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Abstract 
The time-dependent Schrödinger equation (TDSE) is a fundamental law in understanding 

the states of many microscopic systems. Such systems occur in nearly all branches of physics 
and engineering, including high-energy physics, solid-state physics, and semiconductor 
engineering, just to name a few. A robust and efficient algorithm to solve this equation would be 
highly sought-after in these respective fields. This study utilizes the well-known method for 
solving the TDSE, the finite difference method (FDM), but with an important modification to 
conserve flux and analyze the 1-D case given well-known potentials. Numerical results that 
agree with theoretical predictions are reported.​ [3]​ It becomes evident, however, that solving the 
TDSE still involves challenging problems of scaling to higher dimensions and refined grids. This 
study shows that it is a promising, intuitive, and accurate method for linear domains over lower 
dimensions with arbitrary potentials.​ [7] 

 
Introduction 

The Schrödinger equation serves as the quantum analog to the classical cases of 
Newton’s laws of motion and conservation laws. On the macroscopic scale, the classical laws of 
Newton as well as the modern ideas of Einstein provide a sound understanding. However, 
delving into the microscopic realms, the laws governing interactions are dominantly quantum 
mechanical. Given a set of initial conditions, the Schrödinger equation can predict the dynamical 
processes of a particle as it propagates through space and time. The wavefunction Ψ(x,t) embeds 
the information of the particle system throughout its evolution.​[3]​ Solving for Ψ(x,t) can allow for 
the extraction of any physically meaningful observables that can be measured in a lab, such as 
the flux. Take the particle in an infinite potential well, for example. Quantum mechanically, the 
wavefunction is a series of sinusoidal waves that are zero at the walls (boundaries). Classically, 
these waves correspond to fundamental modes of vibration on a string. 

Solutions to the TDSE require a robust and efficient algorithm capable of dealing with a 
sufficient domain of propagation over reasonable time scales. The need for such stable and 
efficient methods is a growing trend both in physics and in general scientific computing. It is 
well known that FDM is such an algorithm capable of dealing with the TDSE. Other, more 
sophisticated, methods include algorithms such as the finite element method, spectral methods, 
and meshless alternatives.​[4] ​

 ​Such alternatives have advantages over the standard finite difference 
method, which can be rigid or inefficient in its basic form.​[7] ​It is also well known that the FDM 
is more difficult to apply with more arbitrary meshes of higher dimensions.​[10]​ This bottleneck of 
the finite difference method must continue to be optimized for further application. The following 
study proposes an analysis of the 1-D TDSE using a modified approach of the FDM. 

Solving the Schrödinger equation for arbitrary potentials is a valuable tool for extracting 
the information of a quantum system. In the following, an algorithm is presented that can extract 
probability density, as well as the expectation values of position, momentum, energy, and flux. 
As a test study, it should also be able to replicate results from numerically known potentials such 
as the simple harmonic oscillator, as well as potential wells and barriers.​[4]​ Atomic units (a.u.) 
will be used throughout unless otherwise noted. 
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Computational Method 

Since the wavefunction is composed of both real and imaginary parts, it is beneficial to 
deal with both components separately. Doing this simplifies the equations and creates a recursive 
relationship that can easily be integrated into the program.  

I(1.1) Ψ n (t) = RΨn + i Ψn  
This splitting of the wavefunction will be crucial in constructing a flux-preserving system 

compatible with FDM, and is the ​first advantage​ of our modified approach. In the following, 
subscripts will represent the given location of the operation (​n​), while superscripts will be the 
given time step this operation is carried over (​m​). Using the atomic units system, the TDSE can 
be formulated using the FDM as follows:​[7] 

U (t)Ψ (t)(1.2)  dt
dΨ (t)n = i

2h2 (Ψ (t) Ψ(t) (t) )n+1 − 2 + Ψn−1 − i j j  
Converting a partial differential equation into a set of solvable ordinary differential 

equations reduces the system to an initial value problem. This is known as the method of lines.​[5] 

