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Introduction
Organisms in general experience an array of factors in 

shaping their geographic distributions. These factors are stud-
ied in the field that is coming to be called distributional ecol-
ogy and range from spatial to environmental and historical to 
current; as such, the complexity of the situation is quite im-
pressive. The field of distributional ecology is simultaneously 
pretty old (Grinnell, 1914; 1917a; 1917b) and quite new and 
novel (Soberón and Nakamura, 2009; Peterson et al., 2011)—
distributional ecology centers around the question of why 
populations of a species are where they are, and why they 
are not where they are not. These ideas became popular with 
the development of large-scale and openly accessible data re-
sources (Peterson et al., 2016), and of sophisticated computa-
tional algorithms for relating known occurrences of species 
to raster (that is, grid-based) GIS datasets to discover dimen-
sions ostensibly of the fundamental ecological niche (Esco-
bar and Craft, 2016). This old-and-new field has now seen in-
tensive research attention from across the fields of ecology, 
biogeography, and systematics, and even fields as far afield 
as public health, invasion biology, and agricultural planning 
(for example, Mainali et al., 2015; Reddy and Nyári, 2015; 
Samy et al., 2016; Ramírez-Gil et al., 2019).

Parasites, of course, present several additional levels and 
dimensions of complexity for distributional ecology. The dis-
tributions of many free-living organisms (for example, plants, 
birds, fish) were hypothesized originally by Grinnell (1917b) 
to be shaped primarily by abiotic factors (for example, tem-
perature, soil pH, precipitation; the important point is that 
these factors are unaffected by the presence of the species 
in question). However, parasites often have additional con-
straints. In particular, Hutchinson (1957) outlined a more 
complex and comprehensive niche theory that included both 
abiotic and biotic dimensions—these latter biotic dimensions 

may or may not be important in shaping geographic-scale dis-
tributions of species (Anderson, 2017). As a consequence, Pe-
terson et al. (2011) proposed the Eltonian Noise Hypothesis, 
the proposition that biotic interactions do not frequently con-
strain geographic-scale distributions of species (Peterson et 
al., 2011). This hypothesis—to the extent that it holds true—
allows researchers to focus on ecological niches in terms of 
abiotic factors solely (Peterson et al., 2011). Of course, par-
asite distributions may be much more complicated in that bi-
otic interactions are at times absolute: Some parasites may 
be incapable of surviving without specific host species be-
ing present. In sum, careful thinking about the distributional 
ecology of parasites will involve more complexity than is re-
quired for free-living organisms (Peterson, 2008; 2014; Es-
cobar and Craft, 2016).

This chapter will provide a review of conceptual bases for 
distributional ecology. However, distributional ecology is a 
broad area of inquiry, such that a full and exhaustive review 
of the field would be too lengthy. As such, in this chapter, the 
focus is on what is presently perhaps the most popular meth-
odology—that of correlative ecological niche modeling—
in the parasitology literature over the past couple of decades. 
Still, without a doubt, other approaches and ideas should also 
be brought to bear on these questions, as insights based on 
multiple, complementary sets of analyses from distinct per-
spectives will generally be more robust and more likely to 
prove true in the long run.

