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Abstract 
Results from recent studies are breaking the paradigm that all viruses depend on their 
host machinery to glycosylate their proteins. Chloroviruses encode several genes in-
volved in glycan biosynthesis and some of their capsid proteins are decorated with N-
linked oligosaccharides with unique features. Here we describe the elucidation of the 
N-glycan structure of an unusual chlorovirus, NE-JV-1, that belongs to the Pbi group. 
The host for NE-JV-1 is the zoochlorella Micractinium conductrix. Spectroscopic anal-
yses established that this N-glycan consists of a core region that is conserved in all of 
the chloroviruses. The one difference is that the residue 3OMe-l-rhamnose is acety-
lated at the O-2 position in a non-stoichiometric fashion. 
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Introduction 

Chloroviruses (family Phycodnaviridae) infect unicellular, eukaryotic, 
symbiotic chlorella-like green algae, also called zoochlorellae, which es-
tablish symbiotic relationships with the protozoan Paramecium bursaria, 
the coelenterate Hydra viridis, and the heliozoan Acanthocystis turfa-
cea (Van Etten and Dunigan 2012, 2016). Zoochlorellae are resistant to 
viruses in their symbiotic state, but the algae can grow independently 
from their hosts in the laboratory and thus one can study the virus-al-
gal relationships. Viruses that infect zoochlorellae are classified into four 
groups depending on their hosts: NC64A viruses that infect Chlorella 
variabilis strain NC64A, Syn viruses that infect C. variabilis strain Syn-
gen, SAG viruses that infect Chlorella heliozoae strain 3.83; and Pbi vi-
ruses that infect Micractinium conductrix strain Pbi (Quispe et al. 2016; 
Van Etten et al. 2010). 

Chloroviruses are large, icosahedral, plaque forming, dsDNA viruses 
(Yamada et al. 2006; Van Etten and Dunigan 2012, 2016). One impor-
tant characteristic of these viruses is that they encode most, if not all, 
of the components required to glycosylate their major capsid proteins 
(Van Etten et al. 2010). This characteristic differs from other viruses in-
fecting eukaryotic organisms that use the host biosynthetic machinery 
(e.g., Doms et al. 1993; Olofsson and Hansen 1998; Vigerust and Shep-
herd 2007). Recently the N-glycan structure(s) of several chloroviruses 
have been reported and they showed a conserved core motif that does 
not resemble any other reported structure in bacteria, archaea or eu-
karya (De Castro et al. 2016). This conserved core structure consists of 
five monosaccharides (Fig. 1a), β-d-glucose is at the reducing end and it 
is attached to the protein via a N-glycosidic linkage, β-d-xylose and α-d-
fucose elongate this first residue at O-4 and O-3, respectively. This xy-
lose is referred to as the proximal xylose because it is the closest of the 
two xyloses to the protein backbone. The two residues attached to fu-
cose are: α-d-galactose at O-2 and the distal β-d-xylose at O-4, respec-
tively. The remaining fucose position O-3 is substituted with a semicon-
served element, an α-rhamnose, the configuration of which depends on 
the group to which the chlorovirus belongs; for instance, it is in the d 
form in the NC64A and Syn viruses and in the l form in the Pbi and SAG 
viruses. Also, the l-rhamnose residue is methylated at O-3 in the Pbi and 
SAG viruses. Different chloroviruses present this conserved core motif 
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and modify it further by the addition of other decorations, either mono-
saccharides or acetyls or methyl, so that the final N-glycan is unique and 
represents the signature of a specific virus (De Castro et al. 2016). 

Forty-one chlorovirus genomes, representing NC64A, SAG, and Pbi 
viruses, have been sequenced and phylogenetic relationships were de-
termined using 32 concatenated proteins encoded by all of the viruses 
(Jeanniard et al. 2013). This analysis showed that viruses infecting the 
same algal host cluster into monophyletic clades. One exception to this 
scenario was virus NE-JV-1, which appeared as a sole member of a sub-
group of Pbi viruses. NE-JV-1 shares 74% amino acid identity on aver-
age with the other Pbi viruses in the 32 core proteins used in the phylo-
genic reconstruction. For comparison, the within-clade average protein 
amino acid identity was 93, 95, and 97% for NC64A, SAG and Pbi (ex-
cluding NE-JV-1) viruses, respectively. Between clades, the protein se-
quence identity ranged from 63% (NC64A vs. Pbi viruses) to 71% (Pbi 
vs. SAG viruses). 

Fig. 1. Structures of different chlorovirus N-glycans. a) The conserved core motif is en-
closed in the grey dotted box, while the residue outside the box is the semi-conserved 
element. b) The acetylated glycoform from virus NE-JV-1; the residues are labelled with 
the letter used during NMR analysis. c) second glycoform isolated from NE-JV-1, of note 
this structure was described also for ATCV-1 N-glycan. d, e) N-glycans from Pbi chlo-
rovirus CVM-1, and MT325, respectively. Xulf is xylulofuranose. Structure of N-glycans 
from ATCV-1, MT325 and CVM-1 are adapted from De Castro et al. 2016.  
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Virus NE-JV-1, like the other Pbi viruses, also lacks the genes needed 
to synthesize l-fucose and d-rhamnose-activated precursors; these 
genes are common in the other chloroviruses and the two sugars are 
present in some of their capsid protein N-glycans. These NE-JV-1 prop-
erties prompted us to examine the N-glycan structure(s) of the NE-JV-1 
major capsid glycoprotein. 

