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An analytical method for calculating the electromagnetic fields of a nonparaxial

elegant Laguerre-Gaussian (eLG) vortex beam is presented for arbitrary pulse duration,

spot size, and LG mode. This perturbative approach provides a numerically tractable

model for the calculation of arbitrarily high radial and azimuthal LG modes in the

nonparaxial regime, without requiring integral representations of the fields. A key

feature of this perturbative model is its use of a Poisson-like frequency spectrum, which

allows for the proper description of pulses of arbitrarily short duration. The

time-domain representation of this model is presented as a non-recursive closed-form

expression to any order of perturbative correction. This presentation enables calculation

of the complex EM fields for such general beams without requiring evaluation of any

Fourier integrals, and is therefore straightforward to implement for both analytical and

numerical applications. Other recent models are discussed and compared.

In addition, numerical simulations are carried out in which high energy electron

bunches are generated via vacuum acceleration by a tightly focused eLG beam. By

examination of accelerated electron properties far from the beam waist, it is shown that

eLG beams of higher radial index can increase the electronic energy gain. The utility of

such an acceleration model applied to ensemble acceleration is explored, and compared

to standard modern techniques.
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Chapter 1

Introduction

1.1 Laguerre-Gaussian modes and optical vortices

Optical vortices, or laser beams that carry orbital angular momentum (OAM), provide a

novel means of investigation into laser-matter interactions [1–3]. Consideration of light

with nonzero OAM has become increasingly common in many fields including harmonic

generation [4–6], particle acceleration [7, 8], and quantum information [9, 10]. The ability

to produce vortex beams of light [2, 11–13] or electrons [14–16] with well-defined OAM

allows for the study of angular momentum exchange processes when such beams

interact with matter. Recently, optical vortex (or “structured light”) beams have been

used to probe chiral matter [17], to study multipole excitation of atoms as a function of

their location with respect to the beam axis [18], to improve vacuum acceleration of

electrons [8], and to advance quantum information technologies [11, 19], among

numerous other applications.

In describing such beams mathematically, it is often most convenient to select a set

of basis functions which take advantage of the cylindrical symmetry of a laser pulse in the

plane perpendicular to the direction of its propagation (Fig. 1.1). The Laguerre-Gaussian

(LG) basis represents one such set of functions, and can be used to represent optical
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Figure 1.1: A propagatingLG0,0 (Gaussian) beam focuses then de-focuses in the vicinity of
the beam waist. A cross section of the spatial profile of an LG beam near the focal region
(center) shows its relevant physical parameters. The beam waist, w0, is the width of the
beam at its tightest focus. The Rayleigh range, ZR, is the longitudinal distance from the
focal plane at which the beam width w(z) grows to

√
2 w0. The cylindrical symmetry of

the Gaussian pulse is maintained while focusing and de-focusing. (Image modified from
Wikipedia)

vortices which carry arbitrarily-many quanta of angular momentum [20].

Laser pulses described in the LG basis are distinguished by two indices, LGn,m,

where n andm describe the radial and orbital profiles, respectively, of the pulse. The

radial mode n represents the number of (non-axial) nodes in the radial intensity profile

of the beam. The orbital modem represents the number of full phase cycles which are

experienced in traversing 2π radians about the central axis of a transverse cross section,

and indicates the quantized value of orbital angular momentumm~ carried by the beam.

This mode is also referred to as the winding number or topological charge. Different n

andm values are best understood visually, and are shown explicitly in Fig. 1.2.

The OAM associated with an LG beam is an ensemble property manifesting as a

global phase structure exp(imφ) in the beam’s profile, where φ is the polar angle

(Fig. 1.2D&E). This phase indicates a singularity on axis, where φ is undefined, for all

nonzero OAM modes. This singularity is the source of the axial nodes in intensity, as

seen in Fig. 1.2(A-C). Such modes are often referred to as “donut modes" due to the hole

(node) in the center of the circular intensity profile.
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Figure 1.2: Visualization of LG orbital and radial mode numbers. Panels (A),(B),(C) show
cross sectional average intensity profiles of beams forLG0,1, LG1,1, andLG2,1 modes, re-
spectively. The dark central spots indicate zero intensity due to an axial phase singularity.
Panels (D),(E) show surfaces of constant phase for beams with orbital index m = 1 and
m = 3, respectively. (Images modified from Ref. [2])

One way OAM can be encoded into a beam is by passing a Gaussian source through

a spiral phase plate, wherein the thickness of the plate depends on the azimuthal

coordinate φ [21–24]. Additionally, holograms and forked diffraction gratings provide

another means of producing optical vortices (cf. Ref. [25]), but these methods produce

resulting beams with significantly lower intensities than that of the source beam.

Alternatively, such structured light can also be created in the extreme ultraviolet by

means of high-order harmonic generation [5, 26, 27].
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1.2 Analytical models

The worldwide effort to develop increasingly powerful lasers will allow the exploration of

new physical regimes of intense laser interactions with matter as well as the development

of new applications that such intense laser regimes permit [28, 29]. Theoretical modeling

of these interactions must begin with accurate descriptions of the driving laser fields,

taking into account arbitrary focal spot size, pulse duration, and OAM content, amongst

other properties. Traditionally, solving the full Helmholtz problem involves finding six

field solutions to the vector Helmholtz equations. Matters are greatly simplified when

instead one needs to find only a single solution to the scalar Helmholtz equation (HE),

(
∇2 + k2

)
U(r, ω) = 0. (1.1)

The HE is derived through separation of spatial and temporal variables in the wave

equation, and the parameter k in Eq. (1.1) represents the wave vector. The one solution to

the scalar HE, U , is the beam’s phasor, which describes its amplitude distribution.

From a general expression for a phasor, Hertz potentials [30, 31] (alternatively

“Hertz vectors" or “polarization potentials") can be used to generate exact expressions for

the complex EM fields. The Hertz vectors, defined in Eq. (1.2) for a beam propagating in

the ẑ-direction with linear polarization in the x̂-direction, are represented in general as

the complex phasor with a direction that is chosen based on the beam polarization,

Πe = U(r, t) x̂ (1.2a)

Πm = η0 U(r, t) ŷ, (1.2b)

where η0 is the impedance of free space and U(r, t) is the Fourier transform of U(r, ω).

The Hertz potentials are sometimes referred to as “super potentials" because they
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directly generate the usual scalar and vector EM potentials (φ and A),

φ = ∇ ·Πe (1.3a)

A =
1

c2

∂Πe

∂t
+ µ0∇×Πm, (1.3b)

which in turn generate the EM fields. Consequently, the complex vector fields E and B

can be obtained directly from the Hertz potentials [30], and therefore from the phasor,

E =∇×∇×Πe − µ0
∂

∂t
(∇×Πm) (1.4a)

H =∇×∇×Πm + ε0
∂

∂t
(∇×Πe) . (1.4b)

Thus, derivation of an appropriate phasor is the primary task in developing an analytical

description of optical fields.

To simplify calculations in the case of loose focusing, for instance, one often adopts

the so-called paraxial approximation, which assumes that the beam’s amplitude changes

more rapidly in the transverse direction than in the direction of propagation (ẑ).

Mathematically, Eq. (1.1) can be expanded with

∇2U =
(
∇2
⊥ +∇2

z

)
U, (1.5)

wherein the paraxial approximation can then formally be invoked by claiming

|∇2
zU | � |∇2

⊥U | and dropping the smaller term.

For some applications of optical vortex beams (such as, e.g., vacuum acceleration of

charged particles [8]), high field intensities are required to achieve desired results.

Experimentally, the highest laser intensities are obtained using tight focusing

techniques, in which the laser spot size in the focal region is comparable to the laser field
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wavelength. However, such tightly-focused beams cannot be correctly described within

the paraxial approximation [32, 33] and thus theoretical simulations of laser-matter

interactions under such tight focusing conditions require a detailed description of the

laser fields in the focal region that includes nonparaxial effects [33–39]. Multiple

nonparaxial analytic representations have been developed to model such tightly focused

beams with nonzero OAM (cf. Refs. [32, 40–43]).

The remainder of this dissertation addresses the modeling and application of

tightly-focused LG beams which cannot be well-described under the paraxial

approximation. Chapter 2 presents one such nonparaxial model, which is an exact

solution of the scalar HE. This model, however, contains an error in the original theory

which can lead to nonphysical discontinuities in the real electromagnetic (EM) fields.

The source of these discontinuities is found, and a corrected theory is provided. These

results are published in Ref. [44]. Even with this correction, calculation of the

time-domain phasor for arbitrary LG modes remains difficult. Therefore,

Chapters 3 and 4 present a novel approach to describing a completely generalized

time-domain phasor, and thus EM fields, of nonparaxial LG beams in the perturbative

regime. The results of Chapter 3 are published in Ref. [45], while the results of Chapter 4

have been submitted for publication. Finally, Chapter 5 implements this perturbative

model to numerically study acceleration of electrons by higher-order LG modes. These

results remain unpublished. Some details of our derivations are included in

Appendices A and B. Lastly, Fortran and Python codes for calculating the complex phasor

from our generalized perturbative model are provided in Appendix C. The Fortran code

was used for all electron acceleration results presented in this work.
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Chapter 2

Nonphysical Discontinuities in the

Source-Sink Model

2.1 Introduction

The complex point-source model [46–48] is one tool that has been developed to analytically

describe focused beams carrying OAM. This model describes valid solutions of the

nonparaxial HE. The complex point-source model assumes that the beam source exists at

a complex point whose real value lies along the beam’s axis, and that the beam can be

represented by an outgoing spherical wave. It was shown by M. Couture and P. A.

Belanger [49] that (for an appropriate choice of boundary conditions) the spherical waves

represented by this model are equivalent to the paraxial representation of a Gaussian

(zero OAM) beam with all perturbative corrections included. The major benefit of this

method is that it provides a closed form analytical representation of the beam’s phasor,

which is the complex function of the beam’s spatiotemporal amplitude and phase that

satisfies the scalar HE [3, 20]. This is a distinct advantage of the complex point-source

model as compared to other models [32, 40, 41], in which the fields are usually defined

using either a series or an integral representation. The complex point-source model,



8

however, still has one major drawback. Namely, the point-source Gaussian phasor

solution is known to contain singularities in its square modulus as well as a

discontinuity at the beam waist [50].

Solutions of the HE, or any differential equation, must be analytic functions. The

discontinuity at the beam waist discussed above implies that the phasor of the

point-source model is not an analytic function, since an analytic function must be

infinitely differentiable (and hence integrable). The point-source phasor is therefore not

a valid solution to the scalar HE, and a model that is free from this problem is required

for a physically accurate description of these laser fields.

The complex source/sink model [50] was developed to avoid the discontinuity and

singularities encountered in the complex point-source model. The complex source/sink

model represents the beam as two counter-propagating spherical waves, both centered

at the imaginary location used in the complex point-source model. In this new model,

the singularities and discontinuity in the square modulus of the Gaussian phasor both

vanish.

In this Chapter, it is shown that the discontinuities still arise in phasors generated

from the complex source/sink model for all odd OAM modes. The discontinuity in the

phasor leads directly to discontinuities in the EM fields. Thus, real fields generated from

the complex source/sink phasor are nonphysical for odd OAM values.

This Chapter is organized as follows. In Section 2.2, we demonstrate analytically

why the discontinuity appears in the phasor for odd OAM, and why it does not appear for

even OAM. It is also shown how the discontinuity can be avoided. In Section 2.3, we

present numerical results illustrating the discontinuities in electric field components

that result from the discontinuity in the phasor. In Section 2.5, we summarize our results

and present our conclusions.
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2.2 Discontinuity in the phasor

Using the complex source/sink model, April [43, 51] proposed an analytically exact

discontinuity-free representation of the phasor for nonparaxial LG beams of any radial

and OAM mode. April’s methods have since been adopted in many other works

(e.g., [52–59]). As long as one considers only the square modulus of phasor solutions

derived from the complex source/sink method, such as April’s phasor, the discontinuity

and singularities are absent as claimed [43, 60]. This does not mean, however, that the

phasors themselves are discontinuity free. As we show in this section, consideration of

the real and/or imaginary parts of the source/sink phasor, depending on the choice of

initial phase φ0, very clearly reveals a discontinuity at the beam waist for certain

parameters. The presence of this axial discontinuity depends on the choice between two

representations of the complex radius of curvature of the spherical waves, R̃ [43, 61].

Most work using April’s phasor (e.g., [52–55, 57, 59]) has so far been done with the

lowest order LG mode (the “Gaussian mode,” which has zero OAM) or by considering the

phasor only in the paraxial limit. As we will show, the phasors for these two common

cases are not affected by this discontinuity.

Formally, April [43] combined the complex source/sink method with use of a

Poisson-like frequency spectrum [40, 62], f(ω), to analytically represent the generic

phasor Up,n, describing an LGp,n beam, from which EM fields can be derived using the

Hertz potentials [Eq. (1.4)]. For the zero order radial mode (p = 0), April’s phasor for the

nonparaxial LG beam with any OAM index n can be expressed as (see Eqs. (16) & (17) of

[43])

U0,n(r, ω) =
4 cos(nφ)

(2n− 1)!!
f(ω)

(
ka

2

)1+n/2

exp(−ka)P n
n (χ)jn(kR̃), (2.1)

where jn is the spherical Bessel function, a is the confocal parameter of the focused

beam, φ is the cylindrical angle, and the complex-valued associated Legendre function
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P n
n (χ) is defined by Eqs. (8.6.6) and (8.6.18) of Ref. [63],

P n
n (χ) =

(
χ2 − 1

)n/2 dn

dχn

(
1

2nn!

dn (χ2 − 1)
n

dχn

)
, (2.2)

in which the complex argument, χ, is defined by

χ ≡ (z + ia)/R̃. (2.3)

There are two choices (cf. Eq. (14) of Ref. [43]) for the complex spherical radius of

curvature, R̃, in Eq. (2.1):

R̃1 =
√
ρ2 + (z + ia)2 (2.4a)

R̃2 =i
√
−ρ2 − (z + ia)2, (2.4b)

where ρ, φ, z are the cylindrical coordinates in which ẑ is the direction of propagation,

and the principal values of the roots are considered. The Poisson-like frequency

spectrum f(ω) in Eq. (2.1) is defined as (see Eq. (4) of [40] or Eq. (20) of [43])

f(ω) = 2πeiφ0
(
s

ω0

)s+1
ωs exp(−sω/ω0)

Γ(s+ 1)
θ(ω), (2.5)

where s is the spectral parameter [40, 62] (which is related to the bandwidth of the pulse,

which in turn is related to its duration), ω0 is the frequency at which f(ω) has its

maximum, φ0 is the phase of the pulse, and θ(ω) is the Heaviside unit step function. In

the limit of a narrow spectrum, s� 1, Eq. (2.5) reduces to a Gaussian spectrum with

pulse duration τ =
√

2s/ω0.

It has been stated [43, 61] that neither choice of R̃ in Eq. (2.4) would cause the phasor

to suffer from discontinuities. We will show, however, that only the choice R̃2 produces

continuous field components across the beam waist for all values of OAM.
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Note also that the associated Legendre functions defined in Eq. (2.2) contain a

branch cut only for odd index n. The following sections will elucidate the interplay

between this branch cut and the choice of R̃, and show how this determines whether or

not the phasors contain discontinuities.