Conceptual Framework
Early thinking about parasite distributional ecology was 

laid out by Pavlovsky (1966), who posited that foci (‘nidi’) of 
pathogen transmission are driven by interactions among var-
ious components of ecosystems. However, a genuinely syn-
thetic understanding is still lacking (it is also lacking more gen-
erally for free-living, non-parasitic organisms, by the way!). 
That is to say that, yes, several concepts are well-known: The 
fundamental ecological niche, which represents an upscaling 
of organismal environmental physiology, and relates the per-
sistence or fitness of a population or set of populations to a par-
ticular set of environmental conditions (Peterson et al., 2011). 
The fundamental ecological niche can be modified by biotic 
interactions to yield the realized ecological niche (Hutchin-
son, 1957); most treatments have assumed that these interac-
tions are negative (for example, competition, parasitism, pre-
dation), but positive interactions can also exist. These various 
niches translate into the geographic distribution of the pop-
ulation or species, but in non-specific and non-linear ways, 
thanks to the complexities of the relationships between geo-
graphic and environmental spaces, which has been termed the 
Hutchinsonian Duality (Colwell and Rangel, 2009).
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Early contributions in distributional ecology included the 
concept of an ecological niche that is defined in terms of 
physical characteristics of the environment (Grinnell, 1917a; 
1917b), which has been termed the Grinnellian niche, and is 
roughly equivalent to a fundamental ecological niche defined 
only in abiotic (non-interactive) dimensions. Later came the 
idea of the niche being defined in multidimensional spaces 
and the contrasting ideas of fundamental and realized niches 
(Hutchinson, 1957). Perhaps least famous but most impor-
tant is the idea of the existing niche as the subset of the fun-
damental niche that is manifested on regions that have been 
accessible to the species (known in previous literature as po-
tential niche; Pulliam, 2000). Although different terminol-
ogies do exist (Sillero, 2011), the focus here is on what is 
probably the most comprehensive theoretical framework in 
distributional ecology as regards ecological niches of species 
(Soberón and Peterson, 2005; Soberón and Nakamura, 2009; 
Peterson et al., 2011).

Grinnell (1917b) developed his niche ideas in terms of tol-
erances with respect to physical characteristics of the envi-
ronment, so these environmental dimensions are now called 
Grinnellian environmental variables (Tingley et al., 2009). 
In modern terminology, those physical characteristics are 
termed non-interactive variables, as they are independent 
of the presence of the species in question: The presence or 
absence or high or low abundance of the species in question 
does not affect Grinnellian variables, such as annual mean 
temperature (Peterson et al., 2011). Hutchinson (1957) in-
troduced the idea of biotic interactions as a modifying factor 
in distributional ecology—these biotic factors (for example, 
presence of prey or a host, absence of a predator, absence of a 
pathogen) are now known as interactive variables (Peterson 
et al., 2011), and are those that are affected by the presence 
of the species in question, as direct feedbacks exist between 
abundance of the species of interest and these variables—for 
example, prey density.

The environments manifested across the suite of geo-
graphic sites that are within the species’ fundamental eco-
logical niche are referred to as the existing niche, which is 
the set of conditions that the species has explored and tested, 
and where the species could potentially establish populations. 
Given the challenges of understanding where a species could 
potentially maintain populations, compared to where it actu-
ally is present, Soberón and Peterson (2005) emphasized the 
idea that geographic distributions are limited not just by niche 
considerations, but also by dispersal ability and access, such 
that they proposed the so-called BAM framework. Accord-
ing to the BAM framework, the occupied geographic dis-
tribution of a species represents the 3-way intersection of 
the areas suitable with respect to interactive variables (B for 

biotic), areas suitable with respect to non-interactive vari-
ables (A for abiotic), and areas accessible to the species over 
relevant periods of time (M for mobility).

Species, however, are distributed simultaneously in 2 
linked spaces: The BAM diagram is cast in geographic di-
mensions, whereas niches are manifested in environmental di-
mensions. This dual-space nature of distributions of species is 
referred to as the Hutchinsonian Duality (Colwell and Ran-
gel, 2009), which is the complex and non-linear set of con-
nections between geographic and environmental spaces, and 
the idea that the species must maintain a non-null distribution 
in both spaces continuously and simultaneously. This con-
cept leads to the discussion of distributions of species in en-
vironmental dimensions as different sorts of niches and dis-
tributions of those same species in geographic dimensions as 
geographic distributional areas. The fundamental niche rep-
resents that set of environmental conditions (in non-interac-
tive dimensions) within which the species can maintain pop-
ulations without immigrational subsidy. The intersection of 
the fundamental niche with the set of environments repre-
sented across M (the area accessible to the species over rel-
evant time periods) is termed the existing niche (equivalent 
to the putative potential niche of Pulliam, 2000), and the re-
duction of the existing niche by the set of environments that 
are suitable for the species in interactive (biotic) dimensions 
is the realized niche (Peterson et al., 2011). These ideas are 
presented diagrammatically in Figure 1, as is the idea that the 
biotic influences themselves reflect BAM-type interactions of 
each interacting species. 

