
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln
Theses, Dissertations, & Student Research in
Computer Electronics & Engineering Electrical & Computer Engineering, Department of

Winter 12-2014

A Study on Resource Efficient Digital Multimedia
Security Measures in Mobile Devices
Prabhat Dahal
University of Nebraska-Lincoln, prabhatsmail@gmail.com

Follow this and additional works at: http://digitalcommons.unl.edu/ceendiss

Part of the Signal Processing Commons

This Article is brought to you for free and open access by the Electrical & Computer Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in Theses, Dissertations, & Student Research in Computer Electronics & Engineering by an
authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Dahal, Prabhat, "A Study on Resource Efficient Digital Multimedia Security Measures in Mobile Devices" (2014). Theses, Dissertations,
& Student Research in Computer Electronics & Engineering. 31.
http://digitalcommons.unl.edu/ceendiss/31

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fceendiss%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/ceendiss?utm_source=digitalcommons.unl.edu%2Fceendiss%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/ceendiss?utm_source=digitalcommons.unl.edu%2Fceendiss%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/electricalengineering?utm_source=digitalcommons.unl.edu%2Fceendiss%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/ceendiss?utm_source=digitalcommons.unl.edu%2Fceendiss%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/275?utm_source=digitalcommons.unl.edu%2Fceendiss%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/ceendiss/31?utm_source=digitalcommons.unl.edu%2Fceendiss%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages

A STUDY ON RESOURCE EFFICIENT DIGITAL MULTIMEDIA SECURITY

MEASURES IN MOBILE DEVICES

by

Prabhat Dahal

A THESIS

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfillment of Requirements

For the Degree of Master of Science

Major: Telecommunications Engineering

Under the Supervision of Professor Dongming Peng

Lincoln, Nebraska

December, 2014

A STUDY ON RESOURCE EFFICIENT DIGITAL MULTIMEDIA SECURITY FOR

MOBILE SYSTEMS

Prabhat Dahal, M.S.

University of Nebraska, 2014

Advisor: Dongming Peng

Advanced image and video processing abilities in smart phones and digital cameras make

them popular means to capture multimedia. In addition, the integration of internet into such

devices users seek to capture and easily share multimedia right from their smartphone while

most steganography techniques are computer based. Hence, it is of utmost importance that

the multimedia be processed for steganography right within the devices for multimedia

authentication.

In this thesis, we first implement steganography into mobile smart devices that can

capture multimedia. For devices such as smart phones, we propose a method to hide

payload bits within video frames. The solution takes relatively less time and memory to

process as opposed to existing computer based solutions. This is a major achievement over

traditional techniques that have longer running times leading to power inefficiencies. The

idea proposed is to divide the video frames being processed into smaller blocks and

perform embedding at block levels, thus localizing any processing that is to be performed.

Simulation results show that the solution proposed can perform about 60 percent faster

and 40 percent BER improvement than conventional approach of video steganography.

This thesis takes the foregoing solution to a greater height by using the same algorithm

for steganography within Image Sensor Pipeline in digital cameras. The objective behind

this is to ensure all images generated from all forms of digital cameras are watermarked

automatically. The solutions that exist now are largely dependent on extraction of camera

component information. The proposed steganography technique is image centric and aims

to resolve existing issues in areas such as image source identification, discrimination of

synthetic images and basic image forgery.

After experiments, Peak Signal to Noise Values with a least value of 70 dB even for the

worst compression quality (Q) factor of 50 shows how the perceptual quality of the image

is preserved. Bit Error Rate of about 5 % for the same quality (Q=50) puts light on the

robustness of the technique against JPEG compression.

iv

Copyright 2014

Prabhat Dahal

All Rights Reserved

v

Dedicated to my parents.

vi

Acknowledgements

First of all, I would like to thank my advisor Dr. Dongming Peng. It has been an

incredibly wonderful and life changing experience working with him. His continuous

support and contributions have been immensely helpful throughout this program and

research.

I would also like to thank Dr. Hamid Sharif for guiding me throughout the program to

accomplish both as a student and an individual.

I appreciate and thank Dr. Yaoqing Yang for helping me pave my way into research by

constantly mentoring me in my field of study.

I would also like to extend my thanks to Dr. Michael Hempel for being a part of my

Thesis Examination Committee.

I am immensely grateful to my colleagues in our research group for their kind support

and help.

This acknowledge would not be complete without thanking my parents and my sister

who have been showering me with perennial blessings in all my pursuits. I am

overwhelmed with the love they have always bestowed me with.

I express my gratitude to all my friends for constantly being by my side, during highs

and lows of my life.

vii

Contents

List of Figures .. ix

List of Tables .. x

Chapter 1. Introduction ... 1

Chapter 2. Background and Literature Review .. 8

2.1. Overview .. 8

2.2. Related Works .. 8

2.2.1. Mobile Steganography .. 8

2.2.2. Feature based Steganography .. 14

2.2.3. Steganography in Digital Camera Systems ... 17

Chapter 3. Motivation and Problem Statement ... 22

3.1. Motivation .. 22

3.2. Problem Statement .. 23

Chapter 4. Proposed Video Steganography .. 25

4.1. Introduction .. 25

4.2. Embedding Algorithm Development ... 27

4.3. Time Efficiency Analysis ... 35

4.4. Extraction And Performance Evaluation .. 37

4.5. Error Minimization ... 41

viii

Chapter 5. Proposed Camera Steganography ... 46

5.1. Overview .. 46

5.2. System Model ... 46

5.3. Proposed Image Sensor Pipelining Algorithm ... 49

5.4. Pseudocode ... 59

Chapter 6. Simulation and Numerical Results .. 62

6.1. Implemenation- Resource Efficient Video Steganography 62

6.1.1. Memory-Time Evaluation ... 63

6.1.2. Error Evaluation .. 67

6.2. Implementation-Camera ISP Steganography for Images 69

6.2.1. PSNR Evaluation .. 70

6.2.2. BER Evaluation ... 72

Chapter 7. Conclusion... 76

Bibliography ... 79

ix

List of Figures

Figure 2.1. Different types of Color Filter Arrays .. 20

Figure 4.1. Different mask positions using SUSAN corner detection 29

Figure 4.2. One level DWT of an image ... 31

Figure 4.3. Flowchart for the embedding method... 34

Figure 4.4. AWGN probability density function .. 38

Figure 4.5. Flowchart for the extraction of watermark ... 40

Figure 5.1. A Typical Color Filter Array with ‘rggb’ Pattern .. 47

Figure 5.2. A General Camera Image Sensor Pipeline ... 48

Figure 5.3. Proposed Camera Image Processing Pipeline with Watermarking 50

Figure 5.4. Interpolation for Demosaicing .. 55

Figure 6.1. Time taken vs block size for different message lengths 64

Figure 6.2. Memory requirement as a function of input frame size 65

Figure 6.3. Memory-time product requirement as a function of block sizes with 480

pixels x 720 pixels input frame size. ... 66

Figure 6.4. PSNR due to embedding Watermark (WM) of length 100 and 200 bits 70

Figure 6.5. BER after the embedding followed by extraction of 200 watermark bits 73

Figure 6.6. BER after the embedding followed by extraction of 200 watermark bitsError!

Bookmark not defined.

x

Figure 6.7. BER comparison for watermark lengths of 100 and 200 at a Q factor of 75

.. Error! Bookmark not defined.

List of Tables

Table 4.1. Example of Decoding Redundant Bits... 43

Table 4.2. Time Complexity Comparison ... 45

Table 6.1. Algorithm Execution Times (Average) ... 63

Table 6.2. Algorithm Execution Times (Average) ... 68

Table 6.3. PSNR Values as a Result of Embedding 200 Watermark Bits 71

1

Chapter 1. Introduction

The term mobility is heard quite often these days. With breakthroughs in different areas

of electronics and communication, people seek mobility in all possible ways. And this desire

in people has motivated the creators of technology to come up with different forms of mobile

devices. As advancements in technology continues to skyrocket, the use of such mobile

devices continues to find different forms at the same pace. With smart devices coming into

limelight, such devices no longer fit within the boundaries of traditional forms of

communication. We have seen incredible changes in the way people stay connected these

days, with the introduction of several features that enable us to communicate at the push of

a button. Internet in smart phones has only contributed to intensify such communication.

According to the CTIA- The Wireless Association’s Semi Annual Wireless Survey [18],

about 25% of the total internet uses these days are mobile-only users. This means, they surf

internet only through their mobile devices. Looking into this fact, it shouldn’t be a surprise

if people rely solely on their mobile devices to connect with each other and share data.

It is in this context of information sharing that the advent of cameras in smart devices

has amplified sharing voice, image, video or audio clips. People no longer use smart phones

for a mere voice calls or texting. Multimedia sharing has been the new form of

communication and with the creation of numerous applications that enable users to do so,

bloom in multimedia acquisition and sharing is quite obvious. It is with such mobility and

mass distribution of multimedia files that issues such as security, authenticity and ownership

of such files come into concern. Moreover, in an era when such multimedia can be

2

extensively used as evidences, processing multimedia in mobile devices for security

becomes all the more important.

One way to implement secured multimedia communication is digital steganography.

Steganography is the science of communicating secret data in an appropriate multimedia

carrier like image, video or audio files with the concealment of the very existence of the

embedded data. Over the years, countless mechanisms have been developed to secure digital

multimedia before they are distributed, with each new method being more robust than the

previous ones. On the other hand, steganalysis has also developed in a similar fashion.

Steganography and steganalysis shall continue to improve with many researchers working

on this field tirelessly [36], [37]. However, majority of such efforts in steganography are

concentrated on processing multimedia on computers. There are plethora of steganography

and watermarking algorithms that are computer based. For this, the multimedia has to be

transferred to computers after they are captured, processed for security and then

redistributed. The relatively larger resources in computers (memory, processors, etc.) as

compared to their small mobile counterparts rarely pose any limitations in successfully

implementing such steganographic algorithms. However, for reasons cited earlier,

multimedia sharing is at the fingertips of each person and transferring multimedia to

computers before sharing is an overhead and undesirable. In addition, the requirement for

multimedia to be transferred to computers before they can be shared foils an otherwise

pleasant user experience that can come with instant capture and sharing. More importantly,

such multimedia lack the very basic feature such as authentication. Such reasons call for

mechanisms that can allow users to at least watermark multimedia within the smart devices

3

as the very basic security processing. Furthermore, automatic watermarking of every

multimedia file coming out of the camera should be an added advantage.

It has not been a long time that steganography in mobile devices has garnered interest.

Over the past several years, researches have tried to use mobile devices for steganography

like watermarking or decoding hidden data present in printed images. Such mobile devices

also vary from digital cameras to smart phones. No matter what, algorithms in mobile

devices cannot be implemented in a manner similar to implementation in computers. Care

has to be taken to make sure the algorithms don’t end up using critical resources in mobile

devices that is limited. The primary idea in this thesis is to tailor a steganography algorithm

specifically for mobile devices. Here, we start with seeking to implement steganography

within a smart mobile device and exploring further to integrate this algorithm within the

multimedia acquisition phase so as to ensure that every multimedia coming out of the

camera is secure and contains authenticity information by default without requiring a user

to be involved. However, it all starts with finding a good robust technique, from a pool of

various mechanisms that exist, that can first be believed to do well in a resource rich

computer environment.

In general, as seen with the existing algorithms, the simplest way to implement digital

steganography is to exploit the multimedia file format. A simple example of this, in case of

a digital image, would be to insert secret information bits in the image headers, End of File

(EOF) tags, Exchangeable image file format , also known as Exif, metadata etc. [1]. A more

advanced approach might be to hide information within the core image data. An instance of

this is steganography in spatial domain where the data encoding is performed within the

Least Significant Bits (LSBs) in the spatial domain of the cover image data. Steganography

4

in LSB is just a central idea and several variations of this exist in literature. On the other

hand efforts were made to detect the same. In fact, according to the authors in [2], even a

small change in the LSB method, for instance flipping LSBs of one pixel in a Joint

Photography Experts Group (JPEG) image, can be effectively detected. This called for

improvements over the LSB methods and in fact, over the spatial domain techniques as a

whole. This led to the more robust methods that implemented embedding within the Discrete

Cosine Transform (DCT) and hence the advent of frequency domain based steganography.

The development of DCT based methods resulted in the steganography to cause less

visual and statistical artifacts as compared to their LSB in spatial domain counterparts.

Algorithms like F5 [17] became widely popular to implement steganography in DCT

domain. But improvements over any technology are inevitable and only matter of time.

Despite DCT methods being less prone to statistical attacks and also more robust than spatial

domain methods, another form of frequency domain technique developed that exploited

components of the wavelet transform. This Discrete Wavelet Transform (DWT) based

methods have shown promising results when it comes to robustness of steganography. From

a holistic point of view, embedding in frequency domain is undoubtedly more robust and

secure as compared to the spatial domain techniques. As a result, DCT and DWT [3] based

steganography are extensively used to process digital images and videos these days. They

are widely popular in areas of image and video compressions. An example of robustness of

the wavelet based method is presented in [4] by Abduaziz and Pang, where they use vector

quantization and one stage discrete Haar wavelet transform and conclude that data

modification using wavelet transform results in multimedia quality being preserved with a

very minimal perceptual artifact.

5

With tireless efforts put into steganography by researchers, steganography has advanced

to adaptive steganography which effectively exploits and utilizes various “features” of the

cover into which data is to be hidden. As an instance, for a digital image chosen as a cover

medium, these features could be edge regions, skin textures, regions of smoothness etc.

depending upon the contents of the image. Since such features are considered to be

important parts of the image and hence their alteration or removal from the media is

undesirable, they can be exploited to hide data at pixel locations corresponding to the feature

regions. Study in [5] presents an example of utilizing edge feature for embedding and shows

that such method indeed produce highly desirable output media which are distortion free for

all the embedding domains- Spatial, DCT or DWT. The only drawback such methods might

have to face is that the size of bits that can be embedded which we often call payload, is

limited since they can be embedded only in feature locations and not all throughout the

image/video.

Considering the ideas and studies presented above, this research aims at utilizing feature

regions based embedding in multimedia. It will be wise to embed payload bits in the

frequency domain instead of spatial domain to make the embedding more robust and survive

certain attacks. Watermarking or payload embedding is first implemented on a JPEG image

and extended for video, with the idea that video is merely collection of different images.