2.2.1 Odd OAM modes

Inspection of Eqs. (2.1)-(2.5) shows that only the last two factors in the phasor may lead to

the existence of a discontinuity. We thus focus on these two factors and express Eq. (2.1)

as

U0,n(r, ω) = cn(φ, ω)P n
n (χ)jn(kR̃), (2.6)

where cn(φ, ω) is defined by comparison of Eqs. (2.1) and (2.6). To illustrate how the

choice of R̃ determines whether or not there is a discontinuity in the phasor, we consider

the simplest odd OAM mode, n = 1. We first use the choice R̃1 to demonstrate a

discontinuity at the beam waist, z = 0.

2.2.1.1 Exact expansion ofU0,1 in powers of R̃

Expressing the spherical Bessel function in Eq. (2.6) in terms of sines and cosines

[cf. Eqs. (2.18)–(2.20)] and defining the parameter

ξ ≡ kR̃, (2.7)

the n = 1 phasor may be expressed as

U0,1 = c1P
1
1 (χ)

(
−cos(ξ)

ξ
+

sin(ξ)

ξ2

)
. (2.8)

Replacing the trigonometric functions by their series expansions, we obtain
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U0,1 = c1P
1
1 (χ)

[
−1

ξ

∞∑
m=0

(−1)mξ2m

(2m)!
+

1

ξ2

∞∑
m=0

(−1)mξ2m+1

(2m+ 1)!

]
. (2.9)

Combining the two summations, we obtain:

U0,1 = c1P
1
1 (χ)

1

ξ

∞∑
m=0

κm ξ
2m (2.10a)

κm ≡ (−1)m+1 2m

(2m+ 1)!
(2.10b)

where, from Eq. (2.2),

P 1
1 (χ) =

√
χ2 − 1. (2.11)

2.2.1.2 U0,1 with the choice R̃ = R̃1

Making the choice R̃ = R̃1 [defined in Eq. (2.4a)] in Eqs. (2.3) and (2.7), U0,1 in Eq. (2.10a)

becomes:

U0,1 =

√
−ρ2

ρ2 + (z + ia)2
· 1√

ρ2 + (z + ia)2
c1

∞∑
m=0

(κmk
2m−1)

(
ρ2 + (z + ia)2

)m
. (2.12)

We see that the summation in Eq. (2.12) involves integer powers of complex numbers,

whereas the prefactors multiplying the summation include two square roots of complex

numbers, whose evaluation requires some care. In general, when dealing with products

of square roots of complex numbers, it is best to evaluate each square root separately by

expressing each complex number in terms of its magnitude and phase before taking its

square root. In particular, mistakes can easily be made by not taking into account the

branch cuts in the square roots. (For example,
√
−1 ·
√
−1 = i · i = −1, but

√
−1 · −1 =

√
1 = 1 is incorrect if both cases are to consider the same standard branch

cut along the negative real axis.) Thus, we have expressed each of the complex arguments
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of the two square root prefactors in Eq. (2.12) in polar notation before taking the square

roots. The result is:

U0,1 = c1 exp

(
i

2
(φ1 − φ2)

) ∞∑
m=0

λm exp(imφ2) (2.13a)

φ1 = arctan

(
2az

−ρ2 + a2 − z2

)
(2.13b)

φ2 = arctan

(
2az

ρ2 − a2 + z2

)
(2.13c)

λm ≡ (κmk
2m−1) ρ

[
(ρ2 + z2 + a2)2 − (2aρ)2

](m−1)/2
. (2.13d)

Here, the real numbers λm arem-dependent magnitudes, defined in Eq. (2.13d), and φ1

and φ2 are the phases of the complex numbers inside the first and second square root

prefactors in Eq. (2.12) (which originate from P 1
1 (χ) and R̃1 respectively). The so-called

"two-argument" arctan function is defined over−π < φ ≤ π; thus, arctan has a branch

cut along the negative real axis. At the beam waist z = 0, the imaginary parts of the

complex numbers whose phases are given by φ1 and φ2 are zero; thus, the branch cut

along the negative real axis of each arctan function in Eqs. (2.13b) and (2.13c) is

determined by the region over which the denominators in each of their arguments is

negative. At z = 0 the denominator of φ1 is negative for ρ > a, while that for φ2 is

negative for ρ < a.

The φ1 and φ2 phase factors multiplying the sum in Eq. (2.13a) always have a phase

difference of π across the branch cut due to their overall factor of 1/2 in the exponential.

The key point is that φ1 and φ2 have branch cuts over different regions of the parameter

ρ/a. Specifically, U0,1 is discontinuous for ρ > a at z = 0 owing to the change in sign of

φ1/2 across the branch cut, while for ρ < a it is discontinuous owing to the change in

sign of φ2/2 across the branch cut. Consequently, U0,1 is discontinuous across the beam

waist at z = 0 for all values of ρ/a owing to the discontinuity in the product of phases,

exp
(
i
2

(φ1 − φ2)
)

. These ranges of the ratio ρ/a over which the discontinuities in the
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phases φ1/2,−φ2/2, and (φ1 − φ2) /2 occur are illustrated in the three panels of Fig. 2.1.

Note that for each term in the sum in Eq. (2.13a), there is a phase factor involving an

integer multiple of φ2. However, each of these terms is continuous across the branch cut

since each branch contains an integer numberm of full periods, resulting in a 2π phase

difference across the branch cut. Thus, the terms in the sum do not contribute to any

discontinuity.

2.2.1.3 U0,1 with the choice R̃ = R̃2

Use of the choice R̃ = R̃2 results instead in the phasor U0,1 being continuous, as may be

seen using the same arguments as in the previous section. Specifically, we replace R̃1 by

R̃2[defined in Eq. (2.4b)] in Eqs. (2.3) and (2.7) and substitute the results in Eq. (2.10a).

Since R̃2
1 = R̃2

2, the terms in the summation are continuous across the branch cut. We

thus focus on the new square root prefactors (corresponding to those for R̃ = R̃1 in

Eq. (2.12)):

U0,1 ∝

√
−ρ2

ρ2 + (z + ia)2
· 1√
−ρ2 − (z + ia)2

. (2.14)

The number inside the first square root factor is the same as in Eq. (2.12); consequently,

it has the same phase factor, exp(iφ1). The number inside the square root in the

denominator of the second factor in Eq. (2.14) has the phase factor exp(iφ3), where

φ3 = arctan

(
−2az

−ρ2 + a2 − z2

)
. (2.15)

Thus, the phasor has the same form as in Eq. (2.13a), but with a different phase outside

the sum, i.e.,

U0,1 = −ic1 exp

(
i

2
(φ1 − φ3)

) ∞∑
m=0

λm exp(imφ2) (2.16)
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Figure 2.1: The phases (a) φ1/2, (b) −φ2/2, and (c) (φ1 − φ2)/2 as functions of ρ/a and
z/a, where a is the confocal parameter of the focused laser beam. Values of each phase
over the range from−π to +π are indicated by the vertical color coding strip to the right
of each panel. A phase jump of π occurs for ρ/a > 1 in (a), for ρ/a < 1 in (b), and for all
values of ρ/a in (c). See text for discussion.
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(a)

(b)

Figure 2.2: The phases (a)−φ3/2 and (b) (φ1 − φ3)/2 as functions of ρ/a and z/a, where
a is the confocal parameter of the focused laser beam and the behavior of the phase φ1/2
is shown in Fig. 2.1(a). Values of each phase over the range from−π to +π are indicated
by the vertical color coding strip to the right of each panel. For ρ/a > 1 a phase jump of π
occurs in (a) and a phase jump of 2π occurs in (b). See text for discussion.

By considering the branch cut in arctan, one can see that both φ1 and φ3 are

discontinuous in the same region, namely for ρ > a. In both cases, the value changes

sign as the z = 0 plane is crossed. When these two phase factors are multiplied together

as in Eq. (2.16), each one has a phase jump of π (cf. Figs. 2.1(a) and 2.2(a)), so that their

product has a phase jump of 2π, as shown in Fig. 2.2(b). Hence, the phasor defined by

Eq. (2.16) is continuous across the branch cut.
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2.2.1.4 Case of Arbitrary Odd OAM Modes

We may easily see that for any odd OAM index n in Eq. (2.6), the phasor U0,n will exhibit

the same behaviors as just shown for the n = 1 case. First, the associated Legendre

function P n
n (χ) in Eq. (2.2) always introduces a square root factor as on the right hand

side of Eq. (2.11) for any odd index n, which in turn results in the first square root factor

in Eqs. (2.12) and (2.14) regardless of whether one chooses respectively R̃ = R̃1 or

R̃ = R̃2. Second, the spherical Bessel function factor jn in Eq. (2.6) will always introduce

the second square root factor in Eqs. (2.12) and (2.14), depending respectively upon

whether one chooses R̃ = R̃1 or R̃ = R̃2. One may see this by examining the expression

for the spherical Bessel function given in Eq. (2.18). Specifically, for odd n the square root

factor comes from the factor 1/R̃ outside the square brackets in Eq. (2.18); for odd n the

two summations inside the square brackets in Eq. (2.18) involve only even powers of R̃

and hence do not contribute any square root factors. Thus, the discontinuity in the

phasor U0,n for a particular choice of R̃ has the same behavior for any odd OAM n.

2.2.2 Even OAM modes

For even OAM modes n, the general expression for the phasor in Eq. (2.1) has the same

form as in Eq. (2.6). As has already been noted above, the associated Legendre function

defined in Eq. (2.2) does not have a branch cut for even index n. We thus focus on the

spherical Bessel function jn in Eq. (2.6), using the expression for jn in Eq. (2.18). From

Eqs. (2.19) and (2.20) we see that for any OAM mode n the functions P andQ involve

respectively even and odd powers of R̃. For even n, the sine and cosine functions in

Eq. (2.18) may be expanded respectively in terms of odd and even powers of R̃. Thus the

two terms inside the square bracket in Eq. (2.18) each involve odd powers of R̃. Owing to

the 1/R̃ factor multiplying the square bracket in Eq. (2.18), the spherical Bessel function

jn for even nmay thus be expressed as an expansion in even powers of R̃. Consequently,
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.3: The square modulus [(a),(d),(g)], real part [(b),(e),(h)], and imaginary part
[(c),(f),(i)] of the phasorU0,n(r, t) in Eq. (2.17) for n=3 for phases φ0 = 0 [(a)-(c)], φ0 = π/4
[(d),(e),(f)], and φ0 = π/2 [(g),(h),(i)]. Here, x, y, z are the Cartesian coordinates. The real
and imaginary parts of the phasor are normalized to have a maximum amplitude of unity,
and were calculated using the choice R̃ = R̃1 at y = 0 and t = z/c. The linearly polar-
ized beam is assumed to have a spectral parameter s = 712, beam waistw0 = 2 µm, wave-
length λ = 800 nm, and Rayleigh length zR ≈ 15.7µm. See text for discussion.
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since R̃2
1 = R̃2

2 the spherical Bessel function jn for even n is independent of the choice of

the expression used for R̃. Also, since there are no odd powers of R̃ in the expression for

jn for even n, no branch cuts are introduced. Thus, the phasor U0,n for even n has no

discontinuities.

2.3 Discontinuity in the real fields

We can express the phasor of Eq. (2.1) in the time domain via a Fourier transformation,

U0,n(r, t) =
1

2π

∫
U0,n(r, ω) exp(iωt)dω, (2.17)

the result of which is presented for arbitrary n in Eq. (2.22). Recall that the frequency

spectrum f(ω) of the pulse, defined in Eq. (2.5), introduces an overall phase factor

exp(iφ0) in both the frequency-dependent and time-dependent phasors in Eqs. (2.1)

and (2.17) respectively. Therefore, changes in the initial phase φ0 can affect the

occurrence of discontinuities in the real and imaginary components of the phasor.

Figure 2.3 shows explicitly the discontinuities in the time domain phasor for n = 3

when using the choice R̃ = R̃1 for three values of the phase φ0. These plots were

generated for a linearly polarized beam with spectral parameter s = 712, beam waist

w0 = 2 µm, wavelength λ = 800 nm, and Rayleigh length zR = kw2
0/2. As expected, no

discontinuity is visible in the square modulus of the time domain phasor for any φ0.

However, the discontinuity at z = 0 is clearly visible in the real and/or imaginary parts of

the phasor, depending upon the value of φ0 [cf. panels (c), (e), (f), and (h) of Fig. 2.3].

In Figure 2.4, we plot the longitudinal fieldsEz [obtained using Eq. (1.4)] for the odd

OAM phasors U0,n(r, t) for n = 1 and n = 3 using the choice R̃ = R̃1 and an overall

phase φ0 = π. This choice of the phase φ0 yields a discontinuity in the imaginary parts of

each of the phasors, which in turn results in discontinuous fieldsEz. The corresponding

transverse fields (not shown) are continuous across the beam waist at z = 0. In general,
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for linearly polarized fields, our calculations show that discontinuities in the real part of

the time domain phasor lead to discontinuities in the transverse components of E and B

while discontinuities in the imaginary part of the time domain phasor lead to

discontinuities in the longitudinal components of the fields. When both the real and

imaginary parts of the phasor have discontinuities, the problem appears in all real field

components.

(a)

(b)

Figure 2.4: Discontinuities in the longitudinal fields Ez [obtained using Eq. (1.4)] across
the beam waist z = 0 for the odd OAM phasors U0,n for (a) n = 1, and (b) n = 3. These
fields were obtained using the choice R̃ = R̃1 for a phase φ0 = π, y = 0, and t = z/c. The
amplitudes of the fields are normalized to unity. See text for discussion.
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As for the case of linear polarization, other beam polarizations will also suffer

discontinuous real fields for phasors calculated using the choice R̃ = R̃1. These

discontinuities originate in the phasor, which is polarization-independent. The

polarization only enters when computing the fields using the Hertz potentials, as

Eq. (1.2) demonstrates for the case of linear polarization. The discontinuities may occur

in different field components, depending on the field polarization, but they will be

present in the real fields nonetheless.

Although our focus in this chapter is on solutions to the nonparaxial HE, a brief

mention of the paraxial case is warranted. In the paraxial limit of the phasor (cf. Eq. (5)

of Ref. [43]), the terms P n
n (χ) and R̃ do not enter. In fact, to lowest radial order the

associated Laguerre polynomials in the paraxial phasor are unity. Thus the real and

imaginary parts of the paraxial phasor, by direct inspection, are simple oscillatory

functions of z. In this limit, therefore, the problem of discontinuities in the fields does

not arise.

2.4 Explicit expression for the phasorU0,n(r, t)

In this Section we present the result of carrying out the Fourier transform of the phasor

U0,n(r, ω) in Eq. (2.1), which is obtained from Eqs. (16) & (17) of Ref. [43] for the phasor

Ũσ
0,n(r, ω) upon setting σ = e and p = 0 (and dropping the explicit notation of the parity

σ = e in our calculations). In order to carry out the Fourier transform in Eq. (2.17), one

must expand the spherical Bessel function in Eq. (2.1) using Eq. (10.1.8) of Ref. [63]:

jn(kR̃) =
1

kR̃

[
P

(
n+

1

2
, kR̃

)
sin
(
kR̃− nπ

2

)
+ Q

(
n+

1

2
, kR̃

)
cos
(
kR̃− nπ

2

)]
(2.18)

where
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P

(
n+

1

2
, kR̃

)
=

bn/2c∑
m=0

(−1)m(2kR̃)(−2m) (n+ 2m)!

