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Compressed stabilized earthen block (CSEB) masonry presents an environmentally and 

economically sustainable alternative to conventional residential construction materials 

such as clay brick masonry or concrete masonry (CMU). Earthen masonry is locally 

sourced and manufactured on site, thus minimizing costs associated with raw material 

extraction and transportation.  Furthermore, CSEB requires very little use of electricity 

and water during both the manufacture and construction processes and it has excellent 

thermal resistivity while in use, allowing for additional cost and energy savings during 

most phases of its life cycle. Analyzing the life cycle trade-offs in a comparative study 

between CSEB and clay brick masonry supplements the existing recent research on 

earthen masonry and encourages a wider adoption of the technology around the world.  

In this study, a comparative Life Cycle Analysis (LCA) is conducted between an exterior 

residential wall constructed of CSEB and one of clay brick for a proposed single family 

dwelling on the Winnebago Native American Reservation in Nebraska, USA. The scope 

of this LCA is narrowed to the impacts associated with choosing one construction 

material over the other, and the system boundary includes the raw material extraction, 

manufacturing, and transportation phases of construction.  
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Thermal conductivity is an important aspect of the energy efficiency of a building 

envelope during the use phase of a building’s life cycle. As part of this study, an 

experimental program was conducted using a modified hotbox apparatus in order to 

obtain a thermal conductivity value for the CSEB blocks under investigation. After 

analysis, the thermal conductivity of the CSEB analyzed in this study is determined to be 

0.361 W/(m·K) ± 20.0% compared to 1.024 W/(m·K) for clay brick. 

The three indicators for measuring the environmental or economic impacts of each 

material in this study are: 1) Energy, measured in kWh, 2) Global Warming Potential 

(GWP), measured in kg CO2 eq., and 3) Cost, measured in US Dollars. The results of this 

Life Cycle analysis indicate that CSEB is the more economic and environmentally 

sustainable option, with the transportation phase of the life cycle of highest impact on 

cost. 
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Chapter 1 : Introduction 

1.1. Background and Motivation 

According to the United Nations Environment Programme, the building sector is 

responsible for up to 40% of global energy and resource consumption, as well as 30% of 

all energy-related Green House Gas (GHG) emissions, most notably in the form of CO2.  

Due to the magnitude of its impact on the environment, this sector has the unique 

opportunity to confront the current disregard of Earth’s bio-capacity and make a 

significant dent in climate change (Graham and Booth 2012). Due to the growing 

interest in environmental awareness and sustainable design of the built environment 

throughout the past few decades, engineered earthen construction options have 

received increased attention in many academic realms. 

Earth construction has been a prominent building technique throughout history and 

remains crucial to the construction of residential dwellings across many developing 

regions. It has been estimated that, as of 2016, up to 30% of the global population 

continues to reside in housing made of earth (Costa et al. 2016). This abundant building 

system touts many sustainable advantages including minimal carbon emissions, reduced 

energy consumption, renewable materials that are often extracted from the 

construction site itself, and local, unskilled labor (Reddy and Kumar 2010). Compared to 

modern alternatives, earth construction alleviates pressure on natural raw material 

resources that are often produced and consumed in bulk quantities and eliminates the 
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need for energy intensive manufacturing processes and transportation over long 

distances (Reddy 2009).   

Earthen construction presents itself frequently in the form of rammed earth walls and 

earthen masonry. Rammed earth walls are manufactured in place by constructing 

formwork and compacting layers of each wall until it reaches the desired height. 

Earthen masonry, on the other hand, is manufactured in discrete units and assembled in 

place with mortar, much like typical clay brick or concrete masonry construction. As the 

available soil may have limited structural properties, each type of earth construction has 

the possibility to be stabilized or reinforced to aid in strength and durability.  

Compared to other forms of earth construction, earthen masonry has the advantages of 

prefabrication.  Since the discrete block units have the flexibility of being produced 

offsite, the production process can occur independent of weather, shrinkage issues are 

not a concern, the units can be tested for strength before use, and there is a greater 

consistency in fabrication allowing for more accurately engineered designs (Williams et 

al. 2010). 

On-going research by a team at the University of Nebraska – Lincoln is analyzing the 

structural performance of Compressed Stabilized Earthen Masonry (Colley and 

Erdogmus 2015; Erdogmus and Garcia 2015; Erdogmus et al. 2013). Previous studies 

have determined that an optimal stabilizer content of 10% cement by weight is 

necessary to ensure durability and adequate compressive strength of the earth blocks. 
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Further investigation into the sustainability of this building system is highly desired in 

order to provide a complete argument for increased adoption of the building system. 

1.2. Research Significance 

As previously stated, engineered earth construction is in the unique position to prove its 

touted environmental benefits of low embodied energy, minimal impact from use of 

abundant natural resources, and excellent thermal performance. It is a general 

consensus in the community of modern earth construction investigators that this 

building material is the more economic and environmentally sustainable option 

compared to its conventional counter parts (such as clay brick, concrete masonry, or 

reinforced concrete.) Unfortunately, little work has been published to confirm this 

hypothesis even though some studies exist on the embodied energy, associated global 

warming potential, and thermal performance of earthen construction.  

Currently, there are a lack of existing life cycle studies to make the case for the 

implementation of engineered earthen masonry as a feasible alternative to 

conventional building materials such as clay brick. Due to compelling competition from 

alternative building materials, the holistic impacts associated with material composition 

and thermal insulating properties of CSEB must be investigated (Balaji et al. 2016; Dondi 

et al. 2004). In order to resolve this need, this study conducts a comparative life cycle 

analysis between CSEB and clay brick masonry with use of primary experimental data for 

the thermal conductivity of the CSEB composition in analysis.   
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1.3. Goals and Objectives 

The goal of this study is to analyze the environmental and economic impacts of these 

different construction alternatives in a specific case that can be explored as a way to 

provide fair comparison. The aim of this study is to assess the potential for minimizing 

specific environmental impacts (CO2 emissions and energy use) and economic impact 

(cost) associated with the use of CSEB. The objectives to reach this goal are as follows: 

1) Determine the thermal conductivity of the considered Compressed Stabilized 

Earthen Blocks (CSEB). 

2) Conduct a Life Cycle Analysis in order to compare the CSEB and clay brick and 

quantify the sustainability of these alternatives. 

3) Investigate the potential impact of choosing CSEB instead of clay brick in a 

building envelope in terms of differing thermal conductivity. 

1.4. Scope 

The scope of this study is contained to determining the thermal conductivity of a precise 

mixture of CSEB and to analyze the environmental and economic impacts of that CSEB 

compared to clay brick. This study does not include investigation into accessories to 

either building system, such as associated mortar, insulation and other building 

enclosure elements. The system boundary of the cradle-to-site LCA includes the raw 

material extraction, manufacturing, and transportation phases of the life cycle of the 

CSEBs and clay bricks. The thermal conductivity of the earth block measured during the 
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experimental stage of this study is used to calculate energy savings, reduced global 

warming potential and cost savings between CSEB and Clay Brick for a few snapshot 

days during the use of the residential dwelling.  

1.5. Thesis Overview 

This thesis contains seven chapters. A description of the following chapters is listed 

below. 

• Chapter 2: Literature Review. This chapter contains a literature review 

including the structural performance of CSEB and sustainable investigations 

into earth construction. Thermal conductivity is defined and factors that have 

been determined to affect thermal performance in stabilized earth blocks are 

discussed. A few bench marks on thermal conductivity values of both CSEB 

and clay brick are offered for comparison. 

• Chapter 3: Experimental Thermal Study. An experimental study was 

completed on the CSEB in order to determine their thermal conductivity. The 

research method for thermal testing on the blocks is outlined and discussed 

in this section. All ASTM standard tests used in this study and any 

modifications to them are explained in this chapter. Results for the thermal 

study are presented and discussed, offering a final value for thermal 

conductivity. 

• Chapter 4: Life Cycle Analysis. A comparative Life Cycle Analysis is conducted 

in order to investigate the economic and environmental impacts associated 
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with the choice between using CSEB or clay brick as a primary building 

component. The CSEB under investigation is the same mix design as in the 

thermal study in Chapter 3 and the clay brick originates from a manufacturer 

in Lincoln, NE. The analysis includes cradle-to-site life cycle phases and looks 

at the impacts of a 5ft segment of a 12ft tall exterior wall of a residential 

dwelling on the Winnebago Native American Reservation in north eastern 

Nebraska. The impacts under investigation include 1) Energy, measured in 

kWh, 2) Global Warming Potential (GWP), measured in kg CO2 eq., and 3) 

Cost, measured in US Dollars. 

• Chapter 5: Results and Discussion. In this chapter the results from the Life 

Cycle Analysis are combined and illustrated with a brief explanation as to the 

largest contributing factors. These results are compared to those found in 

the literature and reasoning for the outcomes is also offered. 

• Chapter 6: Uncertainty and Sensitivity Analysis. Uncertainty in the 

methodology that results in the findings is discussed in this chapter. In order 

to fully understand the effects of the assumptions made during the LCA, a 

sensitivity analysis is performed on a few key assumptions. 

• Chapter 7: Applied Thermal Conductivity Impacts. This chapter ties together 

the experimental thermal study and the LCA conducted in the previous 

chapters by analyzing the impacts associated with the thermal conductivity 

of each building material. Since a complete Life Cycle Analysis of the energy 

efficiency of the entire building system is not within the scope of this study, 
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simplified snapshots representing a typical day in each of the four seasons 

are analyzed in order to further compare the economic and environmental 

impacts. This small glimpse into the greater picture is very informative, 

however, it would not be prudent to include this portion of the study with 

the larger Life Cycle Analysis due to over simplification of the use phase 

throughout the entire lifetime of the building. 

• Chapter 8: Conclusions. In this chapter, conclusions are made providing 

advice for desirable options within the CSEB building system. This chapter 

also elaborates on future studies that will be beneficial to the subject matter. 

• Appendix A: A glossary of terms used throughout this study is provided. 

• Appendix B: This appendix contains raw data used to obtain the experimental 

thermal test results. 

