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ENTROPY APPLICATIONS 

 IN  

INDUSTRIAL ENGINEERING 

Saeed Zamiri Marvizadeh, Ph.D. 

University of Nebraska, 2013 

Advisor: Fred Choobineh 

 

Entropy is a fundamental measure of information content which has been applied in a 

wide variety of fields. We present three applications of entropy in the industrial 

engineering field: dispatching of Automatic Guided Vehicles (AGV), ranking and 

selection of simulated systems based on the mean performance measure, and comparison 

between random variables based on cumulative probability distributions. 

The first application proposes three entropy-based AGV dispatching algorithms. We 

contribute to the body of knowledge by considering the consequence of potential AGV 

moves on the load balance of the factory before AGVs are dispatched. Kullback-Leibler 

directed divergence is applied to measure the divergence between load distribution after 

each potential move and load distribution of a balanced factory. Simulation experiments 

are conducted to study the effectiveness of suggested algorithms.  

In the second application, we focus on ranking and selection of simulated systems 

based on the mean performance measure. We apply maximum entropy and directed 

divergence principles to present a two stage algorithm. The proposed method contributes 

to the ranking and selection body of knowledge because it relaxes the normality 

assumption for the underlying population which restricts the frequentist algorithms, it 



 
 

does not assume any priori distribution which is assumed by bayesian approaches, and 

finally it provides ranking of systems based on their observed performance measures.  

Finally, we present an entropy-based criterion for comparing two alternatives. Our 

comparison is based on directed divergence between alternatives’ cumulative probability 

distributions. We compare the new criterion with stochastic dominance criteria such as 

first order stochastic dominance (FSD) and second order stochastic dominance (SSD). 

Since stochastic dominance rules may be unable to detect dominance even in situations 

when most decision makers would prefer one alternative over another, our criterion 

increases the probability of identifying the best system and reduces the probability of 

obtaining the nondominance set in such situations. Among two alternatives, we show that 

if one alternative dominates the other one by SSD, the dominating alternative will be 

dominated by our new criterion. In addition, we show that the probability associated with 

our new criterion is consistent with the probability corresponding to p almost stochastic 

dominance (p-AFSD).   
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Chapter 1

1. Introduction 

The concept of entropy was introduced by Claude E. Shannon in his 1948 paper "A 

Mathematical Theory of Communication". Wikipedia defines entropy as “a measure of 

the uncertainty associated with a random variable. In this context, the term usually refers 

to the Shannon entropy, which quantifies the expected value of the information contained 

in a message, usually in units such as bits and a 'message' means a specific realization of 

the random variable. Equivalently, the Shannon entropy is a measure of the average 

information content one is missing when one does not know the value of the random 

variable.” 

Entropy laid the foundation for a comprehensive understanding of communication 

theory and according to Kapur and Kesavan (1992), the introduction of Shannon entropy 

can be considered as one of the most important breakthroughs over the past fifty years in 

the literature on probabilistic uncertainty. The concept of entropy has been applied in a 

wide variety of fields such as statistical thermodynamics, urban and regional planning, 

business, economics, finance, operations research, queueing theory, spectral analysis, 

image reconstruction, biology and manufacturing which will be reviewed in the next 

chapter. In this chapter, entropy and two related concepts, maximum entropy and directed 

divergence, are reviewed. 
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1-1. Overview of the entropy concept 

Entropy of a system can be described in different ways. The original idea was born 

from classical thermodynamics. Classical thermodynamics was developed during the 19th 

century and its primary architects were Sadi Carnot, Rudolph Clausius, Benoit 

Claperyon, James Clerk Maxwell and William Thomson. However, it was Clausius who 

first explicitly advanced the idea of entropy. The concept was then expanded by 

Maxwell. The specific definition which comes from Clausius, is shown in equation (1-1) 

and interprets the entropy, �, as the quantity of heat, �, that is absorbed in a reversible 

system when temperature is �.  

� � �� 1-1 

As long as temperature is constant, it is simple enough to differentiate equation (1-1) 

and derive (1-2): 

∆� � ∆��  1-2 

Here ∆ represents a finite increment, i.e. ∆� indicates a “change” or “increment” in �, 

as in  ∆� � �� � ��, where �� and �� are entropies of two different states.  

Clausius and the others, especially Carnot, were much interested in the ability to 

convert mechanical work into heat energy and vice versa. Hence they interpreted entropy 

as the amount of energy in a system that is unavailable to do work. They arrived at 

equation (1-3) where ∆� is the energy input to the system, and ∆! is the part of that 

energy which goes into doing work. 

∆� � ∆U � ∆W�  1-3 
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While physicists were laying the foundations for classical thermodynamics, chemists 

interpreted entropy in chemical reactions. Their real interest in entropy was to predict 

whether or not a given chemical reaction will take place.  They defined entropy as 

equation (1-4) in which $ is the enthalpy and � is the free energy (usually known as 

Gibb’s free energy). 

∆� � ∆H � ∆F�  1-4 

In the later 1800’s, Maxwell, Ludwig Boltzmann and Josiah Willard Gibbs, through 

the new molecular theory, extended the ideas of classical thermodynamics to a new 

domain called statistical mechanics in which each system possesses macro-states and 

micro-states. For example, the temperature of a system defines a macro-state, while the 

kinetic energy of each molecule in the system defines its micro-state. Equation (1-5), first 

derived by Ludwig Boltzmann, is the general form of entropy in statistical mechanics 

where '( is the probability that the )*+ particle be in a given micro-state and all '(’s are 

evaluated for the same macro-state. , is an arbitrary constant, and in thermodynamics is 

the Boltzmann constant which is 1.380658 1 102��. 

� � �, 3 '( ln '( 1-5 

Mathematical foundations of statistical mechanics are applicable to any statistical 

system, regardless of its status as a thermodynamic system. As an example (Abbas, 2006) 

consider tossing a die twice. The sum of two throws is considered as a macro-state of this 

system and the possible realizations can be considered as micro-states. In this case we 

have 11 macro-states (2,3,4,5,6,7,8,9,10,11,12) and 36 microstates. Figure 1-1 shows the 

possible micro-states of each macro-state.  
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2 3 4 5 6 7 8 9 10 11 12 

(1,1) (1,2) (3,1) (2,3) (1,5) (1,6) (2,6) (3,6) (4,6) (5,6) (6,6) 

 
(2,1) (1,3) (3,2) (5,1) (6,1) (6,2) (6,3) (6,4) (6,5) 

 

  
(2,2) (1,4) (2,4) (2,5) (3,5) (4,5) (5,5) 

  

   
(4,1) (4,2) (5,2) (5,3) (5,4) 

   

    
(3,3) (3,4) (4,4) 

    

     
(4,3) 

     
Figure 1-1. Possible micro-states of each macro-state in die tossing experiment shown in Abbas (2006) 

Entropy of each macro-state is defined to be proportional to the logarithm of the 

number of its micro-states. In addition, the number of micro-states of a macro-state is 

directly related to its probability of occurrence.  Hence for a given macro-state, the 

entropy is a measure of the probability of its occurrence. Also the entropy of a system is 

the sum of its macro-state entropies. Shannon, used this conclusion as the basis for 

excursion of entropy into the new domain, information theory. He realized that entropy 

can be applied to quantify the uncertainty of a probability distribution, 

� � 4'�, '�, … , '78. He first thought of the properties that a measure, $4'�, '�, … , '78, 

for quantifying the uncertainty of a probability distribution should have and prospected 

the following properties: 

1) It should depend on all probabilities '�, '�, … , '7. In the other words it should be 

a function of all '�, '�, … , '7. 

2) It should be a continuous function of '�, '�, … , '7. 

3) If p�, p�, … , p: are reordered it should not change. This means that this measure 

should be permutationally symmetric. This property is desirable since the labeling 

of the outcomes should not affect the entropy. 

4) H4�: , �: , … , �:8 should be a monotonic increasing function of n. 

5) H4p�, p�, … , p:8 � H4p� 	  p�, p�, … , p:8 	 4p� 	 p�8H4 ;<;<=;> , ;>;<=;>8. 
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Based on these desired properties, Shannon arrived at equation (1-6), which is exactly 

the Boltzmann entropy, and pointed out that this is the only measure which satisfies 

above properties: 

$4'�, '�, … , '78 � �, 3 ') ln ')
?

)�1  1-6 

where , is an arbitrary positive constant, which satisfies all the properties.  

He not only proposed this measure, but also proved the theorem that this was the only 

function of '�, '�, … , '7, which had all these properties. In other words, he showed that 

these properties characterized this measure. 

In addition to the properties illustrated by Shannon, his measure also possesses some 

properties which were not initially intended. These additional properties are as follows 

(see Aczel and Daroczy (1975) and Mathai and Rathie (1975) for these properties and 

their corresponding proofs): 

Property 1) The entropy value does not change by adding an impossible event (an 

event with zero probability). 

Property 2) When this measure is maximized subject to some linear constraints, the 

maximizing probabilities are all non-negative. 

Property 3) Its value is always positive. 

Property 4) Its value is minimum when  '�, '�, … , '7 is a degenerate distribution. 

Property 5) It is a concave function of '�, '�, … , '7 hence its local maximum will 

also be a global maximum. 

Property 6) Its maximum value happens for the uniform distribution. 
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Property 7) Additivity: for two independent distributions, the entropy of the joint 

distribution, is the sum of the entropies of the two distribution. 

Property 8) Strong additivity: for two not necessarily independent distributions, the 

entropy of the joint distribution, is the entropy of the first distribution 

plus the expected value of the conditional entropy of the second 

distribution.  

Property 9) Subadditivity: for two not necessarily independent distributions, the joint 

entropy is less than or equal to the some of the uncertainties of the two 

distributions. 

Property 10) The entropy value will be reduced if two outcomes are combined. 

1-2. Overview of the maximum entropy principle 

The maximum-entropy principle (maxent) originated in statistical mechanics by 

Boltzmann (1871c,b,a) and Gibbs (1902). As an approach to density estimation, it was 

first proposed by Jaynes (1957b,a), and has since been used in many areas outside 

statistical mechanics (Kapur and Kesavan, 1992). 

1-2-1. Maximum entropy in statistical mechanics 

We begin with the work of Boltzmann (1871c,b,a), who studied properties of gas 

bodies, viewed as systems composed of a large number of molecules. One of his central 

concerns was how the macro-state of the system is influenced by its micro-states. The 

macro-state includes properties such as total volume, total number of molecules, and total 

energy. The micro-state is described by the properties of individual molecules such as 

their velocities and positions. 
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To simplify the discussion, assume that the molecules of the gas body occupy discrete 

states. These can be obtained, for example, by the discretization of positions and 

velocities of the molecules. A crucial quantity on both the macro-state and the micro-state 

is the energy. The energy of each molecule is the sum of the kinetic energy, which 

depends only on the velocity of the molecule, and the potential energy, which depends 

only on the position of the molecule within a force field. We assume that the division of 

the state space into discrete cells is fine enough so that the energy of molecules within the 

same cell is almost constant, but coarse enough to allow a large number of molecules per 

cell. The micro-state of the system can be viewed as a vector, listing for each molecule 

the cell it occupies. The macro-state is determined by the histogram of molecule counts 

across cells. Therefore, to describe the macro-state, it suffices to calculate the most likely 

histogram. 

Boltzmann applied the “principle of indifference” and assumed that all the micro-

states are equally likely. Thus, the most likely histogram is the one that can be realized by 

the largest number of micro-states. 

Let’s label the discrete cells as 1, 2, … , A where the number of molecules in the ,*+ 

cell is BC and the total number of molecules is N. The total number of ways to realize a 

concrete allocation into cells is described by equation (1-7) 

B!B�! B�! … BF! 1-7 

Boltzmann looked for the set of occupancies BC for which the number of possible 

realizations equation (1-7) is maximum, while respecting the law of conservation of 

energy 
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3 BC�C
F

CG� � � 
1-8 

where EI is the energy associated with the state k and E is the total energy. 

Computationally, it is simpler to maximize the logarithm of equation (1-7). The 

logarithm of equation (1-7) plays a central role in thermodynamics and when multiplied 

by Boltzmann constant, it defines the thermodynamic entropy: 

Thermodynamic entropy K ln L!L<!L>!… LM! N 3 BC ln LLO
F
CG�  

Replacing 
LOL  by 'C  Boltzmann’s problem can be rephrased as: 

Maximize 3 B'C ln 1'C
F

CG�  
1-9 

Subject to the constraint 3 'C�C
F

CG� � �B 1-10 

Using the method of Lagrange multipliers, we arrive at the solution to Boltzmann’s 

problem: the Boltzmann distribution, pI K e`E4I8, where λ is the corresponding 

Lagrangian multiplier for equation (1.8) ensuring that the average energy constraint is 

satisfied. Using the expression for the Boltzmann distribution, it is now possible to study 

various properties of gas bodies. 

1-2-2. Jaynes-Kullback principle of maximum entropy 

Jaynes (1957b,a) noticed that Boltzmann’s reasoning can be re-interpreted using 

information theory and generalized to problems outside statistical mechanics. He 
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suggested that statistical mechanics “may become merely an example of statistical 

inference.”  

Jaynes, applied the information-theoretic work of Shannon and claimed that 

thermodynamic entropy in Boltzmann’s problem can be replaced by information-

theoretic entropy to quantify how uncertain we are about the system. Our only knowledge 

about the system is summarized by the average-energy constraint equation (1-10). 

Among all distributions satisfying this constraint, we should choose the one that is 

“maximally non-committal with regard to the missing information,” i.e., the one with the 

largest information-theoretic entropy. 

$4�8 � � 3 '( ln '(
7

(G�  

Since the information-theoretic entropy is a multiple of the thermodynamic entropy, 

its maximization yields the result that is identical to Boltzmann’s solution. 

Moreover, the principle of maximum entropy can be viewed as a generalization of the 

principle of indifference applied by Boltzmann. In statistical inference, the principle of 

maximum entopy states that, subject to known descriptive statistics, the probability 

distribution which best represents the current state of knowledge, is the one with largest 

entropy. In the other words, it chooses the distribution which simultaneously maximizes a 

measure of entropy and is compatible with some constraints. If no information is 

available, the best probability distribution which is least committed to the information not 

given to us is the uniform distribution. Choosing a probability distribution with less value 

of entropy means that some data which are not given, are being used. On the other hand, 

having a descriptive statistic such as sample mean, maximum entropy principle will 
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construct a probability distribution with the same mean value and the maximum 

uncertainty.  

Mathematically, this principle implies the maximization of Shannon entropy, subject 

to the following constraints. 

3 '( � 17
(G�  

1-11 

 

3 '(cd4e(87
(G� � fd ,   g � 1,2, … , h 1-12 

Where i � 4e�, e�, … , e78, c�4i8, c�4i8, … , cj4i8 are functions of i, and 

f�, f�, … , fj are related algebraic moment of each function. 

The information-theoretic justification of Jaynes was generalized by Kullback (1959) 

who assumed that in addition to a set of constraints we are also given a distribution �, 

serving as a default guess- the distribution we would choose if we had no data. He 

suggested choosing the distribution that is the closest to � among all the distributions 

satisfying the constraints. The measure of closeness is the relative entropy, 

Ak4�, �8 � 3 '( ln '(l(
7

(G� , 
also known as the Kullback-Leibler divergence, measuring how much information about 

the outcome could be gained by knowing P instead of approximating it by Q. If Q is 

uniform then the minimum relative entropy criterion is the same as the maximum entropy 

criterion.
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1-3. Kullback-Leibler directed divergence measure 

Alongside Shannon entropy, which quantifies the uncertainty of a probability 

distribution, Kullback-Leibler directed divergence, introduced by Kullback and Leibler 

(1951), is another concept which plays an important role in information theory. Kullback-

Leibler divergence measures the difference between two probability distributions � and 

�. If � � 4'�, '�, … , '78 and � � 4l�, l�, … , l78 be probability distributions, then 

Kullback-Leibler divergence measure is defined as: 

Ak4�, �8 � 3 '( ln '(l(
7

(G�  1-13 

Generally, metric divergence measures such as Euclidean distance,op 4'( � l(8�7(G� , 

satisfy four conditions: 

1) Non-negativity: q4�, �8 r 0. 

2) Identity: q4�, �8 � 0 if and only if � � �. 

3) Symmetry: q4�, �8 � q4�, �8. 

4) Triangular inequality: q4�, �8 	 q4�, s8 r q4�, s8. 

Kullback-Leibler directed divergence satisfies the first two conditions of metric 

measures; but not the third and fourth conditions as they are not essential for a measure of 

discrepancy. Instead, it possesses two important conditions which are useful for 

optimization purposes: 

5) Ak4�, �8 is a convex function of  '�, '�, … , '7. 
6) When this measure is minimized subject to some linear constraints the 

minimizing probabilities are all non-negative. 
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Some properties of Kullback-Leibler’s measure are as follows. The corresponding 

proofs can be found in Lexa (2004) and Kullback (1959). 

Property 1) Ak4�, �8 is a continuous function of '�, '�, … , '7 and of l�, l�, … , l7. 

Property 2) Ak4�, �8 is permutationally symmetric, i.e. the value of this measure 

does not change if the outcomes are labeled differently if the pairs 

4'�, l�8, 4'�, l�8, …, 4'7 , l78 are permuted among themselves. 

Property 3) Ak4�, �8 r 0, and is equal to zero if and only if � � �. 

Property 4) The minimum value of Ak4�, �8 is zero. 

Property 5) Ak4�, �8 is a convex function of both � and �. 

Property 6) Since Ak4�, �8 is a convex function of �, its maximum for a given � 

must occur at one of the degenerate distributions. The maximum value 

has to be  

hfe4� t? l� , � t? l� , … . , � t? l78 � t? 1lj(7 

where lj(7 � h)? 4l�, l�, … , l78. 

Similarly, Ak4�, �8 is a convex function of �, its maximum for a given � 

can be made as large as we wish by making some values of l( 
sufficiently small. 

Property 7) When this measure is minimized subject to some linear constraints the 

minimizing probabilities are all non-negative. 

Property 8) Ak4�, �8 u q4�, �8, i.e., Ak4�, �8 is not symmetric.  

Property 9) If � is a priori distribution, � is the probability distribution that 

minimizes the cross-entropy subject to the constraints (1-11) and 
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(1-12), and  is any other distribution satisfying the same constraints, 

then 

Ak4s, �8 	 Ak4�, �8 � Ak4s, �8 

1-3-1. Relationship with Shannon entropy 

In addition to the above properties, If � is a uniform distribution � � 4�7 , �7 , … , �78, 

then  

Ak4�, �8 � 3 '(
7

(G� ln '(1 ?v � 3 '(
7

(G� ln '( 	 ln ? � �$4�8 	 ln 4?8 
Hence, 

Ak4�, �8 � �$4�8 	 w 1-14 

Where w � ln ? is constant. Thus, from this perspective, the Shannon entropy measure 

can be considered a special case of Kullback-Leibler directed divergence measure, 

however they are different conceptually as Shannon entropy is an uncertainty concept; 

but Kullback-Leibler divergence measures the directed divergence between to probability 

distributions. 

