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Constructing stability landscapes to identify alternative states in coupled
social-ecological agent-based models

Patrick Bitterman® and David A. Benneit’

ABSTRACT. The resilience of a social-ecological system is measured by its ability to retain core functionality when subjected to
perturbation. Resilience is contextually dependent on the state of system components, the complex interactions among these
components, and the timing, location, and magnitude of perturbations. The stability landscape concept provides a useful framework
for considering resilience within the specified context of a particular social-ecological system but has proven difficult to operationalize.
This difficulty stems largely from the complex, multidimensional nature of the systems of interest and uncertainty in system response.
Agent-based models are an effective methodology for understanding how cross-scale processes within and across social and ecological
domains contribute to overall system resilience. We present the results of a stylized model of agricultural land use in a small watershed
that is typical of the Midwestern United States. The spatially explicit model couples land use, biophysical models, and economic drivers
with an agent-based model to explore the effects of perturbations and policy adaptations on system outcomes. By applying the coupled
modeling approach within the resilience and stability landscape frameworks, we (1) estimate the sensitivity of the system to context-
specific perturbations, (2) determine potential outcomes of those perturbations, (3) identify possible alternative states within state
space, (4) evaluate the resilience of system states, and (5) characterize changes in system-scale resilience brought on by changes in

individual land use decisions.
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INTRODUCTION

The current state of a social-ecological system (SES) is one
realization of many possible outcomes. Each potential state has
aset of characteristics (e.g., sustainability, resilience, performance
metrics) related to its desirability to humans and its relationship
with other systems. Systems can transition between states in
response to internal processes, external perturbations, or
purposeful adaptation. The resilience paradigm, a concept with
academic roots reaching back decades (Holling 1973), is one way
to conceptualize these state changes.

The trajectory of human development has long been considered
unsustainable (Meadows et al. 1972, Kates et al. 2001), and the
resilience of SESs remains an important and contemporary issue
as societies are faced with increased uncertainty associated with
the nature and magnitude of key system pressures (e.g., global
climate change, resource scarcity, stagnant economic growth)
(Gordon 2012). However, the task of modifying a system to
become more resilient while balancing trade-offs among
alternative goals (e.g., profitability, biodiversity) within a complex
network of interacting processes represents a significant challenge
(DeFries et al. 2004, Bennett et al. 2009, Carpenter et al. 2009).
Further, although resilience is often considered a positive trait,
attempts to increase resilience can also lock a system in an
undesirable state (e.g., a poverty trap between resource
exploitation and low income) (Allison and Hobbs 2004,
Carpenter and Brock 2008). Adaptation without an
understanding of the complex interactions that drive system
dynamics or the range of plausible consequences can produce
undesirable and increasingly unsustainable outcomes (Walker et
al. 2006). Therefore, methods are needed to understand the
resilience of the system’s current state, search for plausible
alternative future states, and evaluate these states in the context
of resilience, sustainability, and societal goals. To that end, we

developed a stylized agent-based model (ABM) of a tightly
coupled SES to explore how the resilience of a highly engineered,
seemingly locked-in, agricultural watershed emerges from the
interactions among individual land users (farmers) in shifting
policy and climatic contexts.

The history and applications of resilience have been capably
reviewed in numerous contexts (see Cutter et al. 2010, Zhou et al.
2010, Morecoft et al. 2012). Resilience in the academic literature
often takes on overlapping meanings, including a way of thinking,
an organization of concepts (e.g., adaptive capacity,
transformability, robustness), or a property of a system (Zhou et
al. 2010, Baggio et al. 2015). Models of ecological resilience often
feature a system of differential equations that describe biophysical
processes, and isocline plots that identify potential states (Walker
et al. 1981, Rinaldi and Scheffer 2000, Carpenter et al. 2001).
These methods have been applied in a wide array of contexts,
including biodiversity (Peterson et al. 1998) and catastrophic
shocks to ecosystems (Scheffer et al. 2001). In these cases, human
influence on the system is typically abstracted as a generator of
external perturbations, and resilience is dependent on natural
processes and feedbacks (Janssen and Carpenter 1999).

In geographic applications, resilience is often focused on the
ability of particular places to adopt sustainable development or
adaptive management practices (Adger and Vincent 2005,
Gunderson et al. 2006, Anderies et al. 2013), typically in the
context of global climate change or climate change-related
hazards (Cutter and Finch 2008, Adger et al. 2011). Past hazard
exposure and response (Cutter et al. 2010, Lam et al. 2015), and
shifts in the variance of system properties are possible a priori
indicators of state transitions and resilience (Carpenter and Brock
2006, Scheffer et al. 2009). Additionally, the scale and spatial
structure of the SES and of the network of connected systems
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can affect a system’s resilience (Cumming et al. 2006, Janssen et
al. 2006). However, resilience is ultimately observable only post
hoc—after a system has responded to a perturbation, maintaining
or regaining the functionality of its preperturbation state or
shifting to some new functional regime.

