Virus–host interactions: insights from the replication cycle of the large *Paramecium bursaria* chlorella virus

Elad Milrot
Yael Mutsafi
Yael Fridmann-Sirkis
Eyal Shimoni
Katya Rechav

See next page for additional authors

Follow this and additional works at: https://digitalcommons.unl.edu/vanetten

Part of the Genetics and Genomics Commons, Plant Pathology Commons, and the Viruses Commons
Authors
Elad Milrot, Yael Mutsafi, Yael Fridmann-Sirkis, Eyal Shimoni, Katya Rechav, James Gurnon, James L. Van Etten, and Abraham Minsky
Virus–host interactions: insights from the replication cycle of the large Paramecium bursaria chlorella virus

Elad Milrot,† Yael Mutsafi,† Yael Fridmann-Sirkis,† Eyal Shimoni, Katya Rechav, James R. Gurnon, and Abraham Minsky†
†Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel.
‡Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel.
§Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska, Lincoln, NE, 68583-0900, USA.

Summary

The increasing interest in cytoplasmic factories generated by eukaryotic-infecting viruses stems from the realization that these highly ordered assemblies may contribute fundamental novel insights to the functional significance of order in cellular biology. Here, we report the formation process and structural features of the cytoplasmic factories of the large dsDNA virus Paramecium bursaria chlorella virus 1 (PBCV-1). By combining diverse imaging techniques, including scanning transmission electron microscopy tomography and focused ion beam technologies, we show that the architecture and mode of formation of PBCV-1 factories are significantly different from those generated by their evolutionary relatives Vaccinia and Mimivirus. Specifically, PBCV-1 factories consist of a network of single membrane bilayers acting as capsid templates in the central region, and viral genomes spread throughout the host cytoplasm but excluded from the membrane-containing sites. In sharp contrast, factories generated by Mimivirus have viral genomes in their core, with membrane biogenesis region located at their periphery. Yet, all viral factories appear to share structural features that are essential for their function. In addition, our studies support the notion that PBCV-1 infection, which was recently reported to result in significant pathological outcomes in humans and mice, proceeds through a bacteriophage-like infection pathway.

Introduction

An exciting development in cellular and physical biology is the realization that organelles previously thought to be randomly organized are in fact highly ordered and that this order critically affects the functions of these organelles (Takizawa et al., 2008; Thanbichler and Shapiro, 2008). Specifically, the advent of imaging and biochemical methodologies revealed that chromosomes occupy well-defined territories within eukaryotic nuclei (Meaburn and Misteli, 2007; Misteli, 2007), and that this particular positioning has profound functional implications on fundamental genomic transactions (Misteli, 2004; Takizawa et al., 2008; Edelman and Fraser, 2012). Equally interesting is the recent realization that bacterial cells localize nucleic acids and proteins to specific cellular locations and that such well-defined organization is vital for regulatory processes (Gitai, 2005; Thanbichler and Shapiro, 2008; Shapiro et al., 2009; Llopis et al., 2010; Bowman et al., 2011; Nevo-Dinur et al., 2011). Another example of the generation of intracellular organelles characterized by distinct compartmentalization that is apparently essential for their function is provided by viral replication centres. Such specialized sites were initially detected during the infection of positive-strand RNA (+)RNA viruses. Infection by these viruses involves massive reorganization of the host cytoskeleton and membrane networks, leading to the formation of a platform coined the viral factory (VF), in which genome replication and virion assembly are effectively coordinated (Ahquist, 2006; Fontana et al., 2007; Kopek et al., 2007; den Boon and Ahquist, 2010; den Boon et al., 2010; Hsu et al., 2010; Netherton and Wileman, 2011; de Castro et al., 2013).

Novel insights into the generation, structure and function of VFs are provided by studies on the infection cycles of nucleocytoplasmic large DNA viruses (NCLDs), which include the eukaryotic-infecting families Poxviridae, Asfarviridae, Iridoviridae, Phycodnaviridae, Mimiviridae and Marsilelloviridae. All members of this clade are characterized by a large size as well as by the ordered and elaborate viral factories they generate in the...
cytoplasm of their hosts (Novoa et al., 2005; Wileman, 2006; Netherton and Wileman, 2011; de Castro et al., 2013; Mutsafi et al., 2014). In particular, studies conducted on Vaccinia virus (Mallardo et al., 2001; Condit, 2007; Katsafanas and Moss, 2007; Miller and Krijnse-Locker, 2008; Chlanda et al., 2009; Suárez et al., 2013; Moss, 2015), as well as on the Mimivirus (Raout et al., 2004; Zauberman et al., 2008; Mutsafi et al., 2010; Mutsafi et al., 2013; Suárez et al., 2013), highlight the complexity, long-range order and compartmentalization of functions in viral factories.

