
University of Nebraska - Lincoln University of Nebraska - Lincoln 

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln 

Faculty Publications from the Department of 
Engineering Mechanics 

Mechanical & Materials Engineering, 
Department of 

10-2007 

Electroelastic Effect of Thickness Mode Langasite Resonators Electroelastic Effect of Thickness Mode Langasite Resonators 

Haifeng Zhang 
University of Nebraska - Lincoln 

Joseph A. Turner 
University of Nebraska - Lincoln, jaturner@unl.edu 

J. S. Yang 
University of Nebraska-Lincoln, jyang1@unl.edu 

J. A. Kosinski 
U.S. Army Research Development and Engineering Command (RDECOM) Communications-Electronics 
Research, Development and Engineering Center (CERDEC), Fort Monmouth, NJ 

Follow this and additional works at: https://digitalcommons.unl.edu/engineeringmechanicsfacpub 

 Part of the Mechanical Engineering Commons 

Zhang, Haifeng; Turner, Joseph A.; Yang, J. S.; and Kosinski, J. A., "Electroelastic Effect of Thickness 
Mode Langasite Resonators" (2007). Faculty Publications from the Department of Engineering 
Mechanics. 42. 
https://digitalcommons.unl.edu/engineeringmechanicsfacpub/42 

This Article is brought to you for free and open access by the Mechanical & Materials Engineering, Department of at 
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from 
the Department of Engineering Mechanics by an authorized administrator of DigitalCommons@University of 
Nebraska - Lincoln. 

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/engineeringmechanicsfacpub
https://digitalcommons.unl.edu/engineeringmechanicsfacpub
https://digitalcommons.unl.edu/mechengineer
https://digitalcommons.unl.edu/mechengineer
https://digitalcommons.unl.edu/engineeringmechanicsfacpub?utm_source=digitalcommons.unl.edu%2Fengineeringmechanicsfacpub%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=digitalcommons.unl.edu%2Fengineeringmechanicsfacpub%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/engineeringmechanicsfacpub/42?utm_source=digitalcommons.unl.edu%2Fengineeringmechanicsfacpub%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages


2120 ieee transactions on ultrasonics, ferroelectrics, and frequency control, vol. 54, no. 10, october 2007

Electroelastic Effect of Thickness Mode
Langasite Resonators

Haifeng Zhang, Joseph A. Turner, Jiashi Yang, Senior Member, IEEE, and John A. Kosinski, Fellow, IEEE

Abstract—Langasite is a very promising material for res-
onators due to its good temperature behavior and high
piezoelectric coupling, low acoustic loss, and high Q factor.
The biasing effect for langasite resonators is crucial for res-
onator design. In this article, the resonant frequency shift
of a thickness-mode langasite resonator is analyzed with re-
spect to a direct current (DC) electric field applied in the
thickness direction. The vibration modes of a thin langa-
site plate fully coated with an electrode are analyzed. The
analysis is based on the theory for small fields superposed
on a bias in electroelastic bodies and the first-order per-
turbation integral theory. The electroelastic effect of the
resonator is analyzed by both analytical and finite-element
methods. The complete set of nonlinear elastic, piezoelec-
tric, dielectric permeability, and electrostrictive constants
of langasite is used in the theoretical and numerical analysis.
The sensitivity of electroelastic effect to nonlinear material
constants is analyzed.

I. Introduction

The electroelastic effect of piezoelectric resonators is
defined as the resonant frequency shift that occurs

with respect to an applied direct current (DC) electric
field. This phenomenon can be explained by the nonlin-
ear theory of piezoelectricity. This interesting effect has
been applied to frequency-temperature compensation [1]
and electrostatic voltage sensors [2]–[4]. A recent attempt
also has been made to use the electroelastic effect to re-
duce the acceleration sensitivity of quartz resonators [5].
Finally, the measurement of electroelastic effect can be
used to determine the third-order piezoelectric constants
[6]. Although most of the applications mentioned above
use quartz as the resonator material, La3Ga5SiO14 single
crystals are of recent interest. Langasite belongs to point
group 32, such that it has the same symmetry as quartz. It
has good temperature behavior and piezoelectric coupling
factor, low acoustic loss, and high Q factor [7], [8]. Res-
onators made from this material are expected to perform
better than those made from quartz [9]. The frequency
shift of langasite resonators caused by temperature was
investigated by Fritze et al. [10] and Mateescu et al. [11].
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The force-frequency effect was studied by Kim and Bal-
lato [12] and Kosinski et al. [13]. Research associated with
the electroelastic effect for langasite resonators has not yet
been reported.