• Appendix C: Additional documentation involved in the geotechnical testing 

are provided in this section.  
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Chapter 2 : Literature Review 

Compressed stabilized earthen block masonry (CSEB) is an earthen masonry, engineered 

to maximize strength and durability with minimum use of a stabilizing agent. CSEBs are 

unique compared to conventional building materials in that they can be molded to the 

desired size, shape or density by the end user. These blocks can also be designed for the 

required strength by either varying the amount and type of stabilizer content – such as 

lime or cement – or adding structural reinforcement in order to meet building standards 

(Meukam et al. 2004).  

2.1. Structural characteristics of CSEB 

Both the mechanical and structural characteristics of CSEB have been researched 

extensively - including manufacturing technique, block density, level of compaction, 

type and amount of stabilizer used, soil-stabilizer ratio, addition of fibers or other 

additives, curing conditions, temperature in the early days after casting, etc. (Meukam 

et al. 2004). Specific considerations affecting structural performance have also been 

prominently recognized in terms of varying clay content, cement content and densities 

for durability and strength (Balaji et al. 2016). Previous studies have shown that 

stabilizing the earthen masonry with a low percentage (6-10%) of cement and 

compressing the units in a manual or hydraulic molding device to a density of about 0.06 

lb/in3 can yield strong, water-resistant wall sections (Erdogmus and Garcia 2015; Colley 

2014; Colley and Erdogmus 2015). Minimizing the quantity of cement used in CSEB is 
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environmentally optimal. However, research suggests that cement content of at least 

10% is necessary to limit water absorption (Meukam et al. 2004), essential to stabilize 

CSEB made from soils with dispersive clays (Colley and Erdogmus 2015) and results in a 

compressive strength of 5.9 MPa (Erdogmus and Garcia 2015). 

There are also other comprehensive studies on the structural composition of CSEB 

masonry including investigation of factors that affect compressive strength of the 

blocks, mortar, and block-mortar assemblies (Riza et al. 2010; Reddy and Gupta 2005) 

and optimized earth-mortar mixtures (Ouda 2009). The effects of polyethylene 

terephthalate fibers in the stability of blocks (Colley 2014) and consistency of fiber-

reinforced mortars (Erdogmus et al. 2013) were also investigated in recent years.  

2.2. Sustainable performance of CSEB 

Additional exploration into the sustainable factors of engineered earthen construction 

includes total embodied energy in rammed earth walls (Reddy and Kumar 2010), the 

low carbon emissions of sustainable materials (Reddy 2009) and the economic feasibility 

of earth block masonry for sustainable walling (Williams et al. 2010). These studies have 

found that CSEBs can have a total embodied energy of 0.5-0.6 GJ/m3 and that the 

production of earthen blocks can consume as little as 14% of the energy used to 

produce clay bricks (Williams et al. 2010). Further, Reddy and Kumar (2010) reported 

that embodied energy used to produce earthen walls of 8-12% cement can range from 

0.50-0.75 GJ/m3.  
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2.3. Thermal Conductivity of CSEB 

A notable sustainable factor under recent investigation for engineered earth blocks is 

their thermal conductivity – an intrinsic property of the material that determines the 

quantity of heat conducted through it for a given temperature gradient. Thermal 

conductivity is defined as “the mechanism of heat transfer between parts of a 

continuum due to the transfer of energy between particles or groups of particles at the 

atomic level,” (McQuiston et al. 2005). Minimizing thermal conductivity in the building 

envelope is the goal of most product design as to reduce heat transfer through these 

components in order to provide insulation to the indoor space or to decrease the energy 

consumption of building facilities such as air-conditioners or heaters (Khedari et al. 

2005). As heat can be conducted or radiated through a series of materials combined in 

the form of a building envelope, these internal heat transfer process are reported in 

terms of a single thermal conductivity value, k, and measured in W/(m·K) (Balaji et al. 

2016). 

Density parameters, including void ratio, porosity and degree of compaction, have been 

found to have a significant impact on the thermal conductivity of CSEB. Initial reports of 

the effect of stabilizers on the density and pore size of the blocks presented that the 

pore size of the block decreases with an increase in cement content (Reddy and Gupta 

2005) and found a relationship for thermal conductivity between stabilization and dry 

density (Adam and Jones 1995). Reddy and Latha (2014) further investigated the 

influence of clay content on the void ratio of cylindrical soil–cement specimens with 7% 
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cement showing that the percentage of sand, silt and clay size fractions decreases as the 

cement content increases.  

In a 2004 study, Dondi et al. (2004) found a correlation between the thermal 

conductivity of clay bricks and their mineralogical composition and microstructure in 

their study on the thermal conductivity of clay bricks. This study suggests that the 

thermal conductivity of engineered earthen masonry has a strong correlation with the 

cement content and dry density of the blocks. Balaji et al. (2015) thoroughly examined 

the influence of the clay content, cement content and dry density of each block on the 

thermal conductivity of their soil-cement blocks. This study supports that the thermal 

conductivity of the blocks increases with an increase in cement content, clay content, 

and dry density. Further, Balaji et al. (2016) notes the established principle that thermal 

conductivity is a function of density, which is a function of porosity and that density and 

the measure of air-filled pores, or voids, in the material are inversely proportional. Air 

within the pores has a thermal conductivity value of 0.025 W/(m·K) and high thermal 

resistivity resulting in a heat transfer medium that regulates the heat flow through the 

earth block. Therefore, a reduction in thermal conductivity can be obtained by lowering 

the density of a material, thus increasing the porosity.A For instance, at room 

                                                      

A However, this practice would, in turn, decrease the strength of the blocks. 
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temperature, a 100 kg/m3
 density increase results in a 12.5% increase of thermal 

conductivity of CSEB.  

Beyond dry density and porosity, it is quite evident that numerous factors affect the 

thermal conductivity of engineered earthen masonry. Adam and Jones (1995) noted the 

samples stabilized by lime were found to have a lower thermal conductivity than those 

of stabilized by cement. Another study from 1995 suggests that thermal conductivity of 

earthen blocks decreases over time as the blocks continue to cure (Nagih and Ali 1995). 

Balaji et al. (2015) also points out in their study on cement-stabilized soil blocks that 

thermal conductivity of a building component relies on the material of which it is 

comprised, but also on its temperature, as it is often exposed to extreme external 

temperature conditions. Further, a study by Meukam et al. (2004) found that the 

thermal conductivity of CSEB increases with water content due to the fact that the 

thermal conductivity coefficient of water (0.6 W/m·K) is higher than that of the air in the 

voids that it replaces. 

Specific research on the thermal conductivity of engineered earth blocks report a wide 

range of values highly dependent on the stabilizer content, porosity and age of curing. In 

a 1989 study, Bhattacharjee found a range of thermal conductivity values from 0.501 to 

0.768 W/(m·K) for cement content ranging between 4 to 10% and a porosity range from 

36 to 43% (Bhattacharjee 1989). The study by Adam and Jones (1995) that investigated 

thermal conductivity of non-compressed stabilized earthen material found values in the 

range of 0.25–0.55 W/(m·K) by comparing cement to lime as a stabilizing agent in oven-
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dried samples with 0.1-0.5% moisture by volume. In their study on the influence of 

various mix proportions, Balaji et al. (2015) reported that thermal conductivity was 

between 0.84 W/(m·K) to and 1.30 W/(m·K) with clay content ranging from 16 to 31.6%, 

cement content anywhere from 5 to 16%, and dry density from 1700 to 1900 kg/m3. A 

study by (Khedari et al. 2005) reported a thermal conductivity value of 0.65 W/(m·K) for 

a soil-cement block with a bulk density of 1587 kg/m3. This study reports slightly lower 

densities than those in other studies due to the use of natural additives shown to 

reduce thermal conductivity, however due to their low compressive strength of 2.45 

MPa, these blocks are not considered adequate for load-bearing structural use. The 

significant thermal conductivity values found in the literature are listed in Table 2-1. 

Table 2-1: Thermal Conductivity of CSEB found in Literature 

 

2.4. Thermal Conductivity of Clay Brick 

A variety of values for thermal conductivity of clay bricks have been published through 

extensive research. Factors affecting the thermal performance of clay brick can be 
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attributed to porosity, bulk density, as well as size and shape of pores, much like the 

CSEB (Dondi et al. 2004). For purposes of comparison, (Balaji et al. 2016) cites a source 

stating that “burned brick” has a thermal conductivity of 1.31 W/(m·K). (McQuiston et 

al. 2005) reports a thermal conductance of 6.4-7.8 BTU-in/(ft2·h·°F) for clay brick that 

has a density of 130 lb/ft3 and 5.6-6.8 BTU-in/(ft2·h·°F) for brick that has a density of 120 

lb/ft3. These values converted to SI units are 0.90-1.09 W/(m·K) and 0.78-0.95 W/(m·K) 

for blocks of densities 2080 and 1920 kg/m3, respectively. 

(Dondi et al. 2004) reported a collection of thermal conductivity values for clay bricks 

from literature and combined that input with their own experimental study. As a 

discussion point for results, Dondi et al. fit a linear approximation curve between bulk 

density and thermal conductivity, but carefully noted that bulk density is not the only 

contributing variable. This formula can be seen in Equation 2.1, below. 

 
𝑘𝑘 = .175 + 3.833 × 10−4𝑑𝑑 (Eq. 2.1) 

 
Where, 
 
     𝒌𝒌 = thermal conductivity, W/(m·K) 

     𝑑𝑑 = density, kg/m3 

 

2.5. Determining thermal conductivity 

A few different methods of determining thermal properties of CSEB can be found 

throughout the literature. Each method falls under one of two types of heat transfer:  or 

transient. A transient method often involves an increase in heat applied, easily 
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measured in a temperature increase on the hot side of the specimen over a given period 

of time. A  is achieved when there is no increase in heat applied and the temperature of 

the block remains constant. 

