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Modern advances in perinatal care (e.g., assisted ventilation 
techniques for neonates and maternal antenatal steroid medica-
tions) have led to the survival of increasing numbers of children 
who are born very preterm (<32 weeks gestational age) and/or 
with very low birth weight (VLBW; <1,500 g, 3 lbs. 5 oz). The 
increased survival of prematurely born infants has been most 
dramatic in children born at the lower extreme of birth weight 
(Hack & Fanaroff, 1999). Children with VLBW have higher rates 
of cognitive and academic deficits, behavior problems, and neu-
rosensory and other health disorders than do term-born chil-
dren of normal birth weights (Taylor, Klein, & Hack, 2000). 
These adverse sequelae are more common and more severe 
in children of the lower extreme of birth weight or gestational 
age (Hack, Klein, & Taylor, 1996; Klebanov, Brooks-Gunn, & 
McCormick, 1994). Although modern neonatal care has con-
tributed to a lower rate of intraventricular hemorrhage (Wil-
son-Costello et al., 2007), increases in survival have not been 
accompanied by decreases in the rates of other major neonatal 
and postnatal medical complications. In fact, any benefit of im-
proved neonatal care has been offset by the survival of higher 

risk, lower birth weight infants (Anderson & Doyle, 2003; Tay-
lor, Klein, Drotar, Schluchter, & Hack, 2006).

Neuropsychological methods detect more subtle cogni-
tive weaknesses or “hidden” handicaps that accompany these 
early complications. Even early in life, the adverse developmen-
tal effects of VLBW are evident, including lower overall men-
tal and motor skills; reduced visual recognition memory; and 
poorer language, executive, and attentional skills (Espy et al., 
2002; Goyen, Lui, & Woods, 1998; Landry, Smith, Miller-Loncar, 
& Swank, 1997; Sullivan & McGrath, 2003). A substantial body 
of literature has documented neuropsychological deficits dur-
ing the preschool years and early primary school that persists 
throughout the school-age years (Anderson, Doyle, & Victorian 
Infant Collaborative Study Group, 2004; Botting, Powls, Cooke, 
& Marlow, 1998; Friske & Whyte, 1994; Luoma, Herrgard, Mar-
tikainen, & Ahonen, 1998; Msall, Buck, Rogers. & Catanzaro, 
1992; Saigal, 2000; Taylor, Minich, Bangert, Filipek, & Hack, 
2004; Wolke & Meyer, 1999). Deficits in nonverbal skills, per-
ceptual-motor abilities, executive control, and attention can-
not be attributed entirely to overall mental deficiency or neu-
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Abstract
The extremes of birth weight and preterm birth are known to result in a host of adverse outcomes, yet studies to date largely have used cross-sec-
tional designs and variable-centered methods to understand long-term sequelae. Growth mixture modeling (GMM) that utilizes an integrated 
person- and variable-centered approach was applied to identify latent classes of achievement from a cohort of school-age children born at varying 
birth weights. GMM analyses revealed 2 latent achievement classes for calculation, problem-solving, and decoding abilities. The classes differed 
substantively and persistently in proficiency and in growth trajectories. Birth weight was a robust predictor of class membership for the 2 math-
ematics achievement outcomes and a marginal predictor of class membership for decoding. Neither visuospatial-motor skills nor environmental 
risk at study entry added to class prediction for any of the achievement skills. Among children born preterm, neonatal medical variables predicted 
class membership uniquely beyond birth weight. More generally, GMM is useful in revealing coherence in the developmental patterns of aca-
demic achievement in children of varying weight at birth and is well suited to investigations of sources of heterogeneity.
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rosensory handicaps (Anderson et al., 2004; Hack et al., 1992; 
Taylor, Klein, Minich, & Hack, 2000). Furthermore, these chil-
dren have more learning and social-behavioral problems than 
term-born children (Bhutta, Cleves, Casey, Cradock, & Anand, 
2002; Hille et al., 2001; Klein, Hack, & Breslau, 1989), includ-
ing lower adaptive behavior skills and social competence (Sai-
gal, Pinelli, Hoult, Kim, & Boyle, 2003); more internalizing and 
externalizing symptomatology (Botting et al., 1997; Breslau & 
Chilcoat, 2000; Szatmari, Saigal, Rosenbaum, Campbell, & King, 
1990; Whitaker et al., 1997); and higher rates of learning disabil-
ities. Mathematics disabilities are particularly prominent (An-
derson & Doyle, 2003; Espy, McDiarmid, et al., 2004; Litt, Tay-
lor, Klein, & Hack, 2005; Taylor, Hack, Klein, & Schatschneider, 
1995). Children with VLBW also have lower levels of academic 
achievement and higher rates of grade repetition and special 
education than term-born controls (Klebanov, Brooks-Gunn & 
McCormick, 1994; Saigal, 2000; Taylor, Klein, Hack, 2000; Tay-
lor, Klein, Minich, et al., 2000).

Neurobiological risks, such as the degree of low birth 
weight, abnormalities on neonatal cranial ultrasounds, chronic 
lung disease, septicemia, and composite biological risk in-
dexes account for substantial variability in outcome (Hack et 
al., 1992; Hack et al., 2000; Koller, Lawson, Rose, Wallace, & 
McCarton, 1997; Landry, Fletcher, Denson, & Chapieski, 1993; 
Liaw & Brooks-Gunn, 1993; McGrath & Sullivan, 2002; Taylor 
et al., 2006; Taylor, Klein, Schatschneider, & Hack, 1998) Ad-
verse outcomes are observed even in children without ma-
jor neonatal complications, making it challenging to identify 
those at risk (Espy et al., 2002; Taylor et al., 2000, 2006). En-
vironmental risks, including sociodemographic characteristics 
and financial disadvantage, as well as more “proximal” family 
influences such as family functioning, negative life events, and 
maternal psychological distress also are related to outcome 
(Bendersky & Lewis, 1995; Breslau, 1995; Breslau & Chilcoat, 
2000; Taylor et al., 1998, 2006).

Adding to these complexities is the differences in outcome 
that unfold across development. Because cross-sectional de-
signs are used most often in outcome studies, it is difficult to 
determine whether the pattern of observed weaknesses is sta-
ble over time, resolves with age, or worsens with development 
as the brain areas most compromised by early insult become 
more engaged for skill acquisition and maintenance. In some 
studies, a relatively stable pattern of weaknesses has been ob-
served across school age into adolescence (Breslau et al., 2001; 
Powls, Botting, Cooke, & Marlow, 1995; Rickards, Ryan, & 
Kitchen, 1988). Other results suggest an exacerbation of im-
pairment into adolescence (Botting et al., 1998; Cohen et al., 
1996; O’Callaghan et al., 1996; Saigal, Hoult, Streiner, Stoskopf, 
& Rosenbaum, 2000; Taylor, Klein, Minich, & Hack, 2000; Zel-
kowitz, Papageorgiou, Zelazo, & Weiss, 1995). Finally, in one 
study, initial reductions on a test of vocabulary in young chil-
dren with VLBW relative to term-born peers diminished 
across development, with the two groups obtaining similar 
scores by at age 8 years (Ment et al., 2003).