Dynamic models that integrate human behavior pose further
challenges, as the heterogeneity in individual human experiences,
interactions, and context is key to understanding macrolevel
patterns and outcomes. The nonlinear processes and cross-scale
interactions among coupled-system components create aggregate
complexity (Manson 2001), which precludes deterministic
modeling techniques. Therefore, we view spatially explicit
modeling approaches as vital in estimating resilience and in
discovering potential (dis)equilibrium states. Agent-based models
provide a unique method for simulating the multiple entities,
interactions, and processes that link social and ecological systems
across space, time, and multiple scales. Agent-based models are
useful in the resilience context because they provide a method of
linking individual and social processes (e.g., markets, policy-
making, power relationships, preferences) to spatially explicit
land use and environmental outcomes (Parker et al. 2003), thereby
addressing questions of resilience in a social-ecological context.
In a following section, we develop a definition of resilience that
is closely linked to the stability of system states (Holling 1973) in
a complex and context-dependent setting.

The stability landscape

While ecological and social resilience are recognized as being
linked (Adger 2000), there is untapped potential in
operationalizing the SES perspective to explicitly consider how
system-scale outcomes might emerge from social-ecological
interactions (Fischer et al. 2015). Methods originally applied to
ecological resilience, including the stability landscape framework
(Peterson et al. 1998, Carpenter et al. 2001, Scheffer et al. 2001),
can be generalized to the resilience of highly engineered SESs with
complex technologies and institutions. A stability landscape is a
multidimensional state space that represents all possible
combinations of state variables in a system (Walker et al. 2004).
Within this state space lie attractors of many sizes and shapes,
representing different stability characteristics (e.g., point
equilibrium, domain of attraction, runaway disequilibrium)
(Holling 1973, Ives and Carpenter 2007). As these attractors exert
a kind of gravitational pull on the system, some regions in state
space are more likely to be occupied. In the case of equilibrium
attractors, these locations are termed “basins of attraction,”
which are often represented as bowl-like depressions in 3-
dimensional state space, each corresponding to the qualitatively
different quasi-stable states a system can take. The size and shape
of a basin indicates the resilience of the corresponding state. For
example, a deeper or wider basin represents a more resilient state
than a shallow or narrow basin (Lewontin 1969, Folke et al. 2004,
Menck et al. 2013). This state space is dynamic, its topography
fluctuating due to changes within the SES that may affect the
location or height of a basin threshold (Scheffer et al. 2001). When
perturbed, a system may escape the attractor, cross the basin
threshold, and reach an alternative state, which results in a
functional change and a different set of controlling processes.

The stability landscape integrates a series of complex, interacting
concepts and components into a cohesive, understandable
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conceptual framework. It is easy to imagine alternative states, the
shapes of corresponding basins, and adaptations that might shift
the thresholds that separate states (Fletcher et al. 2014). However,
resilience, and therefore stability landscape topography, is
dependent not solely on system configuration but also on the
perturbation(s) of interest. Regime shifts that result from the
movement of a system from one basin to another are dependent
on the type, magnitude, and timing of perturbations, as well as
the cumulative effects of multiple disturbances and the rate of
system recovery (Scheffer et al. 2001, Folke et al. 2004). This is a
distinctly “specified resilience” view, which attempts to address
the resilience “of what to what” questions (Carpenter et al. 2001)
that investigate resilience in particular system contexts and
configurations, and to particular disturbances. Therefore, we
differentiate between traditional stability landscapes that contain
all possible outcomes, and a state space that considers only those
states that are attainable given the interaction between a particular
preperturbation state and a particular set of perturbations. This
state space may not be continuous, as windows of opportunity
(or disaster) may open or close, and some alternative states may
not be directly reachable from the current state of the system. This
approach to building stability landscapes is unlikely to find all
theoretical system states. It does connect, however, the current
state of a system to a particular set of disturbances and system
dynamics such that major system-changing events that might
push the system toward thresholds between states can be
identified and analyzed.

System of interest

We used the Clear Creek Watershed (CCW), a highly
instrumented and well-monitored watershed in east—central lowa
(Muste et al. 2013, Ding et al. 2015, Papanicolaou et al. 2015,
Schilling et al. 2015), to represent an agricultural production
system that is typical of the Midwestern United States, explore
human—environment interactions, and test scenarios under the
resilience framework. The current state of this SES is a landscape
dominated by intensive agriculture that is focused on corn and
soybean production, the functions and outputs of which are vital
to the economic health and cultural identity of the region.
However, the system’s current configuration (or state) is likely
unsustainable in the long run (Foley et al. 2011) and is subject to
economic and environmental perturbations that are likely to
increase in magnitude and frequency (Noble et al. 2014). Despite
these perturbations, the system has remained highly productive,
resilient to external disturbances, and resistant to transformation.
This relative stability is a result of institutional mechanisms and
technology (e.g., federal crop insurance, genetically modified
crops) that reinforce the resilience and robustness of a system that
promotes large scale, high yield agriculture. In this setting, farmer
decisions are the primary interface through which social processes
(e.g., commodity markets, government policy, social services)
affect biophysical processes and landscape outcomes.

