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Figure 4-44- Load-deflection curve for specimen #1 at stage 3 

The extreme load value in each step is depicted in Figure  4-45. These figures 

indicate that the specimen produce large hysteresis loops without significant drop in the 

level of the lateral load until ±4.75 in. deflection where failure has happened. 
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Appendix A.  
Design of Specimens 

A1. Design of Pile Cap 

Figure A1 shows the moments and shears developed in the pile cap, assuming that 

the pile reaches its full moment capacity, pM (Wasserman and Walker, 1996). 

 
Figure A1- Transfer of pile moments to pile cap (Wasserman and Walker, 1996) 

As illustrated above, this moment can be developed by bearing stress of cbf between 

the pile and the concrete. The depth of stress block can be estimated as: 

0.85
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Eq. A1 

 

Where, 

pel  =  the embedment length of the pile. 

Setting the resisting couple equal to the moment capacity of the pile gives: 
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Where, 

mC = bearing force developed between the face of the pile and the concrete over 

the length 
pa  

'D = distance between the center of the compressive stress zones on the top and 

bottom 

b = Width of the pile. 

The suggested limit for 1cbf  is about '1.9 cf .  

Two moment curvature analysis on the cross section of the pile is shown in Figure 

A2.  

 
Figure A2- Moment-curvature analysis of the cross section of the pile 
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C3.2. Semi-Integral Bridges 

Semi-Integral bridges are defined as having an end diaphragm serving as the 

backwall stem and it is cast encasing the superstructure ends. In this system, the 

superstructure rests on bearings and the end diaphragm is not restrained longitudinally 

with respect to the pile cap. The deck may be sliding, or cast monolithically with the 

backwall stem, but does not have a joint above the abutment. The foundation is rigid 

longitudinally, where superstructure movement is accommodated through providing 

bearings.  

Figure (XX) shows, schematically, the main elements of a semi-integral bridge 

system. The main elements of the system consist of bridge deck, pier cap and bearing 

seat, integral cast diaphragm backwall, approach slab, and sleeper slab. The bridge 

movement is accommodated at the ends of the approach slabs. The various details are 

described in greater detail in Section  C7. 

C3.3. Seamless bridges 

The seamless bridge system is characterized by eliminating the need for expansion 

joints, even at the ends of the approach slabs, while allowing the longitudinal expansion 

and contraction of the bridge superstructure. The foundation requirements are very 

similar to those of Integral abutments. A seamless bridge system, for the types of 

pavements used in the U.S., is developed by SHRP2 R19A project.  

Figure C2 shows, schematically, the main elements of seamless bridge system. The 

main elements of the system consist of bridge deck, transition zone and pavement. The 

bridge movement is accommodated within the transition zone and the movement at the 
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end of transition zone is very small (less than 0.1 inches). The thickness of the transition 

zone near the abutment is increased to account for lack of support from soil below 

(approach slab). The details of the transition zone and design provisions for the seamless 

bridge system are provided in Section  C7. 

 

 
Figure C2- Seamless bridge system  

C3.4. Advantages of Jointless Bridges  

Henry Derthick, former engineer of structures at the Tennessee Department of 

Transportation, once stated, ―The only good joint is no joint.‖ In keeping with this 

statement, known advantages of the jointless bridge systems include: 

 Lower initial cost 

 Lower maintenance cost 

 Longer service life 

 Preventing leakage of moisture to bridge elements below deck 

 Improved ride quality 

 Easier and faster construction  

 Easier inspection 
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leads to overdesigned substructures since the movement from the continuous deck 

superstructure can generally be accommodated by simply using an expansion bearing to 

accommodate the movement.  Overall, design using an integral pier has advantages and 

disadvantages that are discussed in more detail in Section  C6.2.10.   

C4.5. Other Considerations 

There are other factors that can affect the performance of jointless bridges, primarily 

associated with the conditions of the foundation. 

C4.5.1. Site Condition 

Integral abutments for jointless bridges are usually supported on a single row of piles 

to provide flexibility.  Also, piles are typically used to minimize settlement of the 

abutment and differential settlement within the superstructure. However, when rock is 

close to surface, a different type of type of foundation may be required. One solution is to 

use semi-integral abutments as described in Section  C3.2. The abutment foundations are 

keyed into the rock. The end diaphragm serving as the backwall stem and encasing the 

superstructure ends rest on bearings supported by the abutment foundations. The deck 

and approach slabs are cast monolithically with the backwall stem. The abutment 

foundations are rigid and the longitudinal movement of the superstructure is 

accommodated through the bearings.  

