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Abstract
Soil is often collected from a suspect’s tire, vehicle, or shoes during a criminal investigation and subsequently submitted to a
forensic laboratory for analysis. Plant and insect material recovered in such samples is rarely analyzed, as morphological
identification is difficult. In this study, DNA barcoding was used for taxonomic identifications by targeting the gene regions
known to permit discrimination in plants [maturase K (matK) and ribulose 1,5-biphosphate carboxylase (rbcL)] and insects
[cytochrome oxidase subunit I (COI)]. A DNA barcode protocol suitable for processing forensic-type biological fragments was
developed and its utility broadly tested with forensic-type fragments (e.g., seeds, leaves, bark, head, legs; n, 213) isolated from
soils collected within Virginia, USA (n, 11). Difficulties with PCR inhibitors in plant extracts and obtaining clean Sanger
sequence data from insect amplicons were encountered during protocol development; however, the final protocol produced
sequences specific to the expected locus and taxa. The overall quantity and quality of DNA extracted from the 213 forensic-type
biological fragments was low (< 15 ng/μL). For plant fragments, only the rbcL sequence data was deemed reliable; thus,
taxonomic identifications were limited to the family level. The majority of insect sequences matched COI in both GenBank
and Barcode of Life DataSystems; however, theywere identified as an undescribed environmental contaminant. Although limited
taxonomic information was gleaned from the forensic-type fragments processed in this study, the new protocol shows promise for
obtaining reliable and specific identifications through DNA barcoding, which could ultimately enhance the information gleaned
from soil examinations.

Keywords ModifiedDNAbarcoding protocol . Plants . Insects . Forensic-type soils

Introduction

Soil is an important type of forensic evidence because it is spa-
tially variable, frequently transferred during criminal acts, and

can be overlooked as evidence of the crime by the perpetrator.
The examination and characterization of soil material has been
completed by forensic geologists for decades, and the informa-
tion gleaned is often applied to constrain the circumstances of a
crime. For instance: could the soil on the suspect’s shoe have
been derived from the crime scene, or does it match an alibi
location? In provenance cases, where often the amount of mate-
rial submitted is usually extremely limited (milligrams to a few
grams), it is imperative that all components of the sample be
analyzed to obtain as much probative information for investiga-
tive leads as possible. Biological material, such as plant and
insect fragments, are often present in soil evidence but rarely
taxonomically identified. This biological material could provide
useful information, particularly in provenance cases, considering
plant and insect species inhabit specific ecosystems, and may be
present at specific times of the year. Traditionally, taxonomic
identification of biological material is performed based on mor-
phology. However, given that the majority of biological material
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observed in soil evidence is either a fragment or an incomplete
specimen, morphological identification is not straightforward. In
these circumstances, using DNA for identification is an attractive
alternative approach, as it is present in all biological tissues and
can be viable even in material not optimally preserved [1–3],
such as would be expected in evidence samples.

DNA barcoding, which utilizes a standardized sequence of
DNA, typically 400–800 base pairs in length, was coined in
2003 as a molecular approach for taxonomic identification [4].
Although DNA barcoding has received some criticism [5–9], it
has gained broad acceptance given its application beyond tax-
onomy, to areas such as ecology, population genetics, and con-
servation [10–14], for monitoring and tracking invasive and
economic pests [15–21] and in forensics [22–25]. The utility
of DNA barcoding for species-level discrimination of unknown
samples hinges on access and the ability to search databases of
reference barcode sequences, containing relatively complete
coverage of the taxa of interest. There currently are two main
public databases that contain DNA barcode data, the Barcode
of Life DataSystems (BOLD) [26] and GenBank [27].

A 648-bp region of the mitochondrial cytochrome oxidase
subunit I (COI) gene has been adopted as the standard
barcoding region for animal/insect identification [4, 28–30],
as it has a fast mutation rate and is found in high copies within
tissues. The discrimination power of this region has been eval-
uated in more than 10,000 peer review articles and provides
species-level resolution among vertebrates [31, 32] and inver-
tebrates [33–37]. As COI evolves too slowly to facilitate
species-level discrimination among plants, the Consortium
for the Barcode of Life (CBOL) recommended the scientific
community adopt a 2-locus barcode for discrimination among
land plants: ribulose 1,5-biphosphate carboxylase (rbcL) and
maturase K (matK) both from the plastid genome [38]. The
rationale surrounding the use of a 2-locus barcode is that al-
though rbcL is more straightforward to amplify and sequence
than matK, the level of resolution is limited (i.e., order and
family as opposed to genus and species, respectively). Unlike
rbcL, there is no universal primer pair to facilitate the ampli-
fication of matK across plants; thus, the taxonomic informa-
tion obtained from rbcL can prove very useful for choosing
the appropriate matK primers to ensure successful amplifica-
tion (especially prudent when dealing with unknown materi-
al). In some plant groups however, species discrimination
using only these two markers is not possible, so a range of
supplementary markers are often required to increase the level
of species resolution (e.g., intergenic spacers trnH-psbA,
atpF-atpH, and psbK-psbl and gene regions rpoB and
rpoC1) [39, 40].