In sum, the above is a brief, text-based summary of ma-
jor concepts in distributional ecology. In effect, in hand, is 
a taxonomy of distributional areas and ecological niches, 
such that one can be explicit and clear in discussing and de-
scribing distributional phenomena. It is not enough to say, “I 
am developing a niche model” or “I am developing a distri-
bution model” (see title of Godsoe, 2010: “I can’t define the 
niche but I know it when I see it ...”), because the question 
then has to be asked as to which niche or which distribution 
is the object of modeling. Rather, if distributional ecology is 
to be a rigorous area of inquiry, explicit terminology becomes 
crucial; the above description is an attempt to provide such a 
framework for such a terminology (see Table 1 for detailed 
definitions of each of these concepts). 

Relevant Questions in Distributional Ecology
Hutchinson’s Duality indicates that the field of distri-

butional ecology can (and indeed must) explore both geo-
graphic and environmental dimensions of distributions of spe-
cies. That is, on one side, questions are feasibly addressed 
that have to do with geographic distributions. For example, 
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Figure 1. Summary of basic principles of distributional ecology, adapted to parasite biology. Specifically, at the left is the BAM diagram, 
a heuristic useful for conceiving of a species’ geographic distribution as the geographic area that (1) fits the species’ abiotic requirements 
(blue circle), (2) includes all necessary biotic conditions (green circle), and (3) is accessible to the species via dispersal (red circle). At the 
right is a hypothetical parasite life cycle, in which a parasite passes through a free-living stage, and subsequently infects an intermediate 
host, and is passed by a vector to a definitive host. Each of these steps in the cycle involves a set of interactions with abiotic and biotic en-
vironments, and access to a restricted set of areas (that is, a BAM intersection for each species in the parasite cycle), such that the 4-way 
interaction shown in the center of the life cycle would be a hypothesis of the possible geographic distribution of the parasite. Source: A. T. 
Peterson, 2019. License: CC BY-NC-SA 4.0.

Concept Notation Relationship Concept Notation 

Fundamental niche  NF 𝜂𝜂(𝐀𝐀) ⊆ 𝐍𝐍𝐹𝐹 Abiotically (non-interactive) suitable area A 

Existing niche NF* 𝐍𝐍𝐹𝐹 ∩ 𝜂𝜂(𝐌𝐌)   

Realized niche NR NF*∩ 𝜂𝜂(𝐁𝐁)   

  𝐀𝐀 ∩ 𝐁𝐁 ∩ 𝐌𝐌 Occupied distributional area GO 

  𝐀𝐀 ∩ 𝐁𝐁 Potential distributional area GP 

  GP - GO Invadable distributional area GI 

   Biotically (interactive) suitable area B 

   Accessible area M 

   Presence sites for the species G+ 

 

 

Table 1. Summary of concepts and ideas relevant to species’ geographic and environmental distributions. Note that the operator η(X) indi-
cates the set of environments associated with some area X in geographic space.
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what is the full geographic distribution of a parasite and what 
host species likely remain to be discovered and documented? 
If closely related species tend to share the same fundamen-
tal ecological niche (Peterson et al., 1999; Peterson, 2011), 
then these techniques can also be used to make predictions 
regarding the location of undescribed species (Raxworthy et 
al., 2003; Peterson and Navarro-Sigüenza, 2009). Similarly, 
if fundamental ecological niches remain stable across time 
and if one has raster data layers that describe environmental 
conditions both at present and in the future or past, one can 
assess or anticipate future or past potential distributional pat-
terns of the species.

On the environmental side, one can feasibly explore the 
suites of conditions associated with the distribution of a spe-
cies, interpreting those conditions as manifestations of the 
species’ realized ecological niche. For parasites in partic-
ular, questions of realized versus existing niches emerge, 
as the degree to which a parasite’s range is a function of 
its own requirements versus those of its host(s) is a criti-
cal question in distributional ecology (Maher et al., 2010). 
Ideally, a deep and detailed understanding of the various 
niches of a species (that is, realized, existing, fundamen-
tal) should permit a predictive understanding of its distri-
bution in time and space, and in relation to other species, 
including parasites, vectors, hosts, and other competitor par-
asites. Of particular interest is the opportunity to estimate 

the fundamental niche, as a fundamental niche represents 
an evolved characteristic of a species and should be able to 
be transferred to diverse sets of environmental conditions 
to hypothesize distributional potential.