However, since there are numerous algorithms that achieve the same results, the algorithm

used for this research is modified targeting it for resource constrained devices. Hence the

primary purpose of this research is to make the proposed algorithm efficient relative to the

same algorithm when implemented on a computer with no research constraints. Once the

primary goal has been achieved which proves that the algorithm can be efficiently used, the

6

study aims to embark on further utilization of the algorithm. Despite the fact that being able

to watermark a multimedia file generated from cameras in a smart device might help include

authentication and copyright information without having to transport the media to computer,

there is still a chance of original media being misused. Unwanted users can still have access

to the unwatermarked media and use it with malicious intents. It is in the hands of the user

whether or not to watermark the media. This is because there is a gap existing between the

media acquisition and processing phase before it can be deemed fit for sharing.

The only way to avoid this would be to remove the gap between the image capture and

watermarking or information embedding before redistribution. There have been only limited

efforts in literature that actually try to utilize this gap and bring watermarking close to media

acquisition stage. There are quite a few efforts made to completely coincide the process of

watermarking with acquisition in order to obtain a real-time watermarking solution to obtain

that is deployed within the camera hardware. Not every existing algorithm can be made into

such real time watermarking solution. There exists profusion of watermarking techniques

in literature [21-25], [38-44]. Each method has advantages and disadvantages that come

along with the implementation. The major problem here is that such methods cannot be

readily implemented within the camera hardware to achieve the results i.e. watermarking

within the acquisition phase.

Image acquisition phase in itself is a combination of several other stages. There are

specific stages that the sensor data (first set of digital information that a camera produces

from a scene) has to go through in order to complete acquisition and generate a perceivable

image [54]. The collection of these stages is often known as Image Sensor Pipeline (ISP)

which is responsible for producing an image ready for human perception. The closing of the

7

gap that this research talked about earlier is nothing but accommodating a resource efficient

watermarking algorithm within this pipeline. Each stage of the ISP modifies the input data

starting from the sensor data and passes the output to the next stage. After a series of

modifications, the final output media is created. In terms of image, this is often the JPEG

image that we use for different purposes. Since inputs to each of the ISP stages are different

from each other and are acted upon to undergo different changes, simple insertion of an

existing watermarking algorithm within ISP makes no sense. Existing watermarking or

embedding algorithms often assume that the input image is a JPEG or similar image and

processes it. This when applied to intermediate image data within the ISP might lead to

unwanted results in both- the original image and the hidden data. This is highly undesirable.

Also, it is extremely crucial to understand what changes each ISP stage makes to the input

data so as to carefully plan where watermarking might be the safest. We don’t want the

existing ISP processes to interfere with any watermarking algorithm that is added. One of

the prime caution is to leave the basic ISP unmodified so as to be able to add the

steganographic algorithm within any camera’s existing ISP. Hence, here the basic ISP that

is common to all digital cameras has be properly studied and the embedding algorithm that

has been customized to fit the resource constraints is finally included within the camera ISP

so as to produce a human perception ready JPEG image that has been automatically

watermarked during the acquisition phase. This ensures that every image coming out of the

camera hardware contain authentication information by default.

8

Chapter 2. Background and Literature Review

2.1. Overview

Steganography for smart devices hasn’t been as mature as general steganography based

on computers. Although the need for mobile steganography has been pointed out in the

literature, it hasn’t been fully explored. Handful of attempts have been to make solid

contributions in this regard. Implementation of any algorithm that has primarily been

developed for computer use within smaller devices such as smartphones isn’t that

straightforward. Despite the fact that the processing abilities of such devices have rocketed

over a span of few years now, the physical size of the device still limit the availability of

memory and power. And since there are numerous applications running at the same time,

it is desirable that the steganographic algorithm, if and when added for such platforms, take

minimal memory and process faster so as not to degrade the existing performance.

Nevertheless, the basic principle for any steganography algorithm and the file format of

the cover media for both mobile devices and computers are pretty much the same.

2.2. Related Works

2.2.1. Mobile Steganography

Despite the fact that efforts in mobile steganography are not as much as that in general

steganography [63-70], it will be unfair to not notice the diversity of the efforts made. The

study of mobile steganography varies from hardware implementation in digital cameras to

pure software manipulation in smart phones. One of such implementations was devising

steganography in a Very Large Scale Implementation (VLSI) processing unit of a digital

camera [6]. The primary purpose in [6] is to assure intellectual property protection and this

thesis is based on similar motivation. The authors in [6] embed visible watermark as a

9

secondary translucent image overlaid into the cover image. The watermark inserted can be

recovered only with appropriate extraction techniques. In particular, the authors aim behind

proposing a VLSI based architecture is easy integration into any existing digital camera

framework. The authors consider this to be the first VLSI architecture for visible

watermark implementation. In order to prove the point they are making, they design a

prototype chip with 28469 gates using 0.35-µm technology. The chip has pixel-by-pixel

and block-by-block watermark processing abilities. The major drawback in the proposed

method can be considered to be the choice of spatial domain for watermark embedding.

Spatial domain steganography is no longer considered robust. However, their use of spatial

domain can be understood given the complexity of implementation on a chip. Overall, this

paper can be considered to be a good attempt in the inclusion of steganography in digital

cameras.

Another effort to implement algorithms using microcontrollers and Digital Signal

Processor (DSP) chips to obtain secure communication over public telephone network is

made in [8]. The authors in [8] call it Speech Information Hiding Telephone (SITH) which

is a technique based on information hiding steganographic scheme. The embedded system

design uses one fixed point DSP, three floating point DSPs and a single –chip

microcontroller unit working in conjunction. The authors hide secret information on

normal speech transferred over Public Switching Telephone Network (PSTN) without

attracting eavesdroppers. It proved to work when testing with China PSTN but the very

fact that this was only meant for speech signals limits its use for copyright protection and

authentication of other digital multimedia. Also, the requirement of additional hardware is

cumbersome as compared to software only implementations.

10

Alvarez in [1] implement a basic form of steganography using EXIF headers in images.

The author specifically mentions the problem in the case of child pornography where the

pictures need to be tested for authentication and see whether they have been altered or not.

They simply point out the fact that altered pictures somehow change the EXIF information

and hence authenticity can be proved by analyzing the EXIF headers. This implementation

would be rather easy for mobile phones and digital cameras since they don’t require

additional processing. However, there are photo editors like Adobe Photoshop 6.0 and

higher attempt to preserve EXIF header data by replicating the original data. This might

prove to be a hindrance in utilizing EXIF header for authenticity testing. Also, for someone

who is expert in digital image processing, mimicking the original header file shouldn’t be

a problem.

The authors in [7] take the process of making steganography fit for mobile devices a

step ahead by implementing algorithms in embedded devices. Considering steganography

in mobile phones to be equally important as classic computing, the authors try to show that

steganography can be successfully implemented into the new generation of mobile phones

that are known to have enhanced image and video processing abilities. The major focus in

the paper is the implementation of steganography algorithms in three different processors-

an ARM7 based microcontroller, a multi-core processor called ISSAC and a Personal

Computer (PC) and to present the comparison. They specifically examine the execution

times of existing algorithms in these three platforms and conclude that execution time is

highly influenced by the size of the carrier image. With the idea that processors like ISSAC

and ARM are used in mobile phones, they try to find which algorithm might be the best fit

for a chosen processor among those three. The study whatsoever makes no attempt in

11

further polishing an algorithm that can essentially prove to be better in any mobile platform.

Rather than making an algorithm fit for mobile environment, the authors try to figure out

which gives the best performance in terms of execution time.

Further exploring digital steganography in mobile phones, K. Papapanagiotou et al. in

[9] examine steganography in the context of Multimedia Messaging System (MMS). MMS

enables a mobile phone user to communicate using multimedia objects such as images,

video and audio in addition to normal texts. Since MMS is getting popular, the authors

explore the possibility of hiding information, particularly in images. In a time when most

security research in mobile environment involved cryptography, [9] actually presents some

of the widely used algorithms and their application in MMS. S. Mohanpriya in [10] designs

and implements steganography along with MMS in order to secure information over

mobile phones. The paper uses relatively better domain- DCT instead of traditional spatial

domain to do the data hiding. In addition, tiny encryption algorithm is utilized so as to

further make the data more difficult to decrypt. The tiny encryption algorithm is a block

cipher algorithm which the author claims to be simple and fast and hence the best for

mobile applications. The embedding algorithm chosen is F5 [17]. The implementation is

to ensure that the information passed from source to destination is safe and secure. By

combining cryptography and steganography over MMS, the author seeks to achieve this

purpose. However, the basic flaw observed in this study is that, despite the fact that this

algorithm claims to be for MMS essentially in mobile phones, the author mentions no point

as to what makes it suitable for mobile devices. The implementation looks no different

from a normal classical digital multimedia steganography that is computer based other than

12

the mention of tiny encryption algorithm being fast and suitable for mobile phones. There

is no logic that proves it to be specifically suitable for MMS.

Likewise the authors in [19] try to address the issue of photos in camera smartphones

being used without the owner’s consent. The obvious solution to this problem is adding

visible and invisible watermark. However, this requires an extra process to be performed

by user to the image they want to share. This is particularly cumbersome when there are a

large number of images that need to be watermarked before sharing. Taking this in mind,

the authors in [19] propose a copyright embedding system for Android platform where a

pre-specified copyright information is watermarked into the images while the images are

captured instead of adding an extra process to watermark them. The authors also claim to

have an option to selectively save the original unwatermarked images as well. They tend

to make their proposed method a highly desirable one as they claim that their method is

specially tailored to make the watermarking process computationally efficient for mobile

devices and that the watermark can be retrieved without the need for the original image.

Furthermore, they say that the embedded watermark is robust against basic image

processing operations and their process automatically watermarks, resizes and uploads

images to the internet without the need for user intervention. They deploy Haar wavelet

transform as the embedding domain in order to make the process efficient. The process

looks good in general. However, the major issue with the solution provided by [19] is that

it is more of a watermarking application that is Android based. It doesn’t provide a generic

solution for all smart phones, let alone digital cameras. This doesn’t guarantee that an

image coming out of a digital camera is watermarked with copyright information as this

method is application based and not incorporated within firmware.

13

The examples mentioned above are general steganography techniques that the authors

in the papers claim to be useful for mobile systems. They claim the proposed methods to

be efficient. However, all the applications explained above fall short of presenting a

performance analysis of proposed scheme for mobile systems with the PC based

implementations. No factual information has been presented that justifies the claim that the

proposed methods are fit for mobile platforms. They claim so merely based on the

implementation of steganography in MMS or images that they say are taken from cameras

in smart phones. Also, majority of the data hiding techniques are based upon traditional

spatial based LSB techniques. Some of the methods use DCT or DWT implementations

but are not tested for robustness.

To ensure that the watermarks, copyright information or any other hidden information

are robust, they need to be resistant to different attacks such as JPEG compression and

geometric distortion for instance. Mere inclusion of information within multimedia won’t

ensure this and if the watermark isn’t resistant to such basic attacks, steganography serves

no purpose. One way to make steganography robust is to make sure that the embedding is

done in certain regions of the multimedia file that can survive such attacks. And this is

where featured based steganography is the key. There are several multimedia processing

methods in existence that modify media one way or the other. In feature based

steganography, the data to be hidden in embedded into key feature regions of the

multimedia that are likely to be preserved throughout all such methods. Furthermore, such

feature locations can also be used as reference points for synchronizing embedding and

extraction of information without the need for original media for recovery of hidden

information.

14

2.2.2. Feature based Steganography

Talking about feature based steganography for robustness, first we need to be able to

extract the feature of interest. There are many feature extraction algorithms discussed in

literature. There are also many of such methods that are used in combination with image

and video analysis. As explained above, steganographers can trickily use such algorithms

to help them hide messages in feature locations- be it image, video or audio. J. Xu and L.

Feng in [11] present a watermarking scheme for images that is feature based. Their method

performs both embedding and blind extraction. Image normalization and scale-invariant

feature transform methods are first used to extract the stable image feature points from the

cover image. Scale Invariant Feature Transform (SIFT) detector is used as the feature

transform method to extract local features. Watermarks are inserted into the DWT

coefficients of the Local Feature Regions (LFR). Blind extraction technique is devised that

is resistant against de-synchronization attacks. Then experiments are performed to test the

invisibility and robustness of the proposed scheme. Attacks performed were PEG

compression, salt and pepper noise, median filtering and geometrical attacks such as

rotation, scaling etc. The basic underlying principle in this technique is the use of SIFT

detector that plays the major role in making the scheme robust.

The authors in [12] make an attempt to achieve image authentication and protection at

the same time and they deploy feature based steganography for that. Hessian-Affine feature

detector is first used to extract feature regions of a digital image. In order to achieve

copyright protection, a copyright watermark is embedded into the extracted characteristic

regions. Since the authors seek to achieve image authentication as well, the remainder of

the image or the non-characteristic regions that were unused for copyright watermarking

15

are utilized for image authentication. For this, block-wise fragile watermarking is adopted.

Similar techniques are used to blindly extract the watermarks for both copyright and

authentication. The robustness is proved against basic geometrical attacks. The major

drawback of the proposed scheme is pointed out by the author themselves. The use of

Hessian- Affine Transform for feature detection makes the process resource demanding

and very complex. Hessian-Affine is an iterative method and increases the complexity of

any process that utilizes it. Also, since the fragile watermark for authentication is embedded

into non-characteristic regions, it is susceptible to de-synchronicity attack as the location

for watermark detection could be affected. This could be improved by embedding into

characteristic regions, however, which again calls for the feature detection and hence

increases complexity.

J. Zhao et al. in [13], a feature based fusion approach for embedding watermark in a host

image in multiwavelet domain is proposed. They seek to embed watermark information

into salient features of the cover image. The paper utilizes phase congruency in extracting

salient features like the step edges and lines for the purpose of embedding and extraction.

This combination of feature region and steganography is further used in [14] by John N.

Ellinas. He presents a robust watermarking algorithm using wavelet transform and edge

detection. As is the case with using characteristic region in watermarking, the efficiency of

the proposed technique in [14] depends upon the preservation of the significant feature

regions. In order to achieve that, the author tried to embed the watermark with the

maximum strength possible over the sub-band wavelet coefficients of the feature regions

that are the edges in the images. The strength of embedding is dependent on the level of

the sub-band. Sobel detector is used to detect edge regions. The coefficients corresponding

16

to edges in the wavelet domain are the high frequency regions where the distortions are

less noticeable to human perception. The author utilizes this idea to embed into this region

so that the modifications due to embedding are not noticeable. The proposed method is

computer based and would be interesting to see its application in mobile platforms.

