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Building mechanical equipment often generates prominent tones because most 

systems include rotating parts like fans and pumps. These tonal noises can cause 

unpleasant user experiences in spaces and, in turn, lead to increased complaints by 

building occupants. Currently, architectural engineers can apply the noise criteria 

guidelines in standards or publications to achieve acceptable noise conditions for 

assorted types of spaces. However, these criteria do not apply well if the noise 

contains perceptible tones. The annoyance thresholds experienced by the general 

population with regards to the degree of tones in noise is a significant piece of 

knowledge that has not been well-established. Thus, this dissertation addresses the 

relationship between human perception and noises with tones in the built 

environment.  

Four phases of subjective testing were conducted in an indoor acoustic testing 

chamber at the University of Nebraska to achieve the research objective. The results 

indicate that even the least prominent tones in noises can significantly decrease the 

cognitive performance of participants on a mentally demanding task. Factorial 

repeated-measures analysis of variance of test results have proven that tonality has a 



 
 
 
 

crucial influence on working memory capacity of subjects, whereas loudness levels 

alone did not. A multidimensional annoyance model, incorporating psycho-acoustical 

attributes of noise in addition to loudness and tonality, has been proposed as a more 

accurate annoyance model. 
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1. Chapter One 

Introduction 

1.1 Background 

Building mechanical systems including HVAC (heating, ventilating, and air 

conditioning) equipment have become more energy-efficient nowadays, but less attention 

is being paid to the sound quality of the equipment. An assortment of building 

mechanical equipment generates prominent tones via rotating parts like fans and pumps. 

The tonal noises can cause unpleasant evaluation of spaces and potentially increased 

complaints by building occupants. So far, however, there has been limited research on the 

effects of tones on human annoyance that can be used to set objective guidelines or limits 

on tones in noise. Current indoor noise evaluation methods such as Noise Criteria and 

Room Criteria also do not directly account for tonal characteristics of noises (Ryherd and 

Wang, 2010).  

Noise regulations about tonal components in a number of municipalities mostly 

reduce designated maximum allowable noise levels by 5 dB when a source of sound 

includes any pure tones (Los Angeles County, 1978; New York, 2006; Seattle, 2007; 

Minnesota, 2008). Pure tone components are often determined by a one-third octave band 

measurement according to ISO 1996-2 Annex D5 (ISO, 2007). However, the one-third 

octave band measurement technique is not always capable of detecting the tonal 

component, if the tone falls on the edge of two bands, and a 5 dBA penalty value is rather 

arbitrary because the value is not linked to accurate annoyance perception.   

Thus, this dissertation describes subjective investigations on how exposure to tonal 

noise impacts human annoyance perception and task performance in the built 
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environment, using a larger variety of signals than most previous studies.  The 

dissertation addresses three complementary research objectives: 1) to examine the 

relationship between associated tonal noise metrics and annoyance perception, 2) to 

determine upper limits of acceptability for tonality with the goal of developing a dose-

response relationship that can be used to set guidelines for tones in noise, and 3) to 

identify effect of tones on human task performance.  

1.2 Dissertation Outline 

Chapter 2 provides a comprehensive literature review regarding the noise metrics, 

noise-induced annoyance, factors impacting annoyance perception, and test 

methodologies for measuring the annoyance in the previous studies. Chapter 3 explains 

the test facilities used in the subjective studies and statistical analyses of this dissertation.   

Four phases of subjective testing were conducted in an indoor acoustic testing 

chamber at the University of Nebraska to achieve the research objectives. Chapter 4 

presents a subjective study that had participants complete Sudoku puzzles while being 

exposed to noise stimuli. In this study, relations between noise metrics and annoyance 

perception are investigated to develop an annoyance prediction model. Chapter 5 

describes a similar subjective test with a digit span task. This study expands the number 

of noise signals and participants to develop a dose-response relationship for determining 

the upper limit of tonal components in noises. Chapter 6 introduces a subjective test to 

investigate multidimensional aspects of annoyance perception using actual building 

mechanical noise signals with tones. Assorted audio recordings from building mechanical 

equipment are used in contrast to the previous studies which used artificially synthesized 
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noise stimuli. In Chapter 7, the annoyance perception of multi-tone complexes is 

investigated with a series of paired comparison tasks, and the results are used to improve 

the accuracy of the proposed model linking tonality metrics and annoyance perception. 

A brief summary and conclusions of this dissertation research are presented in 

Chapter 8. The limitations of the research and future research directions are also 

discussed.  
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2. Chapter Two 

Literature Review 

2.1 Introduction 

 Audible tones in noises such as those generated from aircraft, wind turbines, and 

building mechanical systems have been recognized as a serious source of public noise 

pollution since the 1960s. Therefore, a considerable amount of literature has been 

published on the relationship between human annoyance and tones in noises. This chapter 

begins by reviewing noise metrics related to tonality and annoyance perception. It will 

then go on to summarize the previous studies concerning the definition of noise-induced 

annoyance, factors that influence noise annoyance, and subjective test methodologies to 

measure the annoyance perception by noises. While studies related to tonal noises are a 

priority for review, other studies are also examined if they contribute to this research. 

2.2 Noise Parameters 

The noise metrics introduced in this chapter fall under three categories. The first 

category encompasses noise metrics that were developed to quantify tonality perception. 

The second category deals with widely used noise metrics for loudness perception. The 

last category includes those metrics that have been proposed for quantifying annoyance 

by noises. The last type usually combines two or more perceptual attributes of the noise 

signals, such as loudness and tonality. Abbreviations for each of the noise metrics are 

introduced in square brackets and will be used throughout the dissertation.  
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2.2.1 Tonality Metrics 

One of the most straightforward methods proposed for calculating tonality of a noise 

signal involves measuring one-third octave bands of background sound pressure levels, as 

described in ISO 1996-2 Annex D (ISO, 2007). The presence of prominent tones in 

background noises is determined by comparing a one-third octave band’s SPL to the 

values in both adjacent bands. The tone decision criteria are: 15 dB level difference for 

low frequency one-third-octave bands (25 Hz to 125 Hz), 8 dB for middle frequency 

bands (160 Hz to 400 Hz), and 5 dB for high frequency bands (500Hz to 10,000 Hz). 

Many municipalities in the United States have adopted this method in their noise 

regulations and apply a 5 dB penalty if tones are detected when comparing against 

maximum allowed noise levels (Los Angeles County, 1978; New York, 2006; Seattle, 

2007; Minnesota, 2008). However, the one-third octave band method may not detect 

tonal components, particularly if tones are located at the boundary frequencies of the one-

third octave bands because sound energy from tones will be split into two adjacent octave 

bands.  The 5 dB penalty value is also arbitrary since adding 5 dB does not necessarily or 

accurately reflect how annoyance perception is changed. Several other tonality metrics 

have been developed to overcome the deficiencies of the one-third octave band method. 

2.2.1.1 Tone-to-Noise Ratio and Prominence Ratio 

The most widely used metrics for tonality perception are Tone-to-Noise Ratio [ΔLtnr] 

and Prominence Ratio [ΔLpr], as standardized in ANSI/ASA S12.10/Part 1 Annex D 

(ANSI/ASA, 2010). These methods can identify tones between 89.1 Hz and 11,220 Hz. 

Caution is needed when using the methods for tones below or above the frequency range 
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since the methods do not provide the psycho-acoustical evidence for those frequencies. 

The frequency spectra from Fast Fourier Transform (FFT) analysis without any 

weighting filters are used to calculate the Tone-to-Noise Ratio and the Prominence Ratio. 

Caution needs to be taken for the FFT analysis to ensure that the frequency resolution is 

less than 0.25% of the tone frequency for Tone-to-Noise Ratio and 1% for the 

Prominence Ratio.  

As the name implies, Tone-to-Noise Ratio is the decibel level difference between the 

tonal noise energy and masking noise energy within the critical bandwidth centered on 

the tone frequency. The critical band is the frequency bandwidth where broadband noise 

contributes to the masking of tones near the tone. The formula for the Tone-to-Noise 

Ratio is:  

 

 10 ,t
tnr

n

XL log
X

=   (2.1) 

where 𝑋𝑋𝑡𝑡 is the mean-square sound pressure of the tone and 𝑋𝑋𝑛𝑛 is the mean-square sound 

pressure of the masking noise, which is the total mean-square sound pressure in the 

critical band without the tonal part.  Tones are regarded as prominent if the Tone-to-

Noise Ratio is greater than 8 dB above 1 kHz and the prominence criteria increase at 

lower frequencies: 

 
  8.0 1000 ,

1000  8.0 8.33log 1000 ,

tnr t

tnr t
t

L dB for f Hz

L dB for f Hz
f

≥ ≥

 
≥ + < 

 

  (2.2) 

where 𝑓𝑓𝑡𝑡 is the tone frequency under investigation.                   
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The Prominence Ratio is the exceedance level of the critical band centered on the 

tone to the average level of the two adjacent critical bands. The concept of this 

methodology is similar to the one-third octave band method except that critical bands 

replace one-third octave bands. The equation for the Prominence Ratio is as follows:  

 

 

10 171.4 ,
( ) 0.5

10 171.4 ,
100 0.5

M
pr t

L U

M
pr t

L U
L

XL log for f Hz
X X

XL log for f Hz
X X

f

= >
+ ×

= ≤
  

× + ×  ∆  

  (2.3) 

where 𝑋𝑋𝑀𝑀 is the mean-square sound pressure of the middle critical band centered on a 

tone frequency; 𝑋𝑋𝐿𝐿,𝑋𝑋𝑈𝑈 are the mean-square sound pressures of the lower and upper 

critical bands;  ∆𝑓𝑓𝐿𝐿 is the bandwidth of the lower band; and 𝑓𝑓𝑡𝑡 is the tone frequency under 

investigation. Tones are determined as prominent if the Prominence Ratio is greater than 

9 dB for frequencies above 1 kHz, and the criteria increase at lower frequencies: 

 

 

  9.0 1000 ,

1000  9.0 10log 1000 ,

pr t

pr t
t

L dB for f Hz

L dB for f Hz
f

≥ ≥

 
≥ + < 

 

  (2.4) 

where 𝑓𝑓𝑡𝑡 is the tone frequency under investigation. 

Tone-to-Noise Ratio and Prominence Ratio analyze tones independently unless 

multiple tones are sufficiently close. According to the ANSI standard, Tone-to-Noise 

Ratio may be more appropriate for multiple tones in adjacent critical bands whereas the 

Prominence Ratio is more accurate for multiple tones within the same critical band. 
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However, Hellweg et al. (2000, 2001) found through a round robin test that neither metric 

correlates well with subjective perception when multiple tones or harmonics exist.  

2.2.1.2 Tonal Audibility 

Tonal Audibility [ΔLta] is introduced in ISO 1996-2 Annex C (ISO, 2007). The 

metric is calculated based on the steady-state A-weighted frequency spectrum of a noise 

recording. In the standard, tones are technically defined as local maxima with a 3 dB 

bandwidth smaller than 10% of the bandwidth of the critical band.  

There are two main differences between Tonal Audibility and the previous two 

metrics, Tone-to-Noise Ratio and Prominence Ratio. One major difference is that Tonal 

Audibility includes a frequency correction term in its calculation so that the prominence 

criteria of tones is constant across frequencies. The other difference is that it uses a linear 

regression line instead of actual noise components when calculating masking tonal levels 

within the critical bands. The equation is given by: 

 

 
2.5

2 log 1 ,
502

c
ta pt pn

fL L L dB
  = − + + +  

   
  (2.5) 

where 𝐿𝐿𝑝𝑝𝑝𝑝 is the total sound pressure level of the tones; 𝐿𝐿𝑝𝑝𝑝𝑝 is the total sound pressure 

level of the masking noise in the critical band; and 𝑓𝑓𝑐𝑐 is the center frequency of the 

critical band. Based on the Tonal Audibility calculation, penalty factors between 0 to 6 

dB are provided to adjust the overall A-weighted noise levels, rather than setting 

prominence criteria. It also requires separate analysis for each tone within a multi-tonal 

noise signal. 
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2.2.1.3 Aures’ Tonality Model 

Aures (1985) developed a tonality metric that includes the frequency, bandwidth and 

levels of all tonal components in a noise signal. This method first calculates weighting 

functions based on each tonal component’s bandwidth, frequency and tonal level by 

Equation (2.6): 

 

 

( )1

0.29
2 2

0.2915
3

0.13 ,
0.13

1( ) ( ) ,
1 0.2( / 700 700 / )

( ) (1 ) ,

i

i

L

i

w z
z

w f
f f

w L e
−∆

∆ =
∆ +

=
+ +

∆ = −

  (2.6) 

where ∆𝑧𝑧𝑖𝑖 is the bandwidth of the tonal component in Bark; 𝑓𝑓𝑖𝑖 is the frequency of the 

tone in Hz; and ∆𝐿𝐿𝑖𝑖 is the excess level of the tonal component above the broadband 

masking noise, as proposed by Terhardt et al. (1982). The Bark unit corresponds to the 

critical bandwidth of hearing. Then, these weighting functions are combined to derive an 

overall weighting function 𝑤𝑤𝑇𝑇 for all tonal components by Equation (2.7): 

 

 ( ) ( ) ( )
21 1 1

0.29 0.29 0.29
1 2 3

1

.
n

T i i i
i

w w z w f w L
=

 
= ∆ ∆ ∆ 

 
∑   (2.7) 

Another weighting function 𝑤𝑤𝐺𝐺𝐺𝐺 accounts for the overall loudness of tone to noise 

ratio and is expressed as: 
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Nw
N

= −   (2.8) 

     



10 

 

where NGr is the loudness of the broadband noise component, and N is the total loudness 

of the sound. Finally, Aures’ tonality K [Aures] is calculated as:  

 

 0.29 0.79 ,T GrK c w w= × ×   (2.9) 

where c is a calibration constant to give a 1 kHz pure tone of 60 dB SPL a K value of 

one.  

2.2.1.4 Others  

There are a few other tonality metrics that have been developed by researchers but 

have not been widely adopted in the noise community. Spectral Contrast was developed 

by Berglund et al. (2002). In this study, similarity and preference ratings of 

environmental noises were measured. The authors found that the acoustic metric that best 

correlated with noise preferences was Spectral Contrast, which quantifies tonality of the 

noise by counting the number of local maxima within Zwicker’s specific loudness 

critical-band spectra. The specific loudness can be calculated from the decibel level for 

each critical band, which is similar to one-third octave band spectra of A-weighting 

sound pressure levels. Susini et al. (2004) investigated the sound quality of indoor air-

conditioning units and found that one of the dominating perceptual structures was highly 

correlated with Noise-to-Harmonic Ratio. NHR is the ratio of the broadband noise part 

and harmonic parts by resynthesizing the noise with digital signal processing techniques.   

2.2.2 Loudness Metrics 

Widely used loudness metrics are also investigated in this research due to the close 

relationship between loudness and annoyance perception. A variety of loudness levels 
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have been used to assess noise-induced annoyance depending on the context of the 

studies. An A-weighted equivalent sound level (LAeq) is the most common noise metric 

for environmental noise assessment because it is easy and convenient to measure. Other 

widely used noise metrics are day-night average sound level (Kryter, 1982, 2007; 

Miedema & Vos, 1998) for steady community noises, statistical noise levels for time-

fluctuating noises (Tang, 1997), loudness levels from the standard ISO532B (ISO, 1975) 

and ANSI S.3.4-2007 (ANSI, 2007) for more sophisticated loudness perception, and 

Perceived Noise Level (Kryter, 1960) specifically for aircraft noise nuisance. This 

dissertation does not present detailed procedures or formula to calculate theses loudness 

levels. 

2.2.3 Combined Metrics 

There are a few noise metrics that consider both loudness and tonality to quantify 

tonal noises. The primary idea of these combined metrics is that they add penalty values, 

derived from tonality, to loudness levels.  

2.2.3.1 Tone-corrected Perceived Noise Level 

Kryter (1960) developed a noise metric called Perceived Noise Level [PNL] for jet 

aircraft noise based on one-third octave band spectra. The metric utilizes equal 

‘noisiness’ contours developed from subjective equal annoyance perception tests. 

However, Little’s study (1961) found a weak relation between PNL and noises with 

tones. PNL was consequently revised with a tone-correction factor and named Tone-

Corrected Perceived Noise Level [PNLT] (Kryter and Pearsons, 1965). The tone 

correction factor varies from 0 to 6.7 dB according to the frequency of tones and the level 
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differences between one-third octave band values. In the 1970s, PNLT was adopted for 

use by the United States Federal Aviation Authority (FAA) in their regulations (FAA, 

1969). 