Methodology and Study Design
Ecological niche modeling requires 2 major data inputs, 

and a number of decisions regarding strategy and parameter 
values (see Figure 2 for a diagrammatic summary, and book-
length methodological summaries: Franklin, 2010; Peterson 
et al., 2011; Peterson, 2014; Guisan et al., 2017). The first 
data input is that of species occurrence data—that is, geo-
graphic coordinate pairs that correspond to locations where 
the species is known to have occurred. Of course, these data 
need to be explored, and erroneous or inconsistent records 
need to be detected and removed (Chapman, 2005; Cobos et 
al., 2018); frequently, geographic coordinates and associated 
uncertainty measures and documentary metadata need to be 
added to the data records (Chapman and Wieczorek, 2006). 
Finally, the occurrence data must be inspected for areas of 
overly intense sampling, duplicate records, or imprecise re-
cords, to avoid introducing biases. 

The other major data input is that of environmental data, 
in the form of raster GIS data layers. Most niche-modeling 
algorithms require that these data layers have the same grid 
system (that is, spatial resolution, origin, and orientation), 

Figure 2. General summary of flow of work, inputs, and products, in ecological niche modeling. Blue boxes indicate data inputs, gray boxes 
are steps in the process, and gold boxes are outputs. Arrows direction denotes the flow of information. Source: A. T. Peterson, 2019. Li-
cense: CC BY-NC-SA 4.0.
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and indeed most studies have centered on a single climate 
summary (Hijmans et al., 2005), but one must think more 
deeply than just that. Rather, in ecological niche modeling, 
the modeler does not have much freedom to explore massive 
numbers of environmental dimensions because of problems 
with model overfitting in too-highly-dimensional environ-
ments (Peterson, 2007), so modelers must choose carefully 
the most interesting or relevant dimensions associated with 
the persistence of populations of a species. Of course, one 
approach is simply to “let the data choose,” and use the niche 
modeling algorithm as a sort of data-mining algorithm, but 
generally a better approach is to assess what is known of the 
species’ natural history, and to pick environmental data lay-
ers accordingly.

Once the data streams are identified and prepared, then 
the niche modeler must begin to integrate them. A first step 
is that of estimating the accessible area M, which ends up 
being the key area over which models should appropriately 
be calibrated (Barve et al., 2011). A further step is that of 
assessing or approximating the relative configuration of the 
BAM diagram for that particular species in that particular 
situation, because certain BAM configurations invariably 
lead to bad models that have little or no predictive power 
(Saupe et al., 2012; Qiao et al., 2015). A few adjustments 
can be made, though some situations simply are not appro-
priate for modeling.

Actual niche model calibration is accomplished by 
means of various algorithms (see illustrations in Figure 3). 
The algorithms range from the simplest, BIOCLIM, which 
is an approach to delineating niche estimates as orthogo-
nal tolerance limits in different dimensions based on ob-
served ranges of values, to complex multivariate statisti-
cal and machine-learning approaches. Each of this diversity 
of approaches to estimating niches has its own complexi-
ties about how it can and should be calibrated and executed 
(Muscarella et al., 2014; Sánchez-Tapia et al., 2017). At the 
end of the model calibration process, the model is generally 
evaluated via some sort of test of its ability to predict inde-
pendent data sets, usually in geographic space. These tests 
can be threshold-dependent or threshold-independent, but all 
devolve into testing how well the model anticipates the in-
dependent occurrence data sets in the smallest area possible 
(Fielding and Bell, 1997). Once models are calibrated and 
evaluated, they can be interpreted, or transferred to other 
times or other regions.

