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THE ECONOMICS OF MANAGING WILDLIFE DISEASE  

 

Abstract 

 

The spread of infectious disease among and between wild and domesticated animals has become 

a major problem worldwide.  Upon analyzing the dynamics of wildlife growth and infection 

when the diseased animals cannot be identified separately from healthy wildlife prior to the kill, 

we find that harvest-based strategies alone have no impact on disease transmission.  Other 

controls that directly influence disease transmission and/or mortality are required.  Next, we 

analyze the socially optimal management of infectious wildlife.  The model is applied to the 

problem of bovine tuberculosis among Michigan white-tailed deer, with non-selective harvests 

and supplemental feeding being the control variables.  Using a two-state linear control model, we 

find a two-dimensional singular path is optimal (as opposed to a more conventional bang-bang 

solution) as part of a cycle that results in the disease remaining endemic in the wildlife.  This 

result follows from non-selective harvesting and intermittent wildlife productivity gains from 

supplemental feeding.  
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Introduction 

The spread of infectious disease among and between wild and domesticated animals has become 

a major problem worldwide.  The examples are almost too numerous to count, but a number 

involving wildlife as the primary vector of disease transmission are provided in Table 1.  These 

examples highlight the diversity of disease concerns (most of which are distributed globally), 

particularly the risks of disease transmission to livestock and humans (see any recent issue of the 

Journal of Wildlife Disease to get a feel for the extent of potential problems).  Biodiversity is 

also cited as a potential concern, particularly when threatened or endangered species are at risk 

(Simonetti 1995).  Ultimately, these concerns all have economic dimensions.  

The economic costs of wildlife-related disease can be substantial.  For instance, a recent 

outbreak of foot and mouth disease in Europe led to the cull of millions of domestic and wild 

animals, the imposition of trade restrictions, and significant investments in biosecurity measures 

� both in Europe and abroad.  The U.S. is currently considered free of foot and mouth disease, 

but the USDA estimates that any outbreak could cost billions of dollars the first year alone 

(USDA-APHIS 2002).  For this and other diseases, economic losses occur at the farm level when 

domesticated livestock, such as cows or swine become infected.  This is because some animals 

die or become less productive due to the disease, because the demand for livestock products is 

diminished, and/or because of strict regulations imposed when a herd becomes infected (e.g., 

depopulating a farmer�s herd).  These costs are not limited to a particular farm that is infected.  

Trade sanctions are often imposed on entire counties, states, or even countries where the disease 

is present.  For instance, in 2000 Michigan lost its status of being accredited tuberculosis (TB)-

free following outbreaks in cattle herds in the Northeast part of the lower peninsula.  As a result, 
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all cattle producers have faced stringent regulations and relating to the transfer or trade of 

livestock and associated products (MDA 2002; USDA-APHIS 1999). 

Of course human health is an important concern as Table 1 indicates that humans are 

susceptible to a variety of wildlife-transmitted diseases.  Chronic wasting disease (CWD) is the 

cause of recent concerns in North America.  CWD is endemic in deer and elk populations in 

Wyoming and Colorado, with recent occurrences found in Wisconsin deer (Bishop 2002; 

Williams et al 2002; Wolfe et al. 2002).  This has caused significant concern because CWD is a 

variant of Creutzfeldt-Jakob (C-J) disease of humans.  There is currently no evidence that CWD 

can be transmitted to humans in the form of C-J disease.  However, concern has developed 

because exposure to the related bovine spongiform encephalopathy (BSE, or �mad cow disease�) 

among the British and other Europeans has resulted in approximately 117 cases of the variant C-

J disease as of April 2002 (Williams et al. 2002). 

A disease outbreak may also impose costs on those who value wildlife products and/or 

services.  For instance, the spread of an infectious disease within a deer population could lead to 

a loss of surplus to hunters who place a premium on healthy deer.  Costs may also arise as 

infected or even healthy populations in close proximity to an outbreak are culled to reduce the 

threat of additional spread.  The costs could be greater for wildlife species that are considered 

threatened or endangered.  In particular, endangered species are often protected in parks that may 

not be large enough to support a viable population.  As members of the population wander 

outside protected areas, the risk of infection increases � both for wandering individuals and for 

those in protected areas.  Conservation measures must therefore be taken with disease control in 

mind (Simonetti 1995).  
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There has been relatively little research in the area of the economics of disease control 

among wildlife populations.  Most work has estimated the costs to farmers and consumers under 

alternative control strategies, with little regard given to the wildlife dimension (e.g.,Mahul and 

Gohin 1999; Kuchler and Hamm 2000; McInerney 1996; Ebel et al., 1992; Dietrich et al. 1987; 

Liu 1979).  An exception is Bicknell et al. (1999), who developed a model to analyze the private 

incentives that a New Zealand farmer would have to undertake disease control measures for the 

case of bovine TB, which is spread by Australian brushtailed possums to dairy herds.   

Following prior work on the spread of the disease among possums (Barlow 1991a,b, 

1993), Bicknell et al. (1999) develop a bioeconomic model involving healthy and infected 

possum populations and also dairy cow populations.  They then explore optimal disease control 

strategies for a farmer, including testing at the farm level, and hunting possums off the farm.   

In this paper we depart from the Bicknell et al. analysis in three important ways.  First, 

we consider the socially optimal management of wildlife and the disease as opposed to controls 

taken by a single farmer.  We take this approach because wildlife disease problems affect many 

people (e.g., many landowners and hunters), and so an individual farmer would tend to under-

invest in disease control investments relative to those investments that would maximize 

economic surplus for society.  This is because the control actions taken by an individual farmer 

provide a public good (i.e., disease control also benefits the farmer�s neighbors although these 

neighbors do not compensate the farmer for this benefit).  A second departure is that we assume 

infected wildlife cannot be identified without error, rendering it impossible to selectively harvest 

from the infected stock (whereas Bicknell et al. assumed selective harvesting was possible).  It is 

not always possible to identify infected animals until after they are killed and examined 

(Williams et al. 2002).  Accordingly, any off-take of infected animals is likely to be accompanied 
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by healthy animals that may be economically valuable.  This brings us to our final departure, 

which is that healthy wildlife are considered to be economically valuable.  In contrast, the 

possums in Bicknell et al.�s analysis had no positive in situ or ex situ economic values � only the 

negative values associated with the disease.  It is certainly true that many disease-carrying 

animals such as deer or lions are economically valued.   

