body motions is given by the assumption that when

the history of the deformation is transformed through F(t) → F∗(t) = Q(t)F(t), and the

internal parameters are unaffected by rigid body motions superimposed and follow the rules

Fe
s(t)→ Fe∗

s (t) = Q(t)Fe
s(t), (4.31)

Fve
s (t)→ Fve∗

s (t) = Fve
s (t),

Fθ
s(t)→ Fθ∗

s (t) = Fθ
s(t),

which is consistent with the assumption F∗ = Fe∗
s Fve∗

s Fθ∗
s = QF.

We postulate that the free energy is not affected by rigid body motions and follows the

rule

ψs(t)→ ψ∗s(t) = ψs(t), (4.32)

which also gives the rule

ηs(t)→ η∗s(t) = ηs(t). (4.33)
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Figure 4.3: Two deformation histories that are identical but for the fact that each con-
figuration in one is obtained by an arbitrary rigid body translation and rotation of the
configuration of other is assumed to simply rotate the traction vector by the final amount
of rotation by Negahban [Negahban, 2012].

The thermodynamic stresses in each element s have the properties

Te
s(t)→ Te∗

s (t) = Q(t)Te
s(t)Q

T (t), (4.34)

Tb
s(t)→ Tb∗

s (t) = Tb
s(t),

Tθ
s(t)→ Tθ∗

s (t) = Tθ
s(t),

which result in the over-stresses in each element s having the properties

∆Tb
s(t)→ ∆Tb∗

s (t) = ∆Tb
s(t), (4.35)

∆Tθ
s(t)→ ∆Tθ∗

s (t) = ∆Tθ
s(t).
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The viscoelastic flow rule coefficient and the thermal expansion coefficient in each element

s follow the rule

Cs(t)→ C∗s(t) = Cs(t), (4.36)

αs(t)→ α∗s(t) = αs(t).

Since Q(s) is an arbitrary rotation, we can select Q(s) = ReT
s (s), where Re

s is the orthogonal

part in the polar decomposition of Fe
s(s) = Re

s(s)U
e
s(s). This selection requires that the

free energy in each element s has the property

ψ†s[F
e
s(t),F

ve
s (t),Fθ

s(t), θ(t)] = ψ†s[U
e
s(t),F

ve
s (t),Fθ

s(t), θ(t)], (4.37)

and requires that the viscoelastic flow rule coefficient and the thermal expansion coefficient

in each element s have the property

C†s[F
e
s(t),F

ve
s (t),Fθ

s(t), θ(t)] = C†s[U
e
s(t),F

ve
s (t),Fθ

s(t), θ(t)], (4.38)

α†s[F
e
s(t),F

ve
s (t),Fθ

s(t), θ(t)] = α†s[U
e
s(t),F

ve
s (t),Fθ

s(t), θ(t)].

4.3 Material symmetry constraints

We next will look at imposing material symmetry on the constitutive functions. Symme-

try in the material’s response can substantially limit the possible forms of the constitutive

equations and, therefore, simplify the process of characterizing the material response. The

basic idea behind material symmetry is introduced in Chapter 3. In this section we will

focus on imposing material symmetry in the context of the current viscoelastic constitutive

model. We will let M denote a general transformation representing a symmetry of the ma-

terial at a material point of consideration. As was discussed before, M is a transformation

that represents a reorganization of the neighborhood of the given point in the reference

configuration, and this transformation changes the neighborhood in a way that leaves it

thermodynamically indistinguishable from before reorganization. A symmetry of the ma-

terial represented by the transformation M allows us to change the history of deformation
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gradient F(t) to F(t)M for any deformation gradient history without seeing a change in the

response of the material at that point. We denote this change of history by a “∼” over the

symbol and write it as F(t) → F̃(t) = F(t)M. To construct a consistent theory, we need

to have the kinematic variables Fe
s, Fve

s , and Fθ
s change in a way that is consistent with

F(t) → F̃(t) = F(t)M. To create such a consistent relation, we will assume the internal

parameters transform in response to this change by

Fe
s(t)→ F̃e

s(t) = Fe
s(t)M, (4.39)

Fve
s (t)→ F̃ve

s (t) = M−1Fve
s (t)M,

Fθ
s(t)→ F̃θ

s(t) = M−1Fθ
s(t)M,

which is consistent with the condition F̃ = F̃e
sF̃

ve
s F̃θ

s = FM. The assumption that the

free energy of each element s is the same in value for a change in the deformation history

described by F→ FM can be written as

ψs(t)→ ψ̃s(t) = ψs(t), (4.40)

and giving the rule for specific entropy

ηs(t)→ η̃s(t) = ηs(t). (4.41)

A consistent set of assumptions on how the thermodynamic stresses change are given by

the rules

Te
s(t)→ T̃e

s(t) = Te
s(t), (4.42)

Tb
s(t)→ T̃b

s(t) = M−1Tb
s(t)M,

Tθ
s(t)→ T̃θ

s(t) = M−1Tθ
s(t)M,
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which result in the thermodynamic over-stresses change in a similar way

∆Tb
s(t)→ ∆T̃b

s(t) = M−1∆Tb
s(t)M, (4.43)

∆Tθ
s(t)→ ∆T̃θ

s(t) = M−1∆Tθ
s(t)M.

The restriction imposed by material symmetry on the viscoelastic flow coefficient then

becomes

C̃s : (MT∆TbT
s M−T ) = M−1(Cs : ∆TbT

s )M, (4.44)

and the constraint on the coefficient of thermal expansion becomes

αs(t)→ α̃s(t) = M−1αs(t)M. (4.45)

A full thermodynamic multi-dimensional model would be obtained once we specify a func-

tion for the specific free energy, the viscoelastic velocity gradient, the thermal expansion

coefficient, and the heat flux, keeping in mind that in all processes Lves and qs need to

satisfy the thermodynamic constraints.

4.4 Constitutive models for the perturbations

In Chapter 2 we developed the balance laws and their boundary and jump conditions for the

perturbations. We will now evaluate the constitutive equations for these perturbations. We

first start by decomposing the perturbation into elastic, viscoelastic and thermal parts, then

derive the perturbation term for the stress, followed by those for the free-energy, entropy,

and heat flux. Finally, we evaluate the evolution rules for the perturbations of the internal

parameters and then integrate them to obtain a general solution.

4.4.1 Decomposition of the perturbation into elastic, viscoelastic, and

thermal parts

In the constitutive model both the base deformation and total deformation are each sepa-

rated into elastic, viscoelastic, and thermal parts. The constitutive model provides evolution
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equations for the viscoelastic and thermal parts of each and so in each case leaves the elastic

part to be matched against the applied stress. As will be shown here, we can also setup the

perturbation to have the same form.

For the base history the deformation gradient F(t) is decomposed into the elastic de-

formation gradient Fe
s(t), the viscoelastic deformation gradient Fve

s (t) and the thermal

deformation gradient Fθ
s(t) so that

F(t) = Fe
s(t)F

ve
s (t)Fθ

s(t). (4.46)

For the total history, the total deformation gradient F∗(t) is also decomposed into the elastic

deformation gradient F∗es (t), the viscoelastic deformation gradient F∗ves (t) and the thermal

deformation gradient F∗θs (t) so that

F∗(t) = F∗es (t)F∗ves (t)F∗θs (t). (4.47)

The relations of the elastic, viscoelastic and thermal parts in the base history and in the

total history are described in Figure 4.4, where, F̃e
s(t), F̃ve

s (t) and F̃θ
s(t) are the relative

“increment” of elastic, viscoelastic and thermal deformation gradients comparing each pair.

The actual change in these deformation gradients from the base history to the total history

is given by

δFe
s(t) = F∗es (t)− Fe

s(t) = F̃e
s(t)F

e
s(t)− Fe

s(t) = H̃e
s(t)F

e
s(t),

δFve
s (t) = F∗ves (t)− Fve

s (t) = F̃ve
s (t)Fve

s (t)− Fve
s (t) = H̃ve

s (t)Fve
s (t),

δFθ
s(t) = F∗θs (t)− Fθ

s(t) = F̃θ
s(t)F

θ
s(t)− Fθ

s(t) = H̃θ
s(t)F

θ
s(t), (4.48)

where H̃e
s(t) = F̃e

s(t)− I is the displacement gradient for the elastic perturbation, H̃ve
s (t) =

F̃ve
s (t)−I is the displacement gradient for the viscoelastic perturbation, and H̃θ

s(t) = F̃θ
s(t)−

I is the displacement gradient for the thermal perturbation. As the perturbation is small,

it can be shown that the increments represent small differences so that the deformation

gradients are close to I. We can also define a direct separation of the perturbed deformation

gradients F̌(t) = F̌e
s(t)F̌

ve
s (t)F̌θ

s(t) and obtain their relations with the “∼” variables as shown
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Figure 4.4: Decompositions of the perturbation into elastic, viscoelastic, and thermal parts
[Zhang and Negahban, 2012].

in Figure 4.4. This allows us to define a consistent set of relations given by

F̌e
s(t) ≡ F̃e

s(t),

F̌ve
s (t) ≡ Fe

s(t)F̃
ve
s (t)Fe−1

s (t),

F̌θ
s(t) ≡ Fe

s(t)F
ve
s (t)F̃θ

s(t)F
ve−1
s (t)Fe−1

s (t). (4.49)

We can introduce the displacement gradient for F̌e
s(t) = I + Ȟe

s(t), F̌ve
s (t) = I + Ȟve

s (t), and
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F̌θ
s(t) = I + Ȟθ

s(t). Solving for these we get

Ȟe
s(t) = H̃e

s(t),

Ȟve
s (t) = Fe

s(t)H̃
ve
s (t)Fe−1

s (t),

Ȟθ
s(t) = Fe

s(t)F
ve
s (t)H̃θ

s(t)F
ve−1
s (t)Fe−1

s (t). (4.50)

It can be shown that F̌e
s(t), F̌ve

s (t) and F̌θ
s(t) are each close to I, therefore resulting in

infinitesimal Ȟe
s(t), Ȟve

s (t) and Ȟθ
s(t).

It should be emphasized here that the perturbations of the kinematic variables obtained

in (4.50) can be applied to time changing states, which obviously include as special cases

the thermodynamic equilibrium states. Therefore we can reduce the incremental kinematic

relations (4.50) to the case studied by Lion [Lion, 1998] where the small mechanical per-

turbation was superimposed in the vicinity of the thermodynamic equilibrium state of the

pre-deformation by simply holding Fe
s(t), Fve

s (t), and Fθ
s(t) all constant in time during the

disturbances.

Since the perturbations imposed are infinitesimal, after eliminating the second and

higher orders of the infinitesimal terms, we get the following approximations

F̌−1(t) ≈ I− Ȟ(t),

F̌e−1
s (t) ≈ I− Ȟe

s(t),

F̌ve−1
s (t) ≈ I− Ȟve

s (t),

F̌θ−1
s (t) ≈ I− Ȟθ

s(t),

Ȟe
s(t) ≈ Ȟ(t)− Ȟve

s (t)− Ȟθ
s(t). (4.51)

4.4.2 Perturbation of the stress by a change in history

To calculate the stress differences between the base and total history, we start by calculating

the stress differences between the components of each element and then integrate them.

Since the thermodynamic stresses evaluated for each element are only a function of the

state of the element, minus the temperature gradient, given that the changes are small,

we can calculate the change by using a Taylor series expansion. After integrating over the
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element, this process gives the difference between the stresses for the base and total history.

We start this process by calculating for each element the approximation to δTeT
s (t) =

T∗eTs (t)−TeT
s (t) and δTbT

s (t) = T∗bTs (t)−TbT
s (t). In each element the difference between the

thermodynamic elastic stresses from the base history and the total history is approximated

by taking its derivative with respect to each variable and multiplying it by the change in

the variable and finally adding the results to get

δTeT
s = Ees : δFe

s + Eves : δFve
s + Eθs : δFθ

s + Eθ
sδθ, (4.52)

where the coefficients are associate tangent moduli with respect to the given variables and

evaluated at the base history. They are defined as

Ees ≡ ∂Fes(T
eT †
s ),

Eves ≡ ∂Fves (TeT †
s ),

Eθs ≡ ∂Fθs(T
eT †
s ),

Eθ
s ≡ ∂θ(TeT †

s ). (4.53)

Similarly, we calculate the difference of the back stresses from

δTbT
s = Ebes : δFe

s + Ebves : δFve
s + Ebθs : δFθ

s + Ebθ
s δθ, (4.54)

where,

Ebes ≡ ∂Fes(T
bT †
s ),

Ebves ≡ ∂Fves (TbT †
s ),

Ebθs ≡ ∂Fθs(T
bT †
s ),

Ebθ
s ≡ ∂θ(TbT †

s ). (4.55)

We can now replace for the changes in the variables in terms of the “∼” variables to get the

total thermodynamic stresses in an element from its values at the same time in the base
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history from the equations

T∗eTs = TeT
s + δTeT

s

= TeT
s + Ees : (H̃e

sF
e
s) + Eves : (H̃ve

s Fve
s ) + Eθs : (H̃θ

sF
θ
s) + Eθ

sδθ,

T∗bTs = TbT
s + δTbT

s

= TbT
s + Ebes : (H̃e

sF
e
s) + Ebves : (H̃ve

s Fve
s ) + Ebθs : (H̃θ

sF
θ
s) + Ebθ

s δθ. (4.56)

Integration of the elastic part over s provides the change in the Cauchy stress as

δT(t) =

∫ ∞
−∞

δTe
s(t)ds. (4.57)

Taking account of the symmetry of the Cauchy stress δT(t) = δTT (t) or δTe
s = δTeT

s and

eliminating the elastic deformation gradient in favor of F, this can be written as

δT =

∫ ∞
−∞

[(EesF
ve−T
s Fθ−T

s FT ) : (Ȟ− Ȟve
s − Ȟθ

s) + (Eves Fθ−T
s FT ) : (Fve

s Fθ
sF
−1Ȟve

s )]ds

+

∫ ∞
−∞

[(EθsF
T ) : (Fθ

sF
−1Ȟθ

s) + (δθ)Eθ
s]ds. (4.58)

4.4.3 Perturbations of the free energy, entropy and heat flux vector

The perturbations of the free energy, entropy and heat flux vector are obtained from steps

similar to those described for the stress. We start first by defining the perturbation for each

element s of the free energy, entropy and heat flux vector, respectively, as δψs = ψ∗s − ψs,

δηs = η∗s − ηs, and δqs = q∗s − qs. Noting the dependence of these functions on the state

variables, we obtain first order approximations for these perturbations given by

δψs(t) = ∂Fes(ψ
†
s) : δFe

s + ∂Fves (ψ†s) : δFve
s + ∂Fθs(ψ

†
s) : δFθ

s + ∂θ(ψ
†
s)δθ,

δηs(t) = ∂Fes(η
†
s) : δFe

s + ∂Fves (η†s) : δFve
s + ∂Fθs(η

†
s) : δFθ

s + ∂θ(η
†
s)δθ,

δqs(t) = ∂Fes(q
†
s) : δFe

s + ∂Fves (q†s) : δFve
s + ∂Fθs(q

†
s) : δFθ

s + ∂G(q†s)δG + ∂θ(q
†
s)δθ, (4.59)

where δG = Grad(δθ) is the gradient of δθ with respect to motions in the reference

configuration. It should be noted here that from the relations assumed so as to satisfy
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the Clausius-Duhem inequality, we can directly obtain the forms for the entropy η∗s(t)

and ηs(t), and choose the possible constitutive function for q∗s and qs taking account of

1
θqs ◦ g ≤ 0 and 1

θ∗q
∗
s ◦ g∗ ≤ 0. For example, one simple choice of the heat flux in the

isotropic case is the linear Fourier model considered in Lion and Reese et al. [Lion, 1997,

Reese and Govindjee, 1997].

