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It is proved that the minimal free resolution of a module M over a Gorenstein local

ring R is eventually periodic if, and only if, the class of M is torsion in a certain

Z[t±1]-module associated to R. This module, denoted J(R), is the free Z[t±1]-module

on the isomorphism classes of finitely generated R-modules modulo relations reminis-

cent of those defining the Grothendieck group of R. The main result is a structure

theorem for J(R) when R is a complete Gorenstein local ring; the link between peri-

odicity and torsion stated above is a corollary.
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Chapter 1

Introduction

This dissertation makes a contribution to commutative algebra, particularly the study

of resolutions of modules over local rings. The generators of a module over a ring,

unlike the basis elements of a vector space over a field, may satisfy nontrivial relations.

Given a module M over a commutative ring R and a set of generators m1, . . . ,ms, a

syzygy of M is an element (r1, . . . , rs) ∈ Rs such that r1m1 + · · · + rsms = 0. The

set of all syzygies of M with respect to this generating set is a submodule of Rs.

When R is a (commutative) local ring, that is, a ring with a unique maximal ideal,

selecting a minimal set of generators makes this submodule unique; it is called the

first syzygy of M and denoted ΩM . For example, consider the ring R = C[[x, y]] of

formal power series in x and y over C. The field C is an R-module with R-action

given by mapping x and y to zero, and the module ΩC is generated by x and y.

Note that −y · x + x · y = 0, and hence (−y, x) is an element of the first syzygy of

ΩC, which is the second syzygy of C. For n ≥ 2, the nth syzygy of a module M is

ΩnM = Ω (Ωn−1M).

Hilbert [9] proved that for a polynomial ring over a field the process of calculating

syzygies of a module is finite; more precisely, for a polynomial ring in n variables, the
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(n + 1)st syzygy of any module is zero. Modules with syzygies that are eventually

zero can be studied using techniques inspired by linear algebra. For general rings,

however, there exist modules such that every syzygy is nonzero.

Among modules for which all syzygies are nonzero, the simplest are those whose

syzygies repeat periodically or eventually do so; these modules are said to be periodic

or eventually periodic , respectively. For instance, consider R = C[x]/(x3), the ring of

polynomials in x modulo the relation x3 = 0. The first syzygy of the R-module C is

generated by x, and Ω2C is generated by x2. In fact, Ω2`−1C = (x) and Ω2`C = (x2)

for all ` ∈ N.

For complete intersection rings, which are the nicest class of rings besides polyno-

mial rings, Eisenbud [5, Thm 6.1] proved that for any module M which is eventually

periodic one has Ω2+`M ∼= Ω`M for `� 0. However, little is known about such mod-

ules over the much broader class of Gorenstein rings, which play an important role

in commutative algebra and algebraic geometry. Gorenstein rings arise naturally in

many places, including as the coordinate ring of a Grassmannian variety and the ring

of invariants given by a finite subgroup of the special linear group SL(n,C) acting

on C[x1, . . . , xn], the polynomial ring in n variables over C. Examples of Gorenstein

rings include C[x1, . . . , xd], C[x1, . . . , xd]/(x
a1
1 , . . . , x

ad
d ), C[x, y, z, w]/(xy − zw), and

C[x, y, z]/(x2 − y2, x2 − z2, xy, xz, yz).

Given any n ∈ N, Gasharov and Peeva [7] give an example of a Gorenstein ring

with a periodic module M such that M ∼= ΩnM and M 6∼= ΩmM for m < n. Using

[2] one can also construct Gorenstein rings over which no nonfree module is even-

tually periodic. In 1990 Avramov [1] posed the problem of characterizing the rings

which have a periodic module. One of the main results of this dissertation is a char-

acterization of complete Gorenstein local rings with periodic modules in terms of a

certain Z[t±1]-module associated to the ring, where Z[t±1] denotes the ring of Laurent
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polynomials.

In order to state this result, we define the module J(R), which is the main object

of study in this dissertation. For an R-module M , we write [M ] for the isomorphism

class of M . The module J(R) is the free Z[t±1]-module with basis given by the set

of isomorphism classes of finitely generated R-modules modulo the relations [P ] = 0,

[M ] = t[ΩM ], and [M ⊕ N ] = [M ] + [N ] for all finitely generated R-modules M,N,

and P with P projective (that is, a direct summand of a free module); see Defini-

tion 3.1.1 and Proposition 3.2.4. The structure of the module J(R) is described in

Theorem 5.1.3:

Let R be a Gorenstein local ring with unique maximal ideal m such that R is complete

with respect to the m-adic topology. Then J(R) is a free Z-module with basis given by

the set of isomorphism classes of maximal Cohen-Macaulay, nonfree, indecomposable

modules.

The maximal Cohen-Macaulay modules are the most important part of the module

category of a ring. Over a Gorenstein local ring, the high syzygies of every module

are maximal Cohen-Macaulay; in other words, when taking successive syzygies of a

module, there will always be a point after which every syzygy is maximal Cohen-

Macaulay.

The structure of J(R) given by Theorem 5.1.3 allows for a better understanding

of torsion in J(R). If M is eventually periodic, the relation between the class of M

and the classes of its syzygies shows that [M ] is torsion in J(R), that is, there exists

f(t) ∈ Z[t±1] such that f(t)[M ] = 0 in J(R). In Theorem 5.2.6, it is shown that over

a Gorenstein local ring, the class of a finitely generated module is torsion in J(R)

if and only if the module is eventually periodic. Corollary 5.2.8 gives an answer to

Avramov’s question concerning existence of periodic modules in the case of complete
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Gorenstein local rings: the ring R has a periodic module if and only if J(R) has a

nonzero torsion submodule.

This research is motivated by work of D.R. Jordan [13], who defined the module

J(R) and proved that if the class of a module in J(R) is torsion then the module

has a rational Poincaré series. In addition, Jordan proved that the converse does not

hold, even for the residue field of a complete intersection ring with codimension at

least two.

Chapters 2 and 4 of this dissertation contain background material. Chapter 2 dis-

cusses syzygies and cosyzygies, periodic modules, and the Krull-Remak-Schmidt prop-

erty. Chapter 4 covers maximal Cohen-Macaulay modules over Gorenstein rings. We

collect several well-known results on maximal Cohen-Macaulay modules over Goren-

stein local rings; these results are hard to find in the literature in the form we need.

In Chapter 3, the module J(R) is defined and some of its basic properties are stated.

The main results of this dissertation are contained in Chapter 5, which is a study of

the module J(R) for Gorenstein local rings.
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Chapter 2

Periodic modules

This chapter covers background material on syzygies, cosyzygies, and the Krull-

Remak-Schmidt property. We discuss periodic modules and some well-known results

concerning such modules. For a local ring R with maximal ideal m, periodicity of an

R-module M is equivalent to periodicity of the R̂-module M̂ , where R̂ and M̂ denote

the m-adic completions of R and M , respectively; see Lemma 2.3.4.

2.1 Syzygies

All rings considered in this dissertation are commutative and Noetherian. In order

to discuss syzygies, we recall Schanuel’s Lemma; a proof of this lemma can be found

in [14, Thm 4.1.A].

Schanuel’s Lemma. Given exact sequences of R-modules

0→ K → P →M → 0 and 0→ K ′ → P ′ →M → 0

with P and P ′ projective, there is an isomorphism K⊕P ′ ∼= K ′⊕P of R-modules.
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Let R be a ring and M an R-module. Denote by ΩRM any R-module that is the

kernel of an R-module homomorphism P �M with P a finitely generated projective.

While ΩRM depends on the choice of P , Schanuel’s Lemma shows that M determines

ΩRM up to a projective summand. Any module isomorphic to a module ΩRM is

called a syzygy of M . For any d > 1, a dth syzygy of M is a module Ωd
RM such that

Ωd
RM = ΩR(Ωd−1

R M) for some (d− 1)st syzygy of M . By Schanuel’s Lemma, Ωd
RM is

also determined by M up to a projective summand. For any n ≥ 0, we write ΩnM

when the ring is clear from context.

Definition 2.1.1. An R-module M is said to have finite projective dimension if

for some i ≥ 0, an ith syzygy module ΩiM is projective; in this case, we write

pdRM <∞. If no such i exists, M is said to have infinite projective dimension.

By Schanuel’s Lemma, an ith syzygy module is projective if and only if every

ith syzygy module is projective. Observe that if ΩiM is projective, then ΩjM is

projective for all j ≥ i.