The sensitivity of the electroelastic effect to nonlinear
material constants is critical for accurate determination of
nonlinear material constants by resonator methods. Re-
lated work for quartz resonators was reported by Brendel
[14] for one specific cut, and the analysis for langasite res-
onators has not been conducted.

In this article, the frequency shift of a langasite res-
onator with arbitrary orientation under DC electric field
is discussed based on concepts regarding small fields su-
perposed on finite-biasing fields in a thermoelectroelas-
tic body [15] and perturbation theory [16]. The complete
set of third-order material constants—including third-
order elastic, piezoelectric, dielectric, and electrostrictive
constants—is needed for this calculation. The contribu-
tions of nonlinear material constants to the electroelastic
effect of langasite resonators are analyzed for several crys-
tal cuts. By comparing the contribution of each group of
nonlinear material constants to the electroelastic effect,
specific cuts of interest are identified with respect to the
nonlinear material constants.

In the next section, the first-order perturbation inte-
gral theory is introduced. The general solution of the dy-
namic response of an infinite, thin piezoelectric plate with-
out DC biasing electric field is obtained in the third sec-
tion. The static stress, strain, and electric field distribu-
tion of a doubly-rotated langasite plate under a biasing
static electric field in the thickness direction are obtained
analytically and numerically in the fourth section. In the
fifth section, the electroelastic effect and sensitivity analy-
sis are obtained both analytically and by the finite-element
method. Conclusions are made in the sixth section.

II. Perturbation Integral

The resonant frequency of a resonator depends on its
geometry, material constants, and boundary conditions.
When a langasite resonator is subjected to an external
biasing electric field, the geometry changes slightly be-
cause of the electromechanical effect. In this case, the
material constants may be characterized as effective con-
stants, which will change with the biasing electric field.
Thus, the biasing electric field will cause a shift of reso-
nant frequency, a value that may be estimated accurately
by perturbation integral theory. The expression to esti-
mate a specific mode can be found from [16]:

0885–3010/$25.00 c© 2007 IEEE
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where:

ĉKαLγ = T 0
KLδαγ + cKαLNwγ,N + cKNLγwα,N

+ cKαLγABS0
AB + kAKαLγE0

A,
(2)

êKLγ = eKLMw0
γ,M − kKLγABS0

AB + b′
AKLγE0

A,
(3)

ε̂KL = b′
KLABS0

AB + χKLAE0
A, (4)

with:

b′
AKLγ = bABCD + ε0δABδCD − ε0(δACδBD + δADδBC).

In (1)–(4), ωM is the unperturbed angular frequency,
ω is the perturbed angular frequency, and ∆ωM is the
angular frequency shift. Here, ĉKαLγ , êKLγ, and ε̂KL are
the effective elastic, piezoelectric, and dielectric constants,
respectively; uM

γ is a specific mode shape function under
the unperturbed condition and ϕM is the electric poten-
tial for this specific mode. T 0

KL, S0
AB, E0

A are the initial
stress, strain, and electric field, respectively, with wγ,N

defining the displacement gradient. cKαLγ , dfAB, εKL are
the second-order elastic, piezoelectric and dielectric con-
stants. cKαLγAB, kfKαLγ , and χKLf are the third-order
elastic, piezoelectric, and dielectric constants respectively,
and bfALγ are the electrostrictive constants. ε0 is the per-
mittivity of free space. It is worth noting that the definition
of the energy density used here differs from that of Sorokin
et al. [17]. The resulting differences in material constants
are discussed in the Appendix.

The displacement gradient is the summation of strain
and the rigid body rotation tensor. It may be written:

wγ,N = SγN + ΩγN .

Physically, it can be easily verified that a rotation of the
position of a crystal resonator will not cause a resonant
frequency shift. Theoretically, it was proven in [18] that
an arbitrary pure homogeneous infinitesimal rigid body
rotation has no influence on frequency shift. Thus, in the
case considered here, the displacement gradient may be
obtained directly from the static strain solution.