These observations imply that, as is the case in nuclei, bacteria and viral factories of (+)RNA viruses, precise compartmentalization of functions is an intrinsic trait of cytoplasmic factories generated by large dsDNA viruses, thus implying a functional similarity between nuclei, bacteria and viral factories (Miller and Krijnse-Locker, 2008). Indeed, it has been proposed that viral factories should be considered as ‘mini-nuclei’ (Tolonen et al., 2001) that might have played an important role in the evolution of eukaryotic nuclei (Bell, 2006). It was also suggested that VFs can be viewed as the actual living stage of viruses (Claverie et al., 2009; Claverie and Abergel, 2010). This conjecture is further supported by the observation that membranes play a central role in the assembly of viruses (Tolonen et al., 2001; Kopek et al., 2007; Miller and Krijnse-Locker, 2008; den Boon and Ahlquist, 2010; Laliberte and Moss, 2010; Mutsafi et al., 2013; Suárez et al., 2013; Suárez et al., 2015), as is the case in eukaryotic nuclei.

Prompted by these considerations, as well as by studies demonstrating that VFs produced by Vaccinia virus and Mimivirus reveal substantial resemblance (Krijnse-Locker et al., 2013; Mutsafi et al., 2010; Suárez et al., 2013) but also significant differences (Katsafanas and Moss, 2007; Mutsafi et al., 2013; Mutsafi et al., 2014), we investigated the cytoplasmic factories generated by the dsDNA-containing Paramecium bursaria chlorella virus (PBCV-1). PBCV-1, which is a member of the Phycodnaviridae family that belongs to the NCLDV clade (Iyer et al., 2001), is a large (~190 nm in diameter), dsDNA (331 kbp) icosahedral virus that replicates in unicellular green algae (Meints et al., 1986; Van Etten, 2003; Yamada et al., 2006; Van Etten et al., 2010; Van Etten and Dunigan, 2012). The infection cycle consists of a phage-like genome ejection into the host cytoplasm followed by its presumed translocation to the nucleus where early transcription, followed by replication occurs. Newly synthesized genomes are assumed to be released into the cytoplasm where viral factories are generated (Van Etten, 2003).

Paramecium bursaria chlorella virus 1 and related Phycodnaviruses recently attracted interest following studies indicating that the largest currently known viruses, Pandoraviruses (Philippe et al., 2013), are evolutionary related to Phycodnaviruses (Yutin and Koonin, 2013). In a separate study, DNA sequences of the Phycodnavirus Acanthocystis turfacea chlorella virus 1 (ATCV-1) were detected in human throat swabs and their presence was associated with a statistically significant decrease in cognitive behaviour (Yolken et al., 2014). Furthermore, mice fed with ATCV-1-infected algae exhibited performance decreases in cognitive tests (Yolken et al., 2014).

To investigate viral factories generated by PBCV-1, we used a wide array of imaging techniques including fluorescence microscopy, immunolabelling, electron microscopy of cryo-preserved specimens, as well as novel scanning-transmission electron microscopy (STEM) tomography and focused ion beam (FIB) microscopy. Our observations reveal that, as is the case in factories of (+)RNA viruses, Vaccinia and Mimivirus, membranes play a central role in the assembly of PBCV-1 factories. Yet, in contrast to Vaccinia and Mimivirus factories, in which the inner core consists of replicated and transcribed genomes with membrane synthesis and capsid assembly occurring at the periphery (Mallardo et al., 2002; Mutsafi et al., 2013; Suárez et al., 2013; Mutsafi et al., 2014), PBCV-1 factories consist of a central membrane and capsid region with viral genomes localized at the periphery. Viral factories thus represent an intriguing example of efficient intracellular self-assembly processes that might provide new insights into factors that shaped structure-function correlations in nuclei and bacteria as well as into the mechanisms responsible for cellular organization in general.

Results

Chlorovirus PBCV-1 infection of Chlorella variabilis is initiated by the ejection of its dsDNA genome into the host cytoplasm in a phage-like process (Van Etten and Dunigan, 2012), which is followed by its presumed translocation into the nucleus. Early PBCV-1 transcription was detected within 7 min post infection (PI) (Blanc et al., 2014), followed by viral DNA synthesis at 60 min PI (Van Etten et al., 1984). The studies reported here focus on the cytoplasmic factories generated by PBCV-1 shortly after the release of its replicated genomes from the host nuclei into the cytoplasm.