The model is applied to the case of bovine TB among white-tailed deer in Michigan.  The 

issue of bovine TB is Michigan is an important concern for its potential impact on livestock 

populations and productivity since bovine TB is transmitted among and between white-tailed 

deer and dairy cows and captive cervids in Michigan.  TB was responsible for more livestock 

deaths than all other diseases combined at the turn of last century (MDA 2002).  Moreover, the 

presence of TB among Michigan farms may lead to stringent regulations and trade restrictions.  

The USDA awarded Michigan TB accredited-free status in 1979 (MDA 2002).  This important 

accreditation prevents other states from imposing trade restrictions on Michigan livestock and 

livestock products.  But in the early to mid-1990s signs of bovine TB started to re-emerge both in 

the wild deer population and also among some small farms.1  In fact, Michigan is the only known 

area in North America where bovine TB has become established in a wildlife population.     

 

 

                                                 

1 Bovine TB was discovered in wild deer in 1994, and in a captive deer operation in 1997.  The first tuberculous 
cow was detected in 1998 in a beef herd.  Following the detection of several more herds the following year, 
Michigan lost its bovine TB accredited-free status in June 2000.  The result of this loss in status was a required 
testing program for all Michigan cattle, goats, bison, and captive cervids.  In addition, other states could place 
movement restrictions on income Michigan livestock at their discretion.  While the state covered the direct testing 
costs (e.g., lab tests and veterinary visits), farmers incurred the incidental testing costs (e.g., labor and lost 
performance) as well as increased transportation and trade requirements.  The total losses to livestock agriculture 
were estimated at around $12 million per year (Wolf and Ferris 2000).  At the time of this writing (May 2003) a total 
of 31 infected herds (29 beef and 2 dairy) had been discovered.  
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A model of infectious disease:  A single population on a fixed land area 

Before considering management of the disease, it is instructive to understand disease and wildlife 

population dynamics in the absence of an optimal management regime.   

Case I: no harvesting 

Consider a wildlife population that grows unexploited on a fixed land area.  The aggregate 

wildlife population, N, consists of two sub-populations: a healthy but susceptible stock, denoted 

by s, and an infected stock, denoted by z.  In the absence of exploitation or disease, the 

susceptible stock grows according to the logistic growth function, rs(1-N/k), where r is the 

intrinsic growth rate and k is the carrying capacity.  Following Barlow (1991a), the density-

dependent part of this equation, (1-N/k), depends on the aggregate population because 

susceptible and infected wildlife compete for the same habitat.  This growth is reduced as 

members of the susceptible stock become infected, which occurs when a susceptible animal 

comes into contact with an infected animal.  The z infected animals make on average βz contacts 

in each time period, with s/N contacts being with susceptible animals (assuming wildlife is 

uniformly distributed across the land area).  The equation of motion for the susceptible stock is 

(Barlow 1991a; Heesterbeek and Roberts 1995) 

(1)  NzskNrss /)/1( β−−=&  

 The infected stock also grows according to the logistic growth function (assuming 

infected mothers pass the disease to their young, either in utero or shortly after birth through 

contact; this would be common among mammalian, avian, and marsupial wildlife), although the 

disease increases mortality by a rate of α.  The only other difference with (1) is that the infected 

stock increases when susceptible animals become infected.  The equation of motion for the 

infected stock is (Barlow 1991a; Heesterbeek and Roberts 1995) 
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(2) NzszkNrzz /)/1( βα +−−=&  

Can an interior equilibrium involving both stocks arise?  The answer is no, as there are no 

positive values of s and z that solve both (1) and (2) when these expressions are set equal to zero 

(except for the special case in which β=α, the likelihood of which is essentially zero).  Three 

corner solutions do exist: (a) s=k, z=0, (b) s=0, z=k(r-α)/r, and (c) s=z=0.  The local stability 

properties of each equilibrium are given by the eigenvalues associated with the linearized forms 

of (1) and (2) (see Conrad and Clark 1987).  The eigenvalues for the three equilibria are given by 

(a): αβ −=aR1  and 02 <−= rRa , (b) βα −=bR1  and rRb −=α2 , and (c) 01 >= rRc  and 

α−= rRc
2 . 

First consider the case in which β>α and r>α.  In this case 0, 21 >ca RR  and 0, 21 <bb RR .  

Equilibrium (a) is a saddle, equilibrium (b) is a stable node, and equilibrium (c) is an unstable 

node.  Equilibrium (b) is for all intents and purposes globally stable in this case.  Even though (a) 

is a saddle, which is conditionally stable, there will only be a single path to this equilibrium and 

there is zero likelihood that the initial values of s and z will be on this path in this autonomous 

model.  The disease will not be eradicated. 

The second case to consider is when β>α and r<α.  All three equilibria are saddles in this 

case.  None of the equilibria will be pursued directly, but eventually the system will settle at 

either equilibrium (a) or (c).  This is because there are depletion forces working on both stocks.  

The infected stock depletes the susceptible stock due to the relatively large value of β while the 

infected stock is being depleted due to the relatively large value of α.  If the susceptible stock is 

eradicated while an infected stock remains, then the model is one of a single state variable and 

the origin becomes a stable node: all the wildlife die.  If the infected stock is eradicated first, then 

the susceptible wildlife are no longer susceptible and they will approach their carrying capacity. 
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Finally, consider the case where β<α.  Equilibrium (a) is a globally stable node in this 

case, and so the disease cannot persist naturally: any exogenous influx of the disease would be 

short-lived. 

 

Case II: non-selective harvesting 

Now consider what happens when harvesting activities are undertaken to control the disease.  

Vaccination is not considered because for many diseases, such as bovine TB in wild deer, there 

are currently no effective vaccines (MDA 2002).  The disease could be expediently controlled or 

even eradicated (albeit at possibly high cost) if the manager could selectively harvest from the 

infected stock.  But selective harvesting may not be an option for it is often difficult to identify 

which individuals are infected prior to the kill; outward signs of an illness may take a while to 

manifest (MDA 2002; Williams et al. 2002).  Harvesting will therefore include both healthy and 

infected individuals, which could be costly for species that are highly valued for recreational 

purposes (such as deer) or that are endangered.2 

Given non-selective harvesting, a manager can only choose the aggregate harvest, h, with 

the harvest from each stock depending on the proportion of animals in that stock relative to the 

aggregate population.  That is, Nhshs /=  and Nhzhz /= , where ih denotes the harvest from 

population i.  Given this specification, the equations of motion for the two stocks are written as 

(3)  NhsNzskNrss //)/1( −−−= β&  

(4)  NhzNzszkNrzz //)/1( −+−−= βα&  

                                                 

2 Non-selectivity is not unique to the current situation.  For instance, hunters/fishermen cannot selectively harvest 
from different cohorts within exploitable populations of many species (Reed 1980; Clark 1990), and by-catch of 
non-targeted species is often a problem in fisheries. 