Although weaknesses in visuospatial-motor abilities, at-
tention, executive control, memory, and academic achieve-
ment are commonly identified in studies of children born 
very early and at VLBW, these investigations have used “vari-
able-centered” approaches (B. Muthén & Muthén, 2000), in 
which the goal is to relate pre-established risk factors to out-
comes of interest. Studies exemplifying this approach are 
ones that examine neuropsychological proficiencies as a 

function of birth weight, neonatal complications, and envi-
ronmental disadvantage. In contrast, “person-centered” ap-
proaches such as growth mixture modeling (GMM), although 
also incorporating the variable-centered approach, use clus-
ter or latent class analyses. These approaches address ques-
tions on relations among individuals, in which the interest is 
to subgroup persons with similar outcomes and understand 
how subgroups differ from one another. Person-centered ap-
proaches are particularly well suited to study of outcomes 
of VLBW because individuals classified according to birth 
weight differ substantially in other risk factors, such as peri-
natal complications. This approach may also be ideal for teas-
ing apart developmental trajectories associated with low base 
rate phenomena, such as the specific medical conditions that 
can accompany VLBW.

Fortunately, recent statistical advances have resulted in the 
application of both variable- and person-centered techniques 
to modeling of growth for longitudinally collected data. Con-
ventional growth modeling (CGM) is a variable-centered ap-
proach that can be conducted using structural equations mod-
els (SEM), mixed linear models, or hierarchical linear (HLM) 
models, which are known generally as multilevel models (He-
deker & Gibbons, 1994; McCulloch & Searle, 2001; B. Muthén, 
2004; Raudenbush, 2001; Raudenbush & Bryk, 2002; Singer 
& Willett, 2003; Skrondal & Rabe-Hesketh, 2004). Although 
CGM is accomplished somewhat differently in SEM and HLM 
methods, the results are identical when the same growth pa-
rameters are modeled. These approaches now are applied rou-
tinely to address developmental questions, including changes 
in brain responses to auditory stimuli across early develop-
ment (Espy, Molfese, Molfese, & Modglin, 2004) and variation 
in longitudinal neuropsychological outcomes in children with 
VLBW (Taylor, Minich, Klein, & Hack, 2004).

The major objective of the present study was to apply per-
son-centered growth modeling techniques to better under-
stand individual variation in the development of academic 
skills in children with VLBW. Learning difficulties at school 
age increase risks for long-term problems in behavior adjust-
ment and limited educational and vocational attainments (Ew-
ing-Cobbs et al., 2004; Klebanov, Brooks-Gunn, & McCormick, 
1994). Identifying different patterns of growth in academic 
achievement during the school-age years and risk factors as-
sociated with these patterns is thus critical to determine which 
children may need the most extensive early interventions 
to promote skill development. Previous studies have docu-
mented persistent deficits in academic skills (Hack, 2005), but 
it is unclear if these deficits are stable over time or if the gap in 
skills between children with VLBW and their term-born peers 
widens with age. Several longitudinal studies have suggested 
relatively constant deficits in academic achievement among 
VLBW cohorts across the school-age years (Breslau, Paneth, & 
Lucia, 2004; Schneider, Wolke, Schlagmuller, & Meyer, 2004), 
whereas others suggest that these deficits may become more 
pronounced with age (Saigal et al., 2000; Taylor, Klein, Minich, 
& Hack, 2000). It is also important to investigate factors other 
than VLBW that may contribute to risks for poor achievement 
and to determine whether growth in achievement is affected 
more adversely in some children than in others.

In previous reports on outcomes for the sample of children 
followed in the present study, Taylor and colleagues (Taylor et 
al., 1995, 2000) assessed achievement in two groups of children 
varying in the degree of VLBW (<750 g and 750 to 1, 499 g) and 
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term-born controls at the mean ages of 7 and 11 years. Results 
revealed lower scores for the <750 g group compared with term 
controls on reading and mathematics at both follow-up assess-
ments. Taylor et al. (2000) also observed that the <750 g group 
made less positive gains in reading across the two assessments 
than the term group. However, changes in achievement across 
subsequent follow-ups at later ages were not examined in these 
earlier reports. Multiple assessments of achievement as part of 
this larger study provided a unique opportunity to examine 
longer term achievement outcomes into adolescence. Applica-
tion of both variable- and person-centered GMM methods (B. 
Muthén & Muthén, 2000) also enabled better characterization 
of differences in growth of academic skills with age and the 
correlates of these individual differences.

Specific aims were to (a) empirically characterize the de-
velopmental trajectories of differing academic skills across 
childhood into adolescence; and (b) determine whether birth 
weight, nonverbal neuropsychological abilities, and environ-
mental risk measured at early school age predicted different 
patterns of academic proficiencies. Based on past literature, 
we anticipated that birth weight would be a robust predictor 
of class membership, and that nonverbal neuropsychological 
skills and environmental risk in early childhood would contrib-
ute substantively to the prediction of class membership (Taylor 
et al., 1995). Finally, we hypothesized that among children with 
VLBW, neonatal medical conditions would predict class mem-
bership beyond birth weight alone (Taylor et al., 1998).

Method 

Participants
The total sample consisted of 196 children, 67 children born 

at term (>36 weeks) of normal birth weight (>2,500 g) and 129 

children born preterm and VLBW at <1,499 g. Most of the chil-
dren were recruited into the study at early school age (Hack et 
al., 1996), with a few additional children recruited at the sec-
ond follow-up assessment to maximize sample size for study 
of developmental change (Taylor, Minich, Klein, et al., 2004). 
Because there are fewer children born at the lowest end of the 
birth weight spectrum, children <750 g (n = 64) were the sam-
pled “target” participant, representing 93% of the survivors in 
this range of birth weight born from July 1, 1982 through De-
cember 31, 1986 in the six-county region surrounding Cleve-
land, Ohio. Children in the 750 to 1,499 g (n = 65) and term-
born groups were individually matched with a <750 g child 
based on birth date (within 3 months), race, and either the 
same hospital of birth (750 to 1,499 g children) or same school 
(term children).

Table 1 presents the sample background and perinatal 
characteristics. The number of girls and boys were approx-
imately equal between term and higher (750 to 1,499 g) and 
lower (<750 g) weight children with VLBW, χ2(2, N = 196) = 
0.066, p > .97. The number of children of minority race also did 
not differ by birth weight group, χ2(2, N = 196) = 0.092, p > .95. 
Finally, birth weight groups did not differ in socioeconomic 
status (SES), F(2, 175) = 0.25, p > .78, calculated using the Hol-
lingshead index (Hollingshead, 1957) composite of parent ed-
ucation and occupation (reversed scored so that higher score 
reflected higher SES) and then normalized within the sample. 
Not surprisingly, the birth weight groups differed in length of 
hospitalization, F(1, 126) = 43.28, p <.001; days on the venti-
lator, F(1, 126) = 32.10, p <.001; and number of children with 
chronic lung disease, χ2(1, N = 128) = 19.14, p <.001; septice-
mia, χ2(1, N = 128) = 5.16, p = .024; and apnea χ2(1, N = 129) = 
5.44, p = .023. Further sample information is provided in Tay-
lor, Minich, Klein, and Hack (2004). 

