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     With rapid technology development in the fields of biomedical devices, aerospace, 

automobile, energy, semiconductors, biotechnology, electronics and communication, the 

use of micro parts and devices with micro-features has become indispensable. Micro-

Electrical Discharge Machining (micro-EDM) because of its inherent characteristics is 

capable of fabrication of three-dimensional complex micro components and 

microstructures. However, due to difficulty in fully understanding of material removal 

mechanism, limited knowledge of process characteristics, lower material removal rate 

compared with other micromachining technique, the micro-EDM is only used in niche 

application. Therefore, in order to fully utilize the potential of micro-EDM, focused 

studies are needed to understand the fundamentals of process mechanism through crater 

formation, tool wear, debris formation, relationship between process parameter and 

process performance measures. 

The aim of this research work is to develop a predictive thermal model for the simulation 

of single-spark micro-EDM at anode surface. Finite Element Analysis was performed to 

solve this model using commercial available software COMSOL. This model assumed a 

Gaussian distribution heat flux, constant heat flux radius, constant fraction of total energy 

transferred to anode, temperature dependent material properties to perform transient 

thermal analysis to predict single discharge crater geometry and temperature distribution 



 

 

on the workpiece for different discharge energy levels (less than 1µJ). The simulated part 

whose temperature was higher than melting temperature considered as removed part. The 

experiments were performed for single discharge spark using a Resistor-Capacitor (RC) 

with titanium alloy Ti-6Al-4V (Grade 5) as workpiece material and tungsten as tool 

electrode. The experimental crater dimensions were measured by using atomic force 

microscope (AFM).The simulated craters dimensions were compared with experimental 

craters. Results showed close agreement between simulated crater radii and experimental 

crater radii for the discharge energy range up to 1µJ. 
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CHAPTER 1  

INTRODUCTION 

1.1 Background 

With rapid technology development in the fields of biomedical devices, aerospace, 

automobile, energy, semiconductors, biotechnology, electronics and communication, the 

use of micro parts and devices with micro-features has become indispensable. The 

Microsystems-based products such as medical implants, drug delivery system, diagnostic 

devices, connectors, switches, micro-reactors, micro-engines, micro-pumps and printing 

heads, represents key value-adding elements for many companies and thus, an important 

contributor to a sustainable economy [1]. In order to meet the increasing demand of 

manufacturing micro products and components in terms of tighter tolerances, higher 

accuracy and precision, superior surface integrity, improved reliability and repeatability, 

the capabilities of micro-manufacturing processes have to be continuously enhanced. 

Therefore, the continuous research to improve existing micro-machining techniques is 

essential to meet future micro-manufacturing needs. 

The advent of photolithography on silicon substrate has not only revolutionized micro 

electro-mechanical systems (MEMS) technologies but also it has established MEMS as 

an earliest competitive micro-machining process [2]. However, MEMS based techniques 

have limitations such as inability to fabricate miniaturized products and components that 

require complex three dimensional and high aspect ratio features, limited selection of 

work materials ( mostly silicon based) , huge capital cost and restrictive clean 

environment [3, 4]  
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To meet these limitations of MEMS-based machining processes, traditional machining 

processes such as drilling, grinding, milling and turning have been evolved in micro-

machining application over the period of time, where tool comes in direct mechanical 

contact with workpiece [4, 5]. These processes are capable of not only drilling 

micromoles, turning cylindrical shapes and fabrication of 2D and 3D micro-features but 

also have high material removal rate. However these traditional machining processes 

have limitations such as inability to machine advance material with high hardness, 

fabrication of micro-parts with complex geometries, lower rigidity and incapable for 

mass production. To address these limitations of traditional machining processes, non-

traditional machining processes are emerged as alternative techniques for micro-

machining[6]. Typical non-traditional machining processes are laser beam machining 

(LBM), focused ion beam machining (FIBM), ultrasonic machining (USM) and electrical 

discharge machining (EDM). 

1.1 ELECTRICAL DISCHARGE MACHINING (EDM) 

EDM is a thermo electric process which removes material from electrically conductive 

workpiece using series of discrete sparks that occurring between tool and workpiece in 

presence of dielectric fluid. The schematic illustration of EDM is shown in Fig. 1. where 

both tool and workpiece are immersed in and separated by certain distance in a tank that 

filled with dielectric fluid.  
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Figure 1 Basic schematic of an EDM system 

 

The tool moves downward towards the workpiece until gap between tool and workpiece 

reaches critical value (called as spark gap) so that applied voltage is high enough to 

breakdown dielectric and spark discharge takes place between tool and workpiece. 

During the discharging process, electrical energy from a pulse generator is turned in to 

thermal energy which generates a channel of plasma in the working gap between tool and 

workpiece at a very high temperature. This high temperature removes material from 

workpiece as well as tool by melting and vaporization. The melted material is removed in 

the form of debris by flowing dielectric fluid  

EDM has the following major advantages over the traditional machining process. 

• Capable to machine any conductive material regardless of its hardness 
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• Absence of mechanical contact between the tool and workpiece which eliminates 

mechanical deformation problems 

• The edges of parts machined are burr free 

• Capable to machine complex 3D structures 

• No pollution or filings that require expensive cleaning procedures 

These unique features make EDM a very versatile process in the manufacturing of 

complex shaped dies and molds of high strength materials. However, EDM can machine 

only electrically conductive materials. 

1.1.1 MICRO-ELECTRO DISCHARGE MACHINING (micro-EDM) 

The downscaling of electrodischarge machining for machining micro parts and micro 

features with high accuracy is termed as micro-electrodischarge machining (micro-

EDM). In micro-EDM the discharge energy between tool and workpiece is minimized 

and discharge current with an extremely short pulse width is used. In Micro-EDM- the 

principle of material removal is same as the conventional EDM i.e. by electro-thermal 

erosion phenomenon (absence of mechanical contact between tool and workepiece during 

material removal process). Micro-EDM because of its unique features such as absence of 

physical contact and significant forces between tool and workpiece enables to use tools 

with finer form and lower rigidity for machining and fabrication of intricate parts without 

significant tool and workpiece deflection. Also, micro-EDM requires simple equipment 

set up and low capital equipment cost. Micro-EDM because of its ease of implementation 
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stands out as most widely adopted nontraditional machining technique, outselling all 

other processes excluding milling, turning and grinding [7].  

1.2 PURPOSE OF RESEARCH 

Micro-EDM is used in various specialized processes like fabrication of high aspect ratio 

micro-holes in inject nozzles and fuel injection nozzles as well as in manufacturing of 

dies and moulds for mass production of micro-parts [8]. Although micro-EDM has 

already carved a niche itself as reliable micro manufacturing technique with its 

development, there are some process shortcomings such as lower material removal rate as 

compared to other micro-machining techniques, difficulties in understanding material 

removing mechanism and the effects of process parameters on performance measures, 

stochastic nature of process and occurrence of tool wear which limit its ability to attain 

wider range of utilization [9]. Therefore recent research has been concentrated on 

improving micro-EDM machining performance, such as Material Removal Rate, Tool 

Wear Rate and surface roughness. Although many studies have been conducted to 

address these areas, the outcome in terms of material removal mechanism and process 

characteristics are not clearly understood yet. Therefore, new process modelling and 

simulation approach is essential in order to fully utilize the capability of micro-EDM in 

wide range of application. 

In this study, thermal electrical theoretical model for a single discharge micro-EDM has 

been developed to determine crater geometry at anode at different energy level. Finite 

element method based commercially available software COMSOL is used to solve the 

underlying governing equation and associated model-specific boundary conditions. The 

simulation results were compared with experimental results.  
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The objectives of this research work are given below. 

1. Conduct an experimental study to identify the relationship between discharge 

energy (less than 1µJ) and crater geometry of micro-EDM. 

2. Perform Finite Element Method (FEM) to predict crater geometry and 

temperature distribution on the workpiece for micro-EDM. 

3. To validate the simulation results with experimental results. 

 

1.3 Thesis Organization 

 

Chapter 2 covered critical literature review. This literature will cover basics of EDM and 

process modelling in EDM and Micro-EDM 

Chapter 3 includes the experimental methodology and measurement techniques used for 

single spark crater.. 

Chapter 4 presents the development of theoretical model for single discharge in micro-

EDM. 

Chapter 5 presents experimental results of single spark. The effect of process parameters 

on crater geometry is discussed. Model results were compared with experimental results. 

Chapter 6 presents the conclusions and future work. 
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CHAPTER 2 

LITERATURE REVIEW 

 

This chapter present literature review of electrical discharge machining (EDM) as a 

technique for micro machining. This chapter is divided into three sections:  1. Basics of 

EDM, 2. Review of process modelling in EDM and micro-EDM and 3. Conclusion of 

literature review. The basics of EDM will provide the evolution of EDM, theory of EDM 

process and a comparison between EDM and micro-EDM. 

2.1 Basics of EDM   

The basics of EDM are first presented in the literature review prior to a critical literature 

review on process modelling of EDM and micro-EDM. This section presents a brief 

history of EDM and theory of EDM process in order to understand the EDM process. 

Finally, the last part describes distinction between EDM and micro-EDM. While 

covering EDM process theory, the material removal mechanism by electro-thermal 

nature, EDM process parameters and process performance are described. 

2.1.1 Evolution of EDM Process 

 

The origin of EDM can be traced as far as in 1770 when English chemist Joseph Priestly 

firstly detected the erosive effect of electrical discharge machining on metals [10]. 

However, due to the same volume of the workpiece and electrode material removal 

during the process, it was difficult to utilize this process efficiently. In 1943, the Russian 

scientists Boris Lazerenko and Natalya Lazerenko carried out revolutionary work on 
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Electrical Discharge Machining at Moscow University[10]. The Lazerenkos developed a 

spark machining process by analyzing the destructive properties of electrical discharge. 

The Lazerenko EDM system used resistance-capacitance (RC) power supply, which 

became the model for future RC-type pulse generating systems in use for EDM 

technology. 

The pulse generating system is one of the key elements in EDM which provides energy 

across the discharge gap to remove material. It directly affects the machining speed, 

machining precision, machining stability, surface roughness of workpiece and tool wear 

ratio in EDM [11]. The most commercially used pulse generators in EDM are Resistance-

Capacitance (RC) type and Transistor-type pulse generators. RC- type generators provide 

small discharge energies with very short pulse on time interval of sub-microsecond range 

therefore they are used in finishing and micro-machining [12]. Transistor-type generators 

are capable of generating higher frequency isopulses, i.e., repeated pulses with identical 

duration and magnitude; therefore they are employed in production of machined surfaces 

with controlled finishes [13, 14]. Although developed transistor-type isopulse generators 

are suitable for micromachining through evaluation of machining characteristic, RC-type 

pulse generators are still commonly used due to its simplicity of design.     

In order to use EDM as reliable machining technique while making consistent efforts in 

obtaining continuous machining performance outcomes and achieve accurate control of 

machining process, it is necessary to explores ways of process planning by process 

characteristics knowledge. Thus, extensive research and development effort have been 

directed in establishing EDM process characteristics, optimizing process parameters 
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based on process analysis[15, 16], advance process modelling [17-19], monitoring, 

control and automation [20, 21]. 

The increase in popularity of EDM in manufacturing world caused the shift from basic 

research to a more pragmatic, applied research [22]. Therefore, much research interest 

has focused in new EDM technique such as micro-machining [23, 24], machining of 

insulating ceramic materials [25, 26], powder mixed dielectric EDM machining [27, 28], 

hybrid processes by combining EDM with other machining [29, 30], dry EDM [31-34] 

and near dry EDM [35].  