Although the CCW SES is a complex network of causal
interactions and feedback loops (generalized in Fig. 1), ecological
function is dominated by farming practices, technologies, and
investments, and changes in these drivers can lead to alternative
system states (Antle et al. 2006). The resilience of the coupled
social-ecological system is the result of interactions among
individual farmer practices, broad-scale policy and regulations,
biophysical processes, and spatially explicit perturbations. The
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emergence of potential land use configurations and system states
is the result of farmer preferences and decisions, and their ability
to adapt to changing conditions within a given environmental and
policy context.

Fig. 1. Simplified schematic of the social-ecological system in
the Clear Creek Watershed. Farmer land use decisions provide
a key coupling among biophysical and social structures and
processes operating at a range of spatial and temporal scales.
Arrows indicate direction of interactions and potential
conduits for perturbations.
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Resilience in the context of the Clear Creek Watershed

The study of resilience presents a number of conceptual and
methodological challenges, the principal of which is an
operational definition of resilience. As discussed, resilience is an
expansive concept, growing and maturing as the work of Holling
and others has developed into a complex ecosystem of related
ideas, vocabularies, methods, and applications. In the context of
agricultural sustainability, resilience is historically viewed as the
maintenance of production despite disturbance (Conway 1985).
Therefore, for the purposes of this study, we use a definition of
resilience that is more closely related to engineering resilience
(Gunderson 2000) or stability (Holling 1973), and define a system
as resilient if it does not migrate to a new basin of attraction after
being affected by a perturbation. While this definition is narrower
than many in the literature (Zhou et al. 2010, Baggio et al. 2015),
we argue that a more focused approach is appropriate in this
context because it straightforwardly connects real-world systems
to the important, but abstract, insights drawn from the stability
landscape concept (i.e., distance to thresholds, relation between
the magnitude of a perturbation and the likelihood of migrating
to alternative basins).

The following section describes the methods used to construct
and parameterize both the coupled model and scenarios of
adaptation and disturbance. We then present and discuss the
results of a simulation, which include resilience estimates and a
series of stability landscapes for selected scenarios. By
operationalizing the stability landscape framework, we are able
to estimate the sensitivity of a system to perturbations, discover
potential alternative system states, and characterize changes in
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system resilience brought on by adaptation. This method provides
an initial step toward finding sustainable and resilient states for
this and other social-ecological systems.

METHODS

The coupled model

Our stylized model of the agricultural SES builds upon spatially
explicit and scale-dependent conceptual frameworks that view the
causal linkages spanning space, scale, and social and biophysical
processes as vital to understanding how coping, response, and
adaptation at various scales shapes system outcomes (Turner et
al. 2003, Cutter et al. 2008). Our model follows these frameworks
to explore the specified resilience of the system, which integrates
system and perturbation context (e.g., the nature, location, timing
of a disturbance), system connectivity, and the spatial variation
of relevant components and processes inside and outside the
system and across multiple scales (Adger et al. 2005, Kinzig et al.
2006, Anderies et al. 2013). As environmental resilience studies
have shown, state changes according to rules that govern the
physical environment can generally be explained with a series of
known equations (Carpenter and Brock 2006, Derissen et al.
2011). However, the inclusion of social actors and their requisite
agency, power relations, and irrationality requires a methodology
capable of modeling human behavior over space and scales, a task
well-suited to agent-based modeling. The implementation of an
ABM allows for the testing of theory, the exploration of causal
explanations and uncertainty, and the discovery of unexpected
outcomes in situations where shifts in climate or policy cannot be
directly tested (Parker et al. 2003).

The custom ABM is written in the Java programming language.
Model source code and documentation following the updated
ODD protocol (Grimm et al. 2010) are hosted on openabm.org
(https://www.openabm.org/model/4722/). Though the model
includes many of the physical processes and components that are
relevant to questions of sustainability, we focus only on those
components that are most closely related to system resilience in
the context of the scenarios presented. These components are (1)
farmer agents and the rules governing their behavior, (2) the
partitions of the physical landscape that are affected by agent
decisions (i.e., farm fields), and (3) the external components that
might facilitate adaptations (e.g., markets, insurance policy) or
generate perturbations (e.g., drought) that affect agents and the
landscape.

The primary agent class models individual farmers, each assigned
a geographic location, a set of land parcels they manage at the
field scale, decision criteria, and a set of actions they perform in
response to stimuli. The farm field, an instantiation of a
generalized land parcel class, is the spatial unit of analysis for this
model. One or more fields comprise a farm, and each farm is
managed by a farmer agent. Data on farmer location, tenure, and
farm characteristics (e.g., crop history, field size) were used to
generate a statistically representative arrangement of farms and
farmer agents on the landscape to maintain subject anonymity
(Ding et al. 2015). At each annual time step, farmer agents make
land use decisions according to prescribed decision rules. For each
potential land use, farmer agents integrate information from
commodity market prices, implementation costs, past crop
performance, and field characteristics to calculate the expected
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economic return from five land use options (i.e., grow corn,
soybeans, or switchgrass, leave fallow, or enroll in a conservation
program) for each of their fields. Corn and soybean prices are
based on information from April 2015 (AGWEB 2015), while
switchgrass prices are instantiated at zero but are modified
according to scenarios described later. Implementation costs are
estimated from Iowa State University extension data (ISU 2015a),
and crop suitability ratings are used to provide yield estimates
(USDA 2013). Farmer agents in this model use a simple profit
maximization algorithm to choose the land use option that
provides the maximum economic return for each field they
manage, and remove a field from production if it has been
unprofitable for three consecutive years.