Definition 2.1.2. Let (R,m, k) be a local ring with residue field k and maximal ideal

m, and let M be a finitely generated R-module. Set

βi(M) = rankk TorRi (M,k);

this is the ith Betti number of M . The Poincaré series of M is given by

PR
M(t) =

∞∑
i=0

βi(M) ti

viewed as an element in the formal power series ring Z[t±1].
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When R is local, an R-module M has finite projective dimension if and only if

βi(M) = 0 for i� 0; see [4, Cor 1.3.2].

2.2 Cosyzygies

For the discussion in this section, let (R,m, k) be a local ring with maximal ideal m and

residue field k, and let M be a finitely generated R-module. Set (−)∗ = HomR(−, R).

A free cover of M [6, Def 5.1.1] is a homomorphism ϕ : G → M with G a free

R-module such that

1. for any homomorphism g : G′ → M with G′ free there exists a homomorphism

f : G′ → G such that g = ϕf , and

2. any endomorphism f of G with ϕ = ϕf is an automorphism.

A free cover is unique up to isomorphism.

Let νR(M) denote the minimal number of generators of M , that is,

νR(M) = rankk(k ⊗RM).

Remark 2.2.1. Every R-module M admits a free cover. Indeed, the homomorphism

ϕ : Rn →M is a free cover of M if and only if ϕ is surjective and n = νR(M).

A free envelope of M [6, Def 6.1.1] is a homomorphism ϕ : M → G with G a free

R-module such that

1. for any homomorphism g : M → G′ with G′ free there exists a homomorphism

f : G→ G′ such that g = fϕ, and

2. any endomorphism f of G with ϕ = fϕ is an automorphism.
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A free envelope is unique up to isomorphism.

Remark 2.2.2. Every finitely generated R-module M admits a free envelope. Indeed,

the homomorphism f = (f1, . . . , fn) : M → Rn, where f1, . . . , fn is a minimal system

of generators of M∗, is a free envelope of M .

The free envelope of M can also be constructed as follows. Let Rn � M∗ be the

free cover of M∗. Applying (−)∗ to this map, one has an injection M∗∗ → Rn. The

composite map M → M∗∗ → Rn is the free envelope of M , where M → M∗∗ is the

natural biduality map.

Remark 2.2.3. For a local ring R, one may choose ΩM = Ker(ϕ) for a free cover ϕ

of M . This choice of ΩM is unique up to isomorphism.

Definition 2.2.4. The cosyzygy module of M is Ω−1R M = Coker(ϕ), where ϕ is the

free envelope of M . For n > 1, the nth cosyzygy module of M is

Ω−nR M = Ω−1R (Ω
−(n−1)
R M).

In [6, Sect 8.1], the authors refer to the cosyzygy module as the free cosyzygy

module; since this is the only cosyzygy module studied in this article, we simply

call it the cosyzygy module. We note that, when the module M is torsion-free, the

cosyzygy module is also called the pushforward ; see [11].

2.3 Periodic modules

Hilbert [9] proved that for a polynomial ring over a field every module has finite

projective dimension; more precisely, for a polynomial ring in n variables, the (n+1)st

syzygy of any module is zero. Modules with finite projective dimension can be studied

using techniques inspired by linear algebra. For general rings, however, there exist
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modules with infinite projective dimension. Among modules with infinite projective

dimension, the simplest are those whose syzygies repeat periodically or eventually

repeat periodically.

Definition 2.3.1. Let (R,m) be a local ring. An R-module M is said to be periodic

if there exists an n ∈ N such that M ∼= ΩnM . The module M is said to be eventually

periodic if there exists an n ∈ N and ` ∈ Z≥0 such that Ω`M ∼= Ωn+`M . In either

case, the minimal such integer n is called the period of M .

For complete intersection rings, Eisenbud [5] proved that a periodic module always

exists and necessarily has period at most two. However, little is known about periodic

modules over the much broader class of Gorenstein rings. Examples of Gasharov and

Peeva [7] show that the behavior over Gorenstein rings is more varied: for each n ∈ N,

they give an example of a Gorenstein ring with a periodic module M of period n. In

1990, Avramov [1] posed the following problem which we study in this dissertation.

Problem 2.3.2. Characterize the rings which have a periodic module.

Rings with the Krull-Remak-Schmidt property are particularly important for our

approach to this characterization problem.

Definition 2.3.3. The ring R has the Krull-Remak-Schmidt property if the following

condition holds: given an isomorphism of finitely generated R-modules

m⊕
i=1

Mi
∼=

n⊕
j=1

Nj

where Mi and Nj are indecomposable and nonzero, then m = n and, after renumber-

ing if necessary, Mi
∼= Ni for each i.
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A local ring R has the Krull-Remak-Schmidt property if R is Henselian [16, Thm

1.8]; in particular, a complete ring has this property [16, Cor 1.9].

One of the main results of this dissertation is a characterization of Gorenstein

local rings with the Krull-Remak-Schmidt property that have a periodic module in

terms of a certain Z[t±1]-module associated to the ring; see Corollary 5.2.8.

For the remainder of this chapter, let (R,m) be a local ring. We write M̂ for

the m-adic completion of the R-module M . The following lemma, which shows that

periodicity of an R-module M is equivalent to periodicity of the R̂-module M̂ , will

be used to obtain a solution to Problem 2.3.2 for Gorenstein local rings with the

Krull-Remak-Schmidt property.

Lemma 2.3.4. Let M be a finitely generated R-module, and let i, j ∈ Z≥0. Then

Ωi
RM
∼= Ωj

RM if and only if Ωi
R̂
M̂ ∼= Ωj

R̂
M̂ . In particular, M is eventually periodic if

and only if the R̂-module M̂ is eventually periodic as an R̂-module.

Proof. Given that Ωi
RM
∼= Ωj

RM , one has

Ωi
R̂

(M̂) ∼= Ω̂i
RM
∼= Ω̂j

RM
∼= Ωj

R̂
(M̂).

Suppose that Ωi
R̂
M̂ ∼= Ωj

R̂
M̂ . Then we have the following isomorphisms:

Ω̂i
RM
∼= Ωi

R̂
(M̂) ∼= Ωj

R̂
(M̂) ∼= Ω̂j

RM.

Hence Ωi
RM
∼= Ωj

RM by [16, Cor 1.15].
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Chapter 3

The module J(R)

In this chapter, we introduce the module J(R), which was defined by D.R. Jordan in

[13]. The module J(R) is the main object of study in this dissertation. In what follows,

we discuss some basic properties of this module and give an alternate definition for

J(R); see Proposition 3.2.4.

3.1 Definition and basic properties of J(R)

Let R be a ring, and let C(R) be the set of isomorphism classes of finitely generated

R-modules; write [M ] for the class of an R-module M in C(R). When the ring is clear

from context, we write C instead of C(R).

Definition 3.1.1. Let F be the free Z[t±1]-module Z[t±1](C), that is,

F =
⊕
[M ]∈C

Z[t±1][M ],

and let I be the Z[t±1]-submodule generated by the following elements:



12

(R1) [M ]− [M ′] for every exact sequence of finitely generated R-modules

0→ P →M →M ′ → 0 with P projective;

(R2) [M ]− t[M ′] for every exact sequence of finitely generated R-modules

0→M ′ → P →M → 0 with P projective;

(R3) [M ⊕M ′]− [M ]− [M ′] for all finitely generated R-modules M and M ′.

The main object of study in this work is the Z[t±1]-module:

J(R) = F/I.

In the following remark, we make a few observations about the module J(R).

Remark 3.1.2. Let M,M ′, and P be finitely generated R-modules with P projective.

1. [P ] = 0 in J(R).

2. If 0→M →M ′ → P → 0 is an exact sequence, then [M ]− [M ′] = 0 in J(R).

Indeed, for 1, note that there is an exact sequence 0 → P → P → 0 → 0, so the

desired result follows from (R1) .

To prove 2, notice that M ′ ∼= M ⊕ P since P is projective. Then in J(R),

[M ′] = [M ] + [P ] by (R3). Since [P ] = 0 in J(R), it follows that [M ′] = [M ].

The module J(R) was defined by D.R. Jordan in [13] and called the Grothendieck

module. In Jordan’s definition, the submodule I is generated by four types of elements:

the three given in Definition 3.1.1 as well as elements of the form [M ] − [M ′] where

M and M ′ are modules as in Remark 3.1.2.2.

Remark 3.1.3. The Grothendieck group G of a ring R is the free Z-module Z(C) mod-

ulo the subgroup generated by the Euler relations, that is, elements of the form
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[M ′]− [M ] + [M ′′] for each exact sequence 0 → M ′ → M → M ′′ → 0 of finitely

generated R-modules. The reduced Grothendieck group G of R is the group G modulo

the subgroup generated by classes of modules of finite projective dimension. We note

that G = J(R)/L, where L is the submodule generated by the Euler relations.