A Worked Example
Here, as an example of the concepts described above, and 

a bit of an illustration of the inferences that can and cannot 
be derived from ecological niche modeling of parasites. The 

wasp Vespula austriaca is analyzed as an obligate parasite 
of its congener V. rufa (Taylor, 1939). Occurrence data were 
gathered for the 2 species from the Global Biodiversity In-
formation Facility (February 28, 2019; queries are available 
at doi: 10.15468/dl.blijyg and doi: 10.15468/dl.w6spai), and 
reduced their coverage to western Europe, where point densi-
ties were greatest, as a proxy of areas where the species have 
established successful populations. Figure 3 presents visu-
alizations of the distribution of the 2 species in geographic 
and environmental spaces. 

A first consideration is that of how to characterize the 
fundamental niches of the species, and many methodologi-
cal options are available. Focusing for the moment on Vesp-
ula rufa, the host species, one of the classic approaches to 
ecological niche modeling is the so-called BIOCLIM ap-
proach (Nix, 1986), which basically consists of defining 
tolerance limits independently in each environmental di-
mension, creating a multidimensional parallelepiped (Fig-
ure 4). This area nicely incorporates all (or nearly all) of the 
records of the species, but it also tends to include too much 
environmental space. More modern methods, however, such 
as Maxent, boosted regression trees, random forests, and 
general additive models, tend to be more complex in the re-
sponse types that they reconstruct, which has been seen as 
an advantage (shown diagrammatically in Figure 4; Elith 
et al., 2006). However, an emerging realization is that such 
highly complex reconstructions of response types may not 
be particularly biologically realistic, as theory and experi-
mental results from physiological studies suggest that fun-
damental niches should be relatively simple, and effectively 
convex in environmental space (Maguire, 1973). As such, a 
more appropriate model of a fundamental niche might en-
force the simple and convex nature of these niches (see Fig-
ure 4, ellipsoid model). 

A final point regards the parasite and its distribution. Sev-
eral studies in the literature indicate that Vespula austriaca 
is an obligate parasite that focuses on V. rufa across its Eu-
ropean distributional area. This idea is borne out by the co-
distribution of the 2 species, such that no sites are apparent 
where V. austriaca exists in areas where V. rufa is not at least 
close by (Figure 3). As such, one can take the environmental 
distribution of the host as defining the biotically suitable area 
B for the parasite; the final panel of Figure 4 shows the envi-
ronmental distributions of the 2 species together and points 
out some possible niche limitation of V. austriaca even within 
the bounds set by the ecological niche of V. rufa. Note that 
the niche of the parasite remains undefined on 2 sides sim-
ply because sites presenting environments in those directions 
are either 1) not accessible to the parasite or 2) not within the 
niche of the parasite’s obligate host.
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Figure 3. Summary of the distribution of one host-parasite system (Vespula rufa and V. austriaca, respectively, across western Europe, 
shown on top of the annual mean temperature data set (red = high, blue = low) (Hijmans et al., 2005). In the lower panel, the 2 species are 
shown in relation to the environments available across the region (in medium gray). Source: Adapted from Hijmans et al. (2005). License: 
CC BY-NC-SA 4.0.
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Published Examples
Parasitology has a rich history of interest in distributions 

and environmental constraints on distributions, yet it has not 
seen an abundance of distributional ecology studies, in the 
modern, quantitative sense. Where parasites have been an-
alyzed in greatest detail is certainly as regards pathogenic 
organisms, including viruses (for example, Kearney et al., 

2009; Oliveira et al., 2013; Campbell et al., 2015; Escobar et 
al., 2015a), bacteria (for example, Eisen et al., 2006; Giles et 
al., 2010; Escobar et al., 2015b), simple eukaryotes (for ex-
ample, Foley et al., 2008; Kulkarni et al., 2010; Gurgel-Gon-
çalves et al., 2012; Escobar et al., 2014; Ramsey et al., 2015), 
and a cutting edge papers on macroparasites (for example, 
Botero-Cañola et al., 2019; Botero-Cañola and Gardner, 