 9

As above, this system does not allow for an interior equilibrium involving both stocks.  While 

equilibrium (c) is unaffected, the equilibrium values s* and z* will change in equilibria (a) and (b) 

due to the inclusion of harvests.  The eigenvalues for equilibrium (a) become: αβ −=aR1  (as 

before) and *
2 /2 shrRa +−= .  Harvests increase the value of aR2 , making eradication of the 

susceptible stock more likely when β>α and less likely when β<α.   

The eigenvalues for equilibrium (b) become: βα −=bR1  (as before) and 

*
2 /2 shrRb +−=α .  Harvests increase the value of bR2 , possibly changing its sign for 

sufficiently large values of h.  Clearly, a large harvest will eradicate both the susceptible and 

infected stocks.  But what about more moderate values of h?  Using (3) and (4) we obtain the 

following condition: 

(5)  βα −=− zzss // &&  

Assuming that β>α and given that s is diminishing in this case, condition (5) is consistent with 

two possibilities: (i) z increases over time while s decreases over time and eventually vanishes, 

and (ii) s and z both decrease over time, with z decreasing at a faster proportional rate.  If s and z 

are both decreasing at each point in time, one stock eventually vanishes.  In this case, condition 

(5) is only satisfied when s→0.  Otherwise, if z→0 then s→N<k and 0/ >zz& by L�Hopital�s rule.  

The reverse holds when β<α. 

The effects of non-selective harvesting can be summarized as follows.  If β<α, then the 

disease cannot persist even without harvesting, although harvests can expedite matters.  In 

contrast, non-eradicative harvest policies have no positive effect on disease control when β>α.  

The only effective harvest-based option for disease eradication in this case is extermination of all 

wildlife.  The only other potentially effective policies would be those that have the effect of 
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increasing α or decreasing β.  For instance, some hunters bait wildlife with small amounts of 

food (baiting) and others actually provide large amounts of food to feed wildlife (feeding) 

throughout the year.  Such practices might have the effect of both decreasing α (because infected 

animals are better nourished) and increasing β (because individual animals come into close 

contact as they feed).  So a prohibition on feeding and/or baiting could lead to disease 

eradication.  Similarly, some wildlife such as deer gain access to livestock operations (e.g., at 

night) where they congregate and consume leftover food and water.  This increases spread of the 

disease among wildlife, and also from wildlife to livestock and vice versa.  Investments in on-

farm biosecurity measures can therefore decrease β.  Finally, infecting the population with a 

more lethal strain of the disease would have the effect of increasing α, which could possibly 

make the disease die out naturally before all animals are infected.3  We now turn to the economic 

question of how much control is warranted. 

 

 

                                                 

3 We have only been considering disease spread and control within a single population inhabiting a fixed land area.  
But in reality wildlife may be spread across a large region hosting many sub-populations, with migrations being 
commonplace.  Consider exogenous immigration from a disease-free area at a rate of m.  The immigrants are not 
infected and so they become part of the susceptible population, modifying equation (3) in the following manner 
(3′) mNhsNzskNrss +−−−= //)/1( β&  
With this modification, the possibility for an interior equilibrium does arise as long as β>α.  This interior solution is 
stable but exists only if m is sufficiently small.  If m is sufficiently large then a corner solution arises with z*=0.  If 
m/s > β-α, then we find immigration reverses the results derived in case II:  the infected population goes extinct.  
This is because the migratory influx increases competition for food and habitat, crowding out the existing infected 
population.  This is essentially a form of the competitive exclusion principle in ecology (McGehee and Armstrong 
1977).  An implication is that spatial management may be important because eradication may otherwise be the only 
economically rational option for an infected area (e.g., if measures are unavailable to sufficiently reduce β or 
increase α or if such measures are prohibitively costly).  If it is costly to control the disease when focusing only on 
the infected area, then a more economical plan might be to control population growth both within and outside the 
infected area and to possibly take additional steps to limit the spread of the disease within the infected area.  On the 
other hand, if control within the infected area is not too costly, then it may not make sense to significantly alter 
management choices in nearby non-infected zones.  In this paper we assume the efficiency loss from focusing 
control efforts entirely on the infected area is not too great.  This is probably a reasonable assumption for the case of 
bovine tuberculosis in Michigan white-tailed deer. 
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Wildlife management and disease control for Michigan white-tailed deer 

Bovine tuberculosis among Michigan white-tailed deer is primarily concentrated in a four-county 

area in the northeastern part of the lower peninsula, formally designated as deer management 

unit (DMU) 452 or less-formally as the �core� (see Figure 1).  There is some limited infection 

beyond this area but the disease does not appear to be sustainable outside the core, leading many 

to speculate that the core exhibits unique features that have enabled the disease to become 

endemic (Hickling 2002).4  These features include human-environment interactions, with feeding 

programs being a particular concern.   

Several hunt clubs in the core sponsor feeding programs that sometimes even dump 

tractor-trailer loads of food in the woods and fringe areas.5  These massive piles of food can be 

seen from the air along with the tracks of thousands of congregating deer.  There are economic 

reasons for providing this food, including increasing the carrying capacity of deer in the core.  

But such practices could also lead to increased transmission of the disease as deer congregate, 

and the supplementary food could also reduce the mortality rate of the disease by supporting sick 

animals.  Denote f as food provided by feeding programs.  Increased food availability reduces the 

density-dependent component of growth by a factor (1-τf), increases the disease transmission 

coefficient by a factor (1+υf), and decreases mortality due to the disease by a factor (1-δf), where 

                                                 

4 Conventional wisdom held that the disease was not self-sustaining in wildlife populations (Hicking 2002).  In fact, 
prior to 1995, only eight cases of bovine TB had ever been reported in wild deer from North America (Schmitt et al. 
1997). 
5 The many hunt clubs in this area primarily exist to facilitate deer hunting.  Originating in the late 1800�s and early 
1900�s, these clubs purchased large amounts of land in the area for members from southern Michigan on which to 
hunt.  This land was desirable for the clubs as it was easily accessible from highways and, as it consisted of 
generally poor soil for agronomic purposes, the land was inexpensive (Hickling 2002).  The historic density of deer 
in the area is estimated to have been seven to nine deer per square kilometer (O�Brien et al. 2002).  This low 
carrying capacity was not conducive to easy hunting so the hunt clubs began aggressive deer feeding programs to 
encourage deer herd growth.  The feeding programs were quite successful in increasing deer density with the density 
estimated at around 25 deer km2 by the mid-1990�s.  As hunting is the highest valued use of land in the infected 
region, whole-sale changes to existing regulations and property-rights are not popular. 
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τ, υ, and δ are parameters.  The disease could be endemic in the core if β(1+υf)>α(1-δf), and it 

would necessarily be endemic in this case if it were also true that r>α, as is widely believed.6  If 

β>α, then the disease will persist regardless of feeding or hunting choices (apart from wildlife 

eradication).  In that case, migration or some other effort to reduce disease transmission will be 

required to eradicate the disease.  But if β<α, then the disease would be eliminated by setting f< 

[α-β]/[βυ + αδ] for some time.  A smaller f means the disease is eliminated sooner but at an 

interim cost of lost deer productivity.  Of course, it is important to consider whether eradicating 

the disease is even an optimal policy.   