3.2 Syzygies

The syzygy gives a well-defined functor on J(R), as shown in Lemma 3.2.2. The

following remark will aid in this discussion.

Remark 3.2.1. If 0→ P →M →M ′ → 0 is an exact sequence of R-modules with P

projective, then there is a module that is a syzygy of both M and M ′.

Indeed, pick a surjective map G′ � M ′, with G′ a projective R-module. Let X

be the pullback of M → M ′ and G′ → M ′. Since G′ → M ′ is surjective, X → M is

also surjective. Since G′ and P are projective, X is projective. Hence the kernel of

X �M is a syzygy of M ; let N be this kernel. Let N ′ denote the kernel of G�M ′.

Then there is a commutative diagram with exact rows as follows.

0 // P //M //M ′ // 0

0 // P // X

OOOO

// G′

OOOO

// 0

N
?�

OO

∼= // N ′
?�

OO

Note that N ∼= N ′ by the Snake Lemma, and this justifies the claim.

Lemma 3.2.2. Assigning [M ] to [ΩM ] induces a Z[t±1]-linear map

Ω:J(R)→ J(R).
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Proof. By Schanuel’s Lemma, the assignment of [M ] 7→ [ΩM ] gives a homomorphism

Ω̃ :
⊕
[M ]∈C

Z[t±1][M ]→ J(R)

of Z[t±1]-modules. It is enough to check that (R1), (R2), and (R3) from Definition

3.1.1 are in Ker(Ω̃) and so Ω̃ factors through J(R); the induced map is Ω.

For (R3), note that for any syzygies ΩM of M and ΩM ′ of M ′, the R-module

ΩM ⊕ΩM ′ is a syzygy of M ⊕M ′. Since [ΩM ⊕ΩM ′] = [ΩM ] + [ΩM ′] in J(R), one

finds that Ω̃([M ⊕M ′]) = Ω̃([M ])⊕ Ω̃([M ′]).

Next, consider (R2). Given an exact sequence of finitely generated R-modules

0→M ′ → P →M → 0 with P projective, we show that [M ′]− t−1[M ] is in Ker(Ω̃).

In J(R), one has Ω̃([M ′]) = t−1[M ′]. Since M ′ is a syzygy of M , we have [M ′] = [ΩM ]

in J(R). But [ΩM ] = Ω̃([M ]), so the Z[t±1]-linearity of Ω̃ implies that

Ω̃([M ′]) = t−1Ω̃([M ]) = Ω̃(t−1[M ]).

Therefore (R2) is in Ker(Ω̃).

Finally, we verify that (R1) is in Ker(Ω̃). Given an exact sequence of finitely

generated R-modules 0 → P → M → M ′ → 0 with P projective, Remark 3.2.1

implies there exists a module L which is a syzygy of both M and M ′. Hence

Ω̃([M ]) = [L] = Ω̃([M ′]).

For i > 1, define Ωi : J(R) → J(R) by Ωi = Ω ◦ Ωi−1. The next lemma demon-

strates a relationship in J(R) between the class of a module and the classes of its

syzygies.

Lemma 3.2.3. Let M be a finitely generated R-module. Then [M ] = tn[ΩnM ] in

J(R) for any n ∈ N.
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Proof. By (R2), one gets t[ΩM ] = [M ] in J(R). Iterating this, [M ] = tn[ΩnM ] for all

n ∈ N.

In the next proposition, we give an alternate description of J(R) which makes the

relations in this module more transparent.

Proposition 3.2.4. Let F be the free Z[t±1]-module given by Z[t±1](C), and let L be

the Z[t±1]-submodule generated by the following elements:

(R1′) [P ] for every finitely generated projective R-module P ;

(R2′) [M ]− t[ΩM ] for every finitely generated R-module M ;

(R3) [M ⊕M ′]− [M ]− [M ′] for all finitely generated R-modules M and M ′.

There is an isomorphism of Z[t±1]-modules

J(R) ∼= F/L.

Before proving Proposition 3.2.4, we show that for an R-module M , [ΩM ] is well

defined in F/L.

Lemma 3.2.5. Let F and L be as defined in the previous proposition. Assigning [M ]

to [ΩM ] induces a Z[t±1]-linear map Ω : F/L→ F/L.

Proof. By Schanuel’s Lemma, the assignment [M ] 7→ [ΩM ] gives a homomorphism

Ω̃ : F → F/L

of Z[t±1]-modules. It is enough to check that (R1′), (R2′), and (R3) from Proposition

3.2.4 are in Ker(Ω̃) and so Ω̃ factors through F/L; the induced map is Ω.
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Note that (R1′) is in Ker(Ω̃) since the zero module is a syzygy of every projective

module.

Next, we consider (R2′). Let ΩM be a syzygy of M , and let Ω2M be a syzygy of

ΩM . The following equalities hold in F/L:

Ω̃([M ]− t[ΩM ]) = [ΩM ]− t[Ω2M ] = 0,

and hence (R2′) is in Ker(Ω̃).

For (R3), note that for any syzygies ΩM of M and ΩM ′ of M ′, the module

ΩM ⊕ΩM ′ is a syzygy of M ⊕M ′. Since [ΩM ⊕ΩM ′] = [ΩM ] + [ΩM ′] in F/L, one

finds that Ω̃([M ⊕M ′]) = Ω̃([M ])⊕ Ω̃([M ′]).

Proof of Proposition 3.2.4. Let q̃ : F → J(R) be the quotient map. We show that

(R1′), (R2′), and (R3) are in Ker(q̃), and hence q̃ factors through the quotient F/L

via a map q : F/L→ J(R).

The elements given by (R1′) are in Ker(q̃) by Remark 3.1.2.1, and those from

(R2′) are in Ker(q̃) by Lemma 3.2.3. The elements given by (R3) are in Ker(q̃) by

the definition of J(R).

Let p̃ : F → F/L be the quotient map. We show that (R1), (R2), and (R3) are

in Ker(p̃), and hence p̃ factors through the quotient J(R) by a map p : J(R)→ F/L.

Note that the elements given by (R3) are in Ker(p̃) by the definition of L. It remains

to verify that (R1) and (R2) are in Ker(p̃).

First, consider (R1). Let 0→ P →M →M ′ → 0 be an exact sequence of finitely

generated R-modules with P projective. By (R2′), one has [M ]− [M ′] = [M ]−t[ΩM ′]

in F/L for any syzygy ΩM ′ of M ′. Given a syzygy ΩM of M , Remark 3.2.1 shows

that there is a projective R-module G such that ΩM ⊕ G is a syzygy of M ′. Hence
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[ΩM ′] = [ΩM ⊕G] = [ΩM ] in F/L, and thus

[M ]− [M ′] = [M ]− t[ΩM ] = 0

in F/L. Therefore (R1) is in Ker(p̃).

Finally, we show that (R2) is in Ker(p̃). Let 0 → M ′ → P → M → 0 be

an exact sequence of finitely generated R-modules. Then M ′ is a syzygy of M , so

t[M ′]− [M ] = t[ΩM ]− [M ] = 0 by (R2′). Hence (R2) is in Ker(p̃).

Note that p◦q is the identity map on F/L; thus p is injective. Since p is a quotient

map and hence also surjective, p is an isomorphism.

Recall that a homomorphism of rings ϕ : R → S is said to be flat if S is flat as

an R-module via ϕ.

Lemma 3.2.6. Let ϕ : R → S be a homomorphism of rings. When ϕ is flat, the

assignment [M ] 7→ [S ⊗RM ] induces a homomorphism of Z[t±1]-modules

JR(ϕ) : J(R)→ JS(t).

Proof. Consider the unique Z[t±1]-linear map

γ :
⊕

[M ]∈C(R)

Z[t±1][M ]→ JS(t)

with γ([M ]) = [S ⊗RM ]. It suffices to show that the elements (R1), (R2), and (R3)

are in Ker(γ).

Let 0→ P →M →M ′ → 0 be an exact sequence of R-modules with P projective.
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Since S is flat over R, the following sequence of S-modules is exact:

0→ S ⊗R P → S ⊗RM → S ⊗RM ′ → 0.

Since S ⊗R P is projective as an S-module, [S ⊗R M ] = [S ⊗R M ′] in JS(t). Thus

relation (R1) is in the kernel of γ. The proof for (R2) is similar.

For relation (R3), note that S ⊗R (M ⊕N) ∼= (S ⊗RM)⊕ (S ⊗R N).