Setting a domain of integration makes solving these ODEs straightforward, but it is important to 
recognize that as the evolution of the state occurs, the normalization of the wavefunction must 
also be preserved. Otherwise, physical properties of the system, such as flux and energy, can 
become unphysical. For this reason, we will use the leapfrog method, which is part of a family of 
symplectic solvers for dealing with numerical solutions of Hamiltonian systems.​[5]​ This preserves 
the system to second order accuracy similar to other methods such as the midpoint method; but it 
is known from its Jacobian to preserve areas when going from one transformation space to 
another.​[9]​ Now applying Equation (1.1) to this set of ODEs gives the following coupled 
relationship we can use to solve the TDSE. 

− I I − R R g(1.3a) dt
dRΨn = 1

2h2 Ψn−1 + ( 1
h2 + U j) I j − 1

2h2 Ψn+1 → f n ({I } ) Ψ , t (1.3b) dt
dIΨn = 1

2h2 Ψn−1 − ( 1
h2 + U j)Rj + 1

2h2 Ψn+1 →  n ({
Here the  and  denote that the right-hand sides are functions of purely imaginary or realf n gn  
parts of the wave function, respectively. The derivatives of both the real and imaginary parts of 
the system rely on one another, as is the applicability of leapfrog integration. This form of the 
coupled Schrödinger equation allows for the stepping forward of the TDSE in time, and is in a 
suitable format for symplectic integrators such as the leapfrog method.​[7]​ Such a method is shown 
to conserve flux​[7] ​and is a crucial modification to the standard FMD method in this study;it is 
thus a ​second advantage​ of the modified approach. From this evolution sequence the 
Schrödinger equation can be solved obtain any expectation value of the system can be obtained.  

The quantity  gives the probability of finding a particle. Given that a mesh wasΨ(x, )| t |2  
made between two boundary points (​a, b​), by integrating across all space with respect to that 
mesh one would expect the probability to be unity. This basic statement in probability states that 
if we impose a particle within space, if we scan all of space (the entire mesh) the particle will be 
found within that space. Otherwise there is a clear contradiction to our initial assumption of 
imposing a particle within that space. Given the probability distribution  (Eq 1.4a),P n

m  
expectation values (Eq 1.4b – 1.4f) can be obtained with a weighted average of appropriate 
observables as 

Ψ (1.4b)〈x〉 〈(Ψ ) x[(R ) ] x (1.4c)〈p〉(1.4a) P n
m (x, )t =  | n

m|2 =  n
m * x| n

m| (Ψ )n
m 〉 =  ∫

b

a
d m

Ψn

2

+ (I )m
Ψn

2
n
m =   
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(Ψ ) x 1.4d)〈T 〉 〈(Ψ ) |  |(Ψ )〉 x 1.4e)〈U 〉〈 n
m * p|| n

m|
| (Ψ )n

m 〉 = ∫
b

a
d R I[ m

Ψn dx
dIm

Ψn −  m
Ψn dx

dRm
Ψn ] ( =  n

m *
2m

(p )n
m 2

n
m = 2

1 ∫
b

a
d [( dx

dRm
Ψn )2

+ ( dx
dIm

Ψn )2] ( =

〈(Ψ ) x[(R ) ]U   n
m * U| n

m| (Ψ )n
m 〉 =  ∫

b

a
d m

Ψn
2 + (I )m

Ψn
2

n
m (1.4f ) Jn

m =  R I[ m
Ψn dx

dIm
Ψn −  m

Ψn dx
dRm

Ψn ]  

where ​a​ and ​b​ are the respective left and right boundary points. Equations (1.4b – 1.4f) give the 
expectation values of position, momentum, kinetic energy, potential energy, and flux, 
respectively. 