2.1.1.1 Application of Micro-EDM in micro-machining 

The downscaling of EDM to micro level in micromachining application is defined as 

Micro-EDM. The unique features of Micro-EDM which makes its one of the most 

powerful micro-machining technique in comparison with other micro machining 

techniques are highlighted as follows. 

• Suitable for machining any electrically conductive and semi-conductive material 

• Absence of mechanical contact between tool electrode and workpiece 

• Negligible contact forces induced between tool electrode and workpiece 

• Capable to machine high aspect ratio features 

• Capable to machine three dimensional features 

• Capable to machine complex features in single workpiece setting 

• Capable to machine with minimal formation of burrs at machined edges 
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• A relatively versatile, reliable and cost effective machining method 

The unique feature which makes Micro-EDM as one of the important process in 

micromachining is its ability to machine any material with electrical resistivity up to 100 

Ωcm [36], with high surface accuracy regardless of its hardness and without additional 

workpiece conditioning [37]. As there is no physical contact between tool electrode and 

workpiece, the machining forces are very low during the machining. This enables to use 

thin tools for machining complex features with minimal tool and workpiece deflection. 

Micro-EDM is capable of not only drilling micro holes with high respect ratio and blind 

non circular holes with sharp corners and edges [38] but also milling three-dimensional 

profiles without repositioning workpiece to ensure minimal positioning errors [39]. Micro 

EDM allows obtaining high quality in shape and texture of machined surface with 

minimum burrs [40] or without burrs [41] which reduces manufacturing time in terms of 

performing deburring processes and avoid damage of micro-features. Due to simple 

equipment set up and low capital cost, Micro EDM becomes cost effective, reliable and 

versatile micro machining technique. 

In a review of developments in three dimensional micro machining using machine tools, 

it was proposed that Micro-EDM is the most effective technique for machining concave 

shapes due to the negligible machining forces and the ease of incorporating tool making 

subsystem such as wire electro discharge grinder (WEDG) on the Micro-EDM machine 

[42]. Moreover, It was indicated that Micro-EDM can be extensively adopted in EDM 

application [10]. Micro-EDM has been successfully tested for fabrication of micro-holes 

on insulating ceramics using assisted electrode method similar to EDM [43]. In addition, 

Micro-EDM has demonstrated its versatility in complex three dimensional structuring of 
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silicon through fabrication of various features which were proved to be difficult using 

MEMS based etching process [44]. Furthermore, Micro-EDM have been used in 

developing hybrid micro-machining process (HMP) in which Micro-EDM is combined 

with other material removing process such as laser machining to exploit synergism of 

these processes in terms of improving material removal or facilitating better machining 

conditions[45]. Based on the feasibility of applying EDM as alternative micro machining 

technique, Micro-EDM process has been developed over wide range of mode of 

applications such as die-sinking [46], drilling [47], milling [48], wire cutting [49], wire 

grinding [23] and turning [50]. However, the true potential of these processes measured 

in terms of their commercial applications are still limited to niche areas such as spinneret 

holes for synthetic fibers, production of tapered holes for diesel fuel injection nozzles, 

drilling of high aspect ratio micro-holes for inject-nozzles and micro-moulds making for 

mass replication processes [8]. To further enhance Micro-EDM technology’s 

competitiveness as alternative micro-machining technique and to meet the growing 

demand of miniaturized, precision parts in different industry application, it is necessary to 

improve machining performance of the Micro-EDM process by understanding EDM 

process characteristics.                      

2.1.2 Theory of EDM Process 

Almost about 70 years passed since the discovery of EDM technology, the exact physical 

phenomenon taking place during material removal in EDM is not yet fully understood 

[51]. The various theories based on theoretical and experimental research have been 

proposed to address the material removal mechanism of the EDM process. These theories 
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can be broadly categorized into two modes such as “electro-thermal mechanism” and 

“electro-mechanical mechanism” [52].  

Electro-thermal Mechanism – It is suggested that thermal melting and superheating are 

the dominant mechanism for the electrode material removal due to heat transfer from a 

superheated and highly pressurized plasma channel formed between the electrodes during 

an electrical discharge [53]. 

Electro-mechanical Mechanism – It is suggested that “yielding” is the main mechanism 

for electrode material removal for short pulses ( discharge duration <5µs) due to stresses 

generated within electrode by electrostatic forces acting on the electrode surface such that 

regions subjected to higher stresses than material yield strength [54]. 

Out of these two modes, electro-thermal mechanism is the most widely accepted process 

mechanism, which is discussed more in detail in the following section.     

2.1.1.2 The electro-thermal mode of material removal 

The electro thermal material removal mechanism composed of three stages namely, pre-

discharge phase, discharge phase and post-discharge phase. The following phases shown 

in figure 2.1 illustrate electro thermal material removal mechanism. 

b) In a typical EDM process, the electric discharge occurs in between positively-charged 

anode and negatively charged cathode in presence of a dielectric medium. When electric 

voltage input is applied across the cathode and anode, cathode emits the electrons. 

c) The electrons emitted from cathode collide with neutral atoms and particles in 

presence of dielectric medium along their path in between cathode and anode. This 
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results in formation of more electrons and ions. However, in some cases the conducting 

particles, such as debris of previous discharges are concentrated and attracted to areas 

with high electrical field intensity. The accumulation of particles aids in creating a 

bridging effect which reduces the inter-electrode gap and helps in discharge initiation. 

d) Due to the difference between mass of newly formed electrons and ions, newly formed 

electrons move at faster speed towards the anode as compared to ions which move 

towards the cathode. During this process electrons get accelerated, more electrons and 

ions would get generated due to the collision with more neutral atoms and particles. This 

cyclic process resulting in avalanche like formation of electrons and ions is known as 

impact ionisation. After the abridgment of inter-electrode gap by electrons, the dielectric 

breakdown occurs and discharge phase begins. 
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Figure 2.1 Electro thermal material removal mechanism 
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e) After breakdown, resulting conductive channel aids in easy movement of emitted 

electrons from cathode towards anode and intensifies the impact ionisation. This impact 

ionisation leads to formation of a plasma channel which generates a high heat flux 

because of its high current density. This plasma channel causes melting of electrodes. 

The temperature of plasma channel has been measured experimentally using the 

spectroscopy. It was reported that plasma channel temperature range from 4000K to 

8000K [55, 56] and 8000K  to 10000K [56]. 

f) The plasma channel continues to expand rapidly with continued emission of electron 

from cathode. During this phase, the high temperature from plasma vaporizes, 

disassociates and ionizes the dielectric at interface of plasma channel and dielectric, 

causing the formation and rapid expansion of a gas bubble [53]. The pressure within 

bubble becomes very high due to the inertia and viscosity of dielectric and the boundary 

between bubble and dielectric expands with the several tens m/s [12]. It was reported that 

pressure builds within bubble  range between 6bars and 14 bars [57]. This bubble 

pressure plays a significant role in superheating molten material with minimal 

vaporization [58] which results in formation of a pool of molten material, called as a melt 

pool. Some of the molten material gets pushed out from the melt pool due to pressure 

within bubble. It was suggested that the anode melts first before cathode because the 

electrons in the plasma channel move faster than ions and therefore a larger melt pool 

formed at the anode during the initial stages of discharge [59]. As the discharge durations 

in micro-EDM are in sub-microsecond range, the workpiece is set as anode and tool 

electrode set as cathode so that material removal is greater than tool wear. 
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g) Heat flux density afterward decreases at the anode with further expansion of plasma 

channel. It supports re-solidification of molten material as heat is conducted away from 

the melt pool through base material. However the molten material at cathode increases 

due to the impact of lower moving speed of positive ions [59]. Similar to the anode, some 

of the molten material also gets pushed out from the melt pool due to the pressure within 

bubble. This discharge phase comes to end when the discharge voltage applied across the 

electrodes is turned off or discharge current stops. 

h) When the supplied voltage or discharge current is turned off, the plasma channel 

collapses and bubble implodes violently and dielectric flushes in. The implosive force 

due to the sudden drop of pressure causes the molten material in the melt to be partially 

expelled. As the majority of molten material re-solidifies at the anode before the collapse 

of plasma channel, there will be minimum expulsion of material occurred. 

i) The dielectric cools and solidifies the expelled molten material. The sudden drop in 

temperature due to dielectric rush retains molten material in melt pool which re-solidifies 

as recast region of resulting crater.         
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2.1.2.2 Process Parameters and Performance measures 

Process parameters are the controllable input variables that affect the machining 

condition of the micro-EDM process. These machining conditions determine the process 

performance result, which are assessed by performance measures. The process 

parameters and their effects on the machining condition are enlisted in table 2.1. The 

various performance measures that are used to determine process performance results are 

presented in table 2.2  

                   Table 2.1 Process parameters effects on machining condition 

 

Process 

parameter 

                            Effect on machining condition 

Pulse on time Pulse on time is the discharge duration in which material removal 

takes place. During this time period current flows through cathode 

towards work material which results in formation of plasma channel 

causing heating of material. The longer the pulse on time, higher is 

the single pulse Discharge energy. 

Pulse off time Pulse off time is the time duration between two consecutive pulses 

on time period. During this time period, there is no discharge takes 

place between two electrodes as pulse generator is sets off is sets of 

in zero state. This parameter is important in order to make sure that 

deionization of dielectric takes place from previous discharge and 

dielectric regain its insulating properties. The Longer pulse off time 



18 

 

helps in obtaining stable machining condition by avoiding arcing. 

 

Process 

parameter 

                        Effect on machining condition 

Pulseoff time  

                              

Voltage Input voltage applied when the distance between tool electrode and 

material is too large, is called as open circuit voltage (Voc). As there 

is no flow of current between tool electrode and material, this 

parameter do not contribute to any material removal or tool wear. 

During this condition Voc increases until it creates ionization path 

through dielectric. Once the dielectric ionization occurs, current starts 

to flow. As current flows through dielectric, Voc drops to discharge 

voltage (Vd). Higher Vd settings increases discharge energy and also 

helps in improving flushing condition by increasing the gap distance. 

As voltage Vd is not constant during pulse on time, Vd quantified as 

average discharge voltage (Vav). 

Current The discharge current (Id) is known as the quantity of electrical 

charges flowing between the tool and workpiece electrode through 

dielectric medium. This parameter is important in Edm machining 



19 

 

because it causes primary heating mechanism. The discharge energy 

increases with increase in Id. In an RC-type pulse generator, Id is not 

constant during pulse on time, Id quantified as average discharge 

current (Iav) or peak discharge current (Ipk) 

Discharge 

Gap distance 

Discharge Gap distance is the maximum distance between the tool 

electrode and workpiece material where spark occurs. It is influenced 

by discharge energy. 

 

 

Process 

parameter 

                            Effect on machining condition 

Discharge 

Energy 

Input discharge energy (Ein), also referred as discharge energy, and is 

electrical energy used for material removal in discharge machining. In 

an RC-type pulse generator, this discharge energy is equal to stored 

energy in capacitor which depends upon applied capacitance and Voc. 

The amount of discharge is quantified from measured pulse on time, 

discharge voltage and discharge current. 

      Dielectric Dielectric act as medium which allow the controlled spark across the 

gap between tool electrode and workpiece. Plasma channel growth, 

force of plasma channel implosion and expulsion of molten material 

are effected partly by the dielectric medium. Dielectric medium acts as 
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quenching medium to cool and solidify the expelled molten material 

into debris during discharge. It helps in debris flushing by carrying 

away solidified debris across discharge gap. It also acts as heat transfer 

medium to absorb and cools the electrode and workpiece by drawing 

away the heat generated from the discharge locations. The selection of 

dielectric is crucial in EDM process because the properties of dielectric 

affect the processes performance with change in machining condition 

across the spark gap [60, 61]. 

