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Introduction
Students of veterinary or human epidemiology, evolution-

ary biologists, and ecologists alike, are often asked how heav-
ily a particular host species (or population, or herd, etc.) is 
infected by parasites. Further questions arise in comparisons 
regarding which one is more infected, or which one is more 
subjected to more pathogenic pressure than the others. Af-
ter carefully reading this chapter, you won’t be able to an-
swer such questions–simply because such questions make 
no sense.

The occurrence of parasites within the host population, 
just like the harm exerted by them, is a complex pattern that 
cannot be described by a single statistical measure. Different 
indices capture different aspects of infection. Statistical in-
dices have to be chosen that have clear (easy to understand) 

and distinct (non-overlapping) biological interpretations, and 
appropriate statistical tests must be chosen that are not based 
on assumptions that are not fulfilled in host-parasite systems. 
Unfortunately, some of the most widespread indices have 
vague if any biological interpretation, or they merely statisti-
cally predict each other, causing a redundancy of information.

Further, when applying appropriate indices to describe in-
fection, it is a common situation that one index is higher in 
the host population A, the other index of infection is higher 
in population B, and so on. Even if all indices appear to be 
higher in one population than the other, we can never ex-
clude the possibility that further meaningful indices can be 
proposed. A definite answer like “sample A is more infected 
than B” arises only in some rare and self-evident–and frankly 
not really interesting scientifically—cases when parasites are 
totally absent from the latter.

The aim of the present chapter is to advise readers how to 
choose appropriate statistical indices, and then, to choose the 
appropriate statistical tests to handle them. Finally, we offer 
a free statistical toolset to carry out the recommended statis-
tical procedures in a relatively painless manner. The text be-
low is based closely on a review paper by the authors of this 
chapter (Reiczigel et al., 2019a).

Taking Samples
Constrained by time, and financial and ethical limitations, 

investigators usually cannot collect and analyze every indi-
vidual of a host-parasite system. Rather they take a ran-
dom sample from the whole, with the hope that the sample 
will represent the unknown totality with reasonable accuracy. 
Of course, the larger the sample, the better accuracy we get. 
When taking a sample of a host-parasite system, typically, 
host individuals serve as ordinary units of sampling. First, a 
sample of host individuals is collected to represent the host 
population and, second, their bodies are searched for para-
sites. It is usually presumed that all parasites harbored by 
a particular host individual are found and identified, which 
may not be true.

Thus, we collect groups of parasite individuals inhabit-
ing the same host individual, so-called parasite infrapop-
ulations (Bush et al., 1997). Statistically speaking, random 
sampling of hosts implies cluster sampling of parasites. The 
size of these infrapopulations is most often expressed as the 
number of parasite individuals, thus we limit the discussion 
here to this particular situation.

Frequency Distribution of Host Individuals across 
Infection Classes

For sake of simplicity, first we focus our interest on the 
occurrence of a single species of parasite within a sample of 
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hosts. After collecting a sample, all conspecific parasite in-
dividuals need to be identified and counted from each host. 
Then host individuals are characterized by the number of par-
asites they harbor, then they can be grouped into so-called in-
fection classes, such as the group of non-infected hosts, the 
next group of hosts each harboring 1 parasite, the next group 
of those harboring 2 parasites, etc. Alternatively, wider cat-
egories are often applied, such as 0, 1–10, 11–20, etc. It is 
a common practice to replace the number of host individu-
als by the proportion (%) or probability (0–1 scale) that host 
individuals belong to a particular infection class. Such fre-
quency distributions are visualized as histograms, and often 
used to characterize host-parasite systems.

Host-parasite frequency distributions do not approximate 
a normal distribution (a symmetric bell curve) nor a uniform 
distribution. Rather the distribution of parasites always ex-
hibits an aggregated (also known as right-skewed, or pos-
itively-skewed) distribution: The majority of hosts harbor 
0, or just a very few, parasites, a few hosts harbor more, and 
only a very few hosts harbor many more of them (see Figure 
1; Crofton, 1971). The experienced frequency distributions, 
as visualized by histograms, can be approximated by mathe-
matical models. In the case of natural infections by macropar-
asites, the so-called negative binomial distribution model 
often provides a good approximation. 