Initial structural alterations following Paramecium bursaria chlorella virus 1 infection are nuclei deformations

High-resolution electron microscopy of cryo-immobilized PBCV-1 C. variabilis-infected cells as well as fluorescence imaging in which the fluorescent probes SYTO82 for DNA detection and DiOC6, a specific membrane probe (Terasaki and Reese, 1992), were used to unravel
advanced stages of PBCV-1 infection. The first structural evidence of infection is observed already at 1 h PI, when deformed morphologies of host nuclei were detected, as previously reported (Meints et al., 1986). Specifically, nuclei of infected cells lose their spherical shape that characterizes non-infected cells (Fig. 1A and C) and assume elongated or crescent-like morphologies that reveal enhanced heterochromicity (areas near the nuclear membrane that are heavily stained for DNA) (Fig. 1B, D and E). It is tempting to propose that such modified nuclear structures reflect extensive degradation of host DNA that begins shortly after PBCV-1 infection (Agarkova et al., 2006), as well as viral DNA replication, previously shown to occur at 60 min PI (Meints et al., 1986; Van Etten et al., 1984; Van Etten, 2003; Yamada et al., 2006). Notably, similar alterations in nuclear morphology were observed following the infection of Acanthamoeba cells by the giant Pandoravirus (Philippe et al., 2013).

Host membranes play a central role in the assembly and structure of Paramecium bursaria chlorella virus 1 cytoplasmic factories

At 2 h PI, viral factories are detected in the host cytoplasm. In order to characterize the spatial organization of these assembly sites, we used STEM tomography that provides detailed 3-dimensional structural data of thick (>300 nm) specimens (Aoyama et al., 2008). Sequential tomography slices of early VFs reveal rosette-like crescent structures (Fig. 2A–D) that are particularly evident in the slice shown in panel C. The crescent structures consist of two distinct layers characterized by different densities: an external angular capsid shell indicated by yellow arrowheads and yellow structures and an internal membrane bilayer shown in light blue.

As is the case in Mimivirus factories (Mutsafi et al., 2013; Suárez et al., 2013; Mutsafi et al., 2014), the angular structures consist of membrane bilayer sheets (further discussed in the succeeding paragraphs), required for a continuous assembly of new progeny virions. Light blue arrowheads in the tomographic slices (Fig. 2A–D), as well as in 3-dimensional surface rendering representation derived from STEM tomography (Fig. 2E and F) point to open single membrane sheets that act as templates for angular capsids (yellow arrowheads). Notably, a role of membrane bilayers in capsid scaffolding has been demonstrated for Vaccinia virus (Risco et al., 2002; Szajner et al., 2005; Miller and Krijnse-Locker, 2008; Chichon et al., 2009; Chlanda et al., 2009) and Mimivirus (Krijnse-Locker et al., 2013; Mutsafi et al., 2013; Mutsafi et al., 2014; Suárez et al., 2013). A 3D surface rendering of the rosette-like PBCV-1 crescent structures derived from STEM tomography is shown in Movie S1.

Further, STEM analyses of 2–3 h PI PBCV-1 infected cells reveal that factory generation is accompanied by massive accumulation of membrane cisternae (blue arrowheads in Fig. 3) that partially surround the VFs (Fig. 3C, D, G and H) and in some cases deeply...
penetrate the factory cores (red arrow in panel 3G). Cisternae appear to bud out from rough endoplasmic reticulum (ER) membranes as implied by multiple ribosomes decorating these structures (Fig. 3B, F). Tomography slices reveal that the cisternae are derived mainly from outer membranes of host nuclei, a finding consistent with previous observations on the source of Vaccinia membranes (Husain et al., 2006). Notably, in contrast to open single-bilayer membrane sheets present in the centre of the VFs (Figs 2 and 3; light blue arrowheads), host cisternae detected at the periphery of the VFs are composed of double bilayers as determined by their width (Fig. 3; blue arrowheads). As discussed in the succeeding paragraphs, host ribosomes and presumably other host protein complexes are stripped away from the cisternae as they are translocated into the inner core of the PBCV-1 VFs and rendered into open single-bilayer sheets (light blue arrowheads in Figs 2 and 3D, G). The structures shown in Fig. 3C and D support the observations presented in Fig. 2, in that open membrane sheets generated within the VF cores (light blue) act as templates for the formation of capsid structures (yellow structures and arrowheads). Indeed, 3D surface rendering representation of the entire tomography volume (Fig. 3D) shows viral particles at three successive stages of capsid formation. Additional details on the accumulation of host membrane cisternae are
provided in Figs S1 and S2, as well as in Movies S2–S4 that are derived from STEM tomography studies.

In contrast to Mimivirus and Vaccinia viral factories, cores of Paramecium bursaria chlorella virus 1 factories consist of membrane structures surrounded by viral genomes.