2.2.3.2 Joint Nordic Method 

The Joint Nordic Method [JNM] (Pedersen et al., 2000) is standardized in ISO 1996-

2, along with the simplified one-third octave band method. The penalty K values derived 

from Tonal Audibility are added to A-weighted sound pressure levels. Because adding a 

5 dB penalty to the overall sound level is too drastic when using the simplified one-third 

octave band method, it increases inaccuracy to the perception of annoyance. Thus, this 

method varies penalty values from 0 dB to 6 dB according to the prominence of tones. 

Subjective tests with artificial and real recordings from industry and wind turbine noises 

were conducted for the noise annoyance assessment. The criteria are given by: 

 

 
6 10 ,

4 4 10 ,
0 4 .
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K dB for L dB
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= ∆ − ≤ ∆ ≤

= ∆ <
  (2.10) 

For signals with multiple tones, individual Tonal Audibility should be calculated for 

each, and then the highest value of Tonal Audibility is used to calculate the penalty, K.  

2.2.3.3 Sound Quality Indicator 

Sound Quality Indicator [SQI] has been recently implemented by the Air-

conditioning, Heating and Refrigeration Institute (AHRI) to rate the sound quality of 

building mechanical product noise (AHRI, 2012). The metric is based on the Perceived 
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Noise Level procedure and ISO 532B loudness level proposed by Zwicker (ISO, 1975). 

The calculation begins with one-third octave band data. When any one-third octave band 

value exceeds the average of the two adjacent bands by more than 1.5 dB, the level of 

that band is arithmetically adjusted. Then, all one-third octave band sound levels are 

converted to rating indices according to a conversion table in the standard to calculate 

SQI.   The formula for SQI is expressed by: 
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  (2.11) 

where ∑𝑁𝑁𝑖𝑖 is an arithmetic sum of  rating indices for the one-third octave bands from 

100 to 10,000 Hz and 𝑁𝑁𝑚𝑚 is the maximum one-third octave band rating index. The 

metrics mainly aim to compare sound power data of HVAC products, but the usage can 

be extended to sound pressure data. 

2.2.3.4 Psychoacoustic Annoyance 

Fastl and Zwicker (2001) have proposed a Psychoacoustic Annoyance [PA] index 

based on their psychoacoustic studies by combining three different sound attributes: the 

loudness, the tone color, and the temporal fluctuation. The Psychoacoustic Annoyance is 

given by:  
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  (2.12) 

where 𝑁𝑁5 is the 5% percentile loudness in sones; 𝑤𝑤𝑠𝑠 considers the effects of sharpness S 

in acum; and 𝑤𝑤𝐹𝐹𝐹𝐹 is the influence of fluctuation strength F in vacil and roughness R in 

asper. Sharpness is a measure of the high frequency perception of noise signals, 

roughness is a measure of the rapid amplitude fluctuation from 15 Hz to 300 Hz, and 

fluctuation strength is a measure of the slow amplitude fluctuation perception up to 30 

Hz. The units of sone, acum, vacil and asper are psychological units of assorted acoustic 

perception metrics proposed by the authors. As expressed in Equation (2.12), the attribute 

of tonality is not explicitly included in the Psychoacoustic Annoyance.  

2.2.4 Summary 

This section has provided a description of the noise metrics related to tones in noises. 

The tonality metrics include Tone-to-Noise Ratio, Prominence Ratio, Tonal Audibility, 

Aures’ Tonality, Spectral Contrast and Noise-to-Harmonic Ratio. Among these metrics 

the Spectral Contrast and Noise-to-Harmonic Ratio metrics in this section are not utilized 

in this dissertation mainly because these methods are not verified by other researchers yet 

except the authors. Among assorted loudness metrics, A-weighted sound level, Perceived 

Noise Level, and ANSI and ISO Loudness levels are only calculated for noise signals 

tested in the next subjective studies because of the noise signal characteristics and testing 

purposes. The combined parameters with loudness levels include Tone-corrected 

Perceived Noise Level, Joint Nordic Method, Sound Quality Indicator, and 
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Psychoacoustic Annoyance. The Psychoacoustic Annoyance is also excluded for the 

signal analysis in next chapters because the parameter does not include the tonality term.    

2.3 Noise-induced Annoyance    

2.3.1 Definitions 

Noise-induced annoyance is a key factor in environmental noise assessment. 

However, there is some degree of uncertainty around the use of the term ‘annoyance’ by 

noise researchers. It is mainly because the aims of assorted noise annoyance studies vary 

according to the background contexts. 

According to a definition provided by ISO/TS 15666 (ISO, 2003), noise-induced 

annoyance is “one person’s individual adverse reaction to noise in various ways including 

dissatisfaction, bother, annoyance and disturbance”.  This standard aims to provide 

specifications for annoyance questionnaires mainly about community noises. The World 

Health Organization approaches noise annoyance as an adverse effect on health. In the 

WHO report, noise annoyance is defined as “the experience of a variety of negative 

responses, such as anger, disappointment, dissatisfaction, withdrawal, helplessness, 

depression, anxiety, distraction, agitation or exhaustion” (Kim, 2007). Noise annoyance 

can subsequently cause psychosocial symptoms such as tiredness, stomach discomfort, 

and stress. In the study by Guski et al. (1999), noise-induced annoyance refers to a multi-

dimensional concept related to behavioral effects such as disturbance and interference 

and evaluative aspects like nuisance and unpleasantness.  

Because the term annoyance embodies broad perceptual concepts, a variety of 

specific definitions have been suggested by some previous studies. The term ‘unbiased’ 
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annoyance has been proposed to indicate the annoyance perception purely determined by 

noise characteristics (Guski et al., 1999). Pedersen (2007) divided noise annoyance into 

three types: global, specific, and potential annoyance. The global annoyance is about 

holistic noise experiences over time and location without specific incidents and contexts. 

The specific annoyance is the annoyance response to a specific stimulus in a specified 

context for specific persons. The potential annoyance is the annoyance response from 

laboratory or controlled field experiments.   

Although differences of opinion continue to exist, there appears to be some 

agreement that annoyance perception is influenced by noise signal characteristics, the 

context of measurement, and personal attributes (Pedersen, 2007). In the sections that 

follow, assorted factors in each of these categories will be discussed.  

2.3.2 Factors Influencing Annoyance 

2.3.2.1 Noise Signal Characteristics 

Noise signal characteristics are those that are physically measured from the noise 

signals only. There is general agreement in the field of noise annoyance that, among 

noise signal characteristics, the loudness of a noise signal is most significantly related to 

annoyance perception. A variety of loudness levels have been used to assess noise-

induced annoyance depending on the context of the measurements. Although loudness is 

clearly the most reliable factor for determining annoyance perception, previous studies 

have found that loudness metrics alone only predict a small portion of annoyance 

perception. Brocolini et al. (2012) conclude that at most 30% of the annoyance is 
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accountable by loudness because of other acoustic characteristics and non-acoustic 

factors. 

There is consensus among noise researchers that impulsivity and tonality are two 

other main noise signal characteristics that must be considered when assessing annoyance 

(Brambilla and Pedrielli, 1996; Kerry et al., 1998; Sailer and Hassenzahl, 2000; Marquis-

Favre et al., 2005; Pedersen, 2007). The impulsiveness of a noise signal is due to single 

bursts of short duration (Starck et al., 2003). Such impulse noise not only increases 

annoyance perception significantly but also can cause severe hearing loss. ANSI S12.10 

(ANSI/ASA, 2010) specifies a measurement procedure to determine the impulsivity of 

noises by calculating the difference between time-averaged A-weighted impulse sound 

pressure level and A-weighted sound pressure level. Tones in noise is another dominant 

feature that influences annoyance perception as shown in several studies on aircraft, 

office equipment, HVAC noise, product noise, and wind-turbine noises (Lee et al., 2004; 

More and Davies, 2010).   

One factor of interest related to tonality is the presence of harmonics in noise signals. 

Although there is no proposed procedure to quantify the annoyance perception by 

harmonic tones, some previous studies have found that the harmonic components in a 

noise signal affect overall annoyance perception. Lee et al. (2005) found that harmonic 

components besides the fundamental frequencies also affect tonality perception. The 

authors proposed a modification of the frequency weighting function of Aures’ model 

based on their subjective results. Yanagisawa et al.(2011) investigated the emotional 

sound quality of a vacuum cleaner and argue that consonant tones increase pleasantness 

perception when compared to the original vacuum cleaner sound without peak tones. In 
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contrast, dissonant peak tones decrease pleasantness of the cleaner’s sound quality. 

Töpken et al. (2010) point out that the ratio of fundamental frequency and harmonics is a 

crucial factor influencing the pleasantness of the noise perception.  

Other possible acoustic factors related to annoyance perception include fluctuation of 

noises (Fastl and Zwicker, 2001; Dittrich and Oberfeld, 2009), excessive spectral 

concentrations especially in low frequencies (Persson et al., 1985; Persson and Björkman, 

1988), and vibration perception (Schomer, 2005). 

2.3.2.2 Non-acoustic Factors 

There are many non-acoustic factors that can affect annoyance perception besides 

noise signal characteristics.  The non-acoustic factors may generally be classified into 

two groups: the context of measurement and personal attributes.   

The context of measurement includes all environmental factors that have a potential 

to affect annoyance reactions. Pedersen (2007) listed the time of day, the location of 

measurement, and the activity during exposure to the major factors of the context. The 

author also argues that the subjective responses in a laboratory experiment cannot be 

identical with the responses in real situations because of their controlled environments. 

Due to the artificial context of being in the laboratory, the annoyance perception therein 

should vary from the actual situation. Hünerbein et al. (2010) suggested relative measures 

for laboratory studies. Kroesen et al. (2013) investigated the effects of survey context 

when measuring annoyance perception. The authors found that the annoyance rating 

responses can be affected by the preceding question items. The results showed that when 

subjects rate the annoyance of an aircraft noise in the context of other noise sources, the 
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average ratings are significantly higher than when it is measured individually or in the 

context of the normal conversation. The authors explain that this is mainly because the 

subjects are framed in the particular definition by the context of the preceding questions, 

and thus, they change their definition of annoyance over time.  

The personal attributes category includes noise sensitivity, fear from the noise 

source, age, and attitude towards the source, among others. Marquis-Faver et al. (2005) 

summarized non-acoustic factors through reviewing previous annoyance studies. They 

additionally mention the perception of neighborhood, cultural background, time spent at 

home, personal daily experience, and gender factors. The authors also argue that fear and 

noise sensitivity have been shown to have the most significant effects on annoyance 

perceptions among non-acoustic factors. Fear from the noise source by listeners is rarely 

experienced with building mechanical noise and, thus, noise sensitivity among the 

personal attributes is mainly of interest in this research. Noise sensitivity refers to “the 

internal states of any individual which increase their degree of reactivity to noise in 

general” (Job, 1999). Several noise sensitivity scales have been developed including 

those by Weinstein (1980), and Schutte et al. (2007).  

2.4 Subjective Testing Methodology 

Assorted subjective testing methods have been utilized to measure noise-induced 

annoyance, some of which have been focused on tones in noise. The methods may be 

classified into four main sub-groups on the basis of the aims of the studies. 
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2.4.1 Annoyance Questionnaire Studies 

The most widely used method to measure annoyance perception is to use a 

questionnaire with absolute judgment scales. ISO 15666 (ISO, 2003) specifies two 

standard questions and scales for annoyance ratings: verbal rating scale and numerical 

rating scale. The verbal rating scale consists of five choices: Not at all, Slightly, 

Moderately, Very, and Extremely. In the numerical rating scale, the subject is asked to 

choose a number between 0 and 10. Even though it is recommended to use multiple items 

on an annoyance questionnaire to achieve higher reliability (Job et al., 1996), many 

studies still use a single-item question of annoyance. The responses to scale items are 

usually analyzed with statistical analyses such as analysis of variance, correlation, and 

linear regression.    

In the 1980s, Hellman (1984, 1985) found that that tonal components in broadband 

spectra impact ratings of annoyance, loudness and noisiness, and that the number of tones 

and frequency differences between tones as well as the frequency of the tone itself 

influence annoyance perception. 

Landström et al. (1995) investigated the noise annoyance of signals with different 

spectral shapes. They found that the relation between individual annoyance ratings and 

sound levels was weak because of tonal components in the noise. The tonal components 

raised annoyance ratings equally about 3-6 dB in pressure levels.  Miedema and Vos 

(1998b) also suggested extra correction factors for impulsive or tonal components when 

predicting total annoyance for transportation and industrial noises. 

Researchers have examined the association between annoyance questionnaires and 

known noise metrics. Hastings et al. (2003) investigated the assorted tonality metrics for 
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predicting tonality and annoyance perception of noises. They proposed modifications in 

calculating the existing metrics and suggested that the bandwidth and roll-off rate of 

tones should be included for accurate tonality perception for aircraft noise. Ryherd and 

Wang (2008, 2010) investigated assorted building mechanical noise samples and showed 

that current indoor noise criteria were not accurately reflecting subjective annoyance 

perception because the criteria do not typically account for tonal characteristics in 

assessment. More and Davies (2010) investigated the relation between tonal aircraft 

noises and human annoyance. The subjects were asked to rate their annoyance after 

listening to simulated aircraft noises over headphones. The authors found that the 

modified Joint Nordic Method rating for tonality and a linear regression model with 

Zwicker’s loudness and Aures’ Tonality were the most accurate noise metrics among the 

utilized parameters.  

Trolle et al. (2014) investigated short-term annoyance due to tramway noise through 

multilevel regression analysis. The authors found that three acoustic measures of A-

weighted noise level, the variance of time-varying A-weighted pressure (VAP), and total 

energy of the tonal components in high frequencies (TETC) were highly correlated with 

annoyance scale responses. TETC reflects the high frequency piercing character of squeal 

noise. A multi-level regression model with A-weighted noise level, TETC and noise 

sensitivity was proposed in this study.  

2.4.2 Paired Comparison Methodology 

An alternative method for measuring perception is the paired comparison method. 

This method involves comparing a pair of sound stimuli. Then subjects are asked to judge 
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which in the pair is more annoying or preferred or to adjust one in the pair until it is 

equally annoying (or preferred) to the other stimulus. Kahn et al. (1996) argued that the 

paired comparison method is more reliable than the questionnaire scale based methods 

because of its consistency for both trained and untrained participants.  

Laux et al. (1993) investigated the relationship between low frequency modulated 

noise and annoyance perception using paired comparisons. The subjects were asked to 

select which noise was more annoying than the other. The responses were transformed 

into a relative scaled annoyance rating. The authors found that Zwicker’s annoyance 

model was highly correlated with annoyance rating, and the correlation coefficient was 

increased when a modulating factor was included in the model. Lee et al. (2005) 

investigated the tonality perceptions of harmonic complex tones in machinery noise using 

the paired comparison method. The subjects were asked to adjust the tonality of a single 

tone to equalize the perceived tonality of the complex tones. The complex tone stimuli 

varied with fundamental frequency, a number of harmonics, signal-to-noise ratio, first 

harmonic order, and roll-off rate of harmonic tones. Aures’ tonality model was used to 

quantify the tonality of the noises. They found that perception of tonality was a function 

of the pitch strength of the harmonic components. Also, they indicated that Aures’ 

tonality model overestimated perceived tonality concerning complex tones.  

Perceptual weight analysis can be categorized as a paired comparison method, but it 

has specific methodology and purpose. This method provides the relative weights of each 

component of perceptual features such as loudness from a trial-by-trial analysis. While 

the level or magnitude of some components varies randomly, subjects are usually asked 

to choose the noise stimulus from a pair based on loudness or preference perceptions. 
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Correlation analysis between variations of each component and responses provides the 

relative weighting of components. Perceptual weight analysis has often been used to 

investigate spectral components (Leibold et al., 2007; Jesteadt et al., 2014) or temporal 

components (Oberfeld et al., 2012) of complex noises contributing to overall loudness.  

Perceptual weight analysis has not been widely used in noise annoyance studies. 

Dittrich and Oberfeld (2009) adopted this method in their investigation on annoyance and 

loudness perception of temporally varying stimuli. They found that temporal weighting 

improved the prediction of loudness and annoyance, and that the annoyance responses 

were significantly different from the loudness responses.  

One of the biggest challenges in investigating tonal noise is to include the effects of 

harmonics on overall tonality and annoyance perception. This methodology is the ideal 

method to explore this research question. 