(Balaji et al. 2016) used a QTM-500 instrument (Figure 2-1) following the (ASTM C1113 

1999) standard based on the transient hot wire method and aluminum foil was used to 

reduce heat loss between the specimen and ambient air. The thermal conductivity of 

clay bricks was determined in the study by (Dondi et al. 2004) by means of a Dynatech 

TCFGM apparatus using the hot plate method according to the UNI 7745 (1977) 

standard. The cylindrical soil-cement specimens in the study by (Nagih and Ali 1995) 

were oven dried and cooled to room temperature prior to testing with thermocouples 

embedded on either end. Unfortunately, the exact method of determining thermal 

conductivity in this study is unclear. 

 

Figure 2-1: Transient Hot Wire Method used in Balaji et. al. 2016 
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Finally, use of a hot box apparatus is another accepted method of determining thermal 

performance of a homogeneous building material under  conditions (ASTM C1363 

2011). Further study into the most effective method for investigation thermal 

performance of a compressed earthen block is required in order to determine the 

optimal technique. 
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Chapter 3 : Experimental Thermal Study 

As noted in the literature, the thermal conductivity of CSEB is highly dependent on the 

clay content of the soil and the density and cement content of the stabilized earth block. 

In order to fully understand the thermal performance and environmental and economic 

implications of this particular CSEB under investigation in this study, an experimental 

program is conducted. 

3.1. Raw Materials used in CSEB 

CSEBs are composed of soil most often local to the construction site. For this study, soil 

was gathered from one site located in Winnebago, NE and two different locations in 

Omaha, NE, and then characterized and proportionally combined for block 

manufacturing. Previous studies have characterized the clay found in the Winnebago 

soil as dispersive clay (Colley 2014). Dispersive clays are often undesirable for structural 

applications, however research has shown that CSEB made of this particular soil can 

have adequate compressive strength with 10% cement stabilization (Erdogmus and 

Garcia 2015).  

Table 3-1 summarizes the clay content, plasticity index and Unified Soil Classification 

System for each batch used. Batch A was collected from the Winnebago Native 

American Reservation, Batch B was collected from the beginning of a large excavation 

on the University of Nebraska – Lincoln, Scott Campus, and Batch C was collected from 

the end of the excavation on the Scott Campus. The tests used to characterize these 
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soils were the Atterberg limit test and the dry sieve test as established by the American 

Society of Testing Methods (ASTM) guidelines (ASTM D422-63 2007; ASTM D4318-10e1 

2014). Soils from Batch A and Batch B are both classified as well-graded sand with clay, 

whereas soil from Batch C is classified as poorly graded sand. Additionally, ordinary Type 

I/II Portland cement was used as a binder/stabilizer material for the CSEBs in this study.  

Table 3-1: Soil Properties 

Batch Location Clay Content Plasticity Index 
(PI) 

USCS 
Classification 

Batch A Winnebago, NE 5.3% 6.21 SW-SC 

Batch B Omaha, NE 5.4% 5.95 SW-SC 

Batch C Omaha, NE -- -- SP 

 

3.2. Manufacturing CSEB 

A brief description of the manufacturing processes is presented in this section as they 

pertain to the specific mix design used in this study.  

3.2.1. Processing Soil 

The unprocessed soil was air dried until considered workable and then mechanically 

sieved by using a Gilson Model TS-1 testing screen. The soil passed through screens in 

the following order: 0.50in (12.7mm), 0.25in (6.35mm), and then #6 (0.132in or 

3.36mm) until its particle sizes were adequate for block manufacture. Relatively small 
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soil particles are desirable as they allow the dry cement to mix homogeneously. After 

processing the soil, moisture content tests were conducted in accordance with (ASTM 

D2216-10 2010) to ensure that the soil-cement mixture would cure consistently. The 

moisture content of the soil for the fabrication of these blocks was 16.5% by weight. The 

three batches of soil (Batch A, Batch B and Batch C) were subsequently combined and 

thoroughly mixed in a 1.5 : 1 : 1.5 ratio by weight, respectively, in order to remain 

consistent with ongoing parametric studies. 

3.2.2. Manufacturing Blocks 

The manufacturing process began by mixing the combined soil with the cement. The 

cement content chosen for analysis was 10% by weight, and thus the soil and cement 

were mixed together in a 9:1 ratio by weight. For ease of mixing, a power drill and 5-

gallon buckets were used and the contents of each block were split in two, as depicted 

in Figure 3-1. 

 

Figure 3-1: Power mixing of soil-cement mixture 
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After each bucket was thoroughly combined, the mixture was placed in the mold and 

manual pressure was applied to the block press. The CSEB were cast by the block 

making device manufactured by ‘Open Source Resilient Living’ and the procedure 

followed ASTM D1632-07 (2007) regarding the use of a release agent and tamping to 

ensure compaction, as depicted in Figure 3-2 and Figure 3-3.  

 

Figure 3-2: Tamping the soil-cement mixture into the block press 

 

 

Figure 3-3: Finished CSEB after block press 
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3.2.3. Curing Process 

Once the blocks were cast, each specimen was carefully removed from the mold, 

weighed, measured and placed into an air-tight plastic bag to be cured for 28 days. At 

the end of the 28-day curing period, dry measurements were taken for the individual 

block’s weight and volumetric dimensions to determine shrinkage and weight loss. For 

this batch, 99.6% of the weight was retained during the curing process and the average 

dry density of the specimens was 0.658 lb/in3 (1821 kg/m3). 

3.3. Thermal Conductivity Testing Methodology 

Due to the nature of compressed earthen masonry, the compaction during the 

manufacturing process eliminates the possibility to form the blocks with temperature 

probes inside. Instead, a modified hot box apparatus was constructed utilizing the 

steady-state technique in order to measure the thermal conductivity of the block. 

3.3.1. Test Set Up 

In order to maintain a consistent testing environment, a 3’-0” X 2’-6” X 2’-6” modified 

hot box structure (Figure 3-4 and Figure 3-5) was constructed from 1 ½” blue foam 

insulation conforming to ASTM C518 (2015) with an R value of 5.0/in (7.5 ft2·h·°F/BTU). 

This particular insulation was chosen based on availability and ease of construction. 

Liquid Nails adhesive and spray insulation were used to properly construct and seal the 

container on all sides except for the top to give easy access to the inside of the box. A 

portal was cut through one side of the container to the exact dimensions of a CSEB.  
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Figure 3-4: Modified hot box diagram 

 

 

Figure 3-5: Modified hot box set up 
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During testing a block would sit on an exterior shelf covered completely by insulation 

with its interior face exposed to the inside chamber. As pictured in Figure 3-6 and Figure 

3-7, a total of eight Type K thermocouples (± 2.2°C) (Omega 2016) were used to 

measure temperature differences across the block throughout the testing period, four 

on the inside and four on the outside. A hygrometer probe was also placed inside the 

chamber to manually monitor the temperature and relative humidity during testing in 

order to ensure that the temperature of the chamber was not significantly increasing.  

 

Figure 3-6: Thermocouples on exterior of CSEB 

 

Figure 3-7: Thermocouples on interior of CSEB 
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A TEMPCO Flexible Strip Heater rated for 360W with dimensions 12” X 3” was mounted 

on the external face of each block and on top of the external thermocouples, as 

illustrated in Figure 3-8. Care was taken to fit insulation around all external sides of the 

block to ensure minimal heat escape. The test set up can be characterized as a modified 

hot box since the heat is applied to the external surface of the block and transferred 

through the block toward the protective chamber, opposite of the direction of a 

traditional hotbox. Meukam et al. (2004) notes that, given the geometry of the 

specimen and that the test is designed with precaution in order to limit the lateral heat 

lost, it is safe to regard the process as unidirectional heat transfer since the materials 

have been assumed to be homogeneous and isotropic. 

 

Figure 3-8: Flexible strip heater on exterior side of CSEB 

In order to reduce the voltage applied to the heater and slow down the heating process 

to ensure the melting point of the insulation was not reached, two 50 ohm resistors 

were added to the circuit in series. This addition reduced the power to the heater by 
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approximately 55%. A schematic diagram of the circuit is provided in Figure 3-9 

including a 120 volt power supply, two power resistors and a heater. 

 

Figure 3-9: Schematic circuit diagram 

3.3.2. Data Acquisition and Processing 

The voltage from the thermocouples were monitored and recorded at a frequency of 

1hz by the Optim MegaDAC and the TCS software converted the potential difference to 

a calibrated temperature in °C. Calibration occurred inside the data acquisition system 

and was conducted at the beginning of each sample.  

Figure 3-10 illustrates the average temperature differential between the interior and 

exterior thermocouples over a time period of three and a half hours with constant heat 

applied. It is evident that after about three hours of testing, the CSEB reaches a pseudo-

steady-state in that over a 30-minute period the temperature differential between the 

interior and exterior of the block only increases by 0.63 °C or 0.9%. This difference is less 

120V 

Power Resistor 
(50 Ω) 

360W Heating Pad 
(40 𝛺𝛺) 

Power Resistor 
(50 Ω) 
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than the 1% threshold established by the ASTM guidelines on calculating thermal 

transmission properties under steady-state conditions (ASTM C1045-07 2013). 
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Figure 3-10: Temperature (°C) vs. Time (min.) 
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Figure 3-11 and Figure 3-12 show a typical heat distribution across a CSEB during the 

testing process. It is apparent that the block becomes extremely warm near the heater 

after a couple of hours and the side exposed to the protective chamber remains much 

closer to room temperature. 

 

Figure 3-11: Infrared image of uncovered CSEB during heating 

 

Figure 3-12: Infrared image of CSEB from inside protective chamber during heating 
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In order to determine the thermal conductivity of the block, an average value must be 

taken over a period of time. For each data point, the thermal conductivity of the CSEB 

was calculated using Equation 3.1, where V is the voltage of the heater (V), R is the 

resistance of the heater in the circuit (ohms), k is thermal conductivity (W/(m·K)), A is 

the area across which the heat is transferring (m2), Tout is the temperature of the block 

on the outside face (K), Tin is the temperature of the block on the inside face (K), and dx 

is the thickness of the block (m). The heat loss through the insulation covering the CSEB 

is also considered in the equation where Ri is the R value of the insulation (5.0 

ft2·h·°F/BTU·in), Ai is the area of the insulation around the block (m2), dTi is the 

temperature differential between the block side and the external insulation (K), and dxi 

is the thickness of the insulation (1.5 in or 0.0381 m.) 