Figure 1. Density function (light blue) and dot plots of samples (n = 50) taken from different distributions. A) Normal distribution, where 
the mean is the most frequent value and the exceedingly smaller or greater values are exceedingly rare. B) Uniform distribution, where all 
values in a certain interval are equally likely. C) Aggregated (or right-skewed) distribution, where low values are frequent but high val-
ues are rare. Hosts grouped into parasite infection classes typically exhibit this type of distribution. Source: J. Reiczigel, M. Marozzi, F. Ib-
olya, and L. Rózsa. License: CC BY-NC-SA 4.0.
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Sample Size
Providing information on sample size is essential partly 

because it affects the accuracy of the sample estimates, and 
partly because low sample sizes tend to bias some of the es-
timated indices of infestation/infection (Reiczigel and Rózsa, 
2017). Since hosts usually act as natural sampling units, au-
thors typically express sample size as the number of host indi-
viduals. However, in certain cases (see below), the number of 
parasites collected/examined may remain totally unknown–a 
shortcoming that should be carefully avoided.

Prevalence
Prevalence (also called extensity in the early literature) is 

the proportion of infected individuals, traditionally expressed 
as a percentage (0–100% range) or as a probability (the prob-
ability that a randomly chosen individual is infected, 0–1 
range). Sample prevalence is an estimate of the unknown 
true population prevalence and, thus, its 95% confidence in-
terval (CI) must be calculated to express its precision or un-
certainty: The wider the CI, the lower the precision of the es-
timate (or the higher the uncertainty).

There are several methods that can be used to calculate 
a CI for a proportion. It is traditional to apply the Clopper 
and Pearson’s (1934) method. Alternatively, Sterne’s (1954) 
method and Blaker’s (2000) method provide narrower, and 
thus more informative, interval estimates (see Reiczigel, 2003 
for a comparison of their efficacy).

In epidemiology, the proportion of host individuals devel-
oping new infections within a specified period is called inci-
dence or cumulative incidence. If calculated for a year (or 
month, week, etc.) it is called incidence rate or incidence 
density. The incidence expresses the risk of developing new 
infection in a certain time period. From a statistical point of 
view, incidence is handled similarly to prevalence, often mod-
eled by the Poisson distribution.

Naturally, studies based on methods that can only differen-
tiate the infected versus uninfected status of examined hosts 
(like serological methods) will report only sample size and 
prevalence (sample prevalence and its CI) to quantify results.

Mean Intensity
Intensity is the number of parasites found in an infected 

host. Sample mean intensity is the mean number of these 
values calculated for a sample, with all the 0 values of unin-
fected hosts excluded. Given the typical aggregated nature of 
parasite distributions, this value does not characterize a typ-
ical (say, characteristic, or usual) level of infection, rather 
it is highly dependent on the presence or absence of 1 or a 
very few highly infected host individuals. However, provided 
that sample size and prevalence are already known, mean 

intensity exactly defines the total number of parasites found 
in the sample. It is advisable to provide its 95% CI enabling 
readers to extrapolate it as an estimation of true population 
mean intensity. This CI is calculated by means of the bias-
corrected and accelerated (BCa) bootstrap method of Efron 
and Tibshirani (1993).

Do not apply the scheme ‘mean ± SD,’ because it is mean-
ingful only for symmetrical distributions, but not for the ag-
gregated ones so characteristic to parasites. Thus, nonsense 
expressions like ‘mean intensity = 10 ± 20’ (erroneously sug-
gesting that mean intensity can have negative values) are also 
avoided.

Before the era of computer-intensive methods, investiga-
tors often log-transformed raw values in order to normalize 
the data set. Then they calculated the mean of these trans-
formed data, and statistically compared these means by para-
metric tests (like Student’s t test or ANOVA) applied on the 
log-scale, and finally back-transformed the mean and ob-
tained the ‘geometric mean.’ However, log-transformed par-
asite distributions very poorly approximate the normal distri-
bution model, and the resulting index, the ‘geometric mean’ 
of intensity is hard to interpret biologically. Given that com-
puter-intensive methods like bootstrap have opened new av-
enues of statistical analyses, using geometric means should 
now be abandoned.

Median Intensity
Median intensity, unlike mean intensity, is not strongly 

affected by the values of the very few highly infected host 
individuals, thus it is more suitable to provide information 
about a typical (characteristic, usual) level of infection. Thus, 
while mean intensity (combining host sample size and prev-
alence) defines the number of parasites collected, median in-
tensity informs about a characteristic state of infected hosts 
(of course, with the uninfected hosts excluded).