2.4.3 Dose-Response Model for Annoyance Perception 

One of the main aims of environmental noise studies is to propose acceptable noise 

levels. Dose-response relationships (or noise-exposure models) between noise levels and 

annoyance have been developed and introduced to suggest maximum allowable noise 

levels. Generally, the percentage proportion of highly annoyed (%HA) or annoyed (%A) 

persons is predicted by the model with related noise metrics like the A-weighted sound 

pressure level. The percentage of the annoyance responses collected from verbal scales is 

recommended, but many previous studies also used numerical scales on the annoyance 

surveys. In this case, ratings above 72 out of 100 for the highly annoyed and ratings 
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above 50 out of 100 for the annoyed are commonly-used categorization methods 

(Pedersen, 2007). 

Dose-response relationships have typically been developed with a logistic regression 

model or a quadratic ordinary least squares regression (Miedema and Vos, 1998a). The 

logistic regression model is a multiple regression with a categorical outcome variable. 

The equation is given by: 
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where  𝐶𝐶0,𝐶𝐶1, ⋯𝐶𝐶𝑛𝑛 are coefficients of the model and 𝑋𝑋1,⋯𝑋𝑋𝑛𝑛 are prediction variables, 

which are typically noise metrics for noise studies. Maximum-likelihood estimation is 

used to estimate the coefficients of the logistic regression model (Field, 2013a). 

Due to significant differences between noise sources, dose-response models for noise 

exposure relationship have been developed for a number of specific noise source types: 

wind turbines (Pedersen et al., 2009; Janssen et al., 2011), aircraft, road traffic, and 

railway noise (Schultz, 1978; Fidell et al., 1991; Miedema and Vos, 1998b). Even if the 

models are based on huge data sets from field measurements, there remains some 

uncertainty and a wide confidence interval in these dose-response relationships 

(Schomer, 2001, 2005). To date, a dose-response model for tonal building noises has not 

been developed. This paper uses annoyance ratings and likelihood-to-complain responses 

as the outcome variable for such a model, against a number of the noise metrics described 

in the previous section. 
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2.4.4 Multi-dimensional Scaling Studies 

The multidimensional scaling (MDS) analysis technique has been used especially in 

sound quality research. This method can be utilized to identify how subjects evaluate 

noise signals with a number of unknown perceptual dimensions (Wickelmaier, 2003). 

These unknown psychological dimensions form the latent basis for a person to evaluate 

the sound quality of noises (Woodcock et al., 2014). Subjects are usually asked to judge 

how similar a pair of sound stimuli are or how preferable one of the pair is over the other. 

The proximity data from the similarity question or the dominance data from the 

preference question are organized in matrix form for all pairs of stimuli. Then, the 

number of dimensions can be determined by measuring the goodness-of-fit of a solution 

applied to the response matrix. MDS analysis is beneficial for investigating the relation 

between sound stimuli and unidentified perceptions, but one of the challenges with the 

MDS technique is interpreting what each dimension is. Usually, additional correlational 

analyses are required for this work.  

The MDS technique has been used in psychoacoustic and noise research areas to 

investigate the annoyance perception by sound quality of car interior noises (Bisping, 

1997; Choe, 2001), HVAC noises (Berglund et al., 2002; Susini et al., 2004), concert hall 

acoustics (Bradley, 2006) and railway noises (Woodcock et al., 2014). Two studies of 

MDS related to tonality are highlighted in this section. Berglund et al. (2002) investigated 

perception of environmental noises including ventilation-like noise spectra with the 

multidimensional scaling methodology, and concluded that Spectral Contrast, which is 

related to the tonality, is the best acoustic index for predicting the preference rating of 

noises. Susini et al. (2004) analyzed indoor air-conditioning unit sound quality by MDS 
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analysis. They found that the sound quality of the air-conditioning units was based on 

three perceptual dimensions; these were significantly correlated with loudness, Spectral 

Centroid, and Noise-to-Harmonic Ratio (NHR). The spectral centroid is related to the 

“brightness” of the sound perception, and can be determined by the distribution of 

harmonics in the spectrum. The NHR is, as explained in Section 2.2.1, the ratio of 

broadband noise components to harmonic components, and is related to the tonal strength 

of the noise signal.  Listeners’ preferences significantly changed as these parameters 

varied.  

2.5 Relation of Noises with Task Performance  

The effects of noise on task performance is a major area of interest within the field of 

acoustics. A variety of cognitive tasks have been implemented in previous studies when 

exposing subjects to noise signals: digit span tasks involving memorization of numbers in 

order (Saeki et al., 2004; Haka et al., 2009; Ebissou et al., 2013), free recall tasks 

involving memorization of words (Lee and Jeon, 2013), crossword puzzles (Frank et al., 

2007), proofreading tasks (Holmberg et al., 1993), concurrent multi-tasks (Bailey and 

Konstan, 2006), and comprehensive multiple tasks like typing, reasoning and math test 

(Ryherd and Wang, 2008) or operation span task, dot series task, reading, and 

proofreading tasks  (Haka et al., 2009). Even though there is some evidence for effects of 

tones on task performance, the generalizability of these studies has been limited, mainly 

due to the diverse types of noise sources and noise levels. 

Moreover, research on the effects of tonal strength on task performance has produced 

conflicting results, and there is no general agreement to date. Laird (1933) found that 
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complex tones increased the error rates on tasks of laboratory experiments. The author 

argued that tones above 512 Hz have a greater effect on performance than lower 

frequency tones. Grjmaldi (1958) also found tendencies of slower response times and 

increasing error rates in coordinated movement performance for tones in the range of 

2400 Hz to 4800 Hz. Ryherd and Wang (2008) investigated the influences of discrete 

tones in background noise on task performance. Six different background noise 

conditions with assorted tonal levels were used in the subjective test. Although the results 

showed a trend for the annoyance and distraction perception ratings to be higher for the 

prominent tonal noises, there was no significant relationship between task performance 

and noise conditions. They recommended that a wider range of tonal signals be tested in 

future research. 

2.6 Summary 

This chapter has provided a description of the noise metrics related to tones in 

noises.  The definitions and methodologies for testing noise annoyance in previous 

studies also have been discussed in this chapter. The annoyance response data must be 

interpreted with caution because there are influential non-acoustic factors such as 

individual noise sensitivity. A review of previous research on noise-induced annoyance 

and investigating the effects of noises on task performance is presented. The evidence 

suggests that tonality in noise is one of the primary factors in annoyance perception, but 

more research is necessary to determine acceptable levels of tones in noises. The impact 

on task performance of tonal signals that are commonly found in the built environment is 
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not as clear. The effects of the presence of complex tones or harmonics are also poorly 

understood to date. 
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3. Chapter Three 

Research Facilities and Statistical Methods 

3.1 Introduction 

This chapter describes the research methods used for the subjective tests presented in 

Chapters 4, 5, 6, and 7. Information about the test facility and equipment are presented. 

The statistical methods used to analyze the subjective test data are also discussed.  

3.2 Facilities 

All subjective tests were completed in an acoustic testing chamber at the University 

of Nebraska. Figure 3.1 illustrates a schematic plan of the testing chamber, which has a 

volume of approximately 27.8 m3. The chamber is acoustically isolated from a monitor 

room and nearby spaces. Materials in the room include carpeted floor, gypsum board 

walls with additional absorptive panels, acoustic bass traps, and acoustical ceiling tiles. 

The average mid-frequency reverberation time is 0.31 seconds, and the ambient 

background noise level is 37 dBA when the air-conditioning in the chamber is turned off. 

 

Figure 3.1 Schematic plan of the Acoustic Testing Chamber at the University of Ne-
braska 
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 Figure 3.2 presents the ambient background noise levels in the chamber across 

octave bands. The tonal test signals were generated through a ceiling-mounted Armstrong 

i-ceiling speaker and a sub-woofer in a corner. The i-ceiling speaker appears as other 

ceiling tiles in the ceiling grid, so that participants cannot visually identify the location of 

the sound source. Participants sat in the middle of the chamber and were advised not to 

move their location during the experiment. 

 

 

Figure 3.2 Measured octave band spectra for the ambient background noise in the 
test chamber when air-conditioning is off 
 

3.3 Statistical Analysis 

3.3.1 Parametric Test Assumptions 

When using statistics to assess a model, there are assumptions for the data that 

should be met. The assumptions depend on the types of statistics, but most of the 
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following assumptions are essential for the parametric tests like linear regression and 

analysis of variance (ANOVA) used in this dissertation.  

One of the most fundamental assumptions in parametric statistical test is that the data 

follow normal distribution. Caution is needed in assessing test statistics when data violate 

the normality assumption. The Shapiro-Wilks test and the modified Kolmogorov-

Smirnov test are commonly used to test for normality in addition to graphical 

investigation of data distribution.  

Homoscedasticity (or homogeneity of variance) means that dependent variables 

should have equal levels of variance across the range of the predictor variable. The 

Levene test is the most common one for testing this assumption.  

Linearity refers to the outcome variable being linearly related to prediction variables 

(Field, 2013b). If this linearity assumption is not met, all parametric test statistics are 

useless because the model should be analyzed with nonlinear models.  

Independence means that the errors of individual observations should be not related 

to each other. If this assumption is not met, multilevel statistical modeling should be used 

instead.  The multilevel models use clustered structures to take account of correlations 

between individual data. 

3.3.2 Correlation  

The most widely used method to investigate the relation between variables is a 

statistical correlation. Correlation is a standardized way to measure covariance between 

two variables. Covariance is an indicator of when deviation of one variable is associated 
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with another variable positively or negatively. Covariance can be measured by the 

following equation: 
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where ,x y  are the means of the variables; ,i ix y  is the individual sample value; and N is 

the number of observations. The limitation of covariance is that it depends on the scale of 

the measurement and is not standardized (Field, 2013b). To overcome this limitation, 

Pearson product-moment correlation coefficient r is used to compare the coefficients 

between variables. 

The correlation coefficient can be calculated by the following equation: 
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where ,x ys s  are the standard deviations of the variables. By standardizing the 

covariance, the Pearson’s correlation coefficient ranges from -1 to +1. A coefficient value 

of +1 indicates a perfect positive relation, while a coefficient value of -1 indicates a 

perfect negative relation. A value of zero means there is no linear relationship between 

two variables. The squared value of the correlation coefficient value, R2, is widely used 

as a quantifier of correlation along with the coefficient itself. R2 is called the coefficient 

of determination, which is a measure of the amount of variances shared between two 
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variables. For example, a R2 value of .42 means that 42% of variability in one variable is 

shared by the other variable.  

When the samples do not meet the assumptions discussed in the previous section, 

Spearman’s correlation coefficient, rs (Spearman’s rho), can be used. Spearman’s 

coefficient is a nonparametric statistic based correlation based on ranked data (Field, 

2013b). The method basically converts the scale variables to ranked data first and then 

applies Pearson’s correlation equation. 

The significance of a correlation is generally evaluated by using t-statistics. The t-

statistics analysis tests the hypothesis that the correlation coefficient is significantly 

different from zero.   

3.3.3 Analysis of Variance 

Analysis of Variance (ANOVA) is a statistical method to compare the means of 

variables at two or more different experimental conditions. ANOVA is widely adopted to 

compare the effect of treatments in an experimental study by calculating the ratio of 

systematic variances and unsystematic variances. In an experimental study, the means of 

the treatment groups are usually compared to the mean of the control group to reveal the 

effect of treatment. ANOVA shows if each of the group means is significantly better than 

the overall mean across the groups in predicting an outcome variable. 

In an independent design, different participants are recruited for different 

experimental conditions; a repeated measures (within-subjects) design recruits the same 

participants across different experimental conditions. When both scenarios are used 

together in an experiment, it is called a mixed design.  
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When there are several independent variables to investigate, it is called factorial 

design. In many cases, the number of independent variables are specified by referring to 

the analyses as being two-way or three-way ANOVA. In this dissertation, repeated-

measure factorial ANOVAs are used.   

The F-ratio is used for testing the null hypothesis that the group means are all the 

same in ANOVA, meaning there is no effect of treatment across groups. The F-ratio is a 

ratio of the variation accounted for by the model and the variation not explained by the 

model (residual). As shown in Equation (3.3), the F-ratio is calculated by dividing the 

mean squares of the model by the mean squares of the residual. The calculated F-ratio 

can be compared against the value one can obtain in the F-distribution with the null 

hypothesis that the group means are all equal (Field, 2013b).  
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where:  

   mSS = Model sum of squares, rSS = Residual sum of squares 

mdf  = Model degree of freedom, rdf = Residual degree of freedom 
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kx = Mean of each group k, grandx  = grand mean 

kn = Number of groups, 2
ks = variance of each group k. 

While the F-test identifies if there are differences between group means, it does not 

provide any information about which group is affected. There are two additional analyses 

in ANOVA to evaluate the difference between specific groups: planned contrasts and 

post hoc tests. Planned contrasts are used when there is specific hypothesis to test and 

post hoc tests can be used when there is no specific hypothesis.   

When factorial repeated-measure ANOVA are used to evaluate experimental data, 

one additional assumption is required for the data: the assumption of sphericity. This 

assumption requires that variances of the differences between treatment groups should be 

approximately equal. The assumption can be tested by Mauchly’s test. If Mauchly’s test 

statistic is significant indicating that the assumption of sphericity is violated, the F-test 

should be analyzed with more restrictive ways such as Greenhouse-Geisser or Huynh-

Feldt estimate (Field, 2013b).   

3.3.4 Linear Regression 

Linear regression is a way of predicting an outcome variable (or dependent variable) 

with predictor variables (or independent variable) by fitting a straight line between them. 

When using only one predictor variable, it is referred to as simple regression, and when 

there are more than one predictor variables, it is called multiple regression. 

The multiple regression model can be expressed as:   

 

 0 1 1 2 2( )n nY b b X b X b X ε= + + + + +   (3.4) 
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where:  

Y= outcome variable 

nb = coefficient of the nth predictor variable, 0b = intercept 

nX = nth predictor variable 

ε = residual. 

The ordinary least square method is used to determine coefficients of the regression 

model by minimizing the residual term in the model. To assess the goodness of fit of the 

regression model, R2 is used. R2 represents the amount of variance in the outcome 

variable explained by the model (Field, 2013b). The statistical significance of R2 can be 

assessed by the F-ratio, as with ANOVA. When assessing statistical significance of 

individual predictors, a t-statistic test is used with the null hypothesis that the coefficient 

value of the predictor is zero. The t-test gives insight as to whether or not the model with 

the individual predictor performs better without the predictor.  

Because the coefficient values of the regression model depend on the measurement 

units of each predictor variable, the values are not comparable to each other for their 

effect on the outcome variable. To compare the performance of predictor variables, 

standardized beta (β) should be used. The beta values quantify the number of standard 

deviation changes caused by changing the predictor variable by one standard deviation.   

3.3.5 Logistic Regression 

The logistic regression model is one of the regression models for a categorical 

outcome variable. If the outcome variable contains only two cases like ‘Yes’ or ‘No’, a 

binary logistic regression model can be used. If the outcome variable contains more than 
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two cases, a multinomial logistic regression model should be used. For one of the noise 

studies in this dissertation, ‘annoyed’ or ‘not annoyed’ is used so that a binary logistic 

model is adequate for analysis.  

One of the main aims of environmental noise studies is to propose acceptable noise 

levels based on human responses. Dose-response relationships (or noise-exposure model) 

between noise levels and annoyance have been introduced in the noise community to 

suggest maximum allowable noise levels. Dose-response relationships have typically 

been developed with a logistic regression model or a quadratic ordinary least squares 

regression model (Miedema and Vos, 1998). 

The binary logistic regression equation is expressed by:  
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where P(Y) is the possibility of outcome Y occurring; C0, C1, ⋯, Cn are coefficients of 

the model; and X1, ⋯, Xn are prediction variables, which are typically noise levels for 

noise studies.  Figure 3.3 illustrates a typical form of the binary logistic regression model.  
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Figure 3.3 Graphical form of the logistic regression model (figure from Hair et al. 
(2009)) 

 
For the logistic regression model, maximum-likelihood estimation is used to estimate 

the coefficients of the model (Field, 2013). By using an iterative fitting model, 

maximum-likelihood estimation determines the closest coefficient value for the observed 

data. The goodness-of-fit of the developed model can be assessed by using R2, similar to 

the R2 of the linear regression. It is a measure of how well the prediction model fits the 

response data, derived from the chi-square (χ2) and deviance (-2LL) values. The deviance 

is calculated from the ‘deviance’ of the expected probability from the observed values. 

The deviance can be calculated as follows: 
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in which Yi, P(Yi) indicate an individual observed outcome and its expected probability. 