 
𝑉𝑉2

𝑅𝑅
= 𝑘𝑘𝑘𝑘

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+
1
𝑅𝑅𝑖𝑖
𝐴𝐴𝑖𝑖
𝑑𝑑𝑇𝑇𝑖𝑖
𝑑𝑑𝑥𝑥𝑖𝑖

 

𝑑𝑑𝑑𝑑 = 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑇𝑇𝑖𝑖𝑖𝑖 

(Eq. 3.1) 

 

Equation 3.2 and Equation 3.3 detail the calculations used to determine the resistance 

and voltage across the heater. The subsequent power produced by the heater and 

delivered to the hot box system is given in Equation 3.4. 

 
R =

𝑉𝑉2

𝑊𝑊
;𝑉𝑉 = 120𝑉𝑉,  𝑊𝑊 = 360𝑊𝑊 

𝑅𝑅 =
1202

360𝑊𝑊
 

𝑅𝑅 = 40Ω 

(Eq. 3.2) 
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 𝑉𝑉ℎ𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∗
𝑅𝑅ℎ𝑒𝑒𝑒𝑒𝑒𝑒
𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

 

𝑉𝑉ℎ𝑒𝑒𝑒𝑒𝑒𝑒 = 120𝑉𝑉 ∗
40Ω

(50Ω + 50Ω + 40Ω) 

𝑉𝑉ℎ𝑒𝑒𝑒𝑒𝑒𝑒 = 34.3𝑉𝑉 

 

(Eq. 3.3) 

 

 
qℎ𝑒𝑒𝑒𝑒𝑒𝑒 =

𝑉𝑉ℎ𝑒𝑒𝑒𝑒𝑒𝑒2

𝑅𝑅ℎ𝑒𝑒𝑒𝑒𝑒𝑒
 

qℎ𝑒𝑒𝑒𝑒𝑒𝑒 =
34.3𝑉𝑉2

40Ω
= 29.4 𝑊𝑊 ± 17.9%  

 

(Eq. 3.4) 

Throughout the 3.5-hour test period the thermal conductivity of each block decreased 

and slowly approached a steady value, as illustrated in Figure 3-13. An average value 

across the last 30 minutes of testing was taken as a verified thermal conductivity of each 

block once it reached a steady-state.  
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Figure 3-13: Thermal Conductivity of a typical CSEB 
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3.4. Thermal Test Results and Discussion 

Thermal conductivity values are presented in Table 3-2 along with each block’s variable 

dimensions. A total of 5 blocks were analyzed in this study and the average thermal 

conductivity found throughout the entire testing program was 0.361 W/(m·K). 

Table 3-2: Thermal Conductivity Results 

Block Area (m2) Thickness (m) Density (kg/m3) Thermal conductivity 
(W/m·K) 

T1 0.0283 ± .05% 0.156 ± .03% 1802 ± .06% 0.362 ± 20.0% 

T2 0.0284 ± .05% 0.159 ± .03% 1838 ± .06% 0.366 ± 20.0% 

T3 0.0286 ± .05% 0.155 ± .03% 1799 ± .06% 0.355 ± 20.0% 

T4 0.0283 ± .05% 0.155 ± .03% 1822 ± .06% 0.360 ± 20.0% 

T5 0.0281 ± .05% 0.155 ± .03% 1821 ± .06% 0.361 ± 20.0% 

Average = 0.361 ± 20.0% 

Standard Deviation = 0.0039  

 

A thermal conductivity value of 0.361 W/(m·K) for a CSEB with 10% cement content and 

a density of 1816 kg/m3 falls well within the expected range based off of the values 

found in the literature review. Specifically, Balaji et al. (2015) reports a similar density 

range of 1700-1900 kg/m3 and a cement content range of 5-16%. The reported differing 

thermal conductivity from the study was 0.842-1.303 W/(m·K) with a clay content 

varying between 16% and 31.6%. Since the clay content of soil in the Balaji study is 
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much higher than the clay content of the soil used in this experimental program, a lower 

thermal conductivity reported here is justified. 
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Chapter 4 : Life Cycle Analysis Study 

Life Cycle Analysis (LCA) is a tool with a holistic perspective on the impacts of a certain 

product or process (Baumann and Tillmann 2004). In relation to the built environment, a 

LCA focuses on embodied environmental impacts associated with the design process 

and building management, and provides a quantitative analysis to guide intelligent 

design choices and reduce unnecessary impacts (O’Connor et al. 2012). 

This study conducts an LCA which specifically compares CSEB masonry to fired clay brick 

masonry and follows guidelines set forth by the International Organization for 

Standardization’s (ISO) 14040 series (“ISO 14040:2006 - Environmental Management -- 

Life Cycle Assessment -- Principles and Framework” 2006; “ISO 14044:2006 - 

Environmental Management -- Life Cycle Assessment -- Requirements and Guidelines” 

2006).  

4.1. Life Cycle Analysis Methodology 

The methodology used in this LCA includes the following steps. Each step is elaborated 

further within this section: 

1) Define the scope and system boundary of the study. 

2) Select two types of construction alternatives for comparison and define a 

functional unit. 

3) Define three indicators to compare the two masonry systems. 
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4) Collect Life Cycle Inventory (LCI) data from existing LCA studies of earth 

masonry and clay brick for cradle-to-gate phases.  

5) Convert the LCI data for both CSEB and clay brick by multiplying by an area 

factor to reach the fundamental unit. 

6) Calculate the energy consumption and associated impacts during the 

transportation phase of each construction material option. 

7) Combine the LCI data gathered and calculated from Steps 4-6 to provide 

relevant data for analysis. 

4.1.1. Scope and System Boundary 

The goal of this LCA study is to understand the economic and environmental impacts of 

selecting CSEB masonry instead of conventional clay brick as a building material 

alternative for use in residential construction. To have a common basis for comparison a 

simple single family dwelling (Figure 4-1) was chosen. The structural design of this unit 

was completed by previous studies by Erdogmus et al. (2015a) and Wagner et al. (2013). 

The hypothetical dwelling is situated on the Winnebago Native American Reservation in 

the northern Nebraskan plains. It was previously analyzed as CSEB masonry and contains 

a storm shelter designed to withstand high, tornadic wind speeds.  
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Figure 4-1: Single family dwelling in 3D (left) and plan view (right) (Erdogmus et al. 

2015a) 

The focus of this study is narrowed to the impacts of just one external wall section 

composed of either CSEB or clay brick. This includes impacts associated with the blocks 

only, and not those associated with the necessary mortar or reinforcement for 

construction. Also not included in analysis are the crucial tools for processing and 

manufacturing CSEB, as their specific lifespans largely exceed their use in the 

manufacturing and construction processes in this study. Not only does this study 

consider the production of CSEB and clay brick, but also the energy used to create the 

blocks.  

The system boundary, illustrated in Figure 4-2 and described in Table 4-1, for this LCA 

includes three life cycle phases: raw material extraction, manufacturing, and 

transportation. It is a cradle-to-site analysis with the inclusion of the transportation 

phase to account for the fact that the CSEB is manufactured on site. 
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Figure 4-2: System Boundary of LCA study 
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Table 4-1: Summary of Life Cycle Phases Used in the LCA 

LIFE CYCLE PHASE INCLU
DED? SUMMARY OF PHASE 

Inputs  
(Raw materials 
extraction) 

✓ 
This phase accounts for the emissions and resource 
usage resulting from the extraction of the raw materials 
needed to construct each block. The extraction of raw 
materials associated with power generation for the 
electricity is not considered within the system boundary. 

Manufacturing 
(Processing and 
assembly of blocks) 

✓ 

The manufacturing phase considers the processes 
involved in manufacturing the block out of the raw 
materials and the assembly of the blocks into walls 
during construction, which occurs at the manufacturing 
site for CSEB. It considers the energy used throughout 
the process of manufacturing the blocks, as well as the 
emissions associated with fabricating each block. 
Additional accessories required by masons during the 
construction of the wall are assumed to be equivalent 
between material alternatives and, thus, excluded from 
the scope of this study. 

Transportation  
(Transporting from 
manufacturing site to 
construction site) 

✓ 

The phase of the life cycle where each block is 
distributed from the manufacturer to the end user is 
considered in this study. Transportation of 
manufactured blocks is only considered for clay brick as 
CSEBs are manufactured on the construction site. The 
transportation stage of the CSEB life cycle is considered 
as transportation of any raw materials to the 
construction site. 

Use  
(Use of blocks by end 
user) 

X 

Under the limited scope of this LCA, the energy use, 
GWP, and the cost associated with the use of these 
blocks as components in the building envelope are not 
included in this study. Analysis during the use phase of 
the building is limited only to effects of varying thermal 
conductivity during snapshot days. These calculations 
are provided outside of this LCA for supplemental 
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discussion.  For purposes of simplifying this study, 
additional exterior and interior finishing, as well as 
insulation, are not included for analysis. For the sake of 
consistency, necessary maintenance and replacement 
throughout the lifetime of the structure is also excluded 
from the system boundary. The effect of the exclusion of 
the maintenance during the use stage has on the results 
are considered negligible since various studies have 
shown they amount to approximately 1% of the total life 
cycle energy cost (Peng 2016). 

 End of Life  
(Disposal/recycling of 
blocks after use) 

X 

The end of life choices for disposal or recycling these 
blocks are numerous and greatly dependent on location, 
services and regulations. In attempts to tighten the 
scope of this study and ensure its findings would be 
applicable to other locations, this phase of the life cycle 
is not included in the system boundary. 