Current efforts that have used molecular-based approaches
such as DNA barcoding to document the biodiversity within a
soil sample have primarily been focused on a bulk
metagenomic approach [41–50]. Using conserved primers
for the desired barcode regions, individual taxa can be

amplified and sequenced simultaneously (i.e., massively par-
allel sequencing) from a single bulk soil extraction. Although
a metagenomic approach facilitates the collection of large
amounts of data from potentially highly degraded samples,
the current usefulness of this technique mainly lies with
cross-sample comparisons; the operational taxonomic units
(OTUs) identified in the unknown sample are compared to a
series of knowns, to determine the level of similarity.
Additionally, a large amount of soil (at least 100 mg) is needed
for a DNA extraction [46], which would be problematic in
forensic applications where sample mass is often limited and
non-consumption analysis is preferred.

To enhance the forensic examination of soils, this study
focused on developing a protocol for obtaining DNA barcode
data from individual biological fragments isolated from
forensic-type soil samples. Although protocols for obtaining
DNA barcode data from both plants and insects have been
well developed by the scientific community [29], these
methods have been primarily optimized for fresh, pristine
samples. Using these methods as a starting point, a DNA
barcoding protocol was developed to work with both Bnew^
and Bold^ biological material. The broad utility of the devel-
oped method was tested using fragments (n, 213) isolated
from 11 soil samples collected from within Virginia, USA,
which represent varied geology and ecohabitats. This paper
outlines (1) the challenges with developing a protocol to ob-
tain barcode data from forensic-type biological material, (2)
the types of plant and insect fragments that are commonly
recovered with surface soil samples (e.g., seeds, rootlets, legs,
or heads), (3) whether such fragments contain viable DNA, (4)
whether the appropriate DNA barcode regions could be am-
plified and sequenced using traditional Sanger methods, and
(5) the level of taxonomic identification possible from barcode
data when using public sequence databases (BOLD and
GenBank).

Materials and methods

The protocol outlined below was originally developed and
tested using two types of samples for both plants and insects:
(1) new, fresh, and intact tissue collected immediately prior to
extraction (surrogate positive control) and (2) old, fragmented
tissue recovered from surface soil samples, which had been
exposed to environmental conditions likely for several months
(see Online Resource 1 for examples of old fragments).

DNA extraction

To remove any remaining soil particulates or fungal contam-
inants from the old samples, each fragment was submerged in
a 5% bleach solution for 5 min, and subsequently washed
three times with purified water [51]. After washing, each
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fragment was left to dry overnight in a drying cabinet (lid of
the 1.5 mL centrifuge tube was left open). The length of each
fragment, along with the dry weight of the plant fragments,
was recorded. The insect fragments were not weighed given
their extremely small size. Photographs were taken of each
individual fragment using a Nikon D90 camera, to permit
subsequent categorization. The total genomic DNA was iso-
lated using the DNeasy Plant Mini Kit (Qiagen, Hilden,
Germany) and the DNeasy Blood and Tissue DNA
Purification Kit (Qiagen), for plant and insect fragments, re-
spectively. To facilitate straightforward homogenization of the
tissue, each fragment was snap frozen using liquid nitrogen
and ground to a fine powder using a disposable mortar and
pestle. Themanufacturer’s protocols were followed for extrac-
tion with one exception: the DNAwas eluted into two eluates
of 50 μL of AE Buffer as opposed to one eluate of 100 μL, to
increase the final DNA concentration.

Characterizing DNA quantity and purity

The quantity and purity of the extracted DNA was assessed
using the Nanodrop ND-1000 (Thermo Scientific,
Wilmington, DE, USA). AE Buffer was used to calibrate the
blank of the instrument, and 1.5 μL of DNA eluate was used
to obtain a reading. The quantity of DNA in each sample was
recorded (ng/μL) along with the absorbance at descriptive
wavelengths: 230 nm for phenols and humic acid; 260 nm
for nucleic acids; and 280 nm for carbohydrates, proteins,
and RNA.

