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  Platonic Solids  2 

 
           A regular tetrahedron and a regular octahedron are two of the five known Platonic 

Solids.  These five “special” polyhedra look the same from any vertex, their faces are 

made of the same regular shape, and every edge is identical.  The earliest known 

description of them as a group is found in Plato’s Timaeus, thus the name Platonic Solids.  

Plato theorized the classical elements were constructed from the regular solids.  The 

tetrahedron was considered representative of fire,  the hexahedron or cube represented 

earth, the octahedron stood for gas or air, the dodecahedron represented vacuum or ether 

(which is made up of pure electromagnetic energy) , and the icosahedron was water.    

The Five Convex Regular Polyhedra (Platonic solids) 

Tetrahedron Hexahedron 
or Cube Octahedron Dodecahedron Icosahedron 

 

 

 

 

 

 

 

 

 

 

           There are special relationships which exist between these three dimensional 

shapes.  Duality is one of the distinct patterns among the platonic solids.  It associates the 

regular polyhedra into pairs called duals where the vertices of one correspond to the faces 

of the other.  These dual pairs are the octahedron and the cube, and the dodecahedron and 

the icosahedron.  The tetrahedron is a self dual.  These duals have the unique property of 

each having the same number of vertices as the other has faces.  For example, the cube 

has 8 vertices and 6 faces, and the octahedron has 8 faces and 6 vertices.    



  Platonic Solids  3 

           Another notable association among the platonic solids is the way in which one 

solid inscribes in another.  Using basic geometric principles relative volume may be 

calculated.  This relationship offers up a way to find the volume of the platonic solids 

which fit inside the cube.   

           The volume of the hexahedron or cube is easily calculated by cubing the measure 

of one of the sides of the cube.  However, the lack of obvious right angles in the 4 

remaining platonic solids makes finding their volumes more difficult.  This expository 

paper will consider finding the volume of a regular tetrahedron and a regular octahedron 

by using two methods.  One method will be utilizing trigonometry and the Pythagorean 

Theorem, and the second method will be inscribing the regular tetrahedron and the 

regular octahedron in a cube. 

Volume of a Regular Tetrahedron Using Trigonometry and the Pythagorean Theorem 

A tetrahedron is a triangular pyramid.  As with any pyramid, the volume of a 

tetrahedron is V = 1/3 AH where A is the area of the base and H the height from the base 

to the apex or highest point.  This applies for each of the four choices of the base, so the 

distances from the apexes to the opposite faces are inversely proportional to the areas of 

these faces. 

           In order to find the volume of a regular tetrahedron the area of its base must be 

calculated.  Let the length of each side of the triangular base of the tetrahedron be x.  The 

height of the triangular base is designated by h, and it is known that the angles in an 

equilateral triangle are all 60o.   
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           Trigonometry may be used to calculate the area of the base.  To find the height of 

the shape, I know
2
3  thus,and ,60sin o ==

x
h

x
h .  Multiplying both sides of this equation 

by x, gives the height of the base of the regular tetrahedron h = 
2

3x .  The formula for 

the area of a triangle is 
2
1 bh.  Plugging in the height I now have the equation for the area 

of the base: A = 
2
1 x ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

2
3x .  Simplifying this gives the area of the base to be  

4
32x    .  

Putting this into my original volume formula V=  AH
3
1  gives:   V =   )

4
3(

3
1 2x H.   

 

Finding the height of the regular tetrahedron will take several steps. 
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           We now find the apothem which is the line segment from the center of the base to 

the edge of the base.  I know the slant height of the tetrahedron is just the height of the 

equilateral triangle, which was just shown to be  
2

3x  .          

V  

           To find the length of the apothem (i.e. the line segment GD) we note that the angle 

at G (<VGD) is 60o and tan(60) = 
a

x 2/ . Solving for a we obtain   
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 a =  
32 tan(60)2

xx
=     

  
            Knowing the apothem, I use the Pythagorean Theorem to find the height, H.                              

                            The slant height = l, and the apothem = a. 

             H2 + a2 = l2 

       H2 +  22 )
2

3()
32

( xx
=    

           H2 +  
4

3
12

22 xx
=      

                                                       H    =     x
3
2  

           Plugging this expressions for height into the volume formula for the regular 

tetrahedron gives: 

   V = xx )
3
2)(

4
3(

3
1 2

       

   V =  
12

23x . 

 

Inscribing a Regular Tetrahedron in a Cube to Find Its Volume 

           Inscribing a regular tetrahedron in a cube may be done by letting each edge of the 

tetrahedron be a diagonal of a face of the cube.  Inside the cube and outside the 

tetrahedron, are several tetrahedra whose volumes are easy to compute since there are 

some right angles involved.   

