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1. Introduction

Supervised classification is a procedure of constructing a 
mathematical model based on a training data set and using the 
model to assign a categorical class label to any new sample el-
ement. Essentially, this type of classification procedure is an 
optimization problem and has been widely applied in the pat-
tern recognition and decision making literature. Classification 
methods, such as neural networks, decision trees, and nearest 
neighbor, have been studied extensively [1–7]. Nonlinear-in-
tegral based classification methods have recently gained more 
attention and encouraging results [8–11]. Our line of research 
concentrates on using the Choquet integral to conduct nonlin-
ear classification [12, 13] and regression analyses [14–18]. Our 
core research in nonlinear Choquet classification is based on 
the theoretical development of Choquet integral [19] by Wang 
and Klir [20] and our subsequent research team [21–26]. Previ-
ously, we studied the applicability of Choquet integral in clas-
sification problems such as high-dimensional projection [12], 
and the algorithms for Choquet classification [27, 28]. To fur-
ther advance our method, we realize that there are three is-

sues yet to be solved. First, our previous research [12, 13] can 
solve the nonlinear classification problem only when the pro-
jection line is through the origin, which means that those pro-
jection lines not through the origin could not be identified, and 
therefore some classes with their actual boundaries on other 
projected locations in n-dimensional space cannot be properly 
classified. Second, our previous studies [12, 13] used discrete 
misclassification rates, where a predefined misclassification 
rate would be required each time in the classification process, 
which can be inaccurate or ineffective. In this paper, an auto-
matic searching of the least misclassification rate using a con-
tinuous Choquet distance is addressed. Thirdly, our prelim-
inary research [12, 13] has not yet found an effective way to 
penalize misclassified points which caused an unsolved op-
timization problem in practice, while in this study a penalty 
coefficient will be discussed to address this issue. Our contri-
bution herein is to further generalize the functionality of non-
linear Choquet-integral based classification by solving the 
above three identified problems. 

Literature indicates that the genetic algorithm is an effective 
approach to finding the optimal solution of a nonlinear classifi-
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cation problem [12, 29]. The genetic algorithm is a parallel ran-
dom search technique widely applied in parameterized opti-
mization problems, although it has been shown that its search 
speed is sometimes slow [27, 28, 30]. We studied different al-
gorithms for Choquet classification. For example, compared to 
other algorithms such as neural networks, the advantage of the 
special genetic algorithm for Choquet integral avoids the risk of 
failing into a local minimum on the error surface, and its speed 
is also satisfactory [27, 28]. In this work, our specially designed 
genetic algorithm is further upgraded to accommodate the three 
newly identified issues for nonlinear Choquet classification. 

Recently we proposed the Choquet classifier for linear mod-
els [15]. In [15] the classifier estimated a hyperplane to separate 
the given data in the feature space for a linear model. However, 
in the real world, the data are most likely to be linearly not sepa-
rable. In this situation, nonlinear models are needed to enhance 
the classification power. A naive assumption is that the contri-
bution from all the attributes is the sum of the contribution from 
each individual attribute. This consideration usually results in a 
power loss in classification models. If the interaction among at-
tributes towards the classification is nonignorable, fuzzy mea-
sures (nonadditive measures) should be considered. When the 
nonadditive fuzzy measures are identified through the Choquet 
integral, the classifier becomes nonlinear [12, 13, 19, 20, 31]. 

In the following sections we first introduce the fuzzy mea-
sure used in our previous research and then the generalized 
Choquet integral used in this work. Sections 3 and 4 present 
our new Choquet-based nonlinear classification model and 
our upgraded special genetic algorithm to solve the above 
three identified issues. Then in Section 5 a numerical example 
is exhibited to illustrate the classification procedure in detail 
using artificial data. In Section 6 we demonstrate the perfor-
mance and advantages of our proposed generalized approach 
in multi-class multi-dimensional situations using data from 
the UCI Machine Learning repository [32]. 

2. Fuzzy measures and Choquet integrals

The use of the Choquet integrals with respect to a signed 
fuzzy measure has been shown as an efficient approach to ag-
gregate information from attributes via a nonadditive set func-
tion [22, 23, 25, 26]. Let X = {x1, …, xn} represent the attributes 
of the sample space and (X) denote the power set of X. The 
signed fuzzy measure μ is defined as a set function

μ :  (X) → (–∞, ∞),

where μ(0/) = 0.
Let μi , i = 1, …, 2n – 1, denote the values of the set function 

μ on the nonempty sets in (A), and f denote a given function, 
where f (x1), …, f (xn) represent the values of each attribute for 
one observation. The procedure of calculating the generalized 
Choquet integral is given in [14], summarized as follows. Let 
{x1′ , x2′ , …, xn′ } be a permutation of (x1, x2, …, xn) such that f 
(x1′), f (x2′), … f (xn′) is in nondecreasing order. That is,

f (x1′) ≤ f (x2′) ≤ …  ≤  f (xn′)

The Choquet integral with respect to fuzzy measure μ is de-
fined as

(c) f dμ = ∑
n
 

j = 1
 [ f (xj′) – f (xj–1′)] μ ({xj′, xj + 1′, …, xn′}),

where f (x0′) = 0 and (c) indicates Choquet integral. Let ω : X → 
[0, 1] be a nonnegative weight function on the attributes such 

that ∑n i=1 ω(xi) = 1. In [12, 14] the weighted Choquet integral 
with respect to a nonadditive measure μ is defined by

Y = (c) ωf dμ,
where f is a nonnegative set function and μ(X) = 1.