Amplification

All amplifications were performed on a GeneAmp PCR
System 9700 Thermal Cycler (Applied Biosystems, Foster
City, CA, USA) using the primer pairs given in Table 1 and
the cycling conditions outlined in Online Resource 2. Initially,
all primer pairs were tested using a 20μL reaction mix con-
taining: 0.4 μM of each primer, 2.5 mM MgCl2, 0.5 mM of
each dNTP (Applied Biosystems), 5 U of AmpliTaq GOLD™
(Applied Biosystems), and 2 μL of genomic DNA (2 μL of
nuclease free water for the negative control and 2 μL of the
new extract as a surrogate positive control). In additional

experiments, KAPA3G Plant DNA polymerase (KAPA
Biosystems, Wilmington, MA, USA), 2× KAPA Taq DNA
polymerase (KAPA Biosystems), Q5® Hot Start High-
Fidelity DNA polymerase (New England BioLabs Inc.
[NEB], Ipswich, MA, USA), and the Q5® High-Fidelity
DNA polymerase (NEB) were tested using the manufacturer’s
suggested reaction mix constituents. Inhibitor removal steps
or alternate PCR constituents were examined in some exper-
iments and included betaine (Sigma-Aldrich [B-2754], St
Louis, MO, USA), final concentrations of 1–2 M; polyvinyl-
pyrrolidone (PVP; Sigma-Aldrich [P-5288]), final concentra-
tions of 1–3% v/v; and dimethyl sulfoxide (DMSO; Sigma-
Aldrich [D8418]), final concentrations of 3–10% v/v.
Purification of extracted DNA was tested with the
PowerClean® Pro DNA Cleanup Kit (Mo Bio Laboratories,
Inc., Carlsbad, CA, USA), Agencourt® AMPure XP Reagent
(Beckman Coulter, Inc., Brea, CA, USA) and an ammonium
acetate precipitation (Sigma-Aldrich [A2706]).

Amplicon screening and purification

A total of 5 μL of PCR product and 1 μL of 6× loading dye
(Promega, Madison, WI, USA) were loaded into a single well
of a 1.2% agarose gel. To facilitate size quantitation of
amplicons, 10 μL of 1 kbp DNA Ladder (Bioline, Taunton,
MA, USA) was also run. Each gel was subjected to electro-
phoresis prior to ethidium bromide staining and visualization
under ultraviolet light. ExoSAP-IT® (USB® Products,
Cleveland, OH, USA), which digests any unincorporated
primer and dNTPs, was used to purify amplicons. A total of
1 μL of ExoSAP-IT® was combined with every 5 μL of PCR
product and incubated as per the manufacturer’s instructions.
Purified samples were quantitated using the Agilent 2100
Bioanalyzer and the Agilent DNA 1000 kit (Agilent
Technologies, Santa Clara, CA, USA) following the manufac-
turer’s protocol.

Sequencing and data analysis

Sequencing of ExoSAP-IT®-treated PCR products was per-
formed using the ABIPRISM® BigDye™ Terminator Cycle
Sequencing Kits (v3.1 for plant amplicons and v1.1 for insect

Table 1 Information on the
targeted barcode regions and
primer pairs used for
amplification

Barcode region ~ Length (bp) Primers Target

COI 650 LCO1490-L/HCO2198-L[35] Universal

COI mini 130 uniminibarF1/uniminibarR1[52] Universal

rbcL 590 rbcLa-F[53]/rbcLa-R[29] Universal

rbcL mini 230 rbcL1/rbcLB[54] Universal

matK 850 matK-KIM-1R/matK-KIM-3F[29] Angiosperms

nested matK 830 matK4La[55]/matKMALPR1[56] Angiosperms
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amplicons) (Applied Biosystems). Each sequencing reaction
contained 10 ng of purified PCR product, 3.9 μL of BigDye™
Ready Reaction Mix, and 0.175 μM of the appropriate for-
ward amplification primer. Samples were subjected to the fol-
lowing cycling conditions on a GeneAmp 9700 Thermal
Cycler: plant amplicons, 1× 96 °C for 1 min and 25× 96 °C
for 15 s, 50 °C for 1 s, and 60 °C for 1 min; 4 °C hold and
insect amplicons, 1× 96 °C for 1 min and 25× 96 °C for 15 s,
50 °C for 1 s, and 60 °C for 4 min; 4 °C hold. Individual
sequencing reactions were purified using Centri-Sep™ strip
columns (Princeton Separations, Freehold, NJ, USA) follow-
ing the manufacturer’s protocol.

The sequencing products were separated using an ABI
3130xl Genetic Analyzer (Applied Biosystems), and
Sequence Analysis 5.2 software (Applied Biosystems) was
used for basecalling. Each sequence was manually edited
using 4Peaks (Nucleobytes, Amsterdam, the Netherlands) to
check for base ambiguities and to remove the primer se-
quences. The resulting edited nucleotide sequence was sub-
jected to a nucleotide BLAST search (blastn, searching the
Bother^ nucleotide collection database; available at http://
blast.ncbi.nlm.nih.gov) and also searched against the
appropriate BOLD database (available at www.boldsystems.
org) to obtain a taxonomic identification.