 

4.1.2. Construction Material Selection and Definition of Function Unit 

Two different building materials were chosen as alternatives for residential construction 

for this comparative analysis: CSEB and clay brick. CSEBs were chosen as the primary 

material to be investigated due to the ongoing research on the sustainable and 

structural features of this building system at the University of Nebraska. The other 

material is a more conventional material, clay brick, and it was selected due to its 

similarity in natural raw material use and construction techniques.  
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The considered CSEB block, featured in Figure 4-3, has a composition of 10% cement 

and 90% soil, dimensions of 12-1/8” x 6-3/16” x 3-11/16”B and an average weight of 

17.348lbC. The clay brick considered in this study comes from Yankee Hill Brick & Tile, a 

regional manufacturer located in Lincoln, NE, 112 miles from the tribal council offices in 

Winnebago, NE. The typical unit chosen for analysis, illustrated in Figure 4-4, is the 

“Utility” brick because it is the closest in volume to the CSEB. An interview with the 

plant superintendent was required about the product’s specifications as limited 

information on the product is available publically. According to the plant, the exact 

dimensions of the brick are 11-5/8” x 3-5/8” x 3-5/8” with a 25% void volume. The utility 

block weighs 9.166lbs (Bailey 2016). 

 

Figure 4-3: CSEB fabricated at University of Nebraska- Lincoln

                                                      

B Exact dimensions vary since three measurements were recorded and averaged for each block. 

C Average weight listed here differs from that listed during the experimental thermal study in 
Chapter 3. This average weight was taken from a more extensive manufacturing process (for a 
study that has yet to be published) in which 180 blocks were made over the course of 4 days. All 
assumptions on manual labor in this chapter were reasoned from experience during this study. 
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Figure 4-4: Typical Clay brick used in this study  

The fundamental unit for comparison in this study is a 5ft segment of an exterior single-

story 12ft residential wall. This unit was chosen with regards to the varying volume of 

each block type. 

4.1.3. Defined Indicators 

The global building sector is a notable contributor to environmental impacts, such as 

primary energy consumption and CO2 emissions, with an average annual increase in 

each category of about 2% (Pérez-Lombard et al. 2008). Additionally, reduction in total 

embodied energy present in construction materials has the potential to result in 

substantial economic gains during raw material extraction and manufacturing processes 

for any given project (Graham and Booth 2012). Due to the desired outcome of a low-

cost material in this study, environmental and economic efficiency are considered 

paramount. Therefore, the indicators for measuring environmental or economic impacts 

of each material alternative in this study are Energy (measured in kWh), Global Warming 

Potential (GWP) (measured in kg CO2 eq.), and Cost (measured in US Dollars).  
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4.2. Collected Life Cycle Inventory (LCI)  

The following information is used to gather data for the cradle-to-gate portion of the 

study for the three indicators: Energy, GWP and Cost. Due to a lack of existing data on 

CSEB as a whole, existing LCI data was used for soil and cement separately, instead. 

Most data retrieved is reported in units of weight (kg) and subsequently converted to a 

per block basis as the given weights for each block type is known. All conversion factors 

for the subsequent calculations are outlined in Table 4-2. 

Table 4-2: Conversion Factors 

 

4.2.1. Indicator 1: Energy 

CSEB 

The raw material extraction phase of the life cycle of CSEB requires the energy 

consumption from the cement component as 4464 kJ/kg cement (Peng 2016). Soil can 

be manually extracted on site by the end user as shovels work perfectly well for the 

magnitude of soil that needs to be processed for a single-family dwelling. However, due 

to the amount of organic material present in the top 2ft of soil, digging to a greater 

depth is desired for more consistent soil and will result in a greater cost of labor.  
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During the manufacturing process of the CSEB the only electricity usage would come 

from either a mechanical sieve to separate the finer particles from the larger 

aggregates, a power mixer to aid in the homogeneous mixing of the soil and cement, 

and/or a hydraulic block press to speed up production. In order to simplify the 

calculations, all manufacturing processes of the engineered earth blocks - including 

sieving, mixing, and compression - will be considered “by hand” and, thus, no energy 

consumption and related CO2 emissions will result. Since masonry construction is still 

considered a manual process, no energy is consumed during the assembly of the wall 

with regards to either material alternative within the scope of this study. Finally, during 

the curing process, a typical CSEB loses about 0.4% weight. Therefore, the ratio of 

weights of final CSEB to raw material extracted is taken as 0.996:1. 

Clay Brick 

The raw material extraction of clay brick consumes 2000 kJ/kg clay (Peng 2016) during 

the mining process. During the manufacturing process it is noted that there is a 10% 

weight loss during the drying and firing process (Bailey 2016). Therefore, the ratio of 

weights of final clay content in a brick to weight of clay extracted will be taken as 0.9:1. 

According to Yankee Hill Brick & Tile, the manufacturing process consumes 1100 BTU/lb 

or 2559 kJ/kg. 
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4.2.2. Indicator 2: GWP 

CSEB 

The raw material extraction phase of the life cycle of CSEB produces 0.894 kg CO2 

emissions per kg of cement (Peng 2016). Again, extracting soil from the ground results in 

no GWP associated with the process, as long as it is entirely manual. Remaining 

consistent with the energy calculations, the ratio of weights of final CSEB block to 

weight of raw material extracted will be taken as 0.996: 1.  Furthermore, no GWP is 

associated with the manual manufacturing of CSEB. 

Clay Brick 

During the raw material extraction of clay brick, 0.2 kg CO2 is emitted into the 

atmosphere per kg of clay extracted (Peng 2016). Remaining consistent with the energy 

calculations the ratio of weights of final clay content in a brick to weight of clay 

extracted will be taken as 0.9: 1. According to the EPA’s Waste Reduction Model data, 

manufacturing clay bricks emits 0.27 metric tons of CO2 eq. per short ton (“EPA - Waste 

Reduction Model [WARM]: Clay Bricks” 2015) or .298 kg CO2/kg of clay. 

4.2.3. Indicator 3: Cost 

CSEB 

The cost of raw material extraction for a CSEB can be estimated based on the cost of 

labor and the cost of what it takes to get supplies to the construction site. A 47lb bag of 
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cement costs $9.99 at the local Pender, NE Ace Hardware store (“Quikrete® Portland 

Cement (1124-47)” 2016) and 2lbs are needed for every block, assuming the purchasing 

price of cement from a local home improvement store includes cost of raw material 

extraction, manufacturing and transport to store. Soil is free of cost if the end user is 

extracting it from the construction site and retains property rights.  

Based on experience, an able-bodied individual could fill and mechanically sieve one 55-

gallon barrel of unprocessed soil in about 2 hours. In the case of sieving by hand, the 

time should be doubled to about 4 hours.  The current minimum wage in Nebraska is 

$9.00/hour which would cost the end user $36/raw barrel extracted and processed. 

Depending on density and granularity of the soil, sieving should yield a minimum of 50% 

usable soil. Therefore, $72/barrel of useable soil should be considered. Each barrel holds 

about 200 kg of sieved soil, thus, monetarizing each barrel by weight yields $0.362/kg.   

It has been deduced by the research team based on experience that a three-person 

crew can conservatively produce 15 blocks per hour at high quality control. Without 

regard for controlled measurement or curing processes in the field, the rate of 

manufacturing blocks should be doubled and increase to 30 blocks per hour.  At 

$9.00/hour for each laborer, each block costs $0.90/block or $0.11/kg to manufacture.  

Finally, labor cost during construction is not included in the scope of this study as earth 

masonry construction is comparable to conventional brickwork in skills, technique and 

rates of construction (Morton et al. 2005), thus cancelling each other out. 
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Clay Brick 

It is assumed that the purchasing price of clay masonry from a retailer encompasses the 

total cost of raw material extraction and manufacturing. Therefore, according to Yankee 

Hill Brick & Tile, they can manufacture a utility brick at $0.60/brick cost to the company 

and mark it up for sale price to $0.85/brick (Bailey 2016). This price is relatively low 

since the raw material extraction occurs on site and no transportation costs are included 

in the process.  Since the end user will be purchasing the brick from the company, the 

sale price is used for cost calculations. 

Table 4-3 outlines the collected LCI data separated out by each phase in the life cycle 

and then by component. 

Table 4-3: Summary of Life Cycle Inventory data 

Life Cycle Phase Construction 
Material Process 

Unit Energy 
Consumption 

(kJ/kg) 

Unit CO2 
Emissions 

(kg/kg) 

Cost 
($/kg) 

Raw Material 
Extraction and 

Processing 

CSEB Soil 0 0 0.363 
Cement 4482 0.898 0.054 

Clay Brick 2222 0.222 --- 

Manufacturing CSEB Soil 0 0 0.114 Cement 
Clay Brick   2559 0.298 0.227 

 

4.3. LCI Data Conversion 

All LCI results are converted into terms of one masonry unit (either a CSEB or clay brick) 

and then normalized in terms of this fundamental unit for comparison across life cycle 

stages. In order to normalize, the equivalency in terms of a “by volume” basis has been 
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chosen as it is reasoned that the significant differing factor is the number of blocks 

needed to construct the 5ft segment of the wall. According to the LCI data for clay brick, 

an estimated 5% of total material is damaged and discarded during instillation (NIST 

2011). An assumption is made that the same installation casualty rate applies to CSEB 

construction as well and is factored into the calculations.  Table 4-4 outlines these 

calculations with the inclusion of a ½” mortar joint between all blocks. Note that mortar 

joints are included in this volume calculation, yet all other impacts associated with the 

mortar use for the masonry assemblies are outside the scope of this investigation.  

Table 4-4: Block equivalency 

Block Type Area (in2) Total Area (in2) per 
5ft x 12ft wall 

# Blocks per 
5ft x 12ft wall 

Clay Blocks 
per CSEB 

CSEB 43.87 8640 140.36 
1.23 

Clay Brick 42.14 8640 172.75 

** With 5% losses during instillation 

4.4. Transportation Phase Calculations  

The CO2 emission factor for road freight used in this study is 1.68E-4 tonne/(tonne-km) 

(Peng 2016). This factor is applied to the transportation of the clay brick after 

manufacturing in Lincoln, NE – 112 miles or 69.6 kilometers away from the construction 

site. The 172.75 clay bricks necessary to construct the 5ft wall segment weighs a total of 

718.21 kg resulting in 8.40 kg CO2/5ft wall segment. The average energy consumption 

factor found for road freight via truck ranged from 4.5 to 7.1 kWh/t-km (García-Álvarez 
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et al. 2013). Using the conservative end of this range, total energy consumption for the 

transportation of the clay bricks is 354.88 kWh/5ft wall segment. 