After farmer agents implement their land use decisions, plots
accrue both costs and natural capital (e.g., crop biomass), which
results in profits (or losses) accruing to the managing farmer
agent. As a model run proceeds, farmers integrate new
information on actual versus expected yields and economic
returns into their decision algorithm for the following year. We
introduce minor stochastic variability into actualized crop yield
(Bakhsh et al. 2000), implementation costs, and final commodity
prices to approximate system variability, uncertainty, and minor
market fluctuations. The RUSLE soil loss (Renard et al. 1991)
and simplified Budyko runoff (Q) (Budyko 1958) models interface
with the land parcel class, which provides field-scale estimates of
biophysical effects at specific locations within the watershed.
Collectively, farmers and farm fields provide a spatially explicit
representation of the landscape in the CCW, and thus, provide a
model of land use, soil quality, and crop suitability.

External driving forces include prices set by commodity markets,
the presence of governmental programs, and climate, each of
which operates at significantly larger scales than the CCW. These
external drivers are not directly modeled but form the basis for
scenarios. At the scale of the CCW, policy-makers are modeled
as a single agent that makes decisions regarding prices for
conservation programs and the subsidies for different land uses
(e.g., start-up subsidies for switchgrass production). Initial rental
rates for enrolling land in the conservation reserve program (CRP)
are estimated from mean 2015 values (ISU 2015b). Drought
perturbations affect the landscape, which differentially reduce
biomass by land use and change coefficients in the erosional and
runoff models. Each perturbation (p) references the subsystem
affected, the spatial extent, duration (number of time steps), and
severity (degree to which the subsystem is affected). A set of
perturbations (P) represents a particular disturbance regime.

perturbation = p
= (subsystem, spatial extent, timing, duration, severity) (1)
Set of perturbations = P = {py, 02,03, P4 --Pn}

Scenarios

We use repeated simulations to explore a range of likely system
responses within the constraints of a particular scenario.
Scenarios are designed to explicate the relations between system
resilience and system drivers. The first set of scenarios modifies
the rate of crop insurance reimbursement, the primary coping
method of farmers in the system. The commodity price at which
insurance is paid is subject to a number of economic and policy
processes that are outside the scope of this study. Instead, we
abstract the insurance system to pay farmers for losses at three
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levels—a baseline market price, and 75% and 50% of that baseline.
Second, we model two different perturbation scenarios that
represent drought. We focus on drought perturbations due to
recent events (Schnoor 2012) and the likelihood such events will
increase in frequency and magnitude, which potentially would
result in additional crop loss and economic distress (Noble et al.
2014). The first perturbation scenario represents a 20% reduction
in corn and soybean yield, which is used as a baseline and contains
droughts of moderate magnitude and short duration (Al-Kaisi et
al. 2013). The second perturbation scenario represents potential
effects due to global climate change, and includes droughts of a
greater magnitude and ranging in duration from a single year to
three sequential years. Lastly, we introduce a hypothetical market
for switchgrass, a cellulosic biofuel. Switchgrass is less susceptible
to periods of extremely low and high moisture than are grain
crops (Barney et al. 2009). Furthermore, an increase in perennial
biofuels would produce more environmentally sustainable
outcomes locally, and if proven economically viable, would
potentially be adopted by farmers (Nelson et al. 2006, Nassauer
etal. 2010). However, a market for switchgrass as a biofuel is only
beginning to develop, and as such, model prices are exploratory
estimates. The combinations of the three potential modifications
to the system result in a set of 12 distinct scenarios. Though these
scenarios and the processes they affect are simplifications of
actual system dynamics, similar generalized or “stylized” models
have been successfully used to explore processes of complex
systems and investigate theory (Janssen 2010).

Each scenario, S, was parameterized with a coping capacity
(insurance level), C, the presence of a switchgrass policy
adaptation, 4, and a perturbation regime (drought profile), P.

Scenario =S = (C,A,P) )]

Simulation

Each simulation is executed for a given scenario .S, initial
parameters (e.g., file locations, land use distributions), and a
number of repetitions. Farmer agents select and implement a land
use, parcels accumulate biomass (e.g., crops grow), and the parcels
are subjected to perturbation. Farmer agents then harvest the
remaining crops in the field, sell them at market prices, and
balance their accounting ledgers. Profits (or losses) are distributed
to the corresponding farmer agents, and coping capacity (i.e., crop
insurance) is consumed if losses have occurred over the threshold
set by the scenario. Farmer agents then make an individual
decision whether to remain in business based on their historical
performance, coping capacity, and expectations of future
profitability according to experience. If net profitability for a
farmer agent is negative for three consecutive years, they are
removed from the simulation. The next model iteration,
representing a new growing season, begins. The activity diagram
in Fig. 2 plots how model components interact during simulation
time.