In this paper, we generalize the weighted Choquet inte-
gral with respect to a nonadditive measure to a more compre-
hensive Choquet model, which is with respect to a nonaddi-
tive signed measure; that is, allowing the set function to take 
negative values and to be nonmonotone. Thus, a generalized 
weighted Choquet integral is expressed as

Y = (c) (a + bf ) dμ,
where signed measure μ is restricted to be regular (maxAÌX| 
μ(A)| = 1). The parameters a = (a1, a2, …, an) and b = (b1, b2, … , 
bn), are n-dimensional vectors satisfying ai Î [0, ∞] with mini ai 
= 0 and |bi|Î [0, 1] with maxi|bi| = 1. We use this generalized 
Choquet model as a projection tool to reduce the complexity 
of the classification problem in an n-dimensional space [12, 25, 
26]. We call a and b the matching vectors used to address the scal-
ing and phase matching requirements of the feature attributes. 
In other words, matching vectors a and b are used to scale di-
verse units and ranges of the feature attributes with respective 
dimensions such that the signed measure μ can reflect the inter-
action appropriately. Also, with both scaling and phase match-
ing parameters a and b, the projection line does not have to go 
through the origin. The simulation study in Section 5 will fur-
ther demonstrate this function. Generally Y depends on f non-
linearly due to the nonadditivity of μ. For convenience,

μ({x1}), μ({x2}), … , μ({xn}), μ({x1, x2}), μ({x1, x3}), …

are abbreviated by μ1, μ2, … , μn, μ12, μ13, …, respectively, 
hereafter. 

3. A new nonlinear classification model

To simplify our theoretical illustration, 2-class classification 
based on Choquet integral is presented in detail, and the ex-
tension to multi-class classification is introduced at the end of 
this section.

We consider a 2-class nonlinear classification problem 
with classes A and A′. Suppose that the learning data consist 
of l sample points belonging to class A and l′ sample points 
belonging to class A′. Also, suppose that all of these sample 
points have the same feature attributes, x1, …, xn. Thus, the 
feature space is the n-dimensional Euclidean space n. The j-th 
sample point in A, denoted by sj, is expressed as

sj = (fj(x1), fj(x2), …, fj(xn)),    j = 1, …, l,

while the j′–th sample point in A′ is similarly denoted by s′j′ ,   
j′ = 1, …, l′.

Now we want to find a Choquet hyperplane H determined by

H : (c)  (a + bf ) dμ – B = 0,                         (1)
where B is an unknown real number. Without any loss of gen-
erality, we assume that all of these unknown parameters and 
B are in [–1, 1). A natural criterion to determine these parame-
ters optimally is to maximize the total sum of signed distances 
of the learning sample points in the two classes from the re-
spective side to the Choquet hyperplane H (see Figure 1).

For example, on one side of H the signed distance dj from a 
sample point sj in A to H is the signed distance from the pro-
jection of sj paralleled with H on line L to the intersection (B) of  
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H and L, which is equal to

         
 dj =

     (c)∫(a + bf ) dμ – B

             √ μ1
2 +  μ2

2 + … + μ2
2
n– 1   

,    j = 1, 2, …, l.

From the other side of H, the signed distance of a sample 
point to H is just the signed distance from the projection of the 
point paralleled with H on line L to the intersection (B) of H 
and L, which is equal to

         
d′j′  =

    B – (c)∫(a + bf′) dμ 

                √ μ1
2 +  μ2

2 + … + μ2
2

n–1    

,    j′ = 1, 2, …, l′.

The projection paralleled with H onto L is a transformation 
identified by function

F(s) = (c) (a + bf ) dμ      or     F(s) = (c)  (a + bf′) dμ

from the feature space to one-dimensional line L. That is, un-
der this projection, any point

sj = ( fj (x1), fj (x2), …, fj (xn)),        j = 1, …, l

in the feature space has an image represented by the function 
(c)∫(a + bf ) dμ, and the Choquet hyperplane H itself has an im-
age represented by B. Thus, the total signed Choquet distance is

    D  = ∑
l

 
j = 1

dj + ∑
l′

 
j′ = 1

d′j′ 

         
=

 ∑l
 j = 1((c)∫ (a + bf ) dμ – B) – ∑l′ j′ = 1 ((c)∫ (a + bf′) dμ – B) 