The deviance represents how much information is not explained by the model. The chi-

square can be derived from the deviance as follows: 

 

 
2 =(-2LL(null)-(-2LL(model))
=2LL(model)-2LL(null)

χ
  (3.7) 

in which -2LL(null) and -2LL(model) mean the deviance values when no predictor is 

included and when predictors are included, respectively. The chi-square value indicates 

how much the model prediction is improved against the model with no predictor. Several 

ways have been proposed to calculate R2 for logistic regression, derived from the chi-

square and the deviance, and in this dissertation, Homser & Lemeshow’s (2004) , Cox & 

Snell’s (1989), and Nagelkerke’s R2 (1991) are calculated (Field, 2013b).  

The odd ratio is the exponential of each coefficient in the logistic regression model. 

The ratio indicates how the ‘odds’ of the outcome occurring will change when a unit of 

predictor changes. If the ratio is greater than one, there would be positive relation 

between the predictor and the odds of the outcome. For example, if the coefficient value 

is .7, then the odds ratio of that predictor variable is 2, which is e^.7. An odds ratio of 2 

indicates that the possibility that the outcome will occur increases by two when the 

predictor variable is increased by one unit.  
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3.4 Summary 

In this chapter, the acoustic facilities used for subjective tests are introduced. Also, 

statistical methods applied in this dissertation to analyze the test responses are described. 

Table 3.1 summarizes the four subjective studies to be presented in the dissertation.  

Table 3.1 Brief summary of four subjective studies 

Chapter No. Chapter 4 Chapter 5 Chapter 6 Chapter 7 
Purpose of 

Study 
Investigate rela-

tion between 
noise metrics and 

annoyance 

Develop dose-
response rela-

tionship 

Explore multi-
dimensional 

aspects of an-
noyance  

Improve an-
noyance 

prediction of 
multi-tone 
complexes 

Methodology Sudoku puzzle Digit span  Multidimen-
sional Scaling 

Perceptual 
weighting 

Participants 
No. 

10 20 20 10 

Signals 20 artificially 
generated 

40 artificially 
generated 

18 actual 
building noises 

25 artificially 
generated 

Statistics Correlation, multivariate regression,  
repeated measure ANOVA 
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4. Chapter Four 

Relations between Noise Metrics and Human Annoyance and 
Performance 

4.1 Introduction 

In this chapter, the relationships between current noise metrics, human annoyance 

perception, and task performance under tonal noise conditions have been examined 

through subjective testing. In this study, subjects were asked to complete Sudoku puzzle 

while exposed to artificially synthesized noise with a tone. The subjects filled out a 

subjective rating questionnaire on the noise they had just experienced. The results have 

been used to identify significant noise metrics and develop a multivariate regression 

model to predict annoyance perception. 

4.2 Methods 

4.2.1 Noise Stimuli and Equipment 

A total of twenty-two noise signals were generated for use in this study by the 

program Test Tone Generator from EsserAudio (Esser, 2014). Two levels of broadband 

noise without any tonal components were used: either 40 dBA or 55 dBA overall, 

following a -5 dB/octave Room Criteria (RC) contour (Blazier, 1981).  

A tone at one of two frequencies (125 Hz or 500 Hz) and at one of five prominence 

levels was added separately to the broadband noise signals, to create the other twenty 

noise signals. The five tone levels were selected to range from below to above the 

prominence thresholds listed in ANSI S12.10 (ANSI/ASA, 2010): PR=18 dB for 125 Hz 

and PR=12 dB for 500 Hz. Table 4.1 presents the Prominence Ratio values for each test 

signal.  
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Table 4.1 Prominence Ratios for the tones in the noise stimuli used in the subjective 
testing as listed by tonal frequency, background noise level, and tone level. 

Frequency 

(Hz) 

BNL 

(dBA) 

Prominence Ratio (dB) 
Tone 

Level 1 
Tone 

Level 2 
Tone 

Level 3 
Tone 

Level 4 
Tone 

Level 5 
125 40 15 18 21 24 27 

 55 13 15 18 21 24 

500 40 9 12 15 18 21 

 55 6 9 12 15 18 
 

 

Figure 4.1 illustrates the one-third octave band spectra of the test signals. All tonal 

signals were measured using a B&K 4189-A microphone through the B&K PULSE 

system at the listener’s ear position in the testing chamber, and averaged over a minute 

for calculation of noise metrics. The related metrics, introduced in Chapter 2, were 

calculated using Matlab (MathWorks, 2013). 

4.2.2 Test Participants 

Ten participants, four females and six males, were recruited from the University of 

Nebraska at Omaha community and paid to complete this study, ranging in age from 25 

to 43 years old. All participants completed an orientation session including a hearing 

screening test before participation and demonstrated normal hearing with thresholds 

below 25 dB hearing level (HL) from 125 Hz to 8 kHz. The noise sensitivity of each 

participant was also measured by a reduced version (13 items only) of the Noise-

Sensitivity-Questionnaire (NoiSeQ) by Schutte et al. (2007) during the orientation 

session.  
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 (a) 

 
(b) 

 
 
Figure 4.1  Measured one-third octave band spectra for a few of the test noise signals: 
(a) broadband 40 dBA signals, and (b) broadband 55 dBA signals.  Tones were either 
at 125Hz or 500Hz; for clarity, only the lowest and highest tonal strengths are pre-
sented.  
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4.2.3 Subjective Testing Procedure 

The main test consisted of two parts: a direct assessment with task (part A) and a 

magnitude adjustment test (part B). The results of part B have been presented in another 

master student’s thesis (Francis, 2014) and hence are not included in this dissertation. In 

part A, participants were asked to complete as many Sudoku number puzzles as possible 

for ten minutes while exposed to noise signals, some with assorted tonal components. 

The Sudoku puzzle is a logic puzzle where one completes a 9 by 9 grid with numbers so 

that each column, each row, and each of the nine 3 by 3 sub-grids contains all digits from 

1 to 9. 

All participants practiced solving Sudoku puzzles during the orientation session 

before participating in the main test, and the difficulty of all Sudoku puzzles in the main 

test was held constant. After spending ten minutes solving the Sudoku puzzles, the 

subjects answered five questions on a subjective questionnaire about the noise they had 

just heard. The questionnaire was a modified version of the NASA task load index (Hart, 

2006). The original NASA task load index is divided into six subscales: mental demand, 

physical demand, temporal demand, performance, effort, and frustration. In this study, 

the questions on physical demand, temporal demand, and frustration were not included; 

instead questions were added on rating loudness and annoyance incurred by noise as 

shown in Table 4.2. Participants were asked to respond to each question based on a 21-

point scale on a paper form.   
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Table 4.2 Items from the subjective questionnaire, as modified from the NASA task 
load index. 

Description Questions 
Mental Demand 1. How mentally demanding was the 

task? 
Overall Performance 2. How successful were you in accom-

plishing what you were asked to do? 
Effort 3. How hard did you have to work to 

accomplish your level of performance? 
Loudness 4. How loud was the noise? 

Annoyance 5. How annoying was the noise? 

 

Part A consisted of ten 30-minute sessions that were completed by each subject 

individually on different days.  Within each 30-minute session, subjects were exposed to 

three noise signals (each for ten minutes) and thus completed three sequences of Sudoku 

puzzles (different puzzles each time) followed by the questionnaire. To minimize the 

influence of back-to-back comparisons of tonal noise conditions, a neutral background 

noise condition without any tonal components was used as the second signal within each 

30-minute test session. Within a single 30-minute test session, the background noise level 

of the signals remained at a constant level. The presentation order of the background 

noise levels and tonal test signals was carefully balanced across subjects using a Latin 

square design.  

Two task performance measures were gathered from (1) counting the number of 

Sudoku puzzles a subject fully completed within a ten-minute trial and (2) quantifying 

the accuracy of the puzzle answers in terms of number of correct numbers placed across 

all completed puzzles.   
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4.3 Results and Discussions 

4.3.1 Relating Subjective Responses and Task Performance 

Correlation analysis was conducted on the participants’ subjective responses to the 

modified NASA task load index questionnaires and the task performance outcomes 

related to the Sudoku puzzles (Table 4.3). Two subjects’ responses were excluded from 

all analyses because they rated responses randomly regardless of sound characteristics.  

Table 4.3 Spearman’s correlation analysis of the subjective responses and Sudoku 
puzzle task performance. TLX-avg is the average value of the responses to all five 
questions on the modified task load index questionnaire. ‘# of completed’ refers to the 
number of completed puzzles for each trial and ‘accuracy’ indicates accuracy rates 
of participants’ puzzle answers. 

 
Mental De-

mand 
Perfor-
mance Effort Loudness Annoyance TLX-avg # of com-

pleted Accuracy 

Mental Demand -        
Performance .260 -       

Effort .610** .496* -      
Loudness .501* .105 .230 -      

Annoyance .528* .162 .398 .948** -    
TLX-avg .631** .374 .601** .880** .956** -   

# of puzzles 
completed -.317 -.438 -.394 .074 -.020 -.171  -  

Accuracy -.105 -.483* -.071 -.289 -.252 -.330 .080 - 
**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 
 

A “TLX-avg” score was calculated as the averaged value of all five items from the 

modified survey to represent an overall rating of subjective task load perception induced 

by noise exposure. Since the task difficulty was held constant with equivalently difficult 

Sudoku puzzles throughout the experiment, the variations in subjective ratings observed 

within subjects can be considered as the result of varied background noise conditions. Job 

et al. (2001) have recommended against using a single question item about annoyance 

because of its reduced validity; consequently, the composite modified Noise TLX rating 
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is proposed as an alternative in this laboratory study. With a Cronbach’s alpha coefficient 

for reliability of .82, and a test-retest correlation of Noise TLX measure for stability of 

.77, the “TLX-avg” questionnaire was found to be internally consistent and stable over 

time and thus suitable for the purpose of this test.  

Spearman’s correlation (ρ) was utilized because not all of the variables met the 

assumption of having normal distribution and the sample size was small. As Table 4.3 

indicates, most of the subjective responses were significantly correlated to each other. 

Specifically of interest, the mental demand showed strong correlations with perceptions 

of loudness and annoyance of the noise, and as expected, loudness and annoyance ratings 

were significantly correlated with each other (ρ=.948). The task performance results of ‘# 

of completed’ (the number of completed puzzles for each trial) and ‘accuracy’ (accuracy 

rates of participants’ puzzle answers) showed non-significant correlation with subjective 

responses except subjective performance responses (ρ=-.483 with the accuracy). 

4.3.2 Relating Noise Attributes to Annoyance Perception 

To understand how the physical aspects of the noise signals (background noise level, 

tone frequency, and tonal strength) related to annoyance perception, a three-way repeated 

measure ANOVA (analysis of variance) was conducted. Mauchly’s test indicated that the 

assumption of sphericity had been met for the main effects of tonal strength and its 

interactions with frequency and background noise level. The analysis indicates a 

significant main effect of background noise level [F(1,7)=82.606, p<.001], tone 

frequency [F(1,7)=20.006, p=.003], and tonal strength [F(4,28)=4.758, p=.005] on 

annoyance perception.  The main analysis shows that the 55 dBA based tonal signals 
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were significantly more annoying than 40 dBA based tonal signals, and that the 125 Hz 

tonal signals were significantly more annoying than 500 Hz tonal signals. Contrast 

comparisons reveal that the 4th highest in prominence tonal signals, [F(1,7)=10.420, 

p=.014] and 5th highest in prominence tonal signals [F(1,7)=12.069, p=.010] were 

perceived as more annoying than the least (1st) prominent tonal signals. Figure 4.2 

illustrates the mean annoyance ratings against background noise level, tonal frequency 

and tone strengths. Summarizing these results, the overall background noise level does 

impact annoyance, with louder levels leading to greater annoyance. The lower frequency 

tone generated greater annoyance ratings, but one should note that the prominence levels 

of the 125 Hz tone versus those of the 500 Hz tone used in the study were (or were not) 

the same even though the relative differences from the threshold of tones presented in 

ISO 1996-2 are the same.  The data on tonal strength shows that higher tone levels 

increase annoyance. 
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      (a)                                                               (b) 

 
     (c) 

 
Figure 4.2 Mean annoyance perception ratings plotted against (a) background noise 
level, (b) tonal frequency, and (c) strength of the tones, where Tone 1 indicates the 
least prominent tone and Tone 5 indicates the most prominent tone. Error bars indi-
cate standard error. 
 

4.3.3 Correlation and Regression Analysis with Noise Metrics 

Spearman’s nonparametric correlation coefficients were calculated between all noise 

metrics and average participants’ perception ratings. The results have been analyzed in 

three scenarios: first with all twenty signals included, then with the average ratings for 

ten signals grouped separately by background noise level (40 dBA or 55 dBA). Table 4.4 

presents correlation coefficients between all noise metrics with subjective perceptions.    

For the group of all signals, the noise metric that demonstrates highest correlation 

coefficients with the perceived loudness, annoyance, and TLX-avg ratings is ANSI 
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Loudness Level. Other loudness metrics were also significantly correlated to the 

perception ratings, but the tonality metrics such as Prominence Ratio, Tone-to-Noise 

Ratio, Tonality Audibility and Aures’s Tonality did not statistically correlate or had 

lower coefficients than loudness metrics. This confirms that loudness is the most 

dominant factor in determining subjective perceptions of noise.  

When the signals are grouped by background noise levels, though, tonality metrics 

did show higher correlations with subjective ratings than loudness metrics. The 

coefficient values for the assorted tonality metrics are all very similar with no particular 

metric clearly performing better than others. The results suggest that when background 

noise level is controlled or comparable, tonality becomes a more influencing factor on 

annoyance evaluation. Figure 4.3 illustrates average ratings and standard deviation of the 

annoyance ratings across eight participants for each of the twenty noise stimuli (a) with 

the ANSI Loudness Levels across the entire group and (b) with Tonal Audibility ratings 

separated by two background noise levels of 40 dBA and 55 dBA.  

For all cases, combined metrics such as the Joint Nordic Method, Tone-corrected 

Perceived Noise Level and Sound Quality Indicator did not show remarkably better 

performance than loudness metrics, even though they were significantly related with 

annoyance ratings. The results suggest that imposing penalty values to loudness levels 

based on tonal strength may not be the most effective way to quantify overall subjective 

annoyance of tonal noise. Instead, tonality and loudness of building mechanical noises 

should be considered as separate metrics.  
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Table 4.4 Spearman’s correlation analysis of noise metrics against subjective re-
sponses and Sudoku puzzle task performance. The results are analyzed first with all 
signals included, and then in two groups separated by background noise level (40 dBA 
or 55 dBA).  Bolded values indicate metric with highest statistically significant corre-
lation values. 

All signals(40dBA & 55dBA BNL) 
 Loudness Annoyance TLX-avg 

PR .150 .186 .147 
TNR -.123 -.081 -.095 
ΔLta .006 .056 .019 
Aures .297 .359 .314 

dB .805** .824** .772** 
dBA .866** .887** .842** 

ANSI Loudness .946** .950** .926** 
ISO Loudness .938** .952** .925** 

PNL .892** .920** .886** 
PNLT .869** .877** .826** 
JNM .840** .869** .818** 
SQI .904** .899** .856** 

40dBA BNL only 
PR .794** .867** .782** 

TNR .794** .867** .782** 
ΔLta .778** .888** .815** 

Aures .673* .709* .697* 
dB .806** .939** .855** 

dBA .794** .927** .830** 
ANSI Loudness .685* .745* .697* 
ISO Loudness .685* .745* .697* 

PNL .685* .842** .867** 
PNLT .794** .830** .758* 
JNM .794** .927** .830** 
SQI .806** .806** .709* 

55dBA BNL only 
PR .799** .867** .758* 

TNR .709* .845** .845** 
ΔLta .787** .891** .818** 

Aures .781** .903** .782** 
dB .715* .756* .530 

dBA .707* .770** .564 
ANSI Loudness .878** .855** .709* 
ISO Loudness .817** .867** .697* 

PNL .720* .806** .539 
PNLT .744* .782** .527 
JNM .707* .770** .564 
SQI .689* .663* .444 

**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 
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 (a) 

 
(b) 

 
Figure 4.3 Averages (mark) and standard deviations (error bar) of the annoyance 
ratings across 8 participants for each noise stimulus plotted  against (a) ANSI Loud-
ness Level for all stimuli and (b) Tonal Audibility for 40 dBA and 55 dBA BNL 
separately. Dashed lines indicate regression lines of annoyance rating prediction with 
regard to each metric. 
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Based on the results in Table 4.4, ANSI Loudness Level and Tonal Audibility were 

selected to be used as predictors for a linear multiple regression model for annoyance 

perception, because these two metrics resulted in the strongest correlation with 

annoyance perception among other noise metrics. Equation (4.1) presents the multivariate 

regression model with ANSI Loudness Level and Tonal Audibility.  