1-3-2. Symmetric divergence 

As stated in property 8, Kullback-Leibler’s measure, Ak4�, �8, is not symmetric. In 

order to define a symmetric divergence measure x4�, �8 can be defined as follows: 

x4�, �8 � Ak4�, �8 	 Ak4�, �8 1-15 

This measure is symmetric since x4�, �8 � x4�, �8, obviously. x4�, �8 is called 

measure of symmetric cross-entropy or measure of symmetric divergence. 
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1-4. Generalized measures of entropy and directed divergence 

However, we noted that Kullback-Leibler measure satisfies conditions (1), (2), (5) 

and, (6), there are also other measures that satisfy those four conditions and thus qualify 

as legitimate measures of directed divergence. Even if a measure satisfies only conditions 

(1), (2), and (5), but not (6), it can still be considered as a measure of directed divergence. 

These measures are called generalized measures of directed divergence.  

Csiszer (1972), introduced q4�, �8 � ∑ l(z4{|}|87(G�  as a family of measures for 

directed divergence. In this family z must be a twice differentiable convex function with 

z418 � 0. Measure q4�, �8 defined by Csiszer satisfies conditions (1), (2), (5), but not 

(6) (See Csiszer,1972). 

 If z4e8 � e ln e then q4�, �8 � ∑ l( �{|}| ln {|}|�7(G� � ∑ '( ln {|}|7(G�  which is Kullback-

Leibler directed divergence. Thus, Kullback-Leibler directed divergence is a special case 

of Csiszer’s family of measures when z4e8 � e ln e. Table 1-1shows some special cases 

of Csiszer’s directed divergence measure. 
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Csiszer family of divergence measures are not defined when l( � 0 and the 

corresponding '( u 0. To overcome this problem �� and �� can be defined such that 

�� � ��=��=7� and �� � ��=��=7� where f � 0 and � � 0. ��and�� are also probability 

distributions and q4��, ��8 � ∑ �}|=��=�7(G�  z ��{|=��}|=�� can be used as a measure of directed 

divergence of � and �. Thus, the Csiszer family of measures can be generalized by 

equations (1-16) and (1-17). 

q4�, �8 � 34l( 	 �87
(G� z �'( 	 �l( 	 �� ,        � � 0 1-16 

q4�, �8 � 34fl( 	 187
(G� z �f'( 	 1fl( 	 1� ,        f � 0 1-17 

 The measures presented in Table 1-1 can be generalized by replacing '( by '( 	 � and 

l( by l( 	 � or '( by 1 	 f'( and l( by 1 	 fl(. For example, generalized forms of 

Kullback-Leibler divergence measure would be: 

q4�, �8 � 34'( 	 �87
(G� ln �'( 	 �l( 	 �� ,        � � 0 1-18 

q4�, �8 � 34f'( 	 187
(G� ln �f'( 	 1fl( 	 1� ,        f � 0 1-19 

In addition of being defined even when l( � 0 and the corresponding '( u 0, these 

generalized forms give greater flexibility in applications because of the parameters that 

they have. 

A generalized measure of entropy of a distribution � can be defined as a monotonic 

decreasing function of the generalized directed divergence of � from the uniform 

distribution. Hence, corresponding to every generalized measure of directed divergence, 
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there is a unique measure of generalized entropy and according to Kapur and Kesavan 

(1992), if � � 4�7 , �7 , … , �78 is a uniform distribution, then generalized measures of 

directed divergence and entropy are related by equation (1-20). 

$4�8 � max q4�, �8 � q4�, �8 1-20 

Table 1-2 shows some generalized measures of directed divergence and their 

corresponding measure of entropy. 
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1-5. Outline and contribution 

Although entropy concept has been applied in wide variety of fields (see Kapur 

(1993)), there exist even more areas where it can be employed. In this work we study 

applications of entropy in industrial engineering. Three problems are addressed and for 

each problem an entropy-based approach is suggested.  

In the first problem we address the dispatching issue of a material handling system 

within the context of Automatic Guided Vehicles (AGV) in a discrete part manufacturing 

system. The dispatching issue is about allocating available AGVs to move requests to 

ensure efficient part flow in the factory. We believe that the objective of this resource 

allocation problem should be load balancing among the factory work centers.  Using 

Kullback-Leibler directed divergence, we present entropy-based resource allocation 

algorithms that consider the consequence of potential moves on the load balance of the 

factory before resources are allocated. The proposed algorithms are suitable for real-time 

implementation and strive to even the load in the factory while satisfying the move 

requests generated by the factory work centers. 

In the second problem we focus on ranking and selection based on the mean 

performance measure. We use maximum entropy and Kullback-Leibler directed 

divergence principles to present a two stage algorithm for this problem. The proposed 

method contributes to the ranking and selection body of knowledge because it relaxes the 

normality assumption for underlying population which restricts the frequentist 

algorithms, it does not assume any priori distribution assumed by bayesian methods, and 

finally it provides ranking of systems based on their observed performance measures.  
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Finally, we present an entropy-based criterion for comparing two alternatives. Our 

comparison is based on directed divergence between alternatives’ cumulative probability 

distributions. We compare the new criterion with stochastic dominance criteria such as 

first order stochastic dominance (FSD) and second order stochastic dominance (SSD). 

Since stochastic dominance rules may be unable to detect dominance even in situations 

when most decision makers would prefer one alternative over another, our criterion 

reduces the probability of obtaining the nondominance set in such situations. Among two 

alternatives, we show that if one alternative dominates the other one by SSD, the 

dominating alternative will be dominated by our new criterion. In addition, we show that 

the probability associated with our new criterion is consistent with the probability 

corresponding to p almost stochastic dominance (p-AFSD).   

The remainder of this dissertation is organized as follows. Chapter 2 reviews the 

applications of entropy in industrial engineering and specially manufacturing context. 

Entropy-based dispatching algorithms for automatic guided vehicles are presented in 

chapter 3. Ranking and selection via simulation is studied in chapter 4 and the new 

entropy-based ranking and selection procedure is offered. Chapter 5, focuses on the 

stochastic dominance issue. An entropy-based measure for stochastic dominance is 

introduced in this chapter.  
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Chapter 2 

2. Background and literature review 

Soon after entropy and maximum entropy concepts were introduced by Shannon and 

Jaynes respectively, they began to be used in wide variety of fields such as statistical 

thermodynamics, urban and regional planning, business, economics, finance, operations 

research, queueing theory, spectral analysis, image reconstruction, biology and 

manufacturing (see Kapur (1993) for some applications). 

Within Manufacturing, the entropy concept has been applied to measure diversity of 

production systems from two different points of views:  Flexibility and Complexity. 

a) Flexibility  

Flexibility is defined as the ability of a system to cope with changes (Mandelbaum, 

1990). Sethi and Sethi (1990) defined different types of flexibility as shown in Table 2-1. 

Table 2-1. definitions of different types of flexibility 

Flexibility Definition 

Machine Various types of jobs can be performed by machine 

Operation Different ways can be used to perform a job 

Process Different parts can be made without a major setup 

Routing A part can be produced through different routes 

Volume Different overall output levels can be produced 

Market The system can easily adapt itself with market changes 

Production Different parts can be produced without adding major capital equipment 

Program System can be run unattended for a period of time 

Material handling Different parts can be moved efficiently through a manufacturing facility 

Product New products can be added or substituted easily  

Expansion Capability and capacity can be increased easily 
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Entropy has been widely used to measure and quantify flexibility in manufacturing 

systems.  A system facing uncertainty uses flexibility as an adaptive response to cope 

with changes. The flexibility in the action of the system depends on the decision options 

or the choices available and on the freedom with which various choices can be made 

(Kumar, 1987). A greater number of choices leads to more uncertainty of outcomes, and 

hence, increased flexibility. According to Pereira and Paulre (2001), the level of 

flexibility of a system depends on the set of possible outcomes and therefore possible 

ways that these outcomes can be obtained. This inference has been the main driver to 

apply entropy as a measure of flexibility by different researchers. Thus for all the 

proposed measures, the possible states of the system and their related probabilities of 

occurrence is defined. Entropy concepts are then applied to the obtained probability 

distribution to measure flexibility.   

Yao (1985), and Yao and Pei (1990) applied entropy to the measurement of the 

routing flexibility of a flexible manufacturing system. Kumar (1987, 1988) adopted it for 

the measurement of operation flexibility. Chang et al. (2001) suggested that two attributes 

of flexibility, namely routing efficiency and routing versatility, should be considered in 

the measurement models of routing and single-machine flexibility. Chang (2007) 

proposed a multi attribute approach for routing flexibility by considering three attributes: 

routing efficiency, routing versatility and routing variety. Chang (2009) offered a multi 

attribute approach for machine-group flexibility. Rao and Gu (1994) used entropy as a 

means of measuring production volume and production flexibility. Shuiabi et al. (2005) 

applied entropy as a measure of the flexibility of production operations. Extended from 

Yao and Pei’s approach (Yao and Pei, 1990), Piplani and Wetjens (2007) proposed two 
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dispatching rules, namely ‘least reduction in entropy’ and ‘least relative reduction in 

entropy’ for operations dispatching based on entropic measures of part routing flexibility. 

Table 2-2 shows the proposed entropy measures of flexibility and their related flexibility 

type. 

Table 2-2. Applications of entropy in different types of flexibility 

Flexibility Entropy-based approach 

Machine Chang et al. (2001), Chang (2009) 

Operation Shuiabi et al. (2005) 

Process ---- 

Routing Chang (2007), Piplani and Wetjens (2007), Yao (1985), Yao and Pei (1990) 

Volume Chang (2004), Rao and Gu (1994), Olivella et al. (2010) 

Market ---- 

Production Rao and Gu (1994) 

Program ---- 

Material handling ---- 

Product ---- 

Expansion ---- 

 

a) Complexity 

Complexity can be associated with systems that are difficult to understand, describe, 

predict or control. As noted by Scuricini (1987) who states that: “Complexity is a 

subjective quality, its meaning and its value change following the scope of the system 

being taken under consideration”, it is difficult to define complexity in a precise formal 

sense.  

Generally, the complexity of a system can be described in terms of several 

interconnected aspects of the system such as: number of elements or sub-systems, degree 
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of order within the structure of elements or sub-systems, degree of interaction or 

connectivity between the elements, sub-systems and the environment, level of variety, in 

terms of the different types of elements, sub-systems and interactions, and degree of 

predictability and uncertainty within the system. 

Authors have analyzed complexity in two different aspects: structural complexity 

which is associated with the system configuration (Deshmukh, 1993; Deshmukh et al., 

1998) and operational complexity which is defined as the uncertainty associated with the 

dynamical aspects while system is running (Frizelle and woodcock, 1995; Scuricini, 

1987; Sivadasan el al., 2002).  

Entropy provides a means of quantifying complexity. The complexity of a system 

increases with increasing levels of disorder and uncertainty. Therefore, a higher 

complexity system requires a larger amount of information to describe its state. 

According to the entropy concept, the structural complexity is thus defined as the 

expected amount of information (entropy) necessary to describe the state of a planned 

system; while operational complexity is defined as the expected amount of information 

necessary to describe the state of the system’s deviation from the schedule. 

The idea of using entropy as a measure for complexity in manufacturing was first 

introduced by Frizelle and Woodcock (1995), and Frizelle (1996), for operational 

complexity. Calinescu et al. (1998) applied and assessed the operational complexity 

measures offered by Frizelle and Woodcock (1995), and Frizelle (1996). Deshmukh 

(1993), and Deshmukh et al. (1998) used entropy to suggest an entropy-based measure 

for structural complexity. Frizelle and Suhov (2001) offered some measures for both 

structural and operational complexities. Sivadasan et al. (2002) offered an entropy-based 
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methodology to measure the operational complexity of supplier-customer systems 

associated with the uncertainty of material and information. Fujimoto et al. (2003) 

applied entropy to study structural complexity because of product variety. They used this 

measure to manage assembly process design strategies. Yu and Efstathiou (2006) 

introduced entropy-based operational complexity as a new way to assess the performance 

for rework cells. Martinez-Olvera (2008) proposed an entropy formulation to assess 

information sharing approaches in supply chain environments. Sivadasan et al. (2006) 

modeled the operational complexity of supplier-customer systems from an information-

theoretic perspective. Wu et al. (2007) studied the relationship between cost and the 

operational complexity measures offered by Frizelle and Woodcock (1995). Sivasadan et 

al. (2010) studied the effect of closer supply chain integration on operational complexity 

of production scheduling.  

In addition to manufacturing, the entropy concept has been applied in different fields 

within decision making under uncertainty context including portfolio selection and 

measures of risk. 

- Portfolio selection 

Portfolio selection is about assigning a certain amount of wealth to different assets so 

that the investment can bring a most profitable return. Markowitz (1952) proposed the 

mean-variance (M-V) analysis model and created a fundamental basis for modern 

portfolio analysis. M-V model tries to maximize the expected return for a given level of 

risk or to minimize the level of risk for a given level of expected return. The portfolio 

variance decreases as portfolio diversification increases. Entropy has become a well-

established measure of diversification. Higher portfolio diversification yields a greater 
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entropy value. Bera and Park (2005, 2008) applied entropy and cross entropy to provide a 

well-diversified portfolio. Huang (2008) introduced two types of fuzzy mean-entropy 

models. Zhang et al. (2009) considered a multi-period portfolio selection problem by 

taking into account four criteria: return, risk, transaction cost, and diversification degree 

of portfolio. They offered a possiblistic mean-semivariance entropy model in which 

entropy is applied to measure diversification degree of portfolio. Jana et al. (2009) 

considered the portfolio selection problem by taking into account four criteria and added 

entropy as the objective function to generate a well diversified asset. Qin et al. proposed 

three portfolio selection methods based on fuzzy cross-entropy. Wu et al. (2009) applied 

the maximum entropy principle to obtain a numerical solution for their min-max model to 

investigate the optimal portfolio with riskless assets. Rodder et al. (2010) used an 

information theoretical inference mechanism under maximum entropy and minimum 

cross entropy principles, respectively, in order to propose an entropy-driven expert 

system for portfolio selection. Bhattacharyya (2013) offered a fuzzy portfolio selection 

model by minimizing mean-skewness as well as minimizing variance- cross entropy.  

- Measures of risk 

According to Jones and Zitikis (2007), a risk measure is a mapping from the set of all 

random variable to the extended real numbers in order to quantify the degree of risk 

involved in each random variable. Although many authors have proposed suitable 

methods to measure risk in the past two decades, entropy applications to measure risk 

have been constrained to a limited number of research studies. 

Yang and Qiu (2005) introduce the expected utility entropy (EU-E) measure of risk 

and suggest a decision-making model based on expected utility and entropy. The EU-E 
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reflects an individual’s intuitive attitude toward risk while the decision model 

incorporates the expected utility decision criterion as a special case. Föllmer (2011) 

proposes a new coherent risk measure called the iso-entropic risk measure, which is 

based on cross entropy under the theory framework of Artzner et al.(1999). Ahmadi-Javid 

(2012) introduces the concept of entropic value-at-risk (EVaR), a new coherent risk 

measure that corresponds to the tightest possible upper bound obtained from the Chernoff 

inequality for the value-at-risk (VaR) as well as the conditional value-at-risk (CVaR). 

Chengli and Yan (2012) study a coherent version of the entropic risk measure, both in the 

law invariant case and in a situation of model ambiguity.  
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Chapter 3 

3. Entropy-based dispatching for automatic guided vehicles 

Material handling is a nonvalue adding, necessary function for the production of 

discrete parts. It entails moving work in progress among work centers and raw material 

into and finished products out of the factory. Inefficient implementation of material 

handling could substantially add to production costs. For example, delays in work-in-

process movement would increase parts’ factory flow time, resulting in higher inventory 

costs. Therefore, efforts have been made to improve both the technology and efficient 

implementation of material handling systems. 

An Automatic Guided Vehicle System (AGVS) is an example of a material handling 

system that has benefited from technological innovation and has created opportunities to 

improve the efficiency of material movement. An AGVS is considered by many as the 

most flexible automated material handling system (Hwang and Kim, 1998). This 

flexibility stems from the intelligence imbedded in the AGVS and on board of each 

automated guided vehicle (AGV). This intelligence allows the system to be responsive, in 

real time, to the material move requests generated by the work centers.   

Operation control of an AGVS consists of resolving vehicle routing, vehicle 

dispatching, and vehicle scheduling issues. A routing issue (Kim and Tanchoco, 1991; 

Nishi et al., 2005; Nishi et al., 2009) is identifying the best path for the assigned AGV. A 

dispatching issue (Egbelu and Tanchoco, 1984; Kim and Klein, 1996; Hwang and Kim, 

1998; Ho and Chein, 2006) is assigning AGVs to pickup or delivery requests. A 

scheduling issue (Zaremba et al., 1997; Sabuncuoglu, 1998; Veeravalli et al., 2002; Gaur 
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et al., 2003) is determining the arrival or departure times of AGVs at pickup or delivery 

points. Each of these control issues has its own relevant objective(s) that myopically 

could be optimized. However, an AGVS controller must contribute toward optimizing the 

objectives of the factory, since material handling is a supporting function within a 

factory. An important objective for factory management is minimization of the time that 

parts spend in the factory, i.e., parts flow time. The material handling system can 

contribute to achieving the factory objective by addressing work center move requests in 

a timely manner while avoiding creation of temporary bottlenecks or aggravating 

structural bottlenecks.  Temporary bottlenecks are created when workload is not properly 

distributed among the work centers, and structural bottlenecks are aggravated when a 

scarce capacity of work centers is ignored when dispatching decisions are made.  

In this chapter, we focus on the dispatching issue of a material handling system 

within the context of an AGVS in a discrete part manufacturing system. Since the 

dispatching issue is about allocating available AGVs to move requests to ensure efficient 

part flow in the factory, the objective of this resource allocation solution is load balancing 

among the factory work centers.  Specifically, we use an entropy-based resource 

allocation rule that considers the consequence of potential moves on the load balance of 

the factory before resources are allocated. The proposed approach is suitable for real-time 

implementation and strives to even the load in the factory while satisfying the move 

requests generated by the factory work centers.  

The remainder of this chapter is organized as follows. In Section 3.1, we present a 

brief review of prior work. The application Kullback–Leibler divergence measure is 

explained in Section 3.2. Three dispatching algorithms are proposed in Sections 3.3. In 
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Section 3.4, performance of proposed algorithms is studied and compared with other 

algorithms by conducting simulation experiments. Finally, conclusions and future 

research directions are presented in Section 3.5. 