√ ∑ 2n

i =
–1
 1 μ

2
i                                           

.    (2)

In this formula, the Choquet distance for those misclassi-
fied points will have a negative value. As to the optimization 
of Choquet hyperplane H (see Figure 1), we expect that the hy-
perplane H will be pushed to the opposite side as far as possi-
ble by the sample points from classes A and A′, respectively. In 
other words, H should be squeezed to an optimal position. In 
case there is a gap between classes A and A′, the Choquet hy-
perplane H as the classifying boundary should pass through 
the feature space along the gap. This means that the total 
signed Choquet distance D in (2) should be maximized. Such 
a criterion for determining the optimal hyperplane looks good. 
Unfortunately, it does not work well actually. In fact, if in the 
learning data set one class is larger than another, say l > l′, then 
class A has more power than class A′ to push hyperplane H to 
its opposite side infinitely such that the optimization problem 
has no solution. Thus, we must revise the above optimization 
model. Our previous research [12, 13] did not consider this is-
sue and encountered this optimization problem in practice.

The revision can be realized by applying a large penalty co-
efficient to each misclassified sample point. Let

cj =  {  c       if (c) ∫ (a + bf ) dμ < B,  
           1       otherwise 

for j = 1, 2, …, l, and

c′j′ =   {  c       if (c) ∫ (a + bf′) dμ > B,  
             1       otherwise 

for j′ = 1, 2, …, l′, where c > |l – l′| is a penalty coefficient and 
is usually taken as c = |l – l′| + 1. Then a penalized total signed 
distance is defined as

Dc = cj∑
l
j = 1 dj + c′j′ ∑

l′
j′ = 1 d′j′ 

      
=

 ∑l
j = 1 cj((c)∫ (a + bf ) dμ – B) – ∑l′

j′ = 1 c′j′ ((c)∫ (a + bf′) dμ – B) 

√ ∑2n

i = 1
– 1 μi

2                                           
. (3)

Thus, for a given learning sample data set with two classes, 
the unknown parameters a, b, μ, and B of hyperplane H as the 
classifying boundary can be determined by maximizing the 
penalized total distance Dc in expression (3). After determin-
ing the classifying boundary H expressed by Equation (1), for 
any new sample element sj = ( fj (x1), …, fj (xn)), we classify s 
into class A if

(c) ∫ (a + bf ) dμ ≥ B
and otherwise classify s into class A′.

The 2-class Choquet classification can easily be extended 
to multi-class classification where the boundary B will be ex-
pressed as a vector {b1, …, bk–1}. The element bk–1 in vector B de-
notes the projection point for the boundary of class k and class 
k – 1 on the projection real line L. Let s be the sample point and 
{A1, …, Ak} be the classes. Then the generalized Choquet multi-
class classification can be deduced as follows:

if (c)∫ (a + bf ) dμ < bA1
                  then s Î A1,

…    …
if (c)∫ (a + bf ) dμ Î [bAi – 1

, bAi
 )      then s Î Ai ,

…    …  
if (c)∫ (a + bf ) dμ ≥ bA k – 1

                then s Î Ak .

4. A genetic algorithm

A specially designed genetic algorithm is applied to solve the 
optimization problem for this generalized Choquet-integral 
classification described in Section 3. First a population of classi-
fiers (the chromosomes) is generated. These classifiers are each 
scored as to fitness using a fitness score based on Dc. The pop-
ulation is renewed by crossover and mutation operations, and 
the most fit are retained in the next generation. The components 
of the algorithm are outlined and explained as follows.

(a) Coding and decoding. Unknown parameters μ1, μ2, …, match-
ing vectors a and b, and B are coded as binary genes g1, g2, 
…, gN, and gN+1 (N = 2n – 1 + 2n). Thus, each gene is a bit 
string. The length of the bit string depends on the required 
precision for the solution. For example, if the required pre-
cision is 10–3, then each gene consists of élog2(103)ù = 10 bits. 
Once the genes are generated, they are decoded by the for-
mula ui = 2(gi – 0.5) for i = 1, 2, …, N; B̂ = 2(gN+1 – 0.5), etc.

(b) Population and chromosomes. Each chromosome is a gene 
string, (g1, g2, …, gN+1). The population P consists of a large 
number of chromosomes. The number of chromosomes is 

Figure 1. Two-dimensional data set projection based on Choquet 
integrals.
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called the size of the population and is denoted by p. The 
default value of p is 100.

(c) Chromosomes’ fitness. For each chromosome (g1, g2, …, gN+1), 
after decoding the genes, we may obtain the current pa-
rameter estimates u1, u2, …, un, â, b̂ , and B̂, which represent 
a hyperplane H according to Equation (1). Then, based on 
the given learning data, the corresponding penalized total 
signed Choquet distance Dc from the sample points in the 
data set to the hyperplane H can be calculated by (3). The 
relative fitness of this chromosome in the current popula-
tion is defined by

F =
    Dc – Dmin 

Dmax – Dmin     

,                               (4)

where
Dmin =      min    Dc(k),               Dmax =      max    Dc(k)
                       k = 1, 2, ..., p                                                                   k = 1, 2, ..., p

and Dc(k) is the penalized total signed distances from the 
sample points in the data set to the Choquet hyperplane 
H(k) corresponding to the k-th chromosome in the current 
population.