Table 1. Sample Characteristics

                                                                                                             Birth weight group
Sample characteristics                   Terma M/n (SD/%)            750 to 1,499 gb M/n (SD/%)                                   <750 gc M/n (SD/%)

Sex
    Boys  23 (34)  21 (33)  21 (32)
    Girls  44 (66)  43 (67)  44 (68)
Race
    Black  34 (51)  31 (48)  33 (51)
    White  33 (49)  33 (52)  32 (49)
SES  0.05 (1.01)  0.02 (1.06)  –0.07 (1.00)
LISRES–A Environmental Risk  50.33 (6.02)  49.21 (4.55)  49.79 (5.81)
VSPM Factor Score*  0.07 (0.96)  0.22 (1.02)  –0.29 (0.97)
Birth weight (g)***  3,370 (575)  1,179 (212)  670 (67)
Gestational age (weeks)***  —  29.5 (2.3)  25.8 (1.8)
Length of hospitalization (days)***  —  57.2 (36.59)  126.30 (75.67)
Days on ventilation***  —  9.7 (18.76)  43.38 (43.69)
Apnea*  —  47 (73.4)  58 (89.2)
Chronic lung disease***  —  6 (9.4)  27 (42.2)
Jaundice  —  25 (39.7)  18 (28.6)
Septicemia*  —  15 (23.4)  27 (42.2)
Necrotizing enterocolitis  —  5 (7.8)  4 (6.3)

N = 196. SES = socioeconomic status z score; LISRES–A = Life Stressors and Social Resources Inventory–Adult Form; VSPM = 
visuospatial/perceptual motor; Chronic lung disease = oxygen dependence for ≥ 36 weeks corrected age; jaundice = maximal 
indirect serum bilirubin > 10 mg/dL.
a n = 67. b n = 64. c n = 65.
*  p < .05 ;  **   p < .01 ;  *** p < .001.
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A sequential panel design (Mehta & West, 2000; B. 
Muthén, Khoo, Francis, & Boscardin, 2003; Nesselroade & 
Baltes, 1979; Tonry, Ohlin, & Farrington, 1991) was used, 
where participants were enrolled in early elementary school, 
around age 7 years (M = 6.87 years, SD = 0.93, range 5.31 to 
9.34 years). Children were assessed approximately 4 years af-
ter the initial visit and annually for four subsequent assess-
ments. Given the variability in age at study entry, the respec-
tive follow-up intervals spanned from ages 10 through 16 
years, shown in Table 2. Age-related change in children’s ac-
ademic achievement scores was modeled because the interest 
is in growth across development, not change between visits. 
Because variability in the age at entry was large relative to 
the other ages, the difference in the actual age at enrollment 
from age 7 was used as a covariate for this assessment only. 
Because of this sampling, subsequent assessment schedule, 
and some attrition (sample retention = 92%), there were a dif-
ferent number of assessments at each age period, resulting in 
an unbalanced design. At each age, however, the mean ages 
and sample sizes were approximately equal across the three 
birth weight groups (see Table 2). 

Outcome Measures
Three subtests from the Woodcock–Johnson Psycho-Ed-

ucational Battery–Revised (WJ–R) Tests of Achievement 
(Woodcock & Johnson, 1989) were administered to measure 
academic achievement outcome. Calculation requires the ex-
aminee to perform mathematic operations that vary in dif-
ficulty. In Applied Problems, examinees analyze and solve 
practical mathematics problems. Letter-Word Identification 
assesses reading decoding by requiring examinees to orally 
read a list of single words of increasing difficulty. These sub-
tests were chosen for their demonstrated high reliability and 
validity and because the resultant W scores are Rasch model-
derived values that represent equal-interval measurement 
both within and across individuals, where any given differ-
ence along the scale has the same implication for performance 
at any level or age, a desirable property for growth model-
ing. For simplicity, we refer to scores on Calculation, Applied 
Problems, and Letter-Word Identification as Calculation, 
Problem-Solving, and Decoding, respectively.

Predictors
The central predictor was birth weight (BWT), a contin-

uous variable measured in grams. At the initial evaluation at 

study entry, children were administered a neuropsychologi-
cal battery that included the tetrad short-form of the Kaufman 
Assessment Battery for Children (K–ABC; Kaufman & Apple-
gate, 1988), as well as tests of picture naming, verbal short-
term memory and verbal comprehension, perceptual-mo-
tor skills, and attention and executive function (Taylor et al., 
1995). A principal axis factor analysis with varimax rotation 
was conducted on age-standardized scores, as described in 
Taylor, Burant, Holding, Klein, and Hack (2002), to reduce the 
number of predictors and to identify distinct cognitive con-
structs. Tests with low primary loadings or high cross-loadings 
were excluded after the initial analysis. The final factor anal-
ysis yielded two factors accounting for 63% of the variance in 
scores. Factor 1 had an eigenvalue of 4.46 and explained 50% 
of the variance in scores, and Factor 2 had an eigenvalue of 1.21 
and explained 13% of the variance in scores. Tests loading on 
Factor 1, referred to as the visuospatial/perceptual-motor fac-
tor (VSPM), included the Developmental Test of Visual-Motor 
Integration (Beery, 1989), the short-form of the Test of Motor 
Proficiency (Bruininks, 1978), the Purdue Pegboard (Gardner, 
1979), the Computerized Test of Attention (Murphy-Berman & 
Wright, 1987) and Triangles and Matrix Analogies subtests of 
the K–ABC. Tests loading on Factor 2, referred to as the ver-
bal memory factor, included the Pseudoword Repetition Test 
(Taylor, Lean, & Schwartz, 1989), Recalling Sentences subtest 
of the Clinical Evaluation of Language Fundamentals–Revised 
(Semel, Wiig, Secord, & Sabers, 1987), and Word Order sub-
test of the K–ABC. Factor composites were computed by aver-
aging the age-adjusted standard scores of the constituent tests. 
Because VSPM and the verbal memory factor were correlated 
significantly (ρ = 0.32, p < .001) and VSPM accounted for the 
greatest variance, only VSPM was retained as a predictor of 
class membership in the subsequent analyses.

To assess the contribution of the child’s social environment 
to class membership, the Life Stressors and Social Resources 
Inventory–Adult Form (LISRES–A; Moos & Moos, 1994) ad-
ministered at study entry was used as an index of proximal 
life stressors and social resources (Taylor, Minich, Klein, et 
al., 2004). A summary score of environmental risk (ER) was 
created from the mean of the T scores for six stressors scales 
(health, work, spouse, extended family, friends, and negative 
life events). Because the daily care for a preterm child can con-
tribute to perceived family stress, items pertinent to the child 
were removed in computing the summary score for all partic-
ipants. The ER score was used as the predictor of class mem-

Table 2. Children’s Age by Birth Weight Groups for Each Assessment

                              Actual age         N at each                     Term age                             750 to 1,499 g age                           <750 g age
Age period             M (SD)          age period                     M (SD) (n)                                M (SD) (n)                                   M (SD) (n)

7  6.87 (0.93)  178  7.00 (1.00) (52)  6.91 (0.89) (64)  6.72 (0.92) (62)
10  9.98 (0.33)  66  10.02 (0.31) (22)  9.92 (0.35) (22)  9.99 (0.32) (22)
11  11.02 (0.31)  107  11.04 (0.31) (38)  10.97 (0.31) (32)  11.03 (0.30) (37)
12  12.01 (0.30)  127  11.99 (0.31) (47)  11.96 (0.31) (36)  12.07 (0.27) (44)
13  13.02 (0.30)  142  12.98 (0.29) (52)  13.01 (0.33) (43)  13.05 (0.28) (47)
14  13.94 (0.31)  90  13.96 (0.33) (35)  13.91 (0.31) (27)  13.94 (0.28) (28)
15  15.15 (0.27)  61  15.12 (0.35) (20)  15.18 (0.22) (22)  15.15 (0.30) (19)
16  16.12 (0.37)  103  16.11 (0.37) (35)  16.14 (0.40) (36)  16.10 (0.34) (32)

Term = full-term; 750 to 1,499 g = 750 to 1,499 g birth weight; <750 g = <750 g birth weight.
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bership, where higher scores reflected more stressful envi-
ronments. There was no difference in the ER score among the 
birth weight groups, F(2, 193) = 0.68, p = .51.