From the assumptions in (4.4), we have the following incremental relations between the

overall responses at a material point and the responses in each element as

δψ =

∫ ∞
−∞

(δψs)ds,

δη =

∫ ∞
−∞

(δηs)ds,

δq =

∫ ∞
−∞

(δqs)ds. (4.60)

4.4.4 Evolution rules for the incremental perturbation of the internal

parameters

In the constitutive equation for each element there are two internal variables that must

evolve based on the state of the element. These variables are the viscoelastic and thermal

deformation gradients. The evolution of these variables will be different for the base and the

total histories, and so their difference will change based on how the two change. As such,

the variables we have chosen to describe the perturbation between the internal variables of

the two histories will have evolution equations that reflect the expected difference in the

evolutions in the two histories. We will use the evolutions for the two histories to calculate

in this section the evolution equations for the perturbation variables for the viscoelastic and

thermal deformation gradients. We note that the relation between the velocity gradient

and the deformation gradient rate is given by L = ḞF−1, and that similar rules are true for

the associated internal variables so that for the base history we can write Ḟve
s = Lves Fve

s and

Ḟθ
s = LθsF

θ
s. Using this we can reorganize the evolution equations given for the viscoelastic
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and thermal deformation gradients and for each element, during the base history, we obtain

Ḟve
s = [Cs : (FeT

s TeT
s Fe−T

s −TbT
s )]Fve

s ,

Ḟθ
s = αsF

θ
s θ̇. (4.61)

In a similar fashion, the same evolution equations for the total history are given by

Ḟ∗ves = [C∗s : (F∗eTs T∗eTs F∗e−Ts −T∗bTs )]F∗ves ,

Ḟ∗θs = α∗sF
∗θ
s θ̇
∗. (4.62)

The thermal expansion coefficient tensor αs(t) and the viscoelastic flow parameter Cs(t) in

each element s are also effected by the thermo-mechanical perturbation, and these material

functions for the base history and the total history are related by

α∗s(t) = αs(t) + δαs(t),

C∗s(t) = Cs(t) + δCs(t), (4.63)

where α∗s(t) and C∗s(t) are the thermal expansion parameter and the viscoelastic flow pa-

rameter in the total history, αs(t) and Cs(t) are the thermal expansion parameter and the

viscoelastic flow parameter in the base history, and δαs(t) and δCs(t) are the incremental

thermal expansion parameter and the incremental viscoelastic flow parameter from the per-

turbation. Since αs(t) and Cs(t) are assumed to be functions of the state of the element,

we define the following coefficents which are the derivatives of αs and Cs with respect to

their associate variables and given by

aes ≡ ∂Fes(α
†
s),

aves ≡ ∂Fves (α†s),

aθs ≡ ∂Fθs(α
†
s),

αθs ≡ ∂θ(α†s), (4.64)
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and

De
s ≡ ∂Fes(C

†
s),

Dve
s ≡ ∂Fves (C†s),

Dθ
s ≡ ∂Fθs(C

†
s),

Cθs ≡ ∂θ(C†s), (4.65)

where aes, a
ve
s , aθs and Cθs are fourth order tensor functions, αθs is a second order tensor, De

s,

Dve
s and Dθ

s are sixth order tensor functions.

After substituting the increments of the kinematics variables given in (4.48), we obtain

the increments δαs and δCs for the thermal expansion and the viscoelastic flow in terms of

the “∼” variables as

δαs = aes : (H̃e
sF

e
s) + aves : (H̃ve

s Fve
s ) + aθs : (H̃θ

sF
θ
s) +αθsδθ, (4.66)

δCs = De
s : (H̃e

sF
e
s) + Dve

s : (H̃ve
s Fve

s ) + Dθ
s : (H̃θ

sF
θ
s) + Cθsδθ, (4.67)

with the parameters aes, a
ve
s , aθs, α

θ
s, D

e
s, D

ve
s , Dθ

s and Cθs evaluated in the base history.

The relations for the time derivatives are given by

θ̇∗(t) = θ̇(t) + δθ̇(t), (4.68)

and

Ḟ∗es (t) = ˙̃Fe
s(t)F

e
s(t) + F̃e

s(t)Ḟ
e
s(t),

Ḟ∗ves (t) = ˙̃Fve
s (t)Fve

s (t) + F̃ve
s (t)Ḟve

s (t),

Ḟ∗θs (t) = ˙̃Fθ
s(t)F

θ
s(t) + F̃θ

s(t)Ḟ
θ
s(t). (4.69)

By using (4.68) and (4.69) and manipulating the two sets of evaluation equations (4.61) and

(4.62) for the two histories, we get the effects of the perturbation on the flow rules through

the following two coupled first order differential equations with the unknown incremental



109

internal variables H̃ve
s (t) and H̃θ

s(t) given by

Ḟθ
s + ˙̃Hθ

sF
θ
s + H̃θ

sḞ
θ
s = (θ̇ + δθ̇)(αs + δαs)(I + H̃θ

s)F
θ
s,

˙̃Hve
s Fve

s + Ḟve
s + H̃ve

s Ḟve
s

= {(Cs + δCs) : [FeT
s (I + H̃eT

s )(TeT
s + δTeT

s )(I− H̃eT
s )Fe−T

s

− (TbT
s + δTbT

s )]}(I + H̃ve
s )Fve

s . (4.70)

We use the relations between Ȟe
s and H̃e

s, Ȟve
s and H̃ve

s , and Ȟθ
s and H̃θ

s given in (4.50),

and simplify the notation in (4.70) by using Γθs(t) ≡ Ȟθ
s(t)F(t) and Γves (t) ≡ Ȟve

s (t)F(t) to

denote the unknown values, and δθ(t) and Γ(t) ≡ Ȟ(t)F(t) as the known values. From this

we get the following two modified equations. The first becomes

Γ̇θs =(θ̇ + δθ̇)FFθ−1
s [(aesF

ve−T
s Fθ−T

s ) : (Γ− Γves − Γθs)

+ (aves Fθ−T
s ) : (Fve

s Fθ
sF
−1Γves ) (4.71)

+ aθs : (Fθ
sF
−1Γθs)]F

θ
s + [(δθ̇)FFθ−1

s αsF
θ
sF
−1 + ḞF−1]Γθs

+ FFθ−1
s [(θ̇ + δθ̇)(δθ)αθs + (δθ̇)αs]F

θ
s,

which can be simplified to the form

Γ̇θs(t) = Bθs(t) : Γθs(t) + Bves (t) : Γves (t) + Bs(t) : Γ(t) + θs(t). (4.72)
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The second equation becomes

Γ̇ves + θ̇FFθ−1
s αsF

θ
sF
−1Γves − ḞF−1Γves − θ̇Γves Fθ−1

s αsF
θ
s

= FFθ−1
s Fve−1

s {Cs : [Fve−T
s Fθ−T

s FT (δTeT
s )F−TFθT

s FveT
s

+ Fve−T
s Fθ−T

s (ΓT − ΓveTs − ΓθTs )TeT
s F−TFθT

s FveT
s

− Fve−T
s Fθ−T

s FTTeT
s F−T (ΓT − ΓveTs − ΓθTs )F−TFθT

s FveT
s

− δTbT
s ]}Fve

s Fθ
s + FFθ−1

s Fve−1
s {[De

s : ((Γ− Γves − Γθs)F
θ−1
s Fve−1

s )

+ Dve
s : (Fve

s Fθ
sF
−1Γves Fθ−1

s )

+ Dθ
s : (Fθ

sF
−1Γθs) + Cθsδθ] : (FeT

s TeT
s Fe−T

s −TbT
s )}Fve

s Fθ
s, (4.73)

which can be organized into the form

Γ̇ves (t) = Yve
s (t) : Γves (t) + Yθ

s(t) : Γθs(t) + Ys(t) : Γ(t) + ηs(t). (4.74)

In these two simplified forms, Bθs(t), B
ve
s (t), Bs(t), Y

ve
s (t), Yθ

s(t) and Ys(t) are fourth order

tensors, θs(t) and ηs(t) are second order tensors.

In order to solve the tensor form differential equations (4.72) and (4.74), we should

represent the tensors in a curvilinear coordinate system and then solve the differential

equations in the component form. For simplicity, here we choose an orthonormal base and

write the corresponding component form in this base as

Γ̇θs ij(t) = Bθs ijkl(t)Γ
θ
s kl(t) + Bves ijkl(t)Γ

ve
s kl(t) + Bs ijkl(t)Γkl(t) + θs ij(t),

Γ̇ves ij(t) = Yves ijkl(t)Γ
ve
s kl(t) + Yθs ijkl(t)Γ

θ
s kl(t) + Ys ijkl(t)Γkl(t) + ηs ij(t). (4.75)

To solve this system of first order differential equations, we organize the unknows into a

one-dimensional array denoted by χs that takes the form

χs ≡ (Γves 11,Γ
ve
s 12,Γ

ve
s 13,Γ

ve
s 21, ...,Γ

θ
s 11,Γ

θ
s 12,Γ

θ
s 13,Γ

θ
s 21, ...). (4.76)

To do this, we introduce two transformations Tijk and Kijk which can transform the com-
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ponents of Γves and Γθs into the one-dimensional array χs through the relation

χs i = TijkΓ
ve
s jk +KijkΓ

θ
s jk, (4.77)

where Tijk = 0 for i = 10, ..., 18 and Kijk = 0 for i = 1, ..., 9, and the remaining values are

either zero or one, defined by the pattern of χs. The inverse transformations are given as

Γves ij = T−1
ijkχs k, Γθs ij = K−1

ijkχs k. (4.78)

After substituting the transformations (4.78) into (4.75), and then substituting into the

time derivative of (4.77), we get the first order system of differential equations

χ̇s(t) = As(t)χs(t) + fs(t), (4.79)

where, the component of the coefficient matrix As mn(t) and the component of the inhomo-

geneous array fs m(t) are given as

As mn(t) =TmijY
ve
s ijkl(t)T

−1
kln +KmijB

ve
s ijkl(t)T

−1
kln +KmijB

θ
s ijkl(t)K

−1
kln

+ TmijY
θ
s ijkl(t)K

−1
kln, (4.80)

fs m(t) =TmijYs ijkl(t)Γkl(t) + Tmijηs ij(t) +KmijBs ijkl(t)Γkl(t) +Kmijθs ij(t). (4.81)

From the existence and uniqueness theorem, there exists a unique solution, since the co-

efficient matrix [As(t)] and the inhomogeneous array [fs(t)] are continuous. The general

solution to the system (4.79) is provided by Myskis [Myskis, 1975] as

χs(t) =

∫ t

ti

Ys(t, τ)fs(τ)dτ + Ys(t, ti)χsi, (4.82)

under the initial condition χsi = χs(ti), and where,

Ys(t, ti) =I +

∫ t

ti

As(τ1)dτ1 +

∫ t

ti

As(τ1)

∫ τ1

ti

As(τ2)dτ2dτ1

+

∫ t

ti

As(τ1)

∫ τ1

ti

As(τ2)

∫ τ2

ti

As(τ3)dτ3dτ2dτ1 + ... . (4.83)
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From the general solution for χs(t) given in (4.82) and the inverse transformations from

χs(t) to Γves (t) and Γθs(t), we then can calculate the increments of the internal variables

Ȟve
s (t) and Ȟθ

s(t).

4.5 Homogeneous pre-deformation

As a special example, in this section we look at the equations for perturbations on a ho-

mogeneous pre-deformation, and consider the examples of attenuating and non-attenuating

plane harmonic waves.

For a homogeneous pre-deformation the general equations for the balance laws given in

(2.51) and (2.57) can be simplified by setting the divergence and gradients of the homoge-

neous terms equal to zero. For the balance of linear momentum this results in

[Grad(δT)−TGrad(ȞT )] : F−T + TF−TGrad(ε̌v) + ρδb = ρδü. (4.84)

The equation for balance of work and energy for a homogeneous pre-loading can be written

as

− (JF−T ) : [Grad(δq)− qGrad(ȞT ) + q⊗Grad(ε̌v)]

+ Jtr[(T + δT− ȞT + ε̌vT) ˙̌H + (δT− ȞT + ε̌vT + TȞ)L]

+ ρoδr = ρo[δψ̇ + θ̇δη + ηδθ̇ + (δθ̇)(δη) + θδη̇ + η̇δθ + (δθ)(δη̇)]. (4.85)

These special balance equations for homogeneous pre-loadings can be further simplified by

selecting additional assumptions on the base history and the perturbations. For example,

one can study different aspects of the problem of propagations of specific types of pertur-

bations, one can decouple the thermal effect from the mechanical loadings by controlling

the temperature field, or one can assume that the base history is “static” compared to the

perturbations. In particular, for example one can specify the form of the perturbations, like

the case considered by Destrade et al. [Destrade et al., 2009] where incompressible two-

dimensional waves were superimposed on a static deformed body by taking one component

of δu equal to zero.
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Figure 4.5: Space attenuating and time damping plane harmonic wave and a pure harmonic
wave.

In the following we consider the case of isothermal plane harmonic waves in an isothermal

static and homogeneously pre-deformed body, obtaining the general mechanical equations

for such waves.

4.5.1 Isothermal plane waves propagating in a homogeneous pre-deformed

body

The characteristics of propagation of time harmonic and time damping plane waves provide

a natural tool for addressing the material stability of the deformed body. In this section

we restrict our analysis to some simple perturbation types, find the relations between the

material parameters, the pre-deformations and the superimposed wave properties, then

reduce the present results to those provided in other studies. In particular, we assume that
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the loading rate of the base history is slow enough compared to the propagations of the

superimposed waves, so that we can take the variables associated with the base history as

constant in time.

The base and the total histories are described by

H(ti, t) = {[x(X, τ), θr]|ti < τ < t},

H∗(ti, t) = {[x∗(X, τ), θr]|ti < τ < t}, (4.86)

where θr is the constant reference temperature for both loading histories, therefore, the two

processes are kept isothermal.

Space attenuating and time damping plane wave in a homogeneous pre-de-

formed viscoelastic body

Let us look at a homogeneous plane wave which attenuates in space and decays in time and

can be described by

δu(x, t) = ue−αn·xe−βt cos[ω(t− n · x
c

)]d, (4.87)

where, as shown in Figure 4.5, u is the magnitude of the superimposed displacement vector,

d is a unit vector along the displacement direction, α is the spatial attenuation coefficient,

β is the time damping factor, n is a unit vector along the wave propagation direction, ω is

the circular frequency, c is the wave speed, and x is the position vector in the intermediate

configuration. It is clear to see that the amplitude variation has two parts, one is from the

spatial attenuation and the other is from the time decay.

From the displacement equation of the imposed wave (4.87), we can calculate the per-

turbation displacement gradient Ȟ as

Ȟ =ue−βte−αn·(X+u){−α cos[ω(t− n ·X + n · u
c

)]

+ (
ω

c
) sin[ω(t− n ·X + n · u

c
)]}d⊗ n. (4.88)
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The acceleration of this imposed displacement is calculated from

δü(t) =ue−αn·(X+u)e−βt{(β2 − ω2) cos[ω(t− n · (X + u)

c
)]

+ 2βω sin[ω(t− n · (X + u)

c
)]}d. (4.89)

We substitute the perturbation displacement gradient into (4.79) to get the evolution of the

viscoelastic deformation for this mechanical perturbation, and keeping in mind that Fθ
s = I

and F̃θ
s = I since the temperature field is kept constant, the solution to this specific problem

can be obtained from the general solution given in (4.82) as

χs(t) =

∫ t

ti

e(t−τ)Asfs(τ)dτ + e(t−ti)Asχsi, (4.90)

under the initial condition

χsi = χs(ti) = 0. (4.91)

We then use the inverse transformations from χs(t) to Γves (t), and calculate Ȟve
s by using

Ȟve
s = Γves F−1.

The material response to this superimposed infinitesimal mechanical wave should satisfy

the balance of linear momentum for the homogeneous preloading equation. We substitute

the acceleration term (4.89) and Ȟve
s into equation (4.84). This must hold over any time

t and over space. We equate the coefficients of the “sin” and “cos” terms, so that for an

arbitrary wave propagation direction n, we get two eigenvalue problems to solve as

(K− hI)d = 0,

(R− λI)d = 0, (4.92)

where the components of the matrices K and R are given by

Kiu =

∫ (t−ti)

0
Giu sin(ωξ)dξ,

Riu =

∫ (t−ti)

0
Giu cos(ωξ)dξ + JFxmnjnx

∫ ∞
−∞

Ees ijulF
ve−1
s ml ds, (4.93)
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for

Giu = JTyzwFhvnjnh

∫ ∞
−∞

(F−1
ab T

−1
blnE

ve
s ijklF

ve
s ka − T−1

kmnE
e
s ijklF

ve−1
s ml )Ys zwuv(e

ξAs)nye
βξds.

(4.94)

In order to get nontrivial solutions for d, the characteristic equations have to be zero, so

that we must have

det |K− hI| = 0,

det |R− λI| = 0. (4.95)

The eigenvalues h and λ are functions of wave speed, attenuation coefficient, time damping

factor, and circular frequency, and given as

h = 2ρo
ωc2(cαβ2 − cαω2 + α2c2β − ω2β)

(α2c2 + ω2)2
,

λ = ρo
c2(α2c2β2 − ω2β2 − α2c2ω2 + ω4 − 4ω2αcβ)

(α2c2 + ω2)2
. (4.96)

Manipulation of the above equations results in an equation for “α” given as

h2c4α4 − 4hc3ωλα3 + 2ω2c2(2λ2 − h2 − 2ρoc
2λ)α2 + 4ω3ch(λ− 2ρoc

2)α

+ (h2 − 4ρ2
oc

4 + 4ρoc
2λ)ω4 = 0, (4.97)

and one for “β” given as

β =
h(α2c2 − ω2)− 2ωλαc

2ρoωc2
. (4.98)

Guz [Guz, 1999] investigated and formulated the stability criterion of the state of equi-

librium for viscoelastic bodies as follows: the state of equilibrium is regarded as stable if

perturbations attenuate in time and is unstable if perturbations increase in time indefinitely.

For the specific perturbation (4.87) we have considered, the material stability is ensured

when there is no amplitude growth for a given phase, as indicated by Boulanger at al.

[Boulanger and Hayes, 1993]. Namely, when αn · x + βt > 0 with the phase ω(t − n·x
c ) =

constant. This gives the stability condition as α + β
c > 0, where conditional stability
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is given by α + β
c = 0 where the perturbations are propagating periodically. Since the

wave speed “c > 0” for propagating waves, the stability condition constrains the possible

values of “α” and “β.” The stability condition that α + β
c > 0, after substituting the

representations of “α” and “β,” results in bounds on the material parameters, the pre-

deformations, the propagation direction and the circular frequency so as to ensure the

stability of the equilibrium state of the pre-deformed materials.