Contrast of membrane structures deteriorates in thick cryo-immobilized specimens used in STEM tomography, presumably due to limited infiltration of staining materials. However, in a recent study on stacked ER sheets, a method for overcoming this inherent drawback was described, using multiple ultra-thin sections of chemically preserved samples (Terasaki et al., 2013). The results depicted in Figs 2 and 3 concerning the generation of the VF of PBCV-1 were accordingly acquired with chemical fixation methods (see Experimental procedures). To further sub-

© 2015 John Wiley & Sons Ltd, Cellular Microbiology, 18, 3–16
stain these observations, we used high-pressure-freezing followed by freeze substitution (HPF-FS) methodology, as well as fluorescence studies aimed at detecting both membrane structures and viral DNA.

Figure 4A–D and Fig. S3 show cryo-immobilized PBCV-1 infected chlorella cells at 3 and 4 h PI respectively. Cells reveal VFs with viral particles at various maturation stages, starting from crescent-shaped structures (light blue arrowheads pointing to single bilayer open membrane sheets and yellow arrowheads indicating capsids), partially assembled particles lacking DNA (red arrowhead) and mature virions (magenta arrowhead). Mature virions appear to be forced away from the VF core, presumably by the progressive and continuous generation of new progeny viral particles. Notably, open membrane sheets are clearly detected in VF centres (Fig. 4C and D; light blue arrowheads), thus corroborating observations derived from chemically preserved cells.

Figure 4E–G depicts a 3 h PI cell stained with SYTO82 (DNA staining, green) and DiOC6 (membrane staining, magenta). The results presented in panel E indicate that at this PI time, the cytoplasm of infected cells is completely occupied by viral DNA, with punctuate patterns that most probably represent mature, DNA-containing viruses. Significantly, DNA is excluded from distinct regions in the cytoplasm (unstained ‘holes’ in panel E), which specifically correspond to membrane assembly zones, as determined by the DiOC6 membrane staining as well as by an overlay of SYTO82 and DiOC6 (Fig. 4F and G respectively). The spatial separation of DNA and membrane zones, with DNA present at the VF periphery and throughout the host cytoplasm, whereas membranes are localized at the centre of VFs, is indicated by an intensity plot profile of SYTO82 and DiOC6 (Fig. 4H). Such a spatial separation is further confirmed by a Pearson correlation analysis, which is a measure of the degree of overlap of images recorded in different channels and thus indicative of colocalization or de-colocalization of specific substances (Adler et al., 2008). This analysis reveals a negative correlation between DNA and membrane intensity values (Fig. 4I). In addition, our fluorescence microscopy studies show that already at this relatively early infection stage, host nuclei are almost completely devoid of DNA (Fig. 4E–G, indicated with asterisks), in agreement with previous studies implying that host DNA is degraded by viral endonucleases shortly after infection (Agarkova et al., 2006; Yamada et al., 2006).

Viral factories generated by Mimivirus (Mutsafi et al., 2013; Mutsafi et al., 2014) and Vaccinia virus (Condit, 2007; Katsafanas and Moss, 2007; Miller and Krijnse-Locker, 2008; Chichon et al., 2009; Chlanda et al., 2009; Maruri-Avidal et al., 2013; Suárez et al., 2013; Moss, 2015) consist of an internal DNA core where viral DNA replication occurs and a peripheral domain in which membrane biosynthesis takes place. In sharp contrast, VFs produced by PBCV-1 are composed of a central membrane region surrounded by viral DNA (Figs 2–4). To support this observation, we conducted experiments aimed to localize DNA molecules using anti-DNA antibodies in thin (~70 nm) sections of cryo-immobilized infected chlorella cells at 2 h PI. The results reveal massive DNA egress from the host nucleus (Fig. 5A and B; note in particular the density extending from the nucleus towards the cytoplasm indicated by arrowheads in panel B). Panels C–F, depicting DNA localization in three additional PBCV-1 cryo-immobilized infected cells further support the notion that the cores of PBCV-1 VFs are depleted of DNA.

Insights into the pathway of genome encapsidation into pre-assembled capsids are provided in Fig. 6. Cryopreserved PBCV-1-infected C. variabilis cells reveal that both internal membrane and capsid (light blue and yellow arrowheads, respectively) remain incomplete, thus forming a large aperture that enables efficient DNA packaging, as was shown to be the case for Mimivirus (Zauberman et al., 2008; Mutsafi et al., 2013). Encapsidated viral DNA is indicated with green arrowheads in Fig. 6C and D.