Several neonatal medical variables were selected as predic-
tors of class membership: two continuously distributed vari-
ables, Length of Hospital (in days) and Days of Ventilation, 
and four categorical variables, Apnea, Chronic Lung Disease, 
Jaundice, and Necrotizing Enterocolitis (coded 1 for children 
who experienced the medical condition and 0 for those who 
did not).

GMM
Like the conventional HLM and SEM approaches to growth 

modeling, GMM can be used to examine a mean growth trajec-
tory and individual variation within a population, considering 
both the person-centered and variable-centered approaches (B. 
Muthén & Muthén, 2000). Unlike conventional growth mod-
els, however, GMM utilizes a “mix” of latent continuous and 
categorical variables, and is used to identify meaningful sub-
populations within the larger population to examine the mean 
trajectories and individual variation across and within the 
subpopulations. More important, these subpopulations are not 
known a priori, but rather are determined empirically, termed 
“latent classes.” Individuals are assigned to subpopulations or 
latent classes based on their posterior probabilities using mul-
tinomial logistic regression (B. Muthén & Shedden, 1999). La-
tent class analysis (Nagin, 1999; Nagin & Tremblay, 2001) is 
similar to GMM in terms of identifying the latent classes and 
modeling the growth trajectory across classes, but GMM has 
the added advantage of allowing for within-class variation of 
variable-centered methods (B. Muthén, 2006; Nagin & Trem-
blay, 2005). GMM is the “second generation” of SEM-param-
eterized growth models, which fully incorporates the multi-
level approach to understand nested, individual variation (B. 

Muthén, 2001a, 2001b, 2002). GMM has the same advantages 
as CGM in accommodating missing data, and thus can be ap-
plied to unbalanced designs.

GMM starts from conventional growth models to identify 
the growth functions (e.g., linear or quadratic). In GMM, the 
CGM assumption that all participants are drawn from a sin-
gle population with common population parameters (e.g., in-
tercepts, slopes, or acceleration) then is relaxed. GMM uses la-
tent categorical variables to allow for the parameter variation 
within and across unobserved latent classes. Figure 1 depicts 
a general diagram of the GMM as applied to our data. Dou-
ble-arrowed curved lines represent growth factor covariance 
and single-arrowed lines represent estimated path values. 
Each growth factor in the respective circles has indicators Y1 
to Y8 representing reading or math scores at the 8 ages (7, 10, 
11, 12, 13, 14, 15, and 16 years), respectively. Residuals are rep-
resented by ε1–8 in squares, where Age7 in the square repre-
sents the age covariate for the initial assessment Y1. The three 
predictors of interest BWT, VSPM, and ER, are shown in the 
lower left box. The categorical latent growth trajectory vari-
able c is below the black line, representing the unobservable 
latent “class” of children, who are determined empirically to 
represent a coherent subgroup based on the pattern of varia-
tion in their growth trajectory. 

Using CGM, unconditional models with only the growth 
coefficients (linear and quadratic), no predictors or covariates, 
and no latent classes were run first for Calculation, Problem-
Solving, and Decoding across age. In these and all subsequent 
models, Age 13 was chosen as the centering point for greater 
measurement precision, as the majority (72%) of participants 
had completed assessments at this age. By setting the inter-
cept at the age of 13, the intercept is the estimated subtest per-
formance at age 13 and the variance estimate also reflects the 
value at Age 13. Because a quadratic model best fit the data, 

Figure 1. General diagram of growth mixture models for of birth weight risk. CGM = conventional growth modeling; BWT = birth weight; VSPM 
= visuospatial/perceptual-motor factor; ER = environmental risk; c = class.
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the slope parameter is the estimated increase in achievement 
per unit of age at Age 13. Finally, the quadratic parameter is 
the estimated change in slope across the observation period, 
and identifies whether growth is “convex (troughed)” or “con-
cave (peaked).” The positive sign of the quadratic parameter 
indicates accelerating growth and the negative sign indicates 
deceleration. For achievement outcomes, a “concave” pat-
tern with a peak is expected as children’s skills grow toward 
a maximum value. Using calculus, the age at which the qua-
dratic function reaches its peak can be calculated by [13 – [1/2]
(αs/αq)], where αs and αq represent the estimates for slope and 
quadratic parameters, although as with any polynomial, the 
timing of the peak may not fall within the range of the data. In 
general, these CGM models examine the latent growth factors 
and growth trajectory shape drawn from a single population, 
where individual trajectories were allowed to vary around a 
single population mean trajectory.

In GMM, the heterogeneity of population growth trajec-
tories is captured by the latent categorical variable c with K 
classes, where the continuous latent growth variables for in-
dividuals in the kth class are related to c and the observed 
predictors x. Here, the mixture models contain three growth 
factor means in the kth class (intercept, slope, acceleration), 
and the three fixed-effect coefficients (BWT, VSPM, and ER) 
of xi on the three latent growth factors. A multinomial logis-
tic regression model is applied in GMM to describe the rela-
tion between predictors and latent trajectory classes, where 
the probability of being in the kth class for child i is condi-
tional on the predictors.

Model Estimation and Assessment
In this study, all models were estimated by maximum 

likelihood using the expectation maximization algorithm 
(Dempster, Laird & Rubin, 1977; Muthén & Muthén, 2001, 
2006; B. Muthén & Shedden, 1999). This method is appropri-
ate for analysis of data that are collected under conditions of 
“planned missingness” and are considered missing at random 
(Graham, Taylor, & Cumsille, 2001; Little & Rubin, 2002; Scha-
fer & Graham, 2002), as was the case for this study. The max-
imum likelihood estimator with robust standard errors and 
chi-square likelihood ratio test allows missing data that is con-
sistent with missing at random assumption, as well as nonnor-
mal and nonindependence outcomes (Yuan & Bentler, 2000). 
Local maxima are encountered often in GMM, especially with 
an increasing number of latent classes (Muthén, 2004; Muthén 
& Muthén, 2006). For K ≥ 2, this study used 100 to 10,000 ran-
dom sets of starting values at the initial stage and 5 to 20 opti-
mizations at the final stage to avoid local maxima.