( ) ( )  1.806 1.164* .072*Annoyance ANSI Loudness sone Tonal Audibility dB   = + +      (4.1) 

Table 4.5 also presents standard error of coefficients, standardized coefficients and 

statistical significance when ANSI Loudness Level was only used (in step 1) and when 

Tonal Audibility was also included (in step 2), in addition to the coefficient values for 

each predictor. Standardized beta values indicate the number of standard deviations that 

the outcome annoyance will change as a result of one standard deviation change in the 

predictor. The R2 value for this model is .943, which is a measure of goodness-of-fit of 

linear regression, indicating that 94.3% of the annoyance rating variance can be explained 

by the ANSI Loudness model only; the regression line is plotted in Figure 4.3(a). When 

including Tonal Audibility as a second predictor, the R2 value increased to .962. Even 

though this increase is small, the multivariate regression model does significantly predict 

more variation in annoyance perception when including Tonal Audibility as a second 

predictor; for step 2, the ANSI Loudness Level [t(17)=20.796, p < .001] and Tonal 

Audibility [t(17)=2.943, p=.009] are both significant predictors of annoyance perception.  
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Table 4.5 Linear regression model of predictors for annoyance perception, with 95% 
bias corrected and accelerated confidence intervals reported in parentheses. Confi-
dence intervals and standard errors are based on 1000 bootstrap samples. 
Standardized β values indicate the number of standard deviations that the outcome 
annoyance will change as a result of one standard deviation change in the predictor. 

 b SE B β p 
Step1 

Constant 3.254 (2.305, 4.310) .512  p=.001 
ANSI Loudness(Phon) 1.137 (1.004, 1.263) .066 .971 p=.001 

Step 2 
Constant 1.806 (.498, 3.187) .683  p=.020 

ANSI Loudness(Phon) 1.164 (1.043, .1.308) .069 .994 p=.001 
Tonal Audibility(dB) .072 (.027, .1111) .021 .141 p=.004 

Note. R2 = .40 for Step 1; ΔR2 = .02 for Step 2 (ps = .011). 
 

 

 
Figure 4.4 Averages (mark) and standard deviations (error bar) of the annoyance 
ratings across 8 participants for each noise stimulus plotted against the proposed lin-
ear regression model of annoyance perception from Equation 4.1 (dashed) based on 
ANSI Loudness level and Tonal Audibility (R2=.96). 

 

Figure 4.4 illustrates the regression line with the calculated linear model based on 

Equation 4.1.  
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4.4 Summary  

The purpose of this study was to investigate how noise signals with varying degrees 

of single prominent tones affect subjective annoyance perception and task performance 

and to develop a prediction model of annoyance using current noise metrics. Subjects 

completed Sudoku puzzles and a questionnaire modified from the NASA task load index 

to quantify the overall work load caused by building mechanical noise in this study.  The 

validity of the modified questionnaire is high based on its reliability coefficient and test-

rest coefficient, and the average response from the questionnaire is found to correlate 

significantly with perceived annoyance and loudness of the background noise signals. A 

factorial repeated measure ANOVA reveals that participants feel more annoyed with 

increasing background noise level, lower tone frequency and stronger prominence of the 

tone strength. Correlation analysis with noise metrics and subjective perception ratings 

suggest that ANSI Loudness Level among the tested loudness metrics correlates most 

strongly with annoyance perception, while assorted tonality metrics showed relatively 

weaker but still statistically significant correlations with annoyance. A statistically 

significant multivariate regression model with ANSI Loudness Level and Tonal 

Audibility has been developed, which demonstrates a R2 value of .962.  

The results in this study, however, do not provide any criteria about a threshold of 

acceptability for tonality. The next subjective testing is designed with the findings and 

outcomes from this study with an increased number of signals to investigate the dose 

response relationship.  
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5. Chapter Five 

Dose-response Relationship between Tonality Perception and Noise-
induced Complaint by Tones for Building Mechanical System 

5.1 Introduction 

While the study presented in Chapter 4 showed that annoyance can be impacted by 

background noise level, tonal frequency, and tonal strength, it used a limited number of 

signals and test subjects. The research described in this chapter utilizes more signals and 

more listeners with a goal of developing a dose-response relationship between tonality 

perception and noise-induced annoyance by using a logistic regression model. Such a 

dose-response model can then be used to determine an upper limit of acceptability of 

tonality according to the corresponding background noise level. The results can help to 

develop a noise guideline including tone criteria for buildings.  

5.2 Methods 

5.2.1 Participants 

Twenty listeners (9 females, 11 males) were paid to participate in the subjective test. 

The participants were recruited by using fliers distributed on the University of Nebraska 

at Omaha campus. The average age of all participants was 24.9 years with a standard 

deviation of 4.9. Most participants were university students or staff members. All 

listeners participated in an orientation session including a hearing sensitivity test to 

confirm that they had hearing thresholds below 25 dB HL from 125 Hz to 8 kHz for both 

ears.  
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Four subjects’ responses were excluded for all analysis in the results sections since 

they submitted the same minimum rating across all signals; these four are shown as 

subjects 17 through 20 in Figure 5.3. 

5.2.2 Noise Stimuli and Equipment 

The stimuli were 40 broadband noise signals with tonal components and no 

obviously time-fluctuating components.  Two broadband noise spectra were used, 

matching the room criteria RC-30 and RC-38 neutral contours. Neutral spectra were 

selected to eliminate perceptual impacts caused by spectral elements other than by the 

tones. Recordings of the noise signals were averaged over a minute at the listener’s ear 

position (3’4” to 3’7”) in the test chamber using a B&K 4189-A microphone through the 

B&K PULSE system. The overall sound pressure levels of the two broadband signals at 

the listener position were 57 dB (re 20 µPa) and 63 dB (re 20 µPa) respectively.  Five 

levels of tones at one of four specific tonal frequencies (125, 250, 500, 1000 Hz) were 

added separately to the broadband background noises. The broadband signals and tones 

were generated using the program Test Tone Generator (Esser Audio) and digitally 

synthesized using the program Audacity 2.1.1. The tonal levels ranged from barely 

observable to prominent for each tonal frequency, with Tonal Audibility values ranging 

from 5 dB to 19 dB. Table 5.1 summarizes the tonality values of the stimuli. The overall 

sound pressure level of the 40 tonal signals ranged from 57.3 dB (re 20 µPa) to 70.7 dB 

(re 20 µPa).  
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Table 5.1 Tonality of noise stimuli used in the subjective test. The same level of tones 
are added to both RC-30 & RC-38 neutral spectra broadband noises. 

Frequency (Hz) 125Hz 250Hz 500Hz 1kHz 

Tonal Audibility (dB) Tone level 1 5.4 5.7 5.2 5.1 
Tone level 2 7.2 7.7 7.5 7.8 
Tone level 3 9.4 9.7 9.9 10.1 
Tone level 4 13.2 12.7 12.1 13.5 
Tone level 5 19.4 19.5 19.0 19.2 

5.2.3 Subjective Testing Procedure 

The subjective test consisted of one orientation session and six main testing sessions.  

After the hearing threshold screening test, participants were informed about how 

annoyance is defined in this study and the purpose of the study. The participants also 

familiarized themselves with the main task by practicing for 10 minutes at the end of the 

orientation session.  

The participants were next asked to attend four 30-minute sessions, each of which 

included ten test trials. For each trial, participants were asked to perform a digit span task 

in which they memorized a series of numbers in the reverse order of presentation while 

exposed to assorted tonal signals. Trials using only RC-30 neutral background noise were 

inserted between trials with tonal noise conditions to eliminate back-to-back comparisons 

of tonal noise conditions. The order of tonal noise signals was randomized by Latin-

square design for all participants. Figure 5.1 illustrates the procedure of subjective testing 

in (a) a session and (b) a trial.  
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(a) 

 

(b) 

 

Figure 5.1 Description of subjective testing (a) in one session (b) in one trial. 
 

The digit span task is a measure of short-term working memory commonly used in 

psychology experiments (Mølhave et al., 1986; Jahanshahi et al., 2008). The length of 

each digit span task increased from 4 digits up to 8 digits over a duration of 

approximately 2 minutes as illustrated in Figure 5.1 (b), while being exposed to a noise 

signal. There were two attempts at each digit span. The digits are displayed for 3 seconds 

and disappeared before answering. The digits were displayed and disappeared at once 

rather than one-by-one. When the digits disappeared, participants were asked to type the 

same digits in the reverse order with the given keypad. For example, when 42863 were 

the displayed digits, participants should type 36824.  Conventionally the digit span task is 

completed when subjects fail to answer two consecutive questions correctly, but in this 

study, the maximum lengths was manually set to eight digits regardless of participants’ 

answers to fix the duration time under a noise stimulus. A custom-written graphical user 

interface in Matlab controlled the presentation of all of the trials and noise signals; the 
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program also measured accuracy of answers and reaction time of responses. After each 

trial, the participants were asked to fill out a subjective questionnaire with two items, 

indicating how annoyed they were by the noise, and whether or not they would complain 

about the noise. The annoyance question was answered on an 11-point continuous scale, 

and the complaint question was dichotomous choice. Figure 5.2 illustrates the Matlab 

graphic user interface of the subjective testing for the digit span task and subjective 

questionnaire.  

 

 (a) 

 

(b) 

 

Figure 5.2 Test program interface implemented by MATLAB Graphic User Interface 
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5.3 Results 

5.3.1 Task Performance 

To investigate the effects of tonal noise signals on task performance, the two 

outcome variables of (1) maximum number of correct digits provided for a single digit 

span test and (2) the time it took for the participant to complete a single digit span test 

were statistically analyzed.  The first outcome variable related to identifying correctly the 

digit span sequence did not show any statistically significant differences between noise 

stimuli at all. Repeated-measure analysis of variance (ANOVA) , though, showed that all 

completion times under tonal noise conditions were significantly longer than completion 

times under broadband noise conditions with RC-30N only (F(40,600)=2.78, p<.001, η𝑝𝑝
2  

=0.16). The completion time with the RC-30N noise condition without any tonal 

component was measured in normal trials like other tonal noise conditions. The in-

between trials of RC-30N noise condition as described in Figure 5.1 were not used to 

calculate the completion time due to influences from prior task conditions.  

Figure 5.3 illustrates each of the individual’s completion times for each tonal noise 

condition over the RC-30 and RC-38 background levels.   
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 (a) 

 
(b) 

 
Figure 5.3 Measured completion times for the digit span task under assorted tonal 
noise conditions (a) above the RC-30 background noise and (b) the RC-38 back-
ground noise across participants. The size of each marker corresponds to the tone 
level of each frequency, with larger markers indicating higher tone levels.   
 

A three-way repeated-measures ANOVA was conducted to investigate the 

relationships between background noise level, tone frequency, and tone level on 

completion time. Figure 5.4 compares the completion times between the two different 

background noise levels, four different tone frequencies, and two tone levels. Only two 
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tone levels (the least and highest levels) are shown to illustrate the maximum difference.  

Statistical analyses indicate that the effects of background noise level and tone frequency 

on completion time are not statistically significant even though a trend of longer 

completion times with higher frequency tones is observed. The only significant factor 

was tone level (F(4,60)=2.95, p=.027, η𝑝𝑝
2=0.16), with higher tone strength resulting in 

longer completion times. These results indicate that the perception of tonality by 

participants can affect performance on a digit span task in terms of time taken, but not 

accuracy. 

  (a)                                                                          (b) 

 
     (c) 

 

Figure 5.4 Effect of (a) background noise level, (b) tone frequency, and (c) tone level 
on completion time, where where Tone Level 1 indicates the least prominent tone and 
Tone Level 5 indicates the most prominent tone.  Only tone level was found to be 
statistically significant. Error bars indicate on 95% confidence intervals. 
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5.3.2 Relationship Between Noise Metrics and Annoyance 

To compare the relation between noise metrics and annoyance perception, 

Spearman’s nonparametric correlation coefficients were calculated because the 

annoyance responses did not meet the normality assumption. Among the noise 

parameters previously introduced in Chapter 2, the following were chosen and calculated 

with the noise stimuli: Prominence Ratio (PR), Tone-to-Noise Ratio (TNR) and Tonal 

Audibility (ΔLta) for tonality parameters; un-weighted sound pressure level (SPLz), A-

weighted sound pressure level (SPLa), ANSI Loudness level (ANSI Loudness) and 

ISO532B Loudness level (ISO Loudness) for loudness parameters; and Tone-corrected 

Perceived Noise Level (PNLT), Joint Nordic Method (JNM) and Sound Quality Indicator 

(SQI) for combined parameters.   

The results are analyzed in three groups separately: first with all signals included and 

then with each base background noise level (Room Criteria 30 or 38) separately.  Table 

5.2 presents all correlation coefficients for each analysis. ANSI Loudness Level shows 

the highest correlation coefficients with annoyance ratings across all signals. When 

separating signals into the two background noise levels, though, tonality metrics show on 

par or slightly higher correlation with annoyance perception than loudness metrics. 

Among tonality metrics, Tonal Audibility demonstrates slightly better correlation than 

Tone-to-Noise Ratio and Prominence Ratio for all analyses. The results indicate that 

loudness is the most important feature of noise to predict annoyance perception, but then 

tonality of noise also should be included for the annoyance model, especially when 

background noise levels are kept constant. Combined metrics such as the Joint Nordic 

Method and Tone Corrected Perceived Noise Level and Sound Quality Indicator did not 
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show better performance than loudness metrics, even though they were significantly 

related to annoyance ratings. The results show that imposing penalty values to loudness 

levels may not be the most effective way to quantify overall annoyance of the noise. 

These results confirm the same findings as the previous study in Chapter 4, even though 

it was conducted with different participants and context. 

Table 5.2 Nonparametric Spearman correlation coefficients between noise metrics 
and annoyance perception (two-tailed, **p<0.01, *p< 0.05) 

 Tonality Loudness Combined 

  PR TNR ΔLta SPLz 
(dB) 

SPLa 
(dBA) 

ANSI 
Loud  

ISO 
Loud  

PNLT JNM SQI 

All  .243 .277 .362* .782** .898** .948** .909** .889** .884** .899** 

RC-30N .626** .526* .687** .063 .709** .718** .559** .650** .732** .754** 

RC-38N .470* .875** .895** .412 .623** .891** .737** .711** .763** .566* 

 

A three-way repeated measure ANOVA was conducted as with the previous study in 

Section 4.3.2 to identify effects of background noise level, tone frequency, and tone 

strength on annoyance ratings. Mauchly’s test indicated that the assumption of sphericity 

had been violated for the main effects of tonal strength [χ2(9) = 28.51,  p =0.001] and 

tone frequencies [χ2(5) = 12.94,  p =0.024]. Thus, degrees of freedom were corrected 

using Greenhouse-Geisser estimates of sphericity (ε=.49 for the main effect of tone 

strength and .70 for the main effect of tone frequencies).  The analysis indicates that there 

was a significant main effect of background noise level [F(1,15)=62.477, p<.001]. RC-

38N based noise signals were significantly more annoying than RC-30N based noise 

signals. There was also a significant main effect of the tone strength on annoyance 
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perception [F(1.97, 29.57) = 78.82, p<.001]. Contrast reveals that the annoyance ratings 

of Tone Level 3 and above were significantly higher than the rating of Tone Level 1. 

Contrary to the finding in the previous study in Section 4.3.2, the tone frequency did not 

affect annoyance ratings significantly even though the annoyance ratings increased 

slightly as frequency increases. Figure 5.5 illustrates the mean annoyance ratings against 

background noise level, tonal frequency and tone strengths.   

 

  (a)                                                                          (b) 

 
     (c) 

 

Figure 5.5 Mean annoyance perception ratings across participants plotted against (a) 
background noise level, (b) tonal frequency, and (c) strength of the tones, where Tone 
1 indicates the least prominent tone and Tone 5 indicates the most prominent tone. 
Error bars indicate on 95% confidence intervals. 
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5.3.3 Dose-response Model 

A dose-response model has been developed from the gathered complaint responses 

to determine thresholds of acceptability for tonality, using a binary logistic regression 

model. Based on the correlation analysis in Section 5.3.2, ANSI Loudness Level and 

Tonal Audibility are chosen as two prediction variables for the regression model. To 

compare the performance by using the dichotomous complaint responses, the same 

logistic regression models were calculated with % annoyed and % highly annoyed. The 

break-points to convert the continuous scale data to the categorical data were set to 5.0 

and 7.2 respectively (Pedersen, 2007) for the percentage of annoyed and highly annoyed 

persons. Table 5.3 presents coefficient values and statistics for all three models. The chi-

square (χ2) value indicates how much the model prediction is improved against the model 

with no predictor and the R2 is a measure of how well the prediction model fits the 

response data. The ratio indicates how the ‘odds’ of the outcome occurrence will change 

with a unit of predictor change.  