Wildlife managers have two objectives when dealing with the disease:  reduce the 

number of diseased animals and control the spread of the disease.  To accomplish these goals, the 

choice variables under consideration are harvest levels and the amount of food provided by 

feeding programs (Hickling 2002).7   

 The equations of motion for the infected and susceptible stocks, (3) and (4), must be 

modified to account for the impacts of feeding.  The equation of motion for the susceptible stock 

becomes 

(6)  NhsNzsffkNrss //)1()]1)(/(1[ −+−−−= βυτ&  

Equation (4) would be modified in a similar way to account for f.  It will be more intuitive and 

mathematically more convenient, however, to work in terms of the variable N instead of s, and 

                                                 

6 The disease would not be sustainable outside the core if βo<α o, where βo and αo represent parameter values outside 
the core area.  These parameters may differ from β and α due to human-environment interactions apart from 
feeding. 
7 The state of Michigan announced a goal of eradicating the disease by 2010.  To that end, the wild white-tailed deer 
population in the area was to be decreased through hunting programs that sold increased licenses.  In addition, the 
practice of legally feeding deer in the infected area was ended and the practice of baiting was temporarily ended.  
 



 13

the variable θ=z/N instead of z (where θ represents the infected proportion of the population).  

The relations s = N-z and z=θN can be used to substitute for s and z in equations (4) and (6), and 

without loss we can focus on the following equations of motion instead of (4) and (6) 

(7)  hNffkNrNN −−−−−= θδατ )1()]1)(/(1[&  

(8)  θθδαυβθ )1)](1()1([ −−−+= ff&  

 

Economic specification  

Consider the economic side of the model.  Hunters gain utility from the actual process of 

shooting wildlife and/or consuming meat and other wildlife products.  The (constant) marginal 

utility from harvesting healthy wildlife is denoted p, which is not less than the (constant) 

marginal utility from harvesting infected wildlife, pz, i.e., p≥pz.  For simplicity and without loss, 

we set pz=0 so that harvests of infected animals yield no benefits.  The benefits from hunting are 

therefore phs/N = p(1-θ)h.   

 Assume harvests occur according to the Schaefer harvest function, and that the unit cost 

of effort, c, is constant.8  Then total harvesting costs, restricted on the in situ stocks, are (c/q)h/N, 

where q is the catchability coeffcient.  The unit cost of food is w.  Finally, the costs of the 

disease, particularly to farmers and related agribusinesses, must also be considered.  Denote the 

economic damages caused by infected wildlife by D(z) (with D(0)=0, 0, >′′′ DD ).9 

                                                 

8 The Schaefer specification is not necessary, but it does simplify the exposition and it is consistent with the 
numerical analysis to follow. 
9 The imposition of trade restrictions in response to the disease may result in a significant lump sum damage 
component, which if large enough could affect the optimal plan.  Deer are also important causes of automobile 
accidents and damage to agricultural crops (Rondeau 2001; Rondeau and Conrad 2003).  We ignore these other 
damages in order to focus on the impacts of disease, but we note that these other damages could be important. 
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Given the discount rate ρ, an economically optimal allocation of harvests and feeding 

solves 

(9) ∫
∞ −−−−−=

0,
)]()/)(/()1([  dteNDwfNhqchpSNBMax t

fh

ρθθ  

subject to the equations of motion (7) and (8).10  The current value Hamiltonian is 

(10 
])1])(1[]1[[(])1()]1)(/(1[[

)()/)(/()1(
θθδαυβφθδατλ

θθ
−−−++−−−−−+

−−−−=
ffhNffkNrN

NDwfNhqchpH
 

where λ and φ are the co-state variables associated with N and θ, respectively.    

The marginal impact of harvests on the Hamiltonian is given by  

(11)  λθ −−−=∂∂ )/()1(/ qNcphH  

If this expression is positive so that marginal rents exceed the marginal user cost, then harvests 

should be set at their maximum levels.  If this expression is negative then no harvesting should 

occur.  The singular solution is pursued when marginal rents and the marginal user cost are 

equated.  This is the standard condition for linear control problems involving renewable 

resources (e.g., Clark 1990), except for two important differences. First, marginal rents are 

reduced by pθ because not all harvested animals are valued (as some are infected).  Second, 

because harvests of N are non-selective, the marginal user cost of N can be positive or negative, 

i.e., the sign of λ is ambiguous.  It is easy to show that the following relation must hold: 

θθλ )/()1)(/( zSNBsSNB ∂∂+−∂∂= , where 0/ <∂∂ zSNB  and 0/ >∂∂ sSNB  or < 0 depending 

on whether increases in s only end up fueling the growth of a larger infected population z.  If 

                                                 

10 It is implicitly assumed that h,f≥0 and that f≤min(1/δ, 1/τ).  A value of f>1/δ would result in a negative mortality 
rate due to the disease, which is not possible.  A value of f>1/τ would result in a negative density dependence factor, 
which also does not seem realistic.  In our numerical example these assumptions are explicit. 
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θ=1, then all additions to N only add to the infected stock so that λ<0, and vice versa when θ=0.  

There must exist a set of values for the state variables such that λ=0, other sets such that λ>0, 

and still others such that λ<0.  A potential non-convexity therefore emerges, with the possibility 

of multiple optimality candidates (Rondeau 2001; see also Tahvonen and Salo 1996; Huffaker 

and Wilen 1994; Maler et al. 2003).  The potential for non-convexities does not arise when 

harvests can be made selectively. 