(2m)! Γ(n− 2m+ 1)
(2.19)

and

Q

(
n+

1

2
, kR̃

)
=

b(n−1)/2c∑
m=0

(−1)m(2kR̃)(−2m−1) (n+ 2m+ 1)!

(2m+ 1)! Γ(n− 2m)
(2.20)

2.4.1 Result forU0,n(r, t)

Expanding the trigonometric functions in Eq. (2.18) in terms of exponentials and

replacing k everywhere by k = ω/c, one may carry out the Fourier transform in Eq. (2.17)

by making repeated use of the integral representation of the gamma function (cf.

Eq. (6.1.1) of [63]), i.e.,

Γ(γ + 1) = ηγ+1

∫ ∞
0

dω ωγ exp(−ηω) , Re η > 0 (2.21)

The result for U0,n(r, t) is:

U0,n(r, t) = Cn cos(nφ)P n
n (χ)

×


bn/2c∑
m=0

A(n,m)

(
c

R̃

)2m+1 [
(T−)−(s+n/2−2m+1) − (−1)n(T+)−(s+n/2−2m+1)

]

+

b(n−1)/2c∑
m=0

D(n,m)

(
c

R̃

)2m+2 [
(T−)−(s+n/2−2m) + (−1)n(T+)−(s+n/2−2m)

]
(2.22)

In Eq. (2.22) we have defined

A(n,m) ≡ i(−1)m+1(n+ 2m)!

(2m)! Γ(n− 2m+ 1)

Γ(s+ n/2− 2m+ 1)

2(2m+1) Γ(s+ 1)

(
s

ω0

)(2m−n/2)

(2.23)
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D(n,m) ≡ (−1)m(n+ 2m+ 1)!

(2m+ 1)! Γ(n− 2m)

Γ(s+ n/2− 2m)

2(2m+2) Γ(s+ 1)

(
s

ω0

)(2m+1−n/2)

(2.24)

where s and ω0 are defined in the text below Eq. (2.5),

Cn ≡ exp[i (φ0 − nπ/2)]
(a
c

)(1+n/2) 2(1−n/2)

(2n− 1)!!
(2.25)

and

T± ≡ 1− iω0t

s
+
aω0

cs
± iω0R̃

cs
(2.26)

2.4.2 Result forU0,1(r, t)

Setting n = 1 in Eq. (2.22), we have

C1 = exp[i (φ0 − π/2)]
√

2
(a
c

)3/2

(2.27)

A(1, 0) = −i Γ(s+ 3/2)

2 Γ(s+ 1)

(
s

ω0

)−1/2

(2.28)

D(1, 0) =
Γ(s+ 1/2)

2 Γ(s+ 1)

(
s

ω0

)1/2

(2.29)

Hence,

U0,1(r, t) = C1 cos(φ)P 1
1 (χ)

{
A(1, 0)

(
c

R̃

)[
(T−)−(s+3/2) + (T+)−(s+3/2)

]
+ D(1, 0)

(
c

R̃

)2 [
(T−)−(s+1/2) − (T+)−(s+1/2)

]} (2.30)
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2.5 Summary

In this Chapter, we have shown (by examining the nonparaxial source/sink phasor) that

for all odd OAM modes discontinuities arise across the entire beam waist when the

choice R̃ = R̃1 is made for the complex spherical radius. Whether these discontinuities

lie in the real or imaginary parts of the phasor depends upon the overall phase φ0 of the

laser pulse. In turn, these phasor discontinuities result in nonphysical real

electromagnetic field components calculated from the Hertz potentials.

As we have shown, these problems do not exist for even OAM modes. Further, in the

paraxial limit, the terms that cause discontinuous behavior are not present in the phasor

expression. Thus, real components of paraxial fields are free from discontinuities in the

phasor that cause problems in the nonparaxial case.

In essence, these discontinuities arise due to different branch cut selections for

each choice of R̃. The branch cut in the two-argument arctangent is placed along the

negative real axis, as is the standard branch cut of the square root used in R̃2. The phasor

is discontinuous across each of these branches individually but, as we have shown, the

discontinuity suffered across both simultaneously is a 2π phase. This results in a

continuous description. Choice R̃1, on the other hand, does not subscribe to the usual

branch cut location. By placing the branch cut for R̃1 on, for instance, the positive

imaginary axis, the discontinuity suffered when crossing to an adjacent branch of the

arctangent is not canceled, and thus nonphysical discontinuities are manifest in the real

fields.

Whether considering the fields of vortex beams in vacuum, or interacting with

plasmas or other media, proper physical theoretical models are necessary. As this work

has shown, discontinuities in the nonparaxial source/sink phasor can be avoided

completely by making the choice R̃ = R̃2 for the complex spherical radius. Such a choice

avoids discontinuities in the complex phasor for all OAM modes, however, as shown in

Sec. 2.4, calculation of higher-order LG modes in the time domain from the source-sink
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remains a difficult problem. The next two Chapters present a novel alternative method

for deriving (Ch. 3) and generalizing (Ch. 4) such a time-domain description.
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Chapter 3

A Perturbative Description of Ultrashort

Tightly-Focused eLG Beams

3.1 Introduction

Perturbative solutions for the EM fields beyond the lowest-order paraxial approximation

were considered as early as 1975, in which the first few orders of nonparaxial corrections

were found [33, 64, 65]. Critically, the first order correction introduces a longitudinal

electric field that is absent in the paraxial approximation. Many higher order corrections

to the electromagnetic (EM) fields have since been found [34, 38].

Perturbative solutions of the scalar HE provide an alternative approach for treating

nonparaxial effects. Solutions for the HE phasor have been obtained primarily by two

different methods. One method involves solving for the exact phasor in integral or

differential form. This phasor is then expanded perturbatively [65–67]. Alternatively, the

HE can be solved one perturbative order at a time, and an exact phasor can be built from

the sum of these solutions [49, 64, 68, 69]. With either of these two methods, the HE can

be solved under different sets of boundary conditions [70]. Common choices for

boundary conditions include: (i) a purely paraxial beam in the focal plane [65, 68, 69]
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(where the exact solution is valid in the half space after the focus only, while the

perturbative solution is valid in all space), (ii) an oscillatory far-field beam [34, 64], or (iii)

an outgoing spherical wave in the far-field [49, 66, 67]. Couture and Belanger [49] showed

that the latter, with infinitely many orders of correction, was equivalent to modeling the

Gaussian beam with a so-called complex source-point.

The complex source-point model warrants additional discussion. It describes the

beam as an outgoing spherical wave originating from an imaginary point on the optical

axis. The phasor described by this model has a circular singularity in the focal plane since

the imaginary location of the point source is related to a circle in real space [71–73]. A

boundary condition of far-field counter-propagating spherical waves was implemented

to remove the singularity in the complex source-point model [51, 60, 72, 74]. This is known

as the complex source-sink model, with the source and sink at the same imaginary location

along the optical axis. While the singularity is removed in this model, the energy density

diverges logarithmically as the transverse coordinate grows large [75]. It has been stated,

however, that this energy divergence is irrelevant in practice since neither experiments

nor simulations look to sufficiently large transverse distance for it to matter [76, 77].

As our aim in this chapter is to describe tightly-focused optical vortex beams

carrying orbital angular momentum, we utilize henceforth LG models of such optical

beams. In the remainder of this dissertation, LG beams are classified by two indices n

andm as LGn,m, with n andm representing the radial and azimuthal profiles,

respectively. These are referred to as the LG “modes,” of which the lowest order is a

Gaussian beam and higher orders can describe vortex beams. In particular, we utilize the

so-called elegant LG (eLG) model, wherein the arguments of certain special functions are

complex variables. Note that there is a physical difference between LG and eLG models,

as discussed by Saghafi and Sheppard [78]. Bandres and Gutiérrez-Vega (BGV) have

provided exact integral and differential solutions for monochromatic eLG beams of any

LG mode (see Eqs. (16) & (21) of Ref. [67]). These solutions, based on the complex
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source-point model, contain the singularity discussed above. In Ref. [67], BGV presented

an equally general perturbative solution which does not contain the singularity, since a

truncated perturbative model does not exactly satisfy the source-point boundary

condition (see Eq. (24) of Ref. [67]).

Nearly all of the analytical models discussed thus far entail a significant limitation:

they assume a monochromatic beam. Many modern experiments, particularly those

studying high intensity laser-matter interactions, involve optical pulses, shaped pulses,

chirped pulses, etc., all of which require a polychromatic description. While long pulses

can be well approximated as the product of a temporal Gaussian envelope and a

monochromatic field, this description becomes inadequate for ultrashort pulses [79].

Others have employed polychromatic descriptions, but these often assume that kz is

frequency-independent or involve non-LG models (see, e.g., Refs. [80–82]). April [43]

generalized his source-sink model [51] for monochromatic eLG fields to allow for

polychromatic descriptions by introducing a Poisson-like frequency spectrum [40, 62].

Application of the Hertz potentials [83, 84] then allowed the computation of a complete

set of EM fields for an arbitrarily short pulse duration and any LG mode. These fields are

free of all singularities [60], and can be made free of all discontinuities (Chap. 2), which

are present in the complex source-point models. While Ref. [43] presents a complete

model for describing eLG pulses in the frequency domain, the Fourier transform

required to achieve a time-domain phasor, and therefore the EM fields, is nontrivial. To

our knowledge, this integral has only been carried out for the lowest radial order n = 0,

as shown in Sec. 2.4. Owing to a sum over radial orders in the frequency-domain phasor

of Ref. [43], the Fourier transform for higher radial modes becomes increasingly

complicated to calculate.

In this chapter we present an analytical method for calculating the time-domain

phasor, and EM fields, of a tightly-focused, arbitrarily-short pulse for any LG mode. Our

method generalizes the perturbative approach of BGV [67] by including a Poisson-like
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frequency spectrum and calculating the EM fields from the time-domain phasor. We

show that our fields agree with those generated from the model of Refs. [43, 44] for the

n = 0 case, and that fields for higher order LG modes can easily be produced. The

primary advantage of this method over that proposed in Ref. [43] is the ability to obtain

an explicit expression for the time-domain phasor, thus enabling one to obtain the EM

fields by a straightforward prescription.

This chapter is organized as follows. In Section 3.2 we derive the zeroth and first

order terms in the perturbative time-domain phasor. In Section 3.3 this derivation is

extended to include the second-order correction, outlining a general method for the

calculation of higher-order corrections. In Section 3.4 we derive general expressions for

the EM fields derived from this time-domain phasor, which are valid for any LG mode

and for any order of perturbative correction to the phasor. In Section 3.5 we present a

test of the convergence of our perturbative results and examine the necessity of the

temporal model we employ. In Section 3.6 we determine the spatial radius of

convergence for this perturbative model. Lastly, in Section 3.7 we summarize our results.

3.2 The time-domain phasor to first perturbative order

The derivation of our phasor (the spatiotemporal solution to the scalar HE [85]) begins

with the frequency-domain perturbative phasor of BGV (Eq.(24) of Ref. [67]) in

cylindrical polar coordinates,

UBGV (r, ω) = (−1)n+m22n+m exp(ikz + imφ)

× h2n+m+2vm/2 exp(−v)
N∑
j=0

(
h2

k2w2
0

)j
f (2j)
n,m (v)

≡ U0,BGV +
ε2

β
U2,BGV +

ε4

β2
U4,BGV + ... ,

(3.1)

where ε ≡ 1/(kw0) is a small dimensionless parameter, w0 is the beam waist,
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zR = kw2
0/2 is the Rayleigh length, h = (1 + iz/zR)−1/2, β = 1/h2, v = h2ρ2/w2

0, andN

is the term at which the infinite series is truncated. The factors f (2j)
n,m (v) can be obtained

from Eqs. (25) of Ref. [67] (as discussed in detail in Appendix A). These factors are each

linear combinations of associated Laguerre polynomials Lmn (v), and can be found to any

order using the results in Ref. [67].

If we were to evaluate the perturbative expansion of the phasor in Eq. (3.1) to

infinite order (i.e.,N →∞), this would be equivalent to describing wave emission from

a complex point source (cf. Ref. [49]). The singularity that naturally arises from this point

source, however, is avoided by our truncation of the perturbative expansion at some

finite orderN . This truncation is equivalent to approximating the source-point spherical

wave, an effect of which is that we have a singularity-free model. As such, the incoming

spherical waves employed in other works are not required to cancel a source-point

singularity in our model.

Keeping terms up to order ε2, the sum in the phasor of Eq. (3.1) reduces to

1∑
j=0

(
h

kw0

)2j

f (2j)
n,m (v) = n!Lmn (v) +

ε2

β

[
2(n+ 1)!Lmn+1(v)− (n+ 2)!Lmn+2(v)

]
. (3.2)

In Eq. (3.2), the associated Laguerre polynomials Lmn (v) can be expressed as finite

sums [86],

Lmn (v) ≡
n∑
j=0

Gn,m,j v
j, (3.3)

in which

Gn,m,j ≡
(−1)j(n+m)!

(n− j)!(m+ j)!j!
. (3.4)

Since the BGV phasor was derived for the case of a monochromatic field, in order to
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describe a temporally finite pulse it must be generalized. We accomplish this by

multiplying the BGV phasor by the Poisson-like frequency spectrum f(ω) presented in

Eq. (2.5). Our polychromatic frequency-domain phasor is then defined as,

U(r, ω) ≡ UBGV f(ω). (3.5)

In order to Fourier transform the phasor in Eq. (3.5) to the time domain, we adopt

the condition of isodiffraction, i.e., we assume that every frequency component has the

same wavefront radius of curvature. For this choice of complex source-point location,

the isodiffraction condition ensures that zR is constant for all frequency components,

whereas the beam waist, w0 =
√

2zR/k, depends on ω through the vacuum dispersion

relation k = ω/c, where c is the speed of light [40, 62, 87].

Owing to the introduction of a Poisson-like frequency spectrum to the

monochromatic phasor of BGV, implementation of the smallness parameter must be

modified slightly. Since ε now varies with the frequency, we can use its definition to

factor out its frequency dependence,

ε2 =
c

2zRω
=

c

2zRω0

ω0

ω
≡ ε2c

ω0

ω
, (3.6)

where εc is a frequency-independent (constant) small parameter in terms of the central

pulse frequency, ω0.

With all frequency dependencies accounted for, one can now Fourier transform

U(r, ω) into the time domain via the unitary transformation

U(r, t) =
1√
2π

∫
U(r, ω) exp(−iωt)dω. (3.7)

Using the integral representation of the gamma function [Eq. (2.21)] we obtain the

time-domain phasor toO(ε2c),
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U(r, t) = Λn,m

[
n∑
j=0

c0,0ξ
jT−(γ+1) +

ε2c
β

(
n+1∑
j=0

c1,1ξ
jT−γ −

n+2∑
j=0

c1,2ξ
jT−γ

)]
. (3.8)

The new variables in Eq. (3.8) are defined as

ξ ≡ ρ2

2cβzR
(3.9a)

T ≡ 1 +
ω0

s

(
−iz
c

+ ξ + it

)
(3.9b)

Λn,m ≡ (−1)n+m22n+m
√

2πn! exp(iφ0)ξm/2β−(n+m/2+1) exp(imφ), (3.9c)

and the constants are defined as

c0,0 ≡Gn,m,j

(ω0

s

)γ−s Γ(γ + 1)

Γ(s+ 1)
(3.10a)

c1,1 ≡ 2(n+ 1)G(n+1),m,j

(ω0

s

)γ−s−1 ω0Γ(γ)

Γ(s+ 1)
(3.10b)

c1,2 ≡ ω0(n+ 1)(n+ 2)G(n+2),m,j

(ω0

s

)γ−s−1 Γ(γ)

Γ(s+ 1)
(3.10c)

γ ≡m/2 + s+ j. (3.10d)

Further details of this derivation can be found in the next section, where theO(ε4c)

correction is calculated explicitly.