3.3 Finite projective dimension

In [13, Prop 3], Jordan proves the following: if R is a commutative local Noetherian

ring and M a finitely generated R-module, then the projective dimension of M is

finite if and only if [M ] = 0 in J(R). In Proposition 3.3.2, we extend this result to

all commutative Noetherian rings.

Let Z((t)) denote the ring of formal Laurent series, Z[[t]]
[
1
t

]
; we view it as a

module over Z[t±1]. Notice that Z[t±1] is a Z[t±1]-submodule of Z((t)).

The following proposition is [13, Lem 1]. We include the statement here along

with a more detailed proof for ease of reference.

Proposition 3.3.1. Let R be a commutative local Noetherian ring with residue field

k. The assignment [M ] 7→ PR
M(t) induces a Z[t±1]-linear map

π : J(R)→ Z((t))/Z[t±1].

Proof. Consider the unique Z[t±1]-module homomorphism

θ :
⊕
[M ]∈C

Z[t±1][M ]→ Z((t))/Z[t±1]
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with θ([M ]) = PR
M(t). We show that the elements (R1), (R2), and (R3) from Defini-

tion 3.1.1 are in Ker(θ).

For (R3), note that TorRi (M ⊕ N, k) ∼= TorRi (M,k) ⊕ TorRi (N, k), and hence

βi(M ⊕N) = βi(M) + βi(N). So one has θ([M⊕N ]) = θ([M ])+θ([N ]), which implies

that (R3) is in Ker(θ).

Next, we consider the element (R2). Let 0 → M ′ → P → M → 0 be an exact

sequence of R-modules with P projective. This gives a long exact sequence in Tor:

· · · → TorRi+1(P, k)→ TorRi+1(M,k)→ TorRi (M ′, k)→ Tori(P, k)→ · · · .

For i ≥ 1, one has TorRi (P, k) = 0 and so TorRi+1(M,k) ∼= TorRi (M ′, k). Hence

βi(M
′) = βi+1(M) for all i ≥ 1, and so, in Z((t))/Z[t±1],

θ([M ]− t[M ′]) = θ([M ])− tθ([M ′])

=
∞∑
i=0

βi(M)ti −
∞∑
i=0

βi(M
′)ti+1

= β0(M) + β1(M)t− β0(M ′)t

= 0.

The argument for the element (R1) is similar to the argument for (R2). In this

case, the long exact sequence in Tor implies that TorRi (M,k) ∼= TorRi (M ′, k) for all

i ≥ 2, and therefore θ([M ]− [M ′]) = 0 in Z((t))/Z[t±1].

The following proposition was proved in [13, Prop 3] for local rings.

Proposition 3.3.2. Let R be a commutative Noetherian ring and M a finitely gen-

erated R-module. Then [M ] = 0 in J(R) if and only if M has finite projective

dimension.
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Proof. If the projective dimension of M is finite, then [ΩnM ] = 0 for some n ∈ N.

Hence [M ] = 0 by Lemma 3.2.3.

Suppose [M ] = 0 in J(R). First, we consider the case when R is local. Using

the homomorphism π from Proposition 3.3.1, one finds that PR(M) ∈ Z[t±1]. Hence

PR(M) is a polynomial, and it follows that βi(M) = 0 for i� 0. Thus the projective

dimension of M is finite.

For a general ring R, the map R → Rm is flat for each maximal ideal m. Lemma

3.2.6 gives a homomorphism J(R) → JRm(t) with [M ] 7→ [Mm]. Thus [Mm] = 0 in

JRm(t), and hence pdRm
Mm < ∞. Hence the projective dimension of M over R is

finite by [3, Thm 4.5].
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Chapter 4

Maximal-Cohen Macaulay modules

This chapter covers background material on depth and maximal Cohen-Macaulay

modules. We collect several well-known results on maximal Cohen-Macaulay modules

over Gorenstein local rings; these results are difficult to find in the literature in the

form that we need.

Throughout this chapter, let (R,m, k) be a (commutative, Noetherian) local ring.

For a finitely generated R-module M , we denote by ΩM the syzygy of M given by

Remark 2.2.3; this syzygy is unique up to isomorphism.

4.1 Injective modules

An R-module E is said to be injective if the functor HomR(−, E) is exact. A complex

of injective R-modules

I : 0
∂0−→ I0

∂1−→ I1
∂2−→ I2 −→ · · ·

is an injective resolution of an R-module M if Hn(I) = 0 for all n ≥ 1 and H0(I) = M ,

where Hn(I) = Ker∂n+1/ im ∂n. While it is clear that every module has a projective
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resolution, it is not immediately obvious that every module has an injective resolution.

However, the fact that every R-module injects into an injective R-module allows for

the construction of an injective resolution for any R-module; see [4, Thm 3.1.8].

The length of an injective resolution I is the infimum over n ∈ N such that Im = 0

for all m > n. The injective dimension of M , denoted idRM , is the infimum over

n ∈ N such that M has an injective resolution of length n. In [4, Prop 3.1.14], it is

shown that

idRM = sup{i | ExtiR(k,M) 6= 0}.

Recall that a local ring R is Gorenstein if idRR is finite.

4.2 Maximal-Cohen Macaulay modules over

Gorenstein rings

For the remainder of this chapter, let M be a finitely generated nonzero R-module.

The depth of the module M is given by

depthRM = min{i | ExtiR(k,M) 6= 0}.

When R is clear from context, we write depthM . The following well-known result,

which can be found in [4, Prop 1.2.9], allows for a comparison of the depths of

R-modules in a short exact sequence.

Depth Lemma. Let R be a local ring and 0→ U →M → N → 0 an exact sequence

of R-modules. Then

depthU ≥ min{depthM, depthN + 1}.
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Definition 4.2.1. A nonzero R-module M is said to be maximal Cohen-Macaulay

(abbreviated to MCM) if depthM = dimR. A local ring R is Cohen-Macaulay if R

is MCM as an R-module.

The maximal Cohen-Macaulay modules are the most important part of the module

category of a ring. Indeed, the Depth Lemma implies that the high syzygies of every

module over a Cohen-Macaulay local ring are either zero or maximal Cohen-Macaulay.

Remark 4.2.2. Let R be a Cohen-Macaulay ring with d = dimR and M a nonzero

R-module. Then either ΩdM is MCM or zero.

If a ring R has a nonzero module of finite injective dimension, the following result

of Ischebeck [12, Satz 2.6] allows for a characterization of Gorenstein rings in terms

of maximal Cohen-Macaulay modules.

Theorem 4.2.3. Let R be a local ring and M and N nonzero R-modules. If N has

finite injective dimension, then

depthR− depthM = sup{i | ExtiR(M,N) 6= 0}.

The following corollary shows that a ring R is Gorenstein if R is Cohen-Macaulay

and R is an injective object in the category of MCM R-modules.

Corollary 4.2.4. Let R be a local ring. Then R is Gorenstein if and only if R is

Cohen-Macaulay and ExtiR(M,R) = 0 for all MCM modules M and all i ≥ 1.

Proof. Suppose R is Gorenstein. Then R is Cohen-Macaulay [4, Prop 3.1.20]. Let M

be an MCM R-module. By Theorem 4.2.3, ExtiR(M,R) = 0 for all i ≥ 1.

Now suppose R is Cohen-Macaulay and ExtiR(M,R) = 0 for all MCM modules M

and all i ≥ 1. Let N be an R-module, and let d = depthR. By Remark 4.2.2, ΩdN is
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either MCM or zero. Let P be a projective resolution of N . Breaking this resolution

into short exact sequences, we have the following:

0→ ΩdN →Pd−1 → Ωd−1N → 0 (4.1)

...

0→ Ω2N →P1 → ΩN → 0

0→ ΩN →P0 → N → 0

Applying (−)∗ to sequence (4.1) yields a long exact sequence in Ext, and we conclude

that ExtiR(Ωd−1N,R) = 0 for all i ≥ 2. Iterating this process on each sequence above,

ExtiR(N,R) = 0 for all i ≥ d + 1. Then by [4, Prop 3.1.10], the injective dimension

of R is less than d and hence finite. Thus R is Gorenstein.

For the remainder of this chapter, we focus on Gorenstein rings. The following are

well-known results on MCM modules that will be used throughout this dissertation;

for lack of adequate references, some of the proofs are given here.

Remark 4.2.5. Let R be a Gorenstein local ring and M an MCM R-module.

1. The natural homomorphism M →M∗∗ is an isomorphism.

2. The free envelope of M is an injective homomorphism.

3. The modules ΩM and Ω−1M are MCM.

4. (Ω−1M)∗ ∼= Ω(M∗).