(d) Parents selection. Denoting the fitness of the k-th chromosome 
in the current population by F(k), we assign probability

                                      
pk =

       F(k) 
                                                ∑p

k = 1 F(k)
to the k-th chromosome, k = 1, 2, …, p. Select two chromo-
somes at random from the population as the parents ac-
cording to the probability distribution {pk|k = 1, 2, …, p}. 

(e) Produce new chromosomes. According to a preset two-point 
probability distribution (, 1 – ), choose a genetic opera-
tion via a random switch from mutation and crossover and 
then produce two new chromosomes. Repeat this proce-
dure p/2 times to get p new chromosomes.

(f) Renew population. Calculate the total signed distance of each 
new chromosome and add these p chromosomes to the cur-
rent population. According to the total signed distance of 
these 2p chromosomes, delete the p worst from them and 
then form a new generation of the population.

(g) Stopping controller. Repeat the above procedure to get the 
population generation by generation until the largest pe-
nalized total signed distance (which could achieve the least 
misclassification rate instead of the predefined misclassifi-
cation rate used in the previous approaches [12, 13]). This 
largest distance is associated with the best chromosome in 
the population; it has not been significantly improved for 
w (with default value 10) consecutive generations. Here, 
‘‘has not been significantly improved’’ means that the im-
provement Δ is less than 10–4 d(A, A′), where d(A, A′) is the 
distance between the centers of class A and class A′ in the 
learning data set.

(h) After stopping, find the best chromosome in the last gen-
eration of population. Then, output the corresponding es-
timated values of parameters μ1, μ2, … μn, μ12, μ13, …, a, b, 
and B. 

5. Simulations

We have implemented the algorithm shown in Section 4 us-
ing Microsoft Visual C)). All the functions are encapsulated 
into our CGenetic and CChoquet classes. Based on a training 
data set, the simulations were run on the Windows XP plat-
form and regular PC desktop with AMD 1.6 GHZ CPU and 
512M memory. It takes 1.5 min to stop and obtain the results.

To illustrate the classification procedure with numeri-
cal examples, we consider two data sets with known classifi-
cation boundaries below: (a) where the projection line passes 
through the origin and (b) where the projection line does not 
pass through the origin.

The two-dimensional training data sets are generated by a 
random number generator and are separated into two classes 
by the straight line

(c)∫ (a + bf ) dμ – B = 0,

where μ1, μ2, μ12, and B are pre-assigned separately. (In the ex-
amples, the data are uniformly distributed on the unit square.) 
Each sample point is labeled with class A if (c) ∫(a + bf ) dμ ≥ B; 
otherwise, (x1, x2) is labeled with class A′. In this way, 200 sam-
ple points are generated and labeled.

Running our classifier on the data for the two scenarios de-
scribed below, we obtain the consecutive simulation results 
presented in Tables 1 and 2, where G is the number of gener-
ations that have been created in the training procedure. The 
crossover probability in the simulation experiment was set to 
0.9 and the mutation probability was 0.01. 

5.1. Scenario (a)

In scenario (a) the preset parameters are μ12 = 0.15, μ1 = 0.20, μ2 
= 0.60, a = (0, 0), b = (1, 1), and B = 0.1. The distribution of the 
data is shown in Figure 2. Class A has 155 points, while class 
A′ has 45 points. The program for scenario (a) in Figure 2 stops 
at the 50th generation. The output of the classifier provides the 
standardized parameter estimates u12 = 0.1389, u1 = 0.1802, u2 
= 0.5460, â = (0, 0), b̂ = (1, 1), and B̂ = 0.0917. The classifying 
boundary found in the last generation is shown in Figure 3.

In Table 1, the second column is the number of sample 
points that have been correctly classified in class A by the tem-
porary best boundary obtained in that generation, while the  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1. Generations in training process for scenario (a) in Figure 2.