Each scenario is repeated 1000 times, resulting in 12,000 total
models runs. The repeated model runs allows for the exploration
of effects of initial conditions and stochastic processes (e.g.,
realized yield) on model outcomes and the location of attractors
on the stability landscape. For each run, the model was allowed
to “spin up” and reach a basin of attraction. In our simulations,
the model quickly (generally within 20 time steps) attains a
dynamic equilibrium, as observed by stable landscape
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configuration and aggregate system-scale income. Once dynamic
equilibrium is attained, we perturb the system by introducing an
artificial drought. The timing of perturbation is stochastically
varied, which ensures that over repeat runs of the scenario,
disturbances occur while the system occupies different locations
relative to basin thresholds, and potentially produces different
outcomes. The simulation records model outputs related to
dimensions of economic productivity, landscape configuration,
and environmental outcomes. The software also derives summary
statistics for each scenario, including the proportion of model
runs where the system crossed a predetermined threshold and
failed to return to the preperturbation dynamic equilibrium.

Fig. 2. Model activity diagram describing interactions among

model components during the simulation of a scenario. Black
bars indicate points of divergence or reconvergence of parallel
processes.
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Simulated outcomes in state space

If state space attractors are present, then systems will tend to
gravitate toward them over time. Therefore, stable (or quasi-
stable) attractors can be identified by observing the movement of
a system toward a particular area in state space (Ives and
Carpenter 2007). Prior to the application of the scenarios or
simulated droughts, we explore model sensitivity via a grid search
of initial conditions (i.e., commodity prices, subsidy levels), and
plot simulation outcomes and attractors in state space. Tracing a
system’s path from initial conditions to an attractor is
straightforward, requiring a plot of the system’s location in state
space over time against key dimensions (sensu Janssen and
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Carpenter 1999), and many traces can in aggregate begin to
provide insight into the effects of initial conditions and model
parameterization on both the locations of attractors in state space
and landscape configuration (Malanson et al. 2006). Fig. 3 plots
one such trace, as well as the aggregate end points of simulations,
approximating the locations of alternative states and
preperturbation basins of attraction for the given model
parameters. All analyses and figures were created in the R 3.2.3
software environment (R Core Team 2015). The independent
density curves of simulation end points along each axis in Figs.
4, 7-8 are created using the “nrd0” method in the R “stats”
package. Within the two distinct zones in Fig. 3, smaller clusters
of outcomes are the result of the discretization of the physical
landscape in farm fields and of the grid search through input
space.

Any visualization of the state space is a projection from a
simulated hyperspace. Though both the SES and our model exist
in a highly dimensional space, we constrain our analysis of the
system to two dimensions for the purposes of visualization. These
dimensions are related to system resilience at different spatial
scales and illustrate trade-offs between ecological diversity and
economic optimization. The first dimension is mean net profit, a
proxy for the economic viability of the current configuration of
the agricultural system as a whole. Individual farmers without the
economic means to absorb perturbations, maintain productivity,
and adapt will likely not be resilient. Collectively, the economic
resilience of farmers reflects the effectiveness of insurance in
providing short-term economic stability. The second dimension
is the diversity of the landscape as quantified by the Modified
Simpson Diversity Index (MSIDI) (Pielou 1975). The MSIDI
measures the heterogeneity of the landscape, and is defined as the
negative natural logarithm of the probability that two randomly
selected patches belong to the same land cover type. A higher
MSIDI value indicates a more equitable distribution of land cover
types. A diverse agricultural landscape possessing greater
functional and response diversity is likely to be more resilient to
adisturbance than a landscape containing a single crop (Elmqvist
et al. 2003). The MSIDI is calculated as follows:

m
MSIDI = —lnz P? ©)
i=1

where m is the number of potential land uses (5, in this model)
and P, is the proportion of the landscape occupied by land class
i. The distribution of simulation outcomes in state space
approximates attractors in the chosen dimensions and the general
stability of system processes to inputs. In this space, each point
in state space corresponds to a realization of the actual landscape
at the end of a given simulation. For example, a simulation
resulting in the landscape in Fig. 4B is found within the attractor
in the left portion of the state space, while the landscape
configuration in Fig. 4C lies in the right-hand attractor, and
results in greater economic productivity. This process is useful for
locating attractors, and exploring the effects of initial conditions
on eventual system outcomes and the equifinality or multifinality
of simulation end points (e.g., do different initial conditions lead
to the same end result). Similarly, each simulation, as defined in
Eq. 2, results in a corresponding state space, potentially
containing a set of attractors, and determined by the
parameterization of the scenario (e.g., policy), as well as the
simulated perturbation regime.
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Fig. 3. A single trace of a model run through state space (solid line) overlaid with outcomes of other model runs (open circles) that