Figure 4. An illustration of methods and some key ideas in ecological niche modeling. Top panels and bottom-left panel are focused on Vesp-
ula rufa (the host species): Gray dots show the set of environments that is accessible to the species across western Europe, whereas the blue 
diamonds are the occurrences of the species. The gray and black lines show the set of environments that might be “chosen” as within the 
species niche under different approaches. Finally, the bottom-right panel shows the parasite (V. austriaca) distribution on top of that of the 
host and the available environments. The yellow-and-black line separates the distribution of the parasite (red points) from areas in which 
the host is available (blue diamonds), yet few parasite records are available (note that the great bulk of the parasite records comes from be-
low the yellow-and-black curve), suggesting niche limits for the parasite, independent of the host’s niche. Source: A. T. Peterson, 2019. Li-
cense: CC BY-NC-SA 4.0.
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2023; Haverkost et al., 2010; Gentry et al., 2016). However, 
some of pathogen-related studies mentioned above generally 
assess the occurrence of the disease per se, and often neglect 
the independent distributional potentials of the parasite and 
host. That is, they treat the disease transmission system as a 
black box that results in human, other (non-human) animal, 
or plant disease (Peterson, 2014). Black box models have 
the advantage of integrating over the entire transmission cy-
cle of a parasite or pathogen, but have the failing of not fo-
cusing on the ecological niche of any species in particular, 
and of being easily biased by regional differences in sam-
pling intensity, diagnostic capacities, or reporting frequency 
(Waller et al., 2007).

Distributions
Most parasite-oriented studies in distributional ecology 

have focused on distributional questions. That is, most stud-
ies have taken known occurrences and have attempted to pre-
dict the full geographic distribution of the disease (for ex-
ample, Sehgal et al., 2010; Machado-Machado, 2012). Rarer 
are studies that include careful testing with independent data 
(for example, Escobar et al., 2015a; Botero-Cañola et al., 
2019; Botero-Cañola and Gardner, 2023). Other studies in-
clude model transfers to future conditions, where distribu-
tional shifts are anticipated that will likely manifest eventu-
ally as changing disease occurrence patterns (Rödder et al., 
2010; Rose and Wall, 2011; Suwannatrai et al., 2017; Alk-
ishe et al., 2018).

Perhaps most interesting is the potential for developing 
fine-resolution distributional summaries for species, even 
across complex and poorly sampled landscapes. Here, when 
fine-resolution occurrence data, such as those that are derived 
from GPS georeferencing for recent field records, are avail-
able, they can be integrated with equally fine-resolution envi-
ronmental data deriving from remote sensing. The result is a 
highly precise and detailed mapping of the distributional po-
tential of the species across broad landscapes, thanks to the 
pairing of fine-resolution data on both occurrence and envi-
ronment. Examples include applications to understanding the 
spatial distribution of likely avian influenza risk across South-
east and East Asia (Gilbert et al., 2007; Xiao et al., 2007; Gil-
bert et al., 2008; Dhingra et al., 2016) and other regions (Bod-
byl-Roels et al., 2011), fine-scale predictions of triatomine 
distributions in Mexico (López-Cárdenas et al., 2005), and 
others, although exploration of the full diversity of remote-
sensing data products is likely still in its infancy in distribu-
tional ecological studies.

Finally, it is worth mentioning that studies of this general 
sort that are specifically interpreted in the context of infec-
tion risk—that is, including additional processing beyond just 

modeling the niche and estimating A in the BAM diagram—
are relatively rare (Ostfeld et al., 2006; Estrada-Peña et al., 
2014; Ostfeld et al., 2018). The ideas central to this step (that 
is, risk mapping) are treated in detail in a book-length contri-
bution (Peterson, 2014).

Niches
On the niche and environment side, this suite of techniques 

has perhaps seen much less application to those questions. 
An early contribution (Costa et al., 2014) explored ecologi-
cal niche variation within a key complex of vector insects that 
transmit Chagas disease, but failed to distinguish between 
fundamental and existing niches, which wasn’t well appreci-
ated at that time. A later contribution, also focused on Cha-
gas vectors, documented niche differentiation within the Tri-
atoma dimidiata complex more rigorously (Gómez-Palacio 
et al., 2015), including detailed background similarity testing 
(Warren et al., 2008), to avoid misinterpreting existing niche 
differentiation as fundamental niche differentiation. 