G           A            A′         μ12              μ1             μ2                B               D

1 150 40 0.1451 0.2369 0.5423 0.1021 –2.7990
2 150 40 0.1451 0.2369 0.5423 0.1021 –2.7990
3 153 42 0.1981 0.2244 0.5687 0.1189 0.6311
4 152 44 0.1336 0.1931 0.4901 0.0925 13.8546
5 152 44 0.1336 0.1931 0.4901 0.0925 13.8546
6 152 44 0.1336 0.1931 0.4901 0.0925 13.8546
7 152 44 0.1336 0.1931 0.4901 0.0925 13.8546
…         …          …              …              …              …              …                …   
32 154 44 0.1410 0.1825 0.5501 0.0927 27.2005
33 155 45 0.1387 0.1800 0.5453 0.0916 27.4156
34 155 45 0.1387 0.1800 0.5453 0.0916 27.4156
35 155 45 0.1387 0.1800 0.5453 0.0916 27.4156
36 155 45 0.1387 0.1800 0.5453 0.0916 27.4156
37 155 45 0.1387 0.1800 0.5453 0.0916 27.4156
38 155 45 0.1387 0.1800 0.5453 0.0916 27.4156
39 155 45 0.1387 0.1800 0.5453 0.0916 27.4156
40 155 45 0.1387 0.1800 0.5453 0.0916 27.4156
41 155 45 0.1388 0.1802 0.5453 0.0917 27.4177
42 155 45 0.1388 0.1802 0.5453 0.0917 27.4177
43 155 45 0.1388 0.1802 0.5453 0.0917 27.4177
44 155 45 0.1388 0.1802 0.5453 0.0917 27.4177
45 155 45 0.1388 0.1802 0.5453 0.0917 27.4177
46 155 45 0.1388 0.1802 0.5456 0.0917 27.4187
47 155 45 0.1389 0.1802 0.5456 0.0917 27.4189
48 155 45 0.1389 0.1802 0.5456 0.0917 27.4189
49 155 45 0.1389 0.1802 0.5460 0.0917 27.4211
50 155 45 0.1389 0.1802 0.5460 0.0917 27.4211
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third column is the number of sample points that have been 
correctly classified in class A′. The fourth through seventh col-
umns are the current estimated values of parameters μ12, μ1, μ2, 
and B corresponding to one of the best chromosomes in each 
generation. The eighth column contains the penalized total 
Choquet signed distances from the sample points in the data 
set to the hyperplane corresponding to one of the best chromo-
somes in each generation, as described in Section 3.

In Table 1, at generation 33 the classifier has found a good 
chromosome whose corresponding classifying boundary can 
separate the training data without any misclassification, is pre-
sented. However, according to the stopping condition, the pro-
gram does not stop until the counter w of the stopping control-
ler reaches 10. 

5.2. Scenario (b)

The preset parameters for scenario (b) are μ12 = 0.15, μ1 = 
0.60, μ2 = 0.20, a = (0.2, 0.85), b = (0.85, –0.60), and B= 0.12. As 
shown in Figure 4, class A has 140 points, while class A′ has 60 
points. The output of the classifier provides the standardized 
parameter estimates u12 = 0.3830, u1 = 0.6683, u2 = 0.5713, â = 
(0.4420,  0.7021), b̂  = (0.3614, –0.154), and B̂  = 0.2633 when the 
program stops after 30 generations.

In Table 2, the fourth through eleventh columns present the 
current estimates of parameters μ12, μ1, μ2, B, a1, a2, b1, and b2. 
The twelfth column lists the penalized total Choquet signed 
distances from the sample points in the data set to the hyper-
plane corresponding to one of the best chromosomes in each  

Table 2. Generations in training process for scenario (b) in Figure 4.

G A A′ μ12 μ1 μ2 B a1 a2 b1 b2 D

1 133 11 0.5685 0.5825 0.5868 0.4409 0.7617 0.1982 0.0471 0.4197 –751.6648
2 140 31 0.4899 0.5999 0.6256 0.2563 0.3893 0.5641 0.2501 –0.0771 –318.9425
3 140 31 0.4899 0.5999 0.6256 0.2563 0.3893 0.5641 0.2501 –0.0771 –318.9425
4 123 58 0.3846 0.6051 0.4342 0.2388 0.3228 0.6245 0.4720 –0.1708 –154.2835
5 135 51 0.3740 0.8851 0.7594 0.2460 0.5222 0.6800 0.1758 –0.1429 –112.1395
6 133 60 0.3010 0.7808 0.4535 0.2287 0.6118 0.7550 0.1978 –0.1140 –10.4408
7 139 56 0.3533 0.6666 0.5943 0.2361 0.3991 0.6825 0.3944 –0.1774 –8.8121
8 139 60 0.3094 0.7779 0.4586 0.2329 0.6067 0.7540 0.2011 –0.1141 –0.6097
9 139 60 0.3094 0.7779 0.4586 0.2329 0.6067 0.7540 0.2011 –0.1141 –0.6097
10 139 60 0.3094 0.7779 0.4586 0.2329 0.6067 0.7540 0.2011 –0.1141 –0.6097
11 139 58 0.3241 0.7522 0.4628 0.2351 0.5684 0.7342 0.2307 –0.1182 1.9987
12 139 58 0.3241 0.7522 0.4628 0.2351 0.5684 0.7342 0.2307 –0.1182 1.9987
13 139 59 0.3564 0.6881 0.4891 0.2703 0.4871 0.7786 0.4030 –0.1999 4.9859
14 139 59 0.3564 0.6881 0.4891 0.2703 0.4871 0.7786 0.4030 –0.1999 4.9859
15 139 59 0.3567 0.6883 0.4893 0.2702 0.4862 0.7778 0.4030 –0.2001 5.0826
16 139 59 0.3567 0.6883 0.4893 0.2702 0.4862 0.7778 0.4030 –0.2001 5.0826
… … … … … … … … … … … …
22 140 60 0.3845 0.6764 0.5648 0.2676 0.4536 0.7120 0.3569 –0.1580 5.9200
23 140 60 0.3845 0.6764 0.5648 0.2676 0.4536 0.7120 0.3569 –0.1580 5.9200
24 140 60 0.3845 0.6764 0.5648 0.2676 0.4536 0.7120 0.3569 –0.1580 5.9200
25 140 60 0.3830 0.6683 0.5713 0.2633 0.4420 0.7021 0.3614 –0.1544 5.9296
26 140 60 0.3830 0.6683 0.5713 0.2633 0.4420 0.7021 0.3614 –0.1544 5.9296
27 140 60 0.3830 0.6683 0.5713 0.2633 0.4420 0.7021 0.3614 –0.1544 5.9296
28 140 60 0.3830 0.6683 0.5713 0.2633 0.4420 0.7021 0.3614 –0.1544 5.9296
29 140 60 0.3830 0.6683 0.5713 0.2633 0.4420 0.7021 0.3614 –0.1544 5.9296
30 140 60 0.3830 0.6683 0.5713 0.2633 0.4420 0.7021 0.3614 –0.1544 5.9296