Broad assessment of the protocol

Once a protocol had been developed to work with both new
and old samples, the broad utility of the protocol was tested on
~ 200 individual plant and insect fragments, isolated from 11
different soil samples collected within Virginia, USA (Online
Resource 3). Soil was collected 0 to 3 cm below the litter layer,
with the biological fragments isolated from the samples likely
exposed to environmental conditions for several months (as soil
collections were made in early winter and early spring, times
separated from the major deposition of plant litter). For both
COI and rbcL, when an amplicon for the entire barcode region
could not be obtained, the Bmini^ primer pair was tested
(primers fall within the entire barcode region) (Table 1).
Given there is not a published mini primer pair for matK, a
nested PCR, in which 3 μL of the initial amplification reaction
mix was used as the DNA template rather than genomic DNA,
was implemented using an internal primer pair (Table 1).

Results and discussion

Inhibition with plant extracts

During protocol development, amplicons of the expected size
were only observed on agarose gels from the new plant ex-
tract, regardless of the primer pair used. It was possible that
the DNA from the old fragment was highly degraded, such

that even amplification of the smallest plant region (rbcLmini,
~ 230 bp) was not possible. However, as inhibitors such as
polyphenolic/aromatic compounds, polysaccharides, and hu-
mic acid are common in plant material [57] and are known to
interfere with PCR both directly and indirectly [58–61], it was
also possible that such compounds were co-isolated. To con-
firm whether inhibitors were present in the old plant extract,
an inhibition assay was performed using different sources of
untreated DNA: (1) only new plant, (2) only old plant, (3) both
new and old plant (with the final amount of DNA from both
extracts being equal), and (4) negative control (nuclease free
water). In the presence of the old DNA, the newDNA failed to
amplify the fragment of interest, confirming the presence of
inhibitors (Table 2). Three different strategies were used to
address inhibition: incorporation of a second round of DNA
purification, altering the constituents in PCR, and using an
alternate specialized polymerase. Downstream efficacy was
assessed using the inhibition assay outlined above for two
different-sized fragments (~ 850 bp matK and ~ 230 bp rbcL
mini).

DNA purification

The efficacy of three DNA purification methods was tested
individually for removing inhibitors from only the old plant
extract (Table 2): (1) the PowerClean® ProDNACleanup Kit,
which utilizes a patented Inhibitor Removal Technology® to
remove challenging impurities; (2) the Agencourt® AMPure
XP Reagent, which uses magnetic bead technology to isolate
all genomic DNA greater than 100 bp in length; and (3) am-
monium acetate, to precipitate any polyphenolics and polysac-
charides in the extract [62]. For each purification method,
extracts obtained from a single old plant were purified in trip-
licate following the manufacturer’s protocol (methods 1 and
2) and as described by Miller [62] (method 3). All three
methods were successful in removing the inhibitors present
in the old extracts (Table 2, DNA purification panel). In in-
stances where an amplicon was observed in the new and old
reaction but not for the old alone, this was suggestive of de-
graded DNA (as seen by the absence of the large matK
amplicon in Table 2).

Modifying the PCR constituents

Additional experiments were performed to examine whether it
were possible to suppress the activity of the inhibitors during
PCR by modifying the constituents in the reaction mix. The
commonly employed approach to lessen the impact of PCR
inhibitors by reducing the volume of DNA extract added to
the reaction mix [57] yielded no improvement in this study
(volume of input DNA extract was decreased by ~ 10-fold;
results not shown).
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The addition of betaine, polyvinylpyrrolidone (PVP), and
dimethyl sulfoxide (DMSO) to the reaction mix was investi-
gated at a range of concentrations, which overlapped the levels
previously documented to be effective in suppressing inhibi-
tors (outlined in Table 2, PCR constituents panel) [57–59,
63–65]. Only PVP suppressed the inhibitors present in the
old plant. In most instances, adding DMSO or betaine to the
PCR reaction did not address the impact of inhibitors present
in the old plant extract at any concentration; in some cases,
DMSO had a negative impact on the new plant, by suppress-
ing the amplification of both matK and the rbcL mini
fragments.

Specialized polymerase

The KAPA3G Plant DNA polymerase is a high-efficiency
polymerase formulated to improve tolerance to PCR inhibitors
such as polyphenolics and polysaccharides and has previously
permitted successful amplification with challenging samples
[66, 67]. Therefore, we assessed the performance of this po-
lymerase on the untreated/unpurified old plant extract. With
the manufacturer’s suggested constituents for a 25-μL reac-
tion and using the previously optimized cycling conditions
(Online Resource 2), successful amplification of both the
matK and rbcL mini barcode regions was achieved for the
old plant (Table 2). The amount of product obtained when

using the KAPA3G Plant DNA polymerase was far greater
for both the new and old plant when compared to that obtained
when using AmpliTaq GOLD™ (Fig. 1). Additionally, the
KAPA3G Plant DNA polymerase provided strong and repro-
ducible PCR amplifications for all of the plant primer pairs
(Fig. 2). Given that the KAPA3G Plant DNA polymerase is
not reported to repair DNA, amplification of the long matK
fragment in the old extract (which likely contains only a few
full-length, intact templates) may be due to the enzyme’s high
efficiency. The resulting sequence data from amplicons gen-
erated using KAPA3G Plant DNA polymerase for all regions
(matK, rbcL and rbcL mini) were clean but also matched the
expected locus and taxa in GenBank and BOLD. Considering
these results, the KAPA3G Plant DNA polymerase was used
for amplifications in the broad assessment of the protocol,
which utilized fragments isolated from forensic-type soils that
likely contain similar inhibitors and DNA of suboptimal
lengths.