3-1. Prior work 

Dispatching is a resource allocation problem in that idle AGVs (resource) are assigned 

to move requests (demand). At a given time, the resource vector consists of a possibly 

ordered list of idle AGVs, and the demand vector consists of a possibly ordered list of 

move requests. The problem is to determine the one-to-one pairing of the elements of 

these two vectors.  

AGV dispatching rules have been investigated by many researchers. Simple heuristic 

dispatching rules are discussed by Egbelu and Tanchoco (1984). They divided the 

dispatching rules into two categories:  work-center-initiated (mapping from the demand 

vector to the resource vector) and vehicle-initiated (mapping from the resource vector to 

the demand vector) rules and showed that in busy production settings vehicle-initiated 

dispatching rules are preferable. Their vehicle-initiated category consists of the following 

rules:  random work center (RW); shortest travel time/distance (STT/D); longest travel 

time/distance (LTT/D); maximum outgoing queue size (MOQS); minimum remaining 

outgoing queue size (MROQS); modified first-come, first-served (MFCFS); and unit load 

shop arrival time (ULSAT). Each of these heuristic rules optimizes an objective. These 

objectives are summarized in Table 3-1.  
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Table 3-1.  Objectives of heuristic dispatching rules 

Heuristic Rule Objective 

RW Maximizing long term dispatching entropy 
STT/D Minimizing the percentage of vehicles’ time/distance empty travel  
LTT/D Maximizing the percentage of vehicles’ time/distance empty travel 
MOQS Minimizing the percentage of time parts spend in output queue 

MFCFS 
Minimizing the elapsed time between placing a move request by work 
center and its satisfaction 

MROQS Minimizing the possibility of work center blockage 
ULSAT Minimizing the percentage of time parts spend in input queues 

 

Bartholdi and Platzman (1989) propose a decentralized dispatching rule for a simple 

closed-loop system. Their suggested rule, First Encountered, First Served (FEFS), assigns 

the AGV traveling along the loop to the move request it encounters first. The basis of this 

rule is to minimize the percentage of AGV empty travel time. Yamashita (2001) suggests 

two dispatching policies:  “the nearest vehicle in time” and “the nearest vehicle in 

distance.” The objective of these rules is to minimize the AGV empty travel time. Kim et 

al. (2004) propose two dispatching rules for a single-loop, single vehicle AGV system:  

MAED (Minimum Average of Empty Distance) and MSED (Minimum Sum of Empty 

Distance). The MAED rule minimizes the average vehicle travel time, and the MSED 

rule minimizes the sum of AGV vehicle travel time. 

Some authors have extended single-objective dispatching rules to multiobjective 

decision rules by considering several decision criteria recognizing, due to 

interdependencies within a manufacturing process, some objectives may have conflicts. 

In general, multiobjective dispatching rules are supposed to perform better than single-

objective rules. Kim and Hwang (1999) propose an AGV dispatching rule based on three 

bidding functions defined for travel time, input buffer size, and output buffer size. The 

objective is to minimize a combination of these three bidding functions. Naso and 
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Turciano (2005) suggest a hierarchical fuzzy dispatching rule in which, if a critical move 

request (e.g., requests from work centers with a saturated output buffer or directed to 

starved destinations) is detected, it is selected as the final decision. Otherwise, a 

multicriteria rule is called with the objective of optimizing the AGV utilization by 

minimizing the empty vehicle travel time. Tan and Tang (2001) suggest an AGV 

dispatching rule to strike a compromise between satisfaction of several simple objectives 

using a hybrid Fuzzy-Taguchi approach. Bozer and Yen (1996) develop two algorithms, 

Modified Shortest Travel Time First (MOD STTF) and Bidding-Based Dynamic 

Dispatching (B2D2). The basis of these policies is to minimize the empty vehicle travel 

time. Kim and Klein (1996) propose several multiattribute decision rules and compare 

them with the single-attribute dispatching rules for different performance measures. 

Jeong and Randhawa (2001) propose a multiattribute dispatching rule by considering the 

unloaded travel distance to the pickup point, the remaining space in the input buffer of 

the delivery point and the remaining space in the outgoing buffer of the pickup point. 

Guan and Dai (2009) offer a deadlock-free multia-attribute dispatching method by 

considering three criteria: traveling distance, input queue size and output queue size. 

These criteria are weighted and combined into a single criterion. Criteria are weights 

influenced by transportation loads and processing loads. 

The objectives of most of the proposed dispatching rules in the literature are 

optimization of material handling rather than factory performance measures. Since a 

material handling system has a supporting role in the factory, its control should be 

aligned with optimizing the factory’s performance. A highly desirable performance 

objective of a factory is to achieve a laminar flow of parts within the factory.  The notion 
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of laminar flow has been of much interest in operation of assembly lines and has led to 

the creation of a large body of knowledge generally known as assembly line balancing 

(e.g., Stecke, 1983; Mukhopadhyay et al., 1992; Becker and Scholl, 2006). The promise 

is that when factory work centers (or assembly line work centers) are balanced in work 

content, no work center is overburdened or starved; and thus the flow of parts through the 

factory is smooth. 

We propose a look-ahead AGV dispatching approach that considers the contribution 

of a potential material move to the laminar flow within the factory before an AGV is 

dispatched. The only prior work which considers the factory load balancing concept 

when dispatching decisions are made is Kim et al. (1999). They define a balancing index 

based on the difference between the number of parts in the pickup and the destination 

work centers. Their rule selects the job with the highest balancing index. Their decision is 

based on the current state of the system, while they do not consider the resulting state 

after the dispatched AGV delivers the parts to the destination. Since movement of parts 

into or out of the system or among work centers impacts the state of the system, we take 

into consideration the impact of making such moves as we plan an AGV’s dispatch. 

Hence, in this research, the resulting state of the system after each possible dispatching 

decision is predicted, and the dispatch decision that contributes the most to the laminar 

flow of the factory is selected. The Kullback–Leibler divergence principle is used to 

measure the contribution of a dispatch toward the system laminar flow, and simulation 

experiments are conducted to compare the performance of the proposed approach with 

three simple dispatching rules:  Shortest Travel Distance (STT), Maximum Outgoing 

Queue Size (MOQS), and Modified First-Come, First-Served (MFCFS). 
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3-2. Applying the Kullback–Leibler divergence measure 

We represent the work content of work centers at a given time by a vector whose 

elements are the existing work content in each work center. Moving a work load between 

two work centers changes the work content vector. Under the ideal balanced factory 

operating conditions, elements of the work content vector should be equal at all times.  

Manufacturing system literature suggests that a balanced production system has the 

highest throughput, that is, bottlenecks are avoided (laminar flow). This notion of 

balanced factory gives us an ideal benchmark, although a practical utopia, for operating a 

factory.  

We utilize this notion of balanced factory as our reference vector and order the move 

requests based on the distance of their resultant workload vector from the balanced 

factory work content vector. The move request that results in a workload vector closest to 

the balanced factory vector is deemed to be the best move at the time of the dispatch 

decision.  

If elements of the work content vector are represented as a proportion of the total work 

content of the factory, then the work content vector can be viewed as a probability 

distribution.  Under this scenario, the work content vector of an ideal factory is a uniform 

distribution. Therefore, determining the distance between the resultant work content 

vector of a move request and the ideal work content vector becomes determining the 

degree of divergence between two probability distributions.   

We will apply the Kullback-Leibler directed divergence measure explained in chapter 

1 to tackle this problem. As mentioned in chapter 1, their measure, measures the directed 
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divergence between a probability distribution,�, and a reference distribution, �. If 

� � 4'�, … , '78 and the reference distribution is � � 4l�, … , l78, then Ak4�, �8 �
∑ '( ln �{|}|�7(G� . Moreover, Ak4�, �8 � 0 if, and only if, � � �. When the reference 

probability distribution is uniform, i.e., l( � l � ), then Ak4�, �8 � �$4�8 	 ln 4?8.  

The first term of Ak4�, �8 is the Shannon entropy, and the second term is a constant.  

Thus, when operation utopia is a balanced factory, it suffices to calculate the Shannon 

entropy of the potential resultant work content distributions and select the dispatch that 

has the largest Shannon entropy. 

3-3. Proposed dispatch algorithms 

A dispatch action reduces the number of parts in the output queue of the originating 

work center and increases the number of parts in the input queue of the receiving work 

center by the same amount. Increasing the size of a work center’s input queue increases 

the work content of the work center, while reducing the size of the output queue does not 

impact the work content of the work center. Additionally, process completion of a part at 

a work center which results in moving the part to the output queue changes the work 

content of the work center. In general, the addition of parts to an input queue of a work 

center has a greater impact on the work content of that work center than moving one or 

more parts to the output queue of the work center.  The primary reason is that batches of 

parts are moved into the input queue, and single parts are moved into the output queue. 

In this section, we present three algorithms for a dispatching decision.  The first 

algorithm attempts to balance the factory work content among all work centers by 

assessing the impact of increasing the work content of a work center after a dispatch.  
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The second algorithm attempts to balance the number of loads in the output queue of 

work centers by assessing the impact of removing a load from the output queue of a work 

center. The third algorithm attempts to balance the combined number of loads in the input 

and output queues of the work centers by assessing the impact of a potential dispatch on 

the factory balance. Algorithms two and three may be considered work content balancing 

algorithms, rather than number of load balancing algorithms, if the work content of all 

loads in the factory is the same. For all three algorithms, the base reference is an ideal 

factory where work content or number of loads are uniformly distributed among the work 

centers. Before we present the algorithms, we define the notations used in the algorithms 

and state the assumptions under which the algorithms were developed. 

3-3-1. Notation 

B{:  Number of part types 

B�:  Number of work centers 

B�:  Number of vehicles 

�:  Vehicle speed 

w:  Vehicle capacity 

k�:  Vehicle loading time 

��:  Vehicle unloading time 

�4t, )8:  Mean service time of part type t at work center ) 
�q:  An B� 1 B� matrix where �q�,( is the distance between the drop-off point of 

work center � to pickup point of work center ) 
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 q�:  An B� 1 B� matrix where q��,( is the distance between the pickup point of 

work center � to drop-off point of work center ) 
��:  Arrival rate of part t into the system 

���(}*:  Number of undispatched and unassigned parts of type t in the output queue 

of work center ) that is requested to be moved to the input queue of work 

center q at time � 

��(*:  Number of undispatched and unassigned parts at the output queue of work 

center ) at time �, ��(* � ∑ ���(}*L��G�  

�*:  Set of move requests at time �, �* � ����(}*|���(}* � 0¡ 

¢£�(* :  Estimated number of parts of type t at the input queue of work center ) at 

time � 

¤¥�(*:  Estimated number of parts of type t at the output queue of work center ) 
at time � 

¤¥(*:  Estimated number of parts at the output queue of work center ) at time �, 

¤¥(* � ∑ ¤¥�(*L��G�  

!(*+4¦, ��8:  The §*+ waiting position of part type ¦ that arrived at time �� at the 

input queue of work center ) at observed time � 

¨�(*+ 4�{, ?8:  The arrival time, �{, at the output queue of work center ) of the §*+ 

vehicle dispatched at time � to pick up ? units of part type t 
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 ©�(*+ 4�� , ?8:  The arrival time, ��, at the input queue of work center ) of the §*+ 

vehicle dispatched at time � to deliver ? units of part type t 
��(} :  Estimated system entropy if part type t is moved from output queue of work 

center ) to the input queue of work center q 

3-3-2. Assumptions 

The following assumptions are used: 

1) All AGVs are single load vehicles. 

2) The factory layout and AGVS guide paths are known. 

3) The number of AGVs available in the system is known. 

4) Number and location of pickup and delivery points are known and fixed. 

5)  An idle AGV stays at the work center of last delivery before being 

dispatched. 

6) AGV failure time is negligible.  

7) The longest idle AGV will be assigned to a dispatch first.  

Assumption 7 expresses the work-center-initiated rule which will be applied if more 

than one AGV is idle at a given time. 

3-3-3. Algorithm one:  work content balancing algorithm (WCBA) 

Suppose a vehicle is idle at location � at time ��, and ª�*«ª u 0 move requests have 

been made. Let ��(}  be the total time required to complete move request ��(}*« and �� 	
��(}  be the clock time when it is completed. For each move request ��(}*« ¬ �*«, the 

expected work content of work centers at time �� 	 ��(}  is computed. The algorithm 
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selects the move request that results in the work content of work centers to be as equal as 

possible (closest to an ideal factory).  

The pseudo code of WCBA consists of the Main procedure and the Work Content 

Estimation procedure. The Work Content Estimation procedure calculates the work 

content of work centers at the completion time of each requested move.  

WCBA:  Main Procedure 

 

The Main procedure consists of four steps. Step 1 identifies �*«, the set of move 

requests at time ��. Step 2 first calculates the total time required to complete each move 

request. Then the Work Content Estimation procedure is called to compute the expected 

number of part types at the input queues of work centers at the move request completion 

time. Finally, the work content of the work center is calculated and system entropy is 

obtained. In Steps 3 and 4, respectively, the move request with the largest entropy 

measure is chosen as the best dispatch decision and a vehicle is dispatched. 

Step 1.  Identify the set of move requests at time ��, �*«. 

Step 2.  For each move request ��(}*« ¬ �*«: 

• Compute ��(} � �®,|¯ 	 k� 	 �|,°¯ 	 ��, 

• Call Work-Content-Estimation procedure to compute  ¢£±C,*«=²³|° for all  ¦ ¬ �1, … , B{¡ and , ¬ �1, … , B�¡, 

• Compute ��(} � � ∑ ´ ∑ µ4±,C8.¶£·O,¸«¹º³|°»�·¼<∑ ∑ µ4±,½8.¶£·¾,¸«¹º³|°»�·¼<»¿¾¼< ln ∑ µ4±,C8.¶£·O,¸«¹º³|°»�·¼<∑ ∑ µ4±,½8.¶£·¾,¸«¹º³|°»�·¼<»¿¾¼< ÀL¿CG� . 

Step 3.  Set 4t�, )�, l�8 � �fe���(}¡ . 
Step 4.  Dispatch the vehicle to the work center )� to pickup part type t�. 
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WCBA: Work-Content-Estimation Procedure 

 

Work Content Estimation procedure is a subprocedure which is called by the Main 

procedure to compute ¢£±C,*«=²³|°. Step 1 compares the number of parts of type t at the 

output queue of work center ) with w, the vehicle capacity, to find, the number of parts � 

that can be moved. Step 2 checks whether there are any dispatched vehicles to deliver 

parts to the input queue of work center , before move completion time �� 	 ��(} . If a 

!C*« � !C*« Á Á Â4¦, ��8, . . . , 4¦, ��8ÃÄÄÄÄÅÄÄÄÄÆ7 ÇÈ·O¸«É 4*�,78¬Ê·±¬Ë�,...,L�Ì  

Step 1.  Set � � �)?Íw, ¤Î�(*« Ï. 

Step 2.  Υ± � Ë©±C*«+ 4�� , ?8ª�� � �� 	 ��(}Ì, ¦ ¬ Ë1, . . . , B{Ì,  ¢£±,C,*«=²³|° � ¢±C*« 	 ∑ ?È·O¸«É 4*®,78¬Ê·  , 

Step 3.  If , � 1, then for each part type ¦ with mean interarrival time 
�Ñ· generate ?± 

interarrival times ¨�· , … , ¨7·  such that ∑ ¨j·7·j·G� � ��(} .  
Set !C*« � !C*« Á Í¦, ∑ ±̈Òj·dG� ÏÓj·¬Ë�,…,7·ÌÓ±¬Ë�,…,L�Ì  and sort it by the ascending arrival 

time. 

Set ¢£±C,*«=²³|° � ¢£±C,*«=²³|° 	 ?±. 

Step 4.  Set � � ��. 

Step 5.  If  ∑ ¢£±C,*«=²³|°L�±G� � 0 set � � ��|!C*« �4¦, ��8 and go to Step 6, or else go to Step 7. 

Step 6. If � � �� 	 ��(}, then ¢£±|ÔO¸«<4±,*Õ8,C,*«=²³|° � ¢£±|ÔO¸«<4±,*Õ8,C,*«=²³|° � 1,  

� � � 	 �4,, ��|!C*« �4¦, ��88,  !C*« � !C*«/Ë!C*«�4¦, ��8Ì, and go to Step 5, or else go to Step 7. 

Step 7.  If , � l then, ¢£�C,*«=²³|° � ¢£�C,*«=²³|° 	 �. 
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move could be accomplished, then the number of parts and ordered set of parts waiting to 

be processed at the input queue of this work center are updated. If work center , is the 

work center at which parts enter the system, Step 3 computes the expected number and 

the order of parts which enter the input queue of this work center during the move 

completion time. The number of parts and ordered set of parts waiting to be processed at 

the input queue of work center , are also updated in this Step. Steps 4, 5, and 6 calculate 

the number of parts that will be processed from time �� to time �� 	 ��(} . Finally, if work 

center , is the work center to which the parts will be transported, Step 7 updates the 

number of parts at the input queue of the work center by adding � units of parts to it. 

3-3-4. Algorithm two:  output queue balancing algorithm (OQBA) 

OQBA looks at the number of parts at the output queues of work centers and selects a 

move request in which the output queue sizes become closest to each other. The Main 

procedure of this algorithm is similar to that of WCBA; but instead of balancing the work 

content, it tries to balance the output queue sizes. Hence, the only difference in the Main 

procedure takes place at the second step, as shown below: 

Step 2 of OQBA:  Main Procedure 

 

 

Step 2.  For each move request ��(}*« ¬ �*«: 

• Compute �4�,(,}8 � �®,|¯ 	 k� 	 �|,°¯ 	 ��, 

• Call Number In Queue Estimation procedure to compute  ¤¥C,*«=²³|° for 

all  , ¬ �1, … , B�¡, 

• Compute ��(} � � ∑ ´ ×¥O,¸«¹ º³|°∑ ×¥·,¸«¹ º³|°»¿·¼< ln ×¥O,¸«¹ º³|°∑ ×¥·,¸«¹ º³|°»¿·¼< ÀL¿CG� . 
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Number in Queue Estimation procedure is a subprocedure inside the Main procedure. 

Step 1 verifies that the number of parts of type t that are to be moved from the output 

queue of work center ) does not exceed the vehicle capacity. Step 2 checks if there are 

any dispatched vehicles to pick up parts from the output queue of work center , before 

move completion time �� 	  ��(}. If such vehicles exist, the scheduled number of parts to 

pick up is deducted from the output queue of work center , at the scheduled pickup time. 