Figure 3. Classified training data set (a), u12 = 0.1389, u1 = 0.1802, u2 = 
0.5460, B = 0.0917, a1 = 0, a2 =0, b1 = 1, b2 = 1. 

Figure 2. Training data set (a), μ12 = 0.15, μ1 = 0.20, μ2 = 0.60, B = 0.1, a1 
=0, a2 = 0, b1 = 1, b2 = 1. 
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generation, as described in Section 3. The program stops at 
generation 30 for scenario (b) data in Figure 4. The classifying 
boundary found in the last generation is shown in Figure 5.

Table 3 summarizes the final results for both scenarios that 
shows no misclassified sample points. 

6. Case studies

Our previous study [12] applied a special case of the gener-
alized Choquet-integral approach, and demonstrated that the 
Choquet-integral classification approach is better than other 
available methods, such as Bayes, Neural Networks, HLM, 
and Nearest Neighbor, in terms of classification accuracy. 
Here our case studies compare implementation of this gener-
alized approach with our previous approach using one of our 
artificial and one of the UCI data sets. 

As discussed earlier, our previous approach only tolerates 
the projection line through the origin, lacks an automatic selec-
tion of the least misclassification rate, and does not penalize the 
misclassified points. In contrast, our current approach dramat-
ically improved the classification accuracy rate by solving the 
three identified issues. For simplicity we call our previous ap-
proach ‘‘without penalty’’ and the current one ‘‘with penalty.’’ 
For classification performed on the same data used in the sim-
ulation scenario (b) where the projection line L is not through 
the origin, the current approach dramatically increases the clas-
sification accuracy rate to 100% by almost 50%, especially as the 
genetic evolution stabilized after 40 generations (see Figure 6). 

Considering real multi-class situations, we utilized the IRIS 
data from UCI [32]. These data include three classes (three IRIS 
species: Setosa, Versicolor, and Virginica) with 50 samples each 
and four-dimensional features (the length and the width of se-
pal and petal). The empirical results indicated that the classi-
fication accuracy rates of our current with-penalty approach 
reached 100%, 98%, and 93% for Setosa, Virginica, and Versicolor, 
respectively, after just a few genetic generations (see Figure 7). 

High dimensionality is another common feature in real-
world pattern recognition. To address this issue using Choquet 
classification, we used the Pima Indians Diabetes data set from 
the UCI repository [32], which consists of 2 classes and eight-
dimensional features with 768 samples. The outcome from our 
current with-penalty approach shows that over 20 genetic gen-
erations the classification accuracy rates reached 100% and 98% 
for each class. The results from the without-penalty approach 
were unsatisfactory with accuracy rates below 50% and quite 
unstable (see Figure 8). This comparison demonstrates the su-
periority of the generalized Choquet approach over the previ-
ous without-penalty technique. 

In addition, we have compared our current approach with 
nine typical classification methods on the previous two data 
sets (IRIS and Pima Indians Diabetes) and also on the Wiscon-
sin Breast Cancer, Haberman’s Survival, and Blood Transfu-
sion Service Center data from the same repository. The Breast 
Cancer data set includes 2 classes and 9 features, comprising 
699 records. The Survival data has 3 attributes and 306 pa-
tients, with 2 survival status (the patient survived 5 years or 

Figure 4. Training data set (b), μ12 = 0.15, μ1 =0.60, μ2 = 0.20, B = 0.12, a1 
= 0.2, a2 = 0.85, b1 = 0.85, b2= –0.60. 