Amplification and sequencing of the insect barcode
regions

Challenges with the 648 bp COI barcode fragment

When using AmpliTaq GOLD™ to amplify the 648 bp COI
barcode region using the previously published primers

Table 2 Steps taken to reduce PCR inhibition when amplifying barcode regions from old plant extracts

matK (~850 bp) rbcL mini (~230 bp)

New only Old only New and old New only Old only New and old

DNeasy extract without treatment or additives ✓ ✗ ✗ ✓ ✗ ✗

1. DNA purificationa PowerClean® Pro DNA Cleanup Kit ✓ ✗ ✓ ✓ ✗ ✓

Agencourt AMPure XP ✓ ✗ ✓ ✓ ✓ ✓

Ammonium acetate precipitation ✓ ✗ ✓ ✓ ✓ ✓

2. PCR
constituentsb

Betaine 1 M ✓ ✗ ✗ ✓ ✗ ✗

1.5 M ✓ ✗ ✗ ✓ ✗ ✗

2 M ✓ ✗ ✗ ✓ ✗ ✗

PVP 1% ✓ ✗ ✗ ✓ ✓ –

2% ✓ ✗ ✗ ✓ ✓ –

3% ✓ ✗ ✗ ✓ ✓ –

DMSO 3% ✓ ✗ ✗ ✓ ✗ ✗

5% ✓ ✗ ✗ ✓ ✗ ✗

8% ✓ ✗ ✗ ✗ ✗ ✗

10% ✗ ✗ ✗ ✗ ✗ ✗

3. Specialized polymeraseb KAPA3G Plant DNA polymerase ✓ ✓ ✓ ✓ ✓ ✓

✓ amplicon of the expected size was observed in all replicate reactions on an agarose gel, ✗ no ampliconwas observed in any of the replicate reactions,−
not applicable
aPurified DNeasy extracts (purified using one of the three methods) were used in PCR amplifications
bUnpurified DNeasy extracts were used in PCR amplifications (either with added PCR constituent or the specialized enzyme). Final concentrations of
betaine, polyvinylpyrrolidone (PVP), and dimethyl sulfoxide (DMSO) are provided
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(Table 1) and associated cycling conditions (Online Resource
2), only a faint band from the new extract was observed on an
agarose gel (band for the old extract absent). By performing an
inhibition assay similar to that employed for the plant extracts,
the presence of inhibitors was ruled out as the reason for the
failed PCR of the old insect extract (results not shown). Thus,
it was likely that the failed amplification of the old insect was
due to DNA degradation or low polymerase efficiency (given
that only a faint band was observed with the new extract). To
address this, a nested PCR was performed using 3 μL of the
previous amplification reaction as template and the same ini-
tial amplification primers and cycling conditions. This ap-
proach yielded strong, clean amplicons of the expected size
on gels for both the new and old insect extracts (old amplicon
shown in Fig. 3a, Agilent electropherogram).

Upon sequencing the nested COI amplicons, high back-
ground noise or mixed reads were observed in the sequence
electropherograms, meaning the sequence was mostly unus-
able (Fig. 3b). To resolve this, a range of approaches known to

improve the quality of the sequence data were systematically
tested, including increasing the primer annealing temperature,
decreasing separately the amount of dye and primer, adding
DMSO in a final concentration of 5% v/v, and sequencingwith
alternate primers. None of these approaches produced reliable,
clean sequence data. As the peak corresponding to the nested
COI amplicon appeared somewhat broad at its base in the
Agilent electropherogram (Fig. 3a), it is likely that obtaining
clean sequence data was impeded by additional secondary
products, either a few nucleotides shorter or longer than the
desired fragment. Given that a nested PCR approach was uti-
lized to obtain amplicons from both the new and old insects
using AmpliTaq GOLD™, artifacts such as these can be
expected.