Focused ion beam-scanning electron microscopy studies of whole chlorella cells infected with Paramecium bursaria chlorella virus 1

To further analyse the PBCV-1 infection cycle, we used the novel FIB-SEM methodology that is widely used for material sciences studies but scarcely for biological research. In this method, a scanning electron beam is used to image the surface of cells or tissues that are progressively abraded by a focused ion beam that removes a thin layer of material (typically ~10 nm) from the surface. Electron microscopy of surfaces collected as the specimen is consumed by a focused ion beam are combined to generate ultrastructural 3D representation of the specimen (Bushby et al., 2011; Earl et al., 2013; Risco et al., 2014).

Our FIB-SEM results show a 3 h PI chlorella-infected cell exhibiting membrane cisternae extending from the host nucleus (Fig. 7A) and their disassembly at the VF periphery (blue arrowheads in Fig. 7B and C; Fig. S4; Movies S5 and S6). Segmentation of the volume derived from the FIB-SEM analysis is shown in Fig. 7D–E. Host nuclei (transparent blue) reveal elongated morphology, in agreement with our HPF-FS TEM and fluorescence studies (Fig. 1), and in sharp contrast with nuclei morphology of non-infected cells. We identified additional cisternae budding from different sites of the nucleus (blue arrowheads in Fig. 7E). FIB-SEM analysis of non-infected...
Fig. 4. TEM studies of a cryo-immobilized infected *C. variabilis* cell and fluorescence analyses of PBCV-1 VFs (corresponding to Fig. S3).

A. Low magnification view of a 3 h PI cryo-immobilized PBCV-1 infected *C. variabilis* cell.

B. High magnification view of the VF delineated in a red box in A.

C, D. High magnification views of VFs revealed by two different PBCV-1 infected cells studied by HPF-FS. Light blue arrowheads in B, C and D point to single bilayer membranes that act as templates for the generation of viral capsids (yellow arrowheads). Red and magenta arrowheads indicate pre-assembled empty and DNA containing virions respectively. These results, obtained by HPF-FS, reveal the presence of open single bilayer membranes and capsids at progressive assembly stages.

E-I. Fluorescence analyses of PBCV-1 VFs. (E-G) 0.2 μm slices of de-convoluted images showing a 3 h PI cell stained for DNA (E; SYTO82, green), membranes (F; DiOC6, magenta) and overlay (G). 3 h PI cell stained for DNA (green) and membranes (magenta). (E) Cytoplasm is filled with DNA. Inset represents high magnification of the delineated area. (F) Viral membrane assembly zones located in the host cytoplasm. Inset shows high magnification of delineated area. (G) Overlay image showing viral DNA present throughout the cytoplasm but absent in regions of membrane accumulation at the centre of the VFs. White line and red contour (inset) were used for density plot profile and Pearson correlation respectively. (H) Density plot profile (distance values through the white line in the inset in G, from left to right), showing inverse correlation between DNA and membrane intensity values. DNA and membranes are indicated by green and magenta lines respectively. (I) Pearson correlation highlighting a negative correlation between DNA and membrane within the factory. Asterisks denote host nuclei. Scale bars: A: 500 nm; B–D: 100 nm; E–G: 2 μm.

© 2015 John Wiley & Sons Ltd, *Cellular Microbiology*, 18, 3–16
chlorella cells did not reveal any membrane reorganization similar to that detected in PBCV-1 infected cells (Fig. S5; Movie S7). Notably, these observations could only have been obtained with imaging techniques that provide 3D data of entire cells, underscoring the unique advantages of FIB-SEM to study viral infection cycles (Bushby et al., 2011; Risco et al., 2014).

Discussion

Here, we report key events in the replication cycle of the large DNA chlorovirus PBCV-1 from the Phycodnaviridae family. Our data are consistent with the conjecture that initial DNA replication occurs in host nuclei (Meints et al., 1986; Van Etten, 2003; Yamada et al., 2006), as is the case for another member of the NCLDV clade, the African Swine Fever virus (ASFV) (Garcia-Beato et al., 1992). A nuclear phase of PBCV-1 infection is implied by the lack of a virus-encoded RNA polymerase, as well as by the drastic deformation of the host nuclei shortly following infection. A similar change in nuclear morphology also occurs during infection by the giant Pandoraviruses (Philippe et al., 2013). Along with bioinformatics analyses, these observations support the conjecture that Pandoraviruses...
Raviruses are evolutionarily related to the Phyco-
dnaviruses (Ytin and Koonin, 2013).