5. If M is indecomposable, then ΩM and Ω−1M are also indecomposable.

6. If M has no free summands, then ΩM and Ω−1M also have no free summands.

7. If M has no free summands, then Ω−nΩnM ∼= M for all n ∈ Z.
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Property 1 is proved in [17, Cor 2.3]. Before we give proofs for the remaining

properties, we make an observation which will be useful in the proof of property 6 as

well as later in the dissertation.

Remark 4.2.6. Let R be a ring. An R-module M has a free summand if and only if

the evaluation map ev : M∗ ⊗RM → R, where ϕ⊗m 7→ ϕ(m), is surjective.

If M has a free summand, it is clear that ev is surjective. If ev is surjective, there

is an f ∈ M∗ and n ∈ M such that f(n) = 1. Then f : M → R is surjective, which

implies that f splits. Hence R is a direct summand of M .

We return to the proof of Remark 4.2.5.

Proof of 2. As seen in Remark 2.2.2, the free envelope of M is the composition

M →M∗∗ ↪→ F ∗,

where F �M∗ is the free cover of M∗. So (2) follows from (1).

Proof of 3. By [10, Lem 1.3], ΩM is an MCM module.

One proof that Ω−1M is MCM is given in [11, Prop 1.6.(2)]; we provide a different

proof here. Let i : M → G be the free envelope of M . By Remark 4.2.5.2, the

following sequence is exact:

0→M
i−→ G→ Ω−1M → 0.

Apply (−)∗ to this sequence. By Corollary 4.2.4, ExtiR(M,R) = 0 for each i ≥ 1.

Hence ExtnR(Ω−1M,R) = 0 for all n ≥ 2. We show that the map i∗ : G∗ → M∗ is

surjective. By Remark 2.2.2, we have i = (f1, . . . , fn) where f1, . . . , fn is a minimal

system of generators of M∗. Let πj : Rn → R be the jth projection map. Then
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i∗(πj) = fj, and hence i∗ is surjective. Therefore Ext1R(Ω−1M,R) = 0, and hence

Ω−1M is MCM by Corollary 4.2.4.

Proof of 4. Let π : F → M∗ be the free cover of M∗. Then π∗ : M → F ∗ is the free

envelope of M by Remark 2.2.2. Thus Ω−1M is defined by an exact sequence

0 −→M
π∗−→ F ∗ −→ Ω−1M −→ 0.

Since M is MCM, applying (−)∗ to this sequence yields the exact sequence

0 −→ (Ω−1M)∗ −→ F
π−→M∗ −→ 0.

As π is the free cover of M∗, one gets Ω(M∗) ∼= (Ω−1M)∗.

Proof of 5. It is shown that ΩM is indecomposable in [10, Lem 1.3]. We prove that

Ω−1M is indecomposable. Let G be the free envelope of M . By property 2, the

following sequence is exact:

0→M → G→ Ω−1M → 0.

Since M is MCM, applying (−)∗ to this sequence yields the exact sequence

0→ (Ω−1M)∗ → G∗ →M∗ → 0.

By property 4, (Ω−1M)∗ ∼= Ω(M∗). Since M is indecomposable and isomorphic to

M∗∗, it follows that M∗ is indecomposable. As M∗ is an indecomposable MCM

module, (Ω−1M)∗ is indecomposable by the result for syzygies. Hence Ω−1M is also

indecomposable.
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Proof of 6. Suppose ΩM ∼= N ⊕ R. Let G be the free cover of M , and let X be the

pushout of N ⊕ R � R and N ⊕ R → G. Then we have the following commutative

diagram with exact rows.

0 // N ⊕R //

����

G //

����

M // 0

0 // R // X //M // 0

Since M is MCM, Corollary 4.2.4 implies that Ext1R(M,R) = 0. Note that there is

a bijective correspondence between elements of Ext1R(M,R) and equivalence classes

of extensions 0 → R → E → M → 0 of M by R. Since M is MCM, Corollary 4.2.4

implies that X ∼= M ⊕ R. Then νR(G) ≥ νR(M) + 1 as G maps onto M ⊕ R.

However, this is a contradiction since G is the free cover of M . Therefore ΩM has no

free summand.

Since M is MCM with no free summand, M∗ is MCM with no free summand. By

property 4 and the result for syzygies, (Ω−1M)∗ has no free summand. Hence Ω−1M

has no free summand.

Proof of 7. First, note thatM ∼= Ω(Ω−1M)⊕F ′ for some free module F ′ by Schanuel’s

Lemma. Since M has no free summands, M ∼= Ω(Ω−1M). Next, we show that

Ω−1(ΩM) ∼= M . The result then follows by induction on n since Ω−iΩiM is MCM

for all i ∈ Z by property 3.

Let i : ΩM → G be the free envelope of ΩM , and let G′ → M be the free cover

of M . We have the following commutative diagram.

0 // ΩM i // G // Ω−1(ΩM) // 0

0 // ΩM
j // G′

f

OOOO

//M

OOOO

// 0

K
?�

OO

∼= // K
?�

OO
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Indeed, since i is the free envelope of ΩM , there exists a homomorphism g : G→ G′

such that g ◦ i = j. As M is MCM, the map j∗ : (G′)∗ → (ΩM)∗ is surjective. Hence

there is a homomorphism f : G′ → G such that f ◦ j = i. Then since i = i ◦ (f ◦ g)

and i is the free envelope of ΩM , the composition f ◦ g is an isomorphism. Hence

f : G′ → G is surjective, which implies that the mapM → Ω−1(ΩM) is also surjective.

Note that the kernels of G′ � G and M � Ω−1(ΩM) are isomorphic by the Snake

Lemma. As f is a surjection and both G and G′ are free, K = Ker(f) is also free.

Since Ω−1(ΩM) is MCM, we have Ext1R(Ω−1ΩM,R) = 0. Then since K is free, the

sequence 0→ K →M → Ω−1(ΩM)→ 0 splits. Hence M ∼= Ω−1(ΩM) ⊕ K. Since

M has no free summands, M ∼= Ω−1(ΩM).
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Chapter 5

Gorenstein local rings

This chapter is a study of the module J(R) for Gorenstein local rings, and it contains

the main results of this dissertation. Theorem 5.1.3 describes the structure of J(R)

for Gorenstein local rings with the Krull-Remak-Schmidt property. Theorem 5.2.6,

shows that for a Gorenstein local ring the class of a module is torsion in J(R) if and

only if the module is eventually periodic. As a consequence of the previous theorem,

we give an answer to Avramov’s characterization problem for Gorenstein local rings

with the Krull-Remak-Schmidt property. In particular, such a ring has an eventually

periodic module if and only if J(R) has nonzero torsion; see Corollary 5.2.8.

Throughout this chapter, let (R,m, k) be a local ring and M a finitely generated

R-module. We denote by ΩM the syzygy of M given by Remark 2.2.3; this syzygy

is unique up to isomorphism. Set (−)∗ = HomR(−, R).
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5.1 Z[t±1]-module structure of J(R)

In this section, we prove a structure theorem for J(R) when R is a Gorenstein local

ring. Define, for any local ring R,

M(R) =

[M ] ∈ C(R)

∣∣∣∣∣∣∣
M is MCM, nonfree,

and indecomposable

 .

When R is clear from context, we write M for M(R). If R is Cohen-Macaulay, the

set M generates J(R) as a module over Z[t±1] since each R-module has a syzygy

that is either MCM or zero as noted in Remark 4.2.2. If R is Gorenstein and has the

Krull-Remak-Schmidt property, one can do better: M generates J(R) over Z; see

Theorem 5.1.3.

Lemma 5.1.1. Let R be a local Gorenstein ring and M a finitely generated R-module.

1. If M is an MCM module, then t−n[Ω−nM ] = [M ] in J(R) for each n ∈ Z.

2. There is an MCM R-module N with [M ] = [N ] in J(R).

Proof. Lemma 3.2.3 proved 1 for n ≤ 0. Using Remark 4.2.5.2, a proof similar to the

proof of Lemma 3.2.3 yields the desired result.

For 2, let d = dimR. Lemma 3.2.3 implies that td[ΩdM ] = [M ]. By part 1,

t−d[Ω−dΩdM ] = [ΩdM ]. Hence [M ] = [Ω−dΩdM ].

Remark 5.1.2. In order to set up notation for the next theorem, we first discuss a

special type of Z[t±1]-module. For this, we view Z[t±1] as the group algebra over Z

of the free group G = 〈t〉 on a single generator t; that is, G ∼= (Z,+). Let X be

a set with a G-action. Let ZX = Z(X), the free Z-module with basis given by the
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elements of X, and let ZG be the group algebra over Z of G. Then ZX is naturally

a ZG-module [15, Ch.III, §1].