To obtain clean sequences, reamplification of the COI
barcode region from old insect DNA was tested using dif-
ferent polymerases (AmpliTaq GOLD™, Q5® Hot Start
High-Fidelity DNA polymerase, Q5® High-Fidelity DNA
polymerase, and 2× KAPA Taq polymerase), but also with
varying cycle numbers (40, 45, and 50) to increase the
amount of product. When using either AmpliTaq
GOLD™ or 2× KAPA Taq polymerase at best faint bands
of the expected size were observed, even when 50 ampli-
fication cycles were used (results not shown). Both of the
NEB High-Fideli ty polymerases produced strong
amplicons at all cycle numbers; however, a number of
strong secondary products were also visualized for the
Q5® High-Fidelity DNA polymerase. The amplicon ob-
tained when using the Q5® Hot Start High-Fidelity DNA
polymerase and 40 amplification cycles appeared as a
strong band on the agarose gel (Fig. 2, Lane 6) and single
peak on the Agilent after cleanup with ExoSAP-IT® (Fig.
3c), albeit in a lower concentration to that obtained with a
nested PCR using AmpliTaq GOLD™ (Fig. 3a) .
Subsequent sequencing of this COI amplicon had limited
background noise (Fig. 3d) and matched to the expected
locus (COI) and insect (Danaus plexippus, monarch but-
terfly) in public sequence databases. To ensure clean, re-
producible sequencing data when processing the forensic-
type insect fragments, amplification of the COI barcode
region was performed using Q5® Hot Start High-Fidelity
DNA polymerase at 40 amplification cycles.

Optimizing the COI mini PCR

Considering numerous papers have reported that amplify-
ing COI mini using the uniminibar-F1/uniminibar-R1
primer pair is challenging [68, 69], a Btouch-up^ PCR is
suggested [29] (Online Resource 2). When using the Q5®
Hot Start High-Fidelity DNA polymerase with the pub-
lished cycling conditions, a strong amplicon of the expect-
ed size (~ 130 bp) was obtained from the new and old
extracts, along with numerous secondary products. A set

Fig. 2 Plant and insect DNA barcoding region amplicons obtained using
KAPA3G Plant DNA polymerase (lanes 2–5) and the Q5 Hot Start High-
Fidelity DNA polymerase (lanes 6–7): (1) 1 kbp ladder; (2) ~ 850 bp
mat K (primers matK-KIM-1R/matK-KIM-3F); (3) nested ~
830 bp mat K (primers matK4La/matKMALPR1); (4) ~ 590 bp
rbcL (primers rbcLa-F/rbcLa-R); (5) ~ 230 bp rbcL mini (primers
rbcL1/rbcLB); (6) ~ 650 bp COI (primers LCO1490-L/HCO2198-L);
(7) ~ 130 bp COI mini (primers uniminibarF1/uniminibarR1); (8) 1 kbp
ladder

Fig. 1 Amplification of the mat K barcoding region (~ 850 bp;
primers mat K-KIM-1R/matK-KIM-3F) for both new and old plant
fragments using AmpliTaq GOLD™ (lanes 2, 4) and the KAPA3G Plant
DNA polymerase (lanes 3, 5). 1 kbp ladder shown (lane 1). Results
shown are typical for those obtained from numerous experiments (n, >
10)
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of modified cycling conditions were identified that pro-
duced a single dominant amplicon; annealing temperature
in the first set of cycles was increased to 50 °C, and the
extension time for all cycles was reduced to only 1 s (Fig.
2, Lane 7; Online Resource 2). The resulting sequence data
was clean and reproducible for both extracts; however,
given the small size of the amplicon, only ~ 100 bases
could be used for downstream comparison to public data-
bases after the removal of the primer sequence.

Utility of the developed protocol on forensic-type
biological material

A summary schematic of the protocol developed to obtain
DNA barcode data from forensic-type plant and insect frag-
ments is given in Fig. 4, and protocol conditions that generate
locus specific amplicons have been tabulated in Online
Resource 2. The results outlined in the section below address
the utility of this protocol for processing fragments isolated
from soils collected across Virginia, which represent a broad
range of parent soil and surface material, ecoregions, and pH
(Online Resource 3).

Characterization of fragments

Biological fragments were numerous (i.e., generally > 30) in
most of the 11 soil samples; thus, a wide variety of fragment
types were chosen to test the broad utility of the protocol. In
total, 110 plant fragments and 103 insect fragments were proc-
essed and they were categorized as follows: plants—roots
(24%), leaf (21%), branch (10%), bark (9%), entire seed
(9%), casing of seed (8%), grass (2%), and other (17%); in-
sects—unidentifiable part of exoskeleton (48%), thorax/

abdomen (30%), leg (15%), head (5%), wing (1%), and spi-
der’s web (1%). The average length of the insect fragments
was far smaller than the plants, 1.8 ± 3.4 and 8.4 ± 7.3 mm,
respectively. The average weight of the plant fragments was
1.8 ± 3.3 mg.