In [15], S. Kay and E. Izquierdo take the feature based steganography a step ahead by

combining characteristics of both spatial and frequency domain to attain a higher level of

robustness against different image processing techniques. The proposed scheme first

estimates Just Noticeable Distortion (JND) in the image and watermark is embedded by

adaptive spreading the watermark information in the frequency components. In order to

extract watermark, the spatial distribution of pixels in original image is considered. The

use of JND is to insert pseudo-random watermark so as not to make the modification

exceed the distortion sensitivity of the pixel into which the watermark bit is embedded.

Embedding in frequency domain helps make the method robust against compression. In

order to extract, the salient feature points into which the watermark bits are embedded are

detected using the concept of first order differential invariants. The scheme proposed is

devised in order to make the watermarking robust and no attention is paid to making the

technique efficient since that isn’t the primary concern of the paper. It only bolsters the fact

that embedding into feature regions makes steganography robust to basic geometric attacks

and JPEG compression.

It’s now pretty clear that there are limited efforts made to integrate steganography within

mobile systems- be it smartphones or digital cameras. There are studies done to implement

steganography in mobile platforms. However, the underlying techniques are very basic and

not quite robust. They don’t deploy feature based steganography that could have made their

17

technique robust. Even if they did, the overall algorithm would be quite complex and time

consuming. Also, majority of the studies that present steganography methods that are

proclaimed to be fit for mobile platforms do not actually present any experimental data that

shows that their schemes are different from PC based methods and are mobile platform

centric. It is in this scenario that a feature based steganographic method tailored for mobile

platforms would be really beneficial. But this again could be prone to multimedia misuse

as it could be up to the user to deploy the designed steganography technique for mobile

systems. However, if the mobile based steganography is used within the image acquisition

phase this could be avoided. This would also allow the technique to be used not only on

smartphones that include cameras, but also within all digital cameras.

2.2.3. Steganography in Digital Camera Systems

There have been very few but praise worthy researches in implementing watermark into

camera firmware. Paul Blythe and Jessica Fridrich in [26] propose a concept of secure

digital camera. The underlying objective of the study is to address the issue of integrity of

digital images when used as evidences in the court of law. They propose lossless data

embedding into digital images to identify the camera, the time of image capture, the

photographer and the integrity of the image. This first thing for this is to create the

information to be watermarked which in this case is the combination of biometric data of

the photographer with cryptographic hashes and other forensic information. They design a

camera system, using software on a chip, which is capable of using the photographer’s iris

as biometric information. In order to obtain the biometric information or the iris image, the

camera viewfinder had to be modified. The watermark embedded is invisible and

removable. This is an exciting and laudable advancement in digital forensics. However,

18

this calls for a major hardware and software overhaul in existing camera models and might

be difficult to achieve in smart phone cameras where the user doesn’t use any viewfinder.

Also, the embedding is done is DCT domain not utilizing feature based techniques for

robustness. In addition, the embedding done isn’t a part of the camera ISP as the proposed

watermarking utilizes final JPEG image produced by the camera instead of the intermediate

sensor data.

In [27], the authors try similar approach of watermarking images captured by digital

cameras. The scheme employs both semi-fragile and robust watermarks. The watermark

information are generated by combining the image’s frequency components and the

owner’s biometric data. They propose using this for integrity detection as well as

ownership protection. The paper however doesn’t show how the proposed scheme is

integrated into any digital camera. The study only claims the method to be suitable for

watermarking during image capture from a digital camera. It appears this is only based on

the usage of iris as biometric information to be embedded into the image and lacks the

experimental results of actual integration into camera firmware or hardware.

Mohanty, Kougianos and Ranganathan in [28] actually try to make steganography

implementations in hardware. Their primary objective in [8] is to be able to contribute in

the development of high-performance, low power consuming, reliable and secure, real time

watermarking systems within a chip. In order to prove their point, they present a Very

Large Scale Integration (VLSI) chip capable of doing this. The watermarking can embed

both invisible robust and fragile watermarks. In order to demonstrate the hardware

implementation, they prototype two designs. The first is a Xilinx Field Programmable Gate

Array (FPGA) and the second one is by building a custom integrated Circuit (IC). The

19

motivation behind designing a watermarking chip is to be able to use it within any JPEG

encoder in any digital camera. However there are several shortcomings associated with the

design solution that has been proposed for watermarking on a chip. First and foremost, the

processing is done on a pixel-by-pixel basis which is really slow. The authors plan on doing

a study for block-by-block based processing to speed up the system. Secondly, the

implementation that has been proposed can only be performed for grayscale images and

implementations for color images are under study. Despite the fact that this hardware

implementation looks promising, the authors’ description in [8] prelude the integration of

the design within the camera ISP. The embedding performed is DCT when more secure

and robust wavelet based techniques have evolved. Nevertheless, the work in [8] is really

important in terms of analyzing steganography in hardware.

This trend of trying to implement digital steganography continues with the research

presented by G. R. Nelson et al. in [29]. They address the issue of the lack of sensor level

integration of digital watermarking schemes. The paper presents a Complementary Metal

Oxide Semiconductor (CMOS) Active Pixel Sensor (APS) imager that has a built in image

watermarking feature. In order to embed authenticity information, watermarks specific to

each chip are generated. This study is indeed laudable in creating an environment where

all images will be watermarked but since this requires extra circuitry and hardware design,

this cannot be ready implemented into the existing camera ISP as a software extension.

In [30], the authors R. Lukac and K. N. Plataniotis introduce watermarking solution for

single-sensor digital cameras. They propose embedding a visible watermark into the

camera sensor data, for a single-sensor camera, and then transferring the watermark to the

final output image using the demosaicing [24] algorithm. The watermark is first inserted

20

into a gray-scale image that is the image data coming out of the Color Filter Arrays, as

shown in Figure 2.1. The watermark is then carried unto the final image using the process

of demosaicing to generate a final color image. The final product includes a visible

watermark. This is an interesting solution to protect digital property coming from single-

sensor digital cameras. However the main problem here lies in the fact that the method is

not generic to all camera models and since the final image contains visible watermark, this

could be useless for applications that seek to use the images for purposes that do not require

visible watermarking information. The major purpose of the solution proposed is to verify

image authenticity by visual inspection of the visible watermark.

The authors in [31] put forward an approach of digital steganography for camera

platforms that differs from the techniques and implementation described above in the sense

that it is an entirely software based solution. The authors investigate a software only

solution for real time watermarking of digital images coming from single sensor digital

cameras. Even though it is unlike previous methods and doesn’t provide hardware solutions

Figure 2.1. Different types of Color Filter Arrays

21

for cameras, it looks more realistic in terms of integrating it with camera firmware. One

reason for this is that they test their design on the CHDK firmware add-on for digital

cameras from Canon. There could be different demosaicing techniques deployed within

the camera ISP and hence the authors in [11] provide comparative results analyzing

performance for different interpolation techniques. However, it uses simple spread

spectrum additive embedding. So no matter how feasible it is integration wise, the method

might not be robust as compared to advanced embedding schemes.

Looking into the past where several laudable efforts were made by researchers to

integrate steganography within camera firmware, it is also important to note that camera

manufacturers also tried to accomplish the same. Manufacturers like Epson and Kodak

have manufactured digital cameras that had watermarking abilities in the past [26].

However, the watermarking abilities were not that straightforward to use. Epson required

the users to purchase Image Authentication System (IAS) software to achieve

watermarking. Kodak, on the other hand, has inbuilt features within the camera to insert

visible watermark in digital images. But for some reason the Kodak cameras that had such

features have been discontinued and are no longer available.

Hence, literature shows plethora of work being done in the field of digital steganography

with the new ones being better and robust than previous ones. However, very few of such

efforts are channeled towards mobile steganography. With increasing multimedia use in

such devices, steganography in smart phones becomes inevitable. Also, it would be better

to propose solutions that are feasible enough to integrate within existing technologies

without demanding a lot of resources and hardware changes.

22

Chapter 3. Motivation and Problem Statement

3.1. Motivation

As discussed in the previous chapter, there have been exciting works that try to relate

steganography with mobile devices. However, there are handful of researchers trying to

actually cater steganography for mobile devices and digital cameras. Also, the majority of

them require a major overhaul for actual implementation because of at least one of the

following reasons:

(i) Requiring additional hardware for implementation making the existing devices

useless to perform proposed solutions.

(ii) Being more focused on encryption (cryptography) rather than data hiding

(steganography).

(iii) Using primitive embedding techniques like Least Significant Bit (LSB) embedding

which are no more considered safe and secure.

 (iv) More focused on embedding and not concerned to see the extracted message’s

integrity.

Also, digital image forensics is one of the critical field that utilizes image processing and

steganography. With the proper use of steganography techniques, an image can act as an

evidence to successfully solve cases in the court of law [53], [54]. There are plenty of image

forensic techniques that extract information from digital images to trace the image’s

authenticity, integrity and forgery [50-54]. Component forensics seeks to extract

information from the images to relate it to specific camera component and trace the image

23

source [47-49]. The solutions that exist in this field make use of the steganography

techniques described in previous sections but suffer from several flaws such as [56-62]:

(i) Being camera brand centric and often unable to distinguish between different camera

models.

(ii) Heavily relying on underlying digital camera technologies that can be the same for

different vendors.

(iii) Based on image acquisition process that can again be the same for different digital

cameras.

 (iv) Need to be trained thus requiring a large number of authentic tamper free original

images before actual use.

(v) Often ambiguous and unable to reliably detect time varying information.

The aforementioned issues make it important that a solution be proposed that can really

be implemented without demanding additional resources. We also seek to address the issues

inherent in existing authentication techniques by integrating a unique information in all

images captured by digital cameras.

3.2. Problem Statement

There exists a gap between the powerful multimedia processing ability of hardware in

smart phones and resource efficient steganography methods for such devices. The

multimedia processing ability of such devices can be rightly utilized by implementing

steganography methods that are tailored for such hardware. This can resolve the current

requirement of multimedia to be transferred to Personal Computers (PCs) to be processed

for steganography before they can be safely redistributed.

24

The critical gap between image acquisition and image steganography often tends to leave

a lot of digital images vulnerable to tampering, thereby defeating the purpose of digital

forensics. This can be rightly resolved by moving digital steganography as close as possible

to image acquisition phase, such that each image coming out of any digital camera is already

laden with a unique information that can prove beneficial for a variety of digital forensics

application.

The research for this thesis is done in two parts. First, an attempt is made to come up

with a working embedding algorithm that seems reasonably good for watermarking or

information hiding within multimedia. After the algorithm is devised, we try to implement

that within the camera ISP to make it close to the image acquisition phase.

25

Chapter 4. Proposed Video Steganography

4.1. Introduction

The primary idea behind the watermarking technique in this thesis is the embedding of

watermark information or any other data within blocks, considering each block as an

independent unit where information can be hidden, instead of processing an entire image.

Here, we try to devise an embedding technique for video. The reason behind this is we try

to do the watermarking within each video frame treating it as if it were an image. Hence,

successful implementation of embedding within video would also enable us to use the same

algorithm for images.

The video under consideration that has to be watermarked first goes through a frame

retrieval process. We all know that video can be seen as a composite of multiple images

called frames. Frame retrieval process simply splits up the video into its component frames.

Now that the splitting has been done, each frame of the video is divided into numerous

blocks of specific sizes. It is to be noted that the block size should be smaller than the frame

size. The blocks that are thus formed are then read, one at a time, and fed to a characteristic

recognition algorithm. There are different features that could be extracted, but here we chose

corner detection. The output of the corner detection algorithm would now deliver blocks

passed into it, along with the pixel locations where corners are present within the input

blocks.

As per different instances mentioned in the literature review, the feature locations are

extracted considering such locations of the block to be fit for data embedding. This is done

to achieve robustness. After the embedding locations have been decided upon, the block

26

undergoes transformation to the domain in which data hiding is to be performed. Again,

from literature frequency domain, and DCT or DWT in particular have been very popular

and seem to give better results as compared to spatial domain. Hence, here the block with

corners now undergoes DWT so that data could be embedded within the DWT coefficients

of the pixel values at the corner locations. This is done for sequential blocks of the first

frame as long as the data to be embedded isn’t over. This is the exact process of how we

would perform watermarking within an image.

After the first frame is done, Motion Vector (MV) [46] comes into play. Instead of going

through successive frames doing the exact process that was done for the first frame, we try

to make the process a little more efficient. MV is now deployed to find blocks in the

successive frames that correspond to the watermarked blocks in the first frame. The MV

maps each pixel from a reference frame to the next frame. For simplicity we choose this

reference frame to be the first frame. With this reference frame and an array of MV, we find

out corresponding blocks in all frames following the first frame and try to do embedding in

those locations. Since characteristic region extraction is a computationally demanding

process, an attempt to avoid this step after the first frame is made. In addition, since the

scheme described above works on one block at a time instead of an entire frame that is

relatively much larger than the block, the scheme is expected to be memory thrifty. The

reason behind this is that instead of having to store a large frame to process, a smaller block

can be saved into memory at a time, thus freeing the memory for other processes. As the

memory available for smaller mobile phones and cameras are limited as compared to PC,

this is a step toward making the algorithm fit for mobile devices.

27

4.2. Embedding Algorithm Development

The cover video is the output of any video camera in smart phones. For simplicity, we

further refer to smartphones or mobile phones as devices unless otherwise stated. This cover

video is initially stored within the permanent memory of the device. The entire process of

information hiding or watermarking starts by reading the video to be watermarked. This

video is then subject to frame retrieval and MV extraction process.

The frame retrieval is a relatively simple process and requires the Frame per Second

(FPS) information of the video. Depending upon the FPS value for the video, a certain

number of frame is produced for the video. The MV is a key element used in the proposed

algorithm. MV, in general, is used in video compressing mechanisms. It is used to determine

the position of a certain pixel or a block in a particular frame of the video based upon the

position of corresponding block in the reference frame. We mainly focus on the embedding

part here and for this research, a matrix with random values is chosen as the MV matrix.

This MV matrix is considered to be an array of offsets for each pixels in the frames relative

to the reference or the first frame. Actual computation of the MV is beyond the scope of this

research and can be considered to be delved into in the future.

Let a cover video of duration t seconds, have a frame rate of f R FPS (Frames per Second).

This video is to be divided into N number of frames through the frame retrieval process.

This satisfies the following,

where N=f R* t and Fi represents a frame where i can take any value from 1 to N.

 �� ∈ ���, ��, ��, … , �
�; � ∈ �1,2, … , ��

(4.1)

28

The next step is the corner extraction process. In order to achieve this, the first frame, F1,

is read and divided into fixed sized smaller blocks, Bj, as shown below,

where m is the total number of blocks from the first frame, i.e. Fi=1, and Bj, with j taking

any value from 1 to m, represents a block. The size of each block is fixed, say, nB pixels x

nB pixels.