3.3 The time-domain phasor to order ε4
c

In this Section we derive theO(ε4c) correction to the time-domain phasor, starting with

the frequency-domain phasor in Eq. (3.1). Considering only the term of order ε4 in
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Eq. (3.1), we make the replacements w0 →
√

2zR/k and k → ω/c and invoke the

condition of isodiffraction, which requires that zR is constant. We obtain

ε4

β2
U4,BGV = (−1)n+m22n+m exp(iωz/c+ imφ)h2n+m+2vm/2 exp(−v)

[(
c

2ωβzR

)2

×
{

6(n+ 2)!Lmn+2(v)− 4(n+ 3)!Lmn+3(v) +
1

2
(n+ 4)!Lmn+4(v)

}]
.

(3.11)

Multiplying this result by the Poisson-like frequency spectrum in Eq. (2.5),

expressing the associated Laguerre polynomials as sums [see Eqs. (3.3) and (3.4)], and

extracting powers of ω within the sums, we obtain

U4(ω) =
Λn,m

Γ(s+ 1)
exp

{
−ω

(
−iz
c

+ ξ +
s

ω0

)}(
s

ω0

)s+1
θ(ω)
√

2πε4c
β2

×

[
n+2∑
j=0

c̃2,2 ξ
jωγ−2 −

n+3∑
j=0

c̃2,3 ξ
jωγ−2 +

n+4∑
j=0

c̃2,4 ξ
jωγ−2

]
,

(3.12)

where some variables defined in Eq. (3.9) have been used, and new constants are defined

as follows:

c̃2,2 ≡ 6ω2
0(n+ 2)(n+ 1)G(n+2),m,j (3.13a)

c̃2,3 ≡ 4ω2
0(n+ 3)(n+ 2)(n+ 1)G(n+3),m,j (3.13b)

c̃2,4 ≡
ω2

0

2
(n+ 4)(n+ 3)(n+ 2)(n+ 1)G(n+4),m,j. (3.13c)

We now Fourier transform U4(ω) to the time domain as in Eq. (3.7) to obtain U4(t),
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U4(t) =
Λn,m

Γ(s+ 1)

(
s

ω0

)s+1
ε4c
β2

∫ ∞
0

exp(−ωη)

×

[
n+2∑
j=0

c̃2,2 ξ
jωγ−2 −

n+3∑
j=0

c̃2,3 ξ
jωγ−2 +

n+4∑
j=0

c̃2,4 ξ
jωγ−2

]
dω ,

(3.14)

where η = −iz/c+ ξ + s/ω0 + it. Using the integral representation of the gamma

function in Eq. (2.21), we obtain

U4 = Λn,m

(
s

ω0

)s+1
ε4c
β2

[
n+2∑
j=0

c2,2 ξ
jη−(γ−1) −

n+3∑
j=0

c2,3 ξ
jη−(γ−1) +

n+4∑
j=0

c2,4 ξ
jη−(γ−1)

]
,

(3.15)

where c2,δ ≡ c̃2,δΓ(γ − 1)/Γ(s+ 1) for δ = 2, 3, 4.

Taking now the overall prefactor (s/ω0)s+1 in Eq. (3.15) inside each of the sums and

using the definition of T in Eq. (3.9)(b), we can write for any power q,

(
s

ω0

)s+1

η−q =

(
s

ω0

)s+1−q

T−q. (3.16)

Defining the coefficients c2,δ ≡ c2,δ(s/ω0)(s+2−γ) for δ = 2, 3, 4, the final result for the

O(ε4c) term U4(t) is:

U4 = Λn,m
ε4c
β2

[
n+2∑
j=0

c2,2 ξ
jT−(γ−1) −

n+3∑
j=0

c2,3 ξ
jT−(γ−1) +

n+4∑
j=0

c2,4 ξ
jT−(γ−1)

]
. (3.17)

Adding this result to theO(ε2c) phasor U (2) in Eq. (3.8), the completeO(ε4c) time-domain

phasor U (4)(t) is:
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U (4) = Λn,m

[
n∑
j=0

c0,0ξ
jT−(γ+1) +

ε2c
β

(
n+1∑
j=0

c1,1ξ
jT−γ −

n+2∑
j=0

c1,2ξ
jT−γ

)

+
ε4c
β2

(
n+2∑
j=0

c2,2 ξ
jT 1−γ −

n+3∑
j=0

c2,3 ξ
jT 1−γ +

n+4∑
j=0

c2,4 ξ
jT 1−γ

)]
.

(3.18)

The calculation of higher order terms would proceed similarly. The upper limits of

the sums, their interior coefficients, the leading powers of ε2c/β, and the integrated

powers of ω would change, but otherwise the process would be identical to that

demonstrated above.

3.4 The fields

From the expression for the phasor U(r, t) in Eq. (3.8), Hertz potentials [Eq. (1.2)] can be

used to generate expressions for the complex EM fields. The desired polarization of the

laser field is determined by the form of these Hertz potentials, and not from any property

of the phasor. As an example, for the case of radial polarization the EM fields can be

expressed from the phasor as simply

E(r, t) =∇×∇× (U(r, t)ẑ) (3.19a)

H(r, t) = ε0
∂

∂t
∇× (U(r, t)ẑ) (3.19b)

For different polarizations, these expressions for E and H would change (see Table 3 on

p. 372 of Ref. [43] and the text at the bottom of p. 361 of Ref. [43] for more details).

In the expressions that follow for the unnormalized EM fields, we have carried out

calculations for all but the most simple partial derivatives of the phasor. By leaving these

derivative terms in the field equations, we ensure that the expressions remain valid for
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higher perturbative orders in which the phasor is modified to have additional terms.

Eρ = − i
ρ

{
m(n+m+ 1)

βzR
U − 2ω0ξ

szR

∂2U

∂β∂T
+
ξ(2n+ 3m+ 4)

βzR

∂U

∂ξ

+
ω0

s

[
2ξ(n+m+ 2)

βzR
+m

(
ξ

βzR
+

1

c

)]
∂U

∂T
− m

zR

∂U

∂β
+

2ξ2

βzR

∂2U

∂ξ2

+
2ω0ξ

s

(
2ξ

βzR
+

1

c

)
∂2U

∂ξ∂T
− 2ξ

zR

∂2U

∂ξ∂β
+

2ω2
0ξ

s2

(
ξ

βzR
+

1

c

)
∂2U

∂T 2

} (3.20)

Eφ =
m

ρ

[
n+m+ 1

βzR
U +

ω0

s

(
ξ

βzR
+

1

c

)
∂U

∂T
+

ξ

βzR

∂U

∂ξ
− 1

zR

∂U

∂β

]
(3.21)

Ez =
ξ

ρ2

{
−4ω0

s
(m+ 1)

∂U

∂T
− 4(m+ 1)

∂U

∂ξ

−4ω2
0ξ

s2

∂2U

∂T 2
− 4ξ

∂2U

∂ξ2
− 8ω0ξ

s

∂2U

∂ξ∂T

} (3.22)

Bρ = −mω0

c2sρ

∂U

∂T
(3.23)

Bφ = − iω0

c2sρ

{
m
∂U

∂T
+ 2ξ

(
ω0

s

∂2U

∂T 2
+

∂2U

∂ξ∂T

)}
(3.24)

As is the case with all radially polarized fields,Bz = 0. The perturbative order necessary

to achieve convergence will be discussed in the next section.

3.5 Results

3.5.1 Test for accuracy of fields obtained from the perturbative phasor

Depending on the parameters used to describe the optical field, perturbative orders

higher than ε2c may need to be included in the phasor. These higher order corrections are
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needed not only as the spot size is reduced, but also as the radial or azimuthal LG indices

are increased. Numerical simulations show that excluding terms above order ε2c is

sufficient only for the lowest LG modes.

A simple method for checking the convergence of the perturbative expansion of the

phasor is to verify that the wave equation is satisfied to within some numerical tolerance.

Since the phasor must be a solution to the wave equation [43], we can write explicitly

∇2U =
1

c2

d2

dt2
U. (3.25)

One can check directly that the equation is satisfied at any given order of perturbation. If

an appropriate perturbative order is used to represent the phasor, numerical comparison

of |∇2U | and |∂2
tU/c

2|will agree, since the wave equation will be satisfied.

Disagreement, on the other hand, indicates that additional terms in the perturbative

expansion must be included in order to achieve a converged phasor. We note that since

all fields are calculated as derivatives of the phasor, use of Eq. (3.25) to check the

adequacy of the perturbative expansion is valid for any field polarization, not just for the

radially polarized fields calculated above as an example.

To illustrate this technique, a comparison of the left- and right-hand sides of

Eq. (3.25) is shown in Fig. 3.1 for three LG modes, calculated for two different orders of

perturbative correction. For each of the results in Fig. 3.1, we present the root mean

squared error (RMSE) between |∇2U | and |∂2
tU/c

2| calculated using 200 plot points

across the range of ρ/λ shown. Convergence of the perturbative expansion can be

claimed if the RMSE is sufficiently small (the exact definition of which depends on the

application). The results in Figs. 3.1(d) - 3.1(f) show improved agreement between the left-

and right-hand sides of the wave equation over those in Figs. 3.1(a) - 3.1(c), respectively,

as the order of perturbation increases fromO(ε2c) toO(ε4c). However, agreement

between these terms becomes worse as the LG mode increases from n = 2 to n = 3 for

both the phasors ofO(ε2c) and those ofO(ε4c), thus illustrating the need to check for
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Figure 3.2: Comparison of numerical values of the relative intensities of fields Eρ and Ez
near the beam waist for the LG0,0 mode for two different spectral parameters: (a) s=2848
(∼20-cycle FWHM, 53.4 fs) or (b) s=7 (∼1-cycle FWHM, 2.65 fs). Solid dark (blue) and light
(gray) curves are calculated using fields derived from April’s phasor [43] (“A”), while the
dashed and dash-dot curves are calculated from the fields given in Eqs. (3.20) and (3.22)
of this chapter with the phasor to perturbative order ε2c (“pert”), all with w0 = 1.5λ and
λ = 800 nm (ε2c ≈ 0.0113).

convergence. Calculations for other LG modes having indices n+m ≤ 3 (not shown)

have RMSE values similar to those for the LG modes shown in Fig. 3.1 when corrections

to similar perturbative orders are included.

We emphasize that the addition of higher order corrections to the phasor does not

change the EM field equations that have been derived in Sec. 3.4. The expressions for the

EM fields given in Eqs. (3.20)-(3.24) remain valid as the phasor is modified, since these

field expressions are written in terms of partial derivatives of the phasor. Thus, use of

our field equations for higher perturbative orders is relatively straightforward, requiring

only the addition of higher order corrections to the phasor (cf. Sec. 3.3).
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In Fig. 3.2 we compare our converged fields from Eqs. (3.20) and (3.22) with those

obtained from the closed-form phasor of April [43]. The normalized electric field

intensities in the ρ̂− and ẑ−directions are shown for each model, for both long and short

pulse durations. Excellent agreement is seen between the fields of our model (subscript

“pert" in the figure) and those of April (subscript “A"), for both long (Fig. 3.2a) and short

(Fig. 3.2b) pulses.

3.5.2 Sensitivity of the fields to the spectral profile

The EM fields are calculated using the time-domain phasor U(t), which may be obtained

in one of two ways. The exact way, as done in Sec. 3.2, is to Fourier transform the

frequency-domain phasor to the time domain according to Eq. (3.7). An approximate

approach is to multiply the monochromatic phasor by a temporal Gaussian envelope, as

follows:

U(r, t) = UBGV (r, ω0) exp

[
−iω0t−

(t− z/c)2

τ 2

]
. (3.26)

While these two methods may agree for longer pulse durations, it is known that use of a

Gaussian temporal envelope as in Eq. (3.26) fails to correctly model the behavior of

ultrashort pulses [79].

The problem may be understood by considering the time-frequency uncertainty

relation, i.e., that the spectral bandwidth grows as the pulse length decreases. For

sufficiently short pulses, the bandwidth becomes so large that negative frequency

components enter with appreciable weight. These nonphysical frequencies may cause

the electric fields to grow with transverse distance from the optical axis instead of decay,

as required for a physically correct model [40].

A Poisson-like frequency spectrum was used in the derivation of our phasor in

Sec. 3.2 to correctly model the behavior of ultrashort pulses. Owing to its inherent unit



41

step function Θ(ω), a Poisson-like spectrum removes unphysical negative frequency

components from the frequency-domain phasor. Thus, upon Fourier transformation

into the time domain, one eliminates the possibility of nonphysical temporal fields.

Figure 3.3: Comparison of numerical values of the relative intensities of fields Eρ and Ez
near the beam waist for the LG0,0 mode for two different spectral parameters: (a) s=2848
(∼20-cycle FWHM, 53.4 fs) or (b) s=7 (∼1-cycle FWHM, 2.65 fs). Solid dark (blue) and light
(gray) curves are calculated using the temporal Gaussian (“TG”) model of Eq. (3.26) with
the indicated pulse durations, while the dashed and dash-dot curves are calculated using
the Fourier transformed Poisson spectrum (“PS”) of Eq. (3.7) to order ε2c , all with w0 = 1.5λ
and λ = 800 nm (ε2c ≈ 0.0113).

A comparison of the fields calculated from the time-domain phasors defined in

Eqs. (3.7) and (3.26) for two different pulse durations is given in Fig. 3.3. As shown in

Fig. 3.3(b) for short pulses, the fields generated from a temporal Gaussian envelope

[Eq. (3.26)] (subscript “TG") clearly differ from those generated from the Poisson

spectrum phasor (subscript “PS"). In contrast, for long pulses, Fig. 3.3(a) shows much

better agreement between the fields generated by the two different methods. This better
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agreement occurs since the frequency bandwidth of the temporal Gaussian doesn’t

extend to negative values in the case of a long pulse. Note that the “PS” fields in Fig. 3.3

are the same as the “pert" fields in Fig. 3.2.

3.6 Radius of convergence of the perturbative phasor

Perturbative models require that higher-order terms in the perturbative expansion have

smaller magnitude than lower-order terms, so that the infinite series converges.

However, the series expansions upon which such perturbations are based often do not

have this behavior in all space. For example, the one-dimensional function 1/(x2 + 1) is

well-defined at all values on the real axis. Expanding this function in a Maclaurin series

gives 1− x2 + x4 + ...which only converges in the finite region |x| < 1, rendering the

series expansion useless outside this radius of convergence. In this section, we estimate

the radius of convergence for the perturbative phasor presented in Eq. (3.1) of this

chapter.