The possible directions of particle displacement are given by the common real eigenvec-

tors of the two equations in (4.92). The eigenvectors can be affected by the initial material

symmetry and the anisotropy introduced by the pre-deformation. As a result, there might

be cases under which there are no pure shear or pure longitudinal waves existing, unlike the

special case of a linear isotropic viscoelastic material that always permits them.

Attenuating plane wave in a homogeneous pre-deformed viscoelastic body

Next let us take a look at a time harmonic plane attenuating wave propagating in a homo-

geneous pre-deformed viscoelastic body. To do this, we take β = 0 in equation (4.98) so

that “α” should satisfy

hα2c2 − 2ωλαc = hω2, (4.99)

and at the same time “α” should be a root of equation (4.97). The stability condition now

reduces to α > 0.

This type of attenuating plane wave is described by the displacement

δu(t) = ue−αn·x cos[ω(t− n · x
c

)]d, (4.100)

and results in simplified forms of the results given in the last section and one obtains two

eigenvalue problems that are the same form as in (4.92). If we assume that the current

time t is large enough compared to the initial time ti that the material responses are in the
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steady state, the components of the matrices K and R are given by

Kiu =

∫ ∞
0

Giu sin(ωξ)dξ,

Riu =

∫ ∞
0

Giu cos(ωξ)dξ + JFxmnjnx

∫ ∞
−∞

Ees ijulF
ve−1
s ml ds, (4.101)

for

Giu = JTyzwFhvnjnh

∫ ∞
−∞

(F−1
ab T

−1
blnE

ve
s ijklF

ve
s ka − T−1

kmnE
e
s ijklF

ve−1
s ml )Ys zwuv(e

ξAs)nyds.

(4.102)

The eigenvalue problems in (4.92) with the components given in (4.101) can be shown to

be equivalent to the modified Christoffel equations obtained in Garg [Garg, 2007] for the

propagation of plane homogeneous waves in a general viscoelastic anisotropic media under

static homogeneous initial pre-deformation.

If there is no pre-deformation, i.e. F(t) = Fve(t) = I, the two matrices reduce to

Kiu =

∫ ∞
0

Giu sin(ωξ)dξ,

Riu =

∫ ∞
0

Giu cos(ωξ)dξ + Jnjnm

∫ ∞
−∞

Ees ijumds, (4.103)

for

Giu = JTyzwnjnv

∫ ∞
−∞

(T−1
klnE

ve
s ijkl − T−1

kmnE
e
s ijkm)Ys zwuv(e

ξAs)nyds. (4.104)

The eigenvalue problems are reduced to plane attenuating waves propagating in a general

linear viscoelastic anisotropic media (also called the modified Christoffel equations in Garg

and Červený et al. [Garg, 2007, Červený and Pšenč́ık, 2005]).

Non-attenuating, time harmonic plane wave in a homogeneous pre-deformed

body

Next let us look at the propagation of infinitesimal time harmonic, non-attenuating plane

waves in a pre-deformed body. We construct this perturbation by taking “α = 0” in equation

(4.97) and “β = 0” in equation (4.98). As a result, we must satisfy the two simultaneous
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equations

h = 0,

λ = ρoc
2. (4.105)

From the stability condition we note that this type of perturbation is conditionally stable.

In order to satisfy the first equation in (4.105), we can conclude that the “K(ω)” matrix

has to be a zero matrix, since all of its eigenvalues are zeros, and since the “K(ω)” matrix

and the “G(ξ)” matrix are “sin” transforms of each other, we have to require G(ξ) = 0 in

equation (4.93), which will lead to the requirement

TyzwFhvF
−1
ab T

−1
blnnjnh

∫ ∞
−∞

(Eves ijklF
ve
s ka)Ys zwuv(e

ξAs)nyds

= TyzwFhvT
−1
kmnnjnh

∫ ∞
−∞

(Ees ijklF
ve−1
s ml )Ys zwuv(e

ξAs)nyds, (4.106)

for 0 < ξ. We can expand the exponent using the identity

e[A] = [I] + [A] +
1

2!
[A]2 +

1

3!
[A]3 + ... . (4.107)

This results in a polynomial series in ξ which must be satisfied for all ξ. One may satisfy

this by forcing the coefficient of each power of ξ in the equation to go to zero.

Therefore, we obtain the conditions for time harmonic non-attenuating plane waves

propagating in the pre-deformed body. From equation (4.106) we can show that even

for viscoelastic materials, non-attenuating plane waves probably exist under certain pre-

deformations and along certain propagation directions. It can be easily shown that a pure

elastic material, where the viscoelastic flow coefficient Cs = 0, will have Ys zwuv = 0 in

equation (4.106) and automatically satisfy it as a special case.

The infinitesimal non-attenuating perturbation is given as

δu(t) = u cos[ω(t− n · x
c

)]d, (4.108)
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as shown in Figure 4.5. This results in the displacement gradient

Ȟ = u(
ω

c
) sin[ω(t− n ·X + n · u

c
)]d⊗ n, (4.109)

and the acceleration

δü(t) = −uω2 cos{ω[t− n · (X + u)

c
]}d. (4.110)

This results in the equation

(R− λI)d = 0, (4.111)

for the matrix R given by

Riu = JFxmnjnx

∫ ∞
−∞

Ees ijulF
ve−1
s ml ds. (4.112)

For the nontrivial solutions for d, the characteristic equation has to be zero. The eigenvalues

are λ and given in (4.105), the eigenvectors of equation (4.111) are the directions of the

partical displacements.

It can be shown that equation (4.111) is equivalent to the Christoffel equation derived

by Garg [Garg, 2007] for a plane homogeneous wave propagating in a perfectly elastic

anisotropic/isotropic medium under the effect of initial stresses. If we restrict our analysis

to plane elastic longitudinal waves propagating in a homogeneous pre-deformed medium,

equation (4.111) is reduced to the equation obtained in Biot [Biot, 1965] for studying one

dimensional wave propagation along one of the principle axes of the homogeneous pre-

deformation.

We should emphasize that the perturbation forms we have selected here are very simple

and ideal. This is done so that we can decouple the thermal effect from the elastic responses

of the material and we have studied it while holding the temperature field constant and

homogeneous during the whole process. It will be of great interest and useful to study the

fully coupled thermal-elastic responses to thermal-mechanical perturbations. In this case,

we need to invoke the equation of balance of work and energy for the perturbation terms

given in (2.57).



CHAPTER 5

Perturbations with material constraints

Material constraints change the results for a thermodynamically consistent constitutive

model. Material constraints refer to internal restrictions in the material such as incom-

pressibility, where the volume of the material cannot change, or inextensibility, where ma-

terial lines along a particular direction cannot change their length. In general, material

constraints are idealizations, reflecting the difficulty of initiating one mode of deformation,

for example, relative to other modes.

This chapter starts by looking at material constraints described by relations between

components of the loading: deformation gradient F, temperature θ and temperature gradi-

ent G. We also consider material constraints that depend not only on loading variables F,

θ and G, but also on the internal parameters Fve and/or Fθ. Next, we study the effect on

the perturbation when we have material constraints.

5.1 Material constraints in elastic materials

Let us look at the material constraints in the form of relations between components of the

loading L = (F, θ,G). For example, the constraint equation describing incompressibility is

det(F) = constant, (5.1)
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since J = det(F) is the volume ratio relative to the volume in the reference configuration.

Obviously the constant is unity if the reference configuration is taken to be a configuration

that the material actually takes, such as the initial configuration.

Letting f denote the constraint equation, the generic constraint equation can be written

as f(X,F, θ,G) = 0. As can be seen, for each material point, f represents a relation between

the deformation gradient, temperature, and temperature gradient. As we have already

introduced the loading L = (F, θ,G), this constraint can also be written as f(X,L) = 0.

Even though one can have several simultaneous constraint conditions, we will focus first

on a single scalar constraint. If more than one constraint condition exists, they need to

be compatible in the sense that satisfying one constraint will not exclude the possibility of

satisfying the others.

The existence of a material constraint in an elastic material also changes the character-

istics of the constitutive response functions. Let p be a scalar that denotes the additional

information needed to calculate the constitutive response functions. It will be assumed that

all constitutive functions must depend on this additional variable. That is,

ψ = ψ†(X,L, p), (5.2)

T = T†(X,L, p),

η = η†(X,L, p),

q = q†(X,L, p).

The constraint restricts how the components of L can change. The relation between the

rates of change of these variables with respect to time can be obtained from taking the time

derivative of the constraint to get ḟ = 0. Expanding this gives

∂F(f) : Ḟ + ∂θ(f)θ̇ + ∂G(f) ◦ Ġ = 0. (5.3)

As can be seen, this is a scalar relation between the thirteen components of L̇ = (Ḟ, θ̇, Ġ),

and thus reduces the degrees of freedom from thirteen to twelve. As a result, we can no

longer arbitrarily assign values to all thirteen components of L̇. To simplify the presentation
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we will write this equation as

∂L(f) ◦ L̇ = 0. (5.4)

The constraint condition ∂L(f) ◦ L̇ = 0 states that all admissible loading rates L̇ are

“orthogonal” to ∂L(f). That is, the projection of L̇ onto ∂L(f) is zero. We can construct

every arbitrary loading rate L̇♦ by adding to an admissible loading rate L̇ an appropriate

loading rate along ∂L(f), which can be written as

L̇♦ = L̇+ α∂L(f), (5.5)

where α is a scalar factor which may be changed as needed. Using this relation, one can

construct an admissible loading rate L̇ from any arbitrary loading rate L̇♦ by selecting

α such that L̇ = L̇♦ − α∂L(f) satisfies the constraint condition. To have L̇ satisfy the

constraint condition ∂L(f) ◦ L̇ = 0, we must, therefore, have

∂L(f) ◦ [L̇♦ − α∂L(f)] = 0, (5.6)

which results in an expression for α given by

α =
∂L(f) ◦ L̇♦

∂L(f) ◦ ∂L(f)
. (5.7)

We thus will have

L̇ = L̇♦ − ∂L(f) ◦ L̇♦

∂L(f) ◦ ∂L(f)
∂L(f), (5.8)

which yields the relations

Ḟ = Ḟ♦ − ∂L(f) ◦ L̇♦

∂L(f) ◦ ∂L(f)
∂F(f), (5.9)

θ̇ = θ̇♦ − ∂L(f) ◦ L̇♦

∂L(f) ◦ ∂L(f)
∂θ(f),

Ġ = Ġ♦ − ∂L(f) ◦ L̇♦

∂L(f) ◦ ∂L(f)
∂G(f).

The material time derivative of the free energy for an elastic material when we have a
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constraint is given by

ψ̇ = ∂L(ψ) ◦ L̇+ ∂p(ψ)ṗ, (5.10)

where L̇ is constrained to loading paths that are consistent with the constraint condition.

One can write ψ̇ in terms of an arbitrary loading rate L̇♦ using the above relation to get

ψ̇ = ∂L(ψ) ◦ [L̇♦ − ∂L(f) ◦ L̇♦

∂L(f) ◦ ∂L(f)
∂L(f)] + ∂p(ψ)ṗ (5.11)

= [∂L(ψ)− ∂L(ψ) ◦ ∂L(f)

∂L(f) ◦ ∂L(f)
∂L(f)] ◦ L̇♦ + ∂p(ψ)ṗ.

The Clausius-Duhem inequality is given as

ρψ̇ − tr(TL) + ρηθ̇ +
1

θ
q ◦ g ≤ 0, (5.12)

which must hold for admissible L and L̇. After introducing the relations given above into

this expression one will get

ρ[∂L(ψ)− ∂L(ψ) ◦ ∂L(f)

∂L(f) ◦ ∂L(f)
∂L(f)] ◦ L̇♦ + ρ∂p(ψ)ṗ− (TTF−T ) : [Ḟ♦ − ∂L(f) ◦ L̇♦

∂L(f) ◦ ∂L(f)
∂F(f)]

(5.13)

+ ρη[θ̇♦ − ∂L(f) ◦ L̇♦

∂L(f) ◦ ∂L(f)
∂θ(f)] +

1

θ
q ◦ g ≤ 0.

Reorganization of the terms yields

{ρ[∂L(ψ)− ∂L(ψ) ◦ ∂L(f)

∂L(f) ◦ ∂L(f)
∂L(f)] +

(TTF−T ) : ∂F(f)

∂L(f) ◦ ∂L(f)
∂L(f) (5.14)

− ρη ∂θ(f)

∂L(f) ◦ ∂L(f)
∂L(f)} ◦ L̇♦ − (TTF−T ) : Ḟ♦ + ρηθ̇♦ + ρ∂p(ψ)ṗ+

1

θ
q ◦ g ≤ 0,

which must hold for every arbitrary L̇♦ = (Ḟ♦, θ̇♦, Ġ♦), and any arbitrary ṗ. We note

that the system is linear in L̇♦ and ṗ, so that we can organize the equation into five terms,

where the first term only contains Ḟ♦, the second term only contains θ̇♦, the third term

only contains Ġ♦, the fourth term only contains ṗ, and the fifth term is (q ◦ g)/θ. The

factor multiplying each rate is a function of X, L, and p, and independent of L̇♦ and ṗ. For

the equation to hold for all values of L̇♦ and ṗ, the factors multiplying Ḟ♦, θ̇♦, Ġ♦ and ṗ
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each must be zero. The result of this process is the following five relations

ρ∂F(ψ)− [
ρ∂L(ψ) ◦ ∂L(f)− (TTF−T ) : ∂F(f) + ρη∂θ(f)

∂L(f) ◦ ∂L(f)
]∂F(f)−TTF−T = 0, (5.15)

ρ∂θ(ψ)− [
ρ∂L(ψ) ◦ ∂L(f)− (TTF−T ) : ∂F(f) + ρη∂θ(f)

∂L(f) ◦ ∂L(f)
]∂θ(f) + ρη = 0,

ρ∂G(ψ)− [
ρ∂L(ψ) ◦ ∂L(f)− (TTF−T ) : ∂F(f) + ρη∂θ(f)

∂L(f) ◦ ∂L(f)
]∂G(f) = 0,

∂p(ψ) = 0,

1

θ
q ◦ g ≤ 0.

The fourth relation excludes the dependence of free energy on p, so that only the other

constitutive functions may depend on it. Since we have not given any particular form or

physical interpretation to p, other than that it is the quantity needed to fully determine the

values of the responses, as shown in [Negahban, 2012], we can take p to be

p = −[
ρ∂L(ψ) ◦ ∂L(f)− (TTF−T ) : ∂F(f) + ρη∂θ(f)

∂L(f) ◦ ∂L(f)
]. (5.16)

This will yield the following five relations

TT = ρ∂F(ψ)FT + p∂F(f)FT , (5.17)

η = −∂θ(ψ)− p

ρ
∂θ(f),

∂G(ψ) = −p
ρ
∂G(f),

∂p(ψ) = 0,

1

θ
q ◦ g ≤ 0.

In addition, the constraint condition must also be satisfied so that

f(X,F, θ,G) = 0, (5.18)

and note the fact that free energy does not depend on p.

For the case of an absolutely incompressible material given by the constraint f =
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det(F)− 1 = 0, we have

∂F(f) = det(F)F−T = F−T , (5.19)

∂θ(f) = ∂G(f) = 0.

The response of such a material is given by

TT = ρ∂F(ψ)FT + pI, (5.20)

η = −∂θ(ψ),

∂G(ψ) = 0,

1

θ
q ◦ g ≤ 0.

The first equation states that the Cauchy stress can be determined from the free energy

only up to an unknown hydrostatic stress pI. We physically interpret this to say that for an

incompressible material the constraint makes it such that we can add any hydrostatic stress

pI onto any state of stress without altering its shape. The second equation states that for

this material the entropy is fully determined from the free energy, and is independent of p.

The third equation states that the free energy is independent of the temperature gradient,

and, therefore, so are the Cauchy stress and entropy. It should be noted that for the abso-

lutely incompressible material the volume cannot change even with temperature. Therefore,

this constraint does not even accommodate for thermal expansion. An isothermally incom-

pressible material constraint can be constructed that accommodates thermal expansion by

making the volume change fully determined by the temperature change, remaining constant

if there is no temperature change.

The balance laws should always be satisfied and are given by

ρJ = ρo, (5.21)

Div(TT
o ) + ρob = ρoü,

−Div(qo) + ρor + tr(ToḞ) = ρoė,
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where,

TT
o = ρo∂F(ψ) + pJ∂F(f), (5.22)

Div(TT
o ) = Div[ρo∂F(ψ)] + J∂F(f)Grad(p) + pDiv[J∂F(f)].

The material constraint f(X,F, θ,G) = 0 should also be held during the process, so that

∂F(f) : Ḟ + ∂θ(f)θ̇ + ∂G(f) ◦ Ġ = 0. (5.23)

5.2 Material constraints in one-element visoelastic materials

We will consider the process of constructing the influence of the material constraints in

materials that depend not only on the deformation gradient, temperature, and temperature

gradient, but also on internal variables. This type of material and constraint is more general

and allows us to study the influence of restrictions of the evolutions of the internal variables,

in addition to the constraint on the components of loading. To do this, we construct a

single-element viscoelastic model. The results will be similar for the general models with a

continuous series of elements in parallel.