Step 3 checks if there are any dispatched vehicles to deliver parts to the input queue of 

work center , before move completion time, �� 	 ��(} . If there are any, then the number 

of parts and ordered set of parts waiting to be processed at the input queue of this work 

center are updated. Step 4 computes the expected number and the order of parts which 

enter the input queue of work center , during the move completion, if , is a work center 

at which parts enter the system. The number of parts and the ordered set of parts waiting 

to be processed at the input queue of work center , are then updated in this step. Steps 5, 

6, and 7 calculate the number of parts that will be processed from time �� to time �� 	
��(} . If work center , is the work center to which parts are moved, Step 8 updates the 

number of parts at its input queue by adding � units of parts to it. Finally, the number of 

parts processed by work center , during move completion time, is added to the number 

of parts at its output queue at Step 9. The pseudo code of the Number in Output 

Estimation procedure is as follows: 
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OQBA:  Number in Queue Estimation Procedure  

 

3-3-5. Algorithm three:  input and output queues balancing algorithm (IOQBA) 

The IOQBA looks at the combined number of parts in both the input and output 

queues of all work centers and selects a move which makes the combined number of 

parts in both queues as close as possible among all work centers. Thus the only change in 

procedure Main would be in the second step as shown below: 

 

!C*« � !C*« Á Â4¦, ��8, . . . , 4¦, ��8ÃÄÄÄÄÅÄÄÄÄÆ7 ÇÈ·O¸«É 4*® ,78¬Ø  

Step 1.  Set � � �)?Íw, ¤Î�(*Ï, 

Step 2.  Set  Γ � Ú¨+±C*«4�{, ?8��{ � �� 	  ��(} , ¦ ¬ Ë1, . . . , B{ÌÛ, ¤¥C,*«= ²³|° � ¤C,*« � ∑ ?ÜÉ·O¸«4*� ,78¬Ý . 

Step 3.  Set Υ � Ú©±C*«+ 4��, ?8��� � �� 	 ��(} , ¦ ¬ Ë1, . . . , B{ÌÛ,  ¢£C,*«=²> � ¢C*« 	 ∑ ?È·O¸«É 4*® ,78¬Ê  , 

Step 4.  If , � 1, then for each part type ¦ with mean interarrival time 
�Ñ· Simulate ?± 

interarrival times ¨�· , … , ¨7·  such that ∑ ¨j·7·j·G� � ��(} .  
Set  !C*« � !C*« Á Í¦, ∑ ±̈Òj·dG� ÏÓj·¬Ë�,…,7·ÌÓ±¬Ë�,…,L�Ì  and sort it. 

Set  ¢£C,*«=²³|° � ¢£C,*«=²³|° 	 ∑ ?±L�±G� . 

Step 5.  Set � � ��, f � 0. 

Step 6.  If  ¢£C,*«=²³|° � 0 set � � ��|!C*«�4¦, ��8  and go to step 7.else go to Step 8. 

Step 7.  If  � � �� 	 ��(} , then ¢£C,*«=²³|° � ¢£C,*«=²³|° � 1, � � � 	 �4,, ��|!C*« �4¦, ��88, !C*« � !C,*«/Ë!C*« �4¦, ��8Ì f � f 	 1
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Step 2 of IOQBA:  Main Procedure 

 

IOQBA Number in Queue Estimation procedure is the same as OQBA Number in 

Queue Estimation procedure. 

In the Appendix IV, a simple numerical example demonstrates the steps of the 

proposed algorithms. 

3-4. Comparison with other algorithms  

In this section, the performance of the three proposed algorithms is compared with the 

following dispatching rules. 

Shortest Travel Time (STT) rule:  If a vehicle is idle at location � at time �� and 

ª�*«ª u 0 move requests have been made, the decision is to dispatch the vehicle to the 

�4�,(,}8 � � Þ3 � ¤¥C,*«=²³|°∑ ¤¥±,*«=²³|°L¿±G� 	 ∑ ¢£±,*«=²³|°L¿±G� ln ¤¥C,*«=²³|°∑ ¤¥±,*«=²³|°L¿±G� 	 ∑ ¢£±,*«=²³|°L¿±G� �L¿
CG�

ß 	 

Step 2.  For each move request ��(}*« ¬ �*«: 

• Compute �4�,(,}8 � �®,|¯ 	 k� 	 �|,°¯ 	 ��, 

• Call Number in Queue Estimation procedure to compute  ¤¥C,*«=²³|°  and ¢£C,*«=²³|°  for 

all  , ¬ �1, … , B�¡, 

• Compute: 

ß∑ ´ ¶£O,¸«¹º³|°∑ ×¥·,¸«¹º³|°»¿·¼< =∑ ¶£·,¸«¹º³|°»¿·¼< ln ¶£O,¸«¹º³|°∑ ×¥·,¸«¹º³|°»¿·¼< =∑ ¶£·,¸«¹º³|°»¿·¼< ÀL¿CG� à. 
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move request ����(�}�*« such that ���(�}� � Min ���(}¡, where ��(}  is the total time required 

to accomplish the move request ���(}*« . 

Maximum Outgoing Queue Size (MOQS) rule:  If a vehicle is idle at location � at 

time �� and ª�*«ª u 0 move requests have been made, the decision is to dispatch the 

vehicle to the move request ����(�}�*« such that ��(�*« � Max���(*«¡ and ����(�}�*« �
Max����(�}*« ¡. 

Modified First Come First Served (MFCFS) rule:  When a part becomes available at 

the output queue of a work center and no vehicle is free at that time, the time that the 

request was generated is saved. When a vehicle becomes available, it is assigned to the 

work center with the earliest saved request time. Also, each work center can have at most 

one saved request at a time. 

3-5. Simulation experiments 

To evaluate the performance of the proposed algorithms, two simulation models are 

developed. Experiments are conducted using different system parameters for each model 

including:  number of vehicles, vehicle capacity, and parts arrival rates to the system. 

Model 1:  Figure 3-1 shows the factory layout for the first model. This factory 

consists of 11 work centers. Parts enter the system from Work Center 1 and exit from 

Work Center 11. The pickup and drop-off points (circles) are arranged in a way so that 

when a vehicle is approaching a work center, it will reach the work center’s drop-off 

point first. Five part types are produced in the factory. Table 3-2 shows the operation 

sequence and production volume percentage of each part type. It is assumed that each 

part type has a fixed process time at each work center. The processing time of each part 



46 
 

type at each work center is illustrated in Table 3-3. The average vehicle speed is 150 feet 

per minute and it takes 0.5 minute to perform loading or unloading operations. 

Simulation experiments are conducted using different values for number of vehicles (4 or 

5), vehicle capacity (5, 20 or unlimited), and mean interarrival time of parts to the factory 

(4.6, 4.8, 5, 5.2, 5.4, 5.6, 5.8 or 6 minutes). Parts arrival to the factory is exponentially 

distributed. Initial simulation test runs show that the factory will be oversaturated when 

the mean interarrival time is smaller than 4.6 minutes.  

 

Figure 3-1.  Factory layout in Model 1 

 

Table 3-2.  Operation sequences and production volume percentage of part types. 

Part Type Operation Sequence 
Production Volume 

Percentage 

1 1-2-4-9-8-10-11 %25 

2 1-2-4-7-9-6-10-11 %30 

3 1-2-7-9-6-10-11 %10 

4 1-2-3-5-9-6-11 %10 

5 1-2-4-8-10-11 %25 
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Table 3-3.  Part types operation times at work centers (minutes) 

    Work Center 

    1 2 3 4 5 6 7 8 9 10 11 

Part 

Type 

1 1.6 2 - 3.2 - - - 4.6 2 2 0 

2 1.6 2 - 1.3 - 4.7 2.5 - 2 2 0 

3 1.2 1.5 - - - 3.2 4.7 - 1.8 1.5 0 

4 1.6 2 17.2 - 20.4 8.7 - - 1.7 - 0 

5 1.6 2 - 3.8 - - - 4.6 - 2 0 

 

Model 2:  This model consists of a factory producing 6 part types using 12 work 

centers with Work Centers 1 and 12 as entrance and exit points, respectively. The factory 

layout, which is adapted from Ho and Chein (2006), is shown in Figure 3-2. The pickup 

and drop-off points are assumed to be at the same location for each work center. Table 

3-4 shows the operation sequence and production volume percentage of each part type. 

The processing times are normal random variables, and their distributions are shown in 

Table 3-5. The average vehicle speed is 120 feet per minute, and it takes 0.5 minute to 

perform loading or unloading operations. Like Model 1, simulation experiments are 

conducted for each combination of different values for different factors:  number of 

AGVs (3 or 5), AGV capacity (5, 20 or unlimited), and mean interarrival time of parts to 

the system (4, 4.4, 4.8, 5.2, 5.6 or 6 minutes). Initial simulation test runs show that 4 

minutes is almost the least possible value for the mean interarrival time before the system 

becomes over saturated. 
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Figure 3-2.  The factory layout in Model 2 

 

Table 3-4.  Operation sequences and production volume percentage of part types 

Part Type Operation Sequence Production Volume 

1 1-3-5-7-9-11-12 %16 

2 1-2-4-6-8-10-12 %17 

3 1-4-5-7-9-10-12 %18 

4 1-3-4-5-9-11-12 %15 

5 1-2-3-6-8-9-12 %14 

6 1-5-6-7-10-11-12 %20 
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Simulation experiments are conducted for each model with all combinations of 

different factors (number of vehicles, vehicle capacity, and mean interarrival time). The 

number of replications is set to be 10 for each configuration; and simulation length and 

warm-up time are 14,400 minutes and 960 minutes, respectively.  

Table 3-6.  Test statistics for the pair-wise T-test 

 
WCBA OQBA IOQBA STT MOQS MFCFS 

WCBA - -2.329 -2.535 -3.065 -9.887 -35.309 

OQBA - - -1.357 -0.554 1.389 -18.293 

IOQBA - - - 0.792 1.978 -11.204 

STT - - - - 2.031 -19.063 

MOQS - - - - - -34.004 

MFCFS - - - - - - 

 

The average time parts spend in the factory minus total processing times and transfer 

times, i.e. a part’s average waiting time, is chosen as the performance measure. The 

waiting time average of 10 replications for various configurations of models one and two 

are shown in the Appendix V. To statistically compare dispatching rules, two-sided, pair-

wise T-tests are applied using waiting time data for 84 configurations (48 configurations 

for Model 1 and 36 configurations for Model 2, shown in the Appendix V).  For these 

tests, the hypotheses are $�: áã � áä  and $�: áã u áä at level of significance, ~, equal to 

0.05. If �� � ª��.��å,æ�ª � 1.989, the null hypothesis is rejected; and we conclude that 

there is significant difference between the two dispatching rules. Table 3-6 shows the 

calculated t-values for the pair-wise T-tests where x represents the row and y represents 

the column. 



51 
 

Based on the results of Table 3-6, we conclude that there is no significant difference 

between pairs: (OQBA and IOQBA), (OQBA and STT), (OQBA and MOQS), (IOQBA 

and STT), and (IOQBA and MOQS), while other pairs are significantly different.  For 

those pairs that are significantly different, a one-sided, pair-wise T-test is applied.  The 

one-sided test has the form of  $�: áã � áä  against $�: áã � áä at level of significance, 

~, equal to  0.05. If �� � ��.�å,æ� � �1.663, the null hypothesis is rejected; and we 

conclude that áã is significantly smaller than áä . Table 3-7 shows the results of 

performing a one-sided T-test on the pairs with mean different performance measures as 

identified in Table 3-6. 

Table 3-7.  Results of one sided, pair-wise t-tests p-values at 95% level of significance 
WCBA: WCBA is better; OQBA: OQBA is better; IOQBA: IOQBA is better; STT: STT is better; MOQS: 
MOQS is better; MFCFS: MFCFS is better; N: No significant difference. 

 
WCBA OQBA IOQBA STT MOQS MFCFS 

WCBA - WCBA WCBA WCBA WCBA WCBA 

OQBA - - N N N OQBA 

IOQBA - - - N N IOQBA 

STT - - - - MOQS STT 

MOQS - - - - - MOQS 

MFCFS - - - - - - 

 
 

Table 3-7 shows that at 5% level of significance, WCBA performs better than all of 

the other rules, while OQBA’s performance is not significantly different from IOQBA. 

3-6. Conclusion 

In this chapter we consider a discrete part manufacturing system with automated 

guided vehicles material handling system. Three look-ahead dispatching algorithms are 

proposed which predict the state of the system after each possible dispatching decision 
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and select the dispatch decision that contributes the most to the laminar flow of the 

factory. The Kullback–Leibler divergence principle is used to measure the contribution of 

a dispatch toward the system laminar flow. The first algorithm, Work Content Balancing 

Algorithm, attempts to balance the factory work content among all work centers by 

assessing the impact of increasing the work content of a work center after a dispatch.  

The second algorithm, Output Queue Balancing Algorithm, attempts to balance the 

number of loads in the output queue of work centers by assessing the impact of removing 

a load from the output queue of a work center. The third algorithm, Input and Output 

Queues Balancing Algorithm, attempts to balance the combined number of loads in the 

input and output queues of the work centers by assessing the impact of a potential 

dispatch on the factory balance. Simulation experiments have shown that WCBA 

performs better than the other two proposed algorithms (OQBA and IOQBA) and three 

simple dispatching rules (STT, MOQS and MFCFS), while OQBA’s performance is not 

significantly different from IOQBA. 
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Chapter 4 

4. An entropy-based ranking and selection method 

Ranking and Selection (R&S) via simulation is a useful method to identify the best 

choice among several alternative systems. The selection issue tries to answer “which one 

of , competing systems is the “best”? “, while the ranking issue is concerned with the 

question: “what is the �*+ (1 � � � ,) best system among , competing systems?”. In a 

majority of problems, "best" can be defined as the system which maximizes (or 

minimizes) the expected value of a performance measure. Chen et al. (2000), Chick and 

Inoue (2001), Kim and Nelson (2001) and Pichitlamken et al. (2006) have proposed 

algorithms to select the best system in which "best" is defined as the system with 

maximum (or minimum) mean value of the simulation output. Two major statistical 

approaches, frequentist (classic) and bayesian, have been used in previous papers. 

The frequentist approaches (Bechhofer et al., 1995; Rinott, 1978) build a confidence 

interval containing the sample mean with the certain probability of correct selection. 

Algorithms using this approach assume that samples are independently identically (IID) 

normally distributed. For steady-state simulations (where data are not independent) or 

when the simulation data are not approximately normally distributed the method of batch 

means is employed (Kim and Nelson, 2001). On the other hand among those systems 

lying in the indifference zone, one is selected randomly and presented as the best system 

with a certain probability of correct selection while there might be other systems with 

almost the same properties. 

Bayesian approaches (Chen et al., 2000; Gupta and Miescke 1994, 1996) assume a 

prior distribution which is supposed to describe the knowledge about the sample mean 
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before any sampling. The posterior, the conditional distribution of the uncertain quantity 

when data is given, is updated each time and the purpose is to maximize the posterior 

probability of correct selection with a constraint on budget. Algorithms using this method 

also consider the samples to be independently identically (IID) normally distributed 

(Chen et al., 2000; Chick and Inoue, 2001). 

Both frequentist and bayesian methods consider some assumptions before performing 

any sampling. In practical problems no information about the systems' distributions is 

available and hence it would not be correct to use information such as normality of the 

samples or a priori distribution which is not given. The only information that can be used 

are descriptive statistics like sample moments obtained from observations. Moreover, 

none of the previous algorithms provide the mean-based ranking of systems; however not 

only selecting the best system, but also providing a ranking based on mean performance 

is useful and vital in most cases. 

According to the number of sampling stages, existing Ranking and Selection 

procedures can be classified by two types: two-stage procedures (Nelson et al., 2001; 

Nelson and Staum, 2006; Tsai et al., 2009) and fully sequential procedures (Hong and 

Nelson, 2005, 2007; Pichitlamken et al., 2006; Tsai and Nelson, 2010). Two-stage 

procedures are developed based on the least-favorable-configuration assumption. 

Although they are easy to implement, they usually prescribe more samples than needed.  

In contrast, fully sequential procedures reach a selection decision more quickly, but may 

incur more switching cost among simulated systems. 

In this research the normality assumption of the parent population which restricts the 

previous algorithms is relaxed. Also, the priori distribution is not assumed. The key idea 
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is to find, for each system, a distribution which is most ignorant using only the available 

information summarized in descriptive statistics. We present a two stage algorithm. In 

stage 1 we generate a set of observations and find the probability distribution that 

maximizes entropy or in other words a distribution that represents the most conservative 

current state of knowledge for each system. This distribution is used to determine the 

final number of observations required to rank systems within a specific confidence level. 

In the second stage, the distribution that maximizes the uncertainty of each system is 

obtained based on this final number of observations and directed divergence with respect 

to a reference distribution is used to compare the systems. Also the algorithm provides a 

ranking of systems based on the mean value of simulation outputs. Moreover, two 

systems will have the same ranking if the user is indifferent among their mean values. 

The remainder of this chapter is organized as follows. Preliminaries and the two stage 

mean based algorithm are presented and explained in sections 4.1 and 4.2, respectively. 

Section 4.3 shows the performance of the algorithm using a simple example including 

two systems. The simulation results are presented in section 4.4. Finally, the conclusion 

is presented in section 4-5. 

4-1. Preliminaries 

Suppose that the performance measure of a system follows a probability distribution 

with unknown mean, á. Assuming that ? observations are generated from this system and 

fè shows the sample mean of those ? observations, as ? approaches infinity, by the central 

limit theorem, √?4fè � á8 converges in distribution to a normal distribution with mean 

zero.  
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Now suppose that  �� � 4'��, '�� , … , 'ê� 8 is the optimal solution of the mathematical 

programming model, Model (I), and ��� � 4'���, '���, … , 'ê��8 is the optimal solution of 

Model (I) as ? approaches infinity and fè converges in distribution to a normal 

distribution with mean á. 

$4��8 � max 3 �41 	 '(8 ln41 	 '(8ê
(G�  

subject to: 
418   3 '(

ê
(G� � 1 

428  3 '(
ê

(G� e( � fè 

438  '( r 0,   ) ¬ �1, … , ë¡ 

Model (I) 

Model (I) is a maximum entropy model (see section 1-2 for more details). The 

maximum entropy principle states that, subject to some known descriptive statistics such 

as sample mean, the probability distribution which best represents the current state of 

knowledge is the one with the largest entropy. The objective function of Model (I) is 

maximizing  ∑ �Í1 	 ')Ï ln41 	 ')8ê(G�  which is a generalized form of entropy. This form 

of generalized entropy is preferred because its corresponding directed divergence 

measure is defined even when the denominator is zero.  Model (I) consists of two 

constraints in addition to the nonnegativity constraints. The first constraint guarantees 

that the sum of probabilities of all outcomes is one, ∑ '(ê(G� � 1. The second constraint 

ensures that the mean of the optimal probability distribution which is calculated by 

multiplication of each possible outcome, e( where ) � 1,2, … , ë is equal to the sample 

mean of the generated ? observations, fè. In addition, since the generalized form of 
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entropy does not guarantee that the optimal probabilities are greater than or equal to zero, 

nonnegativity constraints should be written to warrant that the optimal probabilities are 

nonnegative. 