 Now consider the marginal impacts of feeding on the Hamiltonian 

 (12)  θθαδβυφαδθτλ )1]([])/([/ 2 −++++−=∂∂ NkNrwfH  

Feeding can be thought of as an investment in both the productivity of the resource and of the 

disease.  As we show below, the solution has similarities but also important differences than 

when investments are made in harvesting capital (see Clark et al. 1979).  The singular solution 

should be followed whenever the unit cost of feeding equals the in situ net marginal value of 

feeding on the two state variables.  The in situ net marginal value is the difference between the 

marginal benefits of feeding on the overall stock (which includes increased productivity and 

decreased mortality, and which may be negative when λ<0) and the marginal costs of feeding in 

terms of an increased proportion of infected animals (due to increased transmission and 

decreased mortality among the infected stock).  If the marginal in situ values exceed the unit 

cost, then feeding should proceed at some maximum rate.  If the unit cost exceeds the in situ 

value then feeding should optimally cease.  It must be the case that φ<0, for disease is never 

beneficial.  Equation (12) therefore implies that λ>0 must hold along a singular path, and so non-

convexities can only emerge along a non-singular feeding path. 
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 The necessary arbitrage conditions for an optimal solution are given by 

(13) 
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Conditions (13) and (14) reflect intertemporal changes in optimal marginal resource values.   

Consider harvesting and feeding choices along a singular path, so that conditions (11) and 

(12) both vanish.  We refer to such a path, in which the solution is singular for both controls, as a 

dual singular path (solutions that are singular for only one control variable might also be 

possible, and sometimes these are the only feasible singular possibilities, e.g., see Clark et al. 

1979).  Differentiating condition (11) with respect to time, substituting the right-hand-side (RHS) 

of condition (13) in for λ& , and using (11) to substitute for the co-state variable λ, we have the 

expression 

(15) 
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Equation (15) is a variant of the conventional �golden rule� for renewable resource management: 

the rate of return for holding the healthy stock in situ equals the marginal productivity of the 

stock, plus net marginal stock effects (i.e., the marginal cost savings that accrue as harvests come 

from a larger stock minus the marginal damages, normalized by marginal user cost), minus the 

(normalized) value of foregone revenues as some of the remaining healthy in situ stock will 

become infected and result in a larger proportion of infected deer in future harvests.   
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Equation (15) must hold at all times along either the dual singular path or a singular path 

involving only the harvest.  In conventional autonomous renewable resource models, the singular 

path is a single point, N*, because the golden rule is only a function of the stock and can be 

solved for a unique value of N.  In contrast, condition (15) is a function of one of the control 

variables, f.  If we solve (15) for f as a function of the current state variables, N and θ, the result 

is a nonlinear feedback law along a two-dimensional singular arc (Bryson and Ho 1975).  As we 

describe below, the existence of this feedback rule means that the dual singular solution will be a 

path and not simply a steady state point.11 

Now differentiate condition (12) with respect to time and substitute the right-hand-side 

(RHS) of condition (14) in for φ& .  Using (11) and (12) to substitute for the co-state variables, we 

get a golden rule expression for managing the proportion of infected wildlife.  The explicit form 

of this expression is too complex to present here, but in implicit form it is written 

(16)  ),,,( fhNF θρ =  

Equation (16) depends on both control variables, h and f (to see that it depends on h, note that 

(14) depends on h and there is no chance of this term vanishing in the golden rule expression).  

This equation must also hold along the dual singular path.  If we plug the feedback law for f into 

this expression, it is possible to construct a feedback law for h. 

The feedback laws h(N, θ) and f(N, θ) can be plugged into the differential equations (7) 

and (8) to solve for the optimal path along the singular arc.  Because the singular arc is two-

dimensional, the entire (N,θ) plane � or at least a subset of it � satisfies the necessary conditions 

                                                 

11 For the class of autonomous problems, such feedback laws seem to be more common in non-economic 
applications such as aerospace engineering.  For instance, Bryson and Ho (1975) provide a famous example of 
optimal thrust programs for rockets.  In the resource economics literature, Swallow (1990) illustrates a case in which 
a steady state does not always arise at the singular solution. 
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for the dual singular solution.12  Constraints on the controls may provide some additional 

restrictions that limit the space over which a dual singular solution may arise (and we explore 

this below).  But assuming f( 0N , 0θ )>0, the dual singular path can generally be found 

numerically by using the nonlinear feedback laws along with the equations of motion (7) and (8) 

and the initial states 0N  and 0θ . 

 

Numerical example 

We now examine the optimal solution numerically because the feedback rules and the 

differential equations that define the solution are too complex to analyze analytically.  The data 

used to parameterize the model are described in the Appendix.  While we have made every effort 

to calibrate the model realistically, research on the Michigan bovine TB problem is still evolving 

at a fairly early stage so knowledge of many parameters is somewhat limited.  The following 

analysis is therefore best viewed as a numerical example rather than a true reflection of reality. 

 The numerical solution is presented in Figure 2 for the case of ρ=0.1.  Although not 

presented, an interior solution arises at the point (N=5,561, θ=0.013), just northeast of the point 

d.  This interior equilibrium point is an unstable focus that is not to be pursued.  Instead, we find 

an interior cycle involving the paths 3, 4, 5, and 6 is optimal.  We explain this cycle below.  Note 

that N=0 is not an optimal steady state because the marginal cost of exterminating the wildlife 

population is infinite while the marginal benefits of extermination approach zero.  Equilibria 

involving θ=0 are not optimal either because it takes too long for the disease to die out naturally. 

                                                 

12 That (11) and (12) both vanish when the feedback rules are followed, for any state variable combination such that 
the non-negativity constraints are satisfied, is verified by setting equations (11) and (12) equal to zero and noticing 
that the coefficient matrix for the vector [λ φ] for this system is not singular � thus a unique value of both λ and φ 
satisfy the singular conditions for all relevant combinations of N and θ. 
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We now turn to the optimal solution.  Given N0 and θ0, represented by point a in Figure 

2, the dual singular path 1 is followed.  This path spirals away from the interior equilibrium, 

increasing θ while N is first increased and later decreased.  The result that feeding should be 

initially encouraged runs contrary to Michigan�s current policy approach of banning feeding.  

Feeding represents an investment in stock productivity, initially increasing the stock while 

enabling large harvests along both the initial phase (the singular path 1) and a second phase 

(discussed below) of the depletion path.  The disease prevalence rate goes up along the singular 

path, but the increased damages are offset by the rewards of larger near-term harvests.   