To determine the CGM trajectory shape, the chi-square 
test, based on maximum log-likelihood ratio (MLR) and scal-
ing correction factors (Satorra, 2000), was used to compare 
relative fit among models that included linear and quadratic 
growth functions, respectively. The selected latent class model 
then was adopted in subsequent models examining the effects 
of predictors of class membership. The a priori models were 
tested by holding parameters invariant across classes, fixing or 
freeing parameters within and across classes, and then adding 
predictors. The chi-square likelihood ratio test is not appropri-
ate for comparing models with different numbers of classes. 
An integrated approach was adopted here, where the num-
ber of latent classes was determined by the overall evaluation 
of the four criteria: (a) Bayesian information criteria (BIC; the 

smaller information criterion indicates better fit), (b) entropy, 
(c) bootstrap likelihood ratio test (BLRT); and (d) graphs of es-
timated class mean trajectories with and without covariates. 
BIC (Schwartz, 1978) was selected because it best identifies the 
correct number of classes in GMM using the common infor-
mation criteria (Nylund, Asparouhov & Muthén, 2006). En-
tropy (Ek) was used to measure the classification quality based 
on participant’s posterior class membership probabilities (Na-
gin, 1999; Ramaswamy, Desarbo, Reibstein, & Robinson, 1993), 
where entropy values closer to 1 indicate clear classification. 
BLRT uses bootstrap samples to estimate the distribution of 
the log-likelihood difference test statistic and was regarded as 
a powerful indication of the correct number of clusters (Nyl-
und et al., 2006). A low p value of BLRT (e.g., p < .05) indicates 
the rejection of k − 1 classes in favor of k classes. Because the 
prediction of class membership is a key feature of GMM that 
permits testing empirically derived hypotheses, B. Muthén 
(2004) recommended that predictors be included in models 
to help determine the number of classes. Therefore, graphs of 
class mean trajectories were plotted with and without predic-
tors to examine whether the latent classes were substantive. 
For example, the kth class mean trajectory may be so close to 
the (k −1)th class as to render the distinction between the two 
latent classes a trivial one.

Results 

The longitudinal achievement data was analyzed to ad-
dress our objectives through the following steps: (a) establish 
the trajectory shape, (b) identify the latent classes, and (c) ex-
amine the prediction of class membership from the predictors 
of particular interest. To establish the trajectory shape, uncon-
ditional linear and quadratic functions were fit to the data us-
ing conventional growth models, respectively. The chi-square 
difference test based on MLR and scaling factors indicated a 
quadratic growth curve model best fit the data for Calcula-
tion, χ2(4) = 55.54, p < .001; Problem-Solving, χ2(4) = 322.30, 
p < .001; and Decoding, χ2(4) = 337.46, p < .001. The quadratic 
term was significant and negative in sign, indicating that with 
advancing age, the rate of linear growth was progressively 
smaller for the three achievement scores: Calculation αq = 
−1.18, p < .001; Problem-Solving αq = −0.76, p < .001; Decoding 
αq = −1.28, p < .001 (see Table 3). Figure 2 displays these qua-
dratic growth curves for the entire sample, and Table 3 con-
tains the growth statistics. 

For GMM, the unconditional mixture models were fit to the 
achievement data by assuming that the three continuous latent 
growth coefficients were invariant within classes (L. Muthén 
& Muthén, 2007; Nagin, 1999). Because the variances of inter-
cepts and residuals differed across classes based on the chi-
square likelihood ratio tests for the model of the same classes, 
these terms were allowed subsequently to vary within classes. 
As initial exploratory modeling showed that the GMM with 
more than three classes (k > 3) contributed trivially to class 
identification, the models with k > 3 were not investigated fur-
ther and only models with two- and three-classes were stud-
ied in comparison to the one-class conventional growth model.

Class Identification
To compare the models with different numbers of classes, 

the integrated criteria were applied initially for each of the 
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achievement models without the inclusion of any predictors, 
shown in Table 3. For the comparison of one-class CGM and 
two-class models, the smaller BIC and significant p value of 
the BLRT test indicated that the two-class mixture model bet-
ter fit the data (see Table 3). The contrast of two- and three-
class unconditional models showed some support for se-
lection of the three-class model for Calculation. The BIC 
was smaller for the three-class model than for the two-class 
model (BIC = 6,997.87 vs.7,018.31). The LMR likelihood ratio 
test for the three-class model also indicated better fit, and the 
entropy value showed just slightly better classification qual-
ity (Ek = .94 vs. Ek = .93). However, examining the plots of 
estimated mean trajectories raised concern about the utility 

of the three-class model for Calculation, as the two higher 
mean class trajectories in the three-class model overlapped 
nearly entirely, indicating that there were not substantive 
differences in the Calculation trajectories between classes. 
The two-class model was thus adopted for Calculation based 
on the overall evaluation of the application of the four cri-
teria. For the Problem-Solving models, all criteria indicated 
the two-class solution was preferred. For Decoding, entropy 
and BLRT suggested a three-class solution, whereas BIC and 
the plots of the estimated mean trajectories pointed to a two-
class model as best fitting.

To confirm the selection of the two-class model, the pre-
dictors then were included in the respective achievement 

Table 3. Growth Parameter Estimates of Three Conventional Growth Models

Calculation
CGM                    Intercept 0 (SE)                  Slope s (SE)                 Deceleration q (SE)            MLR log-likelihood

Lineara  507.12*** (2.18)  6.88*** (0.56)  N/A  –3,703.44 (1.57)
Quadratica  511.09*** (2.04) 6.76*** (0.21)  –1.18*** (0.05)  –3,490.39 (1.37)

                                                 Without covariates                                                          With covariates
                                                                                      BLRT k – 1                                                                BLRT k – 1
GMM                             BIC                Entropy     versus k classes               BIC               Entropy    versus k classes

One class  7,089.39  N/A  N/A  6,352.53  N/A  N/A
Two classes  7,018.31  0.93  0.00___  6,291.26  0.85  0.00***
Three classes  6,997.87  0.94  0.00___  6,350.53  0.76  0.43

Problem-solving
CGM                    Intercept 0 (SE)                  Slope s (SE)                 Deceleration q (SE)            MLR log-likelihood

Lineara  504.33*** (1.75)  8.53*** (0.23)  N/A  –3,080.35 (1.150)
Quadratica  505.20*** (1.61)  4.93*** (0.35)  –0.75*** (0.06)  –2,994.73 (1.24)

                                                 Without covariates                                                          With covariates
                                                                                      BLRT k – 1                                                                BLRT k – 1
GMM                             BIC                Entropy     versus k classes               BIC               Entropy    versus k classes

One class  6,084.47  N/A  N/A  6,062.02  N/A  N/A
Two classes  6,041.07  0.93  0.00***  6,057.63  0.93  0.00***
Three classes  6,044.80  0.89  0.05  6,074.81  0.71  0.08

Decoding
CGM                    Intercept 0 (SE)                  Slope s (SE)                 Deceleration q (SE)            MLR log-likelihood

Linear  505.26*** (2.36)  6.46*** (0.36)  N/A  –3,781.85 (2.79)
Quadratica  509.65*** (2.20)  6.86*** (0.20)  –1.28*** (0.05)  –3,593.72 (2.30)

                                                 Without covariates                                                          With covariates
                                                                                      BLRT k – 1                                                                BLRT k – 1
GMM                             BIC                Entropy     versus k classes               BIC               Entropy    versus k classes

One class  7,287.60  N/A  N/A  6,533.48  N/A  N/A
Two classes  7,190.26  0.75  0.00***  6,486.40  0.74  0.00***
Three classes  7,199.52  0.94  0.00***  6,534.88  0.74  0.07