Niches and Distributions
On a more synthetic level, one suite of analyses has gone 

deep into the interaction between sampling and reporting 
of pathogen occurrences and their likely geographic dis-
tributions (Del Valle et al., 2018), with deep integration of 
dispersal opportunity and ecological niche, to get at trans-
mission risk more or less rigorously (Escobar et al., 2016). 
Another study, focused on the plague transmission system, 
assembled information on human cases, animal detections 
of the pathogen, and the broader distributions of the host 
mammal species, to test whether the distribution of plague 
is a function of the distributions of its hosts, or rather on its 
own distributional potential (Maher et al., 2010). This work 
was echoed later in an assessment of a plant-parasite system 
(Lira-Noriega and Peterson, 2014). Finally, one early anal-
ysis focused on using distributional estimates from ecologi-
cal niche models to predict the mammal hosts of triatomine 
bugs in the Protracta group of species within the genus Triat-
oma, and the predictions turned out to be quite predictive of 
host-parasite associations (Peterson et al., 2002). This sort of 
deeper, and more synthetic, application of distributional ecol-
ogy tools to parasite distributions is rare, but is quite promis-
ing as regards making concrete contributions to understand-
ing parasite distributions.

For macroparasites, early explorations managed to outline 
the potential of these methods and demonstrate some of the 
interest in their potential (Haverkost et al., 2010), and region-
ally focussed studies have recently been published, focusing 
on a Echinococcus multilocularis, a pathogenic cestode by 
Botero-Cañola et al. (2019) and a general test of latitudinal 
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variation in parasitism using museum collections based data 
(Botero-Cañola and Gardner, 2023). Meanwhile global geo-
graphic summaries of key groups have also been published 
(Feidas et al., 2014). Chaiyos et al. (2018) developed detailed 
niche models for a number of macroparasites in humans in 
Thailand and explored their results in both geographic and 
environmental spaces. Lira-Noriega et al. (2013) developed 
detailed analyses to assess whether biotic drivers (that is, host 
associations) versus Grinnellian niches drove distributions of 
parasitic mistletoe distributions. 

Future Perspectives
Distributional ecology has progressed from a descrip-

tive effort (for example, making a map by hand) to a quan-
titative effort, and the quantitative approaches have moved 
from shots in the dark (“look, this works!”) to steps that are 
firmly based in ecological theory, in just a few decades. As 
such, the field is exciting and vibrant, and is seeing inten-
sive research attention across many taxa and across many 
fields. Still, applications in parasitology have lagged some-
what, leaving many opportunities for exciting steps forward 
in understanding geographic and environmental distributions 
of many types of parasites.

Parasite applications in distributional ecology may be 
more complicated than most such studies, because of the fre-
quent negation of the Eltonian Noise Hypotheses—that is, 
interactions with other species often do matter to parasites, 
at least in many cases. Indeed, one of the most useful test-
ing frameworks has almost never been applied in parasitol-
ogy: If one has a hypothesis about a biotic interaction, one 
can build ecological niche models that include and exclude 
that interacting species (for example, a host). One can then 
assess quantitatively whether the models with the interactor 
are better (for example, in predictive challenges, or in terms 
of maximum likelihood) than the models without the interac-
tor (Atauchi et al., 2018). Such simple assessments have the 
potential eventually to understand some of the most funda-
mental elements of distributions of parasites—are their dis-
tributions governed by the niches of their hosts, or do they 
have meaningful niche constraints on their own?

More fundamentally, though, applications of ideas from 
distributional ecology to questions in parasitology must 
weigh very carefully the conceptual framework of the ques-
tion, in order to proceed to deeper and more interesting ques-
tions. That is, a world of exciting questions abounds, such 
as the environmental dimensions of and constraints on the 
process of host-parasite co-speciation, or micro-scale ver-
sus macro-scale niche dimensions that may constrain para-
site distributions at multiple scales, and how different types of 
niches (for example, realized or fundamental) may be broader 

or narrower at different spatial scales. The challenge, how-
ever, is to assemble a methodology that responds first to the 
conceptual foundations, and then is adapted and applied to 
the specific case of the parasite in question. Once such con-
ceptual rigor is in hand, exciting distributional ecology re-
sults will emerge for parasitology.
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