We begin by considering the magnitude of the frequency-domain phasor in

Eq. (3.1). Each term in the perturbative sum contains a factor f (2j)
n,m (v), derived in

Appendix A, which is a sum of associated Laguerre polynomials. At some perturbative

order j, the dominant contribution to f (2j)
n,m (v) is

f (2j)
n,m (v) ≈ (n+ 2j)!

j!
Lmn+2j(v), (3.27)

since Lmn+2j(v) has the highest power of v amongst all associated Laguerre polynomials

contributing to f (2j)
n,m (v) [cf. Eqs. (3.2) and (3.3)]. The term in Lmn+2j(v) having the highest

power of v isG(n+2j,m,n+2j)v
n+2j [cf. Eq. (3.3)]. Making use of Eq. (3.4), and noting that

|h| = (1 + z2/z2
R)−1/4, one can write the magnitude of the dominant contribution to the

jth-order term of Eq. (3.1) as
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|U (2j)| ≈ 22n+mε2j

j!

(
1 +

z2

z2
R

)− 1
2

(2n+3j+m+1)

exp

[
− ρ2

w2
0 (1 + z2/z2

R)

](
ρ

w0

)2n+4j+m

.

(3.28)

As noted above, the radius of convergence is defined by the spatial region in which

the term of order j is smaller than the term of order j − 1. To find such a region, we

calculate the difference |U (2j)| − |U (2j−2)| < 0. Given that ρ ≥ 0 and z2 ≥ 0, this

inequality can only be satisfied for

ρ <

[
j

(
1 +

z2

z2
R

)3/2 w4
0

ε2

]1/4

. (3.29)

It is sufficient to say that the phasor is converged if this condition is satisfied for all j,

and the maximum allowed value of ρ increases with larger j. Therefore, the radius of

convergence ρc is determined by the minimal case of j = 1,

ρ <

[(
1 +

z2

z2
R

)3/2 w4
0

ε2

]1/4

≡ ρc. (3.30)

Note that ρc is defined for any z and is independent of the LG modes n andm.

This radius of convergence is demonstrated in Fig. 3.4, wherein the magnitude of

the perturbative phasor given in Eq. (3.28) is plotted as a function of ρ and z for up to

three orders of perturbative correction. The minimum radius of convergence ρc is given

in Eq. (3.30), which corresponds to the line between regions 0 and 1 in Fig. 3.4. The space

with ρ-values below this line corresponds to the region of perturbative convergence, or

the region in which the 0th-order phasor is dominant.
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Figure 3.4: Illustration of the radius of convergence for the phasor in Eq. (3.1), demon-
strated by the dominant perturbative order j as a function of spatial location. Each region
is labeled by the perturbative order j ∈ [0, 3] that is largest therein. The region in which
the j = 0 term dominates is the region in which the perturbation is converged. This plot
was made using w0 = λ = 800 nm [ε = 1/(2π)].

3.7 Summary

In this chapter we have presented an analytic method for calculating the EM fields of a

tightly focused, arbitrarily-short laser pulse of any radial and azimuthal LG mode. In

brief, the EM fields are obtained from the time-domain phasor, whose analytic

expression to the ε2c perturbative order is given in Eq. (3.8). An example for obtaining the

phasor to higher orders in ε2c is given in Sec. 3.3. For the case of radially-polarized EM

fields, Eqs. (3.19) - (3.24) show how to obtain the EM fields from the phasor of any

perturbative order. With only lowest order perturbative corrections included, these

fields are consistent with the field model of April [43] for the Gaussian mode over a wide

range of pulse durations. Use of a Poisson-like frequency spectrum was essential to

obtain this agreement, as this spectrum eliminates the possibility of negative frequency

modes that lead to unphysical fields for ultrashort pulses.
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Invoking the condition of isodiffraction is necessary for solving the Fourier integral

of the phasor when transforming it into the time domain. The phasor for a completely

general nonparaxial eLG beam, valid for arbitrarily short pulses, has never to our

knowledge been expressed in the time domain without use of the isodiffraction

condition, as otherwise the necessary Fourier integral becomes prohibitively

complicated. For nonparaxial complex source-point models, this condition of

isodiffraction requires that the imaginary distance to the source point, zR in this case,

remains frequency-independent.

A major benefit of our perturbative model is its scalability to higher radial and

orbital LG modes. Expressions for the time-domain EM fields for these higher LG modes

using other models usually requires the calculation of infinite sums or the evaluation of

integrals involving special functions of complex variables. The integrals over these

complex special functions, for arbitrary LG modes, are difficult to evaluate. In our model,

all EM fields are written simply in terms of the phasor and its elementary derivatives.
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Chapter 4

Generalization to Arbitrary Perturbative

Order in the Time Domain

4.1 Introduction

Perturbative models have long provided a straightforward means of calculating the EM

fields of optical beams with various spatiotemporal structures [33, 45, 64, 65, 67]. To be

generally applicable, such models must allow for the accurate description of beams

which are focused to arbitrarily-small spot sizes, have arbitrarily-short temporal

durations [45], and carry arbitrarily-many quanta of orbital angular momentum

(OAM) [45, 66, 67], among other properties. The OAM carried by such beams is expressed

in the form of optical vortices [2, 11–13], whereby the phase of a beam’s EM fields exhibits

a helical structure about the optical axis.

Perturbative models generally entail a power series expansion in a parameter that is

small in the paraxial limit of loose focusing, such as (kw0)−1 [33, 34, 38, 45, 60, 64, 65, 67] or

(k⊥/k) [67], where k is the wave number and w0 is the beam waist. The zeroth order term

of such a series represents the optical beam in the paraxial limit, and higher order terms

introduce nonparaxial corrections. Notably, the first-order correction introduces the
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longitudinal electric field that is characteristic of nonparaxial beams [33]. In practice,

perturbative models retain terms only up to a predetermined order of perturbation, at

which point the infinite series is truncated.

A perturbative model describing tightly-focused eLG beams was presented by BGV

in Ref. [67], but this result was limited to a frequency-domain description for the case of

monochromatic fields. Chapter 3 extended this description in two ways: i) it modified

the model of BGV by introducing a frequency spectrum, thus allowing for the description

of pulses with arbitrary temporal duration; and ii) it Fourier transformed this modified

frequency-domain phasor into the time domain, from which one can obtain the EM

fields by straightforward differentiation. The first two orders of perturbative correction

to the time-domain phasor were also presented in Chapter 3, and a method for

generating higher order corrections was described in detail.

A main benefit of using such perturbative models is the ability to calculate the EM

fields using relatively simple expressions at each retained order of perturbative

correction. While exact models, such as that of Ref. [43], accurately describe such beams

in the frequency domain, it can be cumbersome to generate the corresponding

time-domain descriptions, which are required for calculating the EM fields. In

particular, the Fourier transformations necessary to bring the frequency-domain models

into the time domain are often difficult to carry out owing to the

mathematically-complicated nature of exact descriptions, particularly as the LG mode

indices become large.

A major issue for perturbative descriptions, of course, is the convergence of the

perturbation series describing the EM fields. For the model presented in Chapter 3, it

was shown that the number of terms that must be retained in the perturbation series in

order to achieve convergence depends not only on the spot size of the beam but also on

the LG mode. For beams carrying large values of OAM (which can be created, e.g., in

high-harmonic generation processes [6, 13, 26]), the perturbative order required to
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achieve convergence can become large. Thus, the ability to express a time-domain phasor

to arbitrary perturbative order would be of great utility for general application of

perturbative models to the calculation of EM fields in cases becoming increasingly

relevant in experiments involving tightly-focused, highly-structured pulses of light.

In this chapter we generalize the perturbative results of Chap. 3 by extending the

time-domain description to arbitrarily-high perturbative order as a non-recursive,

closed-form analytic expression. This generalized time-domain phasor allows one to

implement the perturbative model without requiring explicit calculation of any Fourier

integrals, which would be prohibitively difficult to calculate individually for each term of

an arbitrarily-high order of perturbative correction. Instead, the EM fields can be

calculated immediately from straightforward derivatives of the generalized

time-domain phasor we present here.

This Chapter is organized as follows. In Section 4.2 the third-order correction to the

phasor presented in Chapter 3 is explicitly derived in the time domain via Fourier

integration. We then propose a generalization of this time-domain phasor that is valid to

any perturbative order. In Sections 4.3 and 4.4, our proposed generalized time-domain

phasor is derived analytically. An integral result used in these derivations is derived in

Appendix B. Finally, in Sec. 4.5 we summarize our results.

4.2 The time-domain phasor

The polychromatic time-domain phasor presented in Chap. 3 is an exact solution to the

scalar HE. In Chap. 3 a second-order perturbative expression for this phasor was derived

that is appropriate for describing the spatiotemporal profile of an arbitrarily-short laser

pulse of any LG mode focused to an arbitrarily-small spot size. The result therein is

perturbative in the small parameter ε2c ≡ c/(2zRω0), where zR is the Rayleigh range, ω0

is the central frequency of the pulse, and c is the speed of light. In Section 4.2.1, we
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extend this time-domain description up to the third order correction (i.e., up to order ε6c)

via explicit Fourier transformation. Then in Section 4.2.2 we compare the second-order

phasor with its third-order correction [Eqs. (3.18) and (4.8) respectively] and suggest how

the time-domain phasor can be almost completely predicted to any perturbative order.

In Section 4.4 of this paper, we then prove analytically (using some necessary results

derived in Section 4.3) the proposed expression of the time-domain phasor in

Section 4.2.2 for any perturbative order.

4.2.1 Derivation of the third-order correction

We now proceed to derive the time-domain phasor, U (6)(t), which is correct to third

order in the parameter ε2c . According to the procedure given in Sec. 3.3, we start from the

perturbative, monochromatic frequency-domain phasor of BGV [67], replicated from

Eq. (3.1) for convenience,

UBGV (r, ω) = (−1)n+m22n+m exp(ikz + imφ)

× h2n+m+2vm/2 exp(−v)
N∑
j=0

(
h2

k2w2
0

)j
f (2j)
n,m (v)

≡ U0,BGV +
ε2

β
U2,BGV +

ε4

β2
U4,BGV + ... ,

(4.1)

in which w0 is the beam waist, zR = kw2
0/2 is the Rayleigh length, h = (1 + iz/zR)−1/2,

β = 1/h2, and v = h2ρ2/w2
0 are dimensionless parameters, and the factors f (2j)

n,m (v) are

presented by BGV as terms in a series expansion (cf. Appendix A). In order to describe

short-pulse fields, we multiply Eq. (4.1) with a Poisson-like frequency spectrum [cf.

Eq. (2.5)]. Henceforth, we follow the prescription in Sec. 3.3 to derive here the third-order

correction to the time-domain phasor.

Considering only the third-order term in Eq. (4.1), where f (6) is given in Eq. (25) of

Ref. [67] [see Eq. (4.11d) below], we make the replacements w0 →
√

2zR/k and k → ω/c

to show explicitly the frequency dependencies. We also invoke here the condition of
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isodiffraction, which requires that zR is independent of frequency [40, 62, 87]. The

third-order frequency-domain phasor term is then

ε6

β3
U6,BGV = (−1)n+m22n+m exp(iωz/c+ imφ)

× h2n+m+2vm/2 exp(−v)

[(
c

2ωβzR

)3

×
{

20(n+ 3)!Lmn+3(v)− 15(n+ 4)!Lmn+4(v)

+3(n+ 5)!Lmn+5(v)− 1

6
(n+ 6)!Lmn+6(v)

}]
.

(4.2)

Upon multiplying this result by the Poisson-like frequency spectrum in Eq. (2.5), the

description becomes polychromatic. Therefore, the small parameter ε, which is

appropriate for monochromatic fields, must be replaced with the frequency independent

small parameter εc defined in Eq. (3.6). Then, expressing the associated Laguerre

polynomials in Eq. (4.2) as sums [see Eqs. (3.3) and (3.4)], substituting v = ξω, and

extracting powers of ω within the sums, we obtain finally

U6(ω) =
Λn,m

Γ(s+ 1)
exp

{
−ω

(
−iz
c

+ ξ +
s

ω0

)}
×
(
s

ω0

)s+1
Θ(ω)

√
2πε6c

β3

[
n+3∑
j=0

c̃3,3 ξ
jωγ−3

−
n+4∑
j=0

c̃3,4 ξ
jωγ−3 +

n+5∑
j=0

c̃3,5 ξ
jωγ−3

−
n+6∑
j=0

c̃3,6 ξ
jωγ−3

]
,

(4.3)

where some variables defined in Eq. (3.9) and the preceding paragraph have been used,

and new coefficients c̃3,δ, δ ∈ [3, 6] are defined as follows:
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c̃3,3 ≡ 20ω3
0

(n+ 3)!

n!
G(n+3),m,j (4.4a)

c̃3,4 ≡ 15ω3
0

(n+ 4)!

n!
G(n+4),m,j (4.4b)

c̃3,5 ≡ 3ω3
0

(n+ 5)!

n!
G(n+5),m,j (4.4c)

c̃3,6 ≡
ω3

0

6

(n+ 6)!

n!
G(n+6),m,j. (4.4d)

We now Fourier transform U6(ω) to the time domain using Eq. (3.7) to obtain U6(t),

U6(t) =
Λn,m

Γ(s+ 1)

(
s

ω0

)s+1
ε6c
β3

∫ ∞
0

exp(−ωη)

×

[
n+3∑
j=0

c̃3,3 ξ
jωγ−3 −

n+4∑
j=0

c̃3,4 ξ
jωγ−3

+
n+5∑
j=0

c̃3,5 ξ
jωγ−3 −

n+6∑
j=0

c̃3,6 ξ
jωγ−3

]
dω ,

(4.5)

where η ≡ −iz/c+ ξ + s/ω0 + it. Making use of the integral representation of the

gamma function [cf. Eq. (2.21)], the Fourier integral in Eq. (4.5) can be evaluated to obtain

U6(t) = Λn,m

(
s

ω0

)s+1
ε6c
β3

[
n+3∑
j=0

c3,3 ξ
jη−(γ−2) −

n+4∑
j=0

c3,4 ξ
jη−(γ−2)

+
n+5∑
j=0

c3,5 ξ
jη−(γ−2) −

n+6∑
j=0

c3,6 ξ
jη−(γ−2)

]
,

(4.6)

where c3,δ ≡ c̃3,δΓ(γ − 2)/Γ(s+ 1) for δ ∈ [3, 6].

Taking now the overall prefactor (s/ω0)s+1 in Eq. (4.6) inside each of the sums and

using the definition of T in Eq. (3.9), we can write for any power q,

(
s

ω0

)s+1

η−q =

(
s

ω0

)s+1−q

T−q. (4.7)
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Defining the coefficients c3,δ ≡ c3,δ(s/ω0)(s+3−γ) for δ ∈ [3, 6], the final result for the

third-order term U6(t) is:

U6(t) = Λn,m
ε6c
β3

[
n+3∑
j=0

c3,3 ξ
jT−(γ−2) −

n+4∑
j=0

c3,4 ξ
jT−(γ−2)

+
n+5∑
j=0

c3,5 ξ
jT−(γ−2) −

n+6∑
j=0

c3,6 ξ
jT−(γ−2)

]
.