The assumption that PBCV-1 replication begins in host
nuclei is further supported by a massive DNA egress from
the nuclei at later PI time points, which was also
demonstrated for ASFV (Garcia-Beato et al., 1992).
Moreover, the enhanced heterochromicity revealed in
infected cells may indicate that PBCV-1 replication occurs
at specific regions at the periphery of the host nuclei, as
was shown for dsDNA gammaherpes viruses (Peng et al.,
2010). In contrast, Vaccinia (Tolonen et al., 2001;
Katsafanas and Moss, 2007; Chichon et al., 2009; Suárez
et al., 2013) and Mimivirus (Zauberman et al., 2008;
Mutsafi et al., 2010; Kuznetsov et al., 2013; Mutsafi et al.,
2013) replicate exclusively in the host cytoplasm. As such,
no structural alterations of host nuclei are detected during
the infection of these viruses.

The results reported here reveal another significant
difference in the infection process among dsDNA viruses
belonging to the NCLDV clade. Specifically, Mimivirus
replication occurs in a distinct location of the host
cytoplasm in which viral genomes occupy a central site
within the factory, which is surrounded by membrane
structures and capsids (Mutsafi et al., 2013, 2014). In
contrast, our fluorescence and immuno-labelling studies
indicate that newly-replicated viral genomes, which
correspond to the outer part of the PBCV-1 cytoplasmic
factory, are spread throughout the host cytoplasm. Notably,
remains unclear if additional PBCV-1 DNA
replication occurs in the cytoplasm or if it occurs
exclusively in the nucleus. In light of the fact that
bacteriophage infection turns the entire bacterial cell into
a viral factory (Forterre, 2010), these findings provide a
new angle to the notion that PBCV-1 replication proceeds
through a bacteriophage-like infection process (Van Etten,
2003; Wulfmeyer et al., 2012).

Previous studies indicated an unusual mode of
biogenesis of a single internal membrane bilayer in
Vaccinia, Mimivirus and the ASFV (Chlanda et al.,
2009; Krijnse-Locker et al., 2013; Mutsafi et al., 2013;
2014; Suárez et al., 2015; Szajner et al., 2005). In
these viruses, internal membrane bilayers are generated
from host ER cisternae that are recruited to the VFs
and subsequently ruptured to form open single bilayer
membrane sheets. These single bilayers interact with
capsid proteins (Vaccinia D13, Mimivirus L425 and

© 2015 John Wiley & Sons Ltd, Cellular Microbiology, 18, 3–16
ASFV p72 proteins) to generate crescents and eventually pre-capsids. Our 3D STEM tomography studies of PBCV-1 infected *C. variabilis* cells reveal that host cisternae also act as precursors of PBCV-1 internal membranes.

Specifically, we suggest that these cisternae are ER membranes that are derived from outer nuclear membranes and studded with ribosomes that are removed as these structures reach PBCV-1 factories. Subsequently, cisternae are ruptured into a dense network of open, single bilayer membrane sheets that accumulate in the centre of the PBCV-1 factories. These open sheets interact with a capsid protein to form pre-capsids, as was shown to be the case for Vaccinia (Chlanda *et al.*, 2009), *Mimivirus* (Krijnse-Locker *et al.*, 2013; Mutsafi *et al.*, 2013) and ASFV (Suárez *et al.*, 2015). Therefore, a general mechanism for the biogenesis of single internal membrane bilayers in viruses, as well as a role for these sheets as templates for crescents formation and capsid assembly, may exist. Notably, the well-ordered rosette-like arrangement of these crescents and of pre-capsids implies that after being ruptured, membrane sheets maintain a structural continuity, presumably due to a constraint diffusion of large macromolecular assemblies within the highly crowded intracellular milieu (Minsky, 2003). It should be noted however that, as is the case for *Mimivirus* (Mutsafi *et al.*, 2013) and ASFV (Suárez *et al.*, 2015), such a structural continuity was not detected by diverse imaging studies. This issue, as well as the proteins responsible for membrane rupture and those promoting stabilization of membrane ends in PBCV-1, *Mimivirus* and ASFV remain to be elucidated.

The observations reported here are summarized in a model for the generation and structure of PBCV-1 cyttoplasmic factories (Fig. 8A). The model depicts the main features of PBCV-1 infection, including structural deformation of host nuclei, generation of nuclei-derived cisternae that act as precursors for single bilayer viral membranes, egress of viral genomes from host nuclei that eventually pervade the entire host cell, followed by capsid assembly, virion formation and genome packaging, apparently proceeding through a large portal, as was shown to be the case for the *Mimivirus* (Zauberman *et al.*, 2008). The PBCV-1 model is juxtaposed with a model of the *Mimivirus* factory (Fig. 8B) (Mutsafi *et al.*, 2013).