Although the algorithm can take any wavefunction and construct any potential, the 
following analysis will be focusing on the validation of the program. As is standard with partial 
differential equations such as the TDSE, boundary conditions as well as initial conditions must 
be specified in order to simulate an event.​[6]​ The domain for the following analysis will be a span 
from -30 a.u. to 30 a.u. with 1024 grid points; this finds a balance between time efficiency as 
well as functional accuracy. This study  uses an initial Gaussian wave packet with the starting 
position at -5 a.u. 

e ; k x enter of  Gaussian; σ idth of  gaussian  (1.5)Ψ0
m = (σ )√π − 2

1 +ik x
2σ2

− x−x( 0)2

0  0 = λ
2π

0 = C  = w  
Relationships that contain a recursive relationship such as the FDM are known to suffer from 
stability problems depending on the set of parameters. Therefore, stability analysis must be 
performed to find suitable parameters. One such measure is the von Neumann stability analysis 
of a system.​[7]​ Under the space discretized leapfrog method, the stability criterion yields 

t≤λh  (1.6) Δ 2  
where ​h​ is the distance separation between two points on a mesh,​[7]​ where  is a coefficientλ  
dependent on the potential being used, and where . For , . For other0 < λ < 1 U = 0 λ = 1  
potentials used in this study, the data show that the method is stable if .​[7]λ = 2

1  
Another parameter that must be tested is how fast the initial wave packet can move 

within a certain time window. Given the mesh used for this analysis, the model begins to break 
down when . However, given a more refined mesh the algorithm can handle faster initial10k0 >   
momentum of the wavefunction. This is an issue of resolution, as when the wavefunction gets 
too fast, the change in time ( ) cannot keep up with the mesh size.​[7]​ It can be shown that as thetΔ  
domain becomes more refined, the separation between points directly correlates to a higher 
resolution. 
 
Results and Discussions 

The first potential this study tests the algorithm with is the simple harmonic oscillator 
(SHO). This potential paints a very intuitive picture of the wave function’s evolution, similar to 
the classical case as we shall see. For the simple harmonic oscillator, the wave function will start 
with 0 initial momentum, making = 0.k0  
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The above figures were run for a sufficient time (typically 50,000 steps) to analytically 

extract all expectation values from Equations (1.4a-1.4f). They are for the simple harmonic 
oscillator with a potential of . A fundamental statement of quantum mechanics isxV (x) =  2

1 2  
that if a particle is confined within a given region, the probability of finding the particle in that 
region is 1. For the SHO this is clearly the case (Fig 1) given the scale is +1 with a maximum 
deviation from one of 3.5e-5. The respective values for position (Fig 2), momentum (Fig 3), 
energies (Fig 4), and flux (Fig 5 and Fig 6) also seem to intuitively follow the expectation values 
of a Gaussian wave packet oscillating back and forth between two maximum potential values. 
Given that the initial conditions for this system were an initial position of -5 and no initial 
momentum, the figures follow this condition elegantly. Thus, the initial points of both the 
position and momentum graphs start at -5 and 0 respectively and follow the features of a typical 
oscillator.​[5] 

A slight fluctuation can be seen in the total energy from Fig 4, which should be constant 
because of energy conservation. The leapfrog method predicts such oscillations, but on a much 
smaller scale.​[9]​ The leapfrog method conserves energy within a small range so it remains 
bounded.​[8]​ Upon closer examination, it can be seen in Fig 4 that the amplitude of kinetic energy 
is less than that of the potential energy by a small amount, causing the total energy to fluctuate. 
Because the extraction of kinetic energy involves the derivative of the wavefunction (Eq 1.4d), it 
is more sensitive to inaccuracies in the wavefunction. These fluctuations can be attributed to the 
grid size, which is not yet sufficiently small. The investigation exhibits the convergence rate of 
the kinetic energy with respect to the grid size, and whether a more robust method of calculating 
the kinetic energy is needed. 