result from the grid search of input parameters. Two distinct attractors are found in this state space, with smaller attractors nested
within each. (MSIDI: Modified Simpson Diversity Index)
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Fig. 5. Distributions of the proportions of farmers who are resilient to perturbations (remaining in business at the end of the

simulation) by scenario. Farmers in the scenarios affected by the baseline perturbation regime (S1, S5, and S8) are generally more
resilient than those (S2, S6, and S10) affected by the alternative (and greater) perturbation regime. The relative lower sensitivity of
switchgrass to simulated droughts results in a greater number of resilient farmers in those scenarios (S3, S4, S7, S8, S11, and S12).

Each scenario was simulated 1000 times.
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Stability landscapes and perturbations
To model system resilience to p.erturbatlons, we }ntrpduce the Table 1. Scenarios
simulated droughts as parameterized by the scenarios in Table 1.
For each run of the simulation, the model is (1) allowed to reach - - - - -
. qep e . qep s Scenario Coping capacity ~ Switchgrass Perturbation
a dynamic equilibrium, (2) perturbed upon reaching equilibrium, X
. (©) market (A) regime (P)
and (3) tracked from the moment of perturbation. If the system - -
. . e . . o1 S market baseline status quo baseline
returns to its dynamic equilibrium, then it is considered resilient. ! . .
o . S, market baseline status quo alternative
If resilienceis overcome, however, Fhe system moves to a new stz_tte, s, market baseline alternative baseline
and we expect additional clusters in state space that exhibit high S, market baseline alternative alternative
outcome densities (May 1977). For each repetition of the S, 0.75 * baseline status quo baseline
simulation, we plot system trajectory through state space, and Se 0.75 * baseline status quo alternative
over many Monte Carlo simulations (1000 for each scenario), we S, 0.75 : baseline alternative baseline
map the same number of postperturbation outcomes and S 0.75 . baseline - alternative alternative
truct a state space for each scenario 5 0-50 % baseline status quo baseline
cons p ’ St 0.50 * baseline status quo alternative
These state spaces differ from traditional stability landscapes in Sy 0.50 * baseline alternative baseline
S 0.50 * baseline alternative alternative

two ways. First, they do not show all potential outcomes for the
modeled system. Instead, they display the range of outcomes
given a particular preperturbation state and the set of
perturbations. While this is a decidedly “resilience of what to
what” approach (Carpenter et al. 2001), it is dependent on the
assumptions and simplifications inherent in the modeling process.

S

Second, system trajectory through state space and between basins
is path dependent, and the interbasin state space is therefore likely
discontinuous. Despite its limitations, this method allows us to
characterize the resilience of the system of interest in its current
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Fig. 6. Stability landscapes for scenarios that include status quo land use policy (no switchgrass market). Scenarios in the left column
are affected by the baseline perturbation regime; scenarios in the right column are affected by the alternative. Insurance
reimbursement rates range from top to bottom by row at 100%, 75%, and 50%, respectively. Landscape configuration (basin
topography) is affected by a change in perturbation severity, while changes in coping capacity result in similarly shaped density
curves that shift position along the axes. (MSIDI: Modified Simpson Diversity Index)
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state and to a particular set of perturbations. State space
morphology can be a guide for understanding model response
and system resilience. For example, simulation outcomes that
occur near an original attractor site would suggest a resilient
system state in the given context. Similarly, a more heterogeneous
landscape with many potential outcome states (i.e., many basins)
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indicates a larger variance in model response to perturbation, and
potentially a less resilient system.

RESULTS
Model outputs can be analyzed at the field, farm, or watershed
scales. We first view the outcomes of our simulation by


http://www.ecologyandsociety.org/vol21/iss3/art21/

Ecology and 8001ety 21(3): 21
ds

Fig. 7. Stability landscapes for scenarios that introduce an artificial market for switchgrass. The baseline perturbation regime is on
the left; the alternative is on the right. Coping capacity diminishes from the top row to the bottom. Landscape configuration (as
measured by MSIDI: Modified Simpson Diversity Index) remains stable, though less so than as seen in Fig. 6.
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aggregating the effects of perturbations and insurance
reimbursement levels on individual farmer agent outcomes. The
boxplots in Fig. 5 display the proportion of farmer agents that
were resilient (defined as remaining in business at the end of the
simulation) in the repeated model runs for each scenario. A
reduction in the insurance reimbursement level resulted in a lower
proportion of agents that were able to bounce back after the
simulated drought. Larger perturbations also resulted in
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additional farmers exhausting their coping capacity and going
out of business (e.g., a greater proportion of farmer agents were
resilient in scenario S, than in S, ). The presence of a market for
less drought-sensitive switchgrass resulted in more resilient
farmers as well (S, S,, S., S, S|, and S,,).