The general constraint is assumed to be given by a scalar constraint function C written

as

C(F, θ,G,Fve,Fθ) = 0. (5.24)

This requires that

∂F(C) : Ḟ + ∂θ(C)θ̇ + ∂G(C) ◦ Ġ + ∂Fve(C) : Ḟve + ∂Fθ(C) : Ḟθ = 0. (5.25)

As before, we assume the viscoelastic flow rule to be a function of the state of the material

and the indeterminate scalar p, representing the added information needed to define the

state, and written as

Lve = Lve†(Fe,Fve,Fθ, θ, p). (5.26)
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We postulate the thermal expansion rule taking the form

Lθ = αθ̇, (5.27)

where, the thermal expansion coefficient α is a function of the state of the material and the

indeterminate scalar p and written as

α = α†[Fe,Fve,Fθ, θ, p]. (5.28)

Substituting the evolution rules into (5.25) results in

∂F(C) : Ḟ + [∂θ(C) + ∂Fθ(C) : (αFθ)]θ̇ + ∂G(C) ◦ Ġ = −∂Fve(C) : (LveFve). (5.29)

Using U ≡ [∂F(C), [∂θ(C) + ∂Fθ(C) : (αFθ)], ∂G(C)], L ≡ [F, θ,G], and L̇ ≡ [Ḟ, θ̇, Ġ], we

will write this as

U ◦ L̇ = −∂Fve(C) : (LveFve). (5.30)

Since L̇ represents a loading rate, the constraint requires that an admissible loading rate be

such that its projection along U be “−∂Fve(C) : (LveFve).” We can manipulate the above

equation to get

U ◦ (L̇ − βU) = 0, (5.31)

where,

β = −∂F
ve(C) : (LveFve)

U ◦ U
. (5.32)

This being the only constraint, we can construct any arbitrary loading rate L̇♦ from an

admissible loading rate L̇ by adding an arbitrary amount along U onto “L̇ − βU” to get

L̇♦ = L̇ − βU + αU , (5.33)

where α is an arbitrary scalar. Introducing this into the constraint equation requires that

U ◦ L̇♦ − αU ◦ U = 0. (5.34)
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We can solve this for α to get

α =
U ◦ L̇♦

U ◦ U
. (5.35)

Therefore, we can write

L̇ = L̇♦ + βU − U ◦ L̇
♦

U ◦ U
U . (5.36)

This can be written in “component form” with use of Ḟ = LF and L♦ = Ḟ♦F−1 as

L = L♦ + (β − U ◦ L̇
♦

U ◦ U
)∂F(C)F−1, (5.37)

θ̇ = θ̇♦ + (β − U ◦ L̇
♦

U ◦ U
)[∂θ(C) + ∂Fθ(C) : (αFθ)],

Ġ = Ġ♦ + (β − U ◦ L̇
♦

U ◦ U
)∂G(C).

In a constraint material, we need more information to calculate the response than just the

history of the deformation gradient and temperature. For example, we know the stress in

an incompressible material only can be calculated up to a hydrostatic component, which

is then matched to the applied stress, or selected such that it satisfies the balance laws

and boundary conditions. Not knowing what the form of the indeterminacy is going to be,

we add a scalar p to the response functions to represent the added information needed to

calculate the response, and later show that its form can be evaluated knowing the constraint.

For the single-element viscoelastic model we will assume the free energy is given by

ψ = ψ†[Fe,Fve,Fθ,G, θ, p], (5.38)

and will assume similar forms for the other response functions.

Putting this into the Clausius-Duhem inequality we get

−∆TeT : L + [ρη + ρ∂θ(ψ)−∆TθT : α]θ̇ (5.39)

+ ρ∂G(ψ) ◦ Ġ + ρ∂p(ψ)ṗ−∆TveT : Lve +
1

θ
q ◦ g ≤ 0,
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where, we have defined the thermodynamic stresses as

TeT ≡ ρ∂Fe(ψ)FeT , (5.40)

TveT ≡ ρ∂Fve(ψ)FveT ,

TθT ≡ ρ∂Fθ(ψ)FθT ,

and where, the thermodynamic overstresses are defined as

∆Te ≡ T−Te, (5.41)

∆Tve ≡ Fe−1TeFe −Tve,

∆Tθ ≡ Fve−1Fe−1TeFeFve −Tθ.

Before we proceed, let us note that without a constraint ∆Te = 0 since T becomes equal

to Te, which is not the case here. If we now substitute for L, θ̇ and Ġ from, respectively,

equations (5.37), we get

{
−∆TeT +

[∂F(C)FT ]

U ◦ U
$

}
: L♦ (5.42)

+

{
ρη + ρ∂θ(ψ)−∆TθT : α+

[∂θ(C) + ∂Fθ(C) : (αFθ)]

U ◦ U
$

}
θ̇♦

+

{
ρ∂G(ψ) +

[∂G(C)]

U ◦ U
$

}
◦ Ġ♦

+ ρ∂p(ψ)ṗ− β$ −∆TveT : Lve +
1

θ
q ◦ g ≤ 0,

where,

$ =∆TeT : [∂F(C)F−1]− [ρη + ρ∂θ(ψ)−∆TθT : α][∂θ(C) + ∂Fθ(C) : (αFθ)] (5.43)

− ρ[∂G(ψ) ◦ ∂G(C)].

The development is very much identical to those given in the last section. To extract the

equations, we note that the term “−β$ −∆TveT : Lve + 1
θq ◦ g” does not depend on the

loading rate L̇, L̇♦, or ṗ. Since L̇♦ and ṗ can be selected arbitrarily, we have to conclude,
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through arguments that are similar to those given before, that we must have

TT = ρ∂Fe(ψ)FeT +
[∂F(C)FT ]

U ◦ U
$, (5.44)

η = −∂θ(ψ) +
1

ρ
∆TθT : α− [∂θ(C) + ∂Fθ(C) : (αFθ)]

ρU ◦ U
$,

∂G(ψ) = − [∂G(C)]

ρU ◦ U
$,

∂p(ψ) = 0,

− β$ −∆TveT : Lve +
1

θ
q ◦ g ≤ 0.

Examining the equations one immediately notes that the free energy cannot depend on

the indeterminant parameter p. Further examination of the terms, noting that ψ does

not depend on p, reveals that $ and α are the only terms on the right-hand side in the

expressions for stress and for entropy that can depend on p, which it inherits through the

possible dependence of Cauchy stress and entropy on p. Also, one notes that the free energy

cannot depend on the temperature gradient if the constraint does not, which represents the

most common form of the constraint. We next assume that homogeneous temperature fields

always are admissible and, therefore, conclude that

−β$ −∆TveT : Lve ≤ 0. (5.45)

One may note that in this model the parameter p can influence the viscoelastic flow and the

thermal expansion. For example, the viscosity of an incompressible material can depend on

pressure. The results for a general model with a continuous series of elements in parallel

are similar.

5.3 The effect of material constraints on perturbations

In this section, we will look at how the material constraints influence the perturbation

equations. We will investigate the effect on the perturbations from the general material

constraint which is studied in the previous section and mathematically can be expressed

as C(F, θ,G,Fve,Fθ) = 0. We first look at how the incremental internal parameters will
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evolve under material constraint. Then we study the conditions on the admissible loading

rates for the perturbations. Again, in the rest of this section, we construct the arguments

for a single-element viscoelastic model. The results will be similar for the general model

with a continuous series of elements in parallel.

5.3.1 Evolution of incremental internal parameters under a material con-

straint

As defined before, the base history is assumed to start at an initial time ti and is described

by giving the history of the motion and temperature up to the current time t. This is

written as

H(ti, t) = {[x(X, τ), θ(X, τ)]|ti < τ < t}, (5.46)

where x and θ denote, respectively, the position vector and temperature of a material point

for the base history.

The total history for the same time interval is described as

H∗(ti, t) = {[x∗(X, τ), θ∗(X, τ)]|ti < τ < t}, (5.47)

where x∗ and θ∗ are, respectively, the position vector and temperature of a material point

for the total history. The constraint relation should always be satisfied during both of the

loading histories. In the base history, the constraint equation can be described as

C(F, θ,G,Fve,Fθ) = 0. (5.48)

In the total history, the constraint equation can be written as

C(F∗, θ∗,G∗,Fve∗,Fθ∗) = 0. (5.49)

The relations of the kinematic variables between the base and total histories described

in Chapter 4 are still true for the single-element viscoelastic model considered here. The
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deformation gradients of the two histories are related through

δF = F∗ − F, (5.50)

where, δF is the perturbation of the deformation gradient. Following a similar notation for

the temperature and its gradient, we will write

θ∗ = θ + δθ, (5.51)

G∗ = G + δG,

where, δθ is the perturbation of the temperature and δG = Grad(δθ) is the perturbation

of the temperature gradient. Taking a time derivative gives the following relations between

the associated derivatives of the two histories as

Ḟ∗ = Ḟ + δḞ, (5.52)

θ̇∗ = θ̇ + δθ̇,

Ġ∗ = Ġ + δĠ.

We define a relative deformation gradient F̌ which maps the intermediate configuration to

the current configuration through

F∗ = F̌F. (5.53)

The relation between the perturbation of the deformation gradient and the relative defor-

mation gradient is given by

δF = ȞF, (5.54)

where Ȟ = F̌− I is the displacement gradient associated with F̌.

The relations of the elastic, viscoelastic and thermal parts in the base history and in
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the total history are given by

δFe = Fe∗ − Fe = F̃eFe − Fe = H̃eFe,

δFve = Fve∗ − Fve = F̃veFve − Fve = H̃veFve,

δFθ = Fθ∗ − Fθ = F̃θFθ − Fθ = H̃θFθ, (5.55)

where, F̃e, F̃ve and F̃θ are the relative “increment” of elastic, viscoelastic and thermal

deformation gradients comparing each pair, and H̃e = F̃e − I is the displacement gradient

for the elastic perturbation, H̃ve = F̃ve − I is the displacement gradient for the viscoelastic

perturbation, and H̃θ = F̃θ − I is the displacement gradient for the thermal perturbation.

As the perturbation is small, it can be shown that the increments represent small differences

so that the deformation gradients are close to the identity I.

Using first order Taylor series expansion, the constraint equation in the total history

can be expanded around the base history as

C(F∗, θ∗,G∗,Fve∗,Fθ∗) = C(F, θ,G,Fve,Fθ) (5.56)

+ ∂F(C) : δF + ∂θ(C)δθ + ∂G(C) : δG + ∂Fve(C) : δFve + ∂Fθ(C) : δFθ = 0.

Since the constraint is satisfied in the base history, this requires

∂F(C) : δF + ∂θ(C)δθ + ∂G(C) : δG + ∂Fve(C) : δFve + ∂Fθ(C) : δFθ = 0. (5.57)

After substituting the kinematics relations (5.55), the above equation becomes

∂F(C) : δF + ∂θ(C)δθ+ ∂G(C) : δG + [∂Fve(C)FveT ] : H̃ve + [∂Fθ(C)FθT ] : H̃θ = 0, (5.58)

which indicates the restriction on the perturbations δF, δθ, δG and the incremental internal

variables H̃ve and H̃θ from the material constraint. This relation should be satisfied all the

time.

In the total history we assume the viscoelastic flow rule to be a function of the state of
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the material and the indeterminate scalar p∗ and written as

Lve∗ = Lve†(Fe∗,Fve∗,Fθ∗, θ∗, p∗). (5.59)

In the total history, the thermal expansion rule takes the form

Lθ∗ = α∗θ̇∗, (5.60)

where, the thermal expansion coefficient α∗ is a function of the state of the material and

the indeterminate scalar p∗ and written as

α∗ = α†[Fe∗,Fve∗,Fθ∗, θ∗, p∗]. (5.61)

The thermal expansion coefficient tensor α and the viscoelastic flow Lve are also effected

by the thermo-mechanical perturbation, and these material functions for the base history

and the total history are related by

α∗ = α+ δα, (5.62)

Lve∗ = Lve + δLve,

where,

δα = ∂Fe(α) : δFe + ∂Fve(α) : δFve + ∂Fθ(α) : δFθ + ∂θ(α)δθ + ∂p(α)δp, (5.63)

δLve = ∂Fe(L
ve) : δFe + ∂Fve(L

ve) : δFve + ∂Fθ(L
ve) : δFθ + ∂θ(L

ve)δθ + ∂p(L
ve)δp,

and δp = p∗ − p denotes the perturbation on the indeterminate parameter and is assumed

to be infinitesimal.

The evolution rules for the incremental perturbation of the internal variables H̃θ and
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H̃ve are given by

˙̃Hθ(I− H̃θ) + H̃θḞθFθ−1 − ḞθFθ−1H̃θ = αδθ̇

+ (θ̇ + δθ̇){[∂Fe(α)FeT ] : H̃e + [∂Fve(α)FveT ] : H̃ve + [∂Fθ(α)FθT ] : H̃θ

+ ∂θ(α)δθ + ∂p(α)δp},
˙̃Hve(I− H̃ve) + H̃veḞveFve−1 − ḞveFve−1H̃ve = [∂Fe(L

ve)FeT ] : H̃e

+ [∂Fve(L
ve)FveT ] : H̃ve + [∂Fθ(L

ve)FθT ] : H̃θ + ∂θ(L
ve)δθ + ∂p(L

ve)δp, (5.64)

which is a system of first order differential equations in tensor form.

The procedures to solve equations in (5.64) are similar as those for solving equations in

(4.70) and are not discussed in detail here.

5.3.2 Conditions on the admissible loading rates for the perturbations

Let us now look at the admissible loading rates, which satisfy the material constraint, of the

perturbation superimposed on the base history. In the total history, the constraint equation

is given by

C(F∗, θ∗,G∗,Fve∗,Fθ∗) = 0. (5.65)

This requires that

∂F∗(C) : Ḟ∗ + ∂θ∗(C)θ̇∗ + ∂G∗(C) ◦ Ġ∗ + ∂Fve∗(C) : Ḟve∗ + ∂Fθ∗(C) : Ḟθ∗ = 0. (5.66)

Substituting the evolution rules (5.59) and (5.60) into (5.66) results in

∂F∗(C) : Ḟ∗ + [∂θ∗(C) + ∂Fθ∗(C) : (α∗Fθ∗)]θ̇∗ + ∂G∗(C) ◦ Ġ∗ = −∂Fve∗(C) : (Lve∗Fve∗),

(5.67)

where, in the base history, the corresponding required relation due to the constraint is

∂F(C) : Ḟ + [∂θ(C) + ∂Fθ(C) : (αFθ)]θ̇ + ∂G(C) ◦ Ġ = −∂Fve(C) : (LveFve). (5.68)
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Using first order Taylor series expansion on the functions evaluated in the total history

around the base history results in

∂F∗(C) = ∂F(C) + δ[∂F(C)], (5.69)

∂Fve∗(C) = ∂Fve(C) + δ[∂Fve(C)],

∂Fθ∗(C) = ∂Fθ(C) + δ[∂Fθ(C)],

∂θ∗(C) = ∂θ(C) + δ[∂θ(C)],

∂G∗(C) = ∂G(C) + δ[∂G(C)],

where,

δ[∂F(C)] =∂F[∂F(C)] : δF + ∂θ[∂F(C)]δθ + ∂G[∂F(C)] ◦ δG (5.70)

+ ∂Fve [∂F(C)] : δFve + ∂Fθ [∂F(C)] : δFθ,

δ[∂Fve(C)] =∂F[∂Fve(C)] : δF + ∂θ[∂Fve(C)]δθ + ∂G[∂Fve(C)] ◦ δG

+ ∂Fve [∂Fve(C)] : δFve + ∂Fθ [∂Fve(C)] : δFθ,

δ[∂Fθ(C)] =∂F[∂Fθ(C)] : δF + ∂θ[∂Fθ(C)]δθ + ∂G[∂Fθ(C)] ◦ δG

+ ∂Fve [∂Fθ(C)] : δFve + ∂Fθ [∂Fθ(C)] : δFθ,

δ[∂θ(C)] =∂F[∂θ(C)] : δF + ∂θ[∂θ(C)]δθ + ∂G[∂θ(C)] ◦ δG

+ ∂Fve [∂θ(C)] : δFve + ∂Fθ [∂θ(C)] : δFθ,

δ[∂G(C)] =∂F[∂G(C)] : δF + ∂θ[∂G(C)]δθ + ∂G[∂G(C)] ◦ δG

+ ∂Fve [∂G(C)] : δFve + ∂Fθ [∂G(C)] : δFθ.

The relations of the loading rates between the base and total histories are given by

Ḟ∗ = Ḟ + δḞ, (5.71)

θ̇∗ = θ̇ + δθ̇,

Ġ∗ = Ġ + δĠ.