Feeding and also prevalence rates continue to grow along the path 1.  Eventually f(N,θ) 

= maxf =10,000, represented by the boundary maxff =  in Figure 2.  This boundary creates a 

blocked interval that prevents the state variables from following the dual singular path (Arrow 

1964; Clark 1990, p. 56).13  The feedback solution is myopic, but the farsighted planner knows 

the boundary is approaching.  So the singular path is abandoned (at least for the feeding control 

variable) prior to reaching the maxff =  boundary, for instance at the point b, and an extremal 

value of f is chosen (Arrow 1964).  Clark (1990, p.57) refers to this result as the �premature 

switching principle�. 

At the instant at which the dual singular path 1 is abandoned, say time T, it becomes 

optimal to pursue the (non-dual) singular solution for N conditional on the extremal value of f 

(note there are two possible extremal values for f: maxf  and 0).  This singular path is 

characterized by equation (15), holding f fixed at its constrained value.  Given that f is 

constrained exogenously, equation (15) can be solved for N(θ, f), with θ moving exogenously 

                                                 

13 The continuation of the singular path 1 is not illustrated, but immediately after the boundary it changes direction 
and moves northeast:  the larger harvests required to offset increased prevalence begin to deplete the stock. 
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through time as a function of the constrained value of f.  The result is a singular path for N, 

referred to as the constrained singular path, which is essentially a non-autonomous singular path 

given the exogenous movement of θ (see Clark 1990 or Conrad and Clark 1987 for examples of 

non-autonomous singular paths) and is optimally approached along a most rapid approach path 

(MRAP).   

As indicated above, there are two possible extremal values for f.  Consider the singular 

path N(θ, f) that arises when f is set at the extremal value maxf , denoted ),( maxfN θ  and labeled 

as path 3′ in Figure 2.  The path ),( maxfN θ  lies to the left of the f=0 curve (the f=0 curve is 

defined below; it has no meaning with respect to the path ),( maxfN θ  other than that this path 

lies to the left of the f=0 curve) and begins at the point c′ for the value of θ at time T.  An 

immediate cull of the deer herd is required at time T to move as fast as possible to this path.  

However, once at point c′ it would not be optimal to feed at a rate of maxf  because the state 

variable combination would still lie below the maxff =  boundary.  Rather, it would be 

preferable to follow a dual singular solution in which f is not constrained but rather follows the 

feedback function f(N, θ) given the starting point c.  But such a dual singular solution is 

infeasible at this point because the feedback function f(N, θ) is negative in the region to the left 

of the f=0 curve.  So immediately after the cull occurs at T, the extremal value f=0 is optimal.  

Accordingly, it is optimal to pursue the constrained singular path N(θ) as derived from the 

following modified form of equation (15) with f=0 

(17) 
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It turns out this singular path coincides with the f=0 curve in the present model.  Since this new 

singular path is pursued along a MRAP instantaneously after the cull at point b (or time T), the 
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optimal choices at point b are maxff = and an immediate cull (represented by 2) to point c.  The 

singular path N(θ), represented by 3, should then be followed.   

 Disease prevalence diminishes while wildlife stocks increase along the singular path 3, 

until point d is reached.  At point d, f=0 is no longer a binding constraint but rather the solution 

to the feedback function f(N,θ) along a dual singular path that moves northeasterly away from 

the f=0 boundary.14  At this point, it becomes optimal to again take advantage of enhanced 

productivity via supplemental feeding.  The planner therefore moves off of the constrained 

singular path 3 and pursues the dual singular path that emanates from this point, labeled 4.   

Note that continuation along the constrained singular path 3 would have led to an 

outcome with a disease-free wildlife stock (after which time feeding could be reintroduced 

without creating any disease problems).  But that outcome is not pursued because the opportunity 

cost of waiting for the disease to die out is too high relative to the gains that can be made from 

re-investing in deer productivity at d.  The marginal productivity impact of supplemental feeding 

depends on the size of the deer population.  If the deer stock is relatively small, such as at point 

c, then feeding is costly:  it results in only a small productivity boost while simultaneously 

causing increased disease prevalence.  But when point d is reached, feeding again becomes 

beneficial: small amounts of supplemental feeding can have a significant productivity boost 

while adding little to disease prevalence.  This is reflected by the relatively flat slope of path 4 in 

the vicinity of d.  Path 4 eventually turns around and heads back to the f=0 boundary.  But 

knowing that this boundary is imminent, the planner culls the stock sometime prior to reaching 

                                                 

14 Prior to point d, the f=0 boundary represents the solution to the feedback function f(N,θ) along a dual singular path 
that moves in a westerly direction away from the f=0 boundary, rendering such paths infeasible. 
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the boundary, jumping to a point such as e by way of path 5.15  Once at e, path 6 is pursued and 

the cycle 3-4-5-6 repeats.  The disease is never eradicated because the deer are highly valuable 

and feeding intermittently becomes a good investment to boost productivity of the stock. 

In many respects the optimal path is similar to that of Clark et al. (1979), who analyze 

irreversible investments in harvesting capacity for renewable resources.  They find it is optimal 

to temporarily over-capitalize (relative to the steady state) prior to a stock-depletion phase.  The 

reason is that the larger capital levels allow more harvesting early on, which generate greater 

near-term benefits prior to advancing to the steady state.  Somewhat analogously in our model, 

we find that initial and intermittent future investments in resource productivity create 

opportunities for near-term gains.  An important difference between out model and Clark et al.�s 

model is that a steady state is not optimal in our model.  Unlike Clark et al., investment in our 

model (via feeding) produces adverse effects on resource dynamics: along with the productivity 

enhancing investments comes the unwanted side-effect of the disease, and sustained investment 

(feeding) would only lead to increasing disease prevalence.  If allowed to continue unabated, this 

increasing prevalence eventually causes damages to swamp benefits.  Therefore, intermittent dis-

investment in the disease is warranted. 

 

Extensions of the basic model 

We conclude our numerical example with a few small extensions designed to shed light on how 

certain key parameters influence the optimal solution.  First, consider Figure 3, which illustrates 

the solution when ρ=0.05.  There are two important differences between Figures 3 and 2.  First, 

                                                 

15 The jump to e is drawn after path 4 crosses path 2 but we are not asserting this is necessarily optimal.  To fully 
and accurately characterize the solution it is necessary to find the optimal time T at which path 1 is abandoned and 
the optimal times at which path 4 is abandoned.  This is beyond the scope of the current paper. 
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the dual singular path 1 is negatively sloped in Figure 3 but positively sloped in Figure 2.  This 

difference arises because a smaller discount rate results in a more equal weighting of the near-

term benefits that accrue from investing in in situ deer productivity (via feeding) and the costs 

that stem from the greater associated disease prevalence.  Accordingly, feeding occurs at lower 

levels under smaller discount rates and hence provides a smaller productivity boost.  A second 

difference is that the dual singular path 4 in Figure 3 has shifted down and exhibits a shorter 

upward path relative to its analogue in Figure 2.  The shorter upward path results from the same 

sort of tradeoff influencing singular path 1.  The downward shift results because the smaller 

discount rate reduces the opportunity cost of waiting for smaller disease prevalence levels 

relative to the benefits of feeding-induced productivity enhancements.  In sum, the equilibrium 

cycle is shorter and occurs at lower disease prevalence rates for smaller discount rates. 