DNA quality and quantity

When only considering extracts for which the concentra-
tion was above the reliable detection limits of the
Nanodrop (2 ng/μL), the average total DNA yields from
plants and insects were 1.15 ± 3.7 and 0.45 ± 0.75 μg, re-
spectively (Online Resource 4). The DNA purity of each
extract was assessed based on absorption ratios at various
wavelengths (A260/280 and A260/230). Unexpectedly, the in-
sect extracts had higher levels of phenolics and humic acid,
whereas the plant extracts contained considerable amounts
of carbohydrates, proteins, and RNA (Online Resource 4).
Researchers have documented high levels of humic acid
and protein contamination either when extracting bulk soil
samples [70] or individual degraded plant samples [71],
using a range of commercially available kits.

PCR and sequencing success

During protocol development, we confirmed that the reaction
and cycling conditions for all primer pairs were reliable and
specific, as the resulting sequence data matched the expected
locus and taxa in public sequence databases. Given this, if a
single band the same size as the surrogate positive control (the
new extract) was observed on the agarose gel, the PCR was
deemed successful. Both the entire barcode primers for rbcL
and COI returned a ~ 70% amplification success rate, whereas

Fig. 3 Agilent DNA 1000
electropherograms (a, c) and
Sanger sequencing
electropherograms (b, d) for the
old insect amplified using
AmpliTaq GOLD™ in a nested
PCR with a total of 80 cycles (a,
b) and a non-nested PCR with Q5
Hot Start High-Fidelity DNA po-
lymerase, using a total of 40 cy-
cles (c, d). Agilent peaks denoted
as follows: 1, lower marker; 2, the
~ 650 bp COI barcode region
amplicon; 3, upper marker. The
X-axis of the Agilent electrophe-
rograms is not linear, and the Y-
axis reflects the relative concen-
tration of the amplicons

Int J Legal Med



the matK barcode region was only amplified in a few samples
(~ 5%; Table 3). Far greater amplification success rate for
matK was observed when the nested PCR was implemented
(Fig. 2, lane 3), and rbcL (full length or mini) was amplified in
over 90% of fragments.

Sequencing was deemed successful when clean se-
quence data (> 100 bp in length) was obtained from a pu-
rified PCR amplicon. At least two-thirds of all amplicons
produced useable sequence data for downstream compari-
sons to public databases, with the majority of sequences
being over 300 bp in length (Table 3). When a sequence
was unusable due to high background noise, re-sequencing
was attempted using the reverse amplification primer, with
varying degrees of success. No distinguishable trends were
observed based on the type of fragment (e.g., plants—leaf,
roots, branch, bark, seeds; insects—legs, head, exoskele-
ton) and PCR or sequencing success.

Assessment of public sequence databases for taxonomic
identification

All plant sequences (rbcL and matK) matched the expected
locus when searched against GenBank (e.g., an rbcL sequence

was identified as a portion of the rbcL locus) (Table 3), a
reflection of high specificity in the primers and cycling con-
ditions. When examining the taxonomic resolution obtained
with DNA barcode sequences, the majority of rbcL and matK
sequences achieved a minimum of order-level discrimination,
with the resulting taxonomic identifications being highly con-
cordant between the two public databases.

In instances where both rbcL and matK data are collected
from a single sample, the taxonomic identification, especially
at higher levels, should be congruent. In this study, 46 samples
had sequence data from both rbcL and matK; however, high
discordance (~ 75%) was noted in the taxonomic identifica-
tions from the two loci. In every case, the rbcL data indi-
cated that the fragment was a pine species (Pinus, gymno-
sperm), whereas the matK data suggested the origin as an
oak species (Quercus, angiosperm). Considering a nested
PCR was implemented for matK using angiosperm
primers, it was plausible that the matK data could be mis-
leading. To verify this hypothesis, the intergenic spacer
trnH-psbA (a supplemental plant barcoding locus) was am-
plified and sequenced (following the protocol outlined in
29) for a subsample of the fragments in which discordance
was noted. The trnH-psbA data confirmed the rbcL

DNA extraction
using Qiagen DNeasy Kits

Single biological 
fragments isolated

Fragments washed 
in 5% bleach

Questioned or 
known soil sample

PCR1 using 
KAPA3G Plant 

DNA Polymerase

PCR1 using Q5 Hot 
Start High-Fidelity 

Polymerase

Amplicons
visualized via 
agarose gel

Clean-up undigested 
dNTPs and primer using 

ExoSAP-

Sanger Sequencing 
using BigDye

Sequence editing 
and removal of 

primer sequences

Species identification after 
comparison to public 
sequence databases

BLEACH

Fig. 4 DNA barcoding protocol developed for processing biological
materials isolated from forensic-type soil samples. 1Final concentration