After the first frame has been divided into smaller blocks, each block is now treated as a

unit and read one at a time. All blocks that are read go through similar processes until the

process of embedding is over. The first block is now fed into a corner detection algorithm.

The corner detection algorithm used here is the Smallest Univalue Segment Assimilation

Nucleus (SUSAN) algorithm [16].

The corner detection algorithm SUSAN uses a circular mask to be placed over a pixel to

be tested for corner. This center pixel that is to be tested is now called the nucleus of the

mask. Rest of the pixels that fall within the mask are now compared to the nucleus for corner

detection. This is shown in Figure 4.1 and mathematically expressed as following,

where c0 is the position of the nucleus pixel within the two dimensional image block, c is

the position of any other pixel point that lies within the mask, I(c) is the intensity of any

pixel at location c, bt is the brightness difference threshold used for comparison and corner

is the final out of the comparison for corner.

 �� ∈ � = ���, ��, ��, … , ���; � ∈ �1,2,3, … , ��

(4.2)

 ��������, �� = !1 �" |$�� − $��� | ≤ '(0 �" |$�� − $��� | > '(+

(4.3)

29

Localizability is another factor to be looked into in order to attempt to make an image

processing algorithm efficient. By localizability here we mean the ability of the algorithm

to independently work on a pixel level. Also, the effect of the processing of an algorithm on

a pixel should not be dependent on processing of other pixels. Such localizability of the

corner detection algorithm lets us work with each block of an entire frame as an independent

unit. And the block can be as small as it could be without affecting other blocks or the frame

that the blocks are parts of. This, undoubtedly, is the primary benefit of feature detection

algorithms and this has been exploited in this research. Since each blocks can be

independently treated, the algorithm can be implemented on block level, thus, allowing us

to limit memory usage.

After the blocks have been tested for corners and if any block is found to possess corners,

it is split into Red (R), Green (G) and Blue (B) components since a color image is composed

of RGB components. One of those components, here R, is chosen to undergo one level

DWT. One level DWT decomposes the block into wavelet coefficients in different bands.

Figure 4.1. Different mask positions using SUSAN corner detection

30

Figure 3 shows how a one level DWT of an image produces four sub blocks. The

coefficients in the sub blocks are termed as Approximation (A), Horizontal (H), Vertical

(V) and Diagonal (D) coefficients. The choice behind DWT in this study is that it allows us

to continue the localization ability that the corner detection algorithm provided. Each

coefficient in the sub band of the DWT of the image is a value corresponding to the pixel in

the same location in the spatial domain and is not dependent on other pixels or coefficients.

For the sake of comparison, DCT can be considered. In DCT, each coefficient is the result

of processing of the entire block.

This localizing ability of the DWT allows this process to be combined with the previous

SUSAN corner detection without messing up the ability to process at block level. So far,

each unit of the frame can be processed on its own and the result in not contingent on results

from other blocks. As a result, a unit much smaller than a frame can be processed at a time

and this in turn immensely helps in reducing the amount of space required to save the

working unit. This leads to a smaller memory requirement.

Now since the block has to undergo DWT, the next thing to be considered is what form

of DWT to use. Given the popularity, this research adopts the Haar wavelet. The Haar

wavelet’s mother wavelet function ψ (t) is expressed as,

where t is the unit of time.

 ,�(= -1 0 ≤ (< 1/2,−1 12 ≤ (< 1,0 otherwise.

(4.4)

31

After choosing the block with corners for embedding and making the block ready for

information hiding in wavelet domain, information bits can be finally embedded. The

algorithm chosen to hide information is adopted from [20] which is proposed by Nagham

et al. As per [20], after the block undergoes DWT and frequency components have been

generated, the horizontal and wavelet coefficients are selected in a raster way for embedding

as shown in Figure 4.2. The binary message bits are then embedded within the chosen

coefficients by altering the corresponding horizontal and vertical coefficients.

Say a bit, b, of the watermark is to be embedded. The block with corners undergoes

DWT and this generates A, H, V and D wavelet coefficients. Let Hw(x,y) and Vw(x,y) be

the representation of the horizontal and vertical wavelet coefficients, respectively. These

H and V values correspond to the pixel location (x,y) where bit b is to be hidden. In order

to achieve different strength of information invisibility, a threshold is chosen. This

threshold can be represented by 9.

Figure 4.2. One level DWT of an image

32

Then, as per the technique proposed by the authors in [20], the embedding technique is

mathematically expressed as shown below.

If b=0 and :1=Vw(x,y) - Hw(x,y) < 9 ,

else if :1=Vw(x,y) - Hw(x,y) ≥ 9; no change in coefficients.

If b=1 and :2=Hw(x,y) - Vw(x,y) < 9

else if :2=Hw(x,y) - Vw(x,y) ≥ 9; no change in coefficients.

where :1 and :2 are used to represent the difference of the horizontal and vertical
coefficient values.

 Since the number of bits embedded within any frame is always less than the
number of coefficients for frame, the number of blocks used for embedding are less
than total blocks generated from a frame. As explained earlier, total blocks from a
frame is m. Let us assume that ε is the total number of blocks that undergo wavelet

transform and are used for actual embedding such that ε < m. Let each modified block be

represented by Wb, then this can be expressed as,

 -MNO�P, Q = MN�P, Q − 9 − R12SNO�P, Q = SN�P, Q + 9 − R12

(4.5)

 -MNO�P, Q = MN�P, Q + 9 − R12SNO�P, Q = SN�P, Q − 9 − R12

(4.6)

 UV� ∈ U = �UV�, UV�, UV�, … , UVW�; X ⊂ � (4.7)

33

 where Wbi represents each modified block where i can be any value from 1 to ε.

As long as the message bits to be embedded aren’t over, each block undergo same

processing starting from corner detection to embedding. After the bits are over, the blocks

need to be placed back into the original frame. This starts with inversing the wavelet

transform of the blocks. Inverse Discrete Wavelet Transform (IDWT) is performed on the

blocks to convert them back to the spatial domain. After each of the modified block is placed

back on the original frame, processing on the first frame is over. If an image were to be

watermarked instead of a video, it would be exact process that the first frame went through.

Rest of the discussion that follow are strictly for video.

Basically all message bits are first embedded within the first frame. Now, in order to

make the method robust, successive video frames are also utilized for embedding. Once the

first frame is over, remaining frames i.e. Fi >1, are now read one at time. As explained earlier,

MV is used to predict the embedding locations in these frames. Since the locations of

corners in the first frame are already known, this information in conjunction with the MV

matrix is used to determine the blocks with corners in the remaining frames. The primary

benefit of doing this is that all these frames, other than the first frame, are spared from going

through the rigorous feature detection process and saves a lot of computational load on the

processor and also a lot of time. Now that the blocks with corners in all the other frames are

determined, data bits are hidden within each block just like in the first frame. After

modification these blocks are replaced with the original blocks in their corresponding

frames. This hiding mechanism is presented graphically in the flowchart in Figure 4.3.

34

Figure 4.3. Flowchart for the embedding method

35

4.3. Time Efficiency Analysis

From the discussion above, one can infer that ε blocks from the first frame F1 go through

both the SUSAN corner detection and embedding processes. For all the other frames i.e.

from F2 to FN frames, all the ε blocks need to go through only embedding algorithm as the

computation intensive process.

 In order to see the efficiency in computational time achieved by this block based method,

let the time taken for the SUSAN corner detection method for a frame block of size nB x nB

be Tc and the total time taken for embedding and DWT computation for the same block be

Te, then the following equation holds true,

where, T is the total time taken to embed messages in all the frames and includes the time

each modified has to go through for corner detection, DWT and embedding.

It is worth noticing that MV is used to avoid feature detection on frames other than the

first frame. Instead, if MV is not used, all m blocks of all N frames have to go through the

intensive corner detection algorithm. Out of these m blocks on each frame, ε blocks finally

go through the DWT and embedding processes. Let us assume that the total time taken for

embedding under this scenario is T, and is mathematically explained as,

where NmTc is the term for total time taken to test for corner detection only and NεTe is the

term representing the time taken for the DWT computation and embedding process .

 Z = [�Z\ + Z] + ��^ − 1 [Z] (4.8)

 ZO = ��Z\ + �[Z_ (4.9)

36

 In order to see the difference in time brought about by the block based method,

subtracting (4.8) from (4.9), we get,

Cancellation of terms leads to the reduced form as shown below,

We’ve already seen that m > ε. In addition, there is a minimum of one frame in each

video. In other words, for a video with duration greater than zero seconds, the number of

frames in the video is definitely N > 0 and which in turn leads to Tc > 0. Based upon this,

equation (4.11) can follow the following inequality,

which simply means that the time taken to embed information bits using the proposed

method of processing smaller units or blocks instead of entire frames, T, is less than the time

taken when working on an entire frame or image, T’.

Once embedding is complete on all frames, the modified frames in the spatial domain

are recombined to form a video. This video has information hidden within and is called

stego video. This is stored back in the permanent memory and is ready to be transferred.

From the discussion above, it can be easily inferred that, since only one block at a time is

read into Random Access Memory (RAM) to do the corner detection and embedding, this

saves a considerable RAM for other applications unlike tradition method that required entire

frame to be processed at a time.

 ZO − Z = ���Z̀ + �[Z_ − �[�Z\ + Z_ + �� − 1 [Z_

(4.10)

 ZO − Z = ��� − [Z\

(4.11)

 ZO − Z > 0 or, ZO > Z

(4.12)

37

4.4. Extraction And Performance Evaluation

Now that embedding has been efficiently done, extraction of the embedded bits has to be

ensured as well. Only then it will be possible to tell how, if at all, robust the embedding is.

The extraction of the hidden bits is also important in order to evaluate the performance of

the proposed technique and compare with general approaches. After passing the

watermarked stego video through an extraction algorithm, the extracted watermark bits can

then be compared against the original watermark and Bit Error Rate (BER) is computed.

The extraction process is pictorially presented in Figure 4.5 in the later part of this

section. However, since we are talking about implementation in mobile systems, the stego

video is likely transmitted wirelessly to a particular recipient. This wireless transmission is

prone to many channel noises. The study of different channel noises could itself be a

massive research area. Just to make sure our extraction process is complete, we choose to

deal with the most common Additive White Gaussian Noise (AWGN) for the sake of

simplicity. To ensure our video survives the basic noise, AWGN is introduced to our

channel which corrupts the stego video signal as it passes through the wireless medium.

AWGN is one of the simplest noises to understand amongst the plethora of noises that a

wireless channel might have to bear. However, it is also one of the major problems in any

Line Of Sight (LOS) wireless channel. By LOS channel we mean the transmitter and the

receiver be within a line unobstructed by any hindrance. AWGN has a continuous spectrum

which is uniform over the channel bandwidth. The amplitude of AWGN has a Gaussian

probability density function (p.d.f.). As the signal of concern passes through the channel

with AWGN, this amplitude gets added to the transmitted signal. Under this scenario, if x

be the transmitted signal, n be the AWGN noise signal and y be the received signal, then,

38

where the index i represents a particular pixel of the video frame being transmitted. Hence,

xi refers to the ith transmitted pixel value, yi refers to the corresponding received pixel value

at the receiver end and ni represents a sample amplitude value of the AWGN function. It is

assumed that a certain value that is a sample of the overall AWGN amplitude pdf is added

to every transmitted pixel value at any point of time.

By standard definition from literature, AWGN is a random variable denoted by N(µ,σ2)

and expressed mathematically as,

where f(x) is the xth sample of the amplitude value of the p.d.f. for all x ϵ R, µ is the mean

and σ2 is the variance of the distribution , as shown in Figure 4.4.

 Qa = Pa + �a

(4.13)

 "b�P = 1√2ᴨe �f�gfh i�ji
(4.14)

Figure 4.4. AWGN probability density function

39

As seen in Figure 4.4, AGWN is completely defined in terms of its mean and variance.

This white noise when added to any signal, corrupts the signal. Here, our signal of interest

is the transmitted video pixel value. Since the original video pixel has been modified to

accommodate the watermark bits as well, AGWN noise when added to the transmitted

pixels affects not only the original video pixels but also the watermark bits embedded within

those pixels. This is because channel cannot make a distinction between the original pixel

and the watermark bits. Hence, not only the original video is corrupted but also the

watermark embedded. The video would have been affected by the noise even if it were

transmitted without the watermark bits. But since the message bits are added with a purpose,

it has be ensured that the message bits are recovered as much as possible.

Again, as per the proposed method in [20], for the message bits that were embedded

using wavelet coefficient modification equations (4.5) and (4.6), extraction is done using

equation (4.15). In order to be able to use (4.15), the modified pixels or blocks have to be

first identified using the SUSAN corner detection mechanism, as shown in the flowchart in

Figure 4.5. This is the exact same process that was done on the embedding part just before

the message bits were hidden. The extraction equation proposed by Nelson et al. is presented

as,

where b is the bit decoded from a pixel location (x, y) that has horizontal and vertical wavelet

coefficient values as Hw(x, y) and Vw(x, y) respectively. The decoding is a fairly simple

comparison of the wavelet coefficients of the each pixel from where the embedded bits have

to be extracted.

 ' = !1 if MN�P, Q > SN�P, Q 0 if MN�P, Q < SN�P, Q

(4.15)

40

Figure 4.5. Flowchart for the extraction of watermark

41

Since these decoded bits might be a result of noise acting upon the original bits, they

need to be compared against the original bits that were embedded to figure out if they are

correct. BER is chosen as the metric to quantify the correctness of the decoded bits. BER is

the defined as the ratio of erroneous bits to correct bits. It is computed by comparing the

extracted bits with the embedded bits and is considered to be an important quality measure

of the extracted watermark. This eventually leads to the quality measure of the proposed

method.

It is not hard to sense that the extracted bits are not one hundred percent error free. There

is every possibility that the erroneous channel modifies the pixel values, however small the

modification be. This leads to a straightforward point that the erroneous channel increases

the value of BER as compared to an error free channel. On the other hand, we seek to make

the recovered bits as good as possible. However, it is not under the control of the user to

make an erroneous channel devoid of channel noises. So, there has to be other mechanisms

to address this issue and reduce the BER that has been increased by an unavoidable noisy

channel. There are several techniques that aim to address this. Here, the research makes use

of a widely popular Forward Error Correction (FEC) coding technique to ensure the decoded

bits are as close to original as possible.