 Next consider the impacts of a larger disease mortality rate.  When α/β = 1.1, holding all 

other parameters from the basic model constant, we find the solution looks almost identical to 

Figure 3 but for different reasons.  With larger disease mortality, infected deer die more rapidly.  

This means the productivity boost to the aggregate deer stock is not as great and the stock 

declines more rapidly for a given harvest level � hence the negatively sloped dual singular path 1 

and the short upward portion of the dual singular path 4.  The fact that infected deer die more 

rapidly also decreases the opportunity cost of waiting out reductions in disease prevalence.  

Hence the downward shift in singular path 4. Similar results occur for larger marginal damages, 

which reduces the opportunity cost of waiting for reduced prevalence, and for larger feeding 

costs, which reduces the marginal benefits of productivity investment via feeding and hence 

reduces the cost of waiting for reduced prevalence. 
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 If marginal damages, feeding costs, or α/β is increased enough, we find that the 

opportunity cost of eradication of the disease becomes optimal in the long run.  This process is 

presented in Figure 4.  After an initial productivity investment there is a jump to singular path 3 

along the f=0 curve.  This singular path is optimally followed until θ=0 and *
0,0 === fNN θ , as 

there is no dual singular path that moves easterly out of the f=0 curve (coinciding with the fact 

that there is no interior focus point in this case).  At this point, feeding again becomes optimal 

provided the costs are not too great (otherwise the system remains at *
0,0 == fNθ =5,921 deer) 

because feeding will have no impact on θ.  It can easily be verified that the singular solution in 

this case involves equation (11) being satisfied as a strict equality and equation (12) as a strict 

inequality, so that feeding should be set at its maximum level.  Equation (15) then uniquely 

determines the singular stock, *
,0 maxff

N
==θ , which should be approached along a most rapid 

approach path, 4.  This implies zero harvests until the stock has increased to the steady state 

value *
,0 maxff

N
==θ , which equals 30,942 deer. 

    

Conclusion 

 This paper represents a first step in understanding the economics of disease control in 

wildlife populations.  We have formulated a general model of wildlife growth and disease 

transmission and found there are limitations to a harvesting strategy when harvests cannot be 

made selectively from the diseased population.  Strategies to address disease prevalence must 

therefore focus on more than just the harvest, and can be particularly effective if they address 

disease transmission and mortality.   
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For our numerical example of bovine tuberculosis in Michigan deer populations, we find 

that eradication of either the disease is not likely to be optimal.  It takes too long for the disease 

to dissipate naturally once supplemental feeding is halted, which is not surprising considering 

that it took sixty-two years to eliminate the disease in cattle herds under much more controlled 

conditions.  It is also too difficult and costly to kill all the deer in the infected area, as managers 

in Michigan are currently discovering.  Instead, it is optimal for the disease to remain endemic in 

the area at very low levels, with intermittent investments (via supplemental feeding) in in situ 

deer productivity.  Of course an endemic disease is not always optimal.  If marginal damages, 

feeding costs and/or disease mortality are large enough, we find that it may be optimal to delay 

feeding-induced productivity enhancements and in favor of disease eradication. 

Although the model was applied to the specific case of bovine TB in deer herds, the 

model and results are likely to be applicable to other wildlife disease problems � even those 

problems where supplemental feeding is not an issue.  Supplemental feeding decisions in our 

model represent the easiest method of controlling disease transmission for the Michigan case, 

and the control of disease transmissions would likely be a part of any wildlife disease 

management strategy.  For other diseases, alternative environmental variables could be 

manipulated in ways that reduce disease transmission, and it is reasonable to believe that such 

actions might result in tradeoffs in in situ productivity (e.g., if contact is somehow reduced then 

fertility might also be expected to decline).  Hence the current model provides a foundation for 

analyzing a range of wildlife disease problems.   

Finally, an important caveat to our results is that the disease was assumed to be 

unsustainable beyond the core area.  This is reasonable for the Michigan bovine TB problem, but 

it may not be the case for some other diseases.  Rather, it might be possible for some other 
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diseases to spread among additional populations.  Such a situation might imply greater marginal 

damages due to the disease and hence more incentives to contain the disease.  Additional 

tradeoffs may also arise involving the management of spatially differentiated populations that 

possibly interact through migratory processes.  A spatially explicit analysis would be required in 

such instances to fully assess the implications of spatial disease transmission. 

 

 

Appendix 

The model is calibrated using parameters obtained from a variety of sources.  The initial number 

of deer in the core area (deer management unit [DMU] 452), N0, was estimated to be 13,298 in 

Spring 2002 (after the previous winter mortality and prior to births) (Hill 2002).  Disease 

prevalence in the core since 1995 has fluctuated between 2.2 and 4.8 percent, averaging 2.3 

percent during the period 1998�2000 (O�Brien et al. 2002).  More recent estimates are 

unavailable, but it is believed that prevalence rates have been fairly constant over the past few 

years (Hickling 2002; O�Brien et al. 2002).  We therefore adopt a value of θ0=0.023. 

 Core carrying capacity is taken to be 9 deer/km2 (Miller et al. 2003; O�Brien et al. 2002), 

which is the upper bound of estimates from the 1960s prior to extensive hunt club feeding 

activities.  This implies a value of k=14,049 for the 1561 km2 core area.  Extensive feeding has 

increased the carrying capacity, with recent populations peaking around 19-23 deer/km2 

(O�Brien et al. 2002; Hickling 2002).  Of course these populations have been subject to 

significant exploitation and so we assume a slightly higher effective carrying capacity value of 

27 deer/km2, which translates to k/(1-τf)= 42,147.  Miller et al. (2003) report approximately 8212 

kg/km2 of fruits, vegetables, and grains being fed to deer in the core area.  Although this is 
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probably an underestimate of actual feeding activities, we adopt this value for a lack of better 

estimates.  Setting f=8212 we can solve for τ=0.00008. 