The frequency shift, as given by (1), is a function of the
mode, the natural frequency without perturbation, and
the effective material constants. From (2)–(4), the effec-
tive materials constants are functions of electric field E,
as well as the initial stress and strain. Thus, estimates of
the frequency shift of a resonator under a DC electric field
require the mode shape and electric distribution potential
for the resonator. Then, the static solution for the electric
field, initial stress, and strain are required. These solutions
may be obtained analytically or numerically.

For a resonator with simple geometry, the perturbation
integral (1) may be simplified greatly. But for a resonator
with relatively complex geometry, the perturbation inte-
gral can be carried out only numerically. In such cases,
the finite-element solution combined with numerical inte-
gration may be done to estimate the resonator frequency
shift accurately. The initial stress, strain, and electric field
can be solved by the finite-element method for element
stress, strain, and electric field. The volume integral can
be treated as the summation of each element volume. The
perturbation integral for the finite-element approach may
be expressed as:

∆ωM = ∆ω1 + ∆ω2 − ∆ω3, (5)

where:

∆ω1 =
ELN∑
N=1

(T 0
KL(N)δαγ + 2cKαLNS0

γN (N)

+ cKαLγABS0
AB(N) + kAKαLγE0

A(N)

+ 2cKαLNΩ0
γN(N))uM

γ,K(N)uM
α,L(N)V (N),

∆ω2 = 2
ELN∑
N=1

(eKLM(S0
γM(N) + Ω0

γM(N))

− kKLγABS0
AB(N)

+ b′
AKLγE0

A(N))ϕM
K (N)uM

γ,L(N)V (N),

∆ω3 =
ELN∑
N=1

(b′
KLABS0

AB(N)

+ χKLAE0
A(N))ϕM

,K(N)ϕM
,L(N)V (N).

Here, N is the element number and T 0
KL(N), S0

γN(N),
E0

A(N), V (N) are the element stress, strain, electric field
and volume. The rigid body rotation tensor Ω0

γN(N) is
calculated from the nodal displacements. The analytical
solution to be derived in Section III is used for the mode
shape uk(N) and electric field ϕ(N).

III. Unperturbed Response

Consider the free vibrations of a thin plate cut from a
single crystal with arbitrary symmetry, as shown schemat-
ically in Fig. 1. The plate is fully coated with electrodes on
both sides. The boundary conditions are assumed traction
free. The governing equations may be written:

c2jk2uk,22 + e22jϕ,22 = ρüj, (6)
e2k2uk,22 − ε22ϕ,22 = 0. (7)

The boundary conditions are written:

T2j = c2jk2uk,2 + e22jϕ,2 = 0, (8)
ϕ = 0, at x2 = ±h. (9)
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Fig. 1. A doubly-rotated langasite plate with electrodes on both sides.

The general solution for this case can be summarized as:

uj(x2, t) =
3∑

i=1

Di
j sinλix2e

−iωt

=
3∑

i=1

KiBi
j sinλix2e

−iωt,

j = 1, 2, 3,

(10)

ϕ(x2, t) =
3∑

i=1

(
Ki e11m

ε11
Bi

m sinλix2 + P1x2 + P2

)
e−iωt,

m = 1, 2, 3.
(11)

where:

P1 = − 1
h

3∑
i=1

Ki e11m

ε11
Bi

m sinλih, (12)

P2 = 0. (13)

Thus, the ith mode shape may be defined as:

ui
j(x2) = Di

j sinλix2. (14)

The amplitudes Di
j are obtained by solving the eigenvalue

problem:

(c′
2jk2 − cδjk)Dk = 0,

where:

c′
2jk2 = c2jk2 + (e22je22k)/ε22.

Here, (ui
j(x2))M = Bi

j sinλix2 is the ith normalized mode
shape and Ki is the normalized weighting coefficient, λi =√

ρω2/c1, with ω as the angular frequency. Substituting
(10) and (11) into boundary conditions (8) and (9) gives
the transcendental equation which is used to determine the
resonant frequency. This equation is:

Det
{
Bi

m

[
c′
2jk2ωh

√
ci/ρ cos(ωh

√
ci/ρ)

− (e22je22m/ε22) sinωh
√

ci/ρ
]}

= 0.
(15)

Eq. (15) is solved numerically for the frequencies of inter-
est to find the natural frequency. Alternatively, the res-
onant frequency can be approached by the antiresonant
frequency as [19]:

ω ≈ ω1 =
(2q − 1)

4h

√
cj

ρ
, j = 1, 2, 3, q = 1, 2, 3 . . . .