Electrode 

Polarity 

Polarity of pulse generator connected to tool electrode and workpiece 

can either be positive or negative depending upon the wear dominance 

of respective electrode during pulse on time. In general, the polarity of 

cathode in Micro-EDM is negative so that wear of workpiece 

dominates. 

 

Process 

parameter 

                            Effect on machining condition 

Flushing Flushing is the process of removing the debris from the discharge gap 

and improves surface finish of machined material. It also supply fresh 

dielectric to the dielectric gap and cools the both electrode and 

workpiece. The insufficient flushing can results into unstable 

machining due to the accumulation of debris within the discharge gap. 
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It was found that flushing affects MRR and TWR in roughing process, 

also it affects the SI in finishing process [62]. In order to obtain good 

flushing condition in the discharge gap for conventional EDM, various 

methods have been developed such as forced flushing, jet flushing, 

immersion flushing and modification of tool electrode [63]. However, 

most of these methods are not suitable for micro-EDM due to the tool 

electrode and machined feature small size limitation and induced 

vibration which leads to bending or breakage of tool or feature. In 

micro-EDM, flushing effects are typically obtained by rotary motion of 

electrode or the workpiece [50, 64], ultrasonic vibration [65], magnetic 

field flushing [66] and gravity assisted flushing [67]. 

 

  

 

 

Table 2.2 performance measures that are used to determine process performance 

results 

 

Performance measure Process Performance result 

Material Removal Rate 

(MRR) 

MRR is considered as primary performance measure 

which reflects the erosion rate of the workpiece. Beside 
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the volumetric amount of workpiece material removal 

per unit time, the speed at which machining is carried 

also quantified in MRR measurement. MRR can be 

expressed as the ratio of volume of material removed 

from the workpiece to the total machining time. 

Tool Wear rate (TWR) TWR is considered as performance measure which 

reflects the erosion rate of the tool electrode. Beside the 

volumetric amount of workpiece material removal per 

unit time, it also plays an important role in geometrical 

accuracy of machined feature. 

Wear ratio (WR) WR in micro-EDM is influenced by parameters such as 

TWR and MRR. WR is expressed as the ratio of 

TWR/MRR. This parameter is used to quantify tool-

workpiece material combination pairs as different 

material combination leads to different TWR and MRR 

values. TWR can be improved by using a material 

combination pair which gives optimal TWR and MRR 

condition. 

 

Performance measure Process Performance result 

Surface Integrity (SI) Surface Integrity is a crucial performance measure used to 
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describe the inherent or enhanced condition of the machined 

surface, comprises surface roughness (SR), depth of heat 

affected zone (HAZ), recast layer thickness and micro crack 

density. 

Surface roughness (SR) Surface roughness (SR) is a performance measure that 

expresses the texture of the machined surface. The most 

commonly used parameters to measure the SR are Ra 

(arithmetic mean roughness value), Rmax (maximum peak-

to-valley height) and Rq (root mean square roughness 

value). It has been reported that discharge energy influences 

surface roughness [68, 69]. 

Recast layer thickness  Recast layer is an uneven, non-etchable topmost surface 

layered of machined surface which is formed by molten 

material solidifying at high temperature after discharge 

process. This layer is often referred as “white layer”. It has 

been reported that recast layer thickness is more influenced 

by pulse on time than peak current [68, 69]. 
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Performance 

measure 

Process Performance result 

Heat affected zone 

(HAZ) 

Heat affected zone is a layer, just below the recast layer, 

which has been subjected to the high temperatures of 

electrical discharge such that material did not melt but 

sufficient enough to cause a phase transformation, similar to 

that of heat treatment processes. The discharge energy 

magnitude influences HAZ [68, 69]. 

Micro-crack density Micro-crack density defined as the severity of micro-crack 

exists on the machined surface. These micro-cracks typically 

found in the recast layer but rarely extended beyond the recast 

layer. It has been found that discharge current and pulse 

combination pairs are having more dominant effect on micro-

crack density compared to discharge energy [69] 

 

The selection of process parameters combination for obtaining consistent machining 

performance in EDM is a challenging task due to the stochastic nature of EDM process 

and complex relationship between process parameters and process performance. 

Therefore, studies have been conducted to identify optimal process parameter 

combination by process analysis [70, 71]. Moreover, process modelling studies have been 

done to form expression between process performance and process parameters in order to 

better control the EDM process and predict its performance results [72, 73].    



25 

 

2.1.3 Comparison of Conventional (macro) EDM and micro-EDM 

Micro-EDM is derived from macro EDM by reducing the discharge energy and 

enhancing the positioning accuracy. The working principle of Micro-EDM is similar to 

conventional (macro) EDM. The differences between these two are summarized in table 

2.3  
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                 Table 2.3 Comparison between micro-EDM and conventional EDM [9] 

 Conventional (macro) EDM Micro-EDM 

The need of tool electrode precision and 

the clamping system (repeat accuracy) in 

conventional EDM is not high 

The need of tool electrode precision and 

the clamping system (repeat accuracy) in 

Micro-EDM is very high (  � 1µm)  

Conventional (macro) EDM Micro-EDM 

Typically used to machine large hole or 

pocket (>500 µm) 

Typically used to machine small hole or 

pocket (< 500 µm) 

The discharge gap distance between tool 

electrode and workpiece is large (>10 µm)  

The discharge gap distance between tool 

electrode and workpiece is small (< 10 

µm) 

Pulse on time in conventional macro 

EDM is large (> 1 µs) 

Pulse on time in Micro-EDM is small ( 

< 1 µs) 

Peak current is large ( > 3.5 A) Peak current is small ( < 3.5 A) 

Discharge energy is large ( > 25µJ) Discharge energy is small ( < 25µJ) 

The material removal rate in macro EDM 

is high 

The material removal rate in micro-

EDM is low 

Jet flushing method is typically employed 

in EDM 

Electrode rotation technique is 

employed for flushing 
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Erosion rate in conventional EDM cab be 

maximized within the allowable surface 

tolerances 

Surface roughness in Micro-EDM can be 

optimized within the erosion rate 

tolerances 

 

2.2 Process modelling in EDM and micro-EDM 

Researchers have conducted both theoretical and empirical studies to investigate the 

influence of process parameters on the process performance in EDM and Micro-EDM. 

These studies help in formulating the process models, which are useful in improving the 

process performance through the selection of parameters according to the desired 

machining outcome [19], and in obtaining the required quantitative relation for on-line 

adaptive control of the EDM process [18]. The models which are formulated by 

theoretical approach uses equations based on universal principles. These basic equations 

are then combined with equations of state that are estimated using empirical data. On the 

other hand, the models formulated by empirical approach uses empirical data obtained 

from different statistical methods, such as Taguchi method [15], response surface 

methodology [74], regression modelling [73], factorial design method [69], forecasting 

method such as artificial neural network [75] and residual grey dynamic model [72]. 

Although both theoretical and empirical models have been developed in order to predict 

the performance measures and process control, only theoretical models have the 

capability to address underlying principles and the physics behind the material removal 

mechanism in the process. Therefore, a theoretical approach was used in this work for 

modelling of the crater size of anode and review on theoretical modelling was done. 
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In order to determine crater size and performance measures in a single discharge EDM 

and Micro-EDM process, it is important to perform the heat conduction analysis due to 

heat input from a single discharge. Although both numerical and analytical modelling 

approaches can be used in order to obtain solutions for heat conduction analysis, 

numerical approach provide greater flexibility in applying thermal loadings, boundary 

conditions and material properties. However, in the analysis of heat conduction using 

both these approaches requires fundamental parameters such as characteristics of heat 

source and heat flux, duration of time for heat application and material properties. Based 

on process characteristics, modelling can be divided into three regions, namely, cathode 

erosion, anode erosion and plasma channel.      

An electro-thermal model was developed for EDM, in which a disk shape heat source 

was used to simulate the thermal heat input into the workpiece, which was assumed as a 

semi infinite cylinder [76]. The fraction of discharge energy transferred to workpiece and 

tool was assumed to be equal i.e. 50% (Fc = 0.5). The radius of heat flux and the 

thermophysical properties of the workpiece material over the whole temperature range 

were assumed as constant. The result of the temperature distribution of this model was 

found as a bowl shape with a nearly flat bottom surface. It was found that the calculated 

melting point isothermals were in good agreement with measured cross section of craters.  

A two dimensional heat flow erosion model was proposed for workpiece material. In this 

model infinite and finite cylindrical surface for workpiece in the radial direction was 

assumed [77]. The heat source was assumed as circular shape and also fraction of 

discharge energy transferred to both electrodes was assumed equal i.e. 50%. However, 

the analysis was done only in finite z direction, as this model was very similar to Snoey’s 
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model (Snoey and Van Dijck, 1971). The characteristics of temperature distribution of 

this model were found to be similar to Snoey’s model with larger affected surface 

distance for same temperature [78]. 

A model using a semi-infinite cylinder surface for workpiece with a disk shaped heat 

source was developed [79, 80]. However, this model was not specifically developed for 

the EDM process and constant heat flux, as the heat input was assumed without taking 

the account of fraction energy transferred to the workpiece. This model’s temperature 

distribution results were found to be almost similar with Snoey’s model [78]. 

An erosion model was presented by assuming a uniformly disc shaped heat source 

situated between two semi-infinite bodies (tool and electrode) and time dependant heat 

flux radius for single spark EDM [16, 58, 81]. This model assumed that conduction is the 

only medium for heat transfer from plasma channel to tool and workpiece. The fraction 

of total energy liberated through the conduction across the discharge gap was assumed as 

90% and equally distributed to workpiece and tool (Fc = 0.5). This model yields accurate 

results for depth-to-diameter ratio of craters with experimental results due to 

incorporation of growing plasma channel. 

A hybrid thermal model was developed by integrating empirical equation obtained using 

a stochastic methodology called Data Dependent Systems (DDS) [82], with heat 

conduction equation solved for transient temperature distribution. This temperature 

distribution was used to determine material melting temperature isotherm, which 

represents the geometry of characteristic crater. Based on the geometry of crater, the 

erosion rate per discharge was predicted.  
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A one dimensional heat flow cathode erosion model was developed by using point 

heat source which accepts power rather than temperature as the boundary condition at 

plasma channel/cathode interface instead of a disk shape for conduction [59]. The 

fraction of total power transferred to cathode was assumed as 18% (Fc = 0.18).This 

fraction power was measured using a current signal measurement from highly precision 

data. The average thermophysical properties of the material were applied over the 

temperature range from solid to liquid state. The resulting temperature profile obtained 

was spherical. 

An electro-thermal model for anode erosion was proposed by utilizing an expanding 

circular heat source which accepts power rather than temperature as boundary condition 

at plasma channel/cathode interface for conduction [83]. The fraction of total power 

transferred to anode was assumed as 8% (Fa = 0.8 %). This model considered Gaussian 

distributed heat flux on the surface of anode, which is assumed to be produced by 

supplied power and grow with time. The model estimated not only the rapid melting of 

anode material but also subsequent resolidification of the material for longer pulse on 

time. 

A variable mass, cylindrical plasma model was developed which expands with time for 

EDM spark process in liquid media [53]. This model estimated plasma enthalpy, mass 

density by incorporating thermophysical property subroutine and particle fraction by 

inclusion of the heats of dissociation and ionization for plasma created from demonized 

water as dielectric medium. This model provides important plasma parameters such 

plasma radius, temperature, plasma pressure, plasma mass and power fraction transferred 
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to plasma. This model estimated unique high pressure which showed that superheating is 

the dominant factor for EDM spark erosion.       