To calibrate the transmission of the disease, we use Miller and Corso�s (1999) reported 

rates of infected contact by sex, along with survival rates from the time of contact to that of 

infection.  Using these values along with deer sex ratios reported by McCarty and Miller (1998), 

we derive β(1+υf)=0.346.  Miller et al.�s (2003) results are used to calibrate υ.  Assuming the 

number and size of feed sites are constants and that feed is applied fairly uniformly across sites, 

then an increase in total feed is an increase of food density at each site.  Using a weighted 

average of feed-types and densities across sites, we find a base density of 0.118 kg/m2.  Miller et 

al. (2003) calculate an odds ratio of 2.8 for a 10kg increase in feed (fruit, vegetables and grain) 

per m2, where this 10kg increase translates to a value of f= 704,144.  Although we have a 

deterministic model, the �likelihood� of an infection can be thought of as the total new infections 

divided by the total susceptible.  The odds ratio can be written in reduced form as 

(1+υ704144)/(1+υ8212)=2.8, which implies υ=2.64×10-6.  Given this value and f=8212, we can 

solve for β=0.339.  Note that the Miller et al. value of f=704,144 is not assumed to be a 

reasonable value for management purposes.  Rather, this is simply a scaled value that they used 

in order to present an odds ratio of reasonable scale.  In our analysis, we set the maximum value 

of f equal to 000,10max =f .  This choice is somewhat arbitrary but it has little bearing on our 

qualitative graphical results. 

 The intrinsic growth rate for white-tailed deer is taken to be r=0.5703 (Rondeau and 

Conrad 2003).  This value is the natural birth rate less the natural mortality rate.  But we also 

require the additional mortality rate due to the disease (α).  Hill (2002) estimates that 1340 deer 

out of an initial population of 20,418, or 6.56 percent, died from reasons other than legal hunting 
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mortality in 2001.  We need an estimate of natural mortality outside the core area to enable us to 

separate out the effects of natural and disease-based mortality.  Hill�s outside core estimates vary 

considerably depending on the amount of snowfall received by various areas.  Medium snowfall 

areas outside the core imply a natural mortality rate of only 5.6 percent.  If we take this value to 

be the natural mortality rate for healthy deer inside the core, then we would expect 1117 natural 

deaths among 19,948 healthy deer, leaving 223 deaths for the remaining 470 infected deer.  

Some of these deaths were likely due to illegal hunting and other reasons unrelated to the 

disease.  We therefore adopt an effective mortality of α(1-δf) = 0.2, which would account for 

slightly less than half of these other deaths.  This rate does not imply that 20 percent of all 

infected deer die as a direct result of the disease, as few deer actually die from tuberculosis.  

Rather, the deer are weakened by their infection and ultimately die from something else.  One 

more piece of information is still required to calibrate α and δ.  The unsustainable nature of the 

disease outside the core suggests that α>β.  We have chosen α/β = 1.05 because this value 

produces reasonable results relative to historical changes in disease prevalence when recent deer 

populations, disease prevalence rates, harvests and feeding choices are plugged into the model. 

 The price per harvested deer is p=$1270.80, which is derived from various estimates of 

consumer�s surplus, hunting effort and expenditures provided by Boyle et al (1998), Frawley 

(1999), and U.S. DOI-FWS (1996).  Scaled harvesting costs, c/q, are taken from Rondeau and 

Conrad (2003) to be $231,192.  The price of feed is set at w=36.53, which is imputed from 

Miller et al.�s (2003) feed density rates for the core along with anecdotal evidence about feed 

expenditures.  Finally, total damages are estimated to be $12 million per year at current stocks 

and infection rates (Wolf and Ferris 2000).  Using a linear damage function of the form ξz, this 

implies a value of ξ=5491.    
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Table 1.  Examples of disease transmission among and between wildlife and livestock 
Disease Wildlife 

vector 
Livestock 
at risk? 

Humans 
at risk? 

 Disease Wildlife 
vector 

Livestock 
at risk? 

Humans 
at risk? 

Botulism  Birds, 
mammals  

Yes Yes  Q (Query) 
Fever b  

Mammals, 
birds  

Yes Yes 

Brucella abortus Bison bison 
and Cervus 
 elaphus 

Yes Yes  Rabies  Mammals 
(skunks, 
bats, 
raccoons, 
foxes are 
frequent 
hosts)   

Yes Yes 

Chronic wasting 
disease 

Deer and elk Yes Uncertain  Raccoon 
roundworm  

Raccoon   Yes Yes 

Colorado tick 
fever  

Rodents (esp. 
ground 
squirrels)b   

Yes Yes  Relapsing  
fever b  

Rodents  Yes Yes 

Cryptococcosis   Pigeons 
(feces) a   

Yes Yes  Rickettsial pox  Mice  Yes Yes 

Encephalitis   Bats, birds, 
squirrels   

Yes Yes  Rocky 
Mountain 
spotted fever b 

Mammals   Yes Yes 

Foot and mouth 
disease 
 
 

Andean deer 
(Hippocamelus 
bisulcus), 
Deer 

Yes No  Salmonellosis   Rodents, 
birds   

Yes Yes 

Histoplasmosis   Feces of 
especially 
birds and batsa  

Yes Yes  Sarcosporidiosis Cats and 
other 
Mammals 

Yes Yes 

Leptospirosis  Rodentsa  Yes Yes  Toxocara cati Puda 
concolor 

Yes Yes 

Lyme disease   Mammals, 
birds, reptiles 
(especially 
white-footed 
mice)  

Yes Yes  Toxoplasmosis   Mammals, 
birds; main 
host cats 

Yes Yes 

Lymphocytic- 
Chloriomeningitis 

Mice and ratsa  Yes Yes  Tuberculosis Brushtailed 
possum, 
Deer, 
coyotes, 
lions, other 
mammals 

Yes Yes 

New Castle's 
disease  

Birds   Yes No  Tularemia  Mammals 
(esp. 
rabbits and 
rodents)  

Yes Yes 

Plague   Rodents   Yes Yes  Typhusb  Rodents 
(including 
rats, mice, 
squirrels) 

Yes Yes 

aMost often transmitted by contact from excretions left by infected animal. 
bCaused by a tick after tick bites infected animal. 
Sources: Simonetti (1995), Barlow (1991a,b, 1993), Bicknell et al. (1999), Peterson (1991), Meagher and Meyer 
(1994), Michigan Department of Agriculture [MDA] (2002), Williams et al (2002), Wolfe et al. (2002), National 
Pest Control Association's Vertebrate Control Committee (2003).   
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Figure 2.  Solution of the benchmark numerical example 
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Figure 3.  Solution of the numerical example when ρ=0.05, ceteris paribus 
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Figure 4.  Solution of the numerical example when feeding costs are increased tenfold 
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