Recent regional flatbed rates are $2.17/mi (“DAT TrendlinesTM: National Flatbed Rates” 

2016) which calculates out to $243.04 total for the required travel distance. This is a flat 

rate inclusive of average gas prices and distance travelled, but independent of weight or 

total bricks transported. It is important to note that the total number of clay bricks used 

for construction of the single family home under consideration in this study reaches 

about half the weight capacity of a class 7 flatbed truck (DOE 2012). Therefore, only one 

trip from the manufacturer to the construction site needs to be made for the brick 

materials for the entire structure. The transportation costs associated with any 5ft wall 

segment is equal to the costs of the entire shipment since the bricks will travel together. 

Furthermore, potential uses for the remaining capacity of the truck is outside the scope 

of this investigation. 

Finally, since the cement to be used in the manufacture of CSEB can be purchased at a 

local hardware store in Pender, NE, the price of the cement is assumed to include all 

transportation costs from manufacturer to retailer. To transport the cement from the 

store to the construction site, the same flatbed rates, emission and energy consumption 

factors will be used. It is assumed that the maximum distance a construction site can be 

from the hardware store and still considered to be on the reservation is 30 miles. 

Therefore, the energy consumption, GWP and cost associated with transporting the 
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cement to the site for use in a 5ft wall segment is 146.18 kWh, 3.46 kg CO2, and $65.10, 

respectively. 

 A summary of the transportation phase calculations can be found in Table 4-5. 

Table 4-5: Transportation Phase Data 

 
 

  

Life Cycle Phase Construction 
Material 

Energy Consumption 
(kWh/5ft wall 

segment) 

Unit CO2 
Emissions 

(kg/5ft wall 
segment) 

Cost                    
($/5ft wall 
segment) 

Transportation 
CSEB  146.18 3.46 65.10 

Clay Brick 354.88 8.40 243.04 
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Chapter 5 : Life Cycle Analysis Results and Discussion 

As previously mentioned, the three indicators of interest were energy use, global 

warming potential, and economy. These indicators were investigated on cradle-to-site 

life cycle inventory data with a functional unit of a 5ft segment of exterior wall on a 

single-story residential dwelling on the Winnebago Native American Reservation in 

Nebraska. For each indicator, the data provided is calculated for one segment of wall 

made of CSEB and one segment of wall composed of clay brick masonry. The gathered 

LCI data was combined from section 4.2 and 4.3, and was added to the transportation 

phase calculations in section 4.4 for all three indicators. The total life cycle impacts of 

each type of construction material are presented in Table 5-1, Table 5-2, and Table 5-3 

5.1. Indicator 1: Energy Use 

Table 5-1: Energy Consumption (kWh) per 5ft wall segment 
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Figure 5-1: Results of LCA - Energy Consumption Comparison 

The large difference in energy consumption between clay brick and CSEB can be mostly 

attributed to the manual development of CSEB by extracting, sieving, and mixing soil by 

hand, and using a manual block press.  This result was expected as (Morton et al. 2005) 

noted that earthen masonry has minimal environmental impacts during the production 

process compared to conventional alternatives. As pointed out by Erdogmus et al. 

(2015b), CSEBs require a smaller amount of energy to produce than clay brick as they do 

not require firing or a variant heating/cooling treatment in a kiln. Additionally, 

engineered earthen masonry contains cement for increased strength and durability, 

however this addition reduces their sustainable performance due to a higher embodied 

energy than unstabilized earthen masonry (Williams et al. 2010). Reddy (2009) reports 

an embodied energy of CSEB as 0.5-0.6 GJ/m3 (considering 4 MJ/kg of cement specific 

energy) compared to an embodied energy of burnt clay brick masonry = 2-3.4 GJ/m3. 
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The second reason for higher embodied energy in clay brick than in CSEB is due to the 

transportation phase of the life cycle. Local CSEB production using indigenous soils 

minimizes energy use associated with the transfer of materials to construction sites 

(Erdogmus et al. 2015b). The minimal transportation impact on CSEB is the transfer of 

cement to the construction site, whereas clay brick requires a very large shipment in 

comparison.  

Of total energy consumption worldwide, approximately 10% is the result of the 

manufacturing and transportation phases of life cycle of traditional construction 

materials (Williams et al. 2010). The results of this impact category consistently align 

with the argument that CSEB is the more sustainable building material option.  

5.2. Indicator 2: GWP 

Table 5-2: Global Warming Potential (kg CO2 eq.) per 5ft wall segment 
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Figure 5-2: Results of LCA - Global Warming Potential (GWP) Comparison 

The effects of global warming potential are very similar to the embodied energy results 

in that the impacts from extracting raw material and manufacturing CSEB are related 

only to the production of the cement which account for only 10% of the total CSEB by 

weight. The much larger GWP of clay brick results from complex manufacturing 

processes with high energy input. However, if clay brick were being compared to a block 

made solely of cement, it would become the more environmentally sustainable option. 

If the transportation phase were not included in this life cycle analysis, the effects on 

total GWP would be minimal. This is because the GWP associated with the 

transportation phase of the two building options results from the freight emission factor 

which is only dependent on weight and distance travelled. For reference, the total GWP 

associated with the transportation of the cement in the CSEBs that make up the 5ft wall 
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segment is roughly equal to the GWP from manufacturing 3 clay bricks and can be 

considered negligible. 

5.3. Indicator 3: Cost 

Table 5-3: Cost ($) per 5ft wall segment 

 

 

Figure 5-3: Results of LCA – Cost Comparison 

The cost differences between CSEB and clay brick are highly situational in this study. The 

main factor affecting the cost of clay brick is the cost of shipment during the 

transportation phase of the lifecycle, whereas transporting the cement used in 
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manufacturing CSEB (a lighter material with a shorter travel distance) is cheaper. The 

112 miles that the clay brick has to travel between Lincoln and the Winnebago 

Reservation is not inconsequential, however it is very much a local site for Yankee Hill 

Brick & Tile, a company that provides masonry materials for the construction industry all 

over the nation. Therefore, the 112 miles for clay brick transport should not be 

considered an outlying effect on the results.  

Interestingly, fuel economy barely plays a role in the cost of transport in this study. This 

is due to the fact that with an increase of fuel efficiency of large transport vehicles, as 

predicted by the department of energy (NESCCAF et al. 2009), the transportation cost 

for the cement and the clay brick would decrease proportionally, thus causing no effect. 

Regardless, had the transportation phase not been included in this analysis, CSEB would 

still be a more expensive material for residential construction. 

Labor costs play a significant role in the overall cost of CSEB because of inefficient 

manual processes. In a broad sense, non-fired earth is a cost effective method of 

construction for low-rise housing due to cheap materials, especially in developing 

countries. However, small-scale production most often results in high unit costs. Earth 

block construction rarely competes economically at a small scale with the more 

conventional construction processes using cement or fired clay. For this reason, the 

modern era has seen a decline of earth block construction in developed countries that 

stems from the higher cost of labor that is necessary for earth construction compared to 

more conventional alternatives such as timber or masonry (Williams et al. 2010).  
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Realistically, the CSEB labor costs would rarely be monetarized as they are in this study 

because the labor itself would likely be performed by the owner and future resident of 

the dwelling. However, the labor costs represent a tradeoff for potential paid work the 

labor is replacing. Depending on the owner’s own economic valuation, the cost 

associated with producing and constructing a residence composed of CSEB may be 

effectively reduced to zero, thus making the CSBE the cost effective option. 
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Chapter 6 : Uncertainty and Sensitivity Analysis 

There are two types of uncertainty to address within this project: uncertainty within the 

data collected and uncertainty within the methodology. 

6.1. Uncertainty within the data collected 

During the thermal testing, measurement uncertainty from the equipment was 

collected and combined to determine the uncertainty of the reported value of thermal 

conductivity of the CSEB. The manufacturers’ specifications of uncertainty for the 

thermocouples (±2.2°C or 3.0%), strip heater (±1%), and power resistors (±10%) were 

used along with the standard deviation from the mean of all thermal conductance data 

used in accordance with the guidelines for evaluating reporting uncertainty of 

measurement results by NIST (Taylor and Kuyatt 1994). Uncertainty in dimensional 

measurements used with a ruler were conservatively estimated to be ± 1/16” (0.03%) in 

each direction. Shown below, Equation 6.1 rearranges Equation 3.1 in order to solve for 

k and Equation 6.2 demonstrates a typical error propagation calculation through 

Equation 6.1 by use of the root sum of the squares. 
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(Eq. 6.1) 

 

 
𝑨𝑨 = 𝐋𝐋 ∙ 𝐇𝐇 

Where,                     𝐴𝐴 = Cross sectional area of block (m) 

                                   𝐿𝐿 = Length of block (m) 

(Eq. 6.2) 
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                                  𝑯𝑯 = Height of block(m) 
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Where, 

Δ𝐿𝐿
𝐿𝐿

=
. 03%
100

=  .0003 

Δ𝐻𝐻
𝐻𝐻

=
. 03%
100

=  .0003 

And, 

𝚫𝚫𝑨𝑨
𝑨𝑨

= �(.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎)𝟐𝟐 + (.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎)𝟐𝟐 =.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 =
.𝟎𝟎𝟎𝟎%
𝟏𝟏𝟏𝟏𝟏𝟏

 

 

As reported in Table 3-2, the CSEBs in this study have an average thermal conductivity of 

0.361 W/(m·K) with an average uncertainty of ± 20.0%. This relatively high uncertainty is 

largely attributed to the 10% tolerance reported by the power resistor manufacturer for 

each resistor.  

Most of the LCI data used in the study is reported from secondary data sources. The 

data sources used for this study include some uncertainty because the data was not 

collected first hand and little transparency to calculation is present in most studies cited. 