Significant differences in the structure and generation pathways of PBCV-1, *Mimivirus* and Vaccinia factories notwithstanding, fundamental similarities are evident. A salient similarity is the mechanism of single sheet membrane bilayer generation through rupture of host cisternae. All factories reveal an ordered organization that enables continuous generation of virus progeny,
thus acting as highly efficient ‘production lines’ (Mutsafi et al., 2014). Figure 6 reveals the generation of large portals that enable effective genome encapsidation, reminiscent of those generated by Mimivirus virions (Zauberman et al., 2008), and Fig. S6 depicts deconvoluted images of fluorescently-stained uninfected C. variabilis cells (A–C), as well as C. variabilis cells at progressive PBCV-1 infection stages (D–L), supporting the model shown in Fig. 8A.

The efficiency of VFs is particularly evident during PBCV-1 infection cycle, where apparently mature virions are detected as early as 2 h PI. The implications of the ordered spatial organization of VFs, as well as of eukaryotic nuclei and bacteria, were highlighted by a recent study, which indicated that component clustering results in dramatic acceleration of metabolic transactions (Castellana et al., 2014). The increasing interest in the generation, structure and division of functions of cytoplasmic factories formed by large DNA viruses stems from the notion that these factories may not only provide new insights into the generation of eukaryotic nuclei (Schramm and Krijnse-Locker, 2005; Bell, 2006) but also contribute novel perspectives to our understanding of why highly-ordered architectures represent a recurrent motif in cellular biology.

Experimental procedures

Sample preparation

Chlorella variabilis cultures were cultivated on MBBM medium under continuous illumination and shaking at 25°C (Van Etten et al., 1983) and infected with PBCV-1 at an MOI of 25 at mid-log. For electron microscopy studies infected cells were chemically fixed or high-pressure frozen. The chemical fixation protocol is a modified version of the protocol reported in Terasaki et al. (2013). Cells were chemically fixed using 2% (v/v) glutaraldehyde for 2 h at room temperature (RT). After fixation cell pellets were embedded in 3.4% agar (Difco), trimmed and stained with a solution of 1% (v/v) OsO₄ in 0.1M cacodylate buffer at RT. Samples were then stained with 2% (w/v) uranyl acetate (UA) in double distilled water.

Freeze substitution was conducted with freeze substitution machine (Leica EM AFS, Austria) in dry acetone containing 2% glutaraldehyde and 0.1% tannic acid. Samples were gradually warmed to RT and then incubated in 1% UA and 1% OsO₄ for 1 h, infiltrated with increasing Epon concentrations over 7 days. Thin sections (70–100 nm), obtained with an Ultracut UCT microtome (Leica) were post-stained with 2% UA and Reynold’s lead citrate. Images were obtained using FEI Spirit TEM operating at 120 kV and recorded on a CCD camera (Eindhoven, the Netherlands) or high-speed Erlangshen camera (Gatan).

Scanning transmission electron microscopy tomography (Aoyama et al., 2008)

Sections of ~250 nm were transferred to 150-mesh copper grids supported by carbon-coated (Edwards) Formvar film, and decorated with 12 nm gold beads on both sides. Tilt series were acquired with FEI Tecnai G2 F20 TEM operated at 200 kV. Automatic sample tilting, focusing and image-shift correction were performed with Xplore3D software (FEI). Double tilt series were acquired at 1.5° increments at an angular range of −65° to +65°, with Gatan bright-field detector in the nanoprobe STEM mode. 3D reconstructions were computed from tilt series using a weighted back-projection algorithm (Mastronarde, 1997). Tomograms were post processed either with a median or a smoothing filter using IMOD (Kremer et al., 1996). 16 STEM tomograms of 2–3 h PI C. variabilis cells and 5 tomograms of 1.5 h PI cells (that do not yet contain viral
factories) were collected and analysed. Volume segmentation, visualization and movies were generated using the Avizo 6.3 image-processing package (FEI visualization sciences group).

Immuno-electron microscopy

Samples were high-pressure frozen and freeze-substituted in dry acetone containing 0.2% UA and 0.1% glutaraldehyde. Samples were then slowly warmed to −20°C, infiltrated with increasing concentrations of LR-Gold, UV-polymerized at −20°C, sectioned and deposited on formvar coated nickel 200 mesh grids. Grids were treated with 0.5–1% blocking solution for 20 min and then incubated with anti-DNA antibody (clone HYB331-01, Abcam). Grids were rinsed with 0.1% glycine in PBS and incubated with 10 nm gold conjugated goat anti-mouse (EMS). Grids were washed with PBSX1 and DDW. Grids were either post-stained with 2% UA and Reynold’s lead citrate or not. Samples were visualized using an FEI Tecnai T-12 (FEI Company, Eindhoven, the Netherlands).