(16)

Eq. (16) is often an accurate approximation for any over-
tone for materials with low piezoelectric coupling coeffi-
cient. For materials with high piezoelectric coupling co-
efficient, the approximation is ideal for high overtones
(q ≥ 4). Langasite has moderately high piezoelectric cou-
pling. Therefore, (16) is expected to apply for high over-
tones.

IV. Biasing Electric Field

When a DC electric field is applied in the thickness di-
rection, the biasing electric field gives rise to static strain,
stress, and electric field solutions. For resonators with sim-
ple geometry, such as the plano-plano configuration con-
sidered here, the solution may be obtained by analytical
methods. However, for resonators with relatively complex
geometry, such as plano-convex or double bevel configu-
rations, the solution may be obtained by finite-element
methods. It is worth noting that the analytical solutions ig-
nore edge effects that can be obtained by the finite-element
method.

A. Analytical Solution

Consider a doubly-rotated langasite plate fully coated
with electrodes on both sides as shown in Fig. 1. A static
voltage ±V/2 is applied on the upper and lower surfaces
of the plate. The material orientation is shown in Fig. 2,
which follows the IEEE standard [19]. The linear consti-
tutive equations of piezoelectricity can be written [20]:

S0
ij = sijklT

0
kl − dkijE

0
k, (17)

D0
i = diklT

0
kl + εikE0

k, (18)

T 0
ji,j = 0, (19)

D0
i,i = 0, (20)

where the strain and the electric field are written:

S0
kl = (wk,l + wl,k)/2, (21)

E0
k = −ϕ0

,k. (22)

In (21) and (22), wk is the displacement component and
ϕ0 is the electric potential. The boundary conditions are
written:

ϕ0 = ±V/2, x2 = ±h, (23)

T 0
2j = 0, x2 = ±h. (24)
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Fig. 2. Plate orientation of a doubly-rotated langasite resonator
(YXwl Φ/Θ).

Consider a possible solution for an infinite, thin plate as:
T 0

ij = 0, S0
ij = Kij = constant, ϕ0

,k = Fk = constant in Ω.
Obviously, the boundary conditions as given by (23) and
(24) are satisfied, as are the equations of motion, (19) and
(20). The static solutions are obtained as:

S0
ij = dkijE

0
k in Ω, (25)

T 0
ij = 0 in Ω, (26)

E0
k = − V

2h
in Ω. (27)

B. Finite-Element Solution

A finite-element model for a doubly-rotated (YXwl
Ω = 20◦/Θ = 30◦) langasite resonator is constructed us-
ing FEMLAB 3.2 (COMSOL, Inc., Burlington, MA). The
model includes 2224 Lagrangian quadratic elements with
the number of boundary elements as 1640, such that there
are three layers of elements. The sample radius is 6.5 mm,
the thickness is 0.65 mm, and a 1000 V DC voltage is ap-
plied along the plate thickness direction. A voltage of this
magnitude is appropriate for the example results calcu-
lated here. Such a voltage is simple to implement exper-
imentally and results in a natural frequency shift (in the
range of 0.07–1.5 Hz/V) that can be measured easily. The
radial edge of the plate has zero charge. The convergence of
the numerical solution is verified by refining the element
size and by comparison with the analytical solutions. In
the analytical solution, the strain, stress, and field are as-
sumed to be uniform based on the thin plate theory. An
example finite-element result, shown in Fig. 4 shows the
shear strain S12. The solution is basically uniform (solid
gray throughout most of the plate) except for some edge
effects (darker gray near the edges).

Fig. 3. Electroelastic effect of LGS thickness mode resonator (YXwl
Φ/Θ).

V. Results

After the unperturbed natural frequency, mode shape,
static stress, strain, and field are obtained. All material
constants are transformed to the new coordinate. Then (1)
and (5), respectively, may be used for the calculation of the
electroelastic effect analytically and numerically. Example
results are presented in this section.