Remark 4.2.5 properties 3, 5, and 6 imply that [ΩM ] and [Ω−1M ] are in M if

[M ] ∈M. Thus there is an action ofG onM with t[M ] = [Ω−1M ] and t−1[M ] = [ΩM ].

Since Ω(−) and Ω−1(−) are well-defined up to isomorphism, this action is well-defined.

Let A = Z(M) be the Z[t±1]-module induced by this t-action, and set

Φ : A → J(R)

to be the unique Z-module homomorphism with Φ([M ]) = [M ]. It is clear that Φ is

Z[t±1]-linear.

Assume R has the Krull-Remak-Schmidt property. We define a Z[t±1]-linear map

ψ :
⊕
[M ]∈C

Z[t±1][M ] −→ A (5.1)

by setting ψ([M ]) =
∑n

i=1[Mi], where each Mi is indecomposable and

Ω−(d+1)Ωd+1M ∼=
n⊕
i=1

Mi

with d = dimR. Since Ω−(d+1)Ωd+1M is either zero or MCM with no free summands,∑n
i=1[Mi] is in A. Since R has the Krull-Remak-Schmidt property, ψ is well-defined.

Theorem 5.1.3. Let R be a Gorenstein local ring that has the Krull-Remak-Schmidt

property. Then the Z[t±1]-linear map

Φ : A → J(R)
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is an isomorphism with inverse Ψ induced by ψ defined in (5.1).

Proof. To show that ψ induces a Z[t±1]-linear map Ψ : J(R)→ A, it suffices to show

that the elements described in (R1), (R2), and (R3) from Definition 3.1.1 are in the

kernel of ψ.

For elements given by (R3), note that

Ω−(d+1)(Ωd+1(M ⊕N)) ∼= Ω−(d+1)Ωd+1M ⊕ Ω−(d+1)Ωd+1N.

Then ψ([M ⊕N ]) = ψ([M ]) + ψ([N ]), and hence (R3) is in Ker(ψ).

Next, we consider (R2): given an exact sequence 0→M ′ → P →M → 0 with P

projective, we show that ψ([M ′]) = ψ(t−1[M ]). By Schanuel’s Lemma, M ′ ∼= ΩM⊕G

for some free R-module G. Since ΩG = 0, one has

Ω−(d+1)Ωd+1M ′ ∼= Ω−(d+1)Ωd+1(ΩM).

Then ψ([M ′]) = ψ([ΩM ]) = ψ([t−1ΩM ]), and therefore (R2) is in Ker(ψ).

It remains to verify that (R1) is in Ker(ψ). Let 0 → P → M → M ′ → 0 be

an exact sequence of R-modules with P projective. By Remark 3.2.1, there are free

R-modules G and G′ such that ΩM ⊕ G ∼= ΩM ′ ⊕ G′. Since ψ([G]) = ψ([G′]) = 0,

ψ([ΩM ] = ψ([ΩM ′]). As (R2) is in Ker(ψ), one finds that ψ(t−1[M ]) = ψ(t−1[M ′])

and thus ψ([M ]) = ψ([M ′]). Hence (R1) is in Ker(ψ).

Thus ψ factors through the quotient J(R) via a homomorphism Ψ : J(R) → A.

Notice that Ψ ◦ Φ is the identity. Indeed, if M is an MCM module with no free

summands, then Ω−(d+1)Ωd+1M ∼= M by Remark 4.2.5.(7). Hence Φ is injective. For

each R-module N , Lemma 5.1.1.(2) shows that there is an MCM R-module M such

that [M ] = [N ]. Thus Φ is also surjective and hence an isomorphism.
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Remark 5.1.4. If R is Gorenstein, Theorem 5.1.3 implies that J(R) is torsion-free as

an abelian group. We do not know whether this holds also when R is Cohen-Macaulay.

The following result is proved in [13, Lem 8] for Artinian complete intersection

rings.

Corollary 5.1.5. Let R be a Gorenstein local ring, and let M and N be finitely

generated MCM R-modules. Then [M ] = [N ] in J(R) if and only if

M ⊕Rm ∼= N ⊕Rn

for some m,n ∈ Z≥0. Thus if neither M nor N has a free summand, M ∼= N .

Proof. If M ⊕Rm ∼= N ⊕Rn for some m,n ∈ Z≥0, then in J(R) one has

[M ] = [M ⊕Rm] = [N ⊕Rn] = [N ].

Suppose that [M ] = [N ] in J(R). We may assume M and N have no free sum-

mands. We first prove the result under the assumption that R is complete with

respect to the maximal ideal. As shown in [16, Cor 1.10], complete rings have the

Krull-Remak-Schmidt property for finitely generated modules; so Theorem 5.1.3 ap-

plies. Let d = dimR, and let Ψ : J(R)→ A be the isomorphism given in Theorem

5.1.3. Suppose

M =
⊕

[Mλ]∈M

M eλ
λ and N =

⊕
[Mλ]∈M

M fλ
λ

where eλ, fλ ≥ 0. From Remark 4.2.5.(6) and the definition of ψ given in (5.1), one

gets an equality

∑
[Mλ]∈M

eλ[Mλ] = Ψ([M ]) = Ψ([N ]) =
∑

[Mλ]∈M

fλ[Mλ].
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Since A is free on M, we have eλ = fλ for all λ. Therefore M ∼= N as R-modules.

Now suppose that R is any local ring with maximal ideal m. Write R̂ for the

m-adic completion of R. If [M ] = [N ] in J(R), then [M ⊗R R̂] = [N ⊗R R̂] in JR̂(t)

by Lemma 3.2.6.

By Remark 4.2.6, M has a free summand if and only if the evaluation map

ev : M∗ ⊗RM → R, where ϕ ⊗ m 7→ ϕ(m), is surjective. The map ev is surjec-

tive if and only if the map ev ⊗R R̂ is surjective. Note that the map ev ⊗R R̂ can

be identified with the map
(
M̂
)∗
⊗R̂ M̂ → R̂. Then since M and N have no free

summands, M ⊗R R̂ and N ⊗R R̂ also have no free summands.

The result for complete rings then shows that M ⊗R R̂ ∼= N ⊗R R̂ as R̂-modules,

and [16, Cor 1.15] implies that M ∼= N .

Note that cancellation of direct summands is valid over local rings [16, Cor 1.16].

Then M⊕Rm ∼= N⊕Rn implies that M⊕Rm′ ∼= N or M ∼= N⊕Rn′ . Thus if neither

M nor N has a free summand, M ∼= N .

Example 5.1.6. Let R = k[x]/(xn) where n ≥ 2. The nonfree, indecomposable,

MCM R modules are given by Mi = k[x]/(xi) for i = 1, . . . , n−1. By Theorem 5.1.3,

J(R) ∼=
n−1⊕
i=1

Z[Mi]

as Z-modules. Note that Ω(Mi) = Mn−i for each i, and so [Mi] = t[Mn−i]. Then

(t2 − 1)[Mi] = 0 for all i, and hence

J(R) ∼=


(

Z[t]

(t2 − 1)

)n−1
2

n odd

Z
⊕(

Z[t]

(t2 − 1)

)n−2
2

n even

as Z[t±1]-modules.
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5.2 Torsion in J(R)

The main result of this section, Theorem 5.2.6, is that when R is Gorenstein the class

of a module is torsion in J(R) if and only if the module is eventually periodic. This

result does not extend verbatim to Cohen-Macaulay local rings; see Example 5.2.14.

In the next lemma, we give a decomposition for the special type of Z[t±1]-modules

discussed in Remark 5.1.2.

Lemma 5.2.1. Let G = 〈t〉, and let X be a set with a G-action. Then there is an

isomorphism of ZG-modules

ZX ∼=
∞⊕
n=1

(
Z[t]

(tn − 1)

)bn⊕
(ZG)b∞

where b∞, bn ∈ Z≥0 ∪ {∞} for all n.

Proof. Note that for any x ∈ X, either tnx 6= x for all n 6= 0 and the orbit of x is

Gx = {tix : i ∈ Z}, or there is an n 6= 0 with tnx = x and Gx = {x, tx, t2x, . . . , tn−1x}.

Then for each x ∈ X either ZGx ∼= ZG or ZGx ∼= Z[t]/(tn − 1) as ZG-modules; in

either case, the map assigning x to 1 induces an isomorphism. Thus the decomposition

of X into orbits gives the desired isomorphism.

Definition 5.2.2. The torsion submodule of a ZG-module L is

TZG(L) = {u ∈ L : ru = 0 for some r ∈ ZG \ {0}}.