Whole-cell focused ion beam-scanning electron microscopy ‘slice and view’ studies (Bushby et al., 2011)

Epon blocks containing chemically fixed *C. variabilis*-infected cells were trimmed to pyramidal shape. Pyramids were smoothed and mounted on a SEM stub, over which a thin (5–6 nm) carbon layer was deposited (Edwards). Images were acquired using Helios 600 Dual Beam microscope (FEI) equipped with a gallium ion source for focused ion beam milling, with a field emission gun scanning electron microscope and an in-lens secondary electron detector. Sequential surface view imaging was conducted with the View G2 (FEI) programme. Secondary electrons (SE) scanning electron microscope (SEM) images were acquired at 0.34 nA at 2 kV. Milling of serial slices was carried out with an ion beam current of 0.46 nA at 30 kV with 10 nm increments. Images were stacked and aligned using the StackReg plugin programme. Volume segmentation, visualization and movies were generated with the conservative SoftWorx package using high noise filtering and 10 iterations. Pearson analyses were conducted as reported (Adler et al., 2008).

Acknowledgements

This research was supported by the Israel Science Foundation (ISF), the German Minerva Foundation and the Israeli Excellence Center (I-CORE) for Integrated Structural and Cell-Biology Studies.

References

Suárez, C., Welsch, S., Chlanda, P., Hagen, W., Hoppe, S.,
Kolovou, A., Pagnier, I., Raoult, D., and Krijnse-Locker, J. (2013) Open membranes are the precursors for assembly
Suárez, C., Andres, G., Kolovou, A., Hoppe, S., Salas, M.L.,
Fever Virus assembles a single membrane derived from
rupture of the endoplasmic reticulum. Cell Microbiol doi:
10.1111/cmi.12468.
Szajner, P., Weisberg, A.S., Lebowitz, J., Heuser, J., and
poxvirus particles is made of protein trimers, forming a
endoplasmic-reticulum by colocalization of bip and
Terasaki, M., Shemesh, T., Kashthuri, N., Klemm, R.W.,
Schalek, R., Hayworth, K.J., Hand, A.R., Yankova, M.,
Huber, G., et al. (2013) Stacked endoplasmic reticulum
sheets are connected by helicoidal membrane motifs. Cell
Thanbichler, M., and Shapiro, L. (2008) Getting organized -
Tolonen, N., Doglio, L., Schleich, S., and Krijnse-Locker, J.
(2001) Vaccinia virus DNA replication occurs in endoplasmic
infection of cultivable chlorella-like algae and development
Van Etten, J.L., Burbank, D.E., Joshi, J., and Meints, R.H.
(1984) DNA-synthesis in a chlorella-like alga following
viruses: the really big ones (viruses). Annu Rev Microbiol
64: 83–99.
Wulfmeyer, T., Polzer, C., Hiepler, G., Hamacher, K.,
Shoeman, R., Dunigan, D.D., Van Etten, J.L., Lolicato, M.,
Yolken, R.H., Jones-Brando, L., Dunigan, D.D., Kannan, G.,
Dickerson, F., Severance, E., Sabunciyan, S., Talbot, C.C.,
Prandovszky, E., et al. (2014) Chlorovirus ATCV-1 is part
of the human oropharyngeal virome and is associated with
25.
Zauberman, N., Mutsafi, Y., Ben Halevy, D., Shimoni, E.,
DNA exit and packaging portals in the virus Acanthamoeba

Supporting information

Additional Supporting Information may be found in the online
version of this article at the publisher’s web-site:

Fig. S1. 3D surface rendering views of the tomogram presented
in Fig. 3, panels G-H.

Fig. S2. PBCV-1 membrane biogenesis, supporting Fig. 3.

Fig. S3. PBCV-1 Chlorella-infected cells at 4h PI, supporting Fig.
4A-D.

Fig. S4. A 3h Pl C. variabilis cell infected with PBCV-1 was
analyzed with a ‘Slice and View’ FIB-SEM, corresponding to Fig. 7, Movies S5, S6.

Fig. S5. 3D view of a control, non-infected C. variabilis cell
analyzed by FIB-SEM, supporting data shown in Movie S7.

Fig. S6. Fluorescent images of non-infected as well as PBCV-1-
infected C. variabilis cells at various PI stages, supporting the
model shown in Figure 8A.

Movie S1. 3D surface rendering of the rosette-like PBCV-1 viral
factories.

Movies S2; S3. PBCV-1 factories exhibit a complex membrane
network composed of host cisternae and single-bilayers open
membrane sheets.

Movie S4. Tomogram and 3D surface-rendering of PBCV-1 VF.

Movies S5; S6. FIB-SEM “Slice and View” movies showing 3h-PI
PBCV-1-infected C. variabilis cells derived from whole cells.

Movie S7. FIB-SEM “Slice and View” movie showing a control,
non infected C. variabilis cell.