A model based on Finite Element Method was presented to predict material removal rate 

and depth of damaged layer [84]. This method was used to solve heat conduction 

equation for workpiece due to melting and simulations for single spark in the form of 

pulses. It was assumed that width and depth of formed crater depends on spark-radius and 

power intensity. The model estimated that MRR increases with power per cycle and 

decreases with an increase in machining cycle time. 

A model based on electro-mechanical mechanism was proposed for EDM process [54]. 

This model estimated that the electrostatic force was an important factor in material 

removal for short pulse on time duration below 5µs and considers thermal melting effects 

as insignificant in short pulse duration.  

A model based on Finite Element Method was developed by using discharge power as 

boundary condition using commercial software called DEFROM to predict temperature 

distribution, material transformation, residual stress and final crater shape for single spark 

EDM process using Eubank’s data [85]. It was found that the final shape of crater from 

DEFROM simulation result had depression in the middle with edges. However, the 

theoretical crater size by this model study had not compared with experimental crater 

size. 

A thermal-electrical model was presented based on Joule heating effect in the discharge 

channel using Finite Element Analysis for a single discharge EDM process [86]. This 

model assumed equivalent heat input radius, which is dependent on current intensity and 
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pulse duration. The thermo-physical properties of material used in this model assumed as 

average of both ambient and melting value. The resulting melting volume per discharge 

pulse was compared with experimental result of the Agie SIT data [59]. The author 

reported that Joule heating effect is the main source of thermal energy to increase 

discharge channel temperature and melting of both the electrodes. 

A non-linear, transient, thermo-physical model was developed to predict the shape of 

crater cavity and material removal rate for single spark die sinking EDM process using 

Finite Element Method (FEM) [87]. This model considered realistic assumptions such as 

Gaussian distribution of heat flux, spark radius based on discharge current and discharge 

duration, and latent heat of melting. It has been reported that energy distribution factor 

for cathode varies with energy zones such as 0.183 for lower energy zones (up to 100 mJ) 

and 0.183-0.2 for medium energy zone (100-650 mJ).It was found that MRR values and 

crater cavity shapes predicted by this model were closer to the experimental results. 

Although the theoretical models for both EDM and Micro-EDM share similar underlying 

principles, there are differences in electrical discharge characteristics for these two 

processes in terms of discharge energy, pulse on time and time variation of discharge 

voltage and current. Therefore, these factors causes’ variations in modelling Micro-EDM 

in terms of thermal loading characteristics, boundary conditions and equation of states; 

which consequently influence final process performance results. 

An analytical plasma channel model was presented for a single discharge Micro-EDM 

process [57]. This model incorporated various pre-breakdown phenomena such as current 

emission and bubble nucleation at micro-peaks in order to predict plasma temperature 
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and plasma pressure. The estimated plasma temperature and plasma pressure were found 

in the range of 8100±1750 K and 6-8 bars respectively. However, this model did not 

cover anode and cathode erosion for Micro-EDM in order to estimate the performance 

measures such as MRR, TWR and surface roughness. 

A mathematical model was developed based on heat transfer principles, which was 

solved using commercial available finite element method to estimate the crater size, 

temperature distribution on the workpiece and residual stress on and near the crater for a 

single spark Micro-EDM process [88]. This model assumed the constant heat input radius 

with a Gaussian heat distributed heat source. The thermo-physical properties of material 

used in this model assumed as temperature dependent. The fraction of total energy 

transferred to anode was assumed as constant i.e. 8 % (F=0.08).The simulated crater 

dimensions and residual stresses were compared with experimental values. It was found 

that simulated residual stresses near the crater exceeds the ultimate strength near the 

spark center and decreases with increases in distance from center. However, simulated 

crater size was found to be much smaller than experimental crater size. 

A MATLAB and FEA based thermo-numerical model was presented, which simulated 

the material removal mechanism and residual stress for a single discharge Micro-EDM 

machining on Molybdenum [89]. However, the spark radius for this model was assumed 

to be constant. The fraction of total energy transferred to anode was assumed constant i.e. 

8 % (F=0.08). This model studied the effect of important EDM parameters such as pulse 

duration on crater dimension and tool wear percentage. This model compared simulated 

crater size with experimental data which showed that size of crater can be effectively 

approximated using thermo-numerical method for a single discharge Micro-EDM 
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process. It was found that percentage of tool wear decreases with an increase in the pulse 

duration. A coupled thermal-structural finite element analysis showed that tensile residual 

stresses builds up near the crater boundary in all direction causing surface damage such 

as micro-cracks. In this process the input energy range of 60 µJ to 600 µJ was used. 

A theoretical model was proposed, which solved thermal conduction equation by 

analytical approximation approach using process parameter settings, within a range of 5 

µJ to 150 µJ for predicting Micro-EDM process performance measures such as MRR, 

TWR and surface roughness, based on geometry of single crater [90]. The correction 

factors were determined by comparing performance measure values with corresponding 

measured values. These correction factors could be then used to recalibrate performance 

measures values in order to approximate analytical performance values with empirical 

values.  

A theoretical model was proposed based on electro-thermal material removal mechanism 

for single discharge Micro-EDM [91]. In this model, expanding circular heat source with 

time varying heat flux was used as thermal loading condition for heat conduction 

analysis. This heat conduction model was solved using finite elements methods. This 

analysis showed that the plasma flushing efficiencies (PFEs) at anode for discharge 

energies of 1.6 µJ, 3.4 µJ and 14.6 µJ were found to be in a range of 19%, 23% and 33% 

respectively.      
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2.3 Conclusion of Literature Review  

The process models developed based on theoretical approach provides not only the 

relation between process parameter and process performance  to predict performance 

parameter but it also helps to better understand material removal mechanism during 

machining. Based on the results of studies conducted, there are certain gaps in modelling 

of micro-EDM process. 

1. Limited studies have been carried out in anode process modelling and simulation 

for micro-EDM when the discharge energy is less than 1 µJ and pulse on time less 

than 50 nanoseconds. 

2. Heat input radius equal to crater radius has not been considered in previous 

electro-thermal modelling approach.                  

 

 

 

CHAPTER 3 

EXPERIMENTAL METHODS AND MEASUREMENT TECHNIQUES FOR 

SINGLE SPARK ANALYSIS 

 

3.1 EXPERIMENTAL OBJECTIVES 

To better understand single spark analysis, it is necessary to identify and understand the 

factors affecting the crater size. The factors affecting the crater sizes have been studied 

by conducting series of machining experiments. This chapter initially covers the 

experimental set up for single spark analysis on micro-EDM. The experimental setup 
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consists of single discharge experiment, workpiece, tool electrode and dielectric. Later 

the methods used in preparation of workpiece samples and the measurement of 

performance parameters are discussed. 

3.2 Experimental setup 

The experimental setup includes equipment and materials used in performing micro- 

EDM experiments. Based on experimental objectives, equipment’s and materials were 

selected. 

3.2.1 Micro-EDM MACHINE 

The commercial Panasonic micro-EDM machine (MG-ED72W) operated with CNC 

Control system was used to conduct single discharge experiments with different 

machining parameters such as discharge energy and discharge gap distance. This unit can 

generate single pulse discharge resulting in distinct and ordered craters at different 

locations. Also, this unit equipped with data acquisition system to capture electrical 

parameters of each discharge so that resulting craters could be studied in relation to 

machining and discharge parameter used. Figure 3.1 shows the micro-EDM set up used 

in this for experiment. The features of machine are listed below. 

3.2.1 Tool Electrode – The tool electrode is placed inside mandrel and the tool is ground 

to a precision on the orders of micrometers. This mandrel linked to V shaped ceramic 

bearing through belt connection. This belt connection enables the rotation of tool 

electrode with minimum eccentricity and alignment through a variable speed motor 

attached to mandrel. A built in wire electrical discharge grinder facilitate to reduce the 
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diameter of tool electrode to a required diameter and most importantly responsible for 

reducing eccentricities on the tool electrode. 

3.2.2 X-Y table – This X-Y table consists of dielectric tank. A closed loop NC control 

system drives this stage at 0.1 µm using stepper motor and a ball screw attachment with 

glass scale positioning sensor. The workpiece is placed inside the dielectric tank. 

 

The pulse generator in micro-EDM machine (MG-ED72W) is relaxation-capacitance 

(RC)   circuit as shown in figure 3.2 consisting of open circuit voltage which could be set 

from 0V to 120V, resistor labeled R and four capacitors  setting labeled as C1, C2, C3 and 

Voltage Probe 
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C4 with capacitance values of 3300pF, 200pF, 100pF and 0pf, respectively. The tool 

electrode could be rotated at 3000 rev/min. Conventional polarity arrangement in micro-

EDM could be selected through a connecting RC pulse generator to tool electrode and 

anode such a way that tool electrode is place as cathode and workpiece as anode.  

                                                                                                                         

The following are key points about the relaxation circuit. 

1. The construction of the power generator is simple and robust. 

2. A very small energy is stably achieved with small pulse duration 

3. The material removal rate is low because of the time required to charge the 

capacitor. 

4. It is difficult to obtain uniform surface finish due to varying discharge energy.  

5. There is possibility of thermal damage on the workpiece if dielectric strength is 

not recovered after previous discharge.  
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In spite of these limitations, the RC pulse generator can generate small discharge energy 

by selecting minimum capacitance value in the circuit, and hence is widely applied in 

micro-EDM. 

3.2.3 Work piece and tool electrode 

The work piece material used in the experiment was titanium alloy (Ti-6Al-4V, grade 

5).The chemical compositions of the workpiece material are shown in Table while its 

thermo-physical properties are shown in Table. The dimension of workpiece sample is 

20mm X 20mm X 1mm. 

                    Table 3.1 Chemical composition of titanium material  

Workpiece 

material 

          Typical chemical composition (%) 

Titanium                      Al            Fe       O       Ti           V 

                                         6             0.25    0.2    90          4 

 

                     

                 Table 3.2 Thermo-physical properties of titanium material 

Property             Workpiece material 

              Titanium 

Density, ρ (kg/m
3
)                                                                        4430 

Thermal Conductivity, K 

(W/m.K) 

               6.7 

Specific Heat, c (J/kg.K)                4430 

Melting Temperature, Tm (K)                526.3 
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3.3 Work piece preparation  

Before conducting experiment, the workpiece sample was pre-polished to achieve a 

mirror surface finish in order to detect distinct single discharge crater. A reference plane 

with different slots was made on workpiece. Then by machining at predefined locations 

the distinct crater size with different energy levels are were revealed and measured under 

SEM. 

The tool electrode used in the experiment was tungsten wire electrode with diameter of 

125µm.In order to detect distinct single discharge crater the diameter of 125 µm was 

reduced to diameter of 100 µm using wire electro discharge grinding (WEDG) system. 

While performing experiments for single discharge, the tool electrode was rotated at a 

speed of 1000rev/min. 

3.4 Characterization techniques 

Characterization technique infer to the measurement and inspection methods which are 

used to measure and/or investigate the features of interest in terms of quantitative and 

qualitative manner. This section covers equipment used to calculate the experimental 

performance values related to the research.  