(4.8)

Finally, combining this result with that for the phasor including corrections up to second

order [Eq. (3.18)], the complete third-order time-domain phasor is written as

U (6) = Λn,m

[
n∑
j=0

c0,0ξ
jT−(γ+1) +

ε2c
β

(
n+1∑
j=0

c1,1ξ
jT−γ −

n+2∑
j=0

c1,2ξ
jT−γ

)

+
ε4c
β2

(
n+2∑
j=0

c2,2 ξ
jT 1−γ −

n+3∑
j=0

c2,3 ξ
jT 1−γ +

n+4∑
j=0

c2,4 ξ
jT 1−γ

)

+
ε6c
β3

(
n+3∑
j=0

c3,3 ξ
jT−(γ−2) −

n+4∑
j=0

c3,4 ξ
jT−(γ−2) +

n+5∑
j=0

c3,5 ξ
jT−(γ−2)

−
n+6∑
j=0

c3,6 ξ
jT−(γ−2)

)]
.

(4.9)

4.2.2 Proposed expression for the phasor to perturbative order ∆

Comparing the terms of each perturbative order in the third-order time-domain phasor

shown in Eq. (4.9), one surmises that a term corresponding to a correction of

perturbative order α has the form:

U(2α)(t) = Λn,m

[
ε2αc
βα

2α∑
δ=α

{
n+α∑
j=0

(
cα,δξ

jT−γ−1+α
)}]

, (4.10)

Before proving this result, one must first determine the general form of the

coefficients cα,δ. As shown thus far, up to correction α = 3, these coefficients are related

to the coefficients in the expressions for the factors f 2j
n,m(v) that appear in the
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monochromatic frequency-domain phasor of BGV [Eq. (4.1)]. The first four of these

factors are given in Eq. (25) of Ref. [67], i.e., for j ∈ [0, 3]:

f (0)
n,m(v) = n!Lmn (v) (4.11a)

f (2)
n,m(v) = 2(n+ 1)!Lmn+1(v)− (n+ 2)!Lmn+2(v) (4.11b)

f (4)
n,m(v) = 6(n+ 2)!Lmn+2(v)− 4(n+ 3)!Lmn+3(v)

+
1

2
(n+ 4)!Lmn+4(v) (4.11c)

f (6)
n,m(v) = 20(n+ 3)!Lmn+3(v)− 15(n+ 4)!Lmn+4(v)

+ 3(n+ 5)!Lmn+5(v)− 1

6
(n+ 6)!Lmn+6(v). (4.11d)

Comparing Eqs. (3.10), (3.13), and (4.4) to (4.11), one can immediately see that the

numerical coefficients of cα,δ are exactly those of f (2α)(v) (up to a sign). For example, the

three numerical coefficients of c3,δ in Eq. (4.4), namely (20, 15, 3, 1/6), are exactly those

of the three terms of f (6)(v) in Eq. (4.11) (up to a sign).

In order to obtain a closed-form analytic expression for the correction of order α to

the time-domain phasor in Eq. (4.10), two tasks are therefore necessary. First, a general

expression for the factors f (2α)
n,m (v) in Eq. (4.1) must be derived for any perturbative order

∆. This derivation is presented in Sec. 4.3. Second, the order α correction to the

frequency-domain phasor shown in Eq. (4.1) must be multiplied by a Poisson-like

frequency spectrum and then Fourier-transformed into the time domain. This

derivation is presented in Sec. 4.4.

For convenience, we present here the final result for the complete time-domain

phasor, containing all corrections up to order α = ∆:
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U (2∆)(t) =
∆∑
α=0

U(2α)(t)

= Λn,m

∆∑
α=0

[
ε2αc
βα

2α∑
δ=α

{
n+δ∑
j=0

(
cα,δξ

jT−γ−1+α
)}]

,

(4.12)

where the coefficients cα,δ are given by

cα,δ ≡ κα,δG(n+δ),m,j
(n+ δ)!

n!
ωα0

(
s

ω0

)s−γ+α
Γ(γ + 1− α)

Γ(s+ 1)
, (4.13)

with

κα,δ =
(−1)δ−α

(δ − α)!

(
2α

2α− δ

)
, (4.14)

and T and γ having been defined in Eq. (3.9) and Eq. (3.10), respectively.

Equations (4.12)-(4.14) are the main results of this Chapter. They provide a

closed-form analytic expression for the time-domain phasor U (2∆)(t) correct to an

arbitrary perturbative order ∆ in the parameter ε2c . This phasor can be utilized directly to

calculate the fields for a general eLG mode without requiring the calculation of any

Fourier integrals. It is easily confirmed that Eq. (4.12) is consistent with the result for

∆ = 2 in Eq. (3.18) and that the α = 3 correction in Eq. (4.3) is consistent with Eq. (4.10)

for U(2α)(t). A full derivation of the Fourier transformation necessary to obtain

Eqs. (4.12)-(4.14) are presented in Sec. 4.4, after first deriving expressions for the factors

f
(2α)
n,m (v) in the next section.

4.3 Explicit derivation of f (2α)
n,m (v)

In this section, we derive a general expression for the factors f (2α)
n,m (v) for any α. We

begin by finding a generating function Ψ(x, y) for the associated Laguerre polynomials,

Lnn(y). We then connect this generating function to the results of BGV [67] in order to
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determine a general analytic expression for f (2α)
n,m (v).

4.3.1 A generating function forLnn(y)

We seek a generating function for an associated Laguerre polynomial with equal upper

and lower indices,

Ψ(x, y) =
∞∑
n=0

xnLnn(y). (4.15)

An associated Laguerre polynomial is expressible as an integral of a Bessel function of

the first kind, as given by Eq. (22.10.14) of Ref. [88]:

Lnn(y) =
eyy−n/2

n!

∫ ∞
0

dt e−tt3n/2Jn
(
2
√
ty
)
. (4.16)

By substituting Eq. (4.16) into Eq. (4.15), one obtains

Ψ(x, y) = ey
∫ ∞

0

dt e−t
∞∑
n=0

[
an

n!
Jn
(
2
√
ty
)]
, (4.17)

where a ≡ xt3/2y−1/2. This sum can be rewritten as a Bessel function using Eq. (19.9.1) of

Ref. [89],

∞∑
n=0

[
an

n!
Jn
(
2
√
ty
)]

= J0

(√
4ty − 4a

√
ty

)

= J0

(
2i
√
x

√
t2 − ty

x

)
.

(4.18)

Making this replacement in Eq. (4.17),

Ψ(x, y) = ey
∫ ∞

0

dt e−tJ0

(
2i
√
x

√
t2 − ty

x

)
, (4.19)

one notices that the integral can be solved by applying Eq. (6.616.1) of Ref. [90],
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∫ ∞
0

dx e−tJ0

(
2i
√
x

√
t2 − ty

x

)

=
1√

1− 4x
exp

[ y
2x

(√
1− 4x− 1

)]
.

(4.20)

The result for the generating function in Eq. (4.15) is thus

Ψ(x, y) =
1√

1− 4x
exp

[
y

(
1 +

√
1− 4x− 1

2x

)]
. (4.21)

4.3.2 Derivation of f (2α)n,m (v) from Ψ(x, y)

In Ref. [67], the factors f (2α)
n,m (v) are generated from a seriesG(2α) which is not explicitly

defined for α > 3. However, comparing Eqs. (16) & (22) of Ref. [67] (as shown explicitly in

Appendix A), one sees that

∞∑
α=0

ε(2α)G(2α) =
1√

1− ε2Ω
exp

(√
1− ε2Ω− 1

2ε2h2
+

Ω

4h2

)
, (4.22)

where ε ≡ 1/(kw0) has been defined as the small parameter of the perturbation, which

at this point is monochromatic, and Ω ≡ w2
0k

2
⊥. By taking x = ε2Ω/4 and y = Ω/(4h2)

in Eq. (4.21), we see immediately by comparison to Eq. (4.22) that

Ψ(x, y) =
∞∑
n=0

xnLnn(y) =
∞∑
α=0

ε(2α)G(2α). (4.23)

While not necessary, it is sufficient that the equality on right-hand side of Eq. (4.23) is

satisfied by demanding each term in both sums are equal, i.e.,

G(2α) =

(
Ω

4

)α
Lαα

(
Ω

4h2

)
. (4.24)

By substituting this definition ofG(2j) into the alternative expression for the

monochromatic frequency-domain phasor given in Eq. (22) of Ref. [67], we obtain
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UBGV =
1

2
(−1)n+m exp(ikz ± imφ)w2n+m+2

0

×
∞∑
α=0

(
1

4k2

)α ∫ ∞
0

k2n+m+1
⊥ e−p

2k2⊥

× k2α
⊥ L

α
α

(
p2k2
⊥
)
Jm(k⊥ρ)dk⊥,

(4.25)

in which we have set p2 = i(z − izR)/(2k) = [w0/(2h)]2. The integral in Eq. (4.25) can be

evaluated via the result given in Eq. (B.6),

UBGV = (−1)n+m22n+m exp(ikz ± imφ)

× h2n+m+2vm/2e−v
∞∑
α=0

(
h

kw0

)2α

×

[
α∑
i=0

aα,i(n+ α + i)!Lmn+α+i(v)

]
,

(4.26)

where the coefficients aα,i are defined in Eq. (B.3). From Eq. (24) of Ref. [67], we have that

UBGV = (−1)n+m22n+m exp(ikz ± imφ)

× h2n+m+2vm/2e−v
∞∑
α=0

(
h

kw0

)2α

×
[
f (2α)
n,m

]
.

(4.27)

Comparing Eqs. (4.26) & (4.27), and noting that the factors within the square brackets

must be equal, we see that the general expression for the factors f (2α)
n,m of Ref. [67] is

f (2α)
n,m (v) =

α∑
i=0

aα,i(n+ α + i)!Lmn+α+i(v). (4.28)

Replacing the coefficients aα,i by their definition in Eq. (B.3), the factors f (2α)
n,m (v) are

given explicitly as

f (2α)
n,m (v) =

α∑
i=0

(−1)i

i!

(
2α

α− i

)
(n+ α + i)! Lmn+α+i(v). (4.29)
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Making the change of variable i = δ − α, and using the definition of κα,δ given in

Eq. (4.14), Eq. (4.29) can be rewritten as

f (2α)
n,m (v) =

2α∑
δ=α

κα,δ(n+ δ)! Lmn+δ(v), (4.30)

thus making explicit the connection between the coefficients of f (2α) and those of κα,δ.

4.4 Explicit derivation of the generalized time-domain

phasor

In this section an explicit derivation of the generalized time-domain phasor up to

arbitrary perturbative order α is provided, ultimately arriving at the expression given in

Eq. (4.12). To this end, one starts with the monochromatic frequency-domain phasor of

BGV, UBGV (r, ω), given in Eq. (4.1) [45, 67]. This phasor is then made polychromatic by

multiplication with a Poisson-like frequency spectrum, f(ω), given in Eq. (2.5). Finally, a

Fourier integral is performed to obtain the general time-domain phasor U (r, t). In what

follows, we assume the condition of isodiffraction as described in Sec. 4.2.1

4.4.1 Generalization in the frequency domain

We define the polychromatic frequency-domain phasor as

U (2α) (r, ω) ≡ f(ω)UBGV (r, ω), where f(ω) is given in Eq. (2.5) and UBGV is given in

Eq. (4.1). This expression is correct to order α in the perturbative small parameter ε2,

which, however, depends on the frequency ω. Before carrying out the Fourier

transformation, we therefore replace all instances of ε2 by the frequency-independent

small parameter ε2c defined in Eq. (3.6). Then, all frequency dependent terms can be

contained in new perturbative terms U2α(ω), namely,
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U (2α) (r, ω) = f(ω)

(
U0,BGV +

ε2

β
U2,BGV + · · ·+ ε2α

βα
U2α,BGV

)
≡ U0(ω) +

ε2c
β
U2(ω) + · · ·+ ε2αc

βα
U2α(ω),

(4.31)

in which we have defined

U2α(ω) ≡ f(ω)
ωα0
ωα

U2α,BGV . (4.32)

A term of arbitrary perturbative order from Eq. (4.32) can be written explicitly as

U2α(ω) = (−1)n+m22n+m exp(ikz + imφ+ iφ0)

×
(
ω0

ω

)α(
s

ω0

)s+1
ωs exp(−sω/ω0)

Γ(s+ 1)
Θ(ω)

× (2π)h2n+m+2vm/2 exp(−v)f (2α)
n,m (v).

(4.33)

Making use of Eqs. (4.30) and (4.14) (the generalizations of f (2α) and κα,δ, respectively),

and the definition of the associated Laguerre polynomial in Eq. (3.3), the

frequency-dependence of the terms f (2α)
n,m (v) in Eq. (4.33) can be shown explicitly as

f (2α)
n,m (v) =

2α∑
δ=α

κα,δ(n+ δ)!Lmn+δ(v)

=
2α∑
δ=α

[
κα,δ(n+ δ)!

n+δ∑
j=0

G(n+δ),m,jξ
jωj

]
,

(4.34)

where constants defined in Eqs. (3.4) and (3.9a) have been used, and ξω = v. Employing

the definition of Λn,m from Eq. (3.9c), as well as the vacuum dispersion relation k = ω/c,

we obtain the order α correction for the frequency-domain phasor in Eq. (4.33) as

U2α(ω) =
√

2π
Λn,m

n!
exp

(
iωz

c

)(
s

ω0

)s+1
ωs exp(−sω/ω0)

Γ(s+ 1)

(ω0

ω

)α
Θ(ω)

× ωm/2 exp(−ξω)
2α∑
δ=α

[
κα,δ(n+ δ)!

n+δ∑
j=0

G(n+δ),m,jξ
jωj

]
.

(4.35)
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4.4.2 Generalization in the time domain

The time-domain representation of Eq. (4.35) is obtained through Fourier integration

[see Eq. (3.7)]:

U2α(t) =
1√
2π

∫ ∞
−∞

e−iωt U2α(ω) dω

=
ωα0 Λn,m

n!Γ(s+ 1)

(
s

ω0

)s+1 2α∑
δ=α

[
κα,δ(n+ δ)!

×
n+δ∑
j=0

G(n+δ),m,jξ
j

∫ ∞
0

ωγ−α exp(−ηω) dω

]
,

(4.36)

where η ≡ −iz/c+ ξ + s/ω0 + it and γ ≡ s+m/2 + j. The integral is evaluated using

Eq. (2.21), yielding

U2α(t) =
ωα0 Λn,m

n!Γ(s+ 1)

(
s

ω0

)s+1 2α∑
δ=α

[
κα,δ(n+ δ)!

×
n+δ∑
j=0

G(n+δ),m,jξ
jΓ(γ + 1− α)η−(γ+1−α)

]
.

(4.37)

Moving all factors except Λn,m into the inner sum, and making the substitutions

indicated in Eqs. (4.13) and (4.7), the time-domain representation of the order α

perturbative term U2α takes the form

U2α(t) = Λn,m

2α∑
δ=α

[
n+δ∑
j=0

cα,δξ
jT−γ−1+α

]
. (4.38)

Corresponding to the frequency-domain phasor to order α in Eq. (4.31), the generalized

time-domain phasor including all terms up to perturbative order ∆ is

U (2∆)(t) =
∆∑
α=0

ε2αc
βα

U2α(t)

= Λn,m

∆∑
α=0

[
ε2αc
βα

2α∑
δ=α

{
n+δ∑
j=0

cα,δξ
jT−γ−1+α

}]
,

(4.39)
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which agrees exactly with Eq. (4.12), as predicted.