A 95% CI of median intensity is useful to express the ac-
curacy of estimating population median intensity. For this 
purpose, the method introduced by Arnold et al. (2008) is 
followed. Due to the discreteness of data, it is often impossi-
ble to construct exact 95% confidence limits, thus, the short-
est interval that reaches at least the desired confidence level 
is reported instead.

The most common method for the comparison of 2 me-
dians is the non-parametric Wilcoxon-Mann-Whitney U-test 
(WMW). However, it should be noted that, without impos-
ing some rather restrictive assumptions on the population 
distributions, WMW does not compare medians (there are 
examples where the sample medians are exactly equal and 
WMW detects a significant difference between the samples). 
One such assumption is that the frequency distributions to be 
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compared have the same shape, the only difference between 
them is a shift along the horizontal axis (see Figure 2). There 
are other assumptions, but all of them are similarly restrictive, 
and most parasite distributions do not seem to fulfill them. If 
none of these assumptions hold, the result of the WMW test 
can be misleading (Divine et al., 2018). If the test detects a 
significant difference, the most one can say is that the distri-
butions (rather than the means or medians) differ. Therefore, 
if differences between medians are of interest, the best choice 
is Mood’s Median Test (Sen, 1998). 

Stochastic Equality of Intensities or Abundances
The bootstrap test for stochastic equality of distribu-

tions (Reiczigel et al., 2005a) is a variant of the WMW test. 
It compares pairs of values taken from the 2 samples and 
tests whether the probability of getting higher values from 
one sample than from the other is same (50%–50%) or dif-
ferent. If using this method, the question regards only how 
often a value taken from one sample is higher than that from 
the other sample, but not how much higher. Therefore, if this 
test shows that infections in one sample tend to exceed those 
in the other, it does not necessarily mean that the latter sam-
ple hosts fewer parasites.

Abundance
Abundance is defined and treated similarly to intensity, 

but the 0 values of non-infected host individuals are not ex-
cluded. Due to the inclusion of the infection class 0 (non-
infected hosts), the frequency distribution of abundance 
classes is more aggregated and, thus, their analysis is less 
accurate than that of the intensity classes, resulting in wider 
CIs and weaker statistical tests (greater p-values). Therefore, 
it is preferable to calculate intensity rather than abundance, 
and to avoid confusion, it is best to not provide both indices. 

Presuming that sample size (N hosts) and prevalence are pro-
vided, readers already have all the information about the non-
infected hosts, thus, the further inclusion of these calculations 
in quantitative descriptions is redundant. The relationship be-
tween mean abundance, mean intensity, and prevalence can 
be described by a simple formula, enabling calculation of any 
1 of them when knowing the other 2 of them:

mean abundance = prevalence * mean intensity

Median abundance is a less informative measure, in particu-
lar, because, by definition, it equals 0 whenever prevalence 
is less than 50%, irrespective of the actual prevalence and the 
intensity values of infected hosts.

Overall, abundance measures (mean and median, their 
CIs) combine information on prevalence and intensity. Ap-
ply them only if such a combined index is definitely needed.

Crowding
Crowding is the size of the infrapopulation to which an 

individual parasite belongs (Reiczigel et al., 2005b). Al-
though this equals intensity, intensity is defined as a host 
character, while crowding is a character of the parasite indi-
vidual. Therefore, mean intensity refers to the intensity val-
ues averaged over host individuals, but mean crowding is ob-
tained by averaging the crowding (= intensity) values over 
the parasite individuals. Say, mean intensity for 3 individuals 
infected by 1, 2, and 6 parasites is (1 + 2 + 6) / 3 = 3, while 
mean crowding for the parasites in the same sample is (1 + 
2 + 2 + 6 + 6 + 6 + 6 + 6 + 6) / 9 = 4.56. Note that, due to 
the aggregated shape of distributions, an ‘average’ individual 
lives in a host that is more ‘crowded’ by conspecific parasites 
than the mean number of parasites per hosts (here: 4.56 > 3). 
Mean crowding is a rarely used index; however, it is a poten-
tially meaningful measure of infection when speaking about 

Figure 2. The classical assumption of the Wilcoxon-Mann-Whitney U-test is that the distributions to be compared have same shapes (and 
therefore same variances) but may be shifted along the horizontal axis (above). Unfortunately, real host-parasite systems do not fulfill this 
assumption, thus results of the WMW test are difficult to interpret. Source: J. Reiczigel, M. Marozzi, F. Ibolya, and L. Rózsa. License: CC 
BY-NC-SA 4.0.
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density-dependent parasite characters (such as body size, fe-
cundity, or sex ratio) in relation to the putative social envi-
ronment of parasites.