Probability flux of the simple harmonic oscillator describes the particle flow through a 
given point. As expected, the surface of the flux (Fig 5) show oscillations between , which 5±  
was the initial condition of this oscillator. Had the wavefunction started with some initial 
velocity (i.e  the evolution of the flux would begin to broaden before reaching constant ≠ 0)k0  
oscillation again. When viewed across a cut at  (Fig 6), the flux changes from positive tox = 0  
negative with equal areas under the peaks, consistent with the conservation of probability (Fig 1) 
in the periodic motion. This shows that our modified approach can reliably calculate the flux 
which gives rise to experimentally observable quantities such as scattering amplitudes.  
The simple harmonic oscillator is a bound system regardless of the energy of the particle. In 
realistic potentials, particles are not always bound. The same method can also be applied to a 
different potential, namely the potential barrier. Rather than having a purely real wave function 
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with zero initial momentum, the following wave function contains both real and imaginary initial 
conditions with a .k0 = 5   

 
 
 
 
Figures 7 and 8 show the flux and transmission coefficient, respectively, for a potential barrier of 
width 3 and height 15. Given that flux must be taken over a particular region, the region the 
figures are expressing is when x = 5, directly after the barrier.  

A common issue with all numerical solutions in open systems is how to treat boundary 
conditions when the solution reaches the outermost region of its domain.​[7]​ This current 
algorithm uses a periodic boundary condition, meaning that once it hits one boundary, it moves 
instantaneously (wraparound) to the opposite side of the boundary. This is problematic for flux 
extraction because if left unchecked with a small domain, the wave function will wrap around 
and interfere with data collection. Towards the end of Fig 7 we can see another spike in the flux; 
this is due to the “background” of the wave function wrapping around and beginning to interfere 
with itself. One way to delay the onset of the spike is to make a sufficiently large domain such 
that the wraparound occurs well after the initial wave has passed. The disadvantage is the 
increased number of grid points, and hence increased computation time. Instead, we choose to 
maintain the domain size but to integrate the flux before the artificial spike arrives. This requires 
careful selection of the time window so it is robust and reproducible.  

Fig 8 shows the integrated flux through this barrier. It represents the fraction of the 
incident wave transmitted through the barrier and is defined as the transmission coefficient. In 
this case roughly 0.07 or 7% of particles overcome this barrier. Because the height of the barrier 
(15 a.u.) is considerably larger than the center velocity of the wave packet (5 a.u.), the 
transmission coefficient is small, as expected. With increasing barrier height or width, the 
transmission is expected to become smaller because the process will occur mainly through 
tunneling.​[3]  

As stated earlier, because the flux and transmission coefficients relate directly to 
experimentally measurable data, these parameters are currently being calculated for other types 
of potentials. These potentials, depicted in Fig 9, may have complex shapes and contain multiple 
discontinuities. They present more stringent test cases of the robustness and accuracy of our 
modified FMD method. 
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Conclusions 

This study has presented a modified finite difference method for solving the 
time-dependent Schrödinger equation. Two modifications are made: the separation of the real 
and imaginary parts of the wavefunction and the application of a norm-preserving symplectic 
integrator. When tested on the simple harmonic oscillator, the method is shown to be stable and 
can describe the motion accurately. The method preserves the normalization to a high degree of 
accuracy even with moderate grid sizes. Expectation values and probability flux can be 
computed efficiently. While the overall performance of the algorithm is high, it is found that the 
total energy has a slight fluctuation, indicating that energy conservation is not accurately 
computed. This can be attributed to the sensitivity in the calculation of kinetic energy which 
relies on the derivative of the wave function. Effort is underway to study more accurate ways of 
obtaining kinetic energy as well as the effect of grid size. 

This study also applied the method to calculate the particle flux and transmission 
coefficients for a potential barrier. The results show that the transmission coefficient can be 
directly obtained from the wave function itself. However, boundary conditions can affect the 
actual value due to factors such as wraparound, so the window of integration must be carefully 
determined. A future goal is to perform calculations for other nontrivial potentials and compare 
with exact results where possible.  

The ultimate goal is to apply the method to actual systems, for instance, in atomic 
reactions. This requires extending the modified method to higher (2D and 3D) dimensions. 
However, it will be challenging to scale the finite difference method to higher dimensions 
because of efficiency. The plan is to comparatively study the method discussed here with other 
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approaches, including the finite element method and meshfree methods.​[4, 11]​ The latter should 
have better scalability and be more suitable in higher dimensions. Thus, the modified method can 
serve as a useful benchmark for further studies.  
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