4.5 Summary

In this chapter we have derived an analytic expression, postulated in Eq. (4.12) and

derived explicitly in Eq. (4.39), for the time-domain phasor presented in Chap. 3. This

generalized time-domain phasor can be used to calculate the EM fields of an

arbitrarily-tightly focused eLG beam of any LG mode and arbitrarily-short temporal

duration. Our closed-form analytic result allows one to calculate the phasor to

arbitrarily-high order ∆, in the perturbative small parameter ε2c , without having to

evaluate any Fourier integrals. This model is thus straightforward to implement, either

analytically or numerically.

An alternative method for deriving the factors f (2α)
n,m (v) is outlined in Appendix A.2,

where the series expansion method of BGV is followed explicitly. As discussed in

Appendix A.2, there is a potential connection between that alternative method and the

non-iterative derivation of integer partitions, which to our knowledge is an unsolved

problem in the field of combinatorics in modern mathematics. Mathematicians or

mathematical physicists may thus find this possible connection of significant interest.
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Chapter 5

Electron Acceleration with Higher Order

eLG Beams

5.1 Introduction

The production and control of particle beams is of central importance in modern

physics. High quality electron beams with small temporal and angular confinement are

required for ultrafast electron diffraction and microscopy [91], electron tomography [92],

and free electron lasers [93] including utility as an x-ray source. Similarly, proton beams

are currently used in particle colliders [94] and cancer treatment [95], for example.

In simulations studying vacuum acceleration schemes, electron beams are often

produced by injecting a low density gas of highly-charged ions near the focus of an

intense laser field [37, 96]. Here, the gas is often chosen such that the electrons, bound in

the deep potential wells of the highly-charged ions, are ionized near the peak amplitude

of the laser field. This results in a rapid acceleration of the electrons, which can achieve

GeV energies with a driving intensity of some 1018 W/cm2. Free electrons have also been

used by many authors as the initial state to be accelerated, thus removing the need to

perform calculations involving the ionization process (e.g., [97–99]). Vacuum
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acceleration schemes such as these all require an initial density of ions (or free electrons)

to be sufficiently low, roughly 1022/m3, in order to ignore any plasma effects during

acceleration [100].

However, various acceleration schemes that depend on these plasma effects have

also been developed, such as plasma wakefield acceleration, laser wakefield acceleration,

beat-wave acceleration, and self-modulated wakefield acceleration (cf. [101] and

references therein). Here, electrons are trapped between fronts of the plasma waves

through some particular mechanism, such as ionization or self-injection. These waves

rapidly propagate through a plasma, dragging the electrons along to (often) GeV

energies. Plasma acceleration has long been regarded as more practical than vacuum

acceleration due to a higher possible electric field strength in the plasma as compared to

that in many conventional laser systems [97], or a shorter acceleration distance being

needed to produce electrons of similar energies (on the order of GeV/cm with a plasma

density of 1018/cm3).

Further, vacuum acceleration by laser fields is said to be impossible owing to the

Lawson-Woodward theorem [102–104], which indicates that a free electron can’t

experience a net energy gain over one full period of interaction with such a wave; any

energy imparted to an electron as a pulse overtakes it will be lost again as the pulse

passes, owing to a reversal of the force direction. This does not occur with focused lasers

since the intensity profile is not a constant in time, and thus vacuum acceleration by

tightly focused beams becomes possible. Further, the Lawson-Woodward theorem

neglects nonlinear effects such as the ponderomotive force [101], which in reality must be

taken into account (especially for high-intensity fields).

Significant progress has recently been made in developing methods of vacuum

acceleration that begin to bridge the gap between previous vacuum and plasma

acceleration results. For instance, Vaziri studied the effects of driving acceleration from

an electron gas with a vortex beam under the paraxial approximation. It was found that
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GeV electron energies could be achieved with small angular distribution for certain

initial conditions of the system [8]. Additionally, Varin found that by exploiting the

strong longitudinal electric field of radially polarized LG0,0 beams, free electrons could

experience an on-axis acceleration gradient on the order of GeV per millimeter [105].

Acceleration with radially-polarized beams is attractive since the fieldsEz have

their maximum on-axis whereEρ is zero [Fig. 5.1 (a)]. This allows axial electrons to be

accelerated longitudinally with negligible transverse displacement. Electron ensembles

that start near the beam waist center can thus be accelerated to high energies with a very

small spatial and temporal distribution. One can see from Figs. 5.1 (b) & 5.1 (c) that as the

radial LG mode increases above zero, the maximum strength ofEz relative to that ofEρ

increases dramatically.

As the radial LG index increases, a greater number of nodes enter the

cross-sectional intensity profile of the beam (cf. Fig. 1.2 or Fig. 5.1). Therefore, for a beam

of fixed energy, the intensity must become localized in increasingly smaller spatial

regions as n is increased. Since the majority of the area underEz is near the origin, this

is where most of the energy will be located. This additional localized intensity near the

axis should allow particles in that region to experience greater longitudinal forces during

the acceleration process, and therefore achieve a higher final kinetic energy.

In this chapter, we present a vacuum acceleration scheme that expands on the

results of Refs. [59, 105] by using a radially-polarizedLGn,0 beam with n 6= 0. Such beams

achieve a higher peak longitudinal field intensity on axis than LG0,0 beams, and thus are

interesting to explore in the context of particle acceleration. In Section 5.2, the details of

the numerical model implemented for electron acceleration are described. In Section 5.3,

the results of these simulations are shown and analyzed for both single particle and

ensemble cases.
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Figure 5.1: Absolute squares of the unnormalized radially-polarized fields Eρ (black
dashed) andEz (solid blue) along a cross section at the beam waist for LG modes (a)LG0,0,
(b)LG1,0, and (c)LG2,0. The fieldsEz have their maximum about ρ = 0 whereEρ is min-
imal, allowing near-axis electrons to be accelerated longitudinally with negligible trans-
verse force. As the radial LG mode increases, the maximum magnitude of Ez grows, al-
lowing for greater electronic energy gains for beams of higher radial modes.
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5.2 Numerical model

Using the perturbative field model introduced in Chapters 3 & 4 of this work, a Fortran

code was developed to study the acceleration of free stationary electrons by a

tightly-focused radially-polarized eLG beam. This perturbative description was chosen to

expand on the results of Ref. [59] since generalizing LG modes of higher radial index in

the time-domain using the exact model of Ref. [43] remains, to our knowledge, an open

problem. An adaptive step size Bulirsch-Stoer algorithm [106] was then implemented to

solve the relativistic classical equations of motion for an electron under the influence of

the Lorentz force F = q(E + v ×B), where expressions for the unnormalized

radially-polarized complex EM fields are given in Eqs. (3.20)-(3.24). These electrons were

propagated to 120fs, with the zero of time being set to coincide with the pulse center

crossing z = 0.

Simulations were run for both 1) single particle trajectories and 2) acceleration of

particle ensembles, each with LG0,0, LG1,0, and LG2,0 beam geometries. As indicated in

Fig. 3.1 (e), including perturbative terms up to ε4c was sufficient for these calculations. In

all cases the laser had central wavelength λ0 = 800 nm and was focused to a beam waist

ofw0 = 785 nm ≈ 0.981 λ0, thus requiring a nonparaxial description. The spectral

parameter, presented in Eq. (2.5), was s = 70, resulting in a pulse with FWHM of about

8.370 fs, or about 3.136 cycles. Using a pulse energy of 2.5mJ resulted in a peak power of

P ≈ 300GW with a peak intensity of I = 1.543× 1019 W/cm2. These parameters were

chosen to conform with the simulations of Marceau et al. [54].

Ensemble simulations were run with 500,000 electrons initially at rest and

randomly distributed in a region x0 ∈ [−λ0, λ0], z0 ∈ [−3λ0, 3λ0], where z is the

longitudinal coordinate and x, y are the transverse Cartesian coordinates. Owing to the

azimuthal symmetry ofm = 0 modes, y0 = 0 was used to reduce computational load

without impacting results. All particles which had final positions zf > 0 were collected

for analysis. For single particle trajectory simulations, the electrons were placed initially
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at rest at the origin. In both cases, electrons which at any time step exceeded the

boundaries of the perturbative radius of convergence defined in Sec. 3.6 were removed

from the simulation.

Inter-electron Coulomb interactions were ignored in these simulations. At

relativistic speeds approaching c, the electric repulsion in the transverse direction

between two electrons is canceled by the respective magnetic attraction. Longitudinal

spread, and therefore the temporal duration, of the produced electron bunches would be

increased by including these effects. Still, Ref. [54] found good agreement in bunch

durations accelerated by the Gaussian mode of a radially-polarized beam in the cases of

3D particle-in-cell simulations (1.09fs), and similar simulations in the single-particle

limit (0.73fs).

Ideally, acceleration results would be fully optimized by a detailed numerical

analysis of the parameter space which includes (but is not limited to) initial particle

position and momentum, initial laser phase, time of ionization in the pulse, pulse

energy, pulse duration, focal spot size, and wavelength, for every reasonable LG mode.

However, this is a very large task computationally and has not been explored here fully.

In the following section regarding acceleration results for both single particles and

ensembles, only the initial phase of the laser was chosen by pseudo-optimization of φ0 at

each LG mode. With all other beam parameters held constant, the initial phase was

varied over the eight cardinal and primary intercardinal phases for each of modes

LG0,0, LG1,0, and LG2,0. Of these results, the best for each LG mode was selected for

analysis (“best" was taken to mean the largest energy gain for single particles, and

highest axial electron density with largest average kinetic energy for ensembles).
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5.3 Results and discussion

5.3.1 Single-particle acceleration trajectories

To illustrate the potential for using higher-order radial LG modes to enhance energy gain

during electron acceleration, simulations were run in which single particles starting at

the origin were accelerated by LG0,0, LG1,0, and LG2,0 beams. These results are shown

in Fig. 5.2. Hu and Starace [96] had previously found that for the Gaussian mode, final

electron energy was enhanced by ionizing the electron near the peak of the driving pulse.

To check if these results held at higher radial modes, simulations were run both in the

cases of free electrons at rest [5.2 (a)] and electrons assumed to be initially tightly-bound,

and therefore accelerated starting at the pulse center [5.2 (b)] (“ionized" at the peak of the

pulse).

For each of these simulations, the overall phase, φ0, of the laser field displayed was

chosen such that the electron had the largest final kinetic energy. For the case of free

electrons [5.2 (a)] these values correspond to φ0 = π/2, φ0 = 3π/4, and φ0 = 7π/4 for

the n = 0, n = 1, and n = 2 trajectories, respectfully. For the case of tightly-bound

electrons [5.2 (b)] these values correspond to φ0 = 3π/2, φ0 = π/2, and φ0 = 3π/2 for

the n = 0, n = 1, and n = 2 trajectories, respectfully.

For all three LG modes simulated, total energy gain was confirmed to be enhanced

by assuming ionization at the peak intensity of the driving laser field. Additionally, the

electron accelerated by the LG0,0 mode did not achieve the maximum energy in either of

the free or bound electron cases. However, since the acceleration dynamics are extremely

sensitive to initial laser phase and particle location, these results are not particularly

illustrative beyond showing the possibility for increased energy gain at higher LG modes.

For a more comprehensive result, the next section examines acceleration of a

pseudo-randomly placed initial ensemble of particles.
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Figure 5.2: Energy along trajectories for an electron initially at rest at the origin acceler-
ated byLG0,0 (solid dark blue),LG1,0 (solid light orange), andLG2,0 (dashed black) beams.
Results are shown for cases of both (a) interaction with the entire pulse, and (b) assumed
ionization at the pulse peak [t = 0]. In either case, the LG0,0 electron does not have the
highest post-acceleration energy. Note that “au” denotes atomic units.

5.3.2 Ensemble acceleration results

In Fig. 5.3, results for ensemble accelerations by lasers of the first three radial LG modes

are shown. To generate these plots, ensemble simulations were run for the eight cardinal

and primary intercardinal phases for each of the modes LG0,0, LG1,0, and LG2,0. For

each LG mode, the eight resulting electron distributions were analyzed numerically to

determine which initial phase produced the best electron bunch, determined by locating

axial regions of highest electron density in windows of length 3λ0 (≈ 8fs) along the

z-axis and width 2λ0 centered about x = 0. Electrons outside this window were filtered
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out of the shown results, which could be achieved experimentally by passing the

unfiltered beam through an annular hole (x-filtering) and selecting only electrons within

a certain energy range (z-filtering).

For the modes LG0,0, LG1,0, and LG2,0, the best final electron bunches were

identified in the cases of initial laser phases φ0 = 3π/2, φ0 = 3π/4, and φ0 = 0,

respectively. In each panel of Fig. 5.3, the vertical dashed lines mark the ensemble

average longitudinal position. Since all simulations were run out to a final time of 120fs,

this position is related to the average kinetic energy of the electron bunch. Unlike the

results in the single-particle case, the ensemble average kinetic energy decreases at each

higher radial mode. This can be seen from the lower ensemble average z positions,

decreasing from 36.98λ0 at n = 0 to 34.79λ0 at n = 1, and finally 31.49λ0 at n = 2.

Further, final total charge of these electron bunches decreased at higher LG modes,

dropping from 1.45fC at n = 0 to 0.64fC at n = 1 and finally 0.55fC at n = 2.

For the LG0,0 mode, Ref. [54] reported 1.1fC electron pulses with durations of

roughly 1fs and final average positions between 34λ0 and 35λ0 for a similar acceleration

scheme. Since the results of that work were generated using the exact phasor model of

Ref. [43], which is described by different boundary conditions than the perturbative

model used in this work, one would not expect exact agreement. Further, Ref. [54] noted

that full ionization dynamics play a central role in determining the properties of the

accelerated electrons, as their results for electrons initially bound in Hydrogen and

Helium showed very different structures in the final electron distributions.

To our knowledge, no ensemble vacuum acceleration simulations have been

published which use higher order radial LG modes. As such, the remainder of this

section is dedicated to explaining the degradation in produced electron beam quality as

the radial mode is increased. To begin, one considers the regions of initial electron

density (x0, z0) which contribute to the final electron ensembles. This region of viable

initial positions shrinks as the radial index is raised (Fig. 5.4), due in part to the increased
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Figure 5.3: Normalized electron density maps for the final ensembles of electrons gen-
erated from acceleration by (a) LG0,0, (b) LG1,0, or (c) LG2,0 beams. The shown region
represents a filtered selection of all accelerated electrons, for which initial phases of the
driving laser were chosen to maximize bunch charge and kinetic energy while minimizing
angular and temporal distributions. The dashed white line denotes the ensemble average
position.
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intensity ofEρ away from the beam waist (Fig. 5.5).

Figure 5.4 shows the initial positions of electrons which remain in the ensembles

post-acceleration for the cases of unfiltered (yellow) and filtered (red) electrons.

Unfiltered electrons are those which stay within the perturbative radius of convergence

and have final position z > 0, which is further reduced to the filtered set based on bunch

quality as described previously. For unfiltered electrons (yellow), the region of initial

distribution that survives to 120fs significantly decreases as the radial LG mode

increases. In agreement with the results of Marceau et al. [54], the filtered electrons (red)

from acceleration by the Gaussian mode come primarily from a region 2 . z/λ0 . 3 and

|x/λ0| . 0.75. At higher order modes, the primary band of such electrons near z ≈ 3 is

noticeably smaller than for the Gaussian mode.