Due to the usual sampling, that is, sampling the hosts, 
there are dependencies between the crowding values of par-
asite individuals: All of the conspecific parasites infecting the 
same host have identical values and, therefore, all of these 
values change simultaneously whenever a parasite is added 
or removed. This makes crowding values notoriously hard 
to handle statistically. As random sampling from the parasite 
population is practically infeasible, statistical methods assum-
ing independence of the sample values—practically all clas-
sical methods, that is—cannot be validly used for the analy-
sis of crowding.

A CI (confidence interval) for mean crowding can be 
created by the BCa bootstrap method as demonstrated by 
Efron and Tibshirani (1993). A 95% CI is useful to charac-
terize the accuracy of sample mean crowding as an estimate 
of the true population value. Statistical comparisons of mean 
crowding across 2 (or more) different samples are also based 
on CIs. First, 97.5% CIs are generated for both samples. If 
these intervals overlap, the difference between the 2 samples 

is non-significant at the prescribed level of 0.05, that is, p > 
0.05 (Reiczigel et al., 2005b). Unfortunately, the power of 
this testing method is rather low. Therefore, Neuhäuser et al. 
(2010) proposed applying Lepage’s (1971) location-scale test 
as a more suitable alternative.

From a purely mathematical point of view, diversity and 
crowding are closely related notions; one can be transformed 
into the other (Lang et al., 2017).

Levels of Aggregation
While all natural, and most experimental parasite infec-

tions exhibit an aggregated frequency distribution across host 
individuals, the level of aggregation may differ considerably 
from sample to sample. The most frequent indices to quan-
tify these levels are, 1) The variance-to-mean ratio of abun-
dance, 2) the exponent k of the negative binomial model fit-
ted to the data (presuming acceptable fit of the model), and 
3) Poulin’s (1993) ‘index of discrepancy,’ which includes a 
modified version of the so-called Gini-coefficient (a well-
known index in the literature of economics).

Although these indices aim to quantify the same fea-
ture (level of aggregation) of frequency distributions, 

Box 1. Money Flows Like Parasites

Since counting money is much closer to our everyday experience than counting parasites, here is a surprising 
parallelism between them. 

Most people possess little if any money, while a very few people are extremely rich. Thus, money, just like 
parasites, exhibits an aggregated distribution across human (analogous to host) individuals. The value of 
average richness is affected differently by different individual changes. It is very sensitive to the presence 
or absence of a single very rich person, but much less sensitive to the presence or absence of a single poor 
person. Similarly, mean intensity (or mean abundance) of infection is sensitive to the presence or absence 
of one or few highly infected individuals. Therefore, mean values do not reliably characterize the wealth of 
“average people;” likewise, neither the infection of a “typical” host individual.

There are similar causes responsible for the rise of aggregated distributions both in monetary and epidemiological 
systems. First, money (just like parasites) tends to move from one person to another in groups, such as sums 
of money, similar to multiple infections by more than one propagule at the same time. Second, some people 
are inherently good at earning and accumulating money, while others consistently spend all the money they 
happen to have–just like individual differences between susceptible and resistant individual hosts. Finally, 
money can multiply itself if hosted by a careful person; this is termed interest on capital. Similarly, most 
parasites can multiply themselves within the body of a susceptible host.

For such reasons, money behaves very much like parasites, at least from a statistical point of view.
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unfortunately, their values do not exactly predict each other, 
thus, they cannot be transformed into each other and the are 
not interchangeable.

Just like in the case of mean crowding, these indices can 
be compared across samples by testing the potential overlap 
between their 97.5% CIs.

Parasite Sex Ratio
Samples of dioecious parasites can be characterized by 

their sex ratios. Note that the term sex ratio is quite mislead-
ing. Mathematically speaking, a ‘ratio’ should be expressed as 
the frequency of 1 sex divided by the frequency of the other 
sex. However, the index males/females would be unfavor-
able to apply; for example, it cannot be calculated for samples 
without females (since one cannot divide a number by 0). In-
stead, it is traditional to apply the proportion of males among 
adult dioecious parasites as a measure of sex ratio. Thus, the 
index called sex ratio actually means male-proportion. As it 
is a proportion, the recommended statistical tests are identi-
cal to those of prevalence.