4.5. Error Minimization

Forward Error Correction (FEC) is also popularly known as channel coding. FEC

encodes the information bits to be transmitted in a redundant fashion. This is in order to

allow the recipient to correct error bits without requiring the information to be retransmitted.

FEC really helps correct errors by avoiding the requirement for data retransmission but this

comes at the cost of higher forward channel bandwidth requirement to fit added redundancy.

42

With redundancy, we are transmitting the multiple copies of the same information.

Fortunately, for this case of extra bandwidth requirement can be eliminated in this case of

video transmission. This FEC was specifically chosen for this particular application with

that in mind. Given a limited channel bandwidth in any system, the video frames that are to

be transmitted, no matter what, can be utilized to implement FEC without extra bandwidth.

All the video frames have to be transmitted through the channel anyways, with or without

any information bits. Also, all the message bits are accommodated within a single video

frame. All the remaining frames can be utilized to encode the redundant message bits. This

will result in multiple copies of the same information being transmitted within the original

video size.

The receiver can now use this redundancy coding to extract information bits from all the

video frames. It is probable that the same bit might undergo different changes because of

varied noise value at different points of time in the channel. After all embedded bits have

been extracted, the property of repetitive or redundant encoding can be used to correctly

decode the bits. Let mi be the ith message bit of the hidden message, M, of total length n, i.e.

mi ∈ M such that i= 1 to n. Since there are a total of N video frames and the same M is

embedded into all the frames, there will be N copies of message M transmitted i.e. there will

be N copies of mi at bit position i within the message sequence. Let us introduce a new

subscript j to represent a particular frame i.e. j = 1 to N. Now a ith message bit in the jth frame

can be represented as mij. It is highly unlikely that all N copies of a bit mi will be corrupted

in the same way. Since, a message bit can be either 0 or 1, if mRij be an extracted bit at the

receiver end, then, it is decoded as,

43

where the subscript R in mRi signifies the received i th bit and Σ(mij=0) represents the total

number of i th bits that are zero (0) throughout all frames (all values of j).

Describing in words, equation (4.16) means that the message bit at any position within

the message sequence is decoded to hold the same value as the majority of the same bit in

the frame sequence. For instance, let us take an example of an original bit that has a value

of 1. This bit can be sent as a sequence of a hundred 1’s assuming that there are a total of

100 video frames. As these hundred bits are being transmitted, each one of them can undergo

random change within two possibilities i.e. a change from 1 to 0, or remain unchanged at 1.

Upon reception, there will be 100 copies of the sent bit extracted from 100 frames, each

with a value of either 0 or 1. If there are at least 51 bits that are 1 (as intended), the bit will

be correctly decoded as a 1. If not, the bit will be wrongly interpreted as a 0. A relatively

simpler scenario with all possible cases for 3 frames and one message bit is shown below in

Table 4.1.

Table 4.1. Example of Decoding Redundant Bits

 �k� = !0 if lm��� = 0n > �/21 otherwise for � = 1 to �

(4.16)

Extracted bit

triplets (N=3)
000 001 010 011 100 101 110 111

Σ(m=0) 3 2 2 1 2 1 1 0

Decoded bit (m) 0 0 0 1 0 1 1 1

44

The explanation above shows how FEC can be utilized to correct bits corrupted by the

noisy channel without compromising the embedding capacity. This is because the redundant

bits do not demand extra space and fit themselves within the frames that will have to be

transmitted anyways. An entire frame is available for embedding a message sequence and

it can be replicated in the remaining frames. The results section shows how BER is improved

with the use of FEC.

By proposing the method introduced above, we not only seek to improve BER and make

the method efficient and robust but also see to it that no extra time is incurred in the process

of making it robust. In order to see time efficiency of the overall method, we need to

compute time complexity of the major time consuming internal methods. The primary idea

here is to avoid reading an entire frame and perform repetitive processing of smaller blocks,

one at a time. In addition, the computation heavy feature detection for robustness is also

performed only on the first frame and MV is used as offset to find embedding locations in

successive frames. It is difficult to make a generalized prediction of how many blocks will

be processed for different video frames. An example case is analyzed below to see the time

complexity of the major processes involved in embedding. Let us say, for instance, there is

a video consisting of xf video frames the proposed method is set to process nb x nb sized

block at a time. The size of the entire frame is Nf x Nf. Assuming that corners are found on

the very first nb x nb block and c is a factor such that nb= Nf /c, Table 4.2 shows the time

taken for major processes to complete. Considering SUSAN corner detection, DWT and

IDWT to be the most time consuming processes amongst all, as per MATLAB profiler,

these three functions have been listed on the table. Other processes were observed to not

45

make much of a difference in the overall time consumed by the entire method for different

inputs.

Table 4.2. Time Complexity Comparison

Major

functions

Proposed Method Conventional method

1st

frame

2nd to

x-th

frames

Time

complexity

1st

frame

2nd to

x-th

frames

Time

complexity

SUSAN � � O(nb
2) � � O(Nf

2)

DWT � � O(nb
2) � � O(Nf

2)

IDWT � � O(nb
2) � � O(Nf

2)

Overall

complexity

O[(2xf+1) nb
2] =

O[(2xf+1) Nf
2/c2]

O(3x Nf
2)

To get a clearer picture of what Table 4.2 is trying to portray, let us consider a video with

294 frames (xf=294) each of size 720 x 720 pixels (Nf=720). The time taken by the general

approach which does not break down frames into blocks and processes an entire frame

would be 457 x 106 unit time while that for our approach of block level processing with 16

x 16 sized blocks will only be 15 x 104 unit time, again assuming that corners are present in

the first block. Even if corners were present in the very last block and the algorithm had to

go through all blocks of the frame, the time complexity for our approach would still be about

67 times less than that of the general approach.

46

Chapter 5. Proposed Camera Steganography

5.1. Overview

 The technique of processing a video proposed in the previous section is essentially to

enable video steganography in smart phone systems. The proposed method takes a video

input and efficiently embeds information bits into it. The objective in the previous section

was to come up with a steganography method that is more efficient than its normal

implementation in a personal computer system. However, it is still in the hands of the user

whether or not to invoke the steganography algorithm. If the user chooses not to watermark

the multimedia, no information bits are hidden and the media cannot be proved to be

authentic. Considering the scenario, this section takes the algorithm proposed in the

previous section to be implemented in a manner such that the user can no more control the

operation of the watermarking system. In order to make that happen all media coming out

of the camera should be laden with information bits by default. In this section, the previously

proposed algorithm is tested for images produced by all digital camera systems.

5.2. System Model

The solution to the problem discussed above is to integrate steganography within the

camera image acquisition system that already exists within all digital camera systems. The

design proposed here is quintessentially a new camera ISP, different from the ones existing

only in terms of an additional steganography process. In order to do that, it is important that

we first understand how a basic camera ISP looks like. The image we obtain from a digital

camera is the last set of digital data from the ISP. Often, the first set of digital data produced

within the ISP is an array of numbers. These numbers are single channel intensity values

47

and the array is most commonly known as the raw image. This array represents the true

information from any scene in the purest digital form possible and is therefore referred to

as the raw image. The component in the camera responsible for generating this raw array is

the camera’s photo sensor. The photo sensor in combination with Color Filter Array (CFA)

[15] of the camera produces the raw image. There are different types of CFA patterns. One

specific pattern of CFA is shown in Figure 5.1. As evident from the figure, the CFA can

only trap one color information (intensity) at a particular pixel location. The pixel

corresponding to the green square in the CFA traps only the intensity for green and the same

applies for red and blue. However the CFA pattern is designed as such that it allows the

missing color information at any location to be interpolated with the help of color values in

the neighboring locations. This process is called demosaicing [24] and there are different

types of demosaicing algorithms catered for different CFA patterns. The most common CFA

pattern in use is ‘rggb’. Also, the camera manufacturers often don’t reveal the technology

they are using. Hence for simplicity, we consider the pattern ‘rggb’ to develop the remaining

part of this thesis.

Figure 5.1. A Typical Color Filter Array with ‘rggb’

Pattern

48

To understand a CFA with ‘rggb’ pattern let us consider a 2 x 2 array of the Color Filter.

In such an array there are one red, two green and one blue filter elements in a raster wise

alignment. This pattern of a 2 x 2 array repeats itself until the camera resolution has been

reached and produces the full sized image of size, say, m x n. But this m x n image coming

from the CFA is essentially not the final color image. The result of demosaicing or

interpolation is an m x n x 3 RGB (Red Blue Green) image that we expect out of any camera.

This final image has one m x n array for each of the color components R, G and B.

Demosaicing is one the prime process within a camera ISP that helps transform a not-so-

significant two dimensional intensity information to color image. But it is also to be noted

that there are a series of other steps that the sensor data goes through one after the other to

make the color image more meaningful and realistic. These steps can be different in different

camera models and more often not made available for public. However, general basic steps

are more or less the same and common to all manufacturers. Different manufacturers can

have different ways to achieve the same result for each step.

Figure 5.3. A General Camera Image Sensor Pipeline

49

 A generic Image Sensor Pipeline is shown in Figure 5.2 and it presents the least amount

of processes for converting a raw image to a final color image. In the order of their

implementation, the major processes are linearization, white balancing, demosaicing, color

space conversion and brightness and gamma control before the final color image is

produced.

As explained earlier, here we are looking to accommodate an information embedding

algorithm within the ISP. The proposed spot to do so is right after the image has been color

space corrected, just before the image is about to go through the final brightness and gamma

correction phase. This spot is chosen for a reason that the watermark needs to be safe as the

image progresses through the ISP. It needs to be ensured that the hidden information, which

is already something meaningful, doesn't undergo any irreversible changes which the raw

data might have to go through as moving through the ISP. The final meaningful color image

will be ready only after the final compression stage as depicted in Figure 5.2 and we don’t

necessarily care how the intermediate image looks like. But the watermark might not be

able to survive all stages of the ISP if included very early within the ISP. Hence, it is

important to understand what changes the sensor data goes through before actually choosing

an embedding location within the ISP.

5.3. Proposed Image Sensor Pipelining Algorithm

The proposed system model is shown in Figure 5.3 and is fundamentally a camera ISP

present in all digital cameras but integrated with a watermark embedding block. The aim

here is to propose a model that can be realized in software. Since the basic ISP already exists

50

in a camera with different image processing algorithms, mere addition of a watermarking

block should be a problem. The basic embedding and extraction algorithms are adapted

from [20] as explained earlier. The watermark to be embedded can be any binary sequence.

Here the sequence chosen is a pseudo-random set of binary bits for demonstration purposes.

Depending upon the application and requirement, this watermark can be something more

meaningful as camera footprint or date and time.

Since we do not have access to stages within the intermediate sensor data within a digital

camera, we need to start our processing with the set of raw image the camera manufactures

provide the users with. And often this is a processed form of the raw data coming out of the

CFA. In order to be able to watermark, the obtained raw image first needs to be taken back

as close as possible to the original raw format. The entire process is explained below in a

series of steps to be performed in a sequential order.

Figure 5.5. Proposed Camera Image Processing Pipeline with Watermarking

51

Step 1: Reading the raw image array

The first step is to read the raw image provided by the digital camera. The raw image is

two dimensional and includes an intensity value for each pixel location. If PS(x, y) be the

raw pixel value at (x, y) location of the image, then it can be represented as,

where the subscript S represents the color channel and can be either R, G or B color channel.

RAWs(x, y) represents the raw image that is simply single channel intensity per pixel

captured by the color filter of the CFA at each pixel location (x, y) corresponding to the

color channel represented by S.

Step 2: Neutralizing offset and scaling

For cameras that provide the user with processed raw images, there might be a need to

neutralize or reverse the processing. Such raw images might have some offset and random

scaling applied to it. For raw data coming directly from the sensor, this step might be

optional as the data is still pure. For scaled raw images, the camera also stores scaling and

offset factors which can be retrieved and utilized to neutralize such processing. Let us denote

the neutralized image by PS_N(x, y), then,

where : represents the offset factor and ɵ represents the saturation factor applied by the

camera to the original raw data to store it.

 op�P, Q = qrUs�P, Q

(5.1)

 op_
�P, Q = [os�P, Q − R]�ɵ − R

(5.2)

52

Neutralizing the raw pixel values might throw the values off the limit (i.e. above

theoretical limit and below the black level or 0) due to unwanted sensor noise. These values

that are beyond limits have to be clipped off, as they are not part of the original raw data.

They are simply the bi-products of this extra step incurred by the image data. Since this

clipping is irreversible and is optional as explained earlier, we choose not to embed

information bits before this stage to make the proposed algorithm generic. The clipped raw

data can be represented as PS_C and expressed as,

Step 3: White balancing

The raw data includes independent R, G or B values at each pixel. The pixel values are

real illumination values from the scene filtered to capture only one color channel. The

intensity value at each pixel is captured independent of illumination at other location. In this

manner, the raw data is a large collection of independent intensity values and might appear

meaningless. This array of different illumination values need to be converted to a data that

represents true color. Since a true color is a balanced combination of R, G and B values, the

independent values need to be scaled relative to each other. This can be achieved by

choosing a reference pixel that can be considered to represent a certain true color and

tweaking the R, G and B values until that chosen color is represented. This is the essence of

white balancing. In order to make this happen, in this case, green is chosen as a reference

while red and blue values are adjusted according to it. One does not have to worry about the

scaling factors for white balancing. The cameras are made smart enough to store

 op_x�P, Q = y 0; if op_z�P, Q < 01; if op_z�P, Q > 1op_z�P, Q ; �(ℎ��N�|�
(5.3)

53

corresponding scaling values at the time of capturing an illuminated scene. These scaling

values are commonly represented as white balancing multipliers in the Exif information of

the image and stored as a multiplier matrix. Here multipliers from Exif header are extracted

and used for demonstration purposes. Let us represent the multiplier matrix by WB that has

three multiplier values for R, G and B color channels respectively, expressed as,

where WBR, WBG, and WBB are the multipliers for R, G and B elements of PS_C respectively.

Let us represent each element of WB by WBS. Now, since green is chosen as reference, WBS

has to be scaled with respect to WBG before applying the multipliers to all pixels for white

balancing. If WBM be the new multiplier matrix as a result of scaling WB, it is expressed as

shown below,

where WBMG = 1 so that WBMG when applied to the reference green pixel values in PS_C,

they remain unchanged. A white balanced 2D image, PWB can now obtained by multiplying

the values corresponding to R, G and B color channels in PS_C by WBMR, WBMG and WMB

respectively. This can be mathematically expressed as matrix multiplication of the intensity

array and white balancing matrix as shown below,

 U� = [U�k U�} U�^]

(5.4)

 U�~ = U�U�} = [U�~k U�~} U�~^]

(5.5)

 o�^�P, Q = op_��P, Q ∗ U�~p

(5.6)

54

where index S can be R, G or B. The above equation represents an element wise matrix

multiplication such that, for instance, if S=R, the pixel values corresponding to red color

channel in PS_C will be scaled by red multiplier WBMR. The same is true when S=G and S=B.