An element u ∈ TZG(L) is said to be a torsion element of L.

Proposition 5.2.3. An element u ∈ ZX is torsion if and only if there exists an

n ∈ N such that (tn − 1)u = 0.
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Proof. Suppose u is torsion in ZX. Identifying ZX with the right hand side of the

isomorphism in Lemma 5.2.1, one finds that u belongs to the submodule ⊕∞n=1 (Ln)bn

of ZX where

Ln =
Z[t]

(tn − 1)
.

Consider the case when u = v + w where v ∈ L` and w ∈ Lm for some `,m ∈ N.

Then (t` − 1)v = 0 and (tm − 1)w = w, and hence (tm` − 1)(v + w) = 0. Indeed, if

y is an indeterminate, we have (1 − yn) = (1 − y)(1 + y + · · · + yn−1). Set y = t`,

and one finds that (t` − 1) is a factor of (tn` − 1). Similarly, (tn − 1) is a factor of

(tn`− 1). By induction on the number of terms in u, there exists an n ∈ N such that

(tn − 1)u = 0.

The reverse implication is immediate.

In light of Lemma 5.2.1 and Proposition 5.2.3, we have the following corollaries

to Theorem 5.1.3.

Corollary 5.2.4. Let R be a Gorenstein local ring that has the Krull-Remak-Schmidt

property.

1. Then an element u ∈ J(R) is torsion if and only if there exists an n ∈ Z such

that (tn − 1)u = 0.

2. The Z[t±1]-module J(R) has nonzero torsion if and only if there is a finitely

generated R-module M such that [M ] is torsion.

Proof. For 1, note that G = 〈t〉 acts on M. By Theorem 5.1.3, J(R) ∼= A = ZM as

Z[t±1]-modules. The result then follows from Proposition 5.2.3.

To prove 2, suppose u is a nonzero torsion element of J(R). In the notation of

Lemma 5.2.1, there is an n ∈ N such that bn 6= 0. By Theorem 5.1.3, there are some

[Mα] ∈M that generate Ln, and thus [Mα] is torsion for each α.
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The reverse implication is immediate.

We make some observations about torsion in J(R) and eventually periodic mod-

ules. In Corollary 5.2.8, we show that torsion of the class of a module in J(R) is

equivalent to periodicity of a module under certain assumptions on R.

Remark 5.2.5. Let M be a finitely generated R-module. It is easy to see that the

following statements hold.

1. [M ] is torsion in J(R) if and only if [ΩnM ] is torsion for some (equivalently, all)

n ∈ N.

2. M is eventually periodic if and only if ΩnM is eventually periodic for some

(equivalently, all) n ∈ N.

Theorem 5.2.6. Let R be a Gorenstein local ring, and let M be a finitely generated

R-module. Then [M ] is torsion in J(R) with respect to the Z[t±1]-action if and only

if M is eventually periodic. Moreover, for any n ∈ N, the following conditions are

equivalent:

1. (tn − 1)[M ] = 0 in J(R).

2. Ω`M ∼= Ωn+`M for `� 0.

Proof. Suppose M is eventually periodic. Then there are i, j ∈ Z≥0 with i 6= j

such that ΩiM ∼= ΩjM . In J(R), t−i[M ] = [ΩiM ] = [ΩjM ] = t−j[M ], and hence

(t−i − t−j)[M ] = 0.

Assume [M ] is torsion in J(R). We first show that we can reduce to the case

when R is complete with respect to the maximal ideal m. Let M̂ denote the m-adic

completion of M . Since the canonical homomorphism ϕ : R→ R̂ is flat, Lemma 3.2.6

implies that there is a homomorphism of Z[t±1]-modules JR(ϕ) : J(R) → JR̂(t) with
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JR(ϕ)([M ]) = [ M̂ ]. Hence [M ] torsion implies that [M̂ ] is torsion. If the result holds

for complete rings, then M̂ is eventually periodic as an R̂-module. Hence Lemma

2.3.4 implies that M is eventually periodic as an R-module.

Assume R is complete. To show that M is eventually periodic, it is enough to

show that some syzygy of M is eventually periodic. We may assume M is MCM with

no free summands.

By Remark 4.2.2, ΩdM is zero or MCM for d � 0. If ΩdM = 0, the proof is

complete. If not, then replacing M by ΩdM we may assume that M is MCM. If

M = N ⊕ R, then [M ] = [N ] and hence [M ] is torsion in J(R) if and only if [N ] is

torsion. Note that M is eventually periodic if and only if N is eventually periodic,

since ΩM ∼= ΩN . Thus we may assume M has no free summands.

As [M ] is torsion, Corollary 5.2.4.(1) implies that there is an n ∈ N such that

(tn − 1)[M ] = 0 in J(R). Lemma 5.1.1.(1) shows that [Ω−nM ] = tn[M ] = [M ]. By

Remark 4.2.5.(3), the R-module Ω−nM is MCM, and thus Corollary 5.1.5 implies

that Ω−nM ⊕ F ∼= M ⊕G for some free R-modules F and G. Then, as R-modules,

Ωn (Ω−nM ⊕ F ) ∼= Ωn (M ⊕G), and thus ΩnΩ−nM ∼= ΩnM . Since M is MCM with

no free summands, M ∼= ΩnΩ−nM by Remark 4.2.5.(7). Hence M ∼= ΩnM , and

therefore M is eventually periodic.

It is clear that 2 implies 1. The argument in the previous paragraph along with

Lemma 2.3.4 shows that 1 implies 2.

In what follows, we write M̂ for the m-adic completion of the R-module M .

Corollary 5.2.7. Let R be a Gorenstein local ring and M a finitely generated R-

module. Then [M ] is torsion in J(R) with respect to the Z[t±1]-action if and only if

[ M̂ ] is torsion in JR̂(t) with respect to the Z[t±1]-action.
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Proof. In the proof of Theorem 5.2.6, it is shown that [M ] torsion in J(R) implies

[M̂ ] is torsion in JR̂(t).

The reverse implication is immediate from Theorem 5.2.6 and Lemma 2.3.4.

The following corollary uses J(R) to characterize Gorenstein local rings with the

Krull-Remak-Schmidt property that have an eventually periodic module.

Corollary 5.2.8. Let R be a local Gorenstein ring with the Krull-Remak-Schmidt

property. The ring R has a periodic module if and only if J(R) has nonzero torsion.

Proof. Combining Corollary 5.2.4.2 and Theorem 5.2.6, one arrives at the desired

result.

Corollary 5.2.9. Suppose M = ⊕mi=1Mi for some R-modules Mi. Then [M ] is torsion

in J(R) if and only if [Mi] is torsion in J(R) for all i.

Proof. Assume [Mi] is torsion in J(R) for all i. For each i ∈ {1, . . . ,m}, there is an

fi(t) ∈ Z[t±1] such that fi(t)[Mi] = 0 in J(R). Then f1(t) · · · fm(t)[M ] = 0.

Suppose [M ] is torsion in J(R). We first prove the result under the assumption

that R is complete. It suffices to consider the case when each Mi is indecomposable.

Since [M ] is torsion in J(R), Theorem 5.2.6 implies that M is eventually periodic.

So there is an n ∈ N and an ` ∈ Z≥0 such that Ωn+`M ∼= Ω`M, and therefore

m⊕
i=1

Ωn+`(Mi) ∼=
m⊕
i=1

Ω`(Mi).

We prove that each [Mi] is torsion by using induction on m, the number of inde-

composable summands of M . Suppose M = M1 ⊕M2. Then by the Krull-Remak-

Schmidt property, either Ωn+`(Mi) ∼= Ω`(Mi) for i = 1, 2 or Ωn+`(M1) ∼= Ω`(M2) and

Ωn+`(M2) ∼= Ω`(M1). In the first case, it is clear that M1 and M2 are eventually
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periodic. In the second case, note that

Ω2n+`(M1) ∼= Ωn+`(M2) ∼= Ω`(M1),

and hence M1 is eventually periodic. Similarly, M2 is eventually periodic. Then by

Theorem 5.2.6, [Mi] is torsion in J(R) for i = 1, 2.

Suppose M = ⊕mi=1Mi and that the conclusion holds for s < m. By the Krull-

Remak-Schmidt property, for each i there exists j such that Ωn+`(Mi) ∼= Ω`(Mj).