Theorem 4.1 shows that √?4��� � ��8 converges to a multivariate normal distribution 

with mean zero as ? goes to infinity. 

Theorem 4.1.  

Suppose that f�, f�, …, f7 are independent and identically distributed observations of a 

system which follows a distribution with mean á. Let fè be the sample mean of these 

observations. Moreover let �� � 4'��, '�� , … , 'ê� 8 be the optimal solution for Model (I). 

Moreover assume that ��� � 4'���, '���, … , 'ê��8 is the optimal solution for model (I) if ? 

approaches infinity. Also let �� and �� respectively be the lagrangian multipliers for the 

first and second constraints in Model (I) when ? approaches infinity and fè converges in 

distribution to a normal distribution with mean á. √?4��� � ��8~��B40, Σ8 where 

ï² � 4ï�, … , ïê8 and  

ï( � � 4ë 	 182�Í∑ ð2Ñ<ã|ê(G� Ï�4� ∑ e(�ð2Ñ<ã|ê(G� 84∑ ð2Ñ<ã|ê(G� 8 	 4∑ e(ð2Ñ<ã|ê(G� 8�� ð2Ñ«2Ñ<ã|2� ´fè 	 ∑ e(ê(G�ë 	 1 � e(À 4-1 

Σ � ï² ∑ 4f( � fè8�7(G�? � 1 ï 4-2 

The proof of theorem 4.1 is presented in Appendix VI. 

Now let’s define Ak4�, �8 as the Kullback-Leibler directed divergence between a 

discrete probability distribution � with ë possible outcomes and discrete uniform 



58 
 

distribution, �, with probability 
�ñòMó for the largest ñêFó possible outcomes and zero 

elsewhere, where A is a positive number less than ë.  

�ô4e � e(8 � õ 1ñëAó    )ö  ) ¬ ÷ë � øëAù 	 1, ë � øëAù 	 2, … , ëú 
0                                                     ��§ðgû)üð ß 

In the set of possible outcomes, If large outcomes are more likely to happen than small 

outcomes according to �, then the directed divergence between � and � is smaller than if 

small outcomes are more likely to happen than large outcomes. In the other words a 

larger mean will result in smaller directed divergence with respect to �.  Ak4�, �8 can be 

written as below. 

Ak4�, �8 � 3 41 	 '(8lnê2ñòMó
(G� 41 	 '(8 	 3 41 	 '(8lnê

(Gê2ñòMó=�
ý1 	 '(1 	 �ñòMóþ. 

Theorem 4.2 shows that √?ÍAk4��, �8 � Ak4��� , �8Ï converges to a normal 

distribution with mean zero as ? goes to infinity. 

Theorem 4.2. 

 Define Ak4�, �8 � ∑ 41 	 '(8lnê2ñòMó(G� 41 	 '(8 	 ∑ 41 	 '(8lnê(Gê2ñòMó=� ��={|�= <ñòMó�.  

The asymptotic distribution of Ak4��, �8 is given by √?ÍAk4��, �8 � Ak4���, �8Ï
� B40, â�8 where: 

â� � §Σ§² 4-3 
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 §( � �ln41 	 '(�8 	 1                                     )ö 1 � ) � ë � ñêFó          
ln41 	 '(�8 	 1 � ln ´1 	 �ñòMóÀ        )ö ë � ñêFó 	 1 � ) � ë. ß 4-4 

Now Assume that we have A systems to rank based on their mean performance 

measure and select the system with the largest performance measure as the “best”.  

? observations 4f�C , … , f7C8 are generated from each system. fèC � �<O=�,=��O7  shows 

the sample mean of the ,*+ system. Then for each competing system Model (I) is 

constructed and solved. Since the resulting discrete probability distributions will be 

compared later with each other, we will use the same set of possible outcomes 

4e�, e�, … , eê8 to construct Model (I) for all probability distributions. In order to find this 

common set of possible outcomes, we put all observations from all systems together, rank 

the A?� observations from smallest to largest and divide them into ë buckets. Bucket 

means are used as the possible outcomes for each probability distribution. Hence, A 

discrete probability distributions which maximize the generalized form of entropy are 

available where the mean of the ,*+ probability distribution is equal to the ,*+ system 

sample mean. 

Now we have to figure out how many additional observations are needed in order to 

detect any difference larger than or equal to a user defined indifference parameter � 

between mean performance measures of any pair of systems, with specific probability of 

correct selection, 1 � ~. We generate the additional number of observations, update fèC, 

and construct and solve Model (I) for each system. Our goal is to calculate Ak4�, �8 for 

each system and sort them from the smallest to the largest. We should ensure that we are 

able to detect any difference between Ak4�, �8 of two systems larger than or equal to an 
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entropy-based indifference parameter (�¶).  Hence the mean-based user-determined 

indifference parameter (�) has to be converted to an entropy-based indifference 

parameter. Theorem 4.3 is used to convert � to �¶. The proof is presented in Appendix 

VI. 

Theorem 4.3. (Converting � to �¶) 
Assume that ��� � 4'���, '��� , … , 'ê��8  is the optimal solution of Model (I) for a system 

with unknown mean á. Then: 

��4	8 � 1 �


��� 3 Íe2Ñ«2Ñ<ã|2� � 1Ï

ñòMó �:��= <ñòMó�
(G� �

���
ê

 4-5 

�¶� � �� r ��2�41 � ~8 4-6 

Where ��, �� are the Lagrangian multipliers for the first and second constraint in Model (I) 

respectively, and A is the number of competing systems. 

Since each system has its own optimal probability distribution obtained from 

maximum entropy model, according to Theorem 4.3, each system k produces its own 

entropy-based indifference parameter 4δII8. Using Theorems 4.1 and 4.2 we find the 

additional number of buckets and additional number of observations required to be 

generated from each system in order to detect any difference larger than or equal to a user 

defined indifference parameter δ between mean performance measures of any pair of 

systems, with specific probability of correct selection, 1 � α. 
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4-2. The proposed R&S algorithm 

In this section we present the new two stage algorithm for ranking and selection of A 

systems.  

Setup 

Step 1. Specify the initial number of observations 4?�8, the mean based indifference 

parameter 4�8, the number of observations in each bucket 4B8 and confidence 

interval level 1 � ~. 

First Stage 

Step 2. Generate g � ?� observations from each system , ¬ A. 

Step 3. Calculate the sample mean fèC of each system and set the number of buckets, 

ë � �FdL �. 
Step 4. Put all observations from all systems together, rank the Ag observations from 

smallest to largest and divide them into ë buckets where each bucket consists 

of B observations except the last bucket which has As � 4ë � 18B 

observations. 

Step 5. For each bucket ), ) � 1, … , ë calculate the bucket mean, e(.   
Step 6. For each system , ¬ A solve the following optimization problem to find 

�C� � 4'C<� , … , 'Cò� 8. 

$4�C�8 � max 3 �Í1 	 'C|Ï ln41 	 'C|8ê
(G�  
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418   3 'C|
ê

(G� � 1 

428  3 'C|
ê

(G� e( � fèC 

438  'C| r 0,   ) ¬ �1, … , ë¡ 

Step 7. Calculate �¶C, âC� and ë4,8 � ��� >v �O��O ��
for each system , ¬ A and set 

ë� � �fe 4�ë4,8�8. 
Second Stage 

Step 8. Generate �ê�LC � � g more observations from each system and set g � �ê�LC �. 
Step 9. Update the sample mean, fèC, of each system and redo steps 4-6. 

Ranking and Selection 

Step 10. For each system , ¬ A calculate: 

Ak4�C�8 � 3 Í1 	 'C|� Ï ln41 	 'C|� 8ê2ñòMó
(G� 	 3 Í1 	 'C|� Ï ln41 	 'C|�1 	 �ñòMó 8ê

(Gê2ñòMó=�
 

Step 11. For each system , ¬ A calculate �¶�C. Rank systems based on their Ak4�C�8 

value from largest to smallest.  If for systems ), ¦ ¬ A, ªAk4�(�8 �
AkÍ�±�Ïª � minC¬F4�¶�C8, then systems ) and ¦ are non-dominated. 
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At the first step the initial number of observations4?�8 to be taken from each 

system , ¬ A, the mean based indifference parameter 4�8, the number of observations in 

each bucket 4B8 and confidence interval level 1 � ~, are specified. ?� observations are 

generated from each system in step 2 and based on these observations, the sample mean 

fèC of each system is calculated in step 3. Also since the total number of observations 

from all systems 4A?�8 and the number of observations in each bucket are known, the 

initial number of buckets is set to ë � �F7«L � in step 3. Since we are going to compare the 

probability distributions found for each system , ¬ A, they should be found on the same 

set for possible outcomes. In order to find this set, we put all observations from all 

systems together, rank the A?� observations from smallest to largest and divide them into 

ë buckets in step 4. Moreover, in step 5, the bucket mean is calculated for each bucket. In 

step 6, for each system , ¬ A, we find the probability distribution which maximizes the 

generalized entropy measure 3 �Í1 	 'C|Ï ln41 	 'C|8ê
(G�  and possesses the mean equal 

to system sample mean, fèC. Theorem 4.3 is applied to calculate the entropy-based 

indifference parameter, �¶C, for each system , ¬ A in step 7. Also theorem 4.2 is used to 

calculate the final number of buckets needed, ë�. In steps 8 and 9, the additional number 

of observations that has to be generated from each system , ¬ A is found. These 

observations are added to the initial observations from each system , ¬ A to update each 

system sample mean and the probability distribution that maximizes the entropy measure 

∑ �Í1 	 'C|Ï ln41 	 'C|8ë�(G�  while possessing the mean equal to the updated system 

sample mean. In step 10, for each system, Ak4�C�8 is calculated, which is the Kullback-
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Leibler directed divergence between the maximum entropy probability distribution for 

each system , ¬ A and the following discrete uniform distribution: 

'4e � e(8 � õ 1ñë�
A ó    )ö  ) ¬ ÷ë� � øë�A ù 	 1, ë� � øë�A ù 	 2, … , ë�ú 

0                                                               ��§ðgû)üð ß 
In step 11 the systems are ranked based on their Ak4�C�8 and the systems ) and ¦ are 

considered to be non-dominated if the difference between Ak4�(�8 and AkÍ�±�Ï is less 

than the minimum of their entropy-based indifference parameter. 

4-3. Numerical example 

In this section the steps of the proposed procedure are shown by a numerical example. 

Assume that we have three systems with the following distributions for their 

performance: 

�	ü�ðh #1~B40.204, 1.08, 

�	ü�ðh #2~B40, 1.0978, 

�	ü�ðh #3~B4�0.204, 1.1868, 

Where B4á,  ��8 represents a normal distribution with mean á and variance ��. 
Suppose that the actual distributions for the performance of the above systems are 

unknown. The goal is to choose the systems with the smallest mean performance measure 

through observations being taken. 

In order to perform the proposed distribution let’s assume that the initial number of 

observations for each system under consideration is 25, the mean based indifference 
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parameter is 0.2041, the number of observations in each bucket is three, and the 

confidence interval level is 0.95.  

Initial 25 observations generated from each system are shown in Table 4-1. 

Table 4-1. Initial observations generated from each system under study 

System #1 System #2 System #3 
-1.345 -1.029 0.076 
-0.183 -1.006 -1.507 
0.479 0.413 2.662 
1.030 0.998 -0.681 
-0.775 0.169 0.881 
0.100 -0.222 -0.366 
0.332 1.634 1.355 
0.267 -0.682 0.178 
0.576 0.888 -0.770 
0.100 2.117 -0.114 
1.573 -0.922 0.233 
0.621 0.308 -0.920 
0.273 0.900 -1.215 
0.498 1.347 0.573 
0.677 -0.070 1.541 
1.987 0.708 -1.166 
0.465 -1.944 -1.719 
1.715 0.065 1.840 
0.521 -0.834 -0.083 
1.001 -1.856 -1.156 
-0.493 0.435 -0.329 
-0.183 -0.945 1.477 
0.220 2.669 0.636 
0.785 1.211 -1.689 
1.983 1.605 1.265 

 

According to the above generated observations, fè� � 0.4893, fè� � 0.2383, fè� �
0.0402. Moreover, ë � 4�å84�84�8 � 25. Hence, we put all observations from all three 

systems together, rank the 25 observations from the smallest to the largest and divide 

them into 25 buckets where each bucket consists of three observations ( 
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Table 4-2). 

Table 4-2. Three observations in each bucket and bucket sample means 

 
Observation #1 Observation #2 Observation #3 

Bucket sample 
mean 

Bucket #1 -1.944 -1.856 -1.719 -1.839 

Bucket #2 -1.689 -1.507 -1.345 -1.513 

Bucket #3 -1.215 -1.166 -1.156 -1.179 

Bucket #4 -1.029 -1.006 -0.945 -0.994 

Bucket #5 -0.922 -0.920 -0.834 -0.892 

Bucket #6 -0.775 -0.770 -0.682 -0.742 

Bucket #7 -0.681 -0.493 -0.366 -0.513 

Bucket #8 -0.329 -0.222 -0.183 -0.245 

Bucket #9 -0.183 -0.114 -0.083 -0.127 

Bucket #10 -0.070 0.065 0.076 0.024 

Bucket #11 0.100 0.100 0.169 0.123 

Bucket #12 0.178 0.220 0.233 0.210 

Bucket #13 0.267 0.273 0.308 0.282 

Bucket #14 0.332 0.413 0.435 0.393 

Bucket #15 0.465 0.479 0.498 0.481 

Bucket #16 0.521 0.573 0.576 0.557 

Bucket #17 0.621 0.636 0.677 0.645 

Bucket #18 0.708 0.785 0.881 0.791 

Bucket #19 0.888 0.900 0.998 0.929 

Bucket #20 1.001 1.030 1.211 1.081 

Bucket #21 1.265 1.347 1.355 1.322 

Bucket #22 1.477 1.541 1.573 1.530 

Bucket #23 1.605 1.634 1.715 1.651 

Bucket #24 1.840 1.983 1.987 1.936 

Bucket #25 2.117 2.662 2.669 2.482 

 

Three maximum entropy models are constructed for the systems under study: 
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Corresponding model for system #1 

 

Corresponding model for system #2 

 

Corresponding model for system #3 

Figure 4-1 illustrates the optimal solutions, ���, ���, and ���.  

 

Figure 4-1. Optimal solutions for ���, ���, and ��� at the first stage 
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Estimated variances, â��, â��, and â�� are 8.41 1 102", 4.09 1 102å, and 3.84 1 102å 

respectively. Moreover, �¶�, �¶�, and �¶� are 4.62 1 102å, 8.47 1 102å, and 8.10 1 102å. 

Hence, ë4�8 � 123, ë4�8 � 148 and ë4�8 � 150. Therefore, ë� � �fe�123,148,150¡ �
150 i.e., 150 � 25 � 125 additional observations should be generated from each system 

in order to be able to make decision within the 95% confidence level. Figure 4-2 shows 

���, ���, and ���, after generating the additional observations and redoing steps 4-6. 

 

Figure 4-2. Updated ���, ���, and ��� at the second stage 

In addition to ���, ���, and ���, Figure 4-2 shows the reference discrete uniform 

distribution,  

'4e � e(8 � Â �50    )ö  ) ¬ �101,102, … , 150¡ 0                           ��§ðgû)üð ß. Finally �4�C�8, which is the Kullback-Leibler 

directed divergence between �C� and the discrete uniform distribution is computed and the 

three systems are ranked based on their Ak4�C�8. �4���8 � 0.0296, Ak4���8 � 0.0419 and 

Ak4���8 � 0.0503. Since the difference between each pair is significantly larger than the 

minimum of their entropy-based indifference parameter and Ak4���8 � Ak4���8 �
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 Ak4���8, we conclude that within 95% confidence level, system #1 has the largest mean, 

system #2 has the second largest mean, and system 3 possesses the smallest mean among 

these three systems. 

4-4. Simulation experiments 

In order to investigate the performance of the proposed algorithm simulation 

experiments are conducted. The number of systems in each experiment A � 3 or A � 5. 

We choose, the initial number of observations from each system to be ?� � 24, the mean 

based indifference parameter to be � � 0.204, the number of observations in each bucket 

to be B � 1, 2, 3 and the confidence interval level to be 1 � ~ � 0.95. 

Two configurations of the true means are used suggested by Kim and Nelson (2001):  

• Slippage configuration (SC), in which á� is set to � and á� � á� � � � áF �
0. According to Kim and Nelson (2001), “this is a difficult configuration for 

procedures that try to eliminate systems because all of the inferior systems are 

close to the best”. 

• Monotone Decreasing Means configuration (MDM), in which the means of all 

systems were spaced evenly apart according to the following formula á( �
á� � a4) � 18, where f � �. Kim and Nelson (2001) state that this 

configuration is good “to investigate the effectiveness of the procedures in 

eliminating noncompetitive systems”. 

For each configuration of the means, the variance of the best system is set both higher 

and lower than the variances of the other systems. Hence experiments are run with 
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variances of all systems either monotonically decreasing or monotonically increasing. 