of the reaction mix constituents and thermal cycling conditions used to
amplify each of the barcoding regions are given in Online Resource 2
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identifications; thus, if an amplicon is not obtained in an
initial PCR with the matK-KIM primers, PCR should be
performed with a primer pair degenerate to another plant
group (perhaps Gym_F1A/Gym-R1A [72] for gymno-
sperms), instead of implementing a nested PCR. When
only considering the rbcL data, family-level assignments
were as follows: 58% Pinaceae (pine), 13% Fagaceae (oak/
stone oak), 5% Vitaceae (grapes), 3% Brassicaceae
(bittercress), and 3% Brachytheciaceae (moss), with the
remaining 18% of fragments assigned to one of six other
families. In this study, when using the developed DNA
barcoding protocol, the level of plant biodiversity captured
in the 11 soil samples was low, considering only rbcL data
could be used reliably. With the analysis of more frag-
ments, but more importantly the recovery of sequence data
from the more discriminatory matK locus, better taxonom-
ic resolution would be possible. The authors envisage lim-
ited difficulty in obtaining matK data from any fragment,
when the KAPA3G Plant DNA polymerase is used in tan-
dem with well-tested cycling conditions for alternate uni-
versal matK primer pairs (i.e., angiosperms, gymnosperms,
ferns, and mosses).

When examining the insect sequence data, despite ~ 75%
matching to the COI locus in GenBank, only six sequences
had a match in either public database to an organism from the
class Insecta (Table 3); the best match for the vast majority of
COI sequences was either to a fungus, marine invertebrate,
algae, or uncultured bacterium. However, for any match, the
similarity statistics were on average very poor and the average
e-value from BLAST searches was higher than ideal. Given
the extremely small size of the starting insect material

(generally < 1 mm) and the known exposure of such frag-
ments to prolonged environmental conditions, it was not sur-
prising there was little insect DNA remaining for analysis. If
more intact or larger insect fragments were processed using
the developed protocol, the proportion of COI sequences
matching to the class Insecta would likely increase, providing
useful information for provenance cases. It is apparent that
using the presence of an amplicon of the expected size on
the agarose gel as a metric for PCR success provides a mis-
leading representation of the likely downstream success of
taxonomic identification.

Conclusions

Using previously published studies as a guide, a protocol was
developed that permits the collection of DNA barcode se-
quences from biological fragments exposed to environmental
conditions. The utility of this developed protocol for taxonom-
ic identifications was subsequently tested using 213 plant and
insect fragments isolated from forensic-type soil samples col-
lected within Virginia. Amplification and sequencing was
straightforward, and the resulting sequence data matched the
expected loci in public sequence databases. Despite this, the
level of taxonomic discrimination was low, as a result of un-
reliable matK data and the absence of viable insect DNA. To
capitalize on the application of this protocol for the identifica-
tion of biological fragments encountered in forensic-type soil
samples, further research should be focused on determining
the number of fragments needed for analysis to sufficiently
capture the biodiversity within a sample, along with impacts

Table 3 Summary of PCR and sequencing success from 110 plant and 103 insect fragments isolated from forensic-type soil samples

matK rbcL COI

PCR success Entire Nested Entire Mini Entire Mini

- Individual primer pairs 4.5% (5/110) 70% (73/105) 74% (81/110) 66% (19/29) 68% (70/103) 14% (6/43)

- Total per locus 71% (78/110) 91% (100/110) 74% (76/103)

Sequencing success 71% (55/78) 76% (76/100) 63% (48/76)

- Average length (bp) 532 ± 90.3 409 ± 114 297 ± 185

Comparison to public databases BOLD GenBank BOLD GenBank BOLD GenBank

- Good matching statistics a 96% 96% 78% 78% 29% 20%

- Match to expected locus b n/a 100% n/a 100% n/a 74%

- Match to expected taxon group c 100% 100% 13%

- Database concordance 98% 100% 31%

Total PCR success per locus is derived by summing the total number of successful amplicons from either primer pair/strategy divided by the total number
of fragments (e.g., rbcL: 81 successful amplicons from entire and 19 from mini, totaling 100/110). Information on the utility of currently available
sequence databases (Barcode of Life DataSystems [BOLD] and GenBank) for obtaining a taxonomic identification is provided

n/a non-applicability for BOLD due to distinct database for barcoding loci
a Percentage of sequences returning similarity of ≥ 90%
b Sequence matched to the expected locus (e.g., COI sequences matched to COI gene not the COII mitochondrial gene)
c Sequence matched to the expected group of taxa (i.e., sequenced plant matched to a plant record, not a fungus)
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of seasonal variation. With the ever-advancing field of mas-
sively parallel sequencing (MPS), the developed protocol may
need to be modified or a standardized protocol may be re-
quired to permit the collection of DNA barcode data from bulk
soil samples. An MPS approach might assist with obtaining
more information on the insect community, especially for
samples in which individual insect fragments are very small
and contain little viable DNA. However, for an MPS-based
approach to be feasible within a forensic context where the
evidence material is generally very limited, work is needed to
optimize soil extractions for small sample amounts.
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