Due to difficulty in quantitatively analyzing the uncertainty in the collected data, 

emphasis is made in analyzing the LCA methodology as it is assumed that the data used 

is as accurate as possible for the purpose of this study. 
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6.2. Uncertainty and sensitivity analysis within the methodology 

Several assumptions were made within the report that create cases of uncertainty. For 

instance, the lack of available cost data on CSEB yielded approximate findings. The 

procedure of approximation was based on empirical data by the authors with the tools 

at their disposal in the lab. In order to further understand the implications of the labor 

costs assumptions, a sensitivity analysis was conducted on the efficiency of the manual 

labor during the raw material extraction phase of the CSEB life cycle. Figure 6-1 

demonstrates the effects of altering the assumption that it takes four hours for a team 

of three people to extract and process a 55-gallon barrel of soil. Both cases are 

investigated in which the time of labor for each barrel of unprocessed soil is increased 

to six hours or cut in half to two hours.   

 

Figure 6-1: Sensitivity to varying labor efficiency in CSEB raw material extraction 
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It is evident in this study that reducing the approximate processing time per barrel down 

to two hours of manual labor allows CSEB to be competitive in terms of cost with clay 

brick. In this case, both material alternatives would cost about $400 per 5ft wall 

segment.  

This level of efficiency is reasonable to figure since the original judgement that four 

hours would be sufficient was based on doubling empirical data due to experience in the 

lab. In practice, it only took about two hours for three people to shovel soil from a pile, 

dry it out during a warm spring day, and mechanically sieve it by about 20lbs at a time. 

Consequently, manual labor results can vary in other CSEB processing and 

manufacturing applications depending on a variety of factors. These factors may include 

- but are not limited to - the particular consistency of soil, moisture content of extracted 

soil, number of laborers and tools available, experience of the laborers.  It is quite 

possible to remove soil from the ground and sieve it immediately in cases that the 

moisture content is not too high that the soil clumps together and that the sieving 

process is well-organized. 

Another assumption made during the Life Cycle Analysis is that all soil processing and 

CSEB manufacturing is completed manually. A second sensitivity analysis is conducted in 

order to investigate the additional energy consumption associated with use of electricity 

for combining the soil-cement mixture during the manufacturing phase of the life cycle. 

Figure 6-2 demonstrates the impacts of this alternate method base on using a 7-amp 

power drill operating at 120 volts for 60 seconds for each 5-gallon bucket.  
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Figure 6-2: Sensitivity to use of power drill in CSEB mixing 

The use of a power drill to mix the soil and cement requires an additional 0.028 kWh per 

block or about 3.9 kWh per 5ft wall segment. This equates to under 1.4% of the total 

CSEB energy consumption of the life cycle phases under consideration in this study. 

Further, in comparison with the energy consumption of the clay brick alternative (1300 

kWh), the additional energy required to power mix the soil and cement is negligible. 

Therefore, the assumption that this process was entirely manual has no effect on the 

results. 

The final sensitivity analysis is conducted in order to investigate the implications of 

assumption that the clay brick is manufactured in Lincoln and must travel 112 miles to 

reach the construction site. Figure 6-3 demonstrates the effects of reducing or 
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increasing the transportation distance between the manufacturer and the construction 

site. 

 
 

Figure 6-3: Sensitivity to increased travel distance of clay brick 

It is apparent that the controlling cost of clay brick over CSEB can be negated by 

transporting the clay brick as little as 85 miles further than originally positioned. The 

manufacturer originally selected in Lincoln, NE was chosen based on proximity and 

familiarity. It is reasonable that a potential end user on the Winnebago Reservation 

would, instead, receive bricks from either Sioux City, IA or Des Moines, IA – both large 

cities within a 200-mile radius.  

After discussion with the original manufacturers in Lincoln, NE, it was determined that 

any direct delivery from the manufacturer is rather unlikely as most large facilities 

contract with third party regional distributors. These distributors often cause increase 

travel costs as they are dispersed around the country, however their participation in the 
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transportation phase of the life cycle is outside the scope of this study. Consequently, it 

is adequate to note that transportation costs are highly dependent on travel distance 

and efficiency. In order to accurately compare the relative cost differential of CSEB 

compared to a clay brick alternative, factors such as availability, clay brick type and 

location of the distribution center must be weighed. 

Beyond these sensitivity analyses, it is also known that significant research shows earth 

based mortars (often composed of soil, sand and cement) are more appropriate for use 

with CSEB (Ouda 2009) than traditional Type N or S mortar. However, all mortar was 

ignored in this study, except for use during volume calculations, in order to focus on the 

comparison between two block materials. Had mortar associated with each building 

material type been included, additional costs would be found associated with the 

extraction and processing of sand, as well as more soil, for CSEB and additional cement 

for both masonry systems. Further, mortar on the construction site also necessitates a 

water supply which opens up potential for further assumptions based on how that 

water arrives at the site. 

Finally, as previously mentioned, the use and end of life phases for each building 

material alternative was not taken into account in this study. If end of life data were to 

be included in this study, the overall impacts for the three indicators would likely 

increase. The intentional exclusion of the use and end of life impacts are a point of 

uncertainty that has the small potential to change the results to favor one construction 

alternative option more strongly than the other. However, due to current state of 
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recycling brick in the construction and demolition industry, it is reasonable to figure that 

the end of life options for CSEB would be similar to those of clay brick, and thus, very 

environmentally sound.  
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Chapter 7 : Applied Thermal Conductivity Impacts 

As previously stated, the thermal resistance of probable insulation and other wall 

components common to a residential building that would generally be factored into 

total thermal resistance of the wall are outside the scope of this study. The analysis 

provided in this chapter is contained to a strict comparison of the effects of the different 

thermal conductivities between CSEB and clay brick. 

The thermal conductivity for CSEB found in Chapter 3 was 0.361 W/(m·K). Equation 2.1 

(Dondi et al. 2004) for determining thermal conductivity of clay brick based on bulk 

density from the literature review in Chapter 2 will be used in this analysis.  Considering 

a 25% void ratio, the bulk density of the utility brick is 2214 kg/m3. Substituting this 

value into Equation 2.1 results in a thermal conductivity for clay brick of 1.024 W/(m·K), 

and this value will be used in this study. 

Unit thermal conductance, U, is the thermal conductance for a unit area of material and 

can be determined by dividing the thermal conductivity of a material by its thickness, as 

demonstrated in Equation 7.1 (McQuiston et al. 2005).  

The heat transfer rate in each component of a building system is then given by, 

𝑈𝑈 =
k
Δ𝑥𝑥

 
(Eq. 7.1) 
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For a true Life Cycle Cost study, a comprehensive hour-by-hour and day-by-day 

parametric analysis would be conducted including variables related to building design, 

location, climate, orientation of the building, and analysis period (often lifetime) 

(Ghattas et al. 2016). Since these factors are outside the scope of this study, simplified 

snapshot studies are conducted to provide an informative picture of the impacts related 

to the differences in thermal conductivity between CSEB and clay brick during different 

seasons of the year. 

For example, the outside air temperature can easily reach a typical winter day average 

of 0°C (32°F) in eastern Nebraska while most homes try to maintain a comfortable 

interior temperature of about 20°C (68°F). Considering this potential temperature 

differential and both a thickness and surface area unique to each block, Table 7-1 details 

the heat transfer rate in the form of heat loss for both the CSEB and clay brick during a 

possible day in the winter season. 

 

𝒒̇𝒒 = 𝑼𝑼𝑼𝑼∆𝒕𝒕 

Where, 

       𝒒̇𝒒 = heat transfer rate (W) 

      𝑼𝑼 = unit thermal conductance (W/m2·K)  

      𝑨𝑨 = surface area normal to flow (m2)  

      ∆𝒕𝒕 = overall temperature difference (K)  

(Eq. 7.2) 
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Table 7-1: Heat transfer rate of CSEB and Clay Brick 

This heat loss aggregated over a 24-hour snapshot day accounts for 1.312 kWh and 

19.204 kWh additional heating load attributed to the use of either one CSEB or one clay 

brick, respectively. Table 7-2 demonstrates similar energy consumption calculations 

concerning a possible, yet undefined, snapshot day during the spring, summer and fall 

seasons due to the different thermal conductivities of the materials. 

Table 7-2: Energy costs per typical seasonal day for each block 

 

7.1. Indicator 1: Energy Use 

In consideration for this heat loss demonstrated across seasons in Table 7-2, additional 

energy consumption equal to the loss is necessary to maintain status quo in the 

residence. Figure 7-1 illustrates the comparison of additional energy consumption 

between CSEB and clay brick for the entire 5ft wall segment. 
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Figure 7-1: Thermal Conductivity: Energy Consumption (kWh) per 5ft wall segment 

7.2. Indicator 2: GWP 

The U.S. Environmental Protection Agency’s report on GHG annual output emission 

rates lists the MRO West eGRID region as having an annual output emission rate of 

1,425.15 lb CO2 /MWh (EPA 2015). Figure 7-2 exhibits the further global warming 

potential from the additional energy consumption necessary to compensate for the 

different thermal conductivity of the respective blocks. 

 
Figure 7-2: Thermal Conductivity: Global Warming Potential (kg CO2 eq.) per 5ft wall 

segment 
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7.3. Indicator 3: Cost 

According to the U.S. Energy Information Administration, the average cost per kWh in 

Nebraska in August 2016 was $0.12 (EIA 2016). Figure 7-3 converts the information in 

Figure 7-1 on energy consumption into the cost difference between CSEB and clay brick 

due to differing thermal conductivities across the four seasons. 

 

Figure 7-3: Thermal Conductivity: Cost ($) per 5ft wall segment 

The apparent impacts of different thermal conductivities between CSEB and clay brick 

result in over 10 times the energy consumption across all seasons for clay brick than 

needed for CSEB. This increased energy consumption correlates to a higher global 

warming potential (250 kg CO2 eq.) for clay brick than for CSEB (14 kg CO2 eq.). 