One reason for this reduction in ensemble retention is illustrated in Fig. 5.5. While

Fig. 5.1 showedEz dominatingEρ in magnitude at z = 0, Fig. 5.5 shows that as one looks

away from the beam waist this dominance does not persist. In particular, the results of

Fig. 5.4 show that ideal electrons are almost exclusively being born into the continuum

near z = 3λ0 for higher modes, at which point the fieldsEρ have greater magnitudes

thanEz (as shown in Fig. 5.5). This allows for transverse forces to dominate interactions

with many more electrons at higher radial modes, pushing them outside of the

perturbative radius of convergence. For the n = 0, n = 1, and n = 2 modes, 42.39%,

51.31%, and 61.95%, respectively, of the initial distribution was removed from the

simulation for exceeding the boundaries of the perturbative radius of convergence. Even

if such electrons were not immediately removed from the simulation, they would achieve

transverse coordinates too large to contribute to the selected axial electron bunches.

In addition to the overall magnitudes of the fieldsEρ andEz, it is essential to

consider their phases across the region of initial electron distribution. The ideal case for

electron acceleration is one in which the fieldEz is negative while the fieldEρ

simultaneously is positive. This allows the electron to be pushed in the direction of the
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Figure 5.4: Initial positions of electrons captured in total (yellow) and post-filtering (red)
are shown for the cases of ensemble acceleration by (a) LG0,0, (b) LG1,0, and (c) LG2,0

beams. For both filtered and unfiltered results, as the radial index increases there are
fewer initial positions from which accelerated electrons remain in the ensemble.
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Figure 5.5: Unnormalized field intensities at z = 3λ0 for (a)LG0,0, (b)LG1,0, and (c)LG2,0

beams. Unlike at the beam waist (Fig. 5.1), the maximum value of |Ez|2 is not greater than
the maximum of |Eρ|2 for any radial mode at z = 3λ0. Electrons which are assumed to be
ionized at such points are more vulnerable to transverse acceleration byEρ.
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beam’s propagation while also being pulled towards the optical axis, whereEz is larger

andEρ is smaller. Figure 5.6, Fig. 5.7, and Fig. 5.8 analyze these phase properties for the

cases of LG0,0, LG1,0, and LG2,0 modes, respectively.

In each of these figures, panels (a) show histograms of the initial positions of the

electrons retained post-filtering. The blue histograms represent the initial z0

distribution while the red histograms represent the initial x0 distribution. As expected,

the transverse distribution is roughly symmetric across x = 0 due to the azimuthal

symmetry ofm = 0 modes. In the longitudinal direction, there is no symmetry and only

one region of relevant initial density. The locations of these initial bin maxima for x0 and

z0 are labeled on each of the (a) panels.

Having located the optimal initial positions for these electrons, panels (b) of Fig. 5.6

through Fig. 5.8 examine the phases of the fieldsEz andEρ in the vicinity of these points

(z0,max, x0,max) at the time of ionization. One notices immediately that the ideal

conditions for electron acceleration (Ez < 0 andEρ > 0) are not simultaneously held at

the points of optimal ionization, denoted by the crossing of the yellow grid lines in

Fig. 5.6 through Fig. 5.8, for any LG modes. In fact, all LG modes exhibit the same profile

at these optimal points, namely thatEz < 0 andEρ < 0 with |Ez| < |Eρ|. However, in all

three cases, the ideal electron encounters a field configuration in which these ideal

conditions are satisfied almost immediately after ionization, as is explored in the

following paragraph.

The reason that these phases at the points of ionization constitute ideal initial

conditions is made clear in panels (c) of Fig. 5.6 through Fig. 5.8, which show the

normalized fieldsEz andEρ along the trajectory of an electron which was ionized at

these optimal locations. For all three LG modes, the fieldsEρ almost immediately became

large and positive along the trajectory, drawing the electrons towards the axis where they

are accelerated forwards by a strongly negativeEz. These electrons surf along the

wavefront under such ideal acceleration conditions for about 24.37 as, 15.01 as, and
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Figure 5.6: For the LG0,0 mode with initial phase φ0 = 3π/2, (a) histograms of starting
positions z0 and x0 of the final bunched electrons, (b) phases of the real fieldsEρ (red) and
Ez (blue) about the maximum of z0 bins, and (c) normalized fields Eρ (red) and Ez (blue)
along the trajectory of a single electron starting at the position indicated by the maximum
of z0 and x0 bins. In (b) the opaque black plane denotes |E| = 0 and the yellow gridlines
denote the most populated x0 and z0 bin positions. Note that “au” denotes atomic units.
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Figure 5.7: For the LG1,0 mode with initial phase φ0 = 3π/4, (a) histograms of starting
positions z0 and x0 of the final bunched electrons, (b) phases of the real fieldsEρ (red) and
Ez (blue) about the maximum of z0 bins, and (c) normalized fields Eρ (red) and Ez (blue)
along the trajectory of a single electron starting at the position indicated by the maximum
of z0 and x0 bins. In (b) the opaque black plane denotes |E| = 0 and the yellow gridlines
denote the most populated x0 and z0 bin positions. Note that “au” denotes atomic units.
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Figure 5.8: For the LG2,0 mode with initial phase φ0 = 0, (a) histograms of starting po-
sitions z0 and x0 of the final bunched electrons, (b) phases of the real fields Eρ (red) and
Ez (blue) about the maximum of z0 bins, and (c) normalized fields Eρ (red) and Ez (blue)
along the trajectory of a single electron starting at the position indicated by the maximum
of z0 and x0 bins. In (b) the opaque black plane denotes |E| = 0 and the yellow gridlines
denote the most populated x0 and z0 bin positions. Note that “au” denotes atomic units.
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13.42 as for the cases of n = 0, n = 1, and n = 2, respectively. It is during these intervals

that the most significant portion of the acceleration occurs. It is thus clear why ensemble

average kinetic energies are reduced when the radial LG index is increased as shown in

Fig. 5.4; the field geometries at higher radial indices lead to a shorter temporal window in

which optimally-positioned electrons can be accelerated by fields of optimal phase

combination.

The region of initial positions which produce well-columnated high-energy

electrons could possibly be increased in size by further optimization of the full

parameter space, including, perhaps, using nonzero OAM beams. Results might also be

improved by the application of an external magnetic field to assist in the acceleration

process. Reference [107] reported up to 70% increased energy gain in the case of

acceleration by a radially-polarized Gaussian pulse in the presence of an external

magnetic field. Further, it may be possible to combine multiple driving laser fields in the

same spatiotemporal region such that ideal acceleration phases exist for longer periods

of a trajectory and over a larger region of the initial particle distribution. In short, there

remains much to explore in the full optimization problem for vacuum acceleration.
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Appendix A

BGV’s Calculation of the Factors f (2j)(v)

A.1 Calculation by Series Expansion

We begin with the frequency-domain phasor, for any LG mode, of BGV in integral

form (Eq. (16) of Ref. [67]),

Un,m =

∫ ∞
0

(−α)2n+m(−1)n exp(±imφ)w2n+m
0

×
[
zR
kz

exp (ikz(z − izR)− kzR)

]
× Jm(αρ)α dα,

(A.1)

where α ≡ k⊥ and k2 = k2
⊥ + k2

z . An intermediate result of Ref. [67] is that the phasor of

Eq. (A.1) above is equivalent to an infinite series representation given by Eq.(22) of

Ref. [67],

Un,m =

∫ ∞
0

(−α)2n+m(−1)n exp(±imφ)w2n+m
0

×
[

w2
0

2
exp(ikz) exp

(
−iα

2

2k
(z − izR)

)
∞∑
j=0

G(2j)

(kw0)(2j)

]
Jm(αρ)α dα.

(A.2)

Comparing these two equations, it is clear that the terms inside the square brackets
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of each expression must be equal. Making use of the relation zR = kw2
0/2 and our

previous definition of h from Eq. (3.1), and defining Ω ≡ w2
0k

2
⊥, the terms in square

brackets of Eqs. (A.1) and (A.2) can be equated and solved for the infinite sum, yielding

∞∑
j=0

ε(2j)G(2j) =
1√

1− ε2Ω
exp

(√
1− ε2Ω− 1

2ε2h2
+

Ω

4h2

)
(A.3)

In the above expression, we again define ε ≡ 1/(kw0) since the description at this point

is monochromatic. The RHS can then be expanded in a Taylor series about ε2 = 0.

Collecting powers of ε2 in this expansion yields the perturbative termsG(2j),

∞∑
j=0

ε(2j)G(2j) =O
(
ε8
)

+ 1 + ε2
(

Ω

2
− Ω2

16h2

)
+ ε4

(
3Ω2

8
− Ω3

16h2
+

Ω4

512h4

)
+ ε6

(
5Ω3

16
− 15Ω4

256h2
+

3Ω5

1024h4
− Ω6

24576h6

)
.

(A.4)

These results confirm Eq. (23) of Ref. [67], and elucidate how to extend the method to

arbitrarily large j. These termsG(2j) are then used in Eq. (A.2) along with the integral

∫ ∞
0

α2n+m exp
(
−p2α2

)
Jm(αρ)α dα

=
n!

2
p−(2n+m+2)

(
ρ

2p

)m
Lmn

(
ρ2

4p2

)
exp

(
− ρ2

4p2

) (A.5)

to produce the factors f (2j)(v) given by BGV in Ref. [67].

A.2 Limitations of the Series Approach

In Ref. [67], the factors f (2j)(v) were originally calculated one at a time from each term in

G(2j), which we introduced in Eq. (A.3). To calculateG(2j) for a particular j, one carries

out a Taylor series expansion of the right-hand side of Eq. (A.3) about ε2 = 0, the first

terms of which are given in Eq. (A.4). As one clearly sees, calculation of an arbitrary-high
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order term in this expansion is not simple. Referring to the right-hand side of Eq. (A.3) as

F, by the product rule for differentiation, each ε2 derivative acting on F must act on both

the prefactor and the exponential. The action of arbitrarily many such derivatives takes

the form

djF

dε2j
=

j∑
i=0

{[
Ωi

(1− ε2Ω)(1+2i)/2

i∏
i′=1

(
2i′ − 1

2

)]

×
[

dj−i

dε2(j−i) e
E

](
j

i

)}
,

(A.6)

where the first set of square brackets represents derivatives of the prefactor, the

argument of the exponential in Eq. (A.3) is denoted by

E ≡ (
√

1− ε2Ω− 1)/(2ε2h2) + Ω/(4h2), and the binomial coefficients occur owing to

the product rule.

To evaluate the second set of square brackets in Eq. (A.6), one requires an

expression for arbitrarily many derivatives of an exponential function. This result can be

found via Faà di Bruno’s formula, which represents arbitrarily many derivatives of a

composition of sufficiently differentiable functions [108, 109]. Faà di Bruno’s formula,

however, involves a sum over all possible integer partitions of the derivative order (cf.

§ 24.2.1 of Ref. [88]). Integer partitions are still an area of active research in

combinatorics, and while there exist formulas for the number of partitions of an arbitrary

integer there is, to our knowledge, presently no known analytical representation for the

partitions themselves. As such, the partitions of a given integer are often generated

through iterative algorithmic approaches [110, 111] (e.g requiring knowledge of the

partitions of q to calculate those of q + 1). This prevents one from writing a

non-recursive expression for the derivatives in Eq. (A.6), and therefore from obtaining

analytically a general solution for the coefficients of f (2j)(v) for arbitrary order j.

It remains an open question how this alternative method for deriving the factors

f (2j), which requires knowledge of integer partitions, could be related to the
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generalization presented in Ch. 4. The potential for discovering an analytical

representation for the partitions of any integer is an exciting prospect, and researchers

in combinatorics or mathematical physics may thus find this connection of interest.
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Appendix B

Result for the Integral in Eq. (4.25)

In this appendix, we derive the result for the integral of a particular product of an

associated Laguerre polynomial and a Bessel function that appears in Eq. (4.25). We start

with the integral in Eq. (8) of Ref. [67]:

∫ ∞
0

k2n+m
⊥ e−p

2k2⊥Jm(k⊥ρ) k⊥ dk⊥

=
n!

2
p−(2n+m+2)

(
ρ

2p

)m
Lmn

(
ρ2

4p2

)
exp

(
− ρ2

4p2

)
.

(B.1)

We define now a similar integral,

I(2α)
n,m (ρ, p) ≡

∫ ∞
0

k2n+m+1
⊥ e−p

2k2⊥k2α
⊥ L

α
α

(
p2k2
⊥
)
Jm(k⊥ρ)dk⊥, (B.2)

The series representation of the associated Laguerre polynomials is given by

Eq. (8.970.1) of Ref. [90]:

Lαα(x) =
α∑
i=0

(−1)i

i!

(
2α

α− i

)
xi ≡

α∑
i=0

aα,i x
i. (B.3)

Substituting Eq. (B.3) into Eq. (B.2), we obtain
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I(2α)
n,m (ρ, p) =

∫ ∞
0

kθ⊥e
−p2k2⊥k2α

⊥ Jm(k⊥ρ)
α∑
i=0

aα,ip
2ik2i
⊥dk⊥

=
α∑
i=0

aα,ip
2i

∫ ∞
0

k2n+m+1+2α+2i
⊥ e−p

2k2⊥Jm(k⊥ρ)dk⊥.

(B.4)

This integral can be solved directly by application of Eq. (B.1) with the replacement

n→ (n+ α + i):

I(2α)
n,m =

α∑
i=0

aα,i

[
(n+ α + i)!

2
p−(2n+m+2α+2)

(
ρ

2p

)m
Lmn+α+i

(
ρ2

4p2

)
exp

(
− ρ2

4p2

)]
=

1

2

(
ρ

2p

)m
exp

(
− ρ2

4p2

)
p−(2n+m+2α+2)

α∑
i=0

aα,i(n+ α + i)!Lmn+α+i

(
ρ2

4p2

)
.

(B.5)

Using the definitions p = w0/(2h) [see text below Eq. (4.25)] and v = h2ρ2/w2
0 [see text

below Eq. (4.1)], we can write v = ρ2/(4p2). Rewriting Eq. (B.5) in terms of v and using

p = w0/(2h), we obtain the following result for the integral defined in Eq. (B.2):

I(2α)
n,m =

∫ ∞
0

k2n+m+1
⊥ e−p

2k2⊥k2α
⊥ L

α
α

(
p2k2
⊥
)
Jm(k⊥ρ)dk⊥

=
1

2
vm/2e−v

(
2h

w0

)2n+m+2α+2 j∑
i=0

[
aα,i(n+ α + i)! Lmn+α+i(v)

]
,

(B.6)

where the coefficients aα,i are defined in Eq. (B.3).



86

Appendix C

Fortran and Python Implementations of

the Perturbative Model

Fortran code for calculating the perturbative time-domain EM fields can be found on my

github page at the following URL. This code was used for all electron acceleration results

presented in this work.

https://github.com/avikarto/accelerationCode

Additionally, Python code for calculating the generalized perturbative time-domain

phasor can be found on my github page at the following URL:

https://github.com/avikarto/pertFields

https://github.com/avikarto/accelerationCode
https://github.com/avikarto/pertFields
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