The results are shown in Table 4-3:Table 4-10. 
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Table 4-3. Simulation results for MDM configuration with increasing variance when K=3 
NS: Neighborhood Switch 

MDM Configuration, Increasing Variance, with K=3 

True 
Mean 

True  
Variance 

True  
Ranking 

Ranking given by algorithm 

N=1 N=2 N=3 
0.204 1.000 1 1.06 1.03 1.02 
0.000 1.097 2 1.94 1.96 1.96 
-0.204 1.187 3 2.902 2.92 2.94 

            
Average number of observations  128 134 145 
Selecting the best system 92% 94% 96% 
Correct Ranking 91% 94% 95% 
Correct Ranking after NS 100% 100% 100% 

 

 

 

Table 4-4. Simulation results for MDM configuration with decreasing variance when K=3 
NS: Neighborhood Switch 

MDM Configuration, Decreasing Variance, with K=3 

True 
Mean 

True  
Variance 

True  
Ranking 

Ranking given by algorithm 

N=1 N=2 N=3 
0.204 1.000 1 1.02 1 1 
0.000 0.911 2 1.92 1.94 1.96 
-0.204 0.843 3 2.88 2.96 2.98 

            
Average number of observations  164 178 196 
Selecting the best system 93% 100% 100% 
Correct Ranking 92% 94% 98% 
Correct Ranking after NS 99% 100% 100% 
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Table 4-5. Simulation results for SC configuration with increasing variance when K=3 
NS: Neighborhood Switch 

SC Configuration, Increasing Variance, with K=3 

True 
Mean 

True  
Variance 

True  
Ranking 

Ranking given by algorithm 

N=1 N=2 N=3 
0.204 1.000 1 1 1 1 
0.000 1.097 2 2.04 2.03 2.02 
0.000 1.187 2 2.05 2.04 2.02 

            
Average number of observations  129 142 157 
Selecting the best system 100% 100% 100% 
Correct Ranking 95% 97% 97% 
Correct Ranking after NS 100% 100% 100% 

 

 

 

Table 4-6. Simulation results for SC configuration with decreasing variance when K=3 
NS: Neighborhood Switch 

SC Configuration, Decreasing Variance, with K=3 

True 
Mean 

True  
Variance 

True  
Ranking 

Ranking given by algorithm 

N=1 N=2 N=3 
0.204 1.000 1 1 1 1 
0.000 0.911 2 2.04 2.04 2.01 
0.000 0.843 2 2.03 2.02 2.02 

            
Average number of observations  179 184 193 
Selecting the best system 100% 100% 100% 
Correct Ranking 95% 96% 98% 
Correct Ranking after NS 100% 100% 100% 
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Table 4-7. Simulation results for MDM configuration with increasing variance when K=5 
NS: Neighborhood Switch 

MDM Configuration, Increasing Variance, with K=5 

True 
Mean 

True  
Variance 

True  
Ranking 

Ranking given by algorithm 

N=1 N=2 N=3 

0.204 1.000 1 1.02 1.01 1.01 
0.000 1.097 2 1.87 1.92 1.96 
-0.204 1.187 3 2.84 2.92 2.94 
-0.408 1.270 4 3.87 3.91 3.94 
-0.612 1.348 5 4.85 4.87 4.91 

Average number of observations 398 415 431 
Selecting the best system 91% 93% 96% 
Correct Ranking 76% 78% 82% 
Correct Ranking after NS 98% 100% 100% 

 

 

 

Table 4-8. Simulation results for MDM configuration with decreasing variance when K=5 
NS: Neighborhood Switch 

MDM Configuration, Decreasing Variance, with K=5 

True 
Mean 

True  
Variance 

True  
Ranking 

Ranking given by algorithm 

N=1 N=2 N=3 

0.204 1.000 1 1.02 1.02 1.01 
0.000 0.911 2 1.84 2.02 2.02 
-0.204 0.843 3 2.86 2.96 2.98 
-0.408 0.788 4 4.1 4.05 4.01 
-0.612 0.742 5 4.8 4.85 4.99 

            
Average number of observations  795 857 985 
Selecting the best system 93% 96% 98% 
Correct Ranking 84% 89% 96% 
Correct Ranking after NS 99% 100% 100% 

 

 



74 
 

Table 4-9. Simulation results for SC configuration with increasing variance when K=5 
NS: Neighborhood Switch 

SC Configuration, Increasing Variance, with K=5 

True 
Mean 

True  
Variance 

True  
Ranking 

Ranking given by algorithm 

N=1 N=2 N=3 

0.204 1.000 1 1.08 1.05 1.04 
0.000 1.097 2 1.85 1.91 1.94 
0.000 1.187 2 1.96 1.94 1.98 
0.000 1.270 2 2.08 2.1 2.02 
0.000 1.348 2 2.16 2.1 2.04 

            
Average number of observations  505 581 614 
Selecting the best system 89% 94% 96% 
Correct Ranking 62% 71% 75% 
Correct Ranking after NS 90% 95% 99% 

 

 

Table 4-10. Simulation results for SC configuration with decreasing variance when K=5 
NS: Neighborhood Switch 

SC Configuration, Decreasing Variance, with K=5 

True 
Mean 

True  
Variance 

True  
Ranking 

Ranking given by algorithm 

N=1 N=2 N=3 

0.204 1.000 1 1 1 1 
0.000 0.911 2 1.8 1.82 1.89 
0.000 0.843 2 1.84 1.91 1.92 
0.000 0.788 2 1.99 2.12 1.95 
0.000 0.742 2 2.14 2.08 2.04 

            
Average number of observations  512 621 686 
Selecting the best system 88% 90% 94% 
Correct Ranking 65% 69% 77% 
Correct Ranking after NS 92% 99% 100% 

 

According to Table 4-3: Table 4-6, with three competing systems, when number of 

observations in each bucket is one, the probability of correct selection is less than 95% 
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for MDM configuration with increasing and decreasing variances and more than 95% for 

SC configuration with both increasing and decreasing variances. Increasing the number 

of observations in each bucket, increases the probability of correct selection to more than 

95% in all cases, however it generates more observations from each system. Moreover, 

when there is one observation in each bucket, the probability of obtaining the correct 

ranking is less than or equal to 95% in all configurations. Increasing the number of 

observations in each bucket will increase the probability of obtaining the correct ranking 

to more than 99%.  

According to Table 4-7: Table 4-10, with five competing systems, when number of 

observations in each bucket is one, the probability of correct selection is less than 95% in 

all configurations. Increasing the number of observations in each bucket to N=3, 

increases the probability of correct selection to more than 95% all configurations except 

one configuration. It can be shown than N should be at least equal to 5 in order to obtain 

95% correct selection in all configurations. Moreover, when there is one observation in 

each bucket, the probability of obtaining the correct ranking is less than 85% in all 

configurations. Increasing the number of observations in each bucket will increase the 

probability of obtaining the correct ranking. However, with N=3, the probability of 

correct ranking is still less than 85% for three configurations.  

If 4g�, g�, … g(, g(=�, … , gF8 is the ranking obtained from the algorithm, then 

4g�, g�, … g(=�, g(, … , gF8 is defined as the ranking after neighborhood switch. If we 

perform neighborhood switch after obtaining the ranking, when K=3, then the probability 

of obtaining the correct ranking after one neighborhood switch is more than 99% in all 

configurations even when N=1. When K=5, after performing the neighborhood switch, 



76 
 

the probability of obtaining the correct ranking is more than 90% when N=1 and more 

than or equal to 99% when N=3. 

4-5. Conclusion 

In this chapter we used the maximum entropy principle to present a two-stage ranking 

and selection algorithm with the following contributions: 

a) Relaxing the normality assumption which restricts the previous algorithms. 

b) No a priori distribution is assumed. 

c) Providing a ranking of systems based on the mean value of simulation outputs, and 

Moreover two systems will have the same ranking if the user is indifferent among 

their mean values. 

At the first stage of this two-stage algorithm, based on the initial observations obtained 

at the first stage, the probability distribution which maximizes uncertainty or in other 

words a distribution which represents the current state of knowledge for each system is 

found via using maximum entropy principle. This distribution is used to determine the 

final number of observations required to rank systems in an specific confidence level and 

the distribution which maximizes the uncertainty of each system is obtained based on this 

final number of observations. The second stage applies directed divergence on 

distributions found in the first stage to compare the systems. The efficiency of the offered 

algorithm was shown by simulation experiments. 
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Chapter 5 

5. Entropy-Based measure for stochastic dominance 

Let � and � be two cumulative probability distributions and let ü be a positive integer. 

For each distribution function $ let q#� 4e8 � $4e8 and for ) ¬ �2,3, … ¡ let q#( 4e8 �
� q#(2�4$8�$ã2% . � is said to be dominated by � by stochastic dominance of order s  if 

q�� 4e8 � q��4e8 for all values of e with strict inequality for at least for one point e�(see 

for example Levy (1992)). In the past two decades stochastic dominance has been widely 

applied in different areas such as finance, risk management, and economics (see 

Sriboonchita et al. (2009)). 

Two possible cases for first order stochastic dominance (FSD) are illustrated in Figure 

5-1. Two possible cases for FSDIn Figure 5-1.a, � and � are nondominant based on FSD 

because for some values of e, �4e8 � �4e8 and for some other values �4e8 � �4e8. In 

Figure 5-1.b, � dominates � based on FSD since for all values of e, �4e8 � �4e8 with 

strict inequality at least for one point. 

  

a. � and � are nondominant based on FSD b. � dominates � based on FSD 

Figure 5-1. Two possible cases for FSD 

Two possible cases for second order stochastic dominance (SSD) are shown Figure 

5-2. In Figure 5-2.a, � dominates � based on SSD since for all values of e, 
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 � �4e8�eã2% � � �4e8�eã2%  with strict inequality at least for one point. In Figure 5-2.b, � 

and � are nondominant based on SSD because for some values of e, � �4e8�eã2% �
� �4e8�eã2%  and for some other values � �4e8�eã2% � � �4e8�eã2% . 

  

a. G dominates F based on SSD b. F and G are nondominant based on SSD 

Figure 5-2. Two possible cases for SSD 

Although stochastic dominance have been widely used to rank probability 

distributions (see Levy (1992, 1998) for surveys on stochastic dominance), they may be 

unable to determine dominance even in situations when most decision makers would 

prefer one alternative over another. For example according to Leshno and Levy (2002) 

suppose that two lotteries are available. Lottery X returns zero dollars with probability 

0.01 and returns one million dollars with probability 0.99, while lottery Y yields one 

dollar with probability 1.00. Most individuals prefer X to Y, however X does not 

stochastically dominates Y according to any stochastic dominance rule of order s. This 

drawback has motivated Leshno and Levy (2002) to offer stochastic dominance rules 

weaker than FSD or SSD. They offered a stochastic dominance criterion that applies the 

proportion of the two bounded areas, created by the crossing of the two probability 

distributions, to the sum of the two areas. They named their criterion p almost first order 

stochastic dominance (p-AFSD) which has been applied by several researchers such as 



79 
 

Bali et al. (2009, 2011), Tzheng et al. (2012), and Levy et al. (2010). The main advantage 

of p-AFSD is the possibility for reduction of a set of nondominant alternatives. 

We offer a stochastic dominance criterion weaker than FSD and SSD based on the 

concept of entropy. Like p-AFSD, its advantage over the stochastic dominance criteria is 

to reduce the possibility of obtaining a nondominated set of alternatives. Although, unlike 

p-AFSD which compares alternatives based on surrendered areas and requires calculation 

of the corresponding areas, based on the new offered criterion alternatives are compared 

to a utopia and the alternative which closer to the utopia based on our definition of 

closeness is chosen.  The new criterion is named entropy-based stochastic dominance 

(ESD). We investigate its relation with FSD, SSD, and p-AFSD. The remainder of this 

chapter is organized as follows. In section 5-1, Kullback and Leibler information is 

explained. Entropy-based stochastic dominance measure is presented in section 5-2. In 

section 5-3 the relationship between ESD and FSD, SSD, and p-AFSD is investigated. 

Finally conclusion is explained in section 5-4. 

 

5-1. Kullback-Leibler information 

Kullback-Leibler (KL) information is a measure (a ‘distance’ in an heuristic sense) 

between an observed distribution, ö, and a reference distribution, c (see section 1-3 for 

more details). Being denoted by Ak4ö, c8, it measures the amount of ‘information’ lost 

when distribution ö is used to approximate a reference distribution, c. The analyst seeks 

a distribution that its information content is as close as possible to the reference 

distribution. Moreover, their measure possesses several useful properties (see Appendix 
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II) including the fact that it is always nonnegative and it is equal to zero if and only if 

ö4e8 � c4e8.  

Several authors have studied extensions of KL information. Asadi et al. (2004) 

considered KL information for a residual distribution function with density function 
(4ã8�è4*8 

where e r � where � is the cumulative probability distribution and �è4�8 � 1 � �4e8. 

Barapour and Rad (2012) have proposed an extension of KL information for a 

nonnegative random variable, called cumulative residual KL information, in terms of 

survival function as follows. 

wsAk4�è, sè8 � ) �è4e8 ln �è4e8�*4e8%
� �e � 4�4i8 � �4+88 

Where �4i8 � � �è4e8%� �e and �4+8 � � �*4e8%� �e. 

Park et al. (2012) have considered another extension, called cumulative KL 

information, in terms of cumulative distribution function as 

wAk4�, �8 � ) �4e8 ln �4e8�4e8%
� �e � 4�4i8 � �4+88 

They showed that CKL is nonnegative and is equal to zero if and only if �4e8 � �4e8. 

Keeping these two properties (nonnegativity and being equal to zero if and only if 

�4e8 � �4e8) are the main reason that the above authors did not use � �4e8 ln �4ã8�4ã8%� �e, 

as it does not keep these well-known KL information properties. If for all e, �4e8 �
�4e8 then since � �4e8 ln �4ã8�4ã8%� �e  is nonnegative and right continuous, when 

� �4e8 ln �4ã8�4ã8%� � 0 we have  �4e8 ln �4ã8�4ã8 for all e. Thus we have either �4e8 � 0 which 

gives �4e8 � 0 (because 0 � �4e8 � �4e8) or we have ln �4ã8�4ã8 � 0 which means that 
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�4e8 � �4e8. Throughout this chapter we use � �4e8 ln �4ã8�4ã8%� �e  as our measure for 

directed divergence between � and �. 

5-2. Entropy-based criterion for stochastic dominance (ESD) 

We use f � � to denote hfe4f, �8 and use f , � to denote h)?4f, �8. For two 

functions, ö and c, the function ö � c is called the upper envelope, or the left envelope of 

ö and c, and the function ö , c is called the lower envelope, or the right envelope of ö 

and c. 

For a real valued function ö we use � ö to denote � ö4e8�e%2% . We use � ö-  to denote 

the Lebesgue integral � ö- 4e8��4e8, where � denotes the Lebesgue measure on the line. 

For two functions, ö and c, the set �e: ö4e8 � c4e8¡ is denoted by �ö � c�. We will 

abbreviate �ö � c� to denote ö � c when we write an integral on �ö � c�. The notation 

�ö � c� is used in a similar way. 

Assume that i and + are two nonnegative continuous random variables with 

cumulative probability distributions � and � respectively and let k � � � � denote their 

left envelope and let s � � , � denote their right envelope. Figure 5-3 shows right and 

left envelopes of distributions shown in Figure 5-1.  
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a. Right and left envelopes of distributions in Figure 5-1.a b. Right and left envelopes of distributions in Figure 5-1.b 

Figure 5-3. Right and left envelopes of distributions in Figure 5-1 

Definition.  

Let $ be a reference cumulative probability distribution.  

We define � is closer to $ than � by ESD, if 

.)� ln ��$�. � .)� ln ��$�. 5-1 

When (5-1) is not true, we say � is not closer to $ than �. 

We say � strictly dominates � by ESD if �� � ln ����� � 0 and �� � ln ����� u 0. 

We say � weakly dominates � by ESD when one of the following is true. 

(i) � is closer to s and not closer to k than �. 

(ii) � is closer to k and not closer to s than �.  

We say � and � are nondominated by ESD when one of the following is true. 

(i) � is closer to s and k than �. 

(ii) � is closer to s and k than �. 

The following two propositions are useful when two distributions are compared by ESD. 

Proposition 5-1. � is closer to s than � if and only if �4� � �8 ln ���� � 0. 
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Proof. � is closer to s than � when  

.)� ln ��s�. � .)� ln ��s�.  which means that )� ln ��s� � )� ln ��s� , because the 

 integrands and hence the integrals on both sides are nonnegative. This means 

) � ln ��s��2� 	 ) � ln ��s��3� � ) � ln ��s��2� 	 ) � ln ��s��3� , 
) � ln �����2� 	 ) � ln �����3� � ) � ln �����2� 	 ) � ln �����3� , 
) � ln �����2� � ) � ln �����3� , 
) � ln �����2� 	 ) � ln �����3� � 0, 

Note that on the set �� � �� we have � � � � � and on the set �� � �� we have 

� � � � �. Thus, 

) 4� � �8 ln �����2� 	 ) 4� � �8 ln �����3� � 0, 
)4� � �8 ln ���� � 0.4 

Proposition 5-2. � is closer to s than � if and only if �4� , �8 ln ���� r 0. 

The proof of Proposition 2 is similar to the proof of proposition 1. 

 Consider the case when ü5'�e: $4e8 � 0¡ � ü5'�e: �4e8 � 0¡ then there exists 

some points e such that �4e8 � 0 and $4e8 � 0. Hence, � � ln ��#� will be infinite. In 

this case inverse cumulative distribution functions are compared by ESD instead of 

cumulative distribution functions. We interpret the results as follows: If �2� (strictly or 
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weakly) dominates �2� by ESD then � dominates � and if �2� and �2� are 

nondominated then � and � are nondominated as well. Three different scenarios are 

illustrated in Figure 5-4. 

  

a. � and � in scenario I b. s and k in scenario I 

  

  

c. � and � in scenario II d. s and k in scenario II 

  

  

e. � and � in scenario III f. s and k in scenario III 

Figure 5-4. Three different scenarios when ESD is measured 

In the first and third scenarios (parts a and b, and e and f of Figure 5-4), 

ü5'�e: s4e8 � 0¡, ü5'�e: �4e8 � 0¡, ü5'�e: �4e8 � 0¡ , and ü5'�e: k4e8 � 0¡ are 
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equal, therefore � � ln ����, � � ln ����, � � ln ����, and � � ln ���� have finite values. In 

the second scenario ü5'�e: s4e8 � 0¡ � ü5'�e: �4e8 � 0¡. Thus, � � ln ���� is not 

defined in real numbers. 

5-3. Relationship between ESD and FSD, SSD, and p-AFSD 

In this section the relationship between ESD, FSD, SSD, and p-AFSD is studied. 

Throughout this section assume that � and � are two continuous cumulative 

distributions. 

Theorem 5-1. � strictly dominates � according to ESD if and only if � dominates � 

according to FSD. 

Proof. If � strictly dominates � by ESD, then �� � ln � ��,��� � 0 and �� � ln � ��,��� u 0. 

This implies that � � � , � and G � � , �. Hence, � dominated � by FSD (� � �). 

Inversely, if � dominated � then � � � with strict inequality at least for one point 

implying that � � � , � and G � � , �. Therefore, �� � ln � ��,��� � 0 and 

�� � ln � ��,��� u 0 which means that � strictly dominates � by ESD.4 

Proposition 5-3.  

)� t? �� r )4� � �8 5-2 

Proof. Applying Taylor series expansion to ln e at e � 1, we obtain: ln e � e � 1 �
4ã2�8>�7>  where 8 is a point between 1 and e. This implies that ln e � e � 1 for all e � 0 

where equality holds when e � 1. Thus,  
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)� ln �� � )� ��� � 1� � )4� � �8 

Therefore, 

)� ln �� � �)� ln �� r �)4� � �8 � )4� � �8 .4 

Conjecture 5-1. If � dominates � by ESD, then � does not dominate � by SSD. 