           The volume of the inscribed tetrahedron may be found by subtracting the 

combined volume of the four tetrahedra outside of the regular tetrahedron from the 

volume of the cube.  Let y be the length of the sides of the cube, and let x be the lengths 

of the sides of the regular tetrahedron.  Note that x = y 2  since the edges of the 

tetrahedron are the diagonals of the square faces of the cube. 
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           One of the cut-off tetrahedra (the pieces of the cube which are outside of the 

inscribed tetrahedron) would look like the following picture: 

 

           All four of these tetrahedral  may be combined to form a new pyramid.  Piecing 

the cut-off tetrahedra together would result in a pyramid with a square base, with a top-

view as shown:  
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            The base of this pyramid is a square formed with four isosceles triangles. The 

ratio between the sides of a 45-45-90 isosceles triangle is 1: 1: 2 .  Thus, the triangles in 

the base of this pyramid have sides of lengths y, y, and y 2  (i.e. x = y 2 ).  I will use the 

formula for the volume of a pyramid to find the volume cut-off from the cube. 

 V = 
3
1  A h 

 V = 
3
1 (y 2 )2  (y) 

 V = 
3
1 (2y2) (y) 

 V = 
3
1 (2y3) 

 V = 
3
2 y3 

 

           Subtracting the volume of the four tetrahedra cut off of the cube yields the volume 

of the inscribed regular tetrahedron.  The volume of the cube less the volume of the cut-

off pieces, equals the volume of the inscribed regular tetrahedron.  

 y3 – 
3
2  y3 = 

3
1  y3  
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              Thus, the volume of a regular tetrahedron is 
3
1  the volume of the cube in which it is 

inscribed.  

Volume of a Regular Octahedron Using Trigonometry and Pythagorean Theorem 

           A regular octahedron is a platonic solid with 8 equal triangular faces.  It is formed 

by 2 pyramids with square bases.  The volume of a regular octahedron may be found by 

finding the volume of one of the pyramids and multiplying that volume by 2.  In the case 

of the regular octahedron I know the area of the square base to be the square of the length 

of a side.  I will use s to designate the length of the sides of the regular octahedron.  Then 

I will use my earlier result for the height of an equilateral triangle h = s
2
3 , which will be 

the slant height, l, of my tetrahedron.     

 

            The apothem, or a, of the pyramid is labeled segment KJ.  The length  
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of a is half of the octahedron’s side so a = 
2
1 s.  The height of the pyramid may now be 

found using Pythagorean Theorem. 

        H2 + a2 = l2 

 H2 + 22 )
2
3()

2
1( ss

=  

      H2 + 
4

2s  =  
4

3 2s  

                H2 =  
4

2 2s  

                H2  =  
2

2s  

                H 

2

2s
=   

                 H  =    
2
s , 

           The height may now be plugged into the volume formula for a pyramid and 

doubled to find the volume of the regular octahedron.  

 V = AH)
3
1(2   

 V = 2 )
2

)()(
3
1( 2 ss      

 V =   
23

2 3s  

 V =   
3
2 3s . 

 

Inscribing a Regular Octahedron in a Cube 

           A regular octahedron is a dual of a cube.  Each vertex of the regular octahedron 

touches the center of one of the faces of the cube.  
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           It is an interesting fact that this octahedron may be formed by the intersection of 

two tetrahedra inscribed in a cube.   

                                     

           The regular octahedron INJKLM, formed with black line segments, has vertices at 

the center of each face of the cube.  The vertices are also formed by the intersection of 

the edges of the green regular tetrahedron and the red regular tetrahedron.   

           Since the edges of the tetrahedra are diagonals of the cube faces, and it is known 

that the diagonals of a square bisect each other, the intersection points for the two 
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tetrahedra occur at the center of the faces of the cube.  There are two tetrahedra inscribed 

in the cube.  Focus on the green tetrahedron and one of its smaller pyramids truncated by 

its intersection with the red tetrahedron. 

                         

           The shaded green truncated pyramid is similar to the original green tetrahedron  

since the edges of the truncated pyramid are each
2
1  as long as the original tetrahedron.  

Thus, the truncated pyramid is similar to the original tetrahedron at a 
2
1  scale factor.  

Other dimensions are also proportional.  Since volume is proportional to the scale factor 

cubed, the volume of each of the truncated pyramids is  
8
1or  )

2
1( 3  of the volume of the 

original, green tetrahedron.  Having cut off 4 pieces each with
8
1 of the volume of the 

original, their total volume is 
2
1  of the volume of the original, green tetrahedron.  There 

remains 
2
1  of the original green tetrahedron volume to form the inscribed octahedron.  
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Since the green tetrahedron has been found earlier in this paper to be 
3
1 the volume of the 

cube in which it is inscribed, the octahedron is 
2
1 of 

3
1  of the volume of the cube.  Thus, 

the inscribed octahedron is 
6
1  the volume of the cube.   

In Conclusion 

           The following table shows the relationships between the cube, regular tetrahedron, 

and the regular octahedron. 

SHAPE SIDE LENGTH RELATIONSHIPS VOLUME 

 
Cube 

 
c 

  
c3  

 

Tetrahedron 

 
 
S 

 
 

Sc =2  
 

12
2

26

33 SS
=  

 

Octahedron 

 
 
s 

S = 2s 
or 

s =  
2

c  

 

3
2 3s  

 

           Letting the sides of the cube be of unit length yields the following: 

           when c = 1, then the Volume of the regular tetrahedron =  
26

2
3

 =
3
1 ; 

           when c = 1, then the Volume of the regular octahedron =  
3

)
2

1(2 3

 =
6
1 . 
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