138

After substituting (5.69), (5.62), (5.55) and (5.71) into (5.67), and omitting the second and

higher order terms, and substracting (5.68), we obtain the condition on perturbations and

rates of perturbations from the material constraint that is given by

{∂F(C) + δ[∂F(C)]} : (δḞ) (5.72)

+
{
∂θ(C) + δ[∂θ(C)] + ∂Fθ(C) : (αδFθ +αFθ + δαFθ) + δ[∂Fθ(C)] : (αFθ)

}
(δθ̇)

+ {∂G(C) + δ[∂G(C)]} ◦ (δĠ)

+ δ[∂F(C)] : Ḟ +
{
δ[∂θ(C)] + ∂Fθ(C) : (αδFθ + δαFθ) + δ[∂Fθ(C)] : (αFθ)

}
θ̇

+ δ[∂G(C)] ◦ Ġ = −∂Fve(C) : (LveδFve + δLveFve)− δ[∂Fve(C)] : (LveFve).



CHAPTER 6

The propagation of mechanical waves and jumps in

inhomogenously deforming viscoelastic bodies

In this chapter we will apply the general theories of thermo-mechanical perturbations de-

veloped in Chapter 2 and Chapter 4 to special problems involving fairly general mechanical

wave propagating in inhomogenously deforming and relaxing viscoelastic bodies. The con-

stitutive model for the viscoelastic material under consideration is presented in Chapter 4.

To do this we first describe the superimposed wave equation, then substitute it into the

balance laws for the perturbations, and next we obtain the relations between the charac-

teristics of the wave propagation, the material parameters and the underlying deformations

in the base history.

We also study the propagation of wave fronts (jumps) superimposed on homogeneously

and inhomogeneously deforming viscoelastic bodies. In this process, we derive the conditions

for the wave fronts (jumps) to split their directions during propagation.
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6.1 The propagation of mechanical waves in inhomogeneously

deformed or inhomogenously deforming viscoelastic bod-

ies with moderate loading rates

This section will focus on the propagation of mechanical waves in viscoelastic bodies un-

dergoing inhomogeneous large deformations. We will restrict our interest to static pre-

deformations or to the base deformations with moderate loading rates compare to the wave.

In other words, we assume that during the time interval of the wave propagation considered

the changes in the base loading can be negligible.

We describe the mechanical wave equation in a curvilinear coordinate system. As we

will see later in this chapter, the choice of using a curvilinear coordinate system will simplify

the process of studying the propagation of curved waves. We will restrict our interest to

isothermal loading, which means the temperature is kept at the reference temperature for

both loading histories and we thus assume that there will be no thermal expansion.

The position vector of the material point in the base history (intermidiate configuration)

is given by

x(X, t) = X + u(X, t), (6.1)

where, u(X, t) is the displacement vector in the base history. The position vector of the

material point in the total history (current configuration) is given by

x∗(X, t) = X + u∗(X, t), (6.2)

where, u∗(X, t) is the total displacement vector. We define δu(X, t) as the superimposed

displacement vector given by u∗(X, t) = u(X, t) + δu(X, t).

As shown in Fig. 6.1, if we use the coordinate system αi to describe the position of

a material particle in the reference configuration, and use βi to describe the position in

the intermediate configuration, we can write differential displacements associated with the
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change in coordinates, respectively, as

dX = dαiei,

dx = dβiẽi, (6.3)

where, the base vectors in each system are defined, respectively, by

ei =
∂X

∂αi
,

ẽi =
∂x

∂βi
, (6.4)

with the metric tensors of the two bases given, respectively, as

gij = ei ◦ ej ,

g̃ij = ẽi ◦ ẽj . (6.5)

The deformation gradient for the base history is defined as

F =
∂βi
∂αj

g−1
jk ẽi ⊗ ek, (6.6)

and the inverse of the deformation gradient is

F−1 =
∂αi
∂βj

g̃−1
jk ei ⊗ ẽk. (6.7)

We model the wave motion based on that given in (4.87) for attenuating and damping

harmonic plane waves. We thus describe the infinitesimal mechanical wave superimposed on

an inhomogenously pre-deformed or inhomogenously deforming body with moderate rates

as

δu(x, t) = u(t)f †(H, t)g†(L, t)d(L), (6.8)

where, u(t) is the infinitesimal magnitude factor, L(β1, β2, β3) is the wave path in the

intermediate configuration, the direction of the tangent line to the wave path L is the

wave propagation direction, d(L) represents the dispalcement direction, H(β1, β2, β3) is the
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Figure 6.1: Curvilinear coordinate systems in the reference configuration and in the inter-
mediate configuration.
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attenuation path in the intermediate configuration, the direction of the tangent line to the

attenuation path H is the wave attenuating direction, f †(H, t) is the amplitude function

factor, and g†(L, t) is the phase function factor. From this wave equation, we define ∂H(f)
f

as a measure of space attenuation, and ∂t(f)
f as a measure of time damping. We also define

the phase speed c(L, t) of this wave motion as

c(L, t) = − ∂t[g
†(L, t)]

∂L[g†(L, t)]
. (6.9)

From the symmetry property of second derivatives of g†(L, t), we have the following relations

between the partial derivatives of g†(L, t) and c(L, t) as

∂t[g
†(L, t)]∂t[c(L, t)] + c(L, t)2∂L[c(L, t)]∂L[g†(L, t)] + c(L, t)3∂L{∂L[g†(L, t)]} (6.10)

= ∂t{∂t[g†(L, t)]}c(L, t).

The similarity of this wave and the one used in Chapter 4 can be seen if we recall the

space attenuating and time damping plane wave in a homogeneous pre-deformed viscoelastic

body, given in equation (4.87), was written as

δu(x, t) = ue−αn◦x−βt cos[ω(t− n ◦ x

c
)]d. (6.11)

We thus see, for example, if we take L = n◦x, H = n◦x, d(L) as a constant, f = e−αn◦x−βt,

and g = cos[ω(t− n◦x
c )], we specialize the general wave in (6.8) to the plane wave of Chapter

4. For this case, we can calculate the characteristic parameters of the plane wave, such as

spatial attenuation coefficient α, time damping factor β, and wave speed c using the current

definitions as

∂H(f)

f
= −α, (6.12)

∂t(f)

f
= −β,

− ∂t(g)

∂L(g)
= c.
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The second order time derivatve of the superimposed displacement is given by

δü(x, t) = [üfg + u
∂2(f)

∂t2
g + uf

∂2(g)

∂t2
+ 2u̇

∂(f)

∂t
g + 2u̇f

∂(g)

∂t
+ 2u

∂(f)

∂t

∂(g)

∂t
]d, (6.13)

where, we have used

L̇(β1, β2, β3) = 0,

Ḣ(β1, β2, β3) = 0, (6.14)

based on the assumption that rates of the base deformation is moderate or zero,

∂βi
∂t

= 0. (6.15)

These equations are based on the approximations that the wave propagation is much faster

than the changing of the base loading, which indicates that the changes of the wave propa-

gation path and the attenuation path during the wave event are negligible.

We introduce an arbitrary set of base vectors
_
ei, and construct the relations with the

curvilinear coordinate system used in the reference configuration as

ej = Pjk
_
ek,

∂(
_
em)

∂αi
= Qmi a

_
ea, (6.16)

where, Pjk and Qmi a are the transformation arrays. In this case, d(L) can be written in

the
_
ei system as

d(L) =
_

di
_
ei, (6.17)

where,
_

di are the components of d(L) in the
_
ei system. The gradient of the superimposed

wave motion written in the
_
ei system is

Grad[δu(x, t)] =
∂[δu(x, t)]

∂αi
⊗ g−1

ij ej =
∂[u(t)f †(H, t)g†(L, t)

_

dm
_
em]

∂αi
⊗ g−1

ij ej (6.18)

= u(t){[g∂(f)

∂H

∂(H)

∂αi
+ f

∂(g)

∂L

∂(L)

∂αi
]
_

dm + fg[
∂(

_

dm)

∂αi
+

_

dnQni m]}g−1
ij Pjk

_
em ⊗

_
ek,
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where,

∂(H)

∂αi
=
∂(H)

∂β1

∂β1

∂αi
+
∂(H)

∂β2

∂β2

∂αi
+
∂(H)

∂β3

∂β3

∂αi
, (6.19)

∂(L)

∂αi
=
∂(L)

∂β1

∂β1

∂αi
+
∂(L)

∂β2

∂β2

∂αi
+
∂(L)

∂β3

∂β3

∂αi
,

∂[
_

dm(L)]

∂αi
=
∂[
_

dm(L)]

∂L

∂(L)

∂αi
.

The displacement gradient of the perturbation Ȟ is defined in Chapter 2 as

Ȟ = [Grad(δu)]F−1. (6.20)

Since the temperature is kept at the reference temperature for both loading histories, there

will be no thermal expansion. In order to evaluate the unknown internal variable Γves (t) =

Ȟve
s (t)F(t) in the evolution equation (4.73) for the incremental viscoelastic deformation, we

write the component form of the tensor equation in the
_
ei system as

Γ̇ves ij(t) = Yves ijkl(t)Γ
ve
s kl(t) + Ys ijkl(t)Γkl(t), (6.21)

where, Γ ≡ ȞF = [Grad(δu)]. We have used the following rules to extract the components

of the tensors in equation (4.73).

Extracting the components of second order tensor A = Aij
_
ei ⊗

_
ej , fourth order tensor

C = Cijkl
_
ei ⊗

_
ej ⊗

_
ek ⊗

_
e l, and sixth order tensor D = Dijklst

_
ei ⊗

_
ej ⊗

_
ek ⊗

_
e l ⊗

_
es ⊗

_
et,

in the
_
ei system can be obtained by using the dual bases given by

ē1 =
_
e2 ×

_
e3

(
_
e1 ×

_
e2) ◦ _e3

,

ē2 =
_
e3 ×

_
e1

(
_
e1 ×

_
e2) ◦ _e3

,

ē3 =
_
e1 ×

_
e2

(
_
e1 ×

_
e2) ◦ _e3

. (6.22)



146

The components are then extracted using the standard rules

Aij = ēi ◦ (Aēj),

Cijkl = {[(Cēl)ēk]ēj} ◦ ēi,

Dijklst = {{{[(Dēt)ēs]ēl}ēk}ēj} ◦ ēi. (6.23)

To solve this system of first order differential equations in (6.21), we organize the un-

knows into a one-dimensional array denoted by χs that takes the form

χs ≡ (Γves 11,Γ
ve
s 12,Γ

ve
s 13,Γ

ve
s 21, ...). (6.24)

To do this, we introduce transformation Tijk which transforms the components of Γves into

the one-dimensional array χs through the relation

χs i = TijkΓ
ve
s jk, (6.25)

where, Tijk = 0 or 1 defined by the pattern of χs. The inverse transformation is given by

Γves ij = T−1
ijkχs k. (6.26)

After substituting the inverse transformation (6.26) into (6.21), and then substituting into

the time derivative of (6.25), we get a system of first order differential equations

χ̇s(t) = As(t)χs(t) + fs(t), (6.27)

where, the components of the coefficient matrix As mn(t) and the components of the inho-

mogeneous array fs m(t) are given as

As mn(t) = TmijY
ve
s ijkl(t)T

−1
kln, (6.28)

fs m(t) = TmijYs ijkl(t)Γkl(t).

We denote tw as the starting time of the wave event, and assume that the duration “t− tw”



147

is very small.

From the existence and uniqueness theorem, there exists a unique solution, since the

coefficient matrix [As(t)] and the inhomogeneous array [fs(t)] are continuous. The general

solution to the system (6.27) is provided by Myskis [Myskis, 1975] as

χs(t) =

∫ t

tw

Ys(t, τ)fs(τ)dτ + Ys(t, tw)χsw, (6.29)

under the initial condition χsw = χs(tw), and where,

Ys(t, tw) =I +

∫ t

tw

As(τ1)dτ1 +

∫ t

tw

As(τ1)

∫ τ1

tw

As(τ2)dτ2dτ1

+

∫ t

tw

As(τ1)

∫ τ1

tw

As(τ2)

∫ τ2

tw

As(τ3)dτ3dτ2dτ1 + ... . (6.30)

From the general solution for χs(t) given in (6.29) and using the inverse transformation

from χs(t) to Γves (t), the evolution of incremental visoelastic flow Ȟve
s (t) is obtained. We

then can calculate the components of Ȟve
s (t) in the

_
ei system from the following equation

Ȟve
s jk

_
ej ⊗

_
ek = Γves jt

_

F −1
bk

_
g tb

_
ej ⊗

_
ek. (6.31)

In the
_
ei system, we can write F−1 =

_

F −1
tk

_
et ⊗

_
ek. Examining the solution for Ȟve

s (t)

reveals that it includes
_

dm and ∂(
_
dm)
∂αi

inherited from Grad[δu(x, t)].

Since the base deformations are inhomogenous, the perturbation equation for balance

of linear momentum takes the inhomogenous form given in (2.51), and can be represented

as three scalar equations in the
_
ei system given by using (6.23) as

MijkȞjk +

∫ ∞
−∞

Mve
s ijkȞ

ve
s jkds+Nijkl[Grad(Ȟ)]jkl +

∫ ∞
−∞

Nve
s ijkl[Grad(Ȟve

s )]jklds

+N t
ijkl[Grad(ȞT )]jkl + Lij [Grad(trȞ)]j +mi = ρoδüi, (6.32)

where, Mijk, M
ve
s ijk, Nijkl, N

ve
s ijkl, N

t
ijkl, Lij , and mi are material parameters that depend

on the base history.
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The terms that appear in equation (6.32) can be calculated as follows

Grad(Ȟve
s ) =

∂Ȟve
s

∂αi
⊗ g−1

ix ex =
∂[Ȟve

s jk
_
ej ⊗

_
ek]

∂αi
⊗ g−1

ix ex (6.33)

= [
∂Ȟve

s jk

∂αi
+ Ȟve

s mkQmi j + Ȟve
s jmQmi k]g

−1
ix Pxy

_
ej ⊗

_
ek ⊗

_
ey,

Grad(Ȟ) =Grad{[Grad(δu)]F−1}

=
∂[Grad(δu)]

∂αx
F−1 ⊗ g−1

xj ej + [Grad(δu)]Grad(F−1) (6.34)

=
∂[Grad(δu)]

∂αx
F−1 ⊗ g−1

xj Pjt
_
et + [Grad(δu)]Grad(F−1),

Grad(ȞT ) =
∂(F−T )

∂αi
[Grad(δu)]T ⊗ g−1

ij ej + F−TGrad{[Grad(δu)]T } (6.35)

= g−1
ij Pjk

∂(F−T )

∂αi
[Grad(δu)]T ⊗ _

ek + g−1
ij PjkF

−T ∂[Grad(δu)]T

∂αi
⊗ _

ek,

and

Grad(trȞ) =
∂(trȞ)

∂αi
g−1
ij ej =

∂(Ȟxy
_
gxy)

∂αi
g−1
ij Pjk

_
ek. (6.36)

The perturbation of Cauchy stress δT is given by

δT =

∫ ∞
−∞

[(EesF
ve−T
s FT ) : (Ȟ− Ȟve

s ) + (Eves FT ) : (Fve
s F−1Ȟve

s )]ds. (6.37)

The gradient of the perturbed Cauchy stress is given by

Grad(δT) =

∫ ∞
−∞
{∂(EesF

ve−T
s FT )

∂αi
: (Ȟ− Ȟve

s )⊗ g−1
ij ej}ds

+

∫ ∞
−∞
{(EesFve−T

s FT ) : Grad(Ȟ− Ȟve
s )}ds

+

∫ ∞
−∞
{∂(Eves FT )

∂αi
: (Fve

s F−1Ȟve
s )⊗ g−1

ij ej}ds

+

∫ ∞
−∞
{(Eves FT ) : [

∂(Fve
s F−1)

∂αi
Ȟve
s ⊗ g−1

ij ej + (Fve
s F−1)Grad(Ȟve

s )]}ds.

(6.38)
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In this process, the first and second order partial derivatives of f †(H, t), g†(L, t), and
_

dm(L)

with respect to the coordinate αi are required and given by

∂[f †(H, t)]

∂αi
=
∂(f)

∂H

∂(H)

∂αi
, (6.39)

∂2[f †(H, t)]

∂αj∂αi
=
∂2(f)

∂H2

∂(H)

∂αi

∂(H)

∂αj
+
∂(f)

∂H

∂2(H)

∂αj∂αi
,

∂[g†(L, t)]

∂αi
=
∂(g)

∂L

∂(L)

∂αi
,

∂2[g†(L, t)]

∂αj∂αi
=
∂2(g)

∂L2

∂(L)

∂αj

∂(L)

∂αi
+
∂(g)

∂L

∂2(L)

∂αj∂αi
,

∂2[
_

dm(L)]

∂αi∂αj
=
∂2(

_

dm)

∂L2

∂(L)

∂αj

∂(L)

∂αi
+
∂(

_

dm)

∂L

∂2(L)

∂αi∂αj
,

where,

∂2(H)

∂αj∂αi
=
∂2(H)

(∂β1)2

∂β1

∂αj

∂β1

∂αi
+

∂2(H)

∂β2∂β1
(
∂β2

∂αj

∂β1

∂αi
+
∂β1

∂αj

∂β2

∂αi
)

+
∂2(H)

∂β3∂β1
(
∂β3

∂αj

∂β1

∂αi
+
∂β1

∂αj

∂β3

∂αi
) (6.40)

+
∂2(H)

(∂β2)2

∂β2

∂αj

∂β2

∂αi
+

∂2(H)

∂β3∂β2
(
∂β3

∂αj

∂β2

∂αi
+
∂β2

∂αj

∂β3

∂αi
) +

∂2(H)

(∂β3)2

∂β3

∂αj

∂β3

∂αi

+
∂(H)

∂β1

∂2β1

∂αj∂αi
+
∂(H)

∂β2

∂2β2

∂αj∂αi
+
∂(H)

∂β3

∂2β3

∂αj∂αi
,

and

∂2(L)

∂αj∂αi
=
∂2(L)

(∂β1)2

∂β1

∂αj

∂β1

∂αi
+

∂2(L)

∂β2∂β1
(
∂β2

∂αj

∂β1

∂αi
+
∂β1

∂αj

∂β2

∂αi
)

+
∂2(L)

∂β3∂β1
(
∂β3

∂αj

∂β1

∂αi
+
∂β1

∂αj

∂β3

∂αi
) (6.41)

+
∂2(L)

(∂β2)2

∂β2

∂αj

∂β2

∂αi
+

∂2(L)

∂β3∂β2
(
∂β3

∂αj

∂β2

∂αi
+
∂β2

∂αj

∂β3

∂αi
) +

∂2(L)

(∂β3)2

∂β3

∂αj

∂β3

∂αi

+
∂(L)

∂β1

∂2β1

∂αj∂αi
+
∂(L)

∂β2

∂2β2

∂αj∂αi
+
∂(L)

∂β3

∂2β3

∂αj∂αi
.