Shifting to watershed or system-scale outcomes, Fig. 6 shows the
changes in stability landscapes for the six scenarios that used
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Fig. 8. Two different stability landscapes for Scenario 12, created with mean profitability (left) and the standard deviation of
profitability (right). While variable selection might affect state space configuration, in this case the spaces have similar structures due
to their high correlation (r = 0.95). This suggests that in model runs where mean profitability is higher after a perturbation, farmer
outcomes are highly skewed and less equitable because the larger operators were resilient. (MSIDI: Modified Simpson Diversity

Index)
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status quo land use policy (i.e., no switchgrass market). Scenarios
in the first column (S,, S;, and S,) used baseline perturbations,
while the other scenarios (S,, S, and S, ) included the alternative,
more severe droughts. Land use diversity as measured by MSIDI
was relatively consistent among scenarios with the same
perturbation regimes. However, the reduction in coping capacity
resulted in a decrease in mean profitability per agent (e.g., S,
versus S,). Similarly, the increase in perturbation intensity
resulted in a decrease in mean profits and an increase in profit
variability.

Fig. 7 shows the results of simulations that included the artificial
switchgrass market. As before, more intense perturbations (S, S
and S,,) resulted in lower and more variable profits. Though the
profitability of the switchgrass scenarios was similar to the status
quo profits in Fig. 6, the distributions of simulation outcomes
were tighter, indicating an increased stability due to farmers
choosing to plant switchgrass. However, the introduction of an
alternative land use unexpectedly reduced landscape diversity, a
result of many farmer agents choosing to plant the perennial
grass, an unlikely outcome resulting from the simplified market
dynamics in the model. These subtleties in the simulation results
require careful interpretation, as the structure of agent decisions
rules and variable selection strongly influence the shape of the
stability landscape.
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DISCUSSION

Methods to measure resilience essentially fall into two categories
(Morecroft et al. 2012). The first is the amount of time it takes to
recover from a perturbation. The second is the amount of
disturbance a system can be subjected to and remain functioning
in the same manner. An extension of the latter defines a
probabilistic resilience, which is “...the probability that a state will
persist” (Peterson 2002). Our outcome spaces operationalize this
second view of resilience by characterizing the stability of the
system absent perturbation inputs (Fig. 5), as well as the
distributions of postperturbation states in particular
perturbation and policy contexts (Figs. 6 and 7).

Functionally, system-scale resilience emerges from interactions
across a panarchy of components, both internal and external to
the complex adaptive system (Holling 2001). In the CCW, land
use decisions are made and coping capacity is consumed at the
farm or farmer scale, which collectively shapes landscape
morphology and trajectory. However, the individual resilience of
farmer agents also occurs within the context of top-down policy
and broad-scale climate that combine to affect watershed-scale
outcomes. To this end, the proportion of resilient farmer agents
in different scenarios provides one window into the efficacy of
individual agent behavior within a particular policy and economic
context (Fig. 5), and against a predetermined threshold for
individual resilience (when farmer agents quit farming). While
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this is a stylized model, we recognize any such threshold is
contextually dependent on culture, time, and location, and should
include stakeholders to address the question “resilience of what,
to what, and who decides” (Davoudi et al. 2012). Fuzzy cognitive
mapping (FCM) methods have proven useful in identifying
desirable alternative states, identifying thresholds, and addressing
questions of context by involving stakeholders in modeling
system dynamics (Gray et al. 2015), and would be interesting
future work. However, FCMs are currently aspatial and the
alternative states they identify may not represent equilibrium
conditions.

The results of our simulations were generally as expected, as the
resilience of agents was lower in the scenarios where coping
capacity (crop insurance) was reduced. The scenarios where land
use changed in response to the introduction of a switchgrass
market appear to indicate an increase in resilience (as seen in a
more homogenous stability landscape). However, this may be due
to a change in robustness brought on by the introduction of
switchgrass, which is less drought-sensitive than alternative crops,
and not indicative of agent resilience to the perturbation.
Regardless, in the cases where the system included the switchgrass
market, higher crop diversity led to greater income stability of
agents in the watershed, which prevented more farmers from
going out of business while maintaining a potential buffer against
other types of perturbations that were unexplored in this study
(e.g., price fluctuations).

Though Fig. 5 suggests a watershed-scale shift from row crops to
switchgrass would improve aggregate farmer stability, an
adaptation of that nature and magnitude would be unlikely at
much larger scales, as consumer demand and other market forces
would drive at least a portion of the landscape to traditional row
crops. Similarly, our results suggest unlimited and inexpensive
crop insurance would increase SES resilience in the near term.
While insurance is vital to maintaining economic viability, it is
also reasonable to expect the guaranteed economic return may
reinforce current modes of industrial agriculture and erode longer
term resilience and create poor environmental outcomes (Wu
1999, McLeman and Smit 2006). Agriculture in the study area
has been engineered to be resilient to perturbation in pursuit of
maintaining a particular goal—yield. However, this optimization
has resulted in unsustainable outcomes and spatial externalities,
such as hypoxic conditions in the Gulf of Mexico due to nutrient
runoff (Rabalais et al. 2002). This consideration of spatial and
temporal lags and scales recalls the “resilience of what to what”
question (Carpenter et al. 2001) and requires the consideration
of the full panarchy of systems to find truly sustainable solutions
(Walker et al. 2004).