3.4.1 Voltage and current probes with oscilloscope 

In order to capture changes in voltage and current during electrical discharge duration, 

voltage and current probes were used.  All the voltage and current changes recorded 

through waveforms are displayed quantitatively on the oscilloscope. The electrical 

discharge data acquisition system consists of TektronixP5205 voltage probe, Tektronix 

A6302 current probe and Tektronix TDS2022 oscilloscope with sampling frequency of 2 
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giga-samples per second. This high sampling frequency is necessary to minimize the 

issue related to aliasing, especially when duration of discharge is in sub-nanosecond 

range. The machining parameters such as breakdown voltage, average discharge voltage, 

average discharge current, peak discharge current and pulse on time are the important 

crucial factors in better understanding the discharge mechanism and for calculation of 

total discharge energy in micro-EDM. These factors can be obtained through discharge 

voltage and discharge current waveforms captured using the voltage and current probes. 

These waveforms can be displayed on the oscilloscope. A typical voltage and current 

waveform is illustrated in figure 3.3  

 

 

 

 

 

 

 

 

Figure 3.3 Typical voltage and current waveforms 

 

a : Breakdown Voltage 

b: Average discharge 

voltage 

c: Peak discharge current 

d: Average discharge 

current 
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The above mentioned breakdown voltage represents the voltage measured across 

discharge gap just before dielectric breakdown. This breakdown voltage can be equal to 

or smaller than the open circuit voltage (Voc). 

 

The following equations are used to compute the values of average discharge voltage and 

current, by time averaging total discharge voltage and current over the pulse on time. 

                                                                                                                

(3.1) 

 

                                                             (3.2) 

 

Where Vav represents the average discharge voltage, Iav represents average discharge 

current, V (t) represents voltage as function of time, I (t) represent current as a function of 

time, t1 and t2 represents start and end of pulse on time respectively. 

   Also, the input discharge energy and measured energy can be computed using equations 

(3.3) and (3.4), respectively 

                                                                                                             (3.3) 

                                                                                                     (3.4) 
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Where Ein represents as input discharge energy, Em represents as measured discharge 

energy, C represents as selected capacitance and Voc represents as open circuit voltage. 

 

 

The measured discharge energy is computed from measured discharge voltage and 

current waveform. This can be expressed in the discretized form and its equation is as 

follow. 

       

                                                                                               (3.5) 

         where 

                   

 Vi represents the discretized discharge voltage at i
th

 time step, Ii the discretized discharge 

current at i
th

 time step and n the total number of time steps. 
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CHAPTER 4 

PROCESS MODELLING AND SIMULATION 

 

This chapter presents the results of numerical simulation conducted for micro-EDM 

process. The first section provides the purpose of developing single electrical discharge 

model for micro-EDM. Afterwards, the finite element method used for modelling and 

simulation is explained.  

4.1 Single electrical discharge model for micro-EDM 

Many researchers have attempted to describe the crater formation due to single electrical 

discharge in micro-EDM [57, 78, 90]. However, the discharge energy level in all the 

models was greater than 1µJ. The purpose of model describing micro-EDM not only used 

to elucidate the mechanism of material removal, it may also serve as tools to predict 

process performance without the need of actually performing the experiments.    

4.2 Modelling with finite element method 

From earlier study it is evident that the material removal mechanism in EDM is stochastic 

in nature and it involves combination of several disciplines such as electrodynamics, 
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thermodynamics and hydrodynamics [92]. It is difficult to present simple and 

comprehensive model explaining the nature of process in detail. To overcome these 

complexities arising from multi-disciplined nature of process, there is need to make 

simplification to thermal loading and boundary conditions while developing material 

removal model which can be solved either by analytical or numerical methods. Analytical 

approach has a limitation of applying specific thermal loading and boundary condition. 

However, numerical approach  provide greater flexibility in applying thermal loads, 

boundary conditions and material properties which helps to add wide range aspects of 

electrical discharge erosion process in order to investigate further insights into material 

removal process. In addition to these benefits, numerical approach shows various 

isothermal lines to identify different heat affected zones [93]. Finite element method is 

one of the numerical analysis methodologies implemented for investing process 

mechanism in EDM. 

4.2.1 Physical description 

The material removal in electro-thermal form of EDM can be modelled as superheating 

of workpiece electrode by incident of plasma channel formed between two electrodes, 

namely tool and workpiece. This results in to formation of crater on workpiece surface 

through thermal melting and vaporization. In the present work, cylindrical shaped plasma 

channel has been assumed. Due to axisymmetric nature of heat transfer between tool 

electrode and workpiece, a two dimensional model is assumed in the radial and axial 

coordinates of coordinates of the cylindrical system as shown in figure 4.1. 
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                          Figure 4.1 Schematic sketch of the physical model 

 

                                Figure  4.2  2D Model for micro-EDM process 

 

EDM is a stochastic process because of the uncertainty arising due to factors such as 

plasma radius, shape of plasma channel heat source, energy distribution between 

workpiece and tool electrode. As a result it is difficult to incorporate the effect of all the 

parameters in the model for predicting crater size. The actual problem can be solved by 

making certain assumption.  

Modelling involves following basic assumption were made  

1. For the analysis only one spark is considered. 

2. The domain is considered to be axisymmetric about r-z plane. 

3. Heat transfer within workpiece surface is dissipated by conduction and by 

convection at workpiece-dielectric liquid interface. 
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4. Gaussian heat flux distribution is considered as heat source incident on the surface 

of workpiece material during the pulse on time. 

5. The material properties of workpiece are considered as temperature independent. 

6. Plasma radius is assumed to be equal to crater size. 

7. The fraction of total discharge energy is distributed as heat input into workpiece; 

rest is lost into dielectric convection and radiation. 

8. Tool and workpiece are considered to be isotropic and homogeneous in nature. 

9. The ambient temperature is room temperature. 

10. The transient type of analysis is considered for temperature. 

11. The capacitor is fully charged and discharged during the process.   

 

 

The important parameters which contribute to the accurate prediction by EDM models 

include amount of heat input, radius of plasma channel and the thermo-physical 

properties of the material. Mathematical equations of these elements are essential in 

thermal analysis of EDM using FEM method, which represents different aspects of 

electro-thermal material removal process. These equations include thermal conduction 

model, expression for plasma radius and heat flux. 

4.2.2 Thermal conduction model 

The governing equation used for heating of axisymmetric workpiece due to single spark 

without internal heat generation in terms of cylindrical coordinates is given by  
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where ρ is the density,  is the specific heat capacity, T is the temperature, t is the time, 

k is the thermal conductivity of workpiece material and r and z are coordinate axes. 

4.2.2.1 Heat source 

In the modelling of single spark discharge, different characteristics of plasma channel 

have been used such as shape, size and time-dependent growth [94]. The theoretical 

prediction of amount of heat applied to workpiece depends upon idealized geometrical 

shapes of plasma channel. It is found that plasma channel radius in EDM is an expanding 

quantity and its radius changes with time and is given by [59] 

                                  (4.2) 

However, there is limitation for calculating this constant k in micro-EDM. Further, It was 

proposed that for precise simulation of electrical discharge erosion process circular shape 

and time dependent growth of plasma diameter should be considered [95]. Therefore, the 

circular shape plasma channel was assumed in finite element analysis (FEA) to simulate 

workpiece-material in this research work. However, measurement of plasma radius is 

extremely difficult due to high pulse frequency constraints [96]. It was suggested that 

plasma radius can be determined from crater radius [97]. Also, it was proposed that crater 

radius was equal to plasma radius [98]. Moreover, it was found that plasma radius 

becomes equal to crater radius with increase in pulse duration [13]. In present study, the 

                                        (4.1) 



50 

 

time dependent plasma radius was assumed to be constant and is equal to measured crater 

radius from single discharge experiment.     

4.2.2.2 Heat flux 

In the most of the published single spark mathematical modelling studies, researchers 

have considered uniform heat flux distribution within plasma channel transferred to 

workpiece. This application of uniform heat distribution on work piece is far from reality. 

This facts is evidence from the temperature distribution inside the plasma channel using 

spectroscopy technique [94, 99]. However, some researchers [87, 89, 100]  have 

considered Gaussian distribution of heat flux. Assuming Gaussian heat flux distribution, 

the expression for heat flux  at radial distance from the axis of spark is given by 

[96]  

                           (4.3) 

Where is the maximum heat flux at (r = 0) which can be calculated as: 

          

Where F represents the fraction of total energy distributed to the workpiece electrode, V 

the discharge voltage, I the discharge current and Rp the plasma radius. The heat flux 

parameters such as average discharge voltage and average discharge current can be 

determined empirically from discharge voltage, discharge current and pulse on time. The 

exponent -4.5 used in the above equation signifies that how flat the Gaussian heat flux is 
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[94]. With increase in the value of this exponent (0 for example) the heat flux distribution 

becomes very flat while for exponents lower than this value heat flux distribution is 

steep. The -4.5 value exponent used in the equation is in good agreement with 

measurement obtained using spectroscopy [94] . 

Fraction of total discharge energy F distributed to anode is important parameter as it 

determines the amount heat flux going to workpiece. It has been suggested that material 

properties of individual electrodes and pulse duration effect fraction total energy [96]. 

This fraction of energy can be determined empirically or theoretically. It was found that 

34% of total energy transferred to workpiece by measuring electrode temperature during 

EDM process [18]. It has been estimated that 18% of total energy is distributed for EDM 

process [59]. It was suggested that the fraction of heat flux distributed to workpiece 

decreases with increase in pulse on time in micro-EDM process [101]. It was found that 

10.37% of total energy is distributed to workpiece by measuring electrode temperature in 

micro-EDM process [102]. It was assumed 39% constant fraction of total heat flux 

transferred to workpiece for micro-EDM process [90]. In present work, F is taken as 0.39.      

 

4.2.2.3 Boundary Condition 

The schematic diagram of the simplified micro-EDM thermal model with applied 

conditions during pulse on time is shown in figure 4.2. During the pulse on time on top 

surface at Z=0, heat input transferred to workpiece is represented by the Gaussian heat 

flux distribution. This Gaussian heat flux distribution is applied up to the plasma radius 

Rp as shown in equation. Boundary 3 is modeled as convective boundary condition due to 
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the heat loss to the coolant. For other surfaces T2 and T3, no heat transfer occurs as they 

are assumed to be too far away from heat source. Due to axis symmetry of boundary T4, 

heat transfer has been taken as zero as there is no gain or loss across this boundary. In the 

micro-EDM process, the workpiece is immersed in dielectric medium. Therefore an 

ambient temperature is applied on as initial condition to the whole domain. 

Initial and boundary conditions are as follows 

IC:  at t=0 

                    T(r, z, 0) = T0  

BC     at t ≥ ton, 

                         when R<r for boundary 3 

                                                    when  R>r for boundary 4                  

                                                                                                                    for boundary 1,2 and 5  

Where n is the normal direction on the surface, hf is coefficient of convective heat 

transfer at work-dielectric fluid interface and T0 is the ambient temperature.            

4.3 Numerical model 

COMSOL is used to simulate a two dimensional thermal, finite element model based on 

heat transfer physics for of single spark micro-EDM.COMSOL is a Finite Element 

Analysis (FEA) software package that allows user to develop 2D models with associated 

boundary condition. This software allows the user to define material properties and 
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equation within program to yield accurate representation of the problem. Comsol post-

processing function gives the user visual representation of data which helps in assessing 

the results. 

The heat transfer module of Comsol is used to solve heat conduction equation for the 

transient response. Further, two dimensional axisymmetric geometry is created with 

assumption that heat source and resulting craters are axisymmetric about the center of 

circular heat source. Heat flux boundary condition was applied on boundary 3. The 

second was convection boundary condition applied on boundary 4. As boundary 2 and 5 

are away from the heat source, room temperature boundary conditions were assigned. 

The boundary 1 which represents line of axisymmetry was considered as adiabatic 

boundary condition. 