A. Electroelastic Effect

The results for the electroelastic effect are shown in
Fig. 3. The electroelastic effect is represented by df/f0E,
where, df is the natural frequency shift, f0 is the natural
frequency without any biasing electric field, and E is the
electric field. For each mode [mode A (longitudinal), mode
B (fast shear), mode C (slow shear)], the electroelastic ef-
fect is plotted for four groups of resonator orientations:
YXwl Φ = 0◦ − 60◦/Θ = 0◦, YXwl Φ = 0◦ − 60◦/Θ = 20◦,
YXwl Φ = 0◦−60◦/Θ = 40◦, YXwl Φ = 0◦−60◦/Θ = 60◦,
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Fig. 4. Static solution for shear strain S12 determined by the finite-
element method.

respectively. The solid line is the analytical result. The
squares denote the finite-element results. As expected, the
electroelastic effect changes smoothly with cut angle. The
comparison between the finite-element result and the an-
alytical result shows the consistency of these two meth-
ods. A slight difference between these two methods is ob-
served that can be explained by the zero stress assump-
tion for the analytical stress solution. Edge effects also
contribute to this difference. The intersection of the curve
with the X axis shows a possible cut that is insensitive
to the electric field. This crossing point is not observed
for Modes A or Modes C. Such a cut exists only for cut
YXwl Φ = 50◦/Θ = 20◦ in Mode B. It is worth noting
that the electroelastic effect of Mode C is much larger in
magnitude than the other two modes. Thus, mode C of cut
YXwl Φ = 30◦/Θ = 0◦ may be an ideal mode for voltage
sensor applications.

B. Sensitivity to Nonlinear Material Constants

Results showing the electroelastic effect for select lang-
asite resonators using both analytical and numerical solu-
tions are now presented. Because the interest here is on the
behavior with respect to third-order material constants,
only the contribution to the electroelastic effect from third-
order material constants is presented such that contribu-
tions from second-order material constants are excluded.
Figs. 5–8 show the analytical and numerical results of the
electroelastic effect for modes A, B, and C. Cut angles of
θ = 0◦, 20◦, 40◦, 60◦ are shown in Figs. 5–8 respectively,
for Φ = 0◦ − 60◦. The analytical results are shown as solid
lines. The numerical results are denoted with a square.
The first observation of the results is that the numerical
results fit all analytical results very well. Thus, it may be
concluded that the assumptions used in the analysis are
sufficient for the resonators considered here. Specific ob-
servations of the results for each cut also may be made.

Fig. 5. Contribution to electroelastic effect from nonlinear material
constants for YXwl Φ = 0◦ −60◦/Θ = 0. The notation used includes
TOE (third-order elastic constants), TOP (third-order piezoelectric
constants), TOD (third-order dielectric constants), Electrostrictive
(electrostrictive constants).

Fig. 5 shows the electroelastic effect for the YXwl
Φ = 0◦ − 60◦/Θ = 0◦. The results for Mode A (longi-
tudinal mode) show that the primary contributions to the
frequency shift come from third-order elastic and piezo-
electric effects with little contribution from electrostric-
tive constants and no effective contribution from the third-
order dielectric constants. For Mode B, it may be observed
that the cuts YXwl Φ = 25◦ − 35◦/Θ = 0◦ have zero
contribution from the electrostrictive constants, such that
this cut range could be termed the “third-order elastic-
piezoelectric cut (TOE-TOP cut).” Thus, these cuts are
ideal for experimental measurements to determine third-
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Fig. 6. Contribution to electroelastic effect from nonlinear material
constants for YXwl Φ = 0◦ − 60◦/Θ = 20◦. The notation used in-
cludes TOE (third-order elastic constants), TOP (third-order piezo-
electric constants), TOD (third-order dielectric constants), Elec-
trostrictive (electrostrictive constants).

order elastic and piezoelectric constants without the need
to consider the influence of electrostrictive constants. For
Mode C, the same cut range also exists. Fig. 6 shows the
results for cuts YXwl Φ = 0◦ − 60◦/Θ = 20◦. Compared
with the YXwl Φ = 0◦ − 60◦/Θ = 0◦ cuts, these cuts
have a larger contribution from electrostrictive constants.
For Mode A, cut YXwl Φ = 25◦/Θ = 20◦ may be des-
ignated as a “third-order elastic-piezoelectric cut (TOE-
TOP cut).” It also should be noted that, for Mode C, cut
YXwl Φ = 48◦/Θ = 20◦ (the crossing point) is a “third-
order piezoelectric constants cut (TOP cut),” because the

Fig. 7. Contribution to electroelastic effect from nonlinear material
constants for YXwl Φ = 0◦ − 60◦/Θ = 40◦. The notation used in-
cludes TOE (third-order elastic constants), TOP (third-order piezo-
electric constants), TOD (third-order dielectric constants), Elec-
trostrictive (electrostrictive constants).