CGM = conventional growth modeling; SE = standard error; MLR = maximum log-likelihood ratio; GMM = growth mixture 
modeling; BLRT = bootstrap likelihood ratio test; BIC = Bayesian Information Criteria.
a Linear and quadratic function with the covariate Age7 in the model.
*  p < .05  ; **  p < .01  ;   *** p < .001
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GMMs. With the inclusion of BWT, VSPM, and ER, all fit cri-
teria indicated that the two-class solution better described 
the observed Calculation, Problem-Solving, and Decod-
ing achievement data, also depicted in Table 3. The BIC was 
smaller for the conditional two-class model (BIC = 6,291.26) 
than for the three-class model (BIC = 6,350.53). The BLRT 
also favored the two-class model, and the entropy value of 
the conditional two-class model (Ek = 0.85) was substantially 
larger than that for the conditional three-class model (Ek = 
0.76). Table 4 shows the average probabilities of being in a 
class given a two-class solution. In support of this model, val-
ues on the diagonal were close to 1 and those on the off-diag-
onal were low and close to 0 (L. Muthén & Muthén, 2007). As 
expected based on the unconditional results, the conditional 
two-class Calculation model fit better than the conditional 
one-class CGM. A final consideration in selecting the two-
class model for Calculation was that the plots for the two 
higher achieving classes were closely adjacent to each other 
in the three-class conditional model. Because these same cri-
teria indicated a better fit of the two-class model for Prob-
lem-Solving and Decoding, the two-class model also was re-
tained for these achievement outcomes. 

Figure 3 displays the expected mean trajectory for Cal-
culation, Problem-Solving, and Decoding for the two-class 
model. The mean trajectories of the two identified latent 
classes (termed average and low) are shown separately. The 
growth parameter estimates for these two classes for Cal-
culation, Problem-Solving, and Decoding are shown in Ta-
ble 5. For Calculation, the average class scored more than 
60 W score points higher (intercept α0) than the low class at 
Age 13 years and their linear change rate (slope αs) also was 
faster at this age. Acceleration (αq) for both groups was neg-
ative in sign, meaning that the rate of linear change was pro-

gressively slowing across age, with a larger magnitude of de-
celeration for the average class than for the low class. The 
estimated peak of the developmental trajectory for the av-
erage class was at age of 15.6 years compared with an esti-
mated peak at 17.4 years for the low class, although the gap 
in achievement between low and average classes persisted 
across age, as evident in Figure 2. Furthermore, there was 
significant variation in the Calculation intercepts at Age 13 
for both the average and low classes, as well as significant 
variation in slopes at Age 13 for the average class. Because 
variation in acceleration was nonsignificant for both classes, 
the quadratic parameters were fixed to 0. Participants in the 
average class performed better on Calculation than the low 
class at enrollment, and this performance difference between 
classes was evident at all ages. The average class, though, 
showed faster skill growth early in the developmental pe-
riod and greater deceleration across age, which resulted in 
obtaining the maximal level of Calculation achievement at a 
younger age relative to those in the low class. 

Figure 2. Individual curves are plotted around a single mean population trajectory and around two subpopulation trajectories for quadratic con-
ventional growth model and two-class growth mixture models, respectively, for academic achievement outcomes.

Table 4. Averaged Latent Class Probabilities by Classes

                                            Average class                  Low class

Calculation
   Average class  0.94  0.06
   Low class  0.04  0.96
Problem-solving
   Average class  0.99  0.01
   Low class  0.08  0.92
Decoding
   Average class  0.92  0.08
   Low class  0.06  0.94
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The plots and growth parameter estimates for Problem-
Solving was similar to those for Calculation, with a higher 
intercept and faster linear rate of change at Age 13 for the 
average class compared to the low class. Because growth de-
celeration also was faster for the average class, the estimated 
maximal Problem-Solving score was at Age 16.1 year for the 
average class and at 17.0 years for the low class. The pattern 
of individual differences in variances of the growth parame-
ters for the two latent classes was identical to that for Calcula-
tion. Overall, for Problem-Solving, participants in the average 
class performed better than those in the low class across age. 
Similar to Calculation, children identified in the average class 
showed faster skill growth early in the developmental period, 
although the magnitude of the difference in early growth be-
tween average and low classes was smaller than for Calcula-
tion (estimated Calculation growth was 22.11 for the average 
class and 14.37 for the low class at Age 7, for Problem-Solving 
the respective values for these classes were 14.55 and 11.02). 
With greater growth deceleration, the average class obtained 
the maximal Problem-Solving achievement at a younger age 
compared to the low class.

For Decoding, the two latent classes differed in all three 
growth parameters. The average class was estimated to score 
more than 50 W points higher than the low class at Age 13 
years. In contrast to the two mathematics scores, the linear 
rate of change for Decoding at Age 13 was higher for the low 
relative to the average class. Similar to the two mathematics 

scores, both latent classes showed deceleration in growth, with 
a faster rate of deceleration for the average class. The average 
class was estimated to reach maximal Decoding score at 15.4 
years, whereas the low class was estimated to reach its peak at 
17.8 years, again with a persistent gap in achievement scores 
noted across the observation period. The variance of the inter-
cept for the low class was relatively larger than that for the av-
erage class, whereas the variance for the slope and quadratic 
parameters did not differ from 0 and thus was fixed. Similar 
to the two mathematics outcomes, participants in the aver-
age class performed better on Decoding than those in the low 
class across age, showed faster skill growth early in the devel-
opmental period, and greater growth deceleration, again re-
sulting in a higher maximal level of Decoding achievement at 
a younger age compared to the low class. The early, age-re-
lated difference between the low and average classes in linear 
growth in Decoding were similar in magnitude to Calculation 
(at Age 7, estimated growth in Decoding was 23.55 for the av-
erage class and 17.24 for the low class).

Prediction of Class Membership
To characterize the relation between class membership 

and the predictors of interest, the categorical latent class vari-
able, c, was regressed on BWT, VSPM, and ER simultaneously, 
which revealed the effects of each predictor controlling for the 
influences of the others. For Calculation and Problem-Solving, 
BWT was the only significant predictor of class membership 

Figure 3. Probability for class membership against weight by latent classes. 
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(γBWT_calculation = 0.001, p = .014; γBWT_problem-solving = 0.001, p = 
.031). For Decoding, the effect of BWT on class membership 
was marginal (γBWT_decoding = 0.001, p = .086). As BWT is con-
tinuously distributed, these coefficients indicate that the log 
odds of being in the average relative to the low class increases 
by .001 for each unit increase in BWT. The probability plots of 
BWT by the latent classes for each achievement outcome are 
displayed in Figure 3. For Calculation, the probability of being 
classified into the average achievement group increased from 
0.46 to 0.54 as BWT increased from 439 to 750 g; from 0.54 to 
0.71 as BWT increased from 750 to 1,499 g; and from 0.71 to 
0.99 as BWT increased over 1,500 g. The probability plot indi-
cates that children born at less than 600 g had a greater proba-
bility of being assigned to the low class relative to the average 
for Calculation (i.e., where the low and average class proba-
bility plots cross, as the probability of low class assignment > 
0.50). For Problem-Solving, the probability of being classified 
into the average group increased from 0.54 to 0.62 as BWT in-
creased from 439 to 750 g; from 0.62 to 0.77 as BWT increased 
from 750 to 1,499 g; and from 0.77 to 0.99 as BWT increased 
beyond 1,500 g. In contrast to the pattern evident for Calcula-
tion, children across the BWT spectrum were more likely to be 
identified as average achieving for Problem-Solving. For De-
coding, the coefficient was not significant; therefore, the prob-
ability of identification in the average class relative to the low 
was a constant (0.63) for children irrespective of BWT. Neither 
VSPM nor ER predicted class membership beyond BWT for 
Calculation (γvspm_calculation = 0.279, p = .258; γER_calculation = 0.05, 
p = .325), Problem-Solving (γvspm_problem-solving = 0.279, p = .258; 
γES_problem-solving = 0.05, p = .325), or Decoding (γvspm_decoding = 
0.236, p = .492; γES_decoding = 0.067, p = .195).