The domain is considered as to be a semi infinite object in which model dimensions are 

ten times the dimensions (radius and thickness) of plasma radius Rp, as there is no change 

is found in FEM result while considering larger semi-infinite boundary conditions of the 

domain. 

Mapped meshing is carried out with more number of elements distributed at heat affected 

zone where high gradient temperature exists as shown in figure. The FEA mesh had total 

4160 elements and 16909 nodes. The size of smallest element is of order 0.2 * 0.2 µm.   
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             Figure 4.3 Mesh generation for FEM full model 

 

 

4.4 Simulation Results and discussion 

In this section FEM simulation results obtained during thermal model development were 

presented and discussed. Samples of simulated results were illustrated.  
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4.4.1 Temperature distribution 

Figure 4.4a and 4.4b figure show temperature variation over the pulse on time obtained 

on top surface at a radial distance of 5 µm from center and at a of depth 2 µm from the 

top surface, i.e. along radial and axial directions for discharge condition I (0.1 µJ). From 

the figures, the radial distance on top surface and axial distance along depth showing 

temperature more than melting point were selected as removed part from material. Also it 

can be seen that change in temperature along the radial axis and vertical axis for any 

point has similar trends. Due to Gaussian heat source, the temperature is highest at origin 

and gradually decreases with increase in distance from center. Similarly the temperature 

distributions resulting from simulation of single discharge at discharge condition II to VI 

are shown in figure 4.5 to 4.9 figure. 
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(a) Along radial axis 

 

 

 

 

 

 

                                                              (b) Along vertical axis 

Figure 4.4 Temperature variation with respect to distance for discharge condition I 

(0.1 µJ) 
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(a) Along radial axis 

 

 

 

 

 

 

(b) Along vertical axis 

Figure 4.5 Temperature variation with respect to distance for discharge condition II 

(0.238 µJ) 
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(a) Along radial axis 

 

 

 

 

 

 

 

 

(b) Along vertical axis 

Figure 4.6 Temperature variation with respect to distance for discharge condition 

III (0.273 µJ) 
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(a) Along radial axis 

 

 

 

 

 

 

 

 

(b) Along vertical axis 

Figure 4.7 Temperature variation with respect to distance for discharge condition 

IV (0.373 µJ) 
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(a) Along radial axis 

                                                           

 

 

 

 

          

(b) Along vertical axis 

Figure 4.8 Temperature variation with respect to distance for discharge condition V 

(0.6 µJ) 
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(a) Along radial axis 

 

(b) Along vertical axis 

 

Figure 4.9 Temperature variation with respect to distance for discharge condition 

VI (1.087 µJ) 
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The FEM simulated thermal distributions of single electrical discharge at discharge 

condition I to II and III to VI are shown in figure 4.10 (a) to 4.10(b) and in figure 4.11 (c) 

to 4.11 (f) respectively. The dotted lines represents simulated melting isotherm and solid 

lines represents estimated crater profiles obtained from single discharge experiments. The 

estimated crater profiles obtained from experiments represented by circular arcs passing 

through measured radius and depth values.       

 

(a) Discharge condition I (0.1 µJ) 

 

(b) Discharge condition II (0.238µJ) 
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     (c)  Discharge condition III (0.273µJ)               (d) Discharge condition IV (0.373 µJ) 

      

 

 

 

 

 

                (e)  Discharge condition V (µJ)                      (f) Discharge condition VI (µJ)      

Figure 4.10 Thermal distribution for heat flux on a workpiece 
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CHAPTER 5 

EXPERIMENTS 

 

This chapter covers results of single spark experiment conducted to investigate the 

material removal mechanism in micro-EDM. The sparks are generated to form craters 

with different input energies typically engaging in micro-EDM. These formed craters 

used mainly to compare the results obtained by FEM simulation results. In this chapter 

advantages of single spark experiments are explained, followed by description of 

experimental method. Then, the effect of different process parameter on crater geometry, 

morphology and discharge waveform is discussed. Final section presents model 

verification by comparing simulation results with experimental results. 

5.1 Single Spark experiment 

To understand the effect of process parameters on material removal mechanism in micro-

EDM, it is meaningful to investigate crater form due to the single spark of the process, 

under representative machining condition. Also this crater produced by one single spark 

pulse helps in improving machining precision. The single spark experiment is conducted 

to form non-overlapping craters and also to analyze individual craters produced by 

respective electrical discharge condition. This might help in building relationship 

between each recorded current and voltage waveform with resulting crater geometry and 

morphology. The crater diameter can be easily identified by forming single crater on 

smooth surface. This not only helps in measuring crater diameter accurately but also in 

observing crater morphology since single crater is more clearly visible as compared to 

multiple overlapping craters. Thus, the single spark experiment was conducted. 



65 

 

5.2 Experiment Design 

The single discharge experiment was performed using three capacitance and open voltage 

levels of C1, C2, C3 and V1, V2 and V3 with the aim of studying effect of measured 

discharge energies on resulting crater size and morphology. Complete set of experiment 

parameters used in single spark experiment as shown in Table 5.1. The specific 

parameters for this study are measured discharge energy. Using combination of input 

parameters shown in Table 5.2, experimental runs were conducted and the outputs of 

crater were geometry were measured and discharge waveforms were recorded. 

Table 5.1 Experimental parameters for single spark experiment 

 

Parameter Value 

Open Voltage, Voc (V) 70,110 

Capacitance, C(pF) 10,100,220 

Workpiece material Titanium, 

Tool electrode material Tungsten 

Tool electrode diameter (µm) 100 
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Table 5.2 Input parameters for each experimental run 

 

Run Discharge Condition Capacitance  (pF) Open Voltage (V)                  Input Energy 

(µJ)            

1 I 10 70 0.0245 

2 II 10 110 0.0605 

3 III 100 70 0.245 

4 IV 100 110 0.605 

5 V 220 70 0.539 

6 VI 220 110 1.331 

 

Prior to start of the experiment, workpiece specimen was prepared by polishing so that 

small discharge craters can be distinguish from the original surface. The surface of 

workpiece was machined with marks  in order to identify the single spark of a particular 

discharge condition. For each run appropriate capacitance and open circuit voltage was 

selected based on required input energy, defined as measured energy. To create a single 

spark crater, G28.1 surface detection function of micro-EDM machine was used. This 

geneate some sparks while touching the workpiece surface which results in formation of 

cluster of sparsely distributed craters on workpiece surface with resaonable consistent 

size and shape.Figure 5.1 shows the example of crater cluster generated using discharge 

condition I for micro-EDM. Out of these craters produced on workpiece surface, single 
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crater can be used for the analysis. During this peroid the occurance of successful  

electric spark can be verfied by recorded current and voltage waveform on the 

oscilloscope. 

  

Figure 5.1 Discharge craters generated during discharge condition I 

5.3 Experiment Results and Discussion 

In this section, the process parameters measured from discharge current and voltage 

waveforms during discharge condition is discussed. In addition, the effect of discharge 

energy and pulse on time on crater geometry is also discussed.  
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5.3.1 Measurement of Process Parameters  

The typical voltage and current waveforms recorded on oscilloscope during each single 

pulse discharge condition from I to VI are shown in Figure 5.2. From each of the 

waveform captured, electrical discharge information’s such as average voltage, average 

current and pulse on time were calculated using the equations mentioned in section 3.4.1. 

These average voltage and average current values during sparking can be calculated only 

over the portion of pulse on time durations. These values are used to calculate the fraction 

of energy input, defined as measured discharge energy during sparking. The calculated 

average voltage, average current and measured energy are shown in table 5.3 

Table 5.3 Parameter measured from voltage and current waveform 

 

 

 

Discharge 

Condition 

Average Discharge 

Voltage [V] 

Average Discharge 

Current [V] 

Pulse on 

time [ns] 

Measured 

discharge 

Energy 

[J] 

Q1  Voc 70 24.01 0.34 14.32 0.1 

Q1  Voc110 31.22 0.57 14.8 0.238 

Q2  Voc 70 9.32 0.74 33.16 0.273 

Q2 Voc 110 12.02 1.03 36.96 0.373 

Q3 Voc 70 11.33 0.95 46.7 0.6 

Q3 Voc 110 13 1.51 49 1.087 
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  (a) Discharge condition I (0.1 µJ)                       (b) Discharge condition II (0.238 µJ)  

       

   (c)  Discharge condition III (0.273 µJ)               (d) Discharge condition IV (0.373 µJ) 

         

      (e)  Discharge condition V (0.6 µJ)                 (f) Discharge condition VI (1.087 µJ) 

Figure 5.2 Waveform at various discharge conditions 
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The size and shape of craters generated under different discharge conditions is measured 

using    the Nanoscope IIIa-phase atomic force microscope (AFM). AFM uses J-type 

scanner head at tapping mode, scanning rate and resolution. This measured crater size for 

different discharge conditions is compared with predicted model.  

The AFM height map, AFM 3D image and cross-section of craters generated under 

micro-EDM discharge conditions from I to VI is shown in Figure 5.3 to Figure 5.8 

respectively. The visual assessment of crater morphology produced under different 

discharge condition can be done using AFM height map and AFM 3D image. The crater 

cross section profile which is obtained from AFM data is used to measure crater diameter 

and depth.   
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(a) AFM height map 

                   

(b) AFM 3D image 

 

 

 

 

 

(c) Cross sectional of profile 

Figure 5.3 Experimental crater formed under Discharge condition I (0.1µJ) 
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(a) AFM height map 

 

(b) AFM 3D image 

 

 

 

 

 

 

(c) Cross sectional profile 

Figure 5.4 Experimental crater formed under Discharge condition II (0.238 µJ) 
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(a) AFM height map 

   

(b) AFM 3D image    

 

 

 

 

(c) Cross sectional profile  

Figure 5.5 Experimental crater formed under Discharge condition III (0.273 µJ) 
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AFM height map 

 

 

 

 

AFM 3D image 

 

 

 

 

                Cross sectional profile 

Figure 5.6 Experimental crater formed under Discharge condition IV (0.373 µJ) 
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AFM height map 

 

 

 

 

AFM 3D image 

 

 

 

 

Cross sectional profile 

Figure 5.7 Experimental crater formed under Discharge condition V (0.6 µJ) 
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AFM height map 

 

 

 

AFM 3D image 

 

 

 

 

Cross sectional profile 

Figure 5.8 Experimental crater formed under Discharge condition VI (1.087 µJ) 
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As shown in Figure 5.3 to Figure 5.8, all the craters produced with a depressed center for 

discharge condition from I to IV. This crater morphology may be created by superheating 

of molten material within the crater due to the high pressure of plasma channel [58][103]. 

5.3.2 Effect of discharge Energy on crater Geometry 

As seen from cross sectional profile of crater (also from Figure 5.9 and 5.10) for 

discharge condition I to VI, the crater diameter and crater depth increases with increase in 

measured discharge energy. When the discharge energy is 0.1, 0.238, 0.273, .0.373, 0.6 

µJ, crater radius is 1.39, 1.59, 1.73, 2.2, 2.48 µm and peak crater depth is around 0.181, 

0.192, 0.25, 0.27, 0.33, 0.36 µm.     

 

 

Figure 5.9 Effect of measured discharge energy on crater diameter 
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Figure 5.10 Effect of measured discharge energy on crater depth 

5.3.3 Effect of Pulse on time on crater geometry 

Figure 5.11 and 5.12 show the effect of pulse on time on crater radius and crater depth 

respectively. Crater diameter and crater depth increases with increase in pulse on time.  