Conversely, if � dominates � by SSD, then � does not dominate � by ESD. 

Assume that � dominates � by ESD and  

.)� ln � �� , ��. � .)� ln � �� , ��.  and .)� ln � �� � ��. � .)� ln � �� � ��.. 
)� ln � �� , �� � )� ln � �� , ��  and )� ln �� � �� � � )� ln �� � �� �, 
) � ln ������� � ) � ln �������  

5-3 

and, 

) � ln ������� � ) � ln �������  
5-4 

According to proposition 5-3,  

) � ln ������� r )4� � �8
���  

5-5 

) � ln ������� � ) 4� � �8�2�  
5-6 

If � dominates � based on SSD then  

)4� � �8
��� � ) 4� � �8�2�  

5-7 

From (5-5), (5-6) and (5-7) we have 
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) � ln ������� � ) 4� � �8�2� � )4� � �8
��� � ) � ln �������  

5-8 

Also from (5-3), (5-4), and (5-8) we obtain 

) � ln ������� � ) � ln ������� � ) 4� � �8�2� � )4� � �8
��� � ) � ln ������� � ) � ln �������  

5-9 

or by removing the third inequality, 

) � ln ������� � ) � ln ������� � ) � ln ������� � ) � ln �������  
5-10 

We tried a wide range of distributions and could not find any pair of distributions that 

satisfy inequalities in (5-9) or (5-10). But we could not bring a proof that shows 

inequalities in (5-9) or (5-10) never occur. We show by three sets of distributions that � 

does not dominate � by SSD if � dominates G by ESD. Similarly we show that if � 

dominates � by SSD, then � does not dominate � by ESD. 

Distributions set #1 consists of negatively skewed unimodal beta cumulative 

distributions and a uniform [0,1] cumulative distribution which are shown in Figure 5-5. 

These negatively skewed unimodal beta cumulative distributions are compared to the 

uniform cumulative distributions based on SSD and ESD. The comparison results are 

summarized in Table 1. As shown in Table 5-1, all the negatively skewed unimodal beta 

cumulative distributions dominate the uniform [0,1] cumulative distribution by SSD. 

According to the ESD rule, the unimodal beta distributions dominate the uniform 

cumulative distribution except when no significance difference is distinguished. In that 

case two distributions are nondominated. Hence when unimodal beta distributions 

dominate the uniform distributions based on SSD then, then the uniform distribution does 

not dominate the unimodal beta distributions based on ESD. Assuming that � is a 
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negatively skewed unimodal beta cumulative distribution and � is uniform [0,1] 

cumulative distribution, computational results for �� � ln �����, �� � ln �����, �� � ln �����, 
and �� � ln ����� which led to the decisions by ESD in Table 5-1 are shown in Table 5-2.  

 

Figure 5-5. distributions set #1: negatively skewed unimodal beta and uniform [0,1] cumulative 

distributions 

 

Table 5-1. Comparison between SSD and ESD rules on distributions set #1 

 ��q ��q ëð�f41,18 9ü ëð�f 410,38 ëð�f410,38 is dominant ëð�f410,38  is dominant  ëð�f41,18 9ü ëð�f 410,48 ëð�f410,48 is dominant ëð�f410,48  is dominant  ëð�f41,18 9ü ëð�f 410,58 ëð�f410,58 is dominant ëð�f410,58  is dominant  ëð�f41,18 9ü ëð�f 410,68 ëð�f410,68 is dominant ëð�f410,68  is dominant  ëð�f41,18 9ü ëð�f 410,78 ëð�f410,78 is dominant ëð�f410,78  is dominant  ëð�f41,18 9ü ëð�f 410,88 ëð�f410,88 is dominant ëð�f410,88  is dominant ëð�f41,18 9ü ëð�f 410,98 ëð�f410,98 is dominant ëð�f410,98  is dominant ëð�f41,18 9ü ëð�f 410,9.88 ëð�f410,9.88 is dominant Nondominated set ëð�f41,18 9ü ëð�f 410,108 ëð�f410,108 is dominant Nondominated set 
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Table 5-2. computational results for �� � ln �����, �� � ln �����, �� � ln �����, and �� � ln ����� of 

decisions made in Table 5-1 based on ESD, Assuming that � is a negatively skewed unimodal beta 
cumulative distribution and � is uniform [0,1] cumulative distribution. 

 �� � ln �����  .)� ln ��k�. .)� ln ��s�. .)� ln ��s�. 
ëð�f41,18 9ü ëð�f 410,38 0.158 0.002 0.002 0.428 ëð�f41,18 9ü ëð�f 410,48 0.130 0.007 0.007 0.381 ëð�f41,18 9ü ëð�f 410,58 0.108 0.015 0.017 0.313 ëð�f41,18 9ü ëð�f 410,68 0.090 0.026 0.029 0.260 ëð�f41,18 9ü ëð�f 410,78 0.076 0.037 0.044 0.218 ëð�f41,18 9ü ëð�f 410,88 0.065 0.048 0.059 0.185 ëð�f41,18 9ü ëð�f 410,98 0.058 0.051 0.073 0.164 ëð�f41,18 9ü ëð�f 410,9.88 0.052 0.065 0.084 0.148 ëð�f41,18 9ü ëð�f 410,108 0.048 0.070 0.093 0.138 

 

Distributions set #2 consists of positively skewed bimodal beta cumulative 

distributions and a uniform [0,1] cumulative distribution (Figure 5-6). The positively 

skewed bimodal beta cumulative distributions are compared to the uniform cumulative 

distributions based on SSD and ESD. As shown in Table 5-3, all the positively skewed 

bimodal beta cumulative distributions are dominated by uniform [0,1] cumulative 

distribution by SSD. According to the ESD rule, the bimodal beta distributions are 

dominated by the uniform cumulative distribution except when no significance difference 

is distinguished. In that case two distributions are nondominated according to ESD. Thus, 

when the uniform distribution dominates the bimodal beta distributions based on SSD, 

then, the bimodal beta distributions do not dominate the uniform distribution based on 

ESD. Assuming that � is a positively skewed bimodal beta cumulative distribution and � 

is uniform [0,1] cumulative distribution, computational results for �� � ln �����, 
�� � ln �����, �� � ln �����, and �� � ln ����� which led to the decisions by ESD in Table 5-3 

are shown in Table 5-4.  
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 Figure 5-6. Distributions set #2: positively skewed bimodal beta and uniform [0,1] cumulative 

distributions 

 

Table 5-3. Comparison between SSD and ESD rules on distributions set #2 

 ��q ��q ëð�f41,18 9ü ëð�f 40.8,0.98 ëð�f41,18 is dominant ëð�f41,18 is dominant ëð�f41,18 9ü ëð�f 40.7,0.88 ëð�f41,18 is dominant ëð�f41,18 is  dominant ëð�f41,18 9ü ëð�f 40.3,0.68 ëð�f41,18 is dominant ëð�f41,18 is  dominant ëð�f41,18 9ü ëð�f 40.5,0.78 ëð�f41,18 is dominant ëð�f41,18 is dominant ëð�f41,18 9ü ëð�f 40.4,0.68 ëð�f41,18 is dominant ëð�f41,18 is dominant ëð�f41,18 9ü ëð�f 40.6,0.78 ëð�f41,18 is dominant ëð�f41,18 is dominant ëð�f41,18 9ü ëð�f 40.3,0.58 ëð�f41,18 is dominant ëð�f41,18 is dominant ëð�f41,18 9ü ëð�f 40.3,0.48 ëð�f41,18 is dominant ëð�f41,18 is dominant ëð�f41,18 9ü ëð�f 40.3,0.358 ëð�f41,18 is dominant ëð�f41,18 is dominant ëð�f41,18 9ü ëð�f 40.3,0.38 ëð�f41,18 is dominant Nondominated set 
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Table 5-4. computational results for �� � ln �����, �� � ln �����, �� � ln �����, and �� � ln ����� of decisions 

made in distributions set #2 based on ESD, Assuming that � is a positively skewed bimodal beta 
cumulative distribution and � is uniform [0,1] cumulative distribution. 

 �� � ln �����  .)� ln ��k�. .)� ln ��s�. .)� ln ��s�. 
ëð�f41,18 9ü ëð�f 40.8,0.98 0.000 0.027 0.033 0.000 ëð�f41,18 9ü ëð�f 40.7,0.88 0.003 0.031 0.043 0.003 ëð�f41,18 9ü ëð�f 40.3,0.68 0.001 0.085 0.343 0.001 ëð�f41,18 9ü ëð�f 40.5,0.78 0.002 0.060 0.123 0.002 ëð�f41,18 9ü ëð�f 40.4,0.68 0.005 0.064 0.017 0.005 ëð�f41,18 9ü ëð�f 40.6,0.78 0.007 0.036 0.059 0.007 ëð�f41,18 9ü ëð�f 40.3,0.58 0.007 0.067 0.268 0.007 ëð�f41,18 9ü ëð�f 40.3,0.48 0.022 0.048 0.192 0.024 ëð�f41,18 9ü ëð�f 40.3,0.358 0.035 0.038 0.155 0.040 ëð�f41,18 9ü ëð�f 40.3,0.38 0.053 0.029 0.119 0.063 

 

Distributions set #3 consists of positively skewed unimodal beta cumulative 

distributions and a uniform [0,1] cumulative distribution (Figure 5-7). The positively 

skewed unimodal beta cumulative distributions are compared to the uniform cumulative 

distributions based on SSD and ESD. As shown in Table 5-5, when the positively skewed 

unimodal beta cumulative distributions are dominated by uniform [0,1] cumulative 

distribution by ESD, then the unimodal beta distributions does not dominate the uniform 

distribution based on SSD. Assuming that � is a positively skewed unimodal beta 

cumulative distribution and � is uniform [0,1] cumulative distribution, computational 

results for �� � ln �����, �� � ln �����, �� � ln �����, and �� � ln ����� which led to the 

decisions by ESD in Table 5-5 are shown in Table 5-6.  
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Figure 5-7. Distributions set #3: positively skewed unimodal beta and uniform [0,1] cumulative 

distributions 

 

Table 5-5. Comparison between SSD and ESD rules on distributions set #3 

 ��q ��q ëð�f41,18 9ü ëð�f 43,108 Nondominated set ëð�f41,18 is dominant ëð�f41,18 9ü ëð�f 44,108 Nondominated set ëð�f41,18 is dominant ëð�f41,18 9ü ëð�f 45,108 Nondominated set ëð�f41,18 is dominant ëð�f41,18 9ü ëð�f 46,108 Nondominated set ëð�ft41,18 is dominant ëð�f41,18 9ü ëð�f 47,108 Nondominated set ëð�ft41,18 is dominant ëð�f41,18 9ü ëð�f 48,108 Nondominated set ëð�f41,18 is dominant ëð�f41,18 9ü ëð�f 49,108 Nondominated set ëð�f41,18 is dominant ëtð�f41,18 9ü ëð�f 49.5,108 Nondominated set ëð�f41,18 is dominant ëðt�f41,18 9ü ëð�f 49.8,108 Nondominated set Nondominated set 
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Table 5-6. computational results for �� � ln �����, �� � ln �����, �� � ln �����, and �� � ln ����� of decisions 

made in distributions set #3 based on ESD, Assuming that � is a positively skewed unimodal beta 
cumulative distribution and � is uniform [0,1] cumulative distribution. 

 �� � ln �����  .)� ln ��k�. .)� ln ��s�. .)� ln ��s�. 
ëð�f41,18 9ü ëð�f 43,108 0.001 0.175 0.398 0.003 ëð�f41,18 9ü ëð�f 44,108 0.005 0.157 0.302 0.011 ëð�f41,18 9ü ëð�f 45,108 0.010 0.138 0.236 0.025 ëð�f41,18 9ü ëð�f 46,108 0.017 0.120 0.190 0.044 ëð�f41,18 9ü ëð�f 47,108 0.025 0.105 0.155 0.066 ëð�f41,18 9ü ëð�f 48,108 0.033 0.091 0.129 0.089 ëð�f41,18 9ü ëð�f 49,108 0.040 0.098 0.124 0.113 ëð�f41,18 9ü ëð�f 49.5,108 0.044 0.102 0.120 0.117 ëð�f41,18 9ü ëð�f 49.8,108 0.047 0.072 0.096 0133 

 

Relationship with p-AFSD 

p-AFSD applies the proportion of the two bounded areas, created by the crossing of the 

two probability distributions, to the sum of the two areas. In the other words p, associated 

with p-AFSD is obtained by 
� 4�2�8:;<� 4�2�8:;< =� 4�2�8:=< . If ' is larger than a predetermined 

probability, then � dominates �, otherwise they are nondominated. In case of ESD, a 

probability which is shown to be too close to the probability associated with p-ASFD can 

be found. 

.)� ln ��s�. � )� ln � �� , �� � ) � ln � �� , ���2� 	 ) � ln � �� , ���3� � 

� ) � ln �����2� 	 ) � ln �����3� � ) � ln �����3�  

� ) � ln �����3� 	 ) � ln �����2�  
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� ) 4� � �8 ln �� � �� ��3� 	 ) 4� � �8 ln �� � �� ��2�  

� )4� � �8 ln �� � �� � � .)k ln �k��.. 
Similarly it can be shown that �� � ln ����� � �� s ln �����,  �� s ln ����� � �� � ln �����, 

and �� k ln ����� � �� � ln �����. 
�� � ln ����� 	 �� s ln ����� is a measure for the mutual amount of lost information 

between � and s. Thus, by dividing �� � ln ����� 	 �� s ln ����� over the summation of 

itself and �� � ln ����� 	 �� k ln ����� we can obtain a measure which is comparable with 

probability that obtained from p-AFSD. That is,  

�� � �:�<>��=�� � �:�><���� � �:�:>��=�� � �:�>:��=�� � �:�<>��=�� � �:�><�� measures the percentage that � dominates � 

which can also be rewritten by 
�� � �:�<>��=�� � �:�:?���� � �:�:>��=�� � �:�<>��=�� � �:�<>��=�� � �:�:?��. 

For three distribution sets, probabilities associated with p-AFSD and ESD are 

compared with each other. The results are illustrated in Tables Table 5-7, Table 5-8, and 

Table 5-9. 
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Table 5-7. Comparison between probabilities associated with p-AFSD and ESD for distributions set #1 

 

Probability 

 Associated 

 With p-AFSD 

Probability 

 Associated 

 With ESD ëð�f41,18 9ü ëð�f 410,38 p=99.33% p=99.24% ëð�f41,18 9ü ëð�f 410,48 p=96.82% p=96.46% ëð�f41,18 9ü ëð�f 410,58 p=91.90% p=91.32% ëð�f41,18 9ü ëð�f 410,68 p=84.78% p=83.77% ëð�f41,18 9ü ëð�f 410,78 p=76.21% p=75.23% ëð�f41,18 9ü ëð�f 410,88 p=67.08% p=66.66% ëð�f41,18 9ü ëð�f 410,98 p=53.98% p=54.08% ëð�f41,18 9ü ëð�f 410,9.88 p=51.56% p=52.11% ëð�f41,18 9ü ëð�f 410,108 p=50.00% p=50.20% 

 

 

Table 5-8. Comparison between probabilities associated with p-AFSD and ESD for distributions set #2 

 

Probability 

 Associated 

 With p-AFSD 

Probability 

 Associated 

 With ESD ëð�f41,18 9ü ëð�f 40.8,0.98 p=98.41% p=98.40% ëð�f41,18 9ü ëð�f 40.7,0.88 p=92.12% p=92.05% ëð�f41,18 9ü ëð�f 40.3,0.68 p=99.18% p=98.99% ëð�f41,18 9ü ëð�f 40.5,0.78 p=97.24% p=97.09% ëð�f41,18 9ü ëð�f 40.4,0.68 p=95.68% p=95.26% ëð�f41,18 9ü ëð�f 40.6,0.78 p=86.46% p=86.36% ëð�f41,18 9ü ëð�f 40.3,0.58 p=94.95% p=94.05% ëð�f41,18 9ü ëð�f 40.3,0.48 p=80.49% p=78.73% ëð�f41,18 9ü ëð�f 40.3,0.358 p=67.02% p=65.77% ëtð�f41,18 9ü ëð�f 40.3,0.38 p=50.00% p=50.38% 
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Table 5-9. Comparison between probabilities associated with p-AFSD and ESD for distributions set #3 

 

Probability 

 Associated 

 With p-AFSD 

Probability 

 Associated 

 With ESD ëð�f41,18 9ü ëð�f 43,108 p=99.33% p=99.30% ëð�f41,18 9ü ëð�f 44,108 p=96.82% p=96.75% ëð�f41,18 9ü ëð� 45,108 p=91.90% p=91.83% ëð�f41,18 9ü ëð�f 46,108 p=84.78% p=84.39% ëð�f41,18 9ü ëð�f 47,108 p=76.21% p=75.45% ëð�f41,18 9ü ëð�f 48,108 p=67.08% p=66.28% ëð�f41,18 9ü ëð�f 49,108 p=60.95% p=60.67% ëð�f41,18 9ü ëð�f 49.5,108 p=53.98% p=54.07% ëð�f41,18 9ü ëð�f 49.8,108 p=51.56% p=51.87% 
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5-4. Conclusion 

Using Kullback-Leibler information between two cumulative distributions, we present 

an entropy-based criterion for stochastic dominance, ESD. Since our criterion is weaker 

than FSD and SSD, its advantage is to reduce the possibility of obtaining a nondominated 

set of alternatives. In addition, under the new stochastic dominance criterion, it is not 

required to calculate the surrendered area between two distributions as it is in p-AFSD. 

We investigate the relation between ESD and p-AFSD, SSD, and FSD. We show that 

if a distribution is dominant based on ESD, then that distribution would not be dominated 

based on SSD. Also we show that the probability associated with our new measure is too 

close to the probability obtained from p-AFSD. 
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Appendix I 

A simple numerical example 

Suppose a discrete part manufacturing system produces two parts, part I and part II 

using four work centers. Parts enter from work center 1 with the mean interarrival time of 

1.25 minutes and exit from work center 4. The pickup and drop-off points are assumed to 

be at the same location for each work center. Table AI.1 shows the operation sequence, 

production volume percentage of each part type, and the processing time of each part 

type in each work center. The vehicle speed is 100 feet per minute and the distance 

between work centers is shown in Table AI.2. Loading and unloading operations are 

assumed to be negligible. 