Step 4: Demosaicing (Interpolation)

The two dimensional raw image data with one intensity value representing one color

channel per pixel location is now converted to a three dimensional color matrix by

interpolation. The three dimensional color matrix has values for one color per dimension.

Three intensity values chosen from all three dimensions per pixel location make up the

actual RGB color for that pixel. Several interpolation techniques exist in literature and the

technique used by a camera manufacturer is unknown. Hence, a popular demosaicing

technique called gradient corrected bi-linear interpolation is chosen here. The way this

interpolation works is that for every pixel location, each missing color value is computed

using neighboring pixel values for that color. For instance, we want to calculate the missing

green (G) value at red (R) position. This missing value is represented with a question mark

sign (?) as shown in Figure 5.4. The adjacent G values are interpolated in the missing

location as follows,

where (i, j) represents offsets to adjacent red pixel locations from the target location (x, y),

with i and j being offset values for x and y respectively, and ĜR(x, y) represents the

interpolated G value at the R location (x, y). Since, (i, j) needs to lead to the immediate

adjacent pixels from (x, y), in this case of missing G at R location, offset (i, j) takes four

different values as (-1, 0), (1, 0), (0, -1), (0, 1). B value at the same location can be

 ��k�P, Q = ∑ ��P + �, Q + � �,� 4

(5.7)

55

interpolated similarly with a different set of (i, j) values to lead to adjacent blue pixels and

not green. Other missing color values i.e. R and B at G locations and R and G at B locations

are interpolated using similar concept. Here, ĜR is taken as an example of interpolated

values for further discussions.

 Although ĜR is the new interpolated green value at R, it should be noted, however, that

this is not the true green value for that pixel (x, y). So the interpolated value needs to be

adjusted in order to make it as close as possible to the original value as it would be if it were

captured at the same location. Intensity of R at (x, y) is utilized.to make adjustments to ĜR

by the process of gradient correction. Let us use Ggrad(x, y) to represent the corrected G

value at pixel location (x, y) then the gradient correction is done as,

and

 ������P, Q = ��k�P, Q + � �k (5.8)

Figure 5.7. Interpolation for Demosaicing

56

where R̄ is the average of adjacent red values with reference to the location (x, y) and α is

a gain factor that can vary. Assuming �R to be difference between the interpolated R and

original R values, this difference is applied to correct interpolated G value as well. Let us

now represent the three dimensional demosaiced color image matrix as PDM (x, y, S) with S

representing one color channel from R, G or B color domain.

Step 5: Converting to RGB color space

The image is now in colored RGB format but not ready for display yet. The pixels in the

camera have to be converted to co-ordinates fit for the computer’s display. The demosaiced

image's coordinates in the camera is now converted to a correct RGB space that a computer

or other display screens can accept for viewing purposes. For this, the demosaiced image

pixels are multiplied with a 3x3 color space conversion matrix represented as CONCam-RGB.

This matrix is computed as,

 where the matrix MAT1cam-xyz can be obtained from the image's metadata in the camera

which converts pixels from camera co-ordinates to xyz co-ordinates and MAT2xyz-RGB is a

standard value for converting from xyz co-ordinates to computer’s RGB color space

computed as shown in [12] as,

where MAT2-1
xyz-RGB is simply MAT2RGB-xyz , a RGB to XYZ matrix obtained from [12].

 �k = qk�P, Q − q�

(5.9)

 X�����fk}^ = �rZ1`��fg�� ∗ �rZ2g��fk}^

(5.10)

 �rZ2g��fk}^f� = �0.4124564 0.3575761 0.18043750.2126729 0.7151522 0.07217500.0193339 0.1191920 0.9503041�

(5.11)

57

So, if [Ri Gi Bi] be a pixel representation of the demosaiced image matrix PDM (x, y, S)

after interpolation with i indexing a particular pixel position within the matrix, then,

where [Ri' Gi' Bi'] represents new R,G,B values for the pixel in the same position i in the

new RGB color space. Equation (5.12) is applied to all pixels of PDM (x, y, S) to generate a

color space corrected PRGB in the display ready RGB color space.

Step 6: Embedding watermark in the cover media

The raw image after demoasaicing and color space conversion is now considered ready

for message bits embedding. From this stage onwards there are no more irreversible changes

that the image is likely to suffer. Hence, it is possible to reverse the process until this stage

to recover the embedded watermark. Any watermark sequence, a pseudo-random bit

sequence in this case, can now be embedded into the image.

Embedding is done in wavelet domain using 2 level Haar wavelet as the mother function,

on a block by block basis. The embedding technique is the same as explained for video in

the previous section. The only difference being this image can be considered to be a single

frame of the video and no more frames exist. So no MV exists. The basic steps that happen

are block wise division of the image, corner detection, DWT, embedding and IDWT. The

result of this stage is a stego raw image in the RGB color space denoted by Pstego.

 [q�O ��O ��O] = [q� �� ��] ∗ X�����fk}^

(5.12)

58

Step 7: Gamma and brightness correction

Finally the stego raw image that exists in the right color space for display is gamma and

brightness corrected to produce a meaningful and eye-pleasing final image. This step is not

mandatory but almost all cameras do this to produce an image that looks good. The simplest

way to brighten up an image in practice is to scale the image by a reasonable fraction of the

mean luminance of image at this point as shown in the following equation,

where PBright is the new brightened image, µ refers to the mean of parameter within the

parenthesis, Istego(x, y) is the intensity or grayscale value at each (x, y) and 1/k represents a

certain fraction of the computed mean intensity.

After brightness correction, the image can be made nonlinear by applying a gamma

correction power function. This is done to make the image look more realistic. The

difference can be seen by comparing images with and without gamma correction applied.

The gamma correction factor γ is often approximated to be 1/2.2. Since this is a power

function, it makes an image nonlinear by raising each element of the image to the power of

γ as expressed below,

where the dot (.) represents element wise operation of the image matrix.

 ô ������P, Q, � = os�]�� ∗ 1� �μ� $s�]���P, Q ¡

(5.13)

 o
¢�P, Q, � = ô ������P, Q, � .̂ ¤

(5.14)

59

Step 8: JPEG compression

After the seventh step, the image is absolutely ready to be displayed. This step (step 8)

is done so as to ensure that the embedding survives compression since the large image is

commonly JPEG compressed for storing or distribution. The image stored within the camera

itself is JPEG compressed. Hence, the final stego JPEG image that is available to the user

will be a three dimensional compressed image IFinal, i.e.

where JPEG represents a JPEG compression function specific to the camera manufacturers

or applications with a quality factor Q.

The overall operation of embedding information bits in a raw image within a camera ISP

is summarized by the pseudo code presented below. Here, MS represents the message

sequence, RAW represents original raw image, BS represents the block size chosen for

embedding purpose and Q represents the compression quality factor of the JPEG

compression. Other terminologies follow the same description as explained in the algorithm

earlier in this section.

5.4. Pseudocode

Algorithm: EMBEDDINGINRAW (RAW, MS, offset, MAT1, MAT2, BS, γ, Q)

PS ← RAW //Step 1

for each PS(x, y)

do: P S_N ← OFFSET (Ps,:, ɵ) //Step 2

 $¥�¦�§�P, Q, � = ¨o©��o
¢�P, Q, � , ª

(5.15)

60

for each P S_N (x, y)

do: if P S_N (x, y) < 0

 do P S_C (x, y) ←0

 else if P S_N (x, y) > 1

 do P S_C (x, y) ←1

 else

 do P S_C (x, y) ← P S_N (x, y)

WBr ←WBG

WBM ←WB/WBr

PWB ←WHITEBALANCE (PS_C, WBM) //Step 3

PDM ←DEMOSAIC (PWB) //Step 4

PRGB ←COLORSPACECONVERSION (PDM, MAT1, MAT2) //Step 5

while i ≤ MS(length)

do: corners ←SUSAN (PRGB, BS)

 Pstego ←EMBEDDING (PRGB, BS, corners) //Step 6

PBright ←BRIGHTGAMMA (Pstego, γ) //Step 7

IFinal ←JPEG (PBright, Q) //Step 8

61

return (IFinal)

The procedures OFFSET, WHITEBALANCE, DEMOSAIC,

COLORSPACECONVERSION, EMBEDDING, BRIGHTGAMMA and JPEG in the

pseudo code each refer to the steps 2 through 8, as explained in the algorithm earlier. The

procedure SUSAN is the SUSAN corner detection algorithm as explained in [34].

The extraction of the embedded bits from the stego image is done in a fashion similar to that

described in equation (4.15). BER and Pseudo Signal to Noise Ratio (PSNR) can be

computed to see the correctness of the extracted bits and the change in image quality after

embedding.

62

Chapter 6. Simulation and Numerical Results

The method proposed in this thesis have been tested separately for two implementations.

First the idea proposed in initial part of Chapter-4 is tested where a video is watermarked,

transmitted in the presence of noise and watermarks extracted. On the second

implementation, information hiding on raw images are tested within the camera ISP. All

experiments are performed in MATLAB on an Intel(R) Core(TM) 2Duo 2.00 GHz

processor.

6.1. Implemenation- Resource Efficient Video Steganography

Information bits were hidden on several videos of ‘.avi’ format. To present representative

results in this chapter, information was hidden on a video (butterfly.avi, video of a butterfly

flapping its wings) that consisted of 294 frames. Experiments were performed by

embedding pseudorandom bits of different lengths (10, 60 and 250 bits) into each frame of

the video. All experiments are repeated 100 times and the average values presented in the

results that follow.

The video is first split into all the component frames. The first frame is again divided

into smaller blocks. These blocks are then read one at a time on a raster wise order and

passed on to the SUSAN corner detection function. The block that tests positive for corners

undergo DWT to generate the wavelet coefficients. Payload bits are then embedded into the

coefficients. This is repeated for each block as long as the payload bits are not over. After

the first frame is done with the embedding process is repeated for all successive frames with

63

the only difference that blocks from these frames do not undergo corner detection. Blocks

to be modified in these frames are detected using the motion vector.

In order to compare, the embedding is also done using the traditional approach of

processing the entire frame instead of smaller blocks. This requires an entire frame to be

read and placed into memory until embedding is over. The processing time (simulation

running time from MATLAB) for complete embedding of payload bits for each approaches

are then tabulates as shown in Table III. The different block sizes chosen for experimenting

are 8 x 8, 16 x 16, 32 x 32 and 64 x 64.

6.1.1. Memory-Time Evaluation

Table 6.1. Algorithm Execution Times (Average)

The data tabulated above in Table 6.1 are presented graphically in Figure 6.1. The curves

show the time taken to complete the embedding process for different block sizes and for

different payload lengths. The curve in the middle of Figure 6.1 present the times taken to

embed a payload size of 60 bits (M=60) using different block sizes. As observed, the time

taken to completely embed this message in the video frames is the lowest for a blocks sized

Payload

(bits)

Processing Time (seconds)

Proposed Method
Conventional

method

8 x 8

blocks

16 x 16

blocks

32 x 32

blocks

64 x 64

blocks

Frame by

Frame

10 88 88 90 92 240

60 96 89 95 96 242

250 130 98 97 99 245

64

16 x 16 are used. This is because the number of DWT coefficients (64) for this block size is

the closest to the number of bits to be embedded (64) as compared to other block sizes. This

leads to all message bits being embedded in the very first block and no additional blocks

have to undergo processing saving a substantial amount of time. Other curves in Figure 6.1

are for different payload size but exhibit similar trend and can be explained by similar

reasoning. For example, for the grey curve at the top in Figure 6.1 where 250 bits are

embedded in the video frames, it can be observed that embedding is the fastest when

choosing to process 32 x 32 block sizes with this time being about 97 seconds.

In addition to time, memory constraint is another issue that the proposed technique seeks

to address. After repeated experiments, it is observed that maximum memory consumed at

any time during processing videos using the proposed method is also less than that when

Figure 6.1. Time taken vs block size for different message lengths

80

90

100

110

120

130

140

0 10 20 30 40 50 60 70

T
im

e
 T

a
k

e
n

 (
se

co
n

d
s)

Block Size (pixels x pixels)

Time vs Block Size (for Message Length M)

M=10

M=60

M=250

65

working on entire frame at a time. This inference is quite obvious and easy to understand.

Smaller blocks need smaller memory to be stored than larger frames of which the blocks

are part of. Since each major process like corner detection, DWT and embedding can now

work on localized blocks, one at a time, smaller memory requirements lead to a memory

thrifty solution.

Figure 6.2 presents curves where memory consumed by the embedding methods for

different payload sizes are graphed. While the top curve shows results for a frame-by-frame

method, other curves are for the technique proposed in this thesis. The curves are plotted in

the same figure for easy comparison. The curves in Figure 6.2 are the memory requirements

plotted against the input frame/block sizes. The memory requirement plotted are the

Figure 6.3. Memory requirement as a function of input frame size

66

memory consumed by different components of the algorithm, for instance - video frames,

blocks and other numeric arrays used for computations. One can infer from the graphs that

the memory required is proportional to block sizes. In other words, larger the blocks, bigger

the memory needed to store those blocks. In this regard, it is not hard to understand that

memory required is definitely the largest when entire frame is being processed at a time and

this fact is clearly shown in Figure 6.2 where the blue curve for frame based method

occupies the top-most position in the graph. Also, for any curve in the figure, increase in

input size increases memory requirements.

As per Figure 6.2, any method is memory thrifty when the smallest input size is chosen.

But this might not lead to the fastest time for a particular payload as shown in Figure 6.1.

Figure 6.5. Memory-time product requirement as a function of block sizes with 480

pixels x 720 pixels input frame size.

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

0 8 16 24 32 40 48 56 64

M
e

m
o

ry
 x

 T
im

e
 (

 x
 1

0
^

5
 K

B
.s

e
co

n
d

s)

Block Size (pixels x pixels)

Memory-Time Product

M=250

M=60

M=10

67

Hence, there has to be a balance between time and memory requirements. It is in this regard

that Figure 6.3 includes plots of memory-time product against different block sizes for the

proposed method and can be seen as the combined result of Figures 6.1 and 6.2.