 

 

 

 

 

 

Figure 5.11 Effect of Pulse on time on Crater Diameter 
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Figure 5.12 Effect of Pulse on time on Crater Depth 

 

 

5.4 Model Verification  

In this section predictive results of model obtained through simulation in previous chapter 

were compared with the experimental data. Table 5.3 presents the machining conditions. 

The model was verified for different discharge energy. 

Figure 5.12 (a) and 5.12 (b) shows the comparison of simulated radius and depth values 

with experimental crater radius and depth values. The model estimates crater radius 

values within the range of measured values for all experiments. However, model 

overestimates crater depth values for all experimental discharge conditions considered. 

This overestimates in crater depth values might be due to the inability of collapsing 

plasma channel to eject all the molten material.  
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(a) Crater radius 

 

 

(b) Crater depth 

Figure 5.13 Comparison of predicted and experimental crater geometries 
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CHAPTER 6 

CONCLUSIONS AND RECOMMENTATIONS 

 

6.1 Conclusions 

 

A predictive model based on heat transfer principles was developed for estimating the 

crater geometry during single spark machining for micro-EDM process. This model is 

solved by finite element method. This model used a Gaussian distribution of heat source, 

constant plasma radius and is equal to measured crater size, temperature dependant 

material properties to perform transient thermal analysis in order to predict crater 

geometry, temperature distribution on the workpiece at different energy level. This model 

assumed that the material was removed when its temperature exceeds the melting 

temperature during pulse on time. Experimental crater geometries measured by atomic 

force microscope (AFM) were compared with the simulation crater geometries. 

1. Crater radius and crater depth are proportional to discharge energy level. 

2. In temperature distribution simulation, there is rapid increase in temperature on 

the workpiece surface as compared to workpiece beneath the top surface. Also the 

maximum temperature in simulation is higher than melting temperature which 

supports the assumption that the certain part is removed whose temperature is 

higher than melting temperature. 
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3. As the simulated crater radius values for different discharge energy level (less 

than µJ) were found to be in agreement with measured experimental values. The 

assumptions made in this simulation approach such as constant plasma radius and 

is equal to measured crater radius, Gaussian distribution of heat source and 

fraction of total energy transferred to workpiece were proved to be reasonable. 

4. Simulation results overestimates crater depth value for different discharge energy 

level due to the inability of collapsing plasma channel to eject all the molten 

material. 

6.2 Recommendations for future work 

1. This model is highly dependent on the empirical value of crater radius. Further 

experimental study should be done in order to approximate time dependant 

plasma radius over wider discharge energy input range. 

2. Incorporating the time dependant plasma radius, effect of plasma pressure and 

enthalpy of material will give better simulation model in understanding the crater 

formation for a single discharge micro-EDM. 

3. Further work can be done by extending the single discharge theory and 

incorporating a plasma flushing efficiency to simulate multi sparking phenomena 

in micro-EDM. This will give better prediction of performance measures such as 

crater geometry, surface roughness and recast layer thickness and also more 

appropriate description of process mechanism in micro-EDM.  

   



83 

 

REFERENCES 

1. Dimov, S., et al. A roadmapping study in multi-material micro manufacture. in 

Proceedings of Second International Conference on Multi-Material Micro 

Manufacture. 2006. 

2. Craven, D. Photolithography challenges for the micromachining industry. in 16th 

Annual BACUS Symposium on Photomask Technology and Management. 1996. 

International Society for Optics and Photonics. 

3. Brousseau, E., S. Dimov, and D. Pham, Some recent advances in multi-material 

micro-and nano-manufacturing. The International Journal of Advanced 

Manufacturing Technology, 2010. 47(1-4): p. 161-180. 

4. Liu, X., et al., The mechanics of machining at the microscale: assessment of the 

current state of the science. Journal of manufacturing science and engineering, 

2004. 126(4): p. 666-678. 

5. Dornfeld, D., S. Min, and Y. Takeuchi, Recent advances in mechanical 

micromachining. CIRP Annals-Manufacturing Technology, 2006. 55(2): p. 745-

768. 

6. El-Hofy, H.A.-G., Advanced machining processes: nontraditional and hybrid 

machining processes. 2005: McGraw Hill Professional. 

7. Li, X., J. Wang, and W. Li. Current state and prospect of micro-machining. in 

Automation and Logistics, 2007 IEEE International Conference on. 2007. IEEE. 

8. Rajurkar, K., et al., Micro and nano machining by electro-physical and chemical 

processes. CIRP Annals-Manufacturing Technology, 2006. 55(2): p. 643-666. 

9. Pham, D.T., et al., Micro-EDM—recent developments and research issues. 

Journal of Materials Processing Technology, 2004. 149(1): p. 50-57. 

10. Ho, K. and S. Newman, State of the art electrical discharge machining (EDM). 

International Journal of Machine Tools and Manufacture, 2003. 43(13): p. 1287-

1300. 

11. Sen, B., et al. Developments in electric power supply configurations for electrical-

discharge-machining (EDM). in Power Electronics and Drive Systems, 2003. 

PEDS 2003. The Fifth International Conference on. 2003. IEEE. 

12. Kunieda, M., et al., Advancing EDM through fundamental insight into the 

process. CIRP Annals-Manufacturing Technology, 2005. 54(2): p. 64-87. 

13. Han, F., S. Wachi, and M. Kunieda, Improvement of machining characteristics of 

micro-EDM using transistor type isopulse generator and servo feed control. 

Precision Engineering, 2004. 28(4): p. 378-385. 

14. Han, F., et al., Basic study on pulse generator for micro-EDM. The International 

Journal of Advanced Manufacturing Technology, 2007. 33(5-6): p. 474-479. 

15. Lee, H.-T. and J.-P. Yur, Characteristic analysis of EDMed surfaces using the 

Taguchi approach. Materials and Manufacturing Processes, 2000. 15(6): p. 781-

806. 

16. Tariq Jilani, S. and P. Pandey, An analysis of surface erosion in electrical 

discharge machining. Wear, 1983. 84(3): p. 275-284. 

17. Pandit, S.M. and K.P. Rajurkar. Mathematical Model for Electro-Discharge 

Machined Surface Roughness. in 1978 SME Manufacturing Engineering 

Transactions and 6 th North American Metalworking Research Conference 

Proceedings. SME, Dearborn, Mich. 1978, 339-345. 1978. 



84 

 

18. Rajurkar, K. and S. Pandit, Quantitative Expressions for Some Aspects of Surface 

Integrity of Electrodischarge Machined Components. J. Eng. Ind.(Trans. ASME), 

1984. 106(2): p. 171-177. 

19. Lee, L., et al., Quantification of surface damage of tool steels after EDM. 

International Journal of Machine Tools and Manufacture, 1988. 28(4): p. 359-372. 

20. Weck, M. and J. Dehmer, Analysis and adaptive control of EDM sinking process 

using the ignition delay time and fall time as parameter. CIRP Annals-

Manufacturing Technology, 1992. 41(1): p. 243-246. 

21. Rajurkar, K. and W. Wang, Improvement of EDM performance with advanced 

monitoring and control systems. Journal of manufacturing science and 

engineering, 1997. 119(4): p. 770-775. 

22. Dauw, D. and B. Van Coppenolle. On the evolution of EDM research Part 2: from 

fundamental research to applied research. in Proceedings of the 11th International 

Symposium on Electromachining. 1995. 

23. Masuzawa, T., et al., Wire electro-discharge grinding for micro-machining. CIRP 

Annals-Manufacturing Technology, 1985. 34(1): p. 431-434. 

24. Masuzawa, T., J. Tsukamoto, and M. Fujino, Drilling of deep microholes by 

EDM. CIRP Annals-Manufacturing Technology, 1989. 38(1): p. 195-198. 

25. Mohri, N., et al., Assisting electrode method for machining insulating ceramics. 

CIRP Annals-Manufacturing Technology, 1996. 45(1): p. 201-204. 

26. Mohri, N., et al., Some considerations to machining characteristics of insulating 

ceramics-towards practical use in industry. CIRP Annals-Manufacturing 

Technology, 2002. 51(1): p. 161-164. 

27. Jeswani, M., Effect of the addition of graphite powder to kerosene used as the 

dielectric fluid in electrical discharge machining. Wear, 1981. 70(2): p. 133-139. 

28. Ming, Q.Y. and L.Y. He, Powder-suspension dielectric fluid for EDM. Journal of 

materials processing technology, 1995. 52(1): p. 44-54. 

29. Fleischer, J., J. Schmidt, and S. Haupt, Combination of electric discharge 

machining and laser ablation in microstructuring of hardened steels. Microsystem 

technologies, 2006. 12(7): p. 697-701. 

30. Zhixin, J., Z. Jianhua, and A. Xing, Study on a new kind of combined machining 

technology of ultrasonic machining and electrical discharge machining. 

International Journal of Machine Tools and Manufacture, 1997. 37(2): p. 193-199. 

31. Kunieda, M., M. Yoshida, and N. Taniguchi, Electrical discharge machining in 

gas. CIRP Annals-Manufacturing Technology, 1997. 46(1): p. 143-146. 

32. Kunleda, M., et al., High speed 3D milling by dry EDM. CIRP Annals-

Manufacturing Technology, 2003. 52(1): p. 147-150. 

33. Kunieda, M., T. Takaya, and S. Nakano, Improvement of dry EDM characteristics 

using piezoelectric actuator. CIRP Annals-Manufacturing Technology, 2004. 

53(1): p. 183-186. 

34. Joshi, S., et al., Experimental characterization of dry EDM performed in a 

pulsating magnetic field. CIRP Annals-Manufacturing Technology, 2011. 60(1): 

p. 239-242. 

35. Kao, C., J. Tao, and A.J. Shih, Near dry electrical discharge machining. 

International Journal of Machine Tools and Manufacture, 2007. 47(15): p. 2273-

2281. 



85 

 

36. Masaki, T., K. Kawata, and T. Masuzawa. Micro electro-discharge machining and 

its applications. in Micro Electro Mechanical Systems, 1990. Proceedings, An 

Investigation of Micro Structures, Sensors, Actuators, Machines and Robots. 

IEEE. 1990. IEEE. 

37. König, W., et al., EDM-future steps towards the machining of ceramics. CIRP 

Annals-Manufacturing Technology, 1988. 37(2): p. 623-631. 

38. Yu, Z., K. Rajurkar, and H. Shen, High aspect ratio and complex shaped blind 

micro holes by micro EDM. CIRP Annals-Manufacturing Technology, 2002. 

51(1): p. 359-362. 

39. Zhao, W., et al., A CAD/CAM system for micro-ED-milling of small 3D freeform 

cavity. Journal of materials processing technology, 2004. 149(1): p. 573-578. 

40. Yeo, S.H., et al., Processing of Zirconium-based bulk metallic glass (BMG) using 

micro electrical discharge machining (Micro-EDM). Materials and Manufacturing 

Processes, 2009. 24(12): p. 1242-1248. 

41. Cusanelli, G., et al. Properties of micro-holes for nozzle by micro-EDM. in 15th 

International Symposium on Electromachining (ISEM XV). 2007. 

42. Masuzawa, T. and H. Tönshoff, Three-dimensional micromachining by machine 

tools. CIRP Annals-Manufacturing Technology, 1997. 46(2): p. 621-628. 

43. Muttamara, A., et al., Probability of precision micro-machining of insulating Si< 

sub> 3</sub> N< sub> 4</sub> ceramics by EDM. Journal of Materials 

Processing Technology, 2003. 140(1): p. 243-247. 

44. Reynaerts, D., P.-H.s. Heeren, and H. Van Brussel, Microstructuring of silicon by 

electro-discharge machining (EDM)—part I: theory. Sensors and Actuators A: 

Physical, 1997. 60(1): p. 212-218. 