Substituting the above terms into the component form of the perturbation equation for

balance of linear momentum (6.32), we obtain three scalar equations, which are second

order partial differential equations regarding the amplitude factor f †(H, t), the phase factor
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g†(L, t), and the dispalcement direction d(L) over space and time.

These three scalar equations allow us to formulate problems from different perspectives.

For example,

(1) For a given base history, we specify the wave path L, the attenuation path H, and

the forms for f †(H, t) and g†(L, t), we can solve for the displacement direction of the wave

motion d(L).

(2) For a given base history, we specify the wave path L, the attenuation path H, and the

displacement direction d(L) of the wave motion, we can get information about the possible

forms of f †(H, t) and g†(L, t).

(3) For a given base history, we specify the forms for f †(H, t), g†(L, t) and the displacement

direction d(L), we can obtain information about the possible wave path L and attenuation

path H of the wave motion.

(4) We specify the wave path L and attenuation path H, and the forms for f †(H, t), g†(L, t),

and the displacement direction d(L), we can get certain conditions on the base loading

history to permit such wave motions.

(5) For a given base history, we specify the wave path L, the attenuation path H, the

displacement direction d(L) of the wave motion, and the functionals of f †(H, t) and g†(L, t),

we can calculate the characteristics of such wave motion, such as wave speed, attenuation

coefficient, and damping parameter. We will look at this case in the next section.

6.2 The propagation of attenuating mechanical waves in an

inhomogenously deformed viscoelastic body

Let us look at a special case. In this example we will specify the wave path L, the attenuation

path H, the displacement direction of the wave motion d(L), and the forms for f †(H, t) and

g†(L, t). We will obtain equations to solve for the wave propagation properties by following

the procedures introduced in the previous section.

The path of the wave propagation “L” in an inhomogenously deformed body depends

not only on the material properties but also on the inhomogeneity of the base deformation.

Therefore, the path can be curved.
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We describe the infinitesimal mechanical attenuating wave motion as

δu(x, t) = ue−
∫
L α(`)d` cos[ω(t−

∫
L

d`

c(`)
)]d(L), (6.42)

where, the attenuation path H is, in this case, coincident with the wave path L. The

direction of the tangent line to the wave path L is the wave propagation direction. The

amplitude factor is f †(L, t) = e−
∫
L αd`, and the phase factor is g†(L, t) = cos [ω(t−

∫
L
d`
c )].

d(L) represents the displacement vector, α(L) = −∂L(f)
f represents the attenuation coef-

ficent, c(L) = − ∂t[g†(L,t)]
∂L[g†(L,t)]

represents the wave speed, and d` represents the incremental

segment along the wave path.

For simplicity, we select the
_
ei system such that

_
ei = ẽi, that is, we represent the

vectors and tensors in the intermediate configuration. For example, d(L) = di
_
ei and

F−1 =
_

F −1
tk

_
et ⊗

_
ek.

The superimposed displacement gradient can be calculated from Ȟ = [Grad(δu)]F−1,

that is,

Ȟ = ue−
∫
L αd`{cos[ω(t−

∫
L

d`

c
)]
_

Kmn + sin[ω(t−
∫
L

d`

c
)]
_

Mmn}(
_
em ⊗

_
en), (6.43)

where,

_

Kmn = g−1
ij Pjg

_
g gt

_

F −1
tn [

∂(dm)

∂αi
+ dpQpi m − α(L)

∂(L)

∂αi
dm], (6.44)

_

Mmn =
ω

c(L)

∂(L)

∂αi
dmg

−1
ij Pjg

_

F −1
tn

_
g gt.

Substituting the superimposed displacement gradient (6.43) into the general solution (6.29)

and taking the initial condition as χsw = 0 at t = tw result in the solution for the incremental

internal variable Ȟve
s jk as

Ȟve
s jk = ue−

∫
L αd`{cos[ω(t−

∫
L

d`

c
)]h∗vecs jk + sin[ω(t−

∫
L

d`

c
)]h∗vess jk }, (6.45)
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where,

h∗vecs jk = Ωc
je[
∂(dk)

∂αe
+ daQae k − α(L)

∂(L)

∂αe
dk]− Ωs

je

ω

c(L)

∂(L)

∂αe
dk, (6.46)

h∗vess jk = Ωc
je

ω

c(L)

∂(L)

∂αe
dk + Ωs

je[
∂(dk)

∂αe
+ daQae k − α(L)

∂(L)

∂αe
dk],

and,

Zjmne = T−1
jtmTnpq

_

F −1
bk

_
g tbYs pqklg

−1
ef Pfl, (6.47)

Ωc
je = Zjmne

∫ t−tw

0
{[eξAs ]mn cos(ωξ)}dξ,

Ωs
je = Zjmne

∫ t−tw

0
{[eξAs ]mn sin(ωξ)dξ}.

Since the base deformations are inhomogenous, the perturbation equation for the balance

of linear momentum takes the component form as given in (6.32) in the
_
ei system, and for

this specific wave motion, the corresponding terms are

[Grad(Ȟ)]jkl =ue−
∫
L αd`{cos[ω(t−

∫
L

d`

c
)][−α(L)

∂(L)

∂αi

_

Kjk +
∂(

_

Kjk)

∂αi
(6.48)

− ω

c(L)

∂(L)

∂αi

_

M jk +
_

KdkQdi j +
_

KjnQni k]

+ sin[ω(t−
∫
L

d`

c
)][−α(L)

∂(L)

∂αi

_

M jk +
ω

c(L)

∂(L)

∂αi

_

Kjk +
∂(

_

M jk)

∂αi

+
_

MdkQdi j +
_

M jnQni k]}Pclg−1
ic ,

[Grad(ȞT )]jkl =ue−
∫
L αd`{cos[ω(t−

∫
L

d`

c
)][−α(L)

∂(L)

∂αi

_

Kkj +
∂(

_

Kkj)

∂αi
(6.49)

− ω

c(L)

∂(L)

∂αi

_

Mkj +
_

KkmQmi j +
_

KnjQni k]

+ sin[ω(t−
∫
L

d`

c
)][−α(L)

∂(L)

∂αi

_

Mkj +
ω

c(L)

∂(L)

∂αi

_

Kkj +
∂(

_

Mkj)

∂αi

+
_

MkmQmi j +
_

MnjQni k]}Pxlg−1
ix ,
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{Grad[tr(Ȟ)]}j =ue−
∫
L αd`{cos[ω(t−

∫
L

d`

c
)][(−α(L)

∂(L)

∂αi

_

Kmn +
∂(

_

Kmn)

∂αi
(6.50)

− ω

c(L)

∂(L)

∂αi

_

Mmn)
_
gmn +

_

Kmn
∂(

_
gmn)

∂αi
]

+ sin[ω(t−
∫
L

d`

c
)][(

ω

c(L)

∂(L)

∂αi

_

Kmn − α(L)
∂(L)

∂αi

_

Mmn +
∂(

_

Mmn)

∂αi
)
_
gmn

+
_

Mmn
∂(

_
gmn)

∂αi
]}g−1

ix Pxj ,

and

[Grad(Ȟve
s )]jkl =ue−

∫
L αd`{cos[ω(t−

∫
L

d`

c
)][−α(L)

∂(L)

∂αi
h∗vecs jk +

∂(h∗vecs jk )

∂αi
(6.51)

− ω

c(L)

∂(L)

∂αi
h∗vess jk + h∗vecs bkQbi j + h∗vecs jbQbi k]

+ sin[ω(t−
∫
L

d`

c
)][

ω

c(L)

∂(L)

∂αi
h∗vecs jk − α(L)

∂(L)

∂αi
h∗vess jk

+
∂(h∗vess jk )

∂αi
+ h∗vess bkQbi j + h∗vess jbQbi k]}g−1

ix Pxl.

Substituting the above terms into equation (6.32) and equating the coefficents of the “sine”

and “cosine” terms, respectively, we obtain the following two sets of equations

Mijk

_

Kjk +

∫ ∞
−∞

Mve
s ijkh

∗vec
s jkds

+Nijklg
−1
zc Pcl[−α(L)

∂(L)

∂αz

_

Kjk +
∂(

_

Kjk)

∂αz
− ω

c(L)

∂(L)

∂αz

_

M jk +
_

KdkQdz j +
_

KjnQnz k]

+ g−1
zx Pxl

∫ ∞
−∞

Nve
s ijkl[−α(L)

∂(L)

∂αz
h∗vecs jk +Qbz jh

∗vec
s bk +Qbz kh

∗vec
s jb +

∂(h∗vecs jk )

∂αz
− ω

c(L)

∂(L)

∂αz
h∗vess jk ]ds

+N t
ijklg

−1
zx Pxl[−α(L)

∂(L)

∂αz

_

Kkj +
∂(

_

Kkj)

∂αz
− ω

c(L)

∂(L)

∂αz

_

Mkj +
_

KkmQmz j +
_

KnjQnz k]

+ Lijg
−1
zx Pxj{[−α(L)

∂(L)

∂αz

_

Kmn +
∂(

_

Kmn)

∂αz
− ω

c(L)

∂(L)

∂αz

_

Mmn]
_
gmn +

_

Kmn
∂(

_
gmn)

∂αz
}

= −ρoω2di, (6.52)
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and

Mijk

_

M jk +

∫ ∞
−∞

Mve
s ijkh

∗ves
s jk ds

+Nijklg
−1
zc Pcl[−α(L)

∂(L)

∂αz

_

M jk +
ω

c(L)

∂(L)

∂αz

_

Kjk +
∂(

_

M jk)

∂αz
+

_

MdkQdz j +
_

M jnQnz k]

+ g−1
zx Pxl

∫ ∞
−∞

Nve
s ijkl[

ω

c(L)

∂(L)

∂αz
h∗vecs jk − α(L)

∂(L)

∂αz
h∗vess jk +

∂(h∗vess jk )

∂αz
+Qbz jh

∗ves
s bk +Qbz kh

∗ves
s jb ]ds

+N t
ijklg

−1
zx Pxl[−α(L)

∂(L)

∂αz

_

Mkj +
ω

c(L)

∂(L)

∂αz

_

Kkj +
∂(

_

Mkj)

∂αz
+

_

MkmQmz j +
_

MnjQnz k]

+ Lijg
−1
zx Pxj{[

ω

c(L)

∂(L)

∂αz

_

Kmn − α(L)
∂(L)

∂αz

_

Mmn +
∂(

_

Mmn)

∂αz
]
_
gmn +

_

Mmn
∂(

_
gmn)

∂αz
} = 0.

(6.53)

After organizing these equations, we obtain the following two systems of equations in terms

of the characteristics of the admissible wave mode, such as the wave speed c(L), the first

order derivative of wave speed c′(L), the attenuation coefficient α(L), the first order deriva-

tive of attenuation coefficient α′(L), the displacement direction dp, the first order derivative

d′p =
d[dp(L)]
dL , and the second order derivative d′′p =

d2[dp(L)]
dL2 given by

XijkK̄jk − JijkM̄jk +Rijkz
∂(K̄jk)

∂αz
+

∫ ∞
−∞

[Ss ijkΛ
c
s jk]ds (6.54)

+ g−1
zx Pxl

∫ ∞
−∞

[Nve
s ijkl

∂(Λcs jk)

∂αz
]ds− g−1

zx Pxl
ω

c(L)

∂(L)

∂αz

∫ ∞
−∞

[Nve
s ijklΛ

s
s jk]ds = −ρoω2di,

and

XijkM̄jk + JijkK̄jk +Rijkz
∂(M̄jk)

∂αz
+

∫ ∞
−∞

[Ss ijkΛ
s
s jk]ds (6.55)

+ g−1
zx Pxl

ω

c(L)

∂(L)

∂αz

∫ ∞
−∞

[Nve
s ijklΛ

c
s jk]ds+ g−1

zx Pxl

∫ ∞
−∞

[Nve
s ijkl

∂(Λss jk)

∂αz
]ds = 0,
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where,

K̄jk = {Gik[Qpi j − α(L)Bijp]} dp + (GikBijp) d
′
p, (6.56)

M̄jk =

[
ω

c(L)
GikBijp

]
dp,

Λcs jk =

[
Ωc
jeQpe k − α(L)Ωc

jeBekp − Ωs
jeBekp

ω

c(L)

]
dp +

(
Ωc
jeBekp

)
d′p,

Λss jk =

[
Ωc
jeBekp

ω

c(L)
+ Ωs

jeQpe k − α(L)Ωs
jeBekp

]
dp +

(
Ωs
jeBekp

)
d′p,

and

∂(K̄jk)

∂αz
=

{
∂ (GikQpi j)

∂αz
−
[
α′(L)

∂(L)

∂αz
GikBijp + α(L)

∂ (GikBijp)

∂αz

]}
dp (6.57)

+

Gik[Qpi j − α(L)Bijp]
∂(L)

∂αz
+
∂
[
Gik

∂(L)
∂αi

]
∂αz

δjp

 d′p +

[
GikBijp

∂(L)

∂αz

]
d′′p,

∂(M̄jk)

∂αz
=

ω

c(L)

[
∂ (GikBijp)

∂αz
− c′(L)

c(L)

∂(L)

∂αz
GikBijp

]
dp +

[
GikBijp

∂(L)

∂αz

]
d′p,



156

∂(Λcs jk)

∂αz
=

∂
(

Ωc
jeQpe k

)
∂αz

− α′(L)
∂(L)

∂αz
Ωc
jeBekp − α(L)

∂
(

Ωc
jeBekp

)
∂αz

 dp (6.58)

− ω

c(L)

∂
(

Ωs
jeBekp

)
∂αz

− Ωs
jeBekp

c′(L)

c(L)

∂(L)

∂αz

 dp
+

(Ωc
jeQpe k − α(L)Ωc

jeBekp −
ω

c(L)
Ωs
jeBekp

)
∂(L)

∂αz
+
∂
(

Ωc
jeBekp

)
∂αz

 d′p
+
(
Ωc
jeBekp

) ∂(L)

∂αz
d′′p,

∂(Λss jk)

∂αz
=

∂
(

Ωc
jeBekp

)
∂αz

ω

c(L)
− Ωc

jeBekp
∂(L)

∂αz

ω

c(L)2
c′(L) +

∂
(

Ωs
jeQpe k

)
∂αz

 dp
−

α′(L)
∂(L)

∂αz
Ωs
jeBekp + α(L)

∂
(

Ωs
jeBekp

)
∂αz

 dp
+


[
Ωc
jeBekp

ω

c(L)
+ Ωs

jeQpe k − α(L)Ωs
jeBekp

]
∂(L)

∂αz
+
∂
(

Ωs
jeBekp

)
∂αz

 d′p

+
(
Ωs
jeBekp

) ∂(L)

∂αz
d′′p.

The components of the coefficient matrix in equations (6.54) and (6.55) are given by

Xijk = Wijk − α(L)
∂(L)

∂αz
Rijkz, (6.59)

Jijk =
ω

c(L)

∂(L)

∂αz
Rijkz,

Rijkz = g−1
zc Pcl(Nijkl + Lil

_
g jk +N t

ikjl),

Wijk = Mijk + g−1
zc Pcl[(Niukl +N t

ikul)Qjz u + (Nijul +N t
iujl)Qkz u + Lil

∂(
_
g jk)

∂αz
],

Ss ijk = Os ijk − α(L)g−1
zc PclN

ve
s ijkl

∂(L)

∂αz
,

Os ijk = Mve
s ijk + g−1

zc Pcl(N
ve
s iuklQjz u +Nve

s ijulQkz u),

Gik = g−1
iu Pug

_

F −1
tk

_
g gt,

Bekp =
∂(L)

∂αe
δkp.
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The two systems of equations (6.54) and (6.55) should be simultaneously satisfied for the

admissible wave mode.