As an alternate to the semi-integral abutments, spread footings may potentially be 

appropriate for integral abutments when rock is close to the surface, or even when 

competent soil is near the surface, particularly for single-span bridges.  Differential 

settlement would be a concern for use of spread footings on soils to support abutments 

for multi-span continuous bridges. There is however, some evidence that differential 
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settlement may not be significantly increased by using spread footings.  With respect to 

differential settlement within the superstructure, Moulton et al. (1985), and Hearn(1995) 

indicate that there is essentially no difference in the settlement magnitude between the 

abutments on piles and the abutments on spread footings.  Therefore, it should be 

possible to use spread footings under integral abutments for multi-span bridges.  

However, there is very little experience with the actual use of spread footings for integral 

abutments either on rock or on competent soil near the surface.  Hence, it is 

recommended that experience be gained by starting with relatively short simple-span 

bridges.  Use can then progress to longer structures and multispan structures as successful 

experience is gained. 

The following recommendations pertain to the abutments supported by relatively 

shallow spread footings, where end movement may be accommodated by sliding: 

1. For footings founded on rock, a layer of granular fill should be used (on top of a 

leveling layer of fill concrete, as needed) between the footing and rock to 

facilitate sliding.  Do not key the footing into rock. 

2. For footings founded on soil embankments, steps should be taken to minimize 

abutment settlement, such as allowing the maximum time feasible for 

embankment settlement before completing construction and establishing 

superstructure continuity or preloading the embankment to accelerate settlement. 

Also, with conditions susceptible to scour, footing should not be founded on soil 

above the scour line.  
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3. Design forces for the spread footing abutment should consider passive pressure 

similar to an abutment on piles.  However, design forces should also include 

sliding friction on the bottom of the footing. For multispan continuous 

superstructures, friction should be calculated using a normal force that includes 

additional vertical load resulting from the negative moment on the girder related 

to these soil forces. 

4. The abutment wall should be designed for shear and moments resulting from both 

expansion and contraction movements.  The resistance to contraction should 

include friction on the bottom of the footing and soil pressure from the berm soil 

on the front face of the abutment. 

5. Sufficient drainage, distance from the face of the slope, and slope protection are 

essential to keep soil from washing out below the footing.  For footings supported 

on a layer of granular soil for sliding on rock, use of geotextile material may be 

considered to contain the granular soil. For footings supported on soil, mechanical 

stabilization of the soil below the footing may be appropriate. 

Another possible solution for conditions when rock is close to surface is to drill large 

diameter holes in the rock and use piles, which would consequently allow use of  typical 

integral abutment  construction. 

It must be noted that the concepts of integral abutments supported on spread footings 

or supported of piles placed in holes drilled into rock are not common practice. These two 

concepts are suggested for consideration when site conditions that may otherwise inhibit 

use of typical jointless construction. 
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C4.5.2. Deterioration of Piling  

Accelerated pile deterioration is generally not considered except in specialized 

corrosive locations.  Designers should consult with either a geotechnical engineer or 

geologist to mitigate possible impacts for this condition.  More commonly, corrosion is 

generally thought of as a minimal concern for piles but it has been recorded (Beavers and 

Durr, 1998) and more recently evaluated (Decker, Rollins and Ellsworth, 2008). 

Additionally, the State of Iowa has been investigating deterioration of piles just below the 

pile cap of integral abutments (reference: Wade, C., 2011).  Initial results note that the 

State has discovered corrosion immediately below abutment footings of what would be 

considered normal conditions.   

Piling deterioration is of increased importance for integral abutments due to the 

additional strains placed on the substructure from the longitudinal expansion of the 

superstructure.  The potential for section loss based on soil conditions should be 

accounted for as presented by AASHTO 10.7.5 which states minimum considerations for 

the effects of corrosion and deterioration of piling.  Adhering to these guidelines should 

provide sufficient protection against advanced corrosion and thus failure of the integral 

abutment system.   

C4.5.3. Jointless Bridge Abutments with MSE Walls 

For locations where it is impractical to set the abutment on top of an embankment 

slope or to reduce the total bridge length, full height abutments with mechanically 

stabilized earth (MSE) retaining wall may be considered in the design of jointless 

bridges. When MSE walls are used, steps must be taken to prevent excess pressure on the 

retaining wall introduced by the movement of the backwall and pile.  
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abutment stem, the weight of the wingwalls will create additional torsion and/or bending 

along the length of the abutment.  These forces are resisted by a counteracting negative 

moment at the end of the external beam or girder.   