Figure 5. Classified training data set (b), u12 = 0.3830, u1 = 0.6683, u2 = 
0.5713, B = 0.2633, a1 = 0.4420, a2 = 0.7021, b1 = 0.3614, b2= –0.154. 

Figure 6. Classification accuracy rate comparison on the simulated 
data in scenario (b) where the projection line is not through origin. 

Table 3. Classified sample data for scenarios (a) and (b).

Scenario                                 (a)                                              (b)

Class  A  A′  A  A′

Classified in A  155  0  140  0
Classified in A′  0  45  0  60
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longer, or died within 5 years), while the Blood Transfusion 
data consist of 5 attributes and 748 donors with two catego-
ries, donating and nondonating blood. For this comparison, 
100% training data for each data set was used to evaluate these 
nine classification methods. 

We have summarized the comparison results for each 
method in Table 4. Among these methods, the first two are 
Bayes-based methods: NaiveBayes [33] is a simple probabi-
listic classifier based on applying Bayes’ theorem with strong 
(naive) independence; BayesNet classifier is based on the 
Bayes networks that are composed of the prior probability 
distribution of the class node and a set of local networks. NB-
tree [34] is the tree-based classification method, which is the 
decision tree with NaiveBayes classifiers at the leaves. Classi-
fication Via Regression [35] is the meta-based method, using 
regression techniques, where class is binarized and one regres-
sion model is built for each class value. Radial basis function 
(RBF) network and sequential minimal optimization (SMO) 
are the function-based classification methods [36, 40]. RBF net-
works is a radial basis function network, which uses K-means 
clustering algorithm to learn either a logistic regression (dis-
crete class problems) or linear regression (numeric class prob-

lems). SMO is the one that utilizes sequential minimal optimi-
zation algorithm for training a support vector classifier using 
polynomial or RBF kernels. Fuzzy Lattice Reasoning (FLR) 
and Fuzzy Decision Tree (FDT) are fuzzy-based classification 
methods [37–39]. FLR is the classifier that uses the notion of 
fuzzy lattices for creating a reasoning environment. We also 
compared our results with those obtained from FDT which is a 
popular and powerful technique of learning from fuzzy exam-
ples, and can be a benchmark for fuzzy classifiers. The best ac-
curacy achieved on each data set, measured by the misclassifi-
cation rates, is presented in bold in Table 4. 

The overall results indicate that our current approach is 
competitive and can be regarded as one of the best classifiers. 
Especially for the Wisconsin Breast Cancer, Pima Indians dia-
betes, and Blood Transfusion data, our approach dramatically 
outperformed all other alternative methods compared, in terms 
of the least misclassification rate. For the Haberman’s Survival 
data sets, our approach is below but close to the least classifi-
cation rate achieved by FLR when its vigilance value is 0.75, in 
contrast to the poor performance of the nine alternate meth-
ods in the Pima Indians and Blood Transfusion data classifica-
tion. For the IRIS data, our approach ranked at the second with 

Figure 7. Classification accuracy rate comparison on a multi-classifier 
example, IRIS data. 

Figure 8. Classification accuracy rate comparison on eight-dimen-
sional Pima Indians diabetes data set. 

Table 4. Misclassification rates (E) of selected classifiers on five empirical data sets.

                                                                                                                       Breast                   Pima Indians            Haberman’s                  Blood
Method                                                                     IRIS c (%)                 Cancer c (%)             Diabetes c (%)           Survival c (%)        Transfusion c (%)

NaiveBayes a  4.0  3.9  23.7  24.2  25.0
BayesNet a  5.3  2.7  21.7  25.8  24.6
NBtree a  2.7  2.7  25.7  22.9  20.5
Classification Via Regression a  2.0  2.3  22.7  25.5  19.8
SMO a  3.3  3.0  22.5  25.2  23.8
RBF network a  2.7  3.6  25.6  24.8  21.8
Decision table a  4.0  3.6  22.4  25.8  23.8
Fuzzy Lattice Reasoning (FLR) a Classifier  3.3 d  0.7 d  19.1 d  38.2 d  32.4 d

Fuzzy Decision Tree b  4.0  3.0  20.1  22.8  19.1
Choquet Distance based Classifier with Penalty  2.7  0.0 e  0.0 f  26.5  4.95 g

a Tested with default parameter settings in Weka3.6.0 [41].
b Tested with default parameter settings in FID3.4 [42].
c Classification of all empirical data sets used 100% training set.
d Results when ρ = 0.75, ρ Î [0.5, 1] (when ρ  = 1, EIris = 0%, EBreast = 0%, EPima = 0%, EHaberman = 2%, EBlood = 11%).
e Missing data were preprocessed using multiple imputation procedure in SAS9.2 [43]. Simple logistic regression test showed that no significant 

pair-wise interaction exists in Breast Cancer and no interaction was added in.
f Four significant pair-wise interactions (p < 0.05) were found using logistic regression test and added in Choquet classification.
g All pair-wise interactions were included, as the number of attributes is relatively small and three interactions are significant (p < 0.05) using logistic 

regression tests.
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Table 5. Parameter settings and parameter estimates of Choquet classification for UCI data sets.