6.3 The propagation of wave fronts (jumps) in deforming

visoelastic bodies

Up to this point, we have assumed that all the base loadings and the perturbations are

continuous and sufficiently smooth over all the body. Now we will look at the case when

the perturbations are not sufficiently continuous, that is, in a volume the perturbation can

be discontinuous over an entire surface, say S̃ as shown in Fig. 6.2, yet continuous at all

other points of the volume.

In this section we study the propagation of mechanical wave fronts (jumps) in inhomo-

geneously and homogeneously deforming and relaxing viscoelastic bodies. We select to look

at the case where there is no discontinuity in the response of the base history, but there is

a discontinuity in the perturbation.

To do this, we first describe the superimposed jump (discontinuity) equations. Then we

look at the jump conditions, which should be satisfied during the jump propagation. The

perturbation equations for jump conditions are derived in detail in Chapter 2. Next we

show the propagation characteristics of the jump in terms of the material properties and

the time varying base loadings. As an example, we will look at how the longitudinal jump

propagates in a triaxially deforming viscoelastic body.

6.3.1 Wave front (jump) equations

Let us look at how the wave fronts propagate in an inhomogeneously deforming and relaxing

viscoelastic body. We will obtain the effects of the base deformation and the relaxation of

the viscoelastic body on the propagation properties of the jump.

As shown in Fig. 6.2, we denote S̃ = x̃[x̃o(X, τ), t] as the moving wave front (jump)

surface at the current time t, with the initial wave front surface as S̃o = x̃o(X, τ). We use N̂

as the normal vector to the moving wave front surface, and use ṽ[x̃o(X, τ), t] describing the

wave front velocity. The “+” region is in front of the jump surface (base loading history)
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Figure 6.2: Propagation of the wave front (jump) in a deforming and relaxing viscoelastic
body.

and the “−” region is behind the jump surface (total loading history). As before, we denote

u(X, t) as the displacement field in the base history (in front of the wave front surface) and

δu(X, t) as the superimosed displacement field. The material particle velocity in front of

the wave front surface is v+(X, t) = d
dt [u(X, t)], and the material particle velocity behind

the wave front surface as v−(X, t) = d
dt [u(X, t)] + d

dt [δu(X, t)].

As defined in Chapter 2 on the kinematic variables, the perturbation displacement

gradient is Ȟ(X, t), and the infinitesimal strain associated with the perturbation is given

by

ε̌(X, t) =
1

2
[Ȟ(X, t) + ȞT (X, t)]. (6.60)
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The volumetric strain associated with the perturbation is

ε̌v(X, t) = tr[ε̌(X, t)]. (6.61)

The jump of density across the wave front surface S̃ can be obtained from

ρ−(X, t)− ρ+(X, t) = −ε̌v(X, t)ρ+(X, t). (6.62)

On the wave front surface S̃, the loading on the material particles is a jump (step loading),

therefore, the interval of integration in the solution to the incremental viscoelastic flow

(6.29) is t− tw = 0, which results in Ȟve
s (t) = 0.

The perturbation of Cauchy stress δTT for the material particles on the jump surface

S̃ is defined as

TT (+)(X, t)−TT (−)(X, t) = −δTT (X, t), (6.63)

where, for the continuous viscoelastic elements in parallel, the change in the Cauchy stress

is the integration of the elastic part over “s”

δTT (X, t) =

∫ ∞
−∞

δTeT
s (X, t)ds, (6.64)

and, after substituting Ȟve
s (t) = 0 into the perturbation of elastic stress in each element

“s,” we have

δTeT
s (X, t) = Ees(X, t) : [Ȟ(X, t)F(X, t)Fve−1

s (X, t)]. (6.65)

The jump conditions are the relations that connect the values of the parameters on the two

sides of a surface on which the parameters are discontinuous.

After manipulating the jump conditions for the perturbations in (2.86), we get the

following perturbation equations for the jump conditions of conservation of mass and balance

of linear momentum, respectively, as

[
ρ+(v+ − ṽ)− ρ−(v− − ṽ)

]
◦ N̂ = 0, (6.66)[

ρ+v+ ⊗ (v+ − ṽ)− ρ−v− ⊗ (v− − ṽ)
]
◦ N̂ =

[
TT (+) −TT (−)

]
◦ N̂.
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After substituting the perturbation equations for density (6.62) and for Cauchy stress (6.63)

into the jump conditions (6.66), we obtain the following relations, that include the jump

velocity ṽ and the normal N̂ to the jump surface S̃, as

ṽ(X, t) ◦ N̂(X, t) = [v+(X, t) ◦ N̂(X, t)] +
[ε̌v(X, t)− 1][δv(X, t) ◦ N̂(X, t)]

ε̌v(X, t)
, (6.67)

and

ρo(X)

J(X, t)ε̌v(X, t)
[1− ε̌v(X, t)][δv(X, t) ◦ N̂(X, t)]δv(X, t) (6.68)

=

∫ ∞
−∞
{Ees(X, t) : [Ȟ(X, t)F(X, t)Fve−1

s (X, t)]}ds ◦ N̂(X, t),

where, δv = v− − v+.

The velocity of the wave front (jump) surface

Let us apply these perturbation equations of the jump conditions to calculate the velocity

of the moving jump surface. For a given base loading history (“+” region in Fig. 6.2), we

assume that the normal vector N̂ to the jump surface is known.

Taking a dot product with N̂ of both sides in equation (6.68), we obtain the following

equation for δv(X, t) ◦ N̂(X, t) given by

(δv ◦ N̂)(δv ◦ N̂) =
ε̌vJ

ρo(1− ε̌v)
N̂ ◦

{∫ ∞
−∞

[Ees : (ȞFFve−1
s )]ds ◦ N̂

}
. (6.69)

Substituting this into (6.67), we get the condition on the velocity of the moving wave

front surface S̃ in terms of the responses to the undergoing base deformations and the

perturbations as

ṽ ◦ N̂ = (v+ ◦ N̂)± (ε̌v − 1)

√
J

ρoε̌v
N̂ ◦

{∫ ∞
−∞

[Ees : (ȞFFve−1
s )]ds ◦ N̂

}
. (6.70)

This shows the effects of the material properties, the base loadings and the perturbations

on the velocity of the propagation of the jump.
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The splitting of the wave front surface during propagation

Let us look at how the material properties, the base history and the perturbations influence

the direction of motion of the jump surface. We will obtain the conditions that require

the wave front to split its direction during propagation. We assume given the base loading

history, and we assume that the jump velocity ṽ and the normal to the jump surface N̂ are

both unknown.

We can rewrite the perturbation equation (6.68) for jump condition as

{
ρo(1− ε̌v)

Jε̌v
(δv ⊗ δv)−

∫ ∞
−∞

[Ees : (ȞFFve−1
s )]ds

}
◦ N̂ = 0, (6.71)

where, N̂(X, t) is the unknown unit vector, i.e. N̂(X, t) ◦ N̂(X, t) = 1.

We represent the tensors and vectors in an arbitrary base
_
ei as

N̂(X, t) = N̂z
_
ez, (6.72)

Ees(X, t) = Ees−ijkl
_
ei ⊗

_
ej ⊗

_
ek ⊗

_
e l,

Ȟ(X, t) = Ȟxy
_
ex ⊗

_
ey,

F(X, t) = Fcd
_
ec ⊗

_
ed,

Fve−1
s (X, t) = F ve−1

s−uv
_
eu ⊗

_
ev,

δv(X, t) = δvw
_
ew.

The component form of equation (6.71) in the
_
ei system is given by a set of homogeneous

linear equations

KizN̂z = 0, (6.73)

where,

Kiz =
ρo
Jε̌v

(1− ε̌v)(δva)
_
gaz(δvi)− [

∫ ∞
−∞

(Ees−ijklF
ve−1
s−uv )ds]ȞxyFcd

_
gyc

_
gdu

_
gkx

_
g lv

_
g jz. (6.74)

The rank of a matrix is the largest order of any non-zero minor in the matrix. (The

order of a minor is the side-length of the square sub-matrix of which it is the determinant.)
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If the rank of the coefficient matrix [Kiz] is equal to 3, there is a trivial solution to this

homogeneous linear system.

If the rank of the coefficient matrix [Kiz] is equal to 2, there is 3 − 2 = 1 independent

solution to this homogeneous linear system. In this case, the jump will propagate along one

unique direction.

If the rank of the coefficient matrix [Kiz] is equal to 1, there are 3 − 1 = 2 independent

solutions to this homogeneous linear system. In this case, the jump may split its direction

during propagation. The possible normal vector N̂(X, t) is therefore the linear combination

of the two independent solutions and may be not unique.

Once the solution of the normal vector N̂(X, t) is obtained, if the solution exists, we can

substitute it into equation (6.67) or (6.70) to evaluate the jump velocity along the associated

normal direction ṽ(X, t) ◦ N̂(X, t).

6.3.2 The propagation of a longitudinal jump in triaxially deforming vis-

coelastic bodies

Let us look at the propagation properties of the longitudinal jump in a triaxially deforming

viscoelastic body as described in Fig. 6.3. Triaxial extension is a homogeneous deformation

that takes a cube into a cuboid. Fig. 6.3 shows the reference and intermediate configura-

tions for this deformation. As can be seen, Xi are used to define position in the reference

configuration and rectangular coordinates xi are used to describe position in the intermedi-

ate configuration. The two coordinates are selected such that they are parallel. The same

orthonormal curvilinear base vectors are used for both coordinates. In summary, we will be

using

(α1, α2, α3) = (X1, X2, X3), (6.75)

(β1, β2, β3) = (x1, x2, x3),

ei = ẽi,

gij = g̃ij = δij .

For this set of coordinate systems, the deformation can be written as
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Figure 6.3: Propagation of a longitudinal jump in triaxially deforming viscoelastic bodies.
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x1 = λ1(t)X1, (6.76)

x2 = λ2(t)X2,

x3 = λ3(t)X3,

where, λi(t) are changing with time, each one is a stretch ratio associated with extension

along one of the coordinate directions.

The deformation gradient is calculated as

F(t) = λ1(t)e1 ⊗ e1 + λ2(t)e2 ⊗ e2 + λ3(t)e3 ⊗ e3. (6.77)

This results in J = λ1(t)λ2(t)λ3(t).

The viscoelastic deformation gradient in element s is then given by

Fve
s (t) = λves 1(t)e1 ⊗ e1 + λves 2(t)e2 ⊗ e2 + λves 3(t)e3 ⊗ e3, (6.78)

and the elastic deformation gradient in element s is

Fe
s(t) =

λ1(t)

λves 1(t)
e1 ⊗ e1 +

λ2(t)

λves 2(t)
e2 ⊗ e2 +

λ3(t)

λves 3(t)
e3 ⊗ e3. (6.79)

The elastic stress in element s takes the form

Te
s(t) = T es 11(t)e1 ⊗ e1 + T es 22(t)e2 ⊗ e2 + T es 33(t)e3 ⊗ e3. (6.80)

We assume the normal to the wave front surface is along e1 direction, i.e. N̂ = e1. The

longitudinal jump equation is described by

δu(X, t) = u(X1, t)e1, (6.81)

where, the superimposed displacement direction is along e1, and the magnitude of the jump

displacement is u(X1, t).
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The gradient of the superimposed displacement is given by

Grad[δu(X, t)] =
∂[u(X1, t)]

∂X1
e1 ⊗ e1, (6.82)

and the displacement gradient of the jump is

Ȟ =
∂[u(X1, t)]

∂X1
λ−1

1 e1 ⊗ e1. (6.83)

The infinitesimal strain associated with the perturbation is given by

ε̌ =
∂[u(X1, t)]

∂X1
λ−1

1 e1 ⊗ e1, (6.84)

and the volumetric strain associated with this infinitesimal strain is

ε̌v = tr[ε̌] =
∂[u(X1, t)]

∂X1
λ−1

1 . (6.85)

Substituting the base deformations and the perturbations described above into equation

(6.70) results in the propagation velocity of the longitudinal jump given as

ṽ1(t) =v+
1 (t) (6.86)

± [
∂[u(X1, t)]

∂X1
λ1(t)−1 − 1]

[√
λ2(t)λ3(t)λ1(t)2

ρo

{∫ ∞
−∞
{Ees−1111(t)λve−1

s 1 (t)}ds
}]

.

If the jump is superimposed at long time after the base deformation becomes constant,

there will be no relaxations in the base loading during propagation of the jump, we will

have a constant jump velocity as

ṽ1 = ±[
∂[u(X1, t)]

∂X1
λ−1

1 − 1]

[√
λ2λ3λ2

1

ρo

{∫ ∞
−∞
{Ees−1111(∞)λve−1

s 1 (∞)}ds
}]

, (6.87)

where, Ees−1111(∞) is the long term elastic modulus of element s, and λve−1
s 1 (∞) is the long

term viscoelastic deformation in element s.



CHAPTER 7

Conclusion and future work

7.1 Discussion and conclusion

This dissertation is primarily focused on studying the propagation properties of thermo-

mechanical perturbations in deforming nonlinear materials, which include thermo-elastic

solids and thermo-viscoelastic solids. The results are based on general nonlinear thermo-

elastic and thermo-viscoelastic constitutive modeling structures embedded into a thermo-

dynamically consistent framework, which permit large deformations and also large defor-

mation rates under a broad range of temperatures. The significant contributions made in

this process are listed below.

1. We considered two thermo-mechanical loading histories: a base history and a total

history. The total history is constructed from the base history by adding an infinitesi-

mal thermo-mechanical perturbation. We have derived the balance laws for the thermo-

mechanical perturbations superimposed on a time varying base loading history. These

perturbation equations are the same for all materials and therefore, are used throughout

the entire dissertation for the thermo-elastic and visoelastic materials we used. We also

developed the perturbation equations for jump conditions, which enable us to study how

the thermo-mechanical discontinuities (jumps) propagate in deforming bodies.

2. We have studied the perturbation of nonlinear thermo-elastic solids and obtained



167

evolution equations for the incremental elastic and thermal deformations. We constructed

the relations between thermo-mechanical perturbations, material properties and the under-

going base deformations. We showed how inhomogeneity in the base deformation effects

the propagations of various isothermal waves.

3. In an effort to develop the theory for the propagation of thermo-mechanical pertur-

bations in deforming and relaxing viscoelastic bodies, we worked with a general nonlinear

thermo-viscoelastic constitutive model. This model is capable of capturing continuous ma-

terial relaxation and, for example, in the linear case, can specialize to a general linear

viscoelastic model with a continuous relaxation spectra. Using the proposed constitutive

equations, we developed a superposition method to impose infinitesimal thermo-mechanical

perturbations on a deforming body. There are no specific equilibrium requirement on the

thermodynamic state of the loading body, a case that has not been studied before. Ear-

lier approaches to perturbing the pre-deformed body were either restricted to small devia-

tions away from thermodynamic equilibrium of the pre-deformations, did not account for

thermo-mechanical coupling effects, or controlled the loading rate of the perturbations. In

the process, we obtained the constitutive equations for the perturbations and solved for the

evolutions of the incremental viscoelastic flow and thermal expansion resulting from the

superimposed perturbations.

4. We considered perturbations with material constraints. This includes the constraints

depending on loadings and the constraints depending on loadings and the internal vari-

ables. We also calculated the restrictions on the perturbations from the existing material

constraints.

5. As examples, we considered isothermal waves in homogeneously preloaded materials

and showed how the current results specialize to those published in the literature for simple

and attenuating harmonic waves. We also looked at the propagations of mechanical waves

and jumps in inhomogenously deforming viscoelastic bodies.

From these particular perspectives, we have addressed the objective of this dissertation,

that is to describe how the thermo-mechanical perturbation in the forms of a wave or a

jump propagates in deforming bodies.

In general, the equations enable us to study new types of wave motion and to investigate,
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for example, novel material modeling approaches and techniques based on testing under non-

equilibrium conditions. Based on the present thermo-mechanical perturbation equations,

many practical problems regarding material stability and geometric stability can also be

investigate for time changing material bodies and structures which use model conditions

that are much closer to reality.

7.2 Future work

We can extend the ideas on the propagation of perturbations in deforming bodies based on

the results in this work.

(1). Specifying the material model

The current results are based on a fairly general thermo-dynamically consistent constitutive

modeling structure for thermo-elastic and viscoelastic solids. This generality enables us to

study a broad range of materials, such as polymers, bio-materials, composite materials,

graded materials and soft materials. The characteristic responses of these materials include

loading rate dependency, anisotropy and inhomogeneity. We can directly apply the results

to incorporate their specific constitutive models and study the propagation properties of

thermo-mechanical perturbations in such materials during deformations.

(2). Studying the stability of the base history

The current perturbation method can be used to investigate whether the thermo-mechanical

base loading is stable for the selected material with or without material constraint. We

can superimpose a perturbation in the vicinity of the base history and study how the

perturbation evolves with time.

(3). Studying the uniqueness and stability of the solution to the initial and

boundary problem

We can also use the perturbation approach to study the uniqueness and stability of the

response of a material body with finite dimensions subject to initial and boundary condi-

tions. We can apply the perturbations for the boundary conditions and see the effect on the

response of the material particles inside the body due to the boundary perturbations. In

particular, this method can be used to analyze the quality of results from the computational
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methods, for example, Finite Element Method.