If there is an i such that Ωn+`(Mi) ∼= Ω`(Mi), then the result follows from the in-

ductive hypothesis. Without loss of generality, suppose Ωn+`(Mi) ∼= Ω`(Mi+1) for

1 ≤ i ≤ m− 1 and Ωn+`(Mm) ∼= Ω`(M1). The following isomorphisms of R-modules

show that M1 is eventually periodic:

Ωmn+`(M1) ∼= Ω(m−1)n+`(M2) ∼= · · · ∼= Ωn+`(Mm) ∼= Ω`(M1).

Similarly Mi is eventually periodic for 2 ≤ i ≤ m, and consequently Theorem 5.2.6

implies that [Mi] is torsion in J(R) for all i.

Now suppose that R is any local ring and [M ] is torsion in J(R). By Corollary

5.2.7, [M̂ ] is torsion in JR̂(t). Write

M̂ =
m⊕
i=1

(
ai⊕
j=1

Mij

)
with M̂i =

ai⊕
j=1

Mij

and each Mij an indecomposable R̂-module. The result for complete rings implies

that [Mij] is torsion in JR̂(t) for each i and j. Then [M̂i] is torsion in JR̂(t) for all i,

and so Corollary 5.2.7 implies that [Mi] is torsion in J(R) for all i.

Definition 5.2.10. A hypersurface is a local ring R such that R̂ ∼= S/(f) where S is
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a regular local ring and f is an S-regular element.

Theorem 5.2.6 also gives a characterization of hypersurface rings in terms of J(R).

We note that [13, Thm 7] shows that 4 implies 1 for an Artinian complete intersection

ring.

Corollary 5.2.11. Let (R,m, k) be a Gorenstein local ring. Then the following con-

ditions are equivalent:

1. R is a hypersurface;

2. (1− t2) · J(R) = 0;

3. J(R) is a torsion module;

4. [k] is torsion in J(R) with respect to the Z[t±1]-action.

Proof. 1 ⇒ 2. For any module M over a hypersurface one has Ω2+`M ∼= Ω`M for

`� 0; see [5, Thm 6.1]. Hence (1−t2)[M ] = 0 for each module M over a hypersurface.

2 ⇒ 3 and 3 ⇒ 4. These implications are immediate.

4 ⇒ 1. Observe that M eventually periodic implies the Betti numbers of M are

bounded. Then since the Betti numbers of k are bounded, [8, Cor 1] implies that R

is a hypersurface.

The statement of Theorem 5.2.6 can fail for non-Gorenstein rings. In order to

give a class of examples where the statement does not hold, we recall the following

definitions.

Definition 5.2.12. Let (R,m, k) be a local ring. The embedding dimension of R is

e = edim(R) = rankkm/m
2.
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Definition 5.2.13. Let (R,m, k) be a local ring. The socle of R is

SocR = (0 : m) ∼= HomR(k,R).

Example 5.2.14. Let (R,m, k) be a local ring with m2 = 0 and e ≥ 2. Note that R is

Cohen-Macaulay but not Gorenstein because rankk SocR = e. Then (1−et)J(R) = 0,

but R has no nonzero nonfree eventually periodic module.

First, we note that k is not eventually periodic but [k] is torsion in J(R). Indeed,

the sequence

0→ m→ R→ k → 0

is exact, and Ωk ∼= m as R-modules. Therefore Ωk ∼= ke, which implies that k is

not eventually periodic. On the other hand, t−1[k] = e[k] in J(R), and therefore

(1− et)[k] = 0.

Let M be a nonzero, nonfree R-module. Since m2 = 0, we have ΩM ∼= kβ1(M).

Since k is not eventually periodic, the module M is not eventually periodic. However,

t−1[M ] = [ΩM ] = β1(M)[k]

in J(R), and therefore

(1− et)[M ] = t(1− et)β1(M)[k] = 0.

Remark 5.2.15. Using Corollary 5.2.4.1, one can determine the torsion submodule of

J(R) for a Gorenstein local ring that has the Krull-Remak-Schmidt property:

TZ[t±1](J(R)) =
∞⋃
n=1

AnnJ(R)(1− tn).
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If R is a complete intersection, then TZ[t±1](J(R)) = AnnJ(R)(1−t2) by Theorem 5.2.6,

since [5, Thm 5.2] shows that a module M over a complete intersection is periodic if

and only if Ω`M ∼= Ω2+`M for `� 0. For a Gorenstein ring R, however, [M ] torsion

in J(R) for an R-module M need not imply that (1 − t2)[M ] = 0. Indeed, for each

n ∈ N, there exists an Artinian Gorenstein local ring with a periodic module of period

n; see [7, Ex 3.6].

We note that there also exist Gorenstein local rings with no nonfree eventually

periodic modules. In order to give such an example, we recall the following definition

from [2].

Definition 5.2.16. Let (R,m, k) be a local ring andM a finitely generated R-module.

Note that the property ∂(F) ⊆ mF of a minimal free resolution F of M allows one

to form for each j ≥ 0 a complex

linj(F) = 0→ Fj
mFj

→ · · · → mj−nFn
mj+1−nFn

→ · · · → mjF0

mj+1F0

→ mjM

mj+1M
→ 0

of k-vector spaces. M is Koszul if every complex linj(F) is acyclic.

When R is a graded k-algebra generated in degree 1 and M is a graded R-module

generated in a single degree, say d, then M is Koszul if and only if M has a d-linear

free resolution.

The following proposition shows that, using [2], one can construct Gorenstein rings

over which no nonzero nonfree module is eventually periodic.

Proposition 5.2.17. Let (R,m, k) be a Gorenstein local ring with m3 = 0. If e ≥ 3,

then every nonfree R-module has Betti numbers which are eventually strictly increas-

ing. In particular, R has no nonzero nonfree eventually periodic modules.
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Proof. It suffices to consider indecomposable modules. In [2, Thm 4.6], it is proved

that any indecomposable R-module is either Koszul or a cosyzygy of k. Since e ≥ 3,

the growth of the Betti numbers of k is exponential; see [2, Thm 4.1]. Thus we may

focus on the Koszul modules.

Let M be a nonfree indecomposable Koszul R-module. The ring R is Koszul by

[2, Thm 4.1] since rankk(0 : m) ≤ e− 1. We note that m2M = 0.

Indeed, if m2M 6= 0, choose x ∈ M such that m2x 6= 0. Let ϕ : R → M be the

homomorphism with ϕ(1) = x. Since R is Gorenstein, (0 : m) ⊆ I for every nonzero

ideal I of R. Then, since ϕ is injective on (0 : m), it is injective on R. Since R is

self-injective, ϕ splits. Thus R is a direct summand of M , which is a contradiction.

Then [2, Prop 3.1] yields the following equality:

PR
M(t) =

HM(−t)
HR(−t)

, (5.2)

where HM(t) is the Hilbert series of M , that is,

HM(t) =
∞∑
i=0

rankk
(
miM/mi+1M

)
ti.

Next, we show that the Betti numbers of M are eventually strictly increasing.

Since m2M = 0, we have HM(−t) = a− bt for some a, b ∈ Z≥0. Then Equation (5.2)

yields the following equality:

a− bt = (1− et+ t2)PR
M(t).

By comparing coefficients, we find the following recursion relation on the Betti num-
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bers of M .

β0(M) = a.

β1(M) = eβ0(M)− b.

βn+1(M) = eβn(M)− βn−1(M) for n ≥ 1.

As M is not free, M has infinite projective dimension by the Auslander-Buchsbaum

formula [4, Thm 1.3.3]. Then since Betti numbers are nonnegative integers, there

exists an N ∈ N such that βN+1(M) ≥ βN(M). Using this inequality and the recursion

relation, we have

βN+2(M) = eβN+1(M)− βN(M)

≥ (e− 1)βN+1(M).

Since e ≥ 3, this inequality implies that βN+2(M) > βN+1(M). Iterating this process,

we find that βn+2(M) > βn+1(M) for all n ≥ N . Thus the Betti numbers of M

eventually strictly increase, and therefore M is not eventually periodic.

Example 5.2.18. The ring R = k[x, y, z]/(x2−y2, x2−z2, xy, xz, yz) is a Gorenstein

local ring with m3 = 0 and e = 3. By Proposition 5.2.17, R has no nonzero nonfree

eventually periodic modules.
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Poincaré series, 4, 6

projective dimension

finite, 6, 7, 8, 13, 18–20

infinite, 6, 9, 45

Schanuel’s Lemma, 5, 6, 14, 15, 27, 32

Snake Lemma, 13, 28

socle, 42

syzygy, 1–4, 6, 8, 9, 13, 14, 16, 17, 23,

26, 27, 30, 38

unique for local ring, 8, 21, 29

torsion, 3, 4, 29, 35, 36–43


	Periodic modules over Gorenstein local rings
	

	tmp.1366083583.pdf.Zh1vT