Table AI-1. Operation sequences, processing times and production volume percentage of part types 

Part 
Type Operation Sequence (processing time) Production Volume 

I 1(1 minute)�2(2 minutes)�4(1 minute) %55 

II 1(1 minute)�3(2 minutes)�4(2 minutes) %45 
 

Table AI-2. The distance between work centers (feet) 

 
Work Center 1 Work Center 2 Work Center 3 Work Center 4 

Work Center 1 - 150 300 450 

Work Center 2 150 - 150 300 

Work Center 3 300 150 - 150 

Work Center 4 450 300 150 - 
 

Parts are being moved by a single AGV.  Suppose that the vehicle is idle at work 

center 2 at time �� and at this moment parts are waiting in the input queues and output 

queues of each work center as illustrated in Figure AI.1. 
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Figure AI-1.  Input and output queues of work centers at time �� PI @ part I; PII @ part II 
According to the Figure AI.1, two move requests are available for the vehicle at time ��: 

1) Pickup one unit of part I from work center 2 and drop it off at work center 4 at 

time �� 	 3.  

After the completion of this move request the input and output queues of work 

centers are estimated to be as Figure AI.2 : 

Input queue 
 

Output queue �¶ � �¶¶ � �¶ � �¶¶ Work Center 1 �¶ , �¶¶ , �¶¶ , �¶¶ 
   EMPTY Work Center 2 �¶ 
   �¶¶ Work Center 3 �¶¶ 
   �¶ Work Center 4 �¶ , �¶¶ , �¶¶ , �¶¶ 

 

Figure AI-2.  Estimated input and output queues of work centers at time �� 	 3 PI @ part I; PII @ part II 
2) Pickup one unit of part II from work center 1 and drop it off at work center 3 

at time �� 	 4.5. After the completion of this move request the input and 

output queues of work centers are estimated to be as Figure AI.3: 

 

 

 

 

Input queue 
 

Output queue �¶ � �¶¶ � �¶ � �¶¶ � �¶¶ Work Center 1 �¶¶ 
   �¶ Work Center 2 �¶ 
   �¶¶ � �¶¶ Work Center 3 EMPTY 

   �¶¶ Work Center 4 �¶ , �¶¶ , �¶¶ 
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Input queue 
 

Output queue �¶ � �¶ � �¶¶ � �¶¶ Work Center 1 �¶ , �¶¶ , �¶¶ , �¶¶ 
   EMPTY Work Center 2 �¶ , �¶ 
   �¶¶ Work Center 3 �¶¶ , �¶¶ 
   EMPTY Work Center 4 �¶ , �¶¶ , �¶¶ , �¶¶ 

 

Figure AI-3.  Estimated input and output queues of work centers at time �� 	 4.5 PI @ part I; PII @ part II 
The kullback-leibler divergence measure is calculated based on each of the proposed 

algorithms and the results are shown in Table AI.3: 

Table AI-3. Kullback-Leibler Divergence measure calculation for each proposed algorithm 

 
Kullback-Leibler Divergence measure 

 
First move request Second move request 

WCBA 0.9557 0.6365 

OQBA 1.3768 1.3297 

IOQBA 1.7329 1.6915 
 

Since all three algorithms select the move request with the largest kullback-leibler 

divergence measure, the first move request is chosen based WCBA, OQBA, and 

IOQBA. 
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Appendix II 

Waiting time data for different configuration 

  

  

Table AII-1. Average waiting time (in minutes) for different configurations of model 1 

(U: AGV capacity ; �: Mean interarrival time) 

 
WCBA OQBA IOQBA STD MOQS MFCFS WCBA OQBA IOQBA STD MOQS MFCFS 

(U, �) Number of AGVs = 4 Number of AGVs = 5 

(5,4.6) 46.23 48.58 47.21 63.51 58.65 604.69 29.50 30.33 29.15 31.94 40.31 508.80 

(5,4.8) 41.24 43.83 42.76 50.75 56.33 684.78 28.45 29.20 29.02 31.28 37.26 434.25 

(5,5.0) 38.74 39.29 39.18 47.40 53.46 535.61 26.98 28.38 28.97 29.66 35.70 398.84 

(5,5.2) 34.54 37.63 36.28 43.45 51.32 536.74 26.38 26.32 26.93 28.14 33.76 384.64 

(5,5.4) 33.06 36.67 34.57 39.95 48.08 512.74 25.78 26.19 26.36 25.68 31.42 367.23 

(5,5.6) 31.93 32.70 33.52 38.62 46.15 459.26 25.72 25.99 26.51 24.84 32.02 372.50 

(5,5.8) 25.14 30.51 28.44 35.39 44.36 474.21 25.70 26.45 25.49 24.13 29.67 365.43 

(5,6.0) 25.01 28.15 26.13 32.43 41.03 444.98 24.57 24.61 25.03 22.49 26.74 333.71 

(20,4.6) 42.27 46.65 45.60 55.47 58.95 470.24 30.01 30.26 29.69 33.26 41.08 419.63 

(20,4.8) 39.07 42.58 41.74 49.03 57.10 400.92 28.53 28.73 28.71 30.45 38.85 361.73 

(20,5.0) 36.09 38.55 39.00 45.41 52.83 399.41 27.72 27.60 28.01 29.12 37.43 371.66 

(20,5.2) 34.21 35.90 35.65 41.96 51.30 392.21 26.58 27.21 26.78 28.45 34.52 332.93 

(20,5.4) 32.69 34.30 34.03 39.75 49.62 394.98 26.13 26.26 26.84 27.31 33.11 318.46 

(20,5.6) 30.72 31.93 32.63 36.07 45.82 365.04 25.67 25.75 25.66 24.51 31.52 290.62 

(20,5.8) 29.79 31.82 30.97 34.72 43.61 369.24 25.66 25.16 25.14 23.97 28.35 273.36 

(20,6.0) 28.62 29.73 30.72 33.46 42.01 344.35 24.61 25.00 25.09 22.88 28.06 278.25 

(10000,4.6) 41.40 44.84 45.34 53.64 58.84 449.84 29.92 30.47 30.80 31.04 41.46 373.77 

(10000,4.8) 41.98 43.27 40.72 50.03 56.98 466.85 28.00 29.07 29.29 30.95 38.19 373.89 

(10000,5.0) 35.48 39.80 39.02 41.82 54.05 406.80 27.26 27.52 27.13 27.12 38.77 320.68 

(10000,5.2) 36.26 34.47 35.67 39.52 51.83 416.55 27.78 27.02 26.81 27.45 34.74 296.80 

(10000,5.4) 33.11 35.15 34.63 38.61 49.19 404.32 25.94 26.23 26.78 25.54 31.95 303.07 

(10000,5.6) 31.98 32.66 32.44 35.06 45.55 364.17 25.75 26.08 25.87 25.75 30.54 290.93 

(10000,5.8) 30.31 30.77 31.31 34.83 43.89 351.75 25.05 25.10 25.10 23.80 29.08 290.87 

(10000,6.0) 29.26 29.54 28.95 33.17 42.68 339.13 24.10 24.80 24.84 23.32 27.31 290.17 
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Table AII-2. Average waiting time (in minutes) for different configurations of model 2 

(U: AGV capacity ; �: Mean interarrival time) 

 
WCBA OQBA IOQBA STD MOQS MFCFS WCBA OQBA IOQBA STD MOQS MFCFS 

(U, �) Number of AGVs=3  Number of AGVs=5 

(5,4.0) 35.65 40.06 46.61 51.62 60.60 268.31 135.02 543.10 1126.02 486.86 116.50 414.62 

(5,4.4) 30.69 33.30 34.56 43.87 53.84 257.35 111.97 111.97 435.67 297.54 107.00 413.79 

(5,4.8) 28.59 29.28 29.77 40.06 48.64 253.99 98.37 98.37 253.82 133.94 96.77 408.69 

(5,5.2) 26.80 26.83 26.91 35.80 44.40 254.73 82.18 86.68 157.22 101.65 91.94 413.70 

(5,5.6) 24.96 25.09 25.27 34.00 40.12 245.63 76.52 81.06 147.63 96.55 83.06 398.91 

(5,6.0) 24.40 24.99 24.90 32.31 36.27 238.89 74.81 80.72 145.48 91.74 75.11 387.97 

(20,4.0) 34.56 39.89 1287.62 49.09 59.73 261.95 134.08 998.10 772.68 221.16 114.78 422.93 

(20,4.4) 31.54 33.75 33.97 44.67 52.39 265.77 112.75 510.81 305.61 180.92 106.49 407.31 

(20,4.8) 27.78 28.97 29.05 40.74 47.47 257.36 100.02 230.56 233.07 129.85 102.53 415.54 

(20,5.2) 26.30 27.20 27.80 37.44 43.87 260.00 81.43 123.44 129.85 106.76 95.76 410.66 

(20,5.6) 25.60 25.87 26.14 34.10 40.57 255.66 69.45 92.83 96.39 84.97 87.26 409.61 

(20,6.0) 24.30 24.80 24.79 32.23 36.98 255.81 55.61 68.51 94.76 74.86 82.58 398.14 

(10000,4.0) 39.42 44.37 35.83 49.95 60.30 261.40 144.57 326.74 325.74 851.32 117.05 495.90 

(10000,4.4) 33.91 32.92 31.39 43.78 54.84 257.35 124.04 261.33 262.33 635.23 110.45 475.32 

(10000,4.8) 30.11 29.99 27.82 38.62 49.29 260.02 108.27 181.17 180.07 464.52 98.91 453.62 

(10000,5.2) 28.19 28.27 26.83 37.58 43.19 260.16 85.54 107.78 108.76 263.04 94.58 406.70 

(10000,5.6) 25.92 26.90 24.88 34.47 40.68 260.62 67.84 98.34 97.40 135.00 90.67 430.07 

(10000,6.0) 24.26 25.47 24.18 32.99 37.09 254.01 55.05 74.34 75.44 77.37 84.39 409.70 
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Appendix III 

Proof of theorems 4.1-4.3 

Proof of Theorem 4.1.  

By the central limit theorem it can be shown that √?4fè � á8~B40, ∑ 4�|2�è8>�|¼<72� 8. On 

the other hand  '(�B � ð2Ñ«2Ñ<ã|2� � 1. This function is continuous and has first partial 

derivative with respect to the component á at á � fè. Hence, according the multivariate 

delta method: 

 √?4���è � ��B8~��B40, ï² ∑ 4�|2�è8>�|¼<72� ï8 where ï( � ßC{|�DCB .BG�è 
E'(�BEá � E'(�BE��

E��Eá 	 E'(�BE��
E��Eá  AIII-1 

By replacing '(�B � ð2Ñ«2Ñ<ã|2� � 1 in the first and second constraints of model (I) we 

will have: 

3Íe2Ñ«2Ñ<ã|2� � 1Ïê
(G� � 1 F 4ë 	 18ðÑ«=� �  3ße2Ñ<ã| ßê

(G�     AIII-2 

3 e(Íe2Ñ«2Ñ<ã|2� � 1Ïê
(G� � á  F ðÑ«=� �  ∑ e( ßeß2Ñ<ã| ß ßê(G�á 	 ∑ e(ê(G�   AIII-3 

By combining equations (AIII-2) and (AIII-3) we will get: 

á � 4ë 	 18 ∑ e(ð2Ñ<ã|ê(G�∑ ð2Ñ<ã|ê(G� � 3 e(
ê

(G�  AIII-4 

� Calculating  
CÑ<CB : from equation (AIII-4) 
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EáE�� � �4ë 	 18Í∑ e(�ð2Ñ<ã|ê(G� ÏÍ∑ ð2Ñ<ã|ê(G� Ï 	 4ë 	 18Í∑ e(ð2Ñ<ã|ê(G� Ï�4∑ ð2Ñ<ã|ê(G� 8�  AIII-5 

 Hence:  

E��Eá � Í∑ ð2Ñ<ã|ê(G� Ï��4ë 	 184∑ e(�ð2Ñ<ã|ê(G� 84∑ ð2Ñ<ã|ê(G� 8 	 4ë 	 184∑ e(ð2Ñ<ã|ê(G� 8� AIII-6 

� Calculating  
CÑ«CB : from equation (AIII-2) 

4ë 	 18ðÑ« E��E�� � � 3ße(eß2Ñ<ã|2�ß ßê
(G�   F  E��E�� � � ∑ ße(eß2Ñ<ã|2Ñ«2�ß ßê(G� ë 	 1   

F E��E�� � �fè � ∑ e(ê(G�ë 	 1  AIII-7 

E��Eá � E��E��
E��Eá   

� � fè 	 ∑ e(ê(G�4ë 	 18� � Í∑ ð2Ñ<ã|ê(G� Ï�4� ∑ e(�ð2Ñ<ã|ê(G� 84∑ ð2Ñ<ã|ê(G� 8 	 4∑ e(ð2Ñ<ã|ê(G� 8� AIII-8 

� Calculating  
C{�D
CÑ<  and 

C{|�DCÑ« : Since '(�B � ð2Ñ«2Ñ<ã|2� � 1, we have: 

E'(�BE�� � �e(ð2Ñ«2Ñ<ã|2� AIII-9 

E'(�BE�� � �ð2Ñ«2Ñ<ã|2� AIII-10 
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Therefore by replacing 
CÑ<CB , 

CÑ«CB , 
C{|�DCÑ<  and 

C{|�DCÑ«  equations (AIII-6), (AIII-8), (AIII-9) and 

(AIII-10) into equation (AIII-1), we obtain: 

ï( � � 4ë 	 182�Í∑ ð2Ñ<ã|ê(G� Ï�4� ∑ e(�ð2Ñ<ã|ê(G� 84∑ ð2Ñ<ã|ê(G� 8 	 4∑ e(ð2Ñ<ã|ê(G� 8��. 
ð2Ñ«2Ñ<ã|2� ´fè 	 ∑ e(ê(G�ë 	 1 � e(À 

4 

AIII-11 
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Proof of Theorem 4.2.  

Since √?4���è � ��B8 G� ��B40, Σ8, Using Taylor series expansion we obtain:  

�4���è8 � �4��B8 	 §²4���è � ��B8 	 s Where § � 4§�, §�, … , §ê8 are the values 

given above and s H 0 fü ? H∞. Thus it follows that  √?Í�4���è8 � �4��B8Ï
G� B40, â�8  and estimated divergence variance, â� � §Σ§�. Hence �4���è8 J $� �v â/√? 

is an approximate 10041 � ~8% confidence interval for �4��B8 where $� �v  is the upper 

~ 2v  percentage point from the normal distribution. 

4 
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Proof of Theorem 4.3.  

Assume that ���� � 4'����, '����, … , 'ê���8 is the optimal solution of Model (I) if the 

unknown mean was á� � á 	 ∆á. Define ∆Ak � Ak4����8 � Ak4���8, ∆$ � $4����8 �
$4��8 and  ∆� � ���� � ��� � 4∆'�, … ,∆'ê8 where: 

Ak4�8 � 3 41 	 '(8lnê2ñòMó
(G� 41 	 '(8 	 3 41 	 '(8lnê

(Gê2ñòMó=�
41 	 '(1 	 �ñòMó

8 AIII-12 

We have: 

ΔAk � NOO
P 3 �1 	 '(����lnê2ñòMó

(G� �1 	 '(���� 	 3 �1 	 '(����lnê
(Gê2ñòMó=�

�1 	 '(���1 	 �ñòMó
� ß �  

ß 3 41 	 '(��8lnê2ñòMó
(G� 41 	 '(��8 	 3 41 	 '(��8lnê

(Gê2ñòMó=�
41 	 '(��1 	 �ñòMó

8QRR
S
  

� NOO
P 3 41 	 '(���8lnê2ñòMó

(G� 41 	 '(���8 	 3 41 	 '(���8lnê
(Gê2ñòMó=�

41 	 '(���8QRR
S �  

NOO
P 3 41 	 '(��8lnê2ñòMó

(G� 41 	 '(��8 	 3 41 	 '(��8lnê
(Gê2ñòMó=�

41 	 '(��8QRR
S �  

T 3 41 	 '(���8lnê
(Gê2ñòMó=�

41 	 1ñêFó8 � 3 41 	 '(��8lnê
(Gê2ñòMó=�

41 	 1ñêFó8U  
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� $4���8 � $4����8 � 3 4ß'(��� ß � '(��8lnê
(Gê2ñòMó=�

41 	 1ñêFó8  

� �∆$ � 3 ßß∆'(�� ßßlnê
(Gê2ñòMó=�

41 	 1ñêFó8  

F Δ�∆µ � �∆$∆µ � 3 '(��∆µ lnê
(Gê2ñòMó=�

41 	 1ñêFó8  

� �� 	 3 1e( lnê
(Gê2ñòMó=�

41 	 1ñêFó8 AIII-13 

Now suppose that ∆µ � �; we are going to find �¶ such that: �4∆Ak � �¶|∆µ �ß�8 r
1 � ~. 

Replacing ∆� from (AIII-13) we will get: 

�4∆Ak � �¶|∆µ �ß�8 � �4∆µ��� 	 3 1e( lnê
(Gê2WòMX=�

41 	 1ñêFó8� � �¶|∆µ �ß�8  

� � ýß�� 	 3 1e( lnê
(Gê2WòMX=�

41 	 1ñêFó8ß � �¶∆µ |∆µ �ß�þ  

r � ýß�� 	 3 1e( lnê
(Gê2WòMX=�

41 	 1ñêFó8ß � �¶�þ  
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r ��ß���B 	ß ñêFóe�ê� ln41 	 1ñêFó8 � �¶� �   

� �� ñêFóe�ê� ln41 	 1ñêFó8 � �¶� � ���   

� � �+ � ��� � ���  where + � ñòMóY�ò� ln41 	 �ñòMó8 AIII-14 

The cumulative probability distribution of e( is �Y4�8 � ∑ Íe2Ñ«2Ñ<ã|2� � 1Ïê(G� ; So 

 �Y�ò�4�8 � Í�Y4�8Ïê � �3Íe2Ñ«2Ñ<ã|2� � 1Ïê
(G� �ê

 AIII-15 

On the other hand since + � ñòMóY�ò� ln41 	 �ñòMó8: 

  ��4	8 � 1 � �Y�ò� ýñêFó	 ln41 	 1ñêFó8þ  

  � 1 �


��� 3 Íe2Ñ«2Ñ<ã|2� � 1Ï

ñòMó �:��= <ñòMó�
(G� �

���
ê

 AIII-16 

From equations (AIII-14) and (AIV-16) we have: 

 



110 
 

 1 � �� ��¶� � ��� �  


��� 3 Íe2Ñ«2Ñ<ã|2� � 1Ï

ñòMóZ�Z [\<�:��= <ñòMó�

(G� �
���

ê
r 1 � ~  

  F  �¶� � �� r ��2�41 � ~8 AIII-17 

So we will choose �¶ such that it satisfies (AIV-17). 
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