(4). Special propagation properties of the perturbation

The current results allow us to design material properties and the base history in order to

permit the perturbation propagating with the desired properties, such as the direction of

propagation, wave modes, wave speed and attenuation property.

(5). Characterizing material properties

From the characteristics of the propagation of perturbations in a material undergoing various

base histories, we can obtain certain information about the material properties, that can

be used to characterize the material in addition to the conventional techniques.

(6). Studying thermo-mechanical coupled waves

The current development allows us to investigate the more complicated wave motions, such

as the propagation of thermo-mechanical coupled waves. This can be useful for problems

where the thermal properties are of interest.



CHAPTER 8

Appendix

If the reader would like to construct a theory based on the decomposition F = Fe
sF

θ
sF ve

s ,

as opposed to F = Fe
sF

ve
s Fθ

s, the process is fairly similar. The response of each element

s is assumed to be fully described by the values of the associated elastic, viscoelastic, and

thermal deformation gradients plus the values of temperature and temperature gradient. As

such, the model is assuming limited influence of elements on each other. For the alternate

decomposition one can define a state Ss for each element s as

Ss ≡ [Fe
s,F

ve
s ,F

θ
s, θ,G], (8.1)

which fully describes the response of the element.

In this case we define, respectively, the thermodynamic elastic, back, and thermal

stresses as

T eT
s ≡ ρ∂Fes(ψ

†
s)F

eT
s ,

T bT
s ≡ ρ∂F ve

s
(ψ†s)F

veT
s ,

T θT
s ≡ ρ∂Fθs(ψ

†
s)F

θT
s , (8.2)
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and, respectively, define the over stresses from the back and thermal stresses as

∆T b
s ≡ F θ−1

s F e−1
s T e

sF e
sF θ

s −T b
s , (8.3)

∆T θ
s ≡ F e−1

s T e
sF e

s −T θ
s . (8.4)

The associated tangent moduli with respect to the given variables and evaluated at the base

history are defined as

E e
s ≡ ∂Fes(T

eT
s ), (8.5)

E ve
s ≡ ∂F ve

s
(T eT

s ), (8.6)

E θ
s ≡ ∂F θ

s
(T eT

s ), (8.7)

E θ
s v∂θ(T

eT
s ), (8.8)

and,

E be
s ≡ ∂Fes(T

bT
s ), (8.9)

E bve
s ≡ ∂F ve

s
(T bT

s ), (8.10)

E bθ
s ≡ ∂F θ

s
(T bT

s ), (8.11)

E bθ
s ≡ ∂θ(T bT

s ). (8.12)

We also use the identity

L = L e
s + F e

sL θ
sF e−1

s + F e
sF θ

sL ve
s F θ−1

s F e−1
s , (8.13)

where L e
s ≡ Ḟ e

sF e−1
s , L ve

s ≡ Ḟ ve
s F ve−1

s , and L θ
s ≡ Ḟ θ

sF θ−1
s . In this case we assume the

response is a function of this alternate decomposition. A sufficient, but not too restrictive,

condition to satisfy the Clausius-Duhem inequality is then given by assuming each element

is dissipative and that its free energy does not depend on the temperature gradient. This
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sufficient condition can be written as

T =

∫ ∞
−∞

T e
s ds,

η = −
∫ ∞
−∞

[∂θ(ψ
†
s)−

1

ρ
∆T θT

s : αs]ds,

−∆T bT
s : L ve

s ≤ 0,

1

θ
qs ◦ g ≤ 0. (8.14)

A fairly general viscoelastic model can be developed by taking for each element a nonlinear

evolution equation (flow law) of the form

L ve
s ≡ Cs : ∆T bT

s , (8.15)

where Cs is a fourth order coefficient function depending on the state Ss at the current time

but not the rates, excluding dependence on the temperature gradient. This is the form we

consider for our study, which, from the Clausius-Duhem inequality, must always satisfy

∆T bT
s : Cs : ∆T bT

s ≥ 0, (8.16)

for every admissible over stress ∆T b
s .

There are at least two ways to evaluate the incremental perturbation of the internal

parameters in this case. The first is to directly follow a similar process as in Section

4.4.. We will first do this, but there is an alternate solution that is based on relating the

perturbations from the two solutions which we will present at the end of the section.

The evolution equations given for the thermal deformation gradients for each element

during the base history and the total history are directly given by

Ḟ θ
s ≡ αsF θ

s θ̇,

Ḟ θ∗
s ≡ α ∗sF θ∗

s θ̇∗, (8.17)
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and the flow rules for the viscoelastic deformation gradients are directly given by

Ḟ ve
s ≡ (Cs : ∆T bT

s )F ve
s ,

Ḟ ve∗
s ≡ (C ∗s : ∆T b∗T

s )F ve∗
s . (8.18)

Next, we will use the following relations

F ve∗
s = F̃ ve

s F ve
s ,

Ḟ ve∗
s =

˙̃
F ve
s F ve

s + F̃ ve
s Ḟ ve

s ,

F θ∗
s = F̃ θ

sF θ
s ,

Ḟ θ
s = Fve

s Ḟθ
sF

θ−1
s Fve−1

s F θ
s . (8.19)

in manipulate the two sets of evaluation equations (8.17) and (8.18) for the two histories

while eliminating the higher order infinitesimal terms. From this we get the effects of the

perturbation on the evolution rules through the following two coupled first order differential

equations with the unknown incremental internal variables H̃ θ
s and H̃ ve

s given by

˙̃
H θ
s =αsH̃

θ
s (θ̇ + δθ̇) +αsδθ̇ + (δαs)(θ̇ + δθ̇)− H̃ θ

sαsθ̇,

˙̃
H ve
s =Cs : [F θT

s FeT
s H̃eT

s T eT
s Fe−T

s F θ−T
s − F θT

s FeT
s T eT

s H̃eT
s Fe−T

s F θ−T
s (8.20)

− F θT
s FeT

s T eT
s Fe−T

s H̃ θT
s F θ−T

s

+ F θT
s H̃ θT

s FeT
s T eT

s Fe−T
s F θ−T

s + F θT
s FeT

s (δT eT
s )Fe−T

s F θ−T
s − δT bT

s ]

+ (δCs) : ∆T bT
s + (Cs : ∆T bT

s )H̃ ve
s − H̃ ve

s (Cs : ∆T bT
s ), (8.21)

where, δαs = α ∗s − αs and δCs = C ∗s − Cs are, respectively, the incremental thermal

expansion parameter and the incremental viscoelastic parameter give by the perturbations

δαs = a es : (H̃e
sF

e
s) + a ves : (H̃ ve

s F ve
s ) + a θs : (H̃ θ

sF θ
s ) +α θ

s δθ, (8.22)

δCs = D e
s : (H̃ e

sFe
s) + D ve

s : (H̃ ve
s F ve

s ) + D θ
s : (H̃ θ

sF θ
s ) + C θ

s δθ. (8.23)

Since αs(t) and Cs(t) are assumed to be functions of the state of the element, we define
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the following associated coefficients which are the derivatives of αs and Cs with respect to

their associate variables,

a es ≡ ∂Fes(α
†
s ),

a ves ≡ ∂F ve
s

(α †s ),

a θs ≡ ∂F θ
s
(α †s ),

α θ
s ≡ ∂θ(α †s ), (8.24)

and

D e
s ≡ ∂Fes(C

†
s ),

D ve
s ≡ ∂F ve

s
(C †s ),

D θ
s ≡ ∂F θ

s
(C †s ),

C θ
s ≡ ∂θ(C †s ), (8.25)

where a es , a ves , a θs and C θ
s are fourth order tensor functions, α θ

s is a second order tensor,

D e
s , D ve

s and D θ
s are sixth order tensor functions.

The two systems of equations given in (8.20) are the counterparts of equations in (4.70)

and can be solved by using the same approach. The equations in (8.20) can be organized

into the forms

˙̃
H θ
s = B θ

s : H̃ θ
s + B ve

s : H̃ ve
s + Bs : Ȟ + θs, (8.26)

˙̃
H ve
s = Y ve

s : H̃ ve
s + Y θ

s : H̃ θ
s + Ys : Ȟ + ηs. (8.27)

In these two simplified forms B θ
s , B ve

s , Bs, Y ve
s , Y θ

s and Ys are fourth order tensors, θs and

ηs are second order tensors. In order to solve the tensor differential equations (8.26), we

should represent the tensors in a curvilinear coordinate system and then solve the differential

equations in the component form. For simplicity, here we choose an orthonormal base and
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write the corresponding component form in this base as

˙̃
H θ
s ij = B θ

s ijklH̃
θ
s kl + B ve

s ijklH̃
ve
s kl + Bs ijklȞkl + θs ij ,

˙̃
H ve
s ij = Y ve

s ijklH̃
ve
s kl + Y θ

s ijklH̃
θ
s kl + Ys ijklȞkl + ηs ij . (8.28)

To solve this system of first order differential equations, we organize the unknows into a

one-dimensional array denoted by χs that takes the form

χs ≡ (H̃ ve
s 11, H̃

ve
s 12, H̃

ve
s 13, H̃

ve
s 21, ..., H̃

θ
s 11, H̃

θ
s 12, H̃

θ
s 13, H̃

θ
s 21, ...). (8.29)

To do this, we introduce two transformations Tijk and Kijk which can transform the com-

ponents of H̃ ve
s and H̃ θ

s into the one-dimensional array χs through the relations

χs i = TijkH̃
ve
s jk +KijkH̃

θ
s jk, (8.30)

with the inverse transformations given as

H̃ ve
s ij = T−1

ijkχs k,

H̃ θ
s ij = K−1

ijkχs k. (8.31)

After substituting the transformations (8.31) into (8.28), and combining the equations we

get the first order system of differential equations

χ̇s(t) = As(t)χs(t) + f s(t), (8.32)

where the components of the coefficient matrix As mn(t) and the components of the inho-

mogeneous array fs m(t) are given as

As mn(t) =TmijY
ve
s ijkl(t)T

−1
kln +KmijB

ve
s ijkl(t)T

−1
kln +KmijB

θ
s ijkl(t)K

−1
kln

+ TmijY
θ
s ijkl(t)K

−1
kln, (8.33)

fs m(t) =TmijY s ijkl(t)Ȟkl(t) + Tmijηs ij(t) +KmijBs ijkl(t)Ȟkl(t) +Kmijθs ij(t). (8.34)
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The general solution to the system (8.32) is provided by Myskis [Myskis, 1975] as

χs(t) =

∫ t

ti

Ys(t, τ)f s(τ)dτ + Ys(t, ti)χsi, (8.35)

under the initial condition χsi = χs(ti), and where,

Ys(t, ti) =I +

∫ t

ti

As(τ1)dτ1 +

∫ t

ti

As(τ1)

∫ τ1

ti

As(τ2)dτ2dτ1

+

∫ t

ti

As(τ1)

∫ τ1

ti

As(τ2)

∫ τ2

ti

As(τ3)dτ3dτ2dτ1 + ... . (8.36)

From the general solution for χs(t) given in (8.35) and the inverse transformations from

χs(t) to H̃ ve
s (t) and H̃ θ

s (t), we then can calculate the increments of the internal variables

Ȟ ve
s (t) and Ȟ θ

s (t).

The following is an alternate method to achieve a similar result.

Alternate Method :

For the base history the deformation gradient is decomposed by using the alternate method

as

F(t) = Fe
s(t)F

θ
s (t)F ve

s (t), (8.37)

where the relations between the derivatives of the components for the two decompositions

are given by

Ḟ θ
s = Fve

s Ḟθ
sF

θ−1
s Fve−1

s F θ
s ,

Ḟ ve
s = F ve

s Fθ−1
s Fve−1

s Ḟve
s Fθ

s. (8.38)

In a similar manner, the deformation gradient of the total history is decomposed for the

alternate method as

F∗(t) = Fe∗
s (t)F θ∗

s (t)F ve∗
s (t), (8.39)
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Figure 8.1: Elastic-viscoelastic and thermal parts.

where

α ∗s = Fve∗
s α∗sF

ve∗−1
s , (8.40)

Lve∗s = F θ∗
s L ve∗

s F θ∗−1
s . (8.41)

The relations of the elastic, viscoelastic and thermal parts in the base history and in the

total history are described in Figure 8.1, and the associated perturbations are

δFe
s(t) = Fe∗

s (t)− Fe
s(t) = F̃ e

s (t)Fe
s(t)− Fe

s(t) = H̃ e
s (t)Fe

s(t),

δF θ
s (t) = F θ∗

s (t)− F θ
s (t) = F̃ θ

s (t)F θ
s (t)− F θ

s (t) = H̃ θ
s (t)F θ

s (t),

δF ve
s (t) = F ve∗

s (t)− F ve
s (t) = F̃ ve

s (t)F ve
s (t)− F ve

s (t) = H̃ ve
s (t)F ve

s (t). (8.42)
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The perturbations of the thermodynamic stresses in each element in this case are given by

δT eT
s = E e

s : (H̃ e
sFe

s) + E ve
s : (H̃ ve

s F ve
s ) + E θ

s : (H̃ θ
sF θ

s ) + E θ
s δθ, (8.43)

δT bT
s = E be

s : (H̃ e
sFe

s) + E bve
s : (H̃ ve

s F ve
s ) + E bθ

s : (H̃ θ
sF θ

s ) + E bθ
s δθ, (8.44)

and the perturbation of the Cauchy stress can be obtained from

δT =

∫ ∞
−∞

δT e
s ds. (8.45)

The superimposed deformation gradient F̌(t) can be directly separated by using an alternate

form as

F̌(t) = F̌ e
s (t)F̌ θ

s (t)F̌ ve
s (t), (8.46)

therefore,

F∗(t) =[F̃e
s(t)F

e
s(t)][F̃

θ
s (t)F θ

s (t)][F̃ ve
s (t)F ve

s (t)]

=F̌(t)F(t) = F̌ e
s (t)F̌ θ

s (t)F̌ ve
s (t)Fe

s(t)F
θ
s (t)F ve

s (t), (8.47)

where the relations with the “∼” variables are defined by

F̌ e
s (t) = F̃e

s(t), (8.48)

F̌ θ
s (t) = Fe

s(t)F̃
θ
s (t)Fe−1

s (t), (8.49)

F̌ ve
s (t) = Fe

s(t)F
θ
s (t)F̃ ve

s (t)F θ−1
s (t)Fe−1

s (t), (8.50)

Ȟ ≈ H̃e
s + Fe

sF
θ
s H̃ ve

s F θ−1
s Fe−1

s + F̃e
sF

e
sH̃

θ
sFe−1

s , (8.51)

where F̃e
s(t), F̃ ve

s (t), F̃ θ
s (t), F̌ e

s (t), F̌ θ
s (t), and F̌ ve

s (t) are assumed close to I.

The two decompositions for the total history should be equal throughout the loading

process, which can be described as

F∗(t) = Fe∗
s (t)Fve∗

s (t)Fθ∗
s (t) = [F̃e

s(t)F
e
s(t)][F̃

ve
s (t)Fve

s (t)][F̃θ
s(t)F

θ
s(t)], (8.52)

F∗(t) = Fe∗
s (t)F θ∗

s (t)F ve∗
s (t) = [F̃e

s(t)F
e
s(t)][F̃

θ
s (t)F θ

s (t)][F̃ ve
s (t)F ve

s (t)]. (8.53)
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After equating them and organization we obtain

F̃ θ
sF θ

s F̃ ve
s F ve

s = F̃ve
s Fve

s F̃θ
sF

θ
s. (8.54)

Since the above equation should be satisfied at all times, we take the time derivative of

both sides and manipulate the equation to get

˙̃F ve
s Fve

s F̃θ
sF

θ
s + F̃ve

s Ḟve
s F̃θ

sF
θ
s − F̃ve

s Fve
s F̃θ

sF
ve−1
s Ḟve

s Fθ
s = F̃ θ

sF θ
s

˙̃
F ve
s F ve

s . (8.55)

Equations (8.54) and (8.55) can be further simplified by organization and by using the

smallness of the incremental displacement gradients of the internal parameters H̃ ve
s = F̃ ve

s −

I, H̃θ
s = F̃θ

s − I, H̃ ve
s = F̃ ve

s − I, and H̃ θ
s = F̃ θ

s − I to get

H̃ θ
s =H̃ ve

s + F ve
s H̃θ

sF
ve−1
s − F θ

s H̃ ve
s F θ−1

s ,

˙̃
H ve
s =F θ−1

s ( ˙̃H ve
s F θ

s + ˙̃H ve
s F ve

s H̃θ
sF

θ
sF

ve−1
s + Ḟ ve

s H̃θ
sF

θ
sF

ve−1
s − F ve

s H̃θ
sF

ve−1
s Ḟ ve

s Fθ
sF

ve−1
s

+ F θ
s H̃ ve

s F θ−1
s

˙̃H ve
s F θ

s − F ve
s H̃θ

sF
ve−1
s

˙̃H ve
s F θ

s − H̃ ve
s

˙̃H ve
s F θ

s ). (8.56)

From equations (8.56) combined with equations in (8.38) the values for H̃ ve
s and H̃ θ

s in the

alternate decomposition can be evaluated from H̃ ve
s and H̃ θ

s in the original decomposition

we use in the development by solving the first order differential system.
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