The logistic regression equations for % Complaint, % Annoyed and % Highly 

Annoyed can be expressed as:   

(20.4-.29[ANSI Loudness level] - .04[ΔL ]ta

1% Complaint = ,
1+e  

   (5.1) 

 (21.8-.30[ANSI Loudness level] - .05[ΔL ]ta

1% Annoyed = ,
1+e  

  (5.2) 

 (23.8-.29[ANSI Loudness level] - .12[ΔL ]ta

1% Highly Annoyed = 
1+e  

  (5.3) 
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where % complaint is the percentage of possibility that complaints would be lodged 

against a particular tonal noise condition. 

Table 5.3 Coefficients of the logistic regression model predicting whether a partici-
pant would (a) complain [95% BCa bootstrap confidence intervals based on 1000 
samples], (b) be annoyed, or (c) be highly annoyed. 

% Complaint 
 b 95% CI for Odds Ratio 

Lower Odds Upper 
Constant -20.35 [-24.36, -16.96]    

ANSI Loudness 
(phon)* 

.29 [.24, .35] 1.27 1.34 1.41 

ΔLta (dB)** .04 [.00, .09]  1.00 1.04 1.08 
Note. R2 = .24 (Hosmer & Lemeshow) .26 (Cox & Snell) .36 (Nagelkerke). Model χ2(2)=189.00, 
p<0.001. * p < .001. ** p = .05. 

% Annoyed 
 b 95% CI for Odds Ratio 

Lower Odds Upper 
Constant -21.77 [-26.89, -17.70]    

ANSI Loudness 
(phon)* 

.30 [.24, .38] 1.27 1.35 1.45 

ΔLta (dB)** .05 [.00, .10] 1.00 1.05 1.10 
Note. R2 = .22(Hosmer & Lemeshow) .20 (Cox & Snell) .32 (Nagelkerke). Model χ2(2)=141.85, 
p<0.001. * p < .001. ** p = .03. 

% Highly Annoyed 
 b 95% CI for Odds Ratio 

Lower Odds Upper 
Constant -23.84 [-50.82, -15.65]    

ANSI Loudness 
(phon)* 

.29 [.16, .69] 1.14 1.34 1.56 

ΔLta (dB)** .12 [.02 .22]  1.03 1.13 1.23 
Note. R2 =.18 (Hosmer & Lemeshow) .06 (Cox & Snell) .20 (Nagelkerke). Model χ2(2)= 38.61, p<0.001. 
* p < .001. ** p < .01 
 

 

All models of % Complaint, % Annoyed and % Highly Annoyed are statistically 

significant (p<.001) and both predictors (ANSI Loudness Level and Tonal Audibility) 

significantly improve the model fit to complaint responses based on chi-square statistics. 

For instance, the % Complaint model yields a chi-square (χ2) of 189.00, which is highly 
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significant (p < .001). The accuracy of the model’s prediction against observed responses 

was 76.4%. Figure 5.6 illustrates the logistic regression lines with actual responses which 

are expressed with dots. The dots represent calculated percentages of complaints, 

annoyed and highly annoyed for each of 40 noise signals.  

The result shows that the % Complaint model is more similar to the % Annoyed 

model rather than % Highly Annoyed. The % Complaint model also showed better 

performance with regards to chi-square and R-squared statistics  (χ2 =189.00, R2=.24) 

than % Annoyed (χ2 =141.85, R2=.22) and % Highly Annoyed (χ2 =38.61, R2=.18) 

models. Current guidelines suggest dividing the continuous scale into certain breakpoints 

for the % Annoyed or % Highly Annoyed dose response models. However, the results 

from this study show that these dose-response models show lower chi-square statistics 

and wider confidence intervals. One reason for this is that subjects may still feel confused 

about meaning of the annoyance, even though they are informed about the definition of 

annoyance in the orientation session. The question on whether they are going to complain 

or not may feel easier for the subjects to answer, because it is a more behaviorally-based 

question. Another reason is that setting the breakpoint at 72 (or 50) points and over 

implies a very distinct difference for responses near the breakpoint; 73 points will be 

counted as annoyed but 71 points will be counted as not annoyed, even though the actual 

response difference is small. Thus, developing a dose-response model based on % 

Complaint, rather than % Annoyed or % Highly Annoyed, is recommended. 
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Figure 5.6 Dose response models of percentage of (a) Complaints from Equation 5.1, 
(b) Annoyed from Equation 5.2 (c) Highly Annoyed from Equation 5.3. The dots rep-
resent calculated percentages based on actual responses for each of 40 noise signals 
across parcitipants. 
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To suggest allowable tonality limits, the points at which 30%, 40% or 50% of 

participants would complain were determined from the logistic regression model to 

determine maximum Tonal Audibility, for a given ANSI Loudness level in phons (Fig. 

5.7). The criteria lines in the figure demonstrate that the thresholds of acceptable tonality 

decrease as overall background noise level increases. The results mean that low levels of 

tonal components may not be acceptable when the overall background noise is loud. 

However, recommendations in Figure 5.7 are not practically applicable yet due to the 

small number of samples; the confidence intervals for the % Complaint model are still 

rather wide to generalize. This result should be verified with greater number of noise 

samples.    

 

 

Figure 5.7 Maximum allowable Tonal Audibility criteria for given ANSI Loudness 
(phon). 30%, 40% and 50% of Complaints are chosen as guidelines. 
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5.4 Summary 

The digit span task results reveal that even the least prominent tonal signals 

increased the time it took for participant to complete the digit span task, compared to 

broadband noise alone. Additionally, the level of tone affected the task performance in 

terms of completion times whereas a louder background noise level (RC-38 versus RC-

30) and varying tone frequencies (from 125 Hz to 1 kHz) did not. 

Based on the annoyance and likelihood-to-complain responses, a dose-response 

relationship has been developed. The reliability of the dose-response relationship depends 

on the selected noise metrics, which should correlate strongly to the perception of the 

noise. Based on correlational analyses from Section 5.3.2, the loudness metric ANSI 

Loudness Level showed the highest correlation overall to the annoyance responses, while 

the tonality metric Tonal Audibility also demonstrated significant correlation with the 

annoyance. Thus, these two noise parameters for loudness and tonality respectively were 

chosen to develop the dose-response relationship. Binary logistic regression models of 

the % Complaint, % Annoyed and % Highly Annoyed responses were developed. The % 

Complaint model fits the actual responses the best with the least wide confidence interval 

among the models, suggesting that similar studies in the future should focus on asking 

about the likelihood of subjects to complain due to a noise condition, rather than asking 

subjects to rate their annoyance. The % Complaint dose-response model is subsequently 

used to suggest maximum allowable tonality limits for a given ANSI Loudness level in 

phons based on the points at which 30%, 40% or 50% of participants would complain. 
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6. Chapter Six 

Multidimensional Perception of Building Mechanical Noise 

6.1 Introduction 

This chapter presents a subjective study to investigate multidimensional perception 

of building mechanical system noise, including signals with tones. Unlike the previous 

studies presented in this dissertation which used synthesized noise signals with a single 

tone, actual noise recordings taken from building systems are included in this 

investigation.  The motivation for this study is to explore other perceptual aspects besides 

loudness and tonality, which affect annoyance perception. Results are used to improve 

the annoyance model developed in the previous studies by adding in other significant 

acoustic characteristics. 

6.2 Methods 

6.2.1 Multidimensional Scaling Analysis 

Multidimensional Scaling (MDS) analysis investigates how human subjects evaluate 

objects with a number of potentially unknown perceptual dimensions. Participants are 

usually asked to judge how similar a pair of objects is or how preferred one is over the 

other. MDS can be used for exploratory data analysis when the perceptions related to 

objects are not fully understood. In this dissertation, the MDS method is utilized to 

investigate other aspects of building mechanical system noises (if any) that impact their 

perception, outside of the loudness and tonality of the signal. 
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6.2.1.1 Obtaining proximity data 

The data for multidimensional scaling analysis is called proximity data and is often 

handled in matrix form. There are mainly two methods to obtain proximity data: either 

directly from questions or transformed from other types of data. Proximity data can be 

directly derived by asking a question comparing all possible pairs of objects. The 

question is in most cases about how two objects are perceived to be similar or how much 

one signal is preferred over the other. Generally, a 5 to 9 point Likert scale is used with 

anchors that are labeled from “Very different” to “Very similar” for the similarity 

question.  

The full matrix proximity data can be directly derived with all of the possible pairs of 

objects. To investigate n objects, n*(n-1)/2 paired comparisons are required, assuming the 

response is symmetrical. Asymmetrical MDS design and analysis is possible but the 

number of pairs to be answered increases.  The advantage of directly obtaining proximity 

data is that it does not require any additional process to analyze the response. However, 

completing direct comparisons between all possible pairs can be a time-consuming task 

and may be fatiguing for some participants, especially when the number of objects under 

investigation is huge. Alternatively, researchers can randomly or systematically choose a 

portion of all possible pairs to reduce the number of trials per participant.  

There are other indirect ways to obtain proximity data derived from other measures 

like confusion data or subjective clustering (Wickelmaier, 2003; Borg et al., 2012). These 

indirect methods are useful when using existing data. Because the indirect method is not 

utilized in this dissertation, further details are not discussed.   
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The required number of objects to obtain a reliable MDS solution is not explicit. The 

rule of thumb is to have more than four times the number of objects than dimensions 

under investigation (Green et al., 1989). It is also essential that the objects should 

demonstrate some differences for subjects to compare.  

6.2.1.2 Multidimensional Scaling Analysis Algorithm 

There are a number of algorithms for MDS, as developed in previous studies. 

Although there are differences in how they process the data, all MDS algorithms aim to 

derive the MDS solution with an optimal number of dimensions which have distances as 

close as possible to the raw proximity data. In MDS, the distance is a function that 

assigns values between two objects.  

Each MDS algorithm differs in how it locates objects onto perceptual maps. The 

algorithm can use the aggregate values before the algorithm process, or it can average the 

individual results after the process. A combination approach, which is called Individual 

Differences Scaling (INDSAL) assumes that all test subjects share common dimensions 

but have different weighting values for each of the dimensions. Individual weight 

mapping then indicates how perceptual weights are different on each dimension amongst 

participants. In this study, INDSCAL was chosen because it can investigate individual 

differences but still obtain common perception mapping solutions.  

Metric algorithm methods assume that the respondents’ dissimilarity responses are 

metric data like interval and ratio level data while a non-metric MDS algorithm uses non-

metric input data like rank order. The latter does not assume any type of relationship 

between distance and the input data. For the INDSCAL algorithm, both metric and non-
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metric methods are available. In this study, metric INDSCAL was used because the 

measured dissimilarity data were measured at the interval level.  

6.2.1.3 Goodness-of-fit of MDS solutions 

Once a solution is derived with the MDS algorithm, the goodness-of-fit of the 

solution should be evaluated. Since the MDS solution coordinates values with a certain 

number of dimensions, the goodness-of-fit evaluates how close distances of the 

coordinates values are to the proximity data.   

There are mainly two methods that are applied to evaluate the goodness-of-fit. The 

first method is the Shepard diagram, which is a type of scatter plot with the proximity 

data along the x-axis and the distance data along the y-axis. The second method to assess 

the goodness-of-fit of a MDS solution is by calculating stress, or the squared difference 

between the proximities and the distances (Wickelmaier, 2003). The basic equation for 

stress is expressed as:  

 

 
2

2

ˆ( ( ) )
( )

d X d
Stress

d X
−
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∑

  (6.1) 

where ( )d X  and d̂  indicate a distance function and raw proximity data, respectively. 

The stress indicates the amount of information loss from the proximity data when the raw 

data are represented by the MDS solution. 

When determining the optimal number of dimensions for the MDS solution, a Scree 

plot is widely used. The Scree plot presents how the stress function changes as the 

number of dimensions increases. The lower the stress value is, the closer the MDS 
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solution is to the original raw data. There is no strict rule to determine the number of 

dimensions needed for an MDS solution. Previous studies recommend the “elbow” point 

at which point including higher dimensions may represent only random components of 

the data (Borg et al., 2012) or the point where the stress value is below .05 (Wickelmaier, 

2003).  

6.2.1.4 Interpreting the MDS 

There is no specific method for interpreting the meaning of each dimension from an 

MDS analysis. In this paper, correlation analysis with noise metrics are conducted with 

the MDS solutions to identify the perceptual meaning of each dimension; this method has 

been commonly used by others in noise studies  (Susini et al., 2004; Woodcock et al., 

2014) . 

6.2.2 Noise Stimuli and Equipment 

Fifteen actual audio recordings from building mechanical equipment and three 

artificially synthesized signals were used in this laboratory experiment. Assorted building 

mechanical equipment were included to have a wide range of noise stimuli in the tests. 

Three artificially synthesized broadband stimuli without tonal components were also 

included. Two of these followed the neutral Room Criteria contours of RC-38 and RC-

51. The third stimulus had levels that were 12 dB higher in the 125 Hz octave band, 

above the RC-38 contour, giving a rumbly impression without any tonal components.  

The sound levels of all signals were manually adjusted to be in the range of 45 dBA 

to 60 dBA while maintaining frequency spectrum. The tonality of the noise signals 

ranged from barely heard to prominent according to Tonal Audibility criteria (ISO, 
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2007). A few of them contained only a single tone characteristic, while others had 

fluctuating tonal characteristics, harmonic spectra, or inharmonic complex tone spectra. 

Table 6.1 lists each signal by its noise source, A-weighted equivalent noise level, the 

most dominant tone frequency, and general noise description. All noise stimuli were 

measured in the testing chamber at the listeners’ ear position with a Larson Davis Sound 

Level Meter Model 831 for a minute. 

Table 6.1 Description of noise signals  

No. Primary noise source Noise Level 
(LAeq) 

Tone 
frequency 

Noise description 

1 condenser water pump 50.5 294 Single tone 
2 radial blade pressure blower 57.2 313 Harmonics 
3 water cooled screw chiller 51 297 Complex tone 
4 vane axial fan 55.3 313 Complex tone 
5 tube axial fan 50.1 155 Harmonics 
6 heat pump 51.5 120 Single tone, fluctuating 
7 outdoor condensing unit 54.9 41 Harmonics 
8 digital compressor 54 95 Complex tone, fluctuating 
9 heat pump 59.4 47 Harmonics, fluctuating 
10 rooftop unit 48.6 119 Complex tone, fluctuating 
11 heat pump 46.2 719 Complex tone 
12 heat pump 46.8 119 Complex tone 
13 lab fume hood 46.4 566 Complex tone 
14 lab fume hood 47.5 234 Complex tone 
15 screw compressor 47 593 Complex tone 
16 Artificially synthesized 45.2 n/a RC-38 neutral spectrum 
17 Artificially synthesized 58.4 n/a RC-51 neutral spectrum 
18 Artificially synthesized 51.2 n/a RC-38 rumbly spectrum 

 

6.2.3 Subjective Testing Procedure 

The test consisted of a half-hour orientation session and two half-hour main sessions, 

conducted on different days. In the orientation session, participants were informed briefly 
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about the objective and methodology of the study, and they practiced the main task after 

completing a hearing screening test. During the main experiment, the participants 

completed a series of paired comparison tasks. They were asked to judge how two sound 

stimuli presented in a pair were similar in the first session, and which of a pair was 

perceived to be more annoying than the other in the second session. The responses were 

measured on 9-point Likert scales. Testing was administrated by a custom-coded program 

using a Matlab Graphic User Interface (GUI). Figure 6.1 illustrates the main display of 

the program for the subjective testing.  

 

 

Figure 6.1 Subjective testing program interface for multidimensional scaling analysis 
 

An incomplete cyclic test design was implemented instead of a complete set of 

paired comparisons to reduce the time it took to complete the sessions (Spence and 

Domoney, 1974). 72 trials were conducted in a session, which is 47% of a complete set 

of all possible pairs (153 for 18 noise signals). Efficiency, which is highly correlated with 

recovery measures, of the test design was 0.92 according to John et al. (1972). 
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6.2.4 Participants 

Twenty adults (10 females, 10 males) were paid to participate in this study. They 

were recruited mainly from the University of Nebraska at Omaha north campus. The 

average age of the participants was 23.9 years with a standard deviation of 4.5 years. All 

subjects completed an orientation session with a hearing screening test and had lower 

hearing thresholds than 25 dB HL from 125 Hz to 8000 Hz for both ears. The noise 

sensitivity of each participant was also gathered at the orientation session by using a 

reduced NoiSeQ scale as in the previous two studies. 