The final step in analysis was to examine the impact of the 
neonatal medical variables on group membership after con-

trolling for BWT. Because these conditions were coded only 
for children with VLBW, the analyses were conducted with-
out inclusion of term children, although the class member-
ship derived from the full sample GMM analyses was utilized. 
Days on ventilation significantly predicted class membership 
for all three achievement outcomes (γvent_calculation = 0.015, p 
= .048, γvent_problem-solving = 0.015, p = .034, and γvent_decoding = 
0.017, p = .028). Children with VLBW who required more ven-
tilation days were more likely to be classified in the low class 
relative to the average class on Calculation, Problem-Solving, 
and Decoding, as the log odds increases by 0.015 to 0.017 for 
a unit increase in day on ventilation. The probability plots of 
the significant neonatal variables by latent classes for the three 
achievement outcomes are shown in Figure 4. The plot for 
Calculation demonstrates that children receiving ventilation 
for 34 days or more (again where the low and average class 
probabilities cross and the probability of low class assignment 
> 0.50), were more likely to be classified into the low relative 
to average class. Similarly, children who received 43 or more 
days of ventilation were more likely to be in the low relative to 
average class on Problem-Solving; and those who received 70 
or more days of ventilation were more likely to be in the low 
compared to average class on Decoding. 

Controlling for BWT, length of hospitalization predicted 
class membership for the Calculation and Decoding vari-
ables, (γhosp_calculation = 0.012, p = .040, γhosp_decoding = 0.013, p = 
.023). Specifically, the respective odds ratio of being classified 
in the low versus average class for Calculation and Decod-
ing was 1.012 and 1.013 for a unit (i.e., 1 day) increase in hos-
pitalization. For Calculation, children who were hospitalized 
for 101 days or more were more likely to be classified in the 
low class than in the average class. For Decoding, the proba-
bility of a child being classified in the low compared to aver-

Table 5. Growth Parameter Estimates

Parameter                                      Average class (SE)                         Low class (SE)

Calculation
0  520.15 (1.40)*** 456.58 (7.86)***
s   6.63 (0.23)***  6.09 (0.79)***
q   –1.29 (0.05)*** –0.69 (0.18)***
V(ζ0)  224.21 (45.53)***  224.20 (45.52)***
V(ζs)  1.54 (0.66)* 4.44 (2.36)
V(ζq)  —  — 

Problem-solving
0  511.48 (1.38) ***  454.43 (7.98) ***
s   4.95 (0.37) ***  4.42 (1.04)
q  –0.80 (0.07) ***  –0.55 (0.24) ***
V(ζ0)  183.97 (26.50) ***  183.98 (26.47) ***
V(ζs)  6.03 (2.82)*  6.02 (2.83)*
V(ζq) 0.25 (0.11)*  0.30 (0.10)*

Decoding
0  519.96 (1.60) ***  468.19 (8.18) ***
s   6.63 (0.21) ***  7.64 (0.59) ***
q   –1.41 (0.05) *** –0.80 (0.10) ***
V(ζ0)  192.16 (33.92) ***  1,444.82 (361.92) ***
V(ζs)  —  —
V(ζq)  —  —

An em dash (—) is fixed to 0, 0, s, and q are the mean estimates, and V(ζ0), V(ζs) and 
V(ζq) are the variance estimates of growth intercepts, slopes, and deceleration rates, 
respectively.
*   p < .05 ;  **  p < .01 ;  *** p <  .001.
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age class exceeded .50 when the length of hospitalization was 
136 days or more.

Again controlling for BWT, chronic lung disease was asso-
ciated with class membership for Problem-Solving (γlung_prob-

lem-solving = 1.072, p = .032). Children with VLBW with chronic 
lung disease had a probability of being assigned to the low 
compared to the average class for Problem-Solving of .58, 
whereas children with VLBW without chronic lung disease 
had a probability of being assigned to the average compared 
to low class of .80.

Discussion 

GMM, an integrated person- and variable-centered ap-
proach, was applied to longitudinal academic achievement data 
from a large cohort of children born early and at VLBW to bet-
ter understand the heterogeneity of outcome across develop-
ment. Two latent classes were identified empirically, defining 
subgroups of average- and low-achieving participants whose 
pattern of longitudinal growth was similar enough to success-
fully result in cohesive classification. These results demonstrate 
how GMM extends CGM approaches by incorporating the con-
cept of latent classes into growth variation, therefore explaining 
more variance of the individual growth trajectories. The find-
ings confirmed our hypotheses that the degree of VLBW is re-
lated to suboptimal growth in Calculation, Problem-Solving, 
and Decoding skills across childhood and into adolescence.

The GMM models revealed important information regard-
ing the nature of academic achievement skill growth in chil-

dren of varying BWT. With two latent classes, a coherent, low-
performing group was identified empirically that differed 
from average-achieving children, calculation, problem-solv-
ing, and decoding skills. The consistency of the two class so-
lution across differing achievement skills, as well as when 
term-born children are included in the models or not (results 
available from the author), suggests a coherent person-level 
group structure from school age into adolescence. A key fea-
ture of GMM is the assumption that individual differences 
also exist within each of the empirically identified groups. For 
example, some of the lightest children with VLBW performed 
as well as those born at term at certain ages, and concomi-
tantly, some term-born children scored as poorly as the VLBW 
children across ages. Less than half of the lightest VLBW chil-
dren (<750 g) were identified as members of the low class for 
Calculation (28 of 60, 47%) and for Problem-Solving (24 of 60, 
40%), and about one third (21 of 60, 35%) were classified in 
the low class for Decoding (see Table 6). These findings con-
firm the degree of heterogeneity in academic outcomes, as 
even among the lightest of children with VLBW, the majority 
does not show suboptimal patterns of academic achievement 
skill growth. The GMM approach that includes CGM and la-
tent classes can be utilized to effectively capture the variation 
within and across groups of children in developmental peri-
ods of interest. 

More important, the difference between the low- and aver-
age-achieving classes was apparent across the developmental 
period from Age 7 to 16 years for Calculation, Problem-solv-
ing, and Decoding, with the average class outscoring the low 
class by a substantial margin. However, the GMMs revealed 

Figure 4. Probability for class membership against significant neonatal medical variables by latent classes with birth weight controlled.
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a more complicated developmental picture. Given the faster 
linear rates of change early in the observation period, as well 
as in the greater growth deceleration, children in the average-
achieving class were estimated to obtain maximal achieve-
ment performance between 15 and 16 years (depending on 
outcome type), whereas low-achieving children were esti-
mated to achieve their maximal scores at later ages, beyond 
age 17, although a persistent gap in achievement for the low 
class was evident across age. Furthermore, the early, age-re-
lated growth and the differences between the low and average 
classes in linear growth both were greatest for Decoding and 
Calculation compared to Problem-Solving, which is consis-
tent with the early, rapid acquisition and application of sound-
symbol relations and mathematic operations for typically de-
veloping children.