Substantially, clay brick could cost $9.00 more in heating costs per 5ft wall segment 

during the winter months.   
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Chapter 8 : Conclusions 

The potential for minimizing specific environmental impacts (CO2 emissions and energy 

use) and economic impact (cost) associated with the use of CSEB have been assessed 

and the objectives of this study were met: 

1) The thermal conductivity of the CSEB considered in this study was determined to 

be 0.361 W/(m·K) ± 20.0%. This value was compared to the thermal conductivity 

of clay brick, 1.024 W/(m·K), using a density relationship found in the literature. 

By comparison, CSEB can exhibit a third of the thermal conductivity of clay brick. 

2) A Life Cycle Analysis was conducted in order to compare the CSEB and clay brick. 

CSEB was determined to have about a quarter of the embodied energy and 

global warming potential of clay brick since the later results from energy 

intensive manufacturing processes. Additionally, CSEB proves to have a higher 

economic cost due to labor during the raw material extraction. However, the 

costs associated with transporting clay brick are highly sensitive to distance 

transported and have the ability to offset these CSEB labor costs in certain 

scenarios.  

Ultimately, the embodied energy of engineered earthen masonry can be 

minimized by maintaining manual processes in which soil extraction, sieving and 

mixing is done by hand. The tradeoff of these manual practices is a longer, more 

labor intensive construction process. However, for many communities who are 

potential users of this construction method, the manual process is the most cost 
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effective solution. 

Despite the additional labor costs, the local and small-scale nature of engineered 

earthen masonry construction is ideal in terms of sustainability due to the 

reduced environmental impacts caused by mass production processes and 

transportation often seen in the construction industry. In order to reduce cost of 

an earth block construction project, use of previously discarded soil from nearby 

excavations should be prioritized (Williams et al. 2010). This practice would 

eliminate cost of labor during the raw material extraction phase of the life cycle. 

3) The potential impact of choosing CSEB instead of clay brick in a building 

envelope in terms of differing thermal conductivity was investigated. Based on 

thermal conductivity, CSEB results in greatly reduced energy consumption, global 

warming potential and economic cost, saving up to 95% heating and cooling 

costs. Interestingly, some studies estimate that houses comprised primarily of 

heavy masonry will be able to provide comfortable living conditions without air 

conditioning until 2061, however houses that are timber framed will likely need 

additional cooling by 2021 (Williams et al. 2010). The thermal properties of CSEB 

have proven to aid sustainability efforts by providing increased thermal 

resistance to the building envelope. This allows for minimal heat loss compared 

to conventional alternatives with additional energy and cost savings along with 

reduced global warming potential. 

Further examination into lifetime of installed CSEB blocks and necessary maintenance of 

a residential dwelling composed of CSEB is necessary in order to fully encompass the use 
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phase into the Life Cycle Analysis. In the same regard, investigation into the end of life 

options for CSEB would make a substantial contribution to the literature on this 

sustainable building option. Additional research on the complete sustainability of CSEB 

is necessary in order to determine long term effects on health of potential residents due 

to indoor air quality concerns pertaining to abundant use of soil in the built 

environment.  

In conclusion, it has been demonstrated that earth construction achieves environmental 

and economic sustainability by offering material abundance (indigenous soil), 

opportunities for cost efficiency, and relatively easy manufacturing and construction 

processes that can be achieved locally. CSEB masonry successfully presents an 

affordable, durable, sustainable, and locally appropriate construction method.  
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 Glosssary of Terms 
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 LCA and Thermal Calculations 

Table A-1: Raw material extraction and manufacturing LCA calculations 

 

Table A-2: Transportation LCA calculations 
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Table A-3: Applied Thermal calculations 

 

 

Table A-4: GWP per typical seasonal day for each block 
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Table A-5: Cost per typical seasonal day for each block 
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 Geotechnical Data 

Table A-6: Batch 8 - Dry Sieve Test 

Batch 8 - Dry Sieve Test 

Sieve 
Number 

Sieve 
Weight 

(g) 

Sieve w/ 
soil Weight 

(g) 

Retained 
soil weight 

(g) 

Percent 
Retained 

(%) 

Cumlative 
Percent 

Retained (%) 
Percent 
Finer(%) 

4 528.15 536.17 8.02 1.3 1.3 98.7 
10 446.88 597.64 150.76 24.7 26.0 74.0 
20 378.19 627.34 249.15 40.8 66.8 33.2 
30 407.59 463.52 55.93 9.2 76.0 24.0 
40 380.59 430.45 49.86 8.2 84.1 15.9 
50 377.32 399.42 22.1 3.6 87.7 12.3 
60 365.16 375.95 10.79 1.8 89.5 10.5 
80 355.4 367.66 12.26 2.0 91.5 8.5 

100 350.64 354.19 3.55 0.6 92.1 7.9 
200 324.54 340.42 15.88 2.6 94.7 5.3 
Base 373.49 405.9 32.41 5.3 100.0 0.0 

TOTAL 3759.8 4362.49 610.71    
Initial Soil Weight =  610.71     

 

Table A-7: Batch 8 - Atterburg Limits 

Batch 8 - Atterburg Limits 
 

Can # 
Can 

Mass(g) 
Wet Soil and 
Can Mass (g) 

Wet Soil 
Mass (g) 

Dry soil and 
Can Mass 

(g) 

Dry Soil 
Mass 

(g) 
Moisture 

Content (%) 
# of 

blows  
Liquid 311 11.26 49.33 38.07 40.19 28.93 24.01 22 

 249 10.76 46.82 36.06 38.31 27.55 23.60 27 
 316 11.11 45.62 34.51 37.13 26.02 24.60 17 

Plastic 314 11.08 13.37 2.29 12.95 1.87 18.34 -- 
 256 10.72 13.82 3.1 13.3 2.58 16.77 -- 
         

         
Average Moisture Content at 25 Blows = Liquid Limit: 23.76   

Average Moisture Content of Plastic Limit Test = Plastic Limit: 17.56   
Plasticity Index: 6.21   
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Table A-8: Batch 9 - Dry Sieve Test 

Batch 9 - Dry Sieve Test 

Sieve 
Number 

Sieve 
Weight 

(g) 

Sieve w/ 
soil Weight 

(g) 

Retained 
soil weight 

(g) 

Percent 
Retained 

(%) 

Cumlative 
Percent 

Retained (%) 
Percent 
Finer(%) 

10 421.97 531.6 109.63 20.0 20.0 80.0 
20 427.81 618.57 190.76 34.8 54.8 45.2 
30 404.82 475.78 70.96 13.0 67.8 32.2 
40 392.78 440.65 47.87 8.7 76.5 23.5 
50 371.75 417.41 45.66 8.3 84.9 15.1 
60 374.03 386.24 12.21 2.2 87.1 12.9 
80 354.1 376.09 21.99 4.0 91.1 8.9 

100 350.62 356.65 6.03 1.1 92.2 7.8 
200 340.68 353.6 12.92 2.4 94.6 5.4 
Base 494.54 524.33 29.79 5.4 100.0 0.0 

TOTAL 3933.1 4480.92 547.82    
 546.5     
 
 

Table A-9: Batch 9 - Atterburg Limits 

Batch 9 - Atterburg Limits 
 

Can # 
Can 

Mass(g) 
Wet Soil and 
Can Mass (g) 

Wet Soil 
Mass (g) 

Dry soil 
and Can 
Mass (g) 

Dry Soil 
Mass 

(g) 
Moisture 

Content (%) 
# of 

blows  
Atterberg 1 

Liquid 16 11.76 41.58 29.82 33.98 22.22 25.49 16 
 215 11.22 44.62 33.4 36.29 25.07 24.94 20 
 301 11.04 40.75 29.71 33.4 22.36 24.74 29 

Plastic 320 11.07 12.86 1.79 12.53 1.46 18.44 -- 
 238 10.84 13.48 2.64 12.97 2.13 19.32 -- 
         

         
Average Moisture Content at 25 Blows = Liquid Limit: 24.83   

Average Moisture Content of Plastic Limit Test = Plastic Limit: 18.88   
Plasticity Index: 5.95   
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Figure A-1: Batch 9 - Aggregate Gradation Chart 
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Table A-10: Batch 10 - Dry Sieve Test 

Batch 10 - Dry Sieve Test 

Sieve 
Number 

Sieve 
Weight 

(g) 

Sieve w/ 
soil Weight 

(g) 

Retained 
soil weight 

(g) 

Percent 
Retained 

(%) 

Cumulative 
Percent 

Retained (%) 
Percent 

Finer (%) 
10 386.13 517.97 131.84 30.9 30.9 69.1 
20 432.91 517.18 84.27 19.7 50.6 49.4 
30 418.87 453.33 34.46 8.1 58.7 41.3 
40 477.55 511.76 34.21 8.0 66.7 33.3 
50 374.18 401.44 27.26 6.4 73.1 26.9 
60 378.29 391.7 13.41 3.1 76.3 23.7 
80 346.31 378.35 32.04 7.5 83.8 16.2 

100 351.52 360.73 9.21 2.2 85.9 14.1 
200 342.35 388.39 46.04 10.8 96.7 3.3 
Base 494.57 508.59 14.02 3.3 100.0 0.0 

TOTAL 4002.68 4429.44 426.76    

 

Table A-11: Batch 10 - Atterburg Limits 

Batch 10 - Atterburg Limits 

 
Can 

# 
Can 

Mass(g) 
Wet Soil and Can 

Mass (g) 

Wet 
Soil 

Mass 
(g) 

Dry soil and 
Can Mass (g) 

Dry 
Soil 

Mass 
(g) 

Moistur
e 

Content 
(%) 

# of 
blow

s  
Liquid 5 11.8 50.53 38.73 41 29.2 24.61 18 

 250 10.69 47.82 37.13 38.86 
28.1

7 24.13 27 

 213 11.2 46.41 35.21 37.79 
26.5

9 24.48 24 
Plasti
c 17 11.86 15.78 3.92 15 3.14 19.90 -- 

 310 11.21 14.71 3.5 14.02 2.81 19.71 -- 
         

         
Average Moisture Content at 25 Blows = Liquid Limit: 24.36   

Average Moisture Content of Plastic Limit Test = Plastic Limit: 19.81   
Plasticity Index: 4.56   
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Figure A-2: Batch 9 - Aggregate Gradation Chart 
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