The consistency of participants’ responses to the paired comparison tasks was 

checked before data analysis. Circular error rates (Parizet, 2002) were calculated to check 

each participants’ responses consistency. The circular error rate counts inconsistent 

responses among multiple paired compression tasks. For example, the error occurs when 

a subject answers Signal A is more annoying than Signal B, Signal B is more annoying 

than Signal C, and Signal C is more annoying than Signal A.  One participant whose error 

rates were above 15 percent (20%) was excluded from analysis.  

6.3 Results and Discussions 

The similarity responses were analyzed with the metric INDSCAL algorithm. First, 

the optimal number of dimensions for the MDS solution is determined by investigating 

the scree plot which plots the stress function against a number of MDS dimensions. 

Secondly, perceptual mapping with the obtained MDS solution is presented. Lastly, 

interpretation of each dimension is conducted with correlation analysis.  

     



81 

 

6.3.1 Similarity Task Results 

Metric multidimensional scaling analysis was conducted with the similarity 

responses from the test. The individual difference scaling (INDSCAL) algorithm with 

individual weighting functions was used. First of all, the stress values were investigated 

with increasing number of dimensions. Figure 6.2 presents a Scree plot of how the stress 

function changes as the number of dimensions increases. Even though the elbow point is 

not very obvious in Figure 6.2, three or four dimensions appear to be the adequate 

choices to explain the raw data sufficiently. In this study, the MDS solution with four 

dimensions is chosen. The normalized raw stress value with four dimensions was 0.032.  

 

 

Figure 6.2 Scree plot of stress function with a number of dimensions for similarity 
task 
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Figure 6.2 presents the derived MDS solution with four dimensions, expressed 

through graphs with two dimensions each. The x-axis is dimension 1 for all plots while 

the y-axes are dimension 2, dimension 3, and dimension 4 in descending order.  

 

  
 

 
Figure 6.3 Signal coordinates expressed by four dimensions of MDS solution for sim-
ilarity task 

 

To interpret the dimensions as psychological structures, correlation analyses have 

been conducted with each dimension and assorted noise metrics describing the stimuli. 

All noise metrics introduced in Chapter Four and Five in addition to psychoacoustic 
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parameters like Sharpness, Fluctuation Strength, and Roughness were calculated. Table 

6.2 presents all correlation coefficients between noise metrics and perceptual dimensions. 

Dimension 1 was highly correlated with Sharpness perception; the correlation coefficient 

between the Sharpness measure and dimension 1 was .527 (p=0.25). Dimension 3 is 

highly correlated to tonality perception; the correlation coefficient between the dimension 

coordinates and Tonal Audibility metric was .651 (p=.003). Dimension 4 seems to be 

related to loudness perception even though the dimension coordinates are not 

significantly correlated with ANSI Loudness Level; the correlation coefficient was -.43 

(p=0.07). The results indicate that the psychoacoustic characteristics of tonality and 

sharpness were more influential in determining the similarity results than the loudness 

perception.  

Table 6.2 Spearman’s correlation coefficients between psychoacoustic parameters 
and perceptual dimensions for similarity task 

 Dimension 1 Dimension 2 Dimension 3 Dimension 4 
PR .092 -.052 .527* .042 

TNR .120 .048 .582* .043 
ΔLta .174 -.192 .651** .039 
dBA -.028 .146 .282 -.278 

ANSI Loudness .282 .117 .373 -.430 
ISO Loudness .092 .063 .490* -.397 

PNL -.088 .086 .352 -.340 
PNLT -.003 .088 .428 -.245 
JNM .096 -.026 .424 -.247 
SQI -.071 .117 .357 -.245 

Sharpness .525* -.043 .321 -.220 
Roughness .117 -.042 -.044 .040 

Fluctuation Strength -.302 -.096 -.088 -.054 
**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 

 

 

There was no significant correlation between dimension 2 and any tested noise 

metrics. However, the noise signals with fluctuating tones (#6,8,9,10) were located 
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closely along dimension 2 as shown in Figure 6.3. It suggests that dimension 2 may be 

related to fluctuating characteristics of the noise signal, although it was not significantly 

correlated with the psychoacoustic parameters like Roughness or Fluctuation Strength 

proposed by Fastl and Zwicker (2001). Further testing with more variety in fluctuating 

noise signals is required to identify the exact psychological structure with given 

dimensions.  

6.3.2 Annoyance Regression Model 

Since sharpness perception has been identified as one of the dominant perceptions in 

the MDS analysis on similarity data, the multiple regression model previously proposed 

in Section 4.3.3 is revised by including a sharpness metric in the model in addition to the 

loudness and tonality metrics.  

To develop the annoyance regression model, the annoyance rating for each signal has 

to be determined. Because the subjective questions in this study followed the paired-

comparison task of multidimensional scaling analysis methods, relative annoyance 

ratings can be calculated by methods used in previous research (Parizet et al., 2005; 

Woodcock et al., 2014): 

 , , ,
1

i s j i s
j ii

A P
N ≠

= ∑   (6.2) 

where ,i sA  is the relative annoyance rating for participant s by signal I; iN  is the number 

of times signal i was asked in the subjective test; and , ,j i sP  is the relative paired 

comparison rating for signal i over j by participant s from preference tasks. 
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Annoyance ratings for each signal calculated from the obtained preference data were 

used to revise the annoyance prediction model with ANSI Loudness Level, Tonal 

Audibility and Sharpness. Table 6.3 presents standard error of coefficients, standardized 

coefficients, and statistical significance when ANSI Loudness Level and Tonal Audibility 

were only used (in step 1) and when Sharpness was also included (in step 2), in addition 

to the coefficient values for each predictor. Equation (6.3) presents the multivariate 

regression model with ANSI Loudness Level, Tonal Audibility, and Shaprness.  

 

 ( ) .20*  .01*  
 1.11*

( )
( ) .19

Annoyance ANSI Loudness sone Tonal Audibility dB
Sharpness acum −

= +
+

  (6.3) 

Table 6.3 Linear regression model of predictors for annoyance perception with 95% 
bias corrected and accelerated confidence intervals reported in parentheses. 

 b Standard error B β p 

Step 1 
Constant 1.204 .540   

ANSI Loudness (sone) .188 
(.131, .253) .034 .870 .001 

Tonal Audibility (dB) .043 
(-.002, .081) .20 .251 .048 

Step 2 
Constant -.186 .575   

ANSI Loudness (sone) .200 
(.146, .266) .034 .923 .001 

Tonal Audibility (dB) .008 
(-.026, .048) .018 .048 .630 

Sharpness (acum) 
1.112 

(.472, 1.498) .241 .329 .007 

Note. R2 = .82 for Step 1; ΔR2 = .06 for Step 2 (ps = .025). 
 

The R2 value for the step 1 model is .82, which is a measure of goodness-of-fit of the 

linear regression, indicating that 82% of the annoyance rating variance can be explained 

by the ANSI Loudness and Tonal Audibility model only. When including Sharpness, the 
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R2 value increased to .88. The revised multivariate regression model does significantly 

predict more variation in annoyance perception when including Sharpness perception. 

Figure 6.4 illustrates a regression line with the calculated linear model, as compared to 

Figure 4.4 with the former model developed in Chapter 4.  

 

 

Figure 6.4 Averages (mark) and standard deviations (error bar) of the annoyance 
ratings across 19 participants for each noise stimulus plotted against the proposed 
linear regression model of annoyance perception from Equation 6.3 (dashed). The 
model is based on ANSI Loudness Level, Tonal Audibility and Sharpness (R2=.88). 
The noise stimuli are labelled with assigned numbers from Table 6.1. 
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6.4 Summary 

This chapter investigated the multidimensional characteristics of tonal noise from 

HVAC systems with the MDS method. Paired comparison tasks were conducted to gather 

both similarity and preference data using both actual HVAC recordings and artificially 

synthesized signals. The test results show that the latent psychological structures were 

related to the tonality, loudness and sharpness perceptions of the noise stimulus. A 

revised annoyance prediction model including the sharpness perception showed better 

performance against annoyance ratings. The noise signals with fluctuating tones were 

located closely in MDS dimension coordinates but there was no statistically significant 

relation with noise metrics such as Roughness and Fluctuation Strength due to small sizes 

of noise samples.   
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7. Chapter Seven 

Perceptual Weight of Multi-tone Complex of Annoyance Perception 

7.1 Introduction 

Assorted building mechanical systems generate tonal components within the 

background noise of built environments. In most cases, this type of noise includes 

multiple tones in harmonic or inharmonic structures rather than a single tone. However, 

there is limited information on the comprehensive annoyance caused by multiple tones as 

perceived by human occupants. Two current standards, ISO 1996-2 and ANSI S1.13, 

propose calculation methods to address tones in noise but those methods only analyze the 

tones individually. These tonality metrics from the two standards can result in the 

inaccurate prediction of overall annoyance perception. This chapter aims to investigate 

how each tone contributes to overall annoyance perception when complex tones are 

present in background noise. A subjective study with two different structures (harmonic 

and inharmonic distribution) of five tone components was conducted.  Perceptual 

weighting analysis is applied to the results to compute a spectral weighting function for 

overall annoyance. The performance of the derived spectral weighting function is 

examined against annoyance ratings of actual building mechanical noises. 

7.2 Methods 

7.2.1 Perceptual Weighting Analysis 

Perceptual weight analysis (or molecular psychophysics) method provides the 

relative weights of each component of perceptual features such as loudness by trial-by-

trial analysis (Berg and Green, 1990; Lutfi and Jesteadt, 2006). As the level or magnitude 
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of each component varies randomly, subjects are usually asked to choose a noise stimulus 

in a pair based on loudness or preference perception. Relative weights and global 

perception can be modeled as: 

 
1 1

, 1
m m

i i i
i i

D w x C w
= =

= + =∑ ∑   (7.1) 

where D  is the participants’ decision, iw  is the perceptual weight for the ith component, 

ix  is the magnitude difference between a pair of the noise stimuli,  C is a constant, and m 

is the total number of components in the noise stimulus (Leibold et al., 2007).  Because 

relative weights are under investigation in most cases, weighting values iw  are 

normalized to have unity when all components are summed up.   

Multiple linear regression between variations of each component and responses 

provides the relative weighting of components (Leibold et al., 2007; Jesteadt et al., 2014). 

The main research area of perceptual weight analysis is investigating spectral 

components (Leibold et al., 2007; Jesteadt et al., 2014) or temporal components 

(Oberfeld et al., 2012) of complex noises contributing to overall loudness.  

Perceptual weight analysis has not been widely used in annoyance studies. Dittrich 

and Oberfeld (2009) first adopted this method to an annoyance study. They investigated 

annoyance and loudness perception of temporal varying stimuli. They found that 

temporal weighting improved the prediction of loudness and annoyance, and the 

annoyance responses by the listeners were significantly different from the loudness 

responses.  One of the biggest challenges in tonal noise is to investigate effects of 
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harmonics on overall tonality and annoyance perception, and this methodology is the 

ideal method to explore this research question. 

7.2.2 Noise Stimuli and Equipment 

The signals were pink noise with added five tone complexes.  The broadband pink 

noise spectrum signal was generated by using the program Test Tone Generator by Esser 

Audio. The overall level of the pink noise signal was 57 dB SPL, and the frequency 

spectrum decreased at the rate of 3 dB per octave. Five tone complexes were added to the 

pink noise to generate test signals. Two different frequency structures were used. For the 

harmonic structure utilized in the main session 1 and 2, tones of 125, 250, 500, 1000, 

2000 Hz were used. For the inharmonic structure utilized in the main session 3 and 4, 

tones of 125, 200, 430, 910 and 1890 Hz were used by slightly shifting the tones to be 

heard separately. The level of all individual tones in a reference signal was set to be 12 

dB above from the pink noise octave level of the center frequency. For the comparison 

signal, levels of each tone were randomly varied from a rectangular distribution with a 

range of 16 dB and a step size of 4 dB, centered on 12 dB above the pink noise octave 

spectrum for each trial. That is, individual tones could vary from +4 dB to +20 dB in 

steps of 4 dB above the pink noise level. Figure 7.1 illustrates sample frequency spectra 

of the reference and comparison stimuli and   shows calculated Tonal Audibility values of 

tone components for the reference signal.  
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 (a) 

 

(b) 

 

Figure 7.1 Frequency spectrum illustration of (a) the reference signal and (b) com-
parison signal 
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Table 7.1 Tonal Audibility values of tone components for the reference signal used in 
the subjective test. Tonal Audibility values of comparison signals vary randomly from 
-8 dB to +8 dB with a step size of 4 dB from the reference signal values.  

Frequency (Hz) 125 250 500 1000 2000 

Tonal Audibility (dB) 15.0 14.1 14.3 14.8 15.5 

 

7.2.3 Subjective Testing Procedure 

The subjective test aims to determine perceptual weighting functions of the noise 

signals by using a two-interval, annoyance judgment task. Participants first took an 

orientation session for an hour.  In the orientation session, participants filled out a 

questionnaire on their musical experiences and noise sensitivity questionnaires. 

Participants were informed about the definition of annoyance and how it is different from 

loudness. The participants were also asked to imagine themselves hearing the noises in 

their office while working as the context of the study. The noise sensitivity survey 

applied the NoiseEQ scale used in the previous studies. In the main study, participants 

completed 4 hour-long sessions of paired-comparison tasks to choose more annoying 

noise stimuli.  In each session, participants completed 500 paired comparison tasks with 

2-minute breaks for every 100 trials. Figure 7.2 presents the computer test program 

interface in the main session.   
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Figure 7.2 Main session test program interface 
 

7.2.4 Participants 

Ten participants (4 males, 6 females) with at least 3 years musical experiences were 

recruited in this study through recruiting flyers. They were recruited mainly from the 

University of Nebraska at Omaha campus. The average age of the participants was 25.8 

years with a standard deviation of 9.6 years. The average musical experience period of 

the participants was 14.5 years with a standard deviation of 13.2 years. The participants 

completed an orientation session with a hearing screening test. All participants had a 

normal hearing sensitivity with thresholds below 25 dB HL from 125 Hz to 8000 Hz for 

both ears.  

7.3 Results and Discussions 

7.3.1 Reliability of Data 

Prior to analyzing the perceptual weighting functions, the reliability of the 

participants’ responses are examined by calculating split-half reliability (Jesteadt et al., 

2014). The individual responses were divided into halves by separating odd and even 
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numbered responses. The perceptual weights were then calculated with the odd or even 

numbered responses separately.  The weight values were calculated with 250 responses 

10 perceptual weights per subject were used to calculate correlation coefficients for the 

split-half reliability. Table 7.2 presents all participants’ response reliabilities along with 

their self-reported number of years of musical education experience and noise sensitivity 

calculated from the NoiseEQ scale.  Generally, a coefficient value above .8 is considered 

to be reliable. All participants’ showed reliability above .9. Thus, all participants’ 

perceptual weight results are included in the following analyses. There was no 

statistically significant correlation found between the reliability, musical experience and 

noise sensitivity.    

 

Table 7.2 Split-half reliability of each participant’s responses.  

Participant Split half, r 
Musical Experience 

(years) 

Noise Sensitivity, 

NoiseEQ 

1 .98 44 2.38 
2 .99 13 3.62 
3 .94 3 2.77 
4 .95 25 2.77 
5 .96 9 2.85 
6 .98 20 3.08 
7 .99 5 3.08 
8 .97 3 2.46 
9 .94 3 3.15 
10 .97 20 3.08 
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7.3.2 Perceptual Weighting Function 

Perceptual weight functions are derived for each participant by calculating multiple 

linear regression models between level differences of each tone and dichotomous 

subjects’ responses. The regression coefficients of the tones were then normalized to sum 

to unity. Table 7.3 presents all perceptual weights calculated from each participant’s 

responses. There was a statistically significant relationship in the multiple regression 

models between tone components and participants’ response except for the first tone 

component (p < .05) for subjects 3, 4, 5. For subject 1, all tone components were 

statistically significant. For subject 2, the third tone component in the harmonic structure, 

and the first and the second tone in the inharmonic structure were not statistically 

significant.  For subject 7, the second tone component was not statistically significant in 

the harmonic structure, and the first and fourth tone were not statistically significant in 

the inharmonic structure. For subject 10, the third and the fourth tone in the harmonic 

structure and the second and the fourth tone in the inharmonic structure were not 

statistically significant. Figure 7.3 illustrates average perceptual weights across all 

participants for the harmonic and inharmonic conditions separately. 
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Table 7.3 Normalized perceptual weights of five tone components for each partici-
pant. P values of each weight, average across participants and standard errors of 
average weights are also presented.  