Parasite Species Richness
Species richness is a simple and frequently used index to 

quantify diversity. Unfortunately, small samples tend to un-
derestimate the true parasite species richness in populations of 
animals. General advice about the required sample size cannot 
be given because it depends on many other factors such as the 
levels of aggregation, interactions between parasite species, 
etc. There are several methods that have been designed to ex-
trapolate sample values to the true parasite species richness 
harbored by the whole host population, so as to correct for this 
sample size bias. Walther and Morand (1998) compared the 
reliability of several methods using real parasitological data-
sets and found that the first-order jackknife (Heltshe and For-
rester, 1983) and the Chao2 estimators performed best (Chao, 
1987; Chao and Chiu, 2016). This latter method estimates the 
number of unobserved parasite species from the number of 
rare species (those occurring only in 1 or 2 hosts in the sam-
ple). Thus, the estimation fails in the absence of rare species 
in the sample, but it performs well if the number of rare spe-
cies is < 50% of all parasite species in the dataset. It is also 
advised that a large sample of hosts is needed to obtain a reli-
able estimate, a sample size of at least a few hundred host in-
dividuals is recommended, but of course this depends on the 
estimated size of the population under study.

Interactions Between Parasite Species
Two parasite species coexisting in the same host popula-

tion may exhibit a positive or negative interaction, making 

their co-occurrence in a particular host individual more or 
less likely than expected by chance. The simplest method 
to analyze such interactions is to summarize the presence 
or absence of the 2 species on each host in a 2 × 2 con-
tingency table and apply Fisher’s Exact Test to analyze it. 
The sensitivity of this method, unfortunately, may be rather 
poor because the difference between hosting 0 or 1 para-
site individuals is often negligible. Therefore, computing 
the Spearman Rank Correlation coefficient to explore po-
tential interactions between abundance values of the 2 par-
asite species is recommended as it provides a more robust 
or sensitive estimate.

Quantitative Parasitology on the Web (QPweb)
Misuse of biostatistics and misinterpretation of statis-

tical results are very common in the parasitological litera-
ture. Therefore, we have published a brief overview of the 
suitable biostatistical tools together with some new meth-
ods proposed by us (Rózsa et al., 2000) to address these 
important issues. The Rózsa et al. (2000) paper was ac-
companied by freely distributed software called Quantita-
tive Parasitology (QP) to make the recommended statistical 
procedures easily accessible. Subsequent software versions 
QP1.0, QP2.0, and QP3.0 followed with increasing num-
bers of new functions. These were made available as down-
loadable software that ran on Windows PCs. Each was ca-
pable of handling only 1 type of parasite per host sample, 
thus, multispecies infections or sex ratios could not be ana-
lyzed. Finally, we introduced Quantitative Parasitology on 
the Web (QPweb) in 2013, which is an R-based interactive 
web service capable of communicating with computers via 
an internet browser, independently of the operating system 
used. Contrary to former versions, this one is already ca-
pable of representing different types of parasites (different 
species, different sexes, and so on) co-occurring in the same 
host sample, opening new possibilities for analyzing para-
site communities.

Parallel to the introduction of subsequent software ver-
sions, we also published new biostatistical procedures poten-
tially useful in characterizing the infection level of a sample 
or comparing infection indices across samples of hosts (Re-
iczigel, 2003; Reiczigel et al., 2005a; 2005b; 2008). All these 
new procedures were incorporated into the newer software 
versions. The latest version of QPweb (v1.0.15, as of 2020, 
and still in 2024) is freely available on the web (Reiczigel et 
al., 2019b; available at https://www2.univet.hu/qpweb/qp10/
index.php) to carry out most of the procedures mentioned 
above, including a simple users’ guide to help work through 
potential technical difficulties (Figure 3). 

https://www2.univet.hu/qpweb/qp10/index.php
https://www2.univet.hu/qpweb/qp10/index.php
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Figure 3. Analysis tools offered by QPweb 
when choosing different combinations of 
samples. Top: One species of parasite in 
1 sample of host. Middle: Two species of 
parasites in 1 sample of host. Bottom: Two 
species of parasites in 2 samples of hosts. 
Source: J. Reiczigel, M. Marozzi, F. Ibolya, 
and L. Rózsa. License: CC BY-NC-SA 4.0.
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