If wingwalls for integral abutments are placed on supports, such as piles or spread 

foundation, the support must be able to accommodate the movements of the jointless 

bridge as well.  For this condition, Oesterle et al. (2005) note that the shear and moment 

developed in the wingwall foundation must be transferred through the wingwall structure 

to the abutment and superstructure.  They also note that U-shaped wingwalls on piles 

create significant resistance to abutment rotation which creates partial fixity for beam end 

moments on the exterior beams or girders.  These additional moments need to be 

included in the design of the connections of the exterior beams to the integral abutment.   

C7. Details 

The introduction of different mechanisms for transferring force to the foundations 

requires that additional details be considered when designing for jointless bridges. The 

following chapter presents particular details associated with each jointless bridge type.  In 

this section, the term backwall will be used to describe the end diaphragm that resists soil 

loads. 

C7.1. General Abutment Details for Jointless Bridges 

Various details that have been used in the past with success by various states are 

presented along with general concepts.  The figures presented represent recent research 

efforts and the accumulated experience of several States that have used jointless bridge 

technology. 
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Figure C63- Integral conversion at piers (Leathers, 1990) 

Since the deck slab would be exposed to longitudinal flexure due to rotation of beam 

ends responding to the movement of vehicular traffic, cracks will occur over the link slab. 

However for short and medium span bridges, the deck cracking associated with such 

behavior is preferred over long term consequences associated with open moveable deck 

joints or poorly executed joint seals. 

In the design of link slab detail the followings should be considered: 

1. Each span should be considered as simply supported and standard design 

procedures without considering the effect of link slab should be used. 

2. Determine the maximum end rotations of girders as simply supported under 

service loads and impose the end rotations on the link slab to determine a design 

moment for the link slab. 

3. Design the reinforcement using crack control criteria to limit the crack width at 

the surface of the link slab. 

C10.2. Details over the Abutment 

For existing stub abutments with single row of piles the following procedure shown 

in Figure C64 should be used (integral abutment retrofit): 

1. Check the capacity of piles and pile-cap connection for the expected movement. 
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2. Demolish the stub abutment to the top of the piles. Cast reinforced concrete 

around beam ends and connect to approach slab to replace the old abutment. 

3. Excavate the backfill to the bottom of the pile cap. Then provide drainage, 

backfill and approach slabs behind the new abutment. 

  
(a) (b) 

Figure C64- Conversion of a bridge with moveable deck joints at the superstructure-abutment 

interface with integral abutment (a) before conversion (b) after conversion 

For existing stub abutments with rigid foundation or existing full height wall 

abutments the following procedure should be used (semi-integral abutment retrofit): 

1. Remove the existing abutment to the top of the piles. 

2. Provide sliding surface between the pile cap and the abutment stem which is cast 

integrally with the beam ends and approach slab. 

3. Provide details for both horizontal and vertical sliding joints using lateral guide 

bearings, sheet seals, and drainage and backfill. 
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(a) (b) 

Figure C65- Conversion of a very short span bridge with moveable deck joints at the 

superstructure-abutment interface with integral abutment (a) before conversion (b) after conversion 

C10.3. Conversion 

General experience has shown that most common bridge types can be converted to 

jointless bridges.  Jointed bridges can be converted to jointless bridges to enhance their 

performance with the same goal as new construction, i.e. joint elimination.  Examples of 

candidates that have already been converted are pin-and-hanger bridges and multi-span, 

simple span bridges for both steel and concrete superstructures.   

Several States have had success converting old pin-and-hanger expansion joints to a 

bolted full moment connection, thus eliminating the expansion joints.  Based on the work 

by Connor et al. (2005), they were made continuous for live loads.  The project used 

instrumentation and structural monitoring to verify the analysis results.   

The state of New Mexico also presented several case studies (Maberry, Camp and 

Bowser, 2005).  In one project, they converted simple span concrete girders by the use of 

a linkage slab.  The project demonstrated that attention must be paid to the bearings.  

Overlooked by the retrofit assessment was the greatly increased expansion that would 
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transfer to the outer bearing locations.  Subsequently, the resulting expansion loads were 

absorbed by the pile caps, which quickly deteriorated.   

The key to any conversion is the ability of the bridge to withstand the new 

continuous loading and expansion demands introduced by the changing load path.  Due to 

the complex nature of the converted structure, it is recommended that conversions be 

treated with the same level of analysis as required for a new design. 