As this thesis talks about resource efficient techniques so that the method can be migrated

from computer systems to mobile systems, both time and memory need to be taken into

account when accessing the proposed method. The conclusions drawn from Figure 6.3 are

not seemingly different from discussions just made. The graphs in Figure 6.3 simply

reinforce the earlier inferences drawn from the Figures 6.1 and 6.2. Figure 6.3 expresses

that for the proposed technique, the embedding method is the most efficient (both time and

memory wise) for a block size that generates the DWT coefficients closer in number to the

size of payload bits to be embedded within a frame. Also, on comparing the proposed block

based technique with frame based technique, it can be said that the execution time of the

optimal block based method for a particular payload size is sixty percent less than the frame

based method. This is also more evident from figures in Table III.

6.1.2. Error Evaluation

 Upon successful implementation of embedding, it is also equally important to be able to

retrieve the hidden message from the video frames. Since the video is wirelessly transmitted,

in order to test the survivability of the embedded message against noise, AGWN is added

to each frame of the stego video. The sample AWGN noise used for simulation is generated

using an inbuilt MATLAB function with mean and variance parameters as µ = 0 and σ2 =0.1

respectively.

Table 6.2 shows the BER values for watermark extracted from the transmitted stego

video. BER values are first computed by extracting hidden bits from one frame only. For

68

comparison, another set of BER values are computed using bits decoded using all the frames

of the video. These processes are repeated for both noisy and noiseless channels. For

noiseless channels, the BER values, as seen in the table, are zero as expected. This only

shows the reliability/correctness of our extraction algorithm as all bits are successfully

recovered when no noise is present and the bits are not modified. There are non-zero values

when using 8 x 8 blocks because that block size isn't large enough for a DWT operation to

embed the given payload size, thus yielding unwanted results.

Table 6.2. Algorithm Execution Times (Average)

Payload
(bits)

Block
Size

Noiseless Channel Noisy Channel

BER for watermark
decoded using

BER for watermark
extracted from

1st frame
only

All frames
(utilizing

FEC)

1st frame
only

All frames
(utilizing

FEC)

60

8 x 8 51.667 49.6 53.333 45

16 x 16 0 0 43.667 24

32 x 32 0 0 41.667 36.667

64 x 64 0 0 46.667 41.667

250

8 x 8 49.6 46.2 51.667 46.667

16 x 16 0 0 47.8 29.9

32 x 32 0 0 41.667 28

64 x 64 0 0 43.667 30.4

69

The non-zero BER values for the channel infested with AWGN show that the message

bits are corrupted due to channel noise. The BERs for message sequences extracted from

the first frame are above 40. When the same sequences are decoded utilizing redundantly

encoded information from multiple frames of the video, BER values drop by a significant

amount. This shows that FEC, as explained earlier, contributes to minimize errors

introduced by the additive noise in the channel. Tabulated BER values in Table IV make

this point clearer. One row in Table 6.2 for each payload size is colored to signify the most

suitable block size for that payload size. Furthermore, these values seem to be consistent

with the results drawn from Table 6.1.

6.2. Implementation-Camera ISP Steganography for Images

The second set of experiments was performed to test raw image watermarking within

camera ISP. This was implemented in MATLAB on an Intel(R) Core(TM) i5-3210M CPU

@ 2.50 GHz processor. Since one doesn’t have access to raw images from within any

camera ISP, the availability of raw images for this implementation was ensured with the

help of a Nikon D5100 DSLR camera. This camera model makes the images captured

available to the user in both the raw format and the common compressed JPEG format. The

raw images however are not in the purest form and some of the processing applied to them

need to be reversed. Additional information for this is derived from the raw images’

metadata. The choice of this particular camera was entirely driven by the fact that Nikon

D5100 lets the user have access to raw sensor data. However, the technique proposed is

generic and can be applied to all digital camera ISPs. The analyses presented below are the

results of embedding two watermarks length 100 and 200 respectively on the cover raw

images.

70

6.2.1. PSNR Evaluation

Since embedding is a part of image authentication, it is important to see that there is no

deterioration of the perceptual image quality as a side effect of the embedding process. Peak

Signal-to-Noise Ratio (PSNR) is the metric chosen to see the effect in image quality before

and after embedding. Figure 6.4 shows plots of PSNR values tested after embedding

message sequences of lengths 100 and 200 bits for the proposed technique. PSNR values

are computed for two types of output images. The PSNR labelled RAW in Figure 6.4

represents the PSNR for stego images just after the embedding stage. These output images

are taken immediately after the embedding stage and compared to the images at the same

stage without embedding done on them. These images have not been JPEG compressed.

The PSNR values labelled FINAL are computed from the stego images generated after

Figure 6.7. PSNR due to embedding Watermark (WM) of length 100 and 200 bits

66

67

68

69

70

71

72

73

74

75

0 200 400 600 800 1000 1200

P
S

N
R

 (
d

B
)

Block Size (pixels x pixels)

PSNR vs Block Size (JPEG Compression Quality, Q= 75)

RAW, WM=100

Final, WM=100

RAW, WM=200

Final, WM=200

71

JPEG compression. The quality factor (Q) chosen for this compression is a standard value

of 75.

Looking at the PSNR trend in Figure 6.4 one can infer that, for any payload size, PSNR

is more or less constant for different block sizes. In other words, quality of the image does

not significantly depend on the block sizes chosen for embedding. However, different

curves for different payloads occupy different position in the graph, with PSNR for lower

payload size occupying higher position. It can be clearly observed that PSNR changes only

when the payload size changes. When the number of message bits embedded into the image

increases from 100 to 200, twice more original pixels need to be modified and deviate from

the original values. This causes a degradation in PSNR. Seen this way, PSNR is inversely

proportional to payload size. Choice of payload size depends on the PSNR value that needs

to be achieved or maintained.

Table 6.3. PSNR Values as a Result of Embedding 200 Watermark Bits

Q (%)

Final PSNR (dB) for Block Sizes (square pixels)

64 128 256 512 640 780 1024

50 72.19 73.62 74.43 72.71 72.49 73.15 73.12

60 72.24 73.74 73.66 72.85 72.39 73.09 73.15

75 72.27 72.85 73.00 72.89 73.09 73.24 73.30

80 72.06 73.72 74.04 72.61 72.24 73.04 73.15

90 71.80 73.47 73.63 72.33 71.94 72.79 72.90

72

Furthermore, FINAL PSNR values are observed to be slightly better than the RAW

values. In other words, this means that the difference in cover and stego images decreases

after compression. This is because compression reduces both- the total number of pixels and

the number of modified pixels in the stego image which would be greater for an

uncompressed image. This gives a better signal to noise ratio (ratio of total to modified

pixels) for the compressed image. It might be a bit confusing to read this as PSNR being

improved after compression. However, the correct interpretation of this would be that

compression did not improve the quality of image but decreased the difference between the

cover and the stego image.

Figure 6.4 only shows PSNR values for one particular quality factor of 75. In order to

observe that for different Q factors, a series of experiments are performed varying Q from

90 to as bad as 50 (which is not normally done). Then, 200 message bits are embedded for

different block sizes for each Q. The PSNR values as a result of these experiments are

tabulated in Table 6.3. It is pretty interesting to see that noises introduced are more or less

for any level of compression. Hence, any level of compression can be achieved for the

method without compromising image quality. The choice of a particular Q factor should be

dependent only on the visual perception of the final image.

6.2.2. BER Evaluation

Next, Bit Error Rates (BER) are computed to see if the extracted bits are correct and to

what extent. Since JPEG compression modifies the image pixels, BER will be a measure to

see if the embedded bits can survive this change. In other words, this is a measure for the

robustness of the proposed embedding technique. First, message sequence of 100 bits is

embedded into the raw image using the block wise technique and the stego image is

73

compressed using different Q factors. BER values are then computed to see after the

embedded bits are extracted. Figure 6.5 shows some plots of these BER values. The graphs

in Figure 6.5 clearly show that BER values are all zero for higher Q factor like 90. This

means that for a compression of Q=90, all embedded bits are successfully recovered. This

proves the robustness of the method. Comparing result for different Q factors, the embedded

bits start getting corrupted with the increase in Q value or increasing the compression.

However, it is to be noted that BER does not degrade to a very bad value. For a standard Q

factor of 75, BER is still around 2 percent and is very acceptable.

Figure 6.9. BER after the embedding followed by extraction of 100 watermark bits

0

1

2

3

4

5

6

7

8

9

0 200 400 600 800 1000 1200

B
E

R
 (

 %
)

Block Size (pixels x pixels)

BER vs Block Size (WM=100 bits)

Q=50

Q=60

Q=75

Q=80

Q=90

74

When Q is reduced beyond 75, to values of 60 and 50, BER degrades further. But again,

even for these Q factors, BER values are well within 10 percent proving the robustness of

the algorithm compression yet again. Further Q values aren’t tested because, it is highly

unlikely that quality of an image will be degraded to even a value of Q=50 for any practical

purpose.

Another important observation that can be made from Figure 6.5 is that although BER

values remain within an acceptable limit for all Q factors and block sizes, they are the lowest

for a block size of 64 x 64 pixels for all Q factors. The reasoning behind this is that a two

level DWT is chosen for embedding in our implementation. A two level DWT for a 64 x 64

size block gives a total of 16 x 16 pixels for embedding. This is very close to the number of

message bits to be embedded which is 100. Since the extraction algorithm compares a pixel

Figure 6.6. BER after the embedding followed by extraction of 200 watermark bits

0

2

4

6

8

10

12

0 200 400 600 800 1000 1200

B
E

R
 (

 %
)

Block Size (pixels x pixels)

BER vs Block Size (WM=200 bits)

Q=50

Q=60

Q=75

Q=80

Q=90

75

with neighboring pixels in order to decode a bit, higher the probability of correctly decoding

the bits from a smaller pool of pixels. This might not be a significant improvement in BER

but it is advisable to choose the smallest possible block size for embedding all bits within a

block. The reason being that this saves time and memory as explained in the first set of

implementation in this thesis. Similar explanations hold true for message length of 200 bits

as shown in Figure 6.6.

Figures 6.5 and 6.6, with BERs for message lengths 100 and 200 respectively, are

compared and plotted together in Figure 6.7. The combined plot in Figure 6.6 is the result

of embedding 100 and 200 bits into a raw image and compressing it with a Q factor of 75.

This figure is to see the effect of increasing the payload length in BER. It is clear that

doubling the payload bit length from 100 to 200 does not deteriorate BER at an alarming

rate. For this change, BER only degrades to 2.5 percent from a value of 1.5 percent. This

means that increasing payload does not necessarily pose a threat to the robustness of the

method.

Figure 6.7. BER comparison for watermark lengths of 100 and 200 at a Q factor of 75

0

0.5

1

1.5

2

2.5

3

3.5

0 200 400 600 800 1000 1200

B
E

R
 (

%
)

Block Size (pixels x pixels)

BER vs Block Size for JPEG Quality factor (Q)=75

WM=100

WM=200

76

Chapter 7. Conclusion

Methods that can successfully implement steganography in digital cameras and smart

phones are proposed in this thesis. With the soaring use of smartphones in current times, the

proposed methods are made computationally efficient so that they can be used within

resource constrained devices. Traditional implementations are mostly used to hide data into

multimedia files in a computer system. However, this requires the multimedia files to be

transferred to computers for processing. With increasing use of internet in smart phones,

user might find this cumbersome. Hence, to provide a better user experience and to make

sure the multimedia files are secure, this research proposes to perform multimedia

steganography within the mobile devices.

The first idea is to refine one of the existing embedding methodologies to make it

efficient such that it creates as less computational overhead as possible. Of course the

inclusion of steganography improves digital security at the cost of computation. But in

contrast to existing methodologies that are aimed only at implementation and not on

efficiency, we strive to make the proposed solution faster and memory thrifty. Also,

majority of existing mobile steganography require additional hardware for implementation,

we utilize the processing ability of the smart phones. In this regard, the software based

solution proposed in this thesis can be readily realized as a smartphone application if needed.

We take the basic embedding technique proposed by Nagham et al. [20] and implement it

in a novel manner to make it much more efficient. The proposed technique for efficiency is

to divide video frames into smaller blocks and perform block level processing. This

technique rests upon localization of other methods used, such as DWT and feature detection.

77

 Simulation results show significant time saving and efficient memory management with

the proposed method as compared to conventional schemes. Furthermore, use of Forward

Error Correction to utilize the video frames has proved to make the proposed method robust

in the presence of channel noise. The results presented show about 60 percent time saving

and 40 percent BER improvement which make the solution better than the existing video

steganography schemes that utilize the original algorithm.

The research takes a step forward by attempting automatic watermarking of all images

captured by any digital cameras. A method to incorporate previously defined embedding

algorithm with existing camera Image Sensor Pipeline is proposed. The primary objective

behind this is to ensure that all images are protected without relying on the user to process

them, by watermarking them within the camera hardware. Watermarking is done on raw

images within the image capturing process before a display ready image is formed. The

research shows how the existing ISP can be tweaked to come up with a new ISP that can

automatically watermark images and make them secure.

The results after simulation help to shed light on how the proposed technique can be

implemented. To ensure that the image quality is not compromised in the process of adding

security, PSNR values are computed. For a really bad JPEG compression quality of 50,

which is not normally done, a PSNR of 70 dB percent is achieved. With all BER values

being below 10 percent reiterates the robustness of the proposed solution.

The steganography solutions proposed in this thesis is aimed to answer existing issues in

the field of digital multimedia authentication and forensics applications. The primary benefit

of using the solution is making steganography image centric such that each image can be

uniquely identified without having to post process them in a computer.

78

In the future, we intend to further explore the topic and try to integrate video

watermarking within the camera ISP as well. Also, it would be exciting to take the research

ahead of simulations and actually try to implement them in real hardware, camera and smart

phones and compare the simulation results with real time experimentations.

79

Bibliography

[1] P. Alvarez, “Using extended file information (EXIF) file headers in digital evidence

analysis,” International Journal of Digital Evidence, Economic Crime Institute (ECI)

2 (3) (2004) 1–5.

[2] J. Fridrich, M. Goljan, D. Hogeg, “Steganalysis of JPEG images: breaking the F5

algorithm,” Proceedings of Information Hiding: Fifth International Workshop, IH

2002 Noordwijkerhout, The Netherlands, Lecture Notes in Computer Science,

Springer, 7-9 Oct., 2002, 2578/2003, pp. 310–323.