45. Kim, S., et al., Hybrid micromachining using a nanosecond pulsed laser and 

micro EDM. Journal of micromechanics and microengineering, 2010. 20(1): p. 

015037. 

46. Yeo, S. and M. Murali, A new technique using foil electrodes for the electro-

discharge machining of micro grooves. Journal of Micromechanics and 

Microengineering, 2003. 13(1): p. N1. 

47. Jahan, M., Y. Wong, and M. Rahman, A study on the quality micro-hole 

machining of tungsten carbide by micro-EDM process using transistor and RC-

type pulse generator. Journal of Materials Processing Technology, 2009. 209(4): 

p. 1706-1716. 

48. Hang, G., et al. Micro-EDM milling of micro platinum hemisphere. in 

Nano/Micro Engineered and Molecular Systems, 2006. NEMS'06. 1st IEEE 

International Conference on. 2006. IEEE. 

49. Schoth, A., R. Förster, and W. Menz, Micro wire EDM for high aspect ratio 3D 

microstructuring of ceramics and metals. Microsystem technologies, 2005. 11(4-

5): p. 250-253. 

50. Masuzawa, T., et al., EDM-lathe for micromachining. CIRP Annals-

Manufacturing Technology, 2002. 51(1): p. 355-358. 

51. Schumacher, B.M., After 60 years of EDM the discharge process remains still 

disputed. Journal of Materials Processing Technology, 2004. 149(1): p. 376-381. 



86 

 

52. Dhanik, S., et al., Evolution of EDM process modelling and development towards 

modelling of the micro-EDM process. International journal of manufacturing 

technology and management, 2005. 7(2): p. 157-180. 

53. Eubank, P.T., et al., Theoretical models of the electrical discharge machining 

process. III. The variable mass, cylindrical plasma model. Journal of applied 

physics, 1993. 73(11): p. 7900-7909. 

54. Singh, A. and A. Ghosh, A thermo-electric model of material removal during 

electric discharge machining. International Journal of Machine Tools and 

Manufacture, 1999. 39(4): p. 669-682. 

55. Natsu, W., et al., Temperature distribution measurement in EDM arc plasma using 

spectroscopy. JSME International Journal Series C, 2004. 47(1): p. 384-390. 

56. Albinski, K., et al., The temperature of a plasma used in electrical discharge 

machining. Plasma Sources Science and Technology, 1996. 5(4): p. 736. 

57. Dhanik, S. and S.S. Joshi, Modelling of a single resistance capacitance pulse 

discharge in micro-electro discharge machining. Journal of manufacturing science 

and engineering, 2005. 127(4): p. 759-767. 

58. Pandey, P. and S. Jilani, Plasma channel growth and the resolidified layer in 

EDM. Precision Engineering, 1986. 8(2): p. 104-110. 

59. DiBitonto, D.D., et al., Theoretical models of the electrical discharge machining 

process. I. A simple cathode erosion model. Journal of Applied Physics, 1989. 

66(9): p. 4095-4103. 

60. Jeswani, M., Electrical discharge machining in distilled water. Wear, 1981. 72(1): 

p. 81-88. 

61. Yan, B.H., H. Chung Tsai, and F. Yuan Huang, The effect in EDM of a dielectric 

of a urea solution in water on modifying the surface of titanium. International 

Journal of Machine Tools and Manufacture, 2005. 45(2): p. 194-200. 

62. Lonardo, P. and A. Bruzzone, Effect of flushing and electrode material on die 

sinking EDM. CIRP Annals-Manufacturing Technology, 1999. 48(1): p. 123-126. 

63. Masuzawa, T., X. Cui, and N. Taniguchi, Improved jet flushing for EDM. CIRP 

Annals-Manufacturing Technology, 1992. 41(1): p. 239-242. 

64. Guu, Y. and H. Hocheng, Effects of workpiece rotation on machinability during 

electrical-discharge machining. Materials and Manufacturing Processes, 2001. 

16(1): p. 91-101. 

65. Huang, H., et al., Ultrasonic vibration assisted electro-discharge machining of 

microholes in Nitinol. Journal of micromechanics and microengineering, 2003. 

13(5): p. 693. 

66. Yeo, S., M. Murali, and H. Cheah, Magnetic field assisted micro electro-discharge 

machining. Journal of Micromechanics and Microengineering, 2004. 14(11): p. 

1526. 

67. Murali, M. and S. Yeo, A novel spark erosion technique for the fabrication of 

high aspect ratio micro-grooves. Microsystem technologies, 2004. 10(8-9): p. 

628-632. 

68. Guu, Y., et al., Effect of electrical discharge machining on surface characteristics 

and machining damage of AISI D2 tool steel. Materials Science and Engineering: 

A, 2003. 358(1): p. 37-43. 



87 

 

69. Lee, H.-T. and T.-Y. Tai, Relationship between EDM parameters and surface 

crack formation. Journal of Materials Processing Technology, 2003. 142(3): p. 

676-683. 

70. Ramakrishnan, R. and L. Karunamoorthy, Modelling and multi-response 

optimization of Inconel 718 on machining of CNC WEDM process. Journal of 

materials processing technology, 2008. 207(1): p. 343-349. 

71. Sarkar, S., S. Mitra, and B. Bhattacharyya, Parametric analysis and optimization 

of wire electrical discharge machining of γ-titanium aluminide alloy. Journal of 

Materials Processing Technology, 2005. 159(3): p. 286-294. 

72. Chiang, K.-T. and F.-P. Chang, Applying grey forecasting method for fitting and 

predicting the performance characteristics of an electro-conductive ceramic 

(Al2O3+ 30% TiC) during electrical discharge machining. The International 

Journal of Advanced Manufacturing Technology, 2007. 33(5-6): p. 480-488. 

73. Petropoulos, G., N. Vaxevanidis, and C. Pandazaras, Modelling of surface finish 

in electro-discharge machining based upon statistical multi-parameter analysis. 

Journal of Materials Processing Technology, 2004. 155: p. 1247-1251. 

74. Habib, S.S., Study of the parameters in electrical discharge machining through 

response surface methodology approach. Applied Mathematical Modelling, 2009. 

33(12): p. 4397-4407. 

75. Pradhan, M., R. Das, and C. Biswas, Comparisons of neural network models on 

surface roughness in electrical discharge machining. Proceedings of the Institution 

of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2009. 

223(7): p. 801-808. 

76. Snoeys, R. and F. Van Dijck, Investigation of electro discharge machining 

operations by means of thermo-mathematical model. CIRP Ann, 1971. 20(1): p. 

35-37. 

77. Van Dijck, F. and W. Dutre, Heat conduction model for the calculation of the 

volume of molten metal in electric discharges. Journal of Physics D: Applied 

Physics, 1974. 7(6): p. 899. 

78. Yeo, S., W. Kurnia, and P. Tan, Critical assessment and numerical comparison of 

electro-thermal models in EDM. Journal of materials processing technology, 

2008. 203(1): p. 241-251. 

79. Beck, J.V., Transient temperatures in a semi-infinite cylinder heated by a disk 

heat source. International Journal of Heat and Mass Transfer, 1981. 24(10): p. 

1631-1640. 

80. Beck, J.V., Large time solutions for temperatures in a semi-infinite body with a 

disk heat source. International Journal of Heat and Mass Transfer, 1981. 24(1): p. 

155-164. 

81. Tariq Jilani, S. and P. Pandey, Analysis and modelling of EDM parameters. 

Precision Engineering, 1982. 4(4): p. 215-221. 

82. Pandit, S. and K. Rajurkar, A stochastic approach to thermal modelling applied to 

electro-discharge machining. Journal of heat transfer, 1983. 105(3): p. 555-562. 

83. Patel, M.R., et al., Theoretical models of the electrical discharge machining 

process. II. The anode erosion model. Journal of Applied Physics, 1989. 66(9): p. 

4104-4111. 



88 

 

84. Madhu, P., et al., Finite element analysis of EDM process. Processing of 

Advanced Materials(UK), 1991. 1(3): p. 161-173. 

85. Das, S., M. Klotz, and F. Klocke, EDM simulation: finite element-based 

calculation of deformation, microstructure and residual stresses. Journal of 

Materials Processing Technology, 2003. 142(2): p. 434-451. 

86. Marafona, J. and J. Chousal, A finite element model of EDM based on the Joule 

effect. International Journal of Machine Tools and Manufacture, 2006. 46(6): p. 

595-602. 

87. Joshi, S. and S. Pande, Thermo-physical modelling of die-sinking EDM process. 

Journal of Manufacturing Processes, 2010. 12(1): p. 45-56. 

88. Murali, M.S. and S.-H. Yeo, Process simulation and residual stress estimation of 

micro-electrodischarge machining using finite element method. Japanese journal 

of applied physics, 2005. 44: p. 5254. 

89. Allen, P. and X. Chen, Process simulation of micro electro-discharge machining 

on molybdenum. Journal of materials processing technology, 2007. 186(1): p. 

346-355. 

90. Yeo, S., W. Kurnia, and P. Tan, Electro-thermal modelling of anode and cathode 

in micro-EDM. Journal of Physics D: Applied Physics, 2007. 40(8): p. 2513. 

91. Tan, P. and S. Yeo, Modelling of overlapping craters in micro-electrical discharge 

machining. Journal of Physics D: Applied Physics, 2008. 41(20): p. 205302. 

92. Boothroyd, G. and W.A. Knight, Fundamentals of metal machining and machine 

tools. Vol. 198. 2005: CRC. 

93. Schulze, H.P., et al., Comparison of measured and simulated crater morphology 

for EDM. Journal of materials processing technology, 2004. 149(1): p. 316-322. 

94. Singh, H., Experimental study of distribution of energy during EDM process for 

utilization in thermal models. International Journal of Heat and Mass Transfer, 

2012. 

95. Erden, A., F. Arinc, and M. Kögmen, Comparison of mathematical models for 

electric discharge machining. Journal of Materials Processing and Manufacturing 

Science, 1995. 4: p. 163-176. 

96. Yadav, V., V.K. Jain, and P.M. Dixit, Thermal stresses due to electrical discharge 

machining. International Journal of Machine Tools and Manufacture, 2002. 42(8): 

p. 877-888. 

97. Snoeys, R., F. Van Dijck, and J. Peters, Plasma channel diameter growth affects 

stock removal in EDM. Annals of the CIRP, 1972. 21(1): p. 39-40. 

98. Erden, A., Effect of materials on the mechanism of electric discharge 

machining(E. D. M.). ASME, Transactions, Journal of Engineering Materials and 

Technology, 1983. 105: p. 132-138. 

99. Khan, A.A., Role of Heat Transfer on Process Characteristics During Electrical 

Discharge Machining. Developments in Heat Transfer, 2009: p. 417-435. 

100. Murali, M.S. and S.H. Yeo, Process simulation and residual stress estimation of 

micro-electrodischarge machining using finite element method. Japanese journal 

of applied physics, 2005. 44: p. 5254. 

101. Basak, I. and A. Ghosh, Mechanism of spark generation during electrochemical 

discharge machining: a theoretical model and experimental verification. Journal 

of materials processing technology, 1996. 62(1): p. 46-53. 



89 

 

102. Zahiruddin, M. and M. Kunieda, Comparison of energy and removal efficiencies 

between micro and macro EDM. CIRP Annals-Manufacturing Technology, 2012. 

 


	MODELLING OF ANODE CRATER FORMATION IN MICRO-ELECTRICAL DISCHARGE MACHINING
	

	Microsoft Word - 364803-convertdoc.input.354774.4bhTE.doc