Harmonic Structure 
 125Hz Tone 250Hz Tone 500Hz Tone 1000Hz Tone 2000Hz Tone 

Subject weight p weight p weight p weight p weight p 
1 0.09 .00 0.24 .00 0.32 .00 0.15 .00 0.21 .00 
2 0.08 .00 0.13 .00 0.00 .83 0.05 .03 0.73 .00 
3 0.03 .13 0.15 .00 0.30 .00 0.25 .00 0.27 .00 
4 0.03 .11 0.16 .00 0.34 .00 0.15 .00 0.31 .00 
5 0.01 .62 0.12 .00 0.35 .00 0.17 .00 0.34 .00 
6 0.03 .34 0.14 .00 0.34 .00 0.12 .00 0.37 .00 
7 0.07 .00 0.03 .07 0.29 .00 0.14 .00 0.47 .00 
8 0.06 .01 0.16 .00 0.31 .00 0.13 .00 0.34 .00 
9 0.03 .33 0.22 .00 0.28 .00 0.33 .00 0.14 .00 
10 0.18 .00 0.09 .00 0.05 .06 0.04 .20 0.64 .00 

Mean 0.06  0.14  0.26  0.15  0.38  
SE 0.02  0.02  0.04  0.03  0.06  

Inharmonic Structure 
 125Hz Tone 200Hz Tone 430Hz Tone 910Hz Tone 1890Hz Tone 

Subject weight p weight p weight p weight p weight p 
1 0.08 .00 0.33 .00 0.33 .00 0.10 .00 0.16 .00 
2 0.03 .20 0.00 .91 0.05 .01 0.11 .00 0.81 .00 
3 0.02 .54 0.34 .00 0.23 .00 0.11 .00 0.30 .00 
4 0.03 .32 0.25 .00 0.22 .00 0.09 .00 0.40 .00 
5 0.04 .13 0.15 .00 0.33 .00 0.14 .00 0.35 .00 
6 0.10 .00 0.29 .00 0.24 .00 0.08 .00 0.29 .00 
7 0.01 .56 0.17 .00 0.14 .00 0.05 .06 0.62 .00 
8 0.01 .74 0.33 .00 0.25 .00 0.05 .04 0.37 .00 
9 0.09 .01 0.33 .00 0.25 .00 0.14 .00 0.19 .00 
10 0.08 .00 0.05 .08 0.08 .00 0.03 .22 0.76 .00 

Mean 0.05  0.22  0.21  0.09  0.43  
SE 0.01  0.04  0.03  0.01  0.07  
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                                     (a)                                                                   (b) 

  
Figure 7.3 The mean perceptual weights for each tone component across participants. 
The perceptual weights are normalized to have a total sum of one. (a) The left graph 
shows the perceptual weight values for harmonic structure stimuli in the first two 
session and (b) the right graph shows the values for inharmonic structure stimuli in 
the last two session. Error bars represent +/-1 standard error. 
 

The first tone component was not significant or had nearly zero weight values across 

participants. The range of perceptual weight values was wider for the higher frequency 

tone components. For both harmonic and inharmonic structures, the highest weight is 

observed at the highest frequency. A prime difference between the two structures was 

found at the second tone components of 250 Hz and 200 Hz. In the inharmonic structure, 

the subjects assigned higher weights to the second, 200Hz, tone component unlike the 

weight assigned to the 250 Hz tone component in the harmonic structure.  

Repeated-measure factorial ANOVA confirmed the trend in Figure 7.3. The two 

structure types and five tone components were taken as independent variables, and the 

regression coefficients were taken as dependent variables. Mauchly’s test indicated that 

the assumption of sphericity for repeated-measure ANOVA was violated for the effect of 

tone (χ2(9)=49.87, p<.001) and for the structure and tone interaction (χ2(9)=30.98, 
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p<.001). Thus, Greenhouse-Geisser corrected degree of freedom was used. The repeated-

measure ANOVA confirmed that there was no significant main effect of structure, but 

there was a significant effect of tone [F(1.15,10.34)=20.47, p=.001] and significant 

interaction of structure and tone [F(1.37,12.29)=5.03, p=.035] on the annoyance 

perceptual weights. 

7.3.3 Application of Weighting Functions 

A new way of calculating tonality metrics is proposed using the obtained perceptual 

weighting functions. The existing Tonal Audibility metrics use the most prominent single 

tone to calculate a single number rating, even for a complex tone stimulus. It means that 

all the other harmonic and inharmonic tone information is not considered. The obtained 

perceptual weighting functions can be used to obtain the comprehensive annoyance rating 

for complex tones.  

The Weighted-sum Tonal Audibility (ΔLta,w) is developed by revising the Tonal 

Audibility calculation method. Figure 7.4 illustrates the process of calculating the 

Weighted-sum Tonal Audibility.  First, the frequency spectrum of the noise stimulus is 

analyzed by using FFT. Tonal Audibility values are then calculated for all prominent 

tones. Then, a normalized perceptual weighting function is applied. Applying the 

harmonic or inharmonic perceptual functions depend on a prevailing tone structure of the 

noise stimulus. Lastly, all of the weighted Tonal Audibility values for each tone in the 

stimulus are summed to calculate a single number rating. Table 7.4 presents the previous 

Tonal Audibility and the new Weighted-sum Tonal Audibility values for all noise stimuli 

used in Chapter 6.  
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Figure 7.4 Example of process on applying perceptual weigthing functions (a) one-
third octave band spectrum of  noise signal, (b) tone extraction calculated by Tonal 
Audibility, (c) overlapping the perceptual weighting function with the Tonal Audibil-
ity values, and (d) the result of applying the weighting function to the individual Tonal 
Audibility values.  
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Table 7.4 Description of noise signals with additional Weighted-sum Tonal Audibility.  

No. 

Primary noise source 
ANSI Loud-

ness 
(sone) 

Tone 
Frequency 

(Hz) 

Tonal 
Audibility 

(dB) 

Weighted-
sum Tonal 
Audibility 

(dB) 
1 condenser water pump 50.5 294 9.5 6 
2 radial blade pressure blower 57.2 313 17.5 9.8 
3 water cooled screw chiller 51 297 27.5 19.9 
4 vane axial fan 55.3 313 21.7 15.5 
5 tube axial fan 50.1 155 23.0 10.6 
6 heat pump 51.5 120 15.6 5 
7 outdoor condensing unit 54.9 41 14.0 6.3 
8 digital compressor 54 95 11.9 6.1 
9 heat pump 59.4 47 27.7 7.8 
10 rooftop unit 48.6 119 23.0 8.6 
11 heat pump 46.2 719 11.2 11.2 
12 heat pump 46.8 119 14.7 11.7 
13 lab fume hood 46.4 566 8.4 13.3 
14 lab fume hood 47.5 234 11.5 13.9 
15 screw compressor 47 593 12.4 14.3 
16 RC-38 neutral spectrum 45.2 n/a 0 0 
17 RC-51 neutral spectrum 58.4 n/a 0 0 
18 RC-38 rumbly spectrum 51.2 n/a 0 0 

 

The new Weight-sum Tonal Audibility should be used with a caution due to 

following limitations. Determining a perceptual weighting function between for the 

harmonic and the inharmonic structure is rather subjective because, in many noise 

stimulus, harmonic and inharmonic tones are blended in the same stimuli. Also, the 

suggested weighting functions use a linear interpolation for any tone frequencies between 

examined tones. More weighting functions should be examined with assorted scenarios of 

other frequency and sound level ranges.   
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The performance of the new Weighted-sum Tonal Audibility was compared to that 

using the previous Tonal Audibility with the annoyance regression model which was 

developed in Section 6.3.2. The same annoyance ratings and noise stimuli were used to 

test the new Weighted-sum Tonal Audibility. The developed annoyance model in Section 

6.3.2 utilized ANSI Loudness Level, Tonal Audibility, and Sharpness. Three regression 

models were compared in this section. Model 1 included ANSI Loudness Level and 

Tonal Audibility, and Model 2 included ANSI Loudness Level, Tonal Audibility, and 

Sharpness as the same annoyance model in the previous Section. Model 3 included ANSI 

Loudness Level and the Weighted-sum Tonal Audibility. Figure 7.5 illustrates regression 

lines with these models. 

As presented in the Table 6.3, the goodness-of-fit of the regression model (R2) 

was .88 for the Model 2 with the three noise metrics. For the Model 1 without Sharpness, 

the R-square change (ΔR2) by adding Tonal Audibility was only .03 (p=.047), and the 

goodness-of-fit of the regression model (R2) is .82 for the Model 1. When using the new 

Weighted-sum Tonal Audibility metrics in the Model 3, the goodness-of-fit (R2) was 

improved to .88 by increasing the R-square change (ΔR2) to .06 (p=.002). The R2 values 

for the Model 2 and the Model 3 were almost the same. Including Sharpness to the Model 

3 didn’t improve the goodness-of-fit. It was mainly because the Weighted-sum Tonal 

Audibility and Sharpness accounted for the same variances of the annoyance ratings. 

Equation 7.2 presents the regression model with ANSI Loudness Level and Weighted-

sum Tonal Audibility.  

 ( ).20*  .08* _( )  
.91

Annoyance ANSI Loudness sone Weighted sum Tonal Audibility dB
+

= +
  (7.2) 
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                                   (a)                                                                 (b) 

  
     (c) 

 

Figure 7.5 Averages (mark) and standard deviations (error bar) of the annoyance 
ratings across participants for each noise stimulus from Chapter 6.  The dashed lines 
represent the linear regression models with ANSI Loudness Level and (a) Tonal Au-
dibility (Model 1, R2=.82), (b) Tonal Audibility and Sharpness (Model 2, R2=.88), (c) 
Weighted-sum Tonal Audibility (Model 3, R2=.88). The noise stimuli are labelled with 
assigned numbers from Table 7.4. 

 

7.4 Summary 

Noise stimuli with five-tone complexes between 125 Hz to 2 kHz were artificially 

generated for subjective testing to obtain the perceptual weighting function of complex 
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tones. The levels of each tone were randomly adjusted for every trial, and both harmonic 

and inharmonic structured tone complexes were utilized. Ten musically-trained subjects 

participated in the subjective test involving paired comparisons. Each participant was 

asked to choose which noise stimulus was more annoying between two noise signals. 

Perceptual weighting analysis results were applied as a spectral weighting function to 

calculate a proposed Weighted-sum Tonal Audibility metric. The performance of the 

newly developed metric showed better annoyance prediction than that from the 

traditional Tonal Audibility metric. The revised annoyance regression model with the two 

noise metrics of ANSI Loudness Level and the Weighted-sum Tonal Audibility showed 

similar prediction performance to the regression model with ANSI Loudness Level, 

Tonal Audibility and Sharpness from Chapter 6. 
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8. Chapter Eight 

Conclusion 

8.1 Summary 

 
This research aimed to investigate effects of tonal background noises on human 

annoyance perception and task performance in the built environment. The dissertation 

addressed three complementary objectives: 1) to examine the relationship between 

associated tonal noise metrics and annoyance perception, 2) to determine upper limits of 

acceptability for tonality, and 3) to identify effect of tones on human task performance. 

Four phases of subjective testing were conducted in an indoor acoustic testing chamber at 

the University of Nebraska to achieve the research objectives.  

In the first study, subjects were asked to complete Sudoku puzzles while exposed to 

broadband noise with a tonal component set at a specific level above the noise. 

Participants then filled out a subjective rating questionnaire on the noise they had just 

experienced. Five levels of two tonal frequencies (125 Hz and 500 Hz) were tested above 

two different background noise levels for a total of 20 test signals. Results were used to 

develop an annoyance prediction model of tonal noise. 

A factorial repeated measure ANOVA (Analysis of Variance) revealed that 

participants felt more annoyed with increasing background noise level, lower tone 

frequency and stronger prominence of the tone strength.  Correlation analysis with noise 

parameters and subjective perception ratings suggested that the ANSI Loudness level 

among all other loudness metrics correlated most strongly with annoyance perception 

while assorted tonality metrics showed relatively weaker but still statistically significant 
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correlations with annoyance. A multivariate regression model with ANSI Loudness Level 

and Tonal Audibility was subsequently developed.  

An increased number of 40 tonal signals was generated for the second subjective 

testing study. Five levels of tones at four specific frequencies of 125, 250, 500, 1 kHz 

were added separately to broadband background noise signals. During each session, 

participants performed digit span tasks in which they memorized a series of numbers in 

the reverse order of presentation while exposed to assorted tonal signals. After each trial, 

the participants completed a subjective questionnaire with two items: how annoyed they 

were by the noise, and whether or not they would complain about the noise.  

Results were analyzed to determine a threshold of acceptability for tonality. First, a 

dose-response model was formulated to predict the percentage of persons lodging 

complaints when both tonality and loudness are considered; a multivariate logistic 

regression model then indicates what the human annoyance thresholds are of tones in 

noise and reflects that thresholds vary, depending on the absolute level of the ambient 

background noise. Suggested threshold values of Tonal Audibility have been presented 

for given background noise levels. The results show that maximum allowable tonal 

components decrease when background noise level is high.  

These repeated-measure subjective tests with mentally demanding tasks showed 

effects of the tones on human performance. Factorial repeated-measured ANOVA of test 

results have demonstrated that tonality has a crucial influence on completion time of 

subjects whereas loudness levels alone did not. 

The third investigation aimed to improve the annoyance regression model by 

exploring multidimensional aspects of annoyance perception using actual building 
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mechanical noise signals with tones and perceptual weighting of complex tones. Fifteen 

actual audio recordings from building mechanical equipment and three artificially 

synthesized signals were used in the experiment to investigate psycho-acoustical 

attributes, the presence of harmonics, and time fluctuation characteristics of the tones. 

During the experiment, participants completed a series of paired comparison tasks 

about how two sound stimuli presented in a pair were similar and which one they 

perceived to be more annoying than the other. The dominant acoustic characteristics for 

annoyance perception were determined by multidimensional scaling analysis (MDS).  

A non-metric, individual scaling difference (INDSCAL) algorithm was used to 

derive the MDS similarity solution. The goodness-of-fit of the derived solution indicated 

that four perceptual dimensions were appropriate for describing the solution. The results 

showed that the latent psychological structures for the similarity task were related to the 

sharpness, tonality and loudness of the noise stimulus. A revised multidimensional 

annoyance model, incorporating sharpness of noise in addition to loudness and tonality, 

was subsequently proposed based on these test results to improve the prediction accuracy 

of the annoyance model.  

To improve the predictions by the comprehensive complex tones in the noise, a 

newly revised Weighted-sum Tonal Audibility was proposed against the traditional Tonal 

Audibility metrics. Perceptual weighting analysis was carried out with the harmonic and 

inharmonic tone-complexes to develop the Weighted-sum Tonal Audibility.  The revised 

version showed better predictions of annoyance in the multivariate regression model. The 

annoyance prediction model with ANSI Loudness Level and Weighted-sum Tonal 

Audibility showed the comparable performance to the regression model with ANSI 
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Loudness Level, Tonal Audibility and Sharpness. Using Weighted-sum Tonal Audibility 

is recommend because one does not need to calculated additional Sharpness metric. 

The research clearly indicates that tonality should be included in understanding 

annoyance responses from building mechanical noise. It has been found that the ANSI 

Loudness Level, Tonal Audibility, Sharpness contribute as significant predictors related 

to annoyance perception. A dose-response relationship was also developed to determine 

the upper limits of tonality in noises. The upper limit levels of tonality according to 

determined background noise level have been suggested. Lastly, the results showed that 

even just-audible tones can significantly increase the reaction time of participants to 

complete a cognitively demanding task.  

8.2 Future Research 

One limitation of this study is that all findings are from laboratory experiments. Even 

though the subjective testing in the laboratory has assorted advantages to test research hy-

potheses, the findings should be validated with in-situ measurements. This research also 

utilized a limited number of participants and noise signals. Thus, more data are needed to 

verify the suggested annoyance model.  

Continuing research should investigate effects of time-fluctuating characteristics of 

tones on annoyance. The noise signals used in this test did not exhibit a wide range of 

fluctuation properties of tones in noises and failed to find any statistically significant ef-

fect of tone fluctuation characteristics. The weighting function of multi-tone complexes 

should also be expanded to wider frequency ranges with various scenarios to develop a 

more accurate ways to calculate the tonality metrics. The presented weighting functions 
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in this dissertation were not practically applicable yet because they were only tested in 

limited multi-tone complexes with specific sound levels and frequencies.  
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