While ABMs are well-suited for representing hierarchical system
dynamics, they have some limitations in geographic applications.
As with any model, ABMs are dependent on the amount of
information available on the system being modeled. Further, the
model must be constructed at the correct level of abstraction with
respect to component and process complexity (Couclelis 2002).
Our stylized model ameliorates some of the concerns by
simplifying the decision-making process and biophysical models,
though our assumptions of profit maximization and
economically rational behavior precludes some alternative land
use decisions and adaptations. While the intent of our model is
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illustrative and exploratory, a more complex decision model, while
introducing additional parameters and concomitant data
requirements, would likely produce a more realistic range of
outcomes and alternative states. The use of survey data, for
example, could produce classes of farmers who possess different
resources, preferences, and decisions hierarchies, and is the focus
of future research. Agent-based models can also be highly
sensitive to initial conditions and the rules that govern agent—
agent and agent—environment interactions. Here, our approach
to constructing stability landscapes can be a useful tool in the
preliminary exploration of the effect of these limitations on
system dynamics.

The state spaces we present are dependent on variable selection
and the choice of summary statistics (e.g., variance, mean). Our
selections of mean agent profitability and landscape diversity
(measured by MSIDI) are but two of many potential output
variables from the model, and the stability landscapes would have
a different form if other choices were made. The diversity of a
landscape is clearly related to its resilience (Elmqvist et al. 2003).
However, by calculating the mean income of farmer agents in the
CCW as the second dimension, we potentially lose information
related to heterogeneity of agent response. However, as shown in
Fig. 8, separate state spaces constructed with the mean and
standard deviation of profits in scenario 12 have similar
structures. This is due to a high correlation between these
dimensions (r = 0.95), meaning that as the average profitability
increases, farmers see increasingly disparate outcomes because
the larger operators were more resilient to the simulated drought.
While insurance polices are purchased by individual farmers,
policy goals are aimed at system-scale functionality, and our
stability landscapes visualize the current state of the CCW, which
is dominated by corn and soybeans in industrial agricultural
operations. Therefore, we selected as our key variables those that
change during a simulation—land use choice in response to prices
or policy, and profitability due to drought perturbations. We
acknowledge, however, the unrepresented dimensions in this state
space (e.g., environmental conditions). Further, what appears to
be an attractor in two-dimensions may actually be many distinct
attactors in a higher dimensional space. Despite their limitations,
we view these stability landscapes as useful exploratory and
diagnostic tools during the modeling processes, which allow
modelers to visualize system sensitivity to initial conditions, path
dependence, and perturbations using methods similar to
quantifying landscape metrics (Brown et al. 2005), applied to an
artificial state space.

CONCLUSION

Physical landscapes are the result of natural and social processes
operating within nested systems at different spatial and temporal
scales. If we aim to adapt our systems to be more sustainable, then
we need to understand the ways in which complex social-
ecological systems transition from one state to the next and how
those state changes ripple through connected systems and across
space and time. There may be multiple paths toward the goal of
sustainability, and each state transition should consider the set of
paths leading from the current state to the objective. However, we
must also consider the possibility of paths leading to positive
effects at one scale but negative outcomes at other scales or in
other systems. Furthermore, not all improvements in resilience
are necessarily desirable, as a change in the resilience of a single
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system may result in amplifying or dampening the resilience of
other systems in unpredictable ways (Gunderson and Holling
2002). Similarly, a system state that is unsustainable along
numerous dimensions may also be valued for a particular output
and be highly resilient to perturbations or resistant to adaptation.

If understanding the resilience of social-ecological systems is
important to future human and environmental well-being, then
we require methods to estimate it under different disturbance
regimes and in response to possible adaptations. These methods
should incorporate spatiotemporal context, the complex
dynamics of the social-ecological systems, and the increasing
influence of human activity on the environment. The model and
method of constructing stability landscapes we have presented
has incorporated social process and individual decision-making
with biophysical models to describe SES resilience under various
scenarios. While “slow” variables may control ecosystem
function, legacy, and diversity (Folke et al. 2002), human actions
have the potential to accelerate the rate at which slow variables
change and propel systems toward key thresholds (Brock 2006,
Carpenter and Brock 2006, Folke 2006). By coupling an agent-
based model to biophysical models, we have used stability
landscapes to visualize the effects of comparatively “fast” moving
processes on system state. These landscapes are one tool in a suite
of methods that are necessary to understand the effects of policy
on SES trajectory relative to alternative stable states without the
need to predefine those states. Lastly, this method can be used to
investigate trade-offs among potential proposed adaptations, a
function especially important because SESs cannot be built to be
resilient to all perturbations, or cannot be truly sustainable
forever.

Responses to this article can be read online at:
http://www.ecologyandsociety.org/issues/responses.

php/8677
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