electroelastic response is the same as that obtained by
considering effects from third-order piezoelectric constants
only. Special cuts for other values of Θ also are expected
and require further investigation. In Fig. 7, we notice in
Mode C, the influence of the electrostrictive constants to
electroelastic effect is the largest for the cut range YXwl
Φ = 0◦ − 22◦/Θ = 40◦. It even surpasses the contribution
from the third-order elastic and piezoelectric constants.
Therefore, this cut range may be appropriate for deter-
mination of electrostrictive constants if third-order elastic
and piezoelectric constants are known. In Fig. 8, YXwl
Φ = 25◦/Θ = 60◦ of Mode C is the “third-order elastic
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Fig. 8. Contribution to electroelastic effect from nonlinear material
constants for YXwl Φ = 0◦ − 60◦/Θ = 60◦. The notation used in-
cludes TOE (third-order elastic constants), TOP (third-order piezo-
electric constants), TOD (third-order dielectric constants), Elec-
trostrictive (electrostrictive constants).

constants cut (TOE cut)”. We note that, for cut YXwl
Φ = 35◦/Θ = 60◦, the third-order piezoelectric constants
have zero contribution to the electroelastic effect, which
means that this cut can be used to determine electrostric-
tive and third-order elastic constants. This cut may be
denoted as a “electrostrictive-third-order elastic constants
cut”.

VI. Conclusions

Analytical and finite-element solution for determining
the electroelastic effect and the sensitivity analysis of
thickness mode langasite resonator are obtained. The FEM

results were shown to fit the analytical results very well for
the range of cuts examined. Thus, the applicability of the
assumptions necessary for the analytical solution was ver-
ified for plano-plano resonator configurations. The results
show the cut that may be used for the case when the fre-
quency stability is required when the resonator is exposed
to external field. There also exist possible cuts for voltage
sensor applications. The contribution to the electroelastic
effect from each group of constants depends on the cut
angle and mode. Overall, it was observed that the third-
order dielectric constants contribute little to the electroe-
lastic effect. The major contribution usually comes from
third-order elastic and piezoelectric constants. Also, there
exist special cuts that are dominated by a specific group of
constants such as a “third-order elastic constants cut” or
a “third-order piezoelectric constants cut.” A pure “elec-
trostrictive constants cut” was not observed for the cases
examined. The contribution from electrostrictive constants
is generally small, although some cuts did have a signifi-
cant contribution that cannot be ignored. The results from
this analysis provide valuable insight into the sensitivity of
the electroelastic effect to the nonlinear material behavior.

Appendix A

A. Energy Density Definition

The energy density is defined here as [21]:

ρ0ψ(SKL, EK) =
1
2
cABCDSABSCD

− eABCEASBC − 1
2
χABEAEB,

+
1
6
cABCDEF SABSCDSEF +

1
2
kABCDEEASBCSDE

− 1
2
bABCDEAEBSCD − 1

6
χABCEAEBEC , (28)

where the material constants cABCD, eABC , χAB,
cABCDEF , kABCDE , bABCD, and χABC are called the
second-order elastic, piezoelectric, electric susceptibility,
third-order elastic, third-order piezoelectric, electrostric-
tive and third-order dielectric, respectively. This energy
definition does not include the energy density in a vac-
uum. However, the energy definition given in [17] is the
total electric enthalpy that includes the energy density in
a vacuum. Thus, the definition of material constants differs
from [17]. These constants must be modified before they
can be used in the calculations presented. Table I lists the
modifications needed. The complete set of materials con-
stants of Langasite with respect to crystallographic axes
X , Y , and Z are available in [17], and are listed in Ta-
bles II–VIII.
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TABLE I
A Comparison Between Different Material Constant

Definitions.

Material constants [17] Here

2nd elastic cABCD cABCD

2nd piezoelectric eABC eABC

2nd dielectric χAB + ε0δAB χAB

3rd elastic cABCDEF cABCDEF

3rd piezoelectric −kABCDE kABCDE

3rd dielectric χABC χABC

electrostrictive bABCD + ε0δABδCD bABCD

−ε0(δACδBD + δADδBC )

TABLE II
Second-Order Elastic Constants of Langasite (1010

N/m
2
).

c11 18.875 c24 1.412
c12 10.475 c33 2.614
c13 9.589 c44 5.35
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