IRIS
Result   Iris-setosa: 50
  Iris-versicolor: 46
  Iris-virginica: 54
Maximum generation  50
Population size  800
Estimated parameters
μ1  μ2  μ3  μ4  μ12  μ13  μ14  μ23  μ24  μ34
0.5619  0.9547  0.5916  0.5982  0.7096  0.4955  0.0144  0.0998  0.4394  0.5824
a1  a2  a3  a4
0.4801  0.8875  0.0157  0.0216
b1  b2  b3  b4
0.6452  0.8214  0.9827  0.9485
Bound 1  Bound 2
0.5521  0.0061

Breast Cancer
Result   Class 2: 458
  Class 4: 241
Maximum generation  50
Population size  500
Estimated parameters
μ1  μ2  μ3  μ4  μ5  μ6  μ7  μ8  μ9
0.8451  0.8227  0.5142  0.0909  0.334  0.3888  0.0653  0.2295  0.4545
a1  a2  a3  a4  a5  a6  a7  a8  a9
0.4239  0.2228  0.7837  0.3085  0.7508  0.8591  0.7499  0.5009  0.5088
b1  b2  b3  b4  b5  b6  b7  b8  b9
0.1023  0.653 0  0.1168  0.7906  0.1127  0.6651  0.1907  0.4844
Bound
0

PIMA Indian Diabetes
Result   Class 0: 500
  Class 1: 268
Maximum generation  30
Population size  500
Estimated parameters
μ1  μ2  μ3  μ4  μ5  μ6  μ7  μ8  μ18  μ38
0.7926  0.3335  0.2957  0.1944  0.7915  0.5507  0.3857  0.2681  0.2116  0.4178
μ47  μ57
0.6373  0.3459
a1  a2  a3  a4  a5  a6  a7  a8
0.6552  0.848  0.0261  0  0.5307  0.3932  0.594  1
b1  b2  b3  b4  b5  b6  b7  b8
0.2585  0.0478  0.6574  0.5944  0.6699  0.6137  0.4581  0.2821
Bound
0

Haberman
Result   Class 1: 306
  Class 2: 0
Maximum generation  100
Population size  800
Estimated parameters
μ1  μ2  μ3  μ12  μ13  μ23
0.5552  0.5801  0.5771  0.4166  0.5097  0.5705
a1  a2  a3
0.4785  0  0.4025
b1  b2  b3
0  0  0.4261
Bound
0.2361

Blood Transfusion
Result   Class 0: 607
  Class 1: 141
Maximum generation  50
Population size  800
Estimated parameters
μ1  μ2  μ3  μ4  μ12  μ13  μ14  μ23  μ24  μ34
0.2225  0.555  0.7359  0  0.6594  0  0.3674  0.6044  0.4796  0.5643
a1  a2  a3  a4
0.0412  0.3753  0.837  0.1273
b1  b2  b3  b4
0.139  0.653  0.5246  0.2834
Bound
0
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NBTree and RBF network, less than the average misclassifica-
tion rate (3.5%) among the nine alternative methods compared. 
Although our approach costs relatively longer time than other 
methods in the Wisconsin Breast Cancer, Pima Indians, and 
Blood Transfusion data set classification, it has even equivalent 
or better performance than FLR with its extreme vigilance value 
of 1 (see notes under Table 4). This may indicate a trade-off be-
tween the accuracy and the time efficiency, and there may in-
deed exist the interactions among the features of these data sets, 
which our approach may best fit. Therefore we believe that the 
time cost of our approach is tolerable in terms of the highest ac-
curacy achieved and its overall performance (Table 5). 

7. Summary

Based on our previous research on Choquet classification, 
this paper addressed three unsolved issues through theoretical 
discussion, simulation experiments, and empirical case stud-
ies. This research used 2-class classification as an example for 
the simplicity of theoretical illustration, and also extended to 
multi-class multidimensional situations. The current general-
ized Choquet-integral classification can allow for the projec-
tion line at any location, automatic search for the least mis-
classification rate based on Choquet distance, and penalty on 
misclassified points. This improvement expands the function-
ality of Choquet-classification in solving more flexible real-
world classification problems and also practically enhances 
the classification accuracy and power. 

Choquet integral has recently been applied to acoustic event 
classification [44], image analysis [45], image processing [46, 47], 
voice recognition [48], traffic surveillance [49], and temperature 
prediction [50]. Our case studies extended the generalized Cho-
quet classification to the biological and medical areas. Our fu-
ture studies will continue in this line of research by emphasiz-
ing the practical value of the Choquet-integral classification. 
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