For low-achieving children, this developmental pattern sug-
gests that early achievement skill acquisition is fundamentally 
disrupted early in life that persists and skill growth is further 
impaired across development. These findings extend the ear-
lier achievement findings of Taylor, Klein, Hack (2000) and Tay-
lor, Klein, Minich, et al. (2000) by revealing continued and even 
increasing deficits in achievement over time in children with 
more extreme VLBW compared with term-born controls. The 
results are also consistent with studies that have either found 
stable deficits across development in children with VLBW (Bre-
slau et al., 2001; Powls et al., 1995; Rickards et al., 1988) or that 
have raised the possibility of slower age-related acquisition in 
some skills (Botting et al., 1998; Cohen et al., 1996; O’Callaghan 
et al., 1996; Zelkowitz et al., 1995). The observed pattern of defi-
cits between low- and average-achieving classes identified here 
with GMM approach that includes meaningful subgroups fur-
ther refines our knowledge of individual variation in academic 
skill developmental patterns. The different trajectory patterns 
suggests that there are distinct biologically determined upper 
limits of achievement skill acquisition, and that children iden-
tified in the low class can continue to benefit from learning in-
puts and academic instruction beyond the age at which aca-
demic learning typically levels off in average-achieving children 
to achieve maximal proficiency. Of course, a different develop-
mental pattern might have been observed during the transition 
from preschool to school age, or into adulthood.

Consistent with previous research, poorer achievement 
outcomes were related to several biological risk factors (Tay-
lor et al., 2006; Taylor, Minich, Bangert, et al., 2004). What is 
newly demonstrated here using the GMM approach is the 
impact of these risks at the person level. More than half of 
the respective low-achieving classes for Calculation (28 of 
38; 74%), Problem-Solving (24 of 43; 56%), and Decoding (21 
of 36; 58%) were the lightest VLBW children (<750 g). These 
findings were reinforced by GMM analyses that identified 
the individuals within the sample who were at highest risk 
for suboptimal achievement growth. For Calculation, chil-
dren under 600 g were more likely than not to be classified 
as low achieving. For the other two academic skills, Problem-
Solving and Decoding, the probability of identification in the 
average-achieving group relative to the low-achieving group 
was greater across the entire BWT spectrum. For these mea-
sures though, the specificity of more extreme VLBW was low, 
as less than half of the lightest VLBW children were identi-
fied as members of the low classes.

Contrary to expectations, nonverbal skills as assessed by 
the VSPM Factor score were not related to latent class mem-
bership for Calculation, Problem-Solving, or Decoding when 
controlling for BWT. The failure of the VSPM score to predict 
poorer outcomes is surprising given the well-documented as-
sociations of these skills with academic achievement (Grunau, 
Whitfield, & Davis, 2002; Taylor et al., 2002). A likely expla-
nation is that the influence of nonverbal skills on academic 
achievement was mediated in large part by BWT. The GMM 
results enrich this interpretation by including person-level ef-
fects, suggesting that impact of both BWT and nonverbal skills 
overlaps substantially at the person level and therefore leaves 
little systematic variation to predict achievement growth pat-
terns. Environmental risk also failed to contribute to group 
membership beyond the influence of BWT for any of the 
achievement outcomes, contrary to extant findings (Bender-
sky & Lewis, 1995; Breslau & Chilcoat, 2000; Taylor et al., 1998; 
2006). Including the person-level suggests that the neurobio-
logical consequencea of very preterm birth at weights at the 
extreme of the continuum are the more significant contribu-
tors to suboptimal patterns of academic achievement in school 
age and into adolescence (Taylor et al., 1998, 2006).

Table 6. Counts of Term, 750 to 1,499 g, and <750 g Children by Latent Growth Classes

                                                                                Birth weight group

                                                         Term                 750 to 1,499 g              <750 g                   Total

Calculation
   Average class 57 51 32 140
   Low class 2 8 28 38
   Total 59 59 60 178
Problem-solving
   Average class 53 46 36 135
   Low class 6 13 24 43
   Total 59 59 60 178
Decoding
   Average class 54 49 39 142
   Low class 5 10 21 36
   Total 59 59 60 178
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Although BWT was the central predictor; it is only a proxy 
for the impact of prematurity and related neonatal medical 
complications on the developing brain. Among the children 
with VLBW, risk factors that marked a more complicated neo-
natal course, including more days on ventilation, a longer pe-
riod of neonatal hospitalization, and chronic lung disease 
predicted class membership for one of more of the achieve-
ment outcomes. Although consistent with previous findings 
(D’Angio et al., 2002; Short et al., 2007; Taylor, 1998, 2006), 
these results extend this literature by indicating that these as-
sociations are independent of BWT. Calculation was the most 
sensitive to disruption among the two mathematics domains, 
as the probability of classification as low- compared to aver-
age-achieving for Calculation was higher than that for Prob-
lem-Solving at the fewer days of ventilation (34 days com-
pared to 43 days with BWT controlled). Decoding skills were 
more “resilient,” in which identification into the low relative 
to average class for this outcome exceeded .5 after 70 days 
of ventilation. Chronic lung disease and days on ventilation 
also predicted class membership for Problem-Solving, poten-
tially pointing to the impacts of prolonged oxygen imbalances 
on mathematics applications. Although these neonatal medi-
cal variables are more specific indicators of neurobiologic risk 
than BWT, they do not directly or specifically quantify the im-
pact on the central nervous system. Because complications 
vary across children and likely have variable impact on the 
brain, neuroimaging methods may provide one means for fur-
ther distinguishing the level of individual risk. More refined 
methods of assessing brain status thus may thus improve 
our understanding of the sources of variability in achieve-
ment skill growth across development. Larger multisite sam-
ples also may be required in investigations of the impact on 
achievement outcome of low base rate neonatal complications.

Subgroups of average- and low-achieving children were 
identified empirically and were related to predictors of inter-
est, demonstrating the flexibility and capacity of the GMM 
approach to understand heterogeneity of outcome. This two-
group classification likely does not reflect what would be de-
termined in a representative sample of all children between 
ages 7 and 16 years, as such a sample would include on av-
erage over 90% of children born term at weights >2,500 and 
very few children at weights <750 g. Indeed, the sampling 
used here was ideal to determine empirically whether differ-
ing classes of children with distinctive developmental trajec-
tories could be identified to understand heterogeneity in ac-
ademic outcomes among children at-risk due to VLBW. If a 
different sampling strategy was used, it is likely that other co-
herent subgroups would have emerged. GMM extends con-
ventional models that are predicated on a variable-centered 
orientation, and then incorporates latent class growth analysis 
to identify the number of coherent classes of individuals using 
a person-centered approach. Other analytic approaches also 
can be accommodated by GMM. For example, using Markov 
or piecewise GMM analysis and assuming transition stages or 
critical time points, the class membership shifting of children 
of varying BWT groups across latent classes can be modeled to 
address whether some children are average-achieving early in 
life and then shift to a low achieving subgroup during a crit-
ical period. The flexibility of GMM makes it an ideal frame-
work with which to better model the complexities and hetero-
geneities of preterm and other at-risk children as they develop 
across time.
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