[3] V.M. Potdar, S. Han, E. Chang, “A survey of digital image water- marking techniques,”

Proceedings of the IEEE Third International Conference on Industrial Informatics

(INDIN), Perth, Australia, 10–12 Aug., 2005, pp. 709–716.

[4] N.K. Abdulaziz, K.K. Pang, “Robust data hiding for images,” Proceedings of IEEE

International Conference on Communication Technology, WCC-ICCT’02, vol. 1, 21–

25 Aug., 2000, pp. 380–383.

[5] S. Areepongsa et al., “Exploring on steganography for low bit rate wavelet based coder

in image retrieval system,” Proceedings of IEEE TENCON, Kuala Lumpur, Malaysia,

2000, vol. 3, pp. 250–255.

[6] Saraju P. Mohanty, Nagarajan Ranganathan, Ravi K. Namballa,“VLSI Architecture for

watermarking in a secure still digital camera (DC) design,” IEEE Transactions on very

large scale integration (VLSI) systems, July 2005, vol. 13, Issue 7, ISSN: 1063-8210.

[7] D. Stanescu, V. Stangaciu, M. Stratulat, “Steganography on new generation of mobile

phones with image and video processing abilities,” International Conference on

80

Computational Cybernetics-ICCC, Timisoara, Romania, 27-29 May, 2010, pp. 343-

347.

[8] Wu Zhi-Jun, Niu Xin-Xin, Yang Yi-Xian, “Design of speech information hiding

telephone” , Proceedings of 2002 IEEE Region 10 Conference on Computers,

Communications, Control and Power Engineering, TENCON, 28-31 Oct., 2002, vol.

1, pp. 113- 116.

[9] K. Papapanagiotou et al., “Alternatives for multimedia messaging system

steganography,” Proceedings of the International Conference on Computational

Intelligence and Security, Berlin, Heidelberg, 2005, vol. 2, pp. 589-596.

[10] S. Mohanpriya, “Design and implementation of steganography along with secured

message services in mobile phones,” International Journal of Emerging Technology

and Advanced Engineering, May 2012, , vol. 2, Issue 5.

[11] J. Xu, L. Feng, “A feature-based robust digital image watermarking scheme using

image normalization and quantization,” 2nd International Symposium on Intelligence

Information Processing and Trusted Computing (IPTC), Hubei, 22-23 Oct., 2011, pp.

67-70.

[12] J. Tsai et al., “A feature based digital image watermarking for copyright protection and

content authentication,” IEEE International Conference on Image Processing (ICIP),

San Antonio, TX, 16 Sept.-19 Oct., 2007, pp. 469-472.

[13] J. Zhao, Z. Liu, R. Langaniere, “Digital watermarking by using a feature based

multiwavelet fusion approach,” Canandian Conference on Electrical and Computer

Engineering, 2-5 May, 2004, vol. 1, pp. 563-566.

81

[14] J. N. Ellinas, “A robust wavelet-based watermarking algorithm using edge detection,”

Proceedings of World academy of Science, Engienering and Technology, Nov. 2007,

vol. 25, ISSN 1307-6884.

[15] S. Kay, E. Izquierdo, “Robust content based image watermarking,” Proceedings of the

Workshop on Image Analysis for Multimedia Interactive Services, 2001.

[16] S. M. Smith, J. M. Brady, “SUSAN- a new approach to low level image processing,”

International Journal of Computer Vision, May 1997, vol. 23, Issue 1, pp. 45-78.

[17] A. Westfeld, “F5-a steganographic algorithm,” Information Hiding, Springer, Berlin,

Heidelberg, 2001, pp. 289-302.

[18] CTIA-The Wireless Association, “CTIA-Semi-Annual Wireless Industry Survey”,

2013, files.ctia.org/pdf/CTIA_Survey_YE_2012_Graphics-Final.pdf.

[19] Yueh-Hong Chen, Hsiang-Cheh Huang, “A copyright information embedding system

for android platform”, 2011 Seventh International Conference on Intelligent

Information Hiding and Multimedia Signal Processing, Dalian, 14-16 Oct., 2011, pp.

21-24.

[20] N. Hamid et al., “Characteristic region based image steganography using speeded-up

robust features technique”, 2012 International conference on Future Communication

Networks (ICFCN), Baghdad, 2-5 Apr., 2012, pp.141-146.

[21] J. Tsai et al., “A feature based digital image watermarking for copyright protection and

content authentication,” IEEE International Conference on Image Processing (ICIP),

San Antonio, TX, 16 Sept.-19 Oct., 2007, pp. 469-472.

82

[22] J. Zhao, Z. Liu, R. Langaniere, “Digital watermarking by using a feature based

multiwavelet fusion approach,” Canandian Conference on Electrical and Computer

Engineering, 2-5 May, 2004, vol. 1, pp. 563-566.

[23] V.M. Potdar, S. Han, E. Chang, “A survey of digital image water- marking techniques,”

Proceedings of the IEEE Third International Conference on Industrial Informatics

(INDIN), Perth, Australia, 10–12 Aug., 2005, pp. 709–716.

[24] N.K. Abdulaziz, K.K. Pang, “Robust data hiding for images,” Proceedings of IEEE

International Conference on Communication Technology, WCC-ICCT, 21–25 Aug.,

2000, vol. 1, pp. 380–383.

[25] S. Areepongsa et al., “Exploring on steganography for low bit rate wavelet based coder

in image retrieval system,” Proceedings of IEEE TENCON, Kuala Lumpur, Malaysia,

2000, vol. 3, pp. 250–255.

[26] P. Blythe and J. Fridrich, "Secure digital camera," In Digital Forensic Research

Workshop, Baltimore, MD, August 2004, pp. 11-13.

[27] L. Tian and H.M. Tai. "Secure images captured by digital camera," In 2006 Digest of

Technical Papers International Conference on Consumer Electronics, January 2006,

pp. 341-342.

[28] S. P. Mohanty, E. Kougianos and N. Ranganathan," VLSI architecture and chip for

combined invisible robust and fragile watermarking," Computers & Digital

Techniques, IET 1, No. 5, 2007,pp. 600-611.

[29] G. R. Nelson, G. A. Jullien and Y.P. Orly, "CMOS image sensor with watermarking

capabilities," In IEEE International Symposium on Circuits and Systems, ISCAS,

IEEE, 2005, pp. 5326-5329.

83

[30] R. Lukac and K. N. Plataniotis, "Camera image watermark transfer by demosaicking."

In 48th International Symposium ELMAR-2006 focused on Multimedia Signal

Processing and Communications, IEEE, 2006, pp. 9-12.

[31] P. Meerwald and A. Uhl, "Watermarking of raw digital images in camera firmware:

embedding and detection," In Advances in Image and Video Technology, Springer,

Berlin, Heidelberg, 2009, pp. 340-348.

[32] Bruce Lindbloom. (2011). RGB/XYZ Matrices. [Online]. Available:

http://www.brucelindbloom.com/index.html?Eqn_RGB_XYZ_Matrix.html

[33] N. Hamid et al., “Characteristic region based image steganography using speeded-up

robust features technique”, 2012 International conference on Future Communication

Networks (ICFCN), Baghdad, 2-5 Apr., 2012, pp.141-146.

[34] S. M. Smith and J. M. Brady, “SUSAN- a new approach to low level image

processing,” International Journal of Computer Vision, May 1997, vol. 23, Issue 1, pp.

45-78.

[35] R. Lukac and K. N. Plataniotis, “Color filter arrays: Design and performance analysis,

” IEEE Transactions on Consumer Electronics, 2005, vol.51(4), pp. 1260-1267.

[36] P. Singh and R. S. Chadha. "A survey of digital watermarking techniques, applications

and attacks." International Journal of Engineering and Innovative Technology

(IJEIT),2013, vol. 2, no. 9 .

[37] C. Song, S. Sudirman, and M. Merabti. "Recent advances and classification of

watermarking techniques in digital images." Proceedings of the 10th of PostGraduate

Network Symposium, Oct. 2009, pp. 283-288.

84

[38] I. J. Cox, J. Kilian, F. T. Leighton and T. Shamoon, “Secure spread spectrum

watermarking for multimedia”, Transactions on Image Processing, December, 1997,

vol. 6, no. 12.

[39] X. Kang et al., “A DWT-DFT composite watermarking scheme robust to both affine

transform and JPEG compression”, IEEE Transactions on Circuits and Systems for

Video Technology, Aug. 2003, vol. 13, Issue 8, pp. 1051-8215.

[40] M. Noorkami and R. M. Mersereau, “Digital video watermarking in P-Frames with

controlled video bit-rate increase”, IEEE Transactions on Information Forensics and

Security, 2008.

[41] N, Ibrahim,Y. Weng and J. Jiang, “A new robust watermarking scheme for color image

in spatial domain”, Third International IEEE Conference on Signal-Image

Technologies and Internet-Based System, Sanghai, Dec. 2007, pp. 942-947.

[42] T. H. Ngan Le, K. H. Nguyen and H. Bac Le, “Literature survey on image

watermarking tools, watermark attacks, and benchmarking tools”, Second

International Conferences on Advances in Multimedia, 2010.

[43] W. Yan, H. Guo-Qiang, Z. Jian-Wei and Z. Bo, “Image authentication resilient to

translation, rotation and scaling”, International Conference on Machine Learning

and Cybernetics, 2006.

[44] X. Li, B. Gunturk and l. Zhang, “Image demosaicing: a systematic survey”, SPIE

Proceedings of Visual Communications and Image Processing, Jan. 2008, vol. 6822.

[45] R. Liu and T. Tan, “A SVD based watermarking scheme for protecting rightful

ownership”, International IEEE Transactions on Multimedia, Mar 2002, vol. 4, Issue

1, pp. 121-128.

85

[46] Huang, Yu-Wen, et al. "Survey on block matching motion estimation algorithms and

architectures with new results", Journal of VLSI Signal Processing Systems For Signal,

Image and Video Technology, 2006, vol. 42, no. 3, pp. 297-320.

[47] S. Ashwin, M. Wu, and KJ R. Liu, "Nonintrusive component forensics of visual sensors

using output images," IEEE Transactions on Information Forensics and Security,

2007, vol. 2, no. 1, pp. 91-106.

[48] S. Ashwin, M. Wu, and KJ R. Liu, "Component forensics," IEEE Signal Processing

Magazine, 2009, vol. 26, no. 2, pp. 38-48.

[49] S. Ashwin, M. Wu, and KJ R. Liu, "Digital image forensics via intrinsic

fingerprints," IEEE Transactions on Information Forensics and Security, 2008, vol. 3,

no. 1, pp. 101-117.

[50] G. L. Friedman, "Digital camera with apparatus for authentication of images produced

from an image file," U.S. Patent 5,499,294, issued March 12, 1996.

[51] J. Lukas, J. Fridrich, and M. Goljan, "Digital camera identification from sensor pattern

noise," IEEE Transactions on Information Forensics and Security, 2006, vol. 1, no. 2,

pp. 205-214.

[52] J. Fridrich, "Digital image forensics," IEEE Signal Processing Magazine, 2009, vol.

26, no. 2, pp. 26-37.

[53] H. Farid, "Image forgery detection," IEEE Signal Processing Magazine, 2009, vol. 26,

no. 2, pp. 16-25.

86

[54] H. T. Sencar and N. Memon, "Overview of state-of-the-art in digital image

forensics," Algorithms, Architectures and Information Systems Security, 2008, vol. 3,

pp. 325-348.

[55] W. Luo et al., "A survey of passive technology for digital image forensics," Frontiers

of Computer Science in China, 2007, vol. 1, no. 2, pp. 166-179.

[56] A. Popescu, “Statistical Tools for Digital Image Forensics,” Ph. D. Dissertation,

Department of Computer Science, Darthmouth College,2005.

[57] Y. Long and Y. Huang, “Image Based Source Camera Identification Using

Demosaicing,” Proceedings of IEEE MMSP, 2006 .

[58] A . Swaminathan, M. Wu and K . J. Ray Liu, “Non-Intrusive Forensics Analysis of

Visual Sensors Using Output Images,” Procdeeings of IEEE ICIP, 2006.

[59] Z . J. Geradts, et al., “Methods for Identification of Images Acquired with Digital

Cameras,” Proceedings of SPIE, 2001, vol. 4232.

[60] E. Dirik, H. T. Sencar and N. Memon, “Source Camera Identification Based on Sensor

Dust Characteristics,” Proceedings of IEEE SAFE, 2007.

[61] S. Lyu and H. Farid, “How Realistic is Photoorealistic?,” IEEE Transactions On Signal

Processing, 2005, vol. 53, No. 2, pp. 845- 850.

[62] S. Dehnie, H. T. Sencar and N . Memon, “Identification of Computer Generated and

Digital Camera Images for Digital Image Forensics,” Proceedings of IEEE ICIP, 2006.

[63] F.A.P. Petitcolas, “Introduction to information hiding”, in: S. Katzenbeisser and F.A.P.

Petitcolas, (ed.) (2000) Information hiding techniques for steganography and digital

watermarking, Norwood: Artech House, INC.

87

[64] S. Miaou, C. Hsu, Y. Tsai and H. Chao, “A secure data hiding technique with

heterogeneous data-combining capability for electronic patient records,” Proceedings

of the IEEE 22nd Annual EMBS International Conference, July 23-28, 2000, Chicago,

USA, pp. 280-283.

[65] Z. Li, X. Chen, X. Pan and X. Zeng, “Lossless data hiding scheme based on adjacent

pixel difference,” Proceedings of the International Conference on Computer

Engineering and Technology, 2009, pp. 588-592.

[66] A. Cheddad et al.,"Digital image steganography: Survey and analysis of current

methods," Signal processing, 2010, vol. 90, no. 3, pp. 727-752.

[67] S. Bhattacharyya, "A survey of steganography and steganalysis technique in image,

text, audio and video as cover carrier," Journal of Global Research in Computer

Science, 2011, vol. 2, no. 4.

[68] B. Li et al., "A survey on image steganography and steganalysis," Journal of

Information Hiding and Multimedia Signal Processing, 2011, vol. 2, no. 2, pp. 142-

172.

[69] V. M. Potdar, S. Han, and E. Chang, "A survey of digital image watermarking

techniques," 3rd IEEE International Conference on Industrial Informatics, 2005, pp.

709-716.

[70] F. AP Petitcolas et al., "Information hiding-a survey," Proceedings of the IEEE, 1999,

vol. 87, no. 7, pp. 1062-1078.

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	Winter 12-2014

	A Study on Resource Efficient Digital Multimedia Security Measures in Mobile Devices
	Prabhat Dahal

	M.S.ThesisFinalPrabhatDahal