 Materials and methods 

Glycopeptide isolation 

Isolation of the major capsid protein from NE-JV-1 was performed by 
suspending the virus (1 ml, ~1011 plaque forming units) in phosphate-
buffered saline (PBS) and heating the solution at 70 °C for 20 min. Af-
ter cooling, the solution was centrifuged (11.49g, 4 °C, 30 min) and the 
major capsid protein was precipitated from the clear supernatant by 
adding four volumes of cold acetone. The protein, which appeared as 
a single band on SDS-PAGE (Fig. 2), was recovered by centrifugation 
as above, suspended in water and lyophilized (~1 mg). Glycopeptides 
were isolated from the major capsid protein by enzymatic hydrolysis 

Fig. 2. SDS-Page analysis of NE-JV-1 
major capsid protein, revealed with 
Coomassie staining. A) BLUeye 
Prestained Protein Ladder (2 μL); 
B) Vp54 (4 μL of 1 mg/mL solution; 
molecular weight of ~53,790 Da); C) 
NE-JV-1 (8 μL of 1 mg/mL solution).  
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with proteinase K (Sigma P6556) followed by gel filtration chromatog-
raphy (Bio-Gel P10 eluted with degassed water, d = 1.5 cm, h = 118 cm, 
flow = 10 ml/h) as described De Castro et al. (2013). Fractions contain-
ing the target glycopeptides eluted between 30 and 50% of the total col-
umn volume; the yield could not be determined accurately because of 
the low amounts of protein. Selection of the best sample to measure 2D 
NMR spectra is described below. 

NMR spectroscopy 

NMR experiments were recorded in D2O on a Bruker DRX-600 spectrom-
eter equipped with a cryo-probe and calibrated in acetone (1H 2.225 
ppm, 13C 31.45 ppm), which was used as an internal standard. Routine 
proton NMR spectra were acquired at 298 K, setting 20 scans, decreas-
ing the residual solvent signal by pre-saturation and fixing the receiver 
gain at 256. This allowed us to compare the abundance of the carbohy-
drate component among the five fractions obtained from size exclusion 
chromatography and to select the most abundant sample (fraction four) 
to record the full set of 2D NMR spectra. 

2DNMR spectra were acquired at 323 K. Homonuclear experiments 
(TOCSY, T-ROESY and COSY) were recorded using 512 FIDs of 2048 com-
plex data points with 32 scans per FID; a mixing time of 100 and 300 ms 
was used for TOCSY and T-ROESY spectra acquisition, respectively. 1H-
13C heteronuclear experiments (HSQC, and HMBC) were acquired with 
512 FIDs of 2048 complex points with 50 scans for FID for the HSQC and 
90 scans for FID for HMBC. Data processing was performed with Bruker 
Topspin 3.1 program. 

Results 

Isolation of the main glycopeptide fractions 

Proteinase K treatment of the purified major capsid protein and gel fil-
tration chromatography of the glycopeptide mixture (1H NMR in Fig. 3a) 
resulted in the isolation of several fractions. Each fraction was checked 
via 1H NMR spectroscopy, and the first five fractions contained glyco-
peptides (Fig. 3b–f). These fractions also contained signals arising from 
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peptide species other than those connected to the glycan; however, no 
additional purification was attempted due to the low amounts of sam-
ple. Preliminary analysis of the proton spectra focused on the region 

Fig. 3. The (600 Mz, 298 K) proton spectra of a) the glycopeptide after enzymatic di-
gestion and prior to purification along with integration of the signals in the anomeric 
region. b–f) The glycopeptides fractions obtained by size exclusion chromatography.  
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between 5.7 and 4.9 ppm, because this region is diagnostic of mono-
saccharide residues α configured at the anomeric center and devoid of 
signals arising from peptide fragments. Indeed, this region contained 
several signals with varying intensities depending on the fraction: for 
instance, the two signals at ca. 5.45 and 5.15 ppm were barely detect-
able in the last fraction (Fig. 3f). Given the similarity between the differ-
ent fractions, our analysis was focused on the fourth fraction (Fig. 3e), 
which had the best spectroscopic signal-to-noise ratio. 

NMR determination of the glycopeptide structure(s) 

The HSQC spectrum (Fig. 4) contained seven anomeric signals, la-
belled with a letter in order of their decreasing proton chemical shift, a 
crowded carbinolic region from 4.4 to 3.1 ppm with two O-Me signals (at 
ca. 3.40 ppm) and several methyl signals at approximately 1.3 ppm, typ-
ical of 6-deoxyresidues. Analysis started from E which was N-linked to 

Fig. 4. Superimposition of NE-JV-1 glycopeptide HSQC (black and dark grey) and HMBC 
(pale grey) spectra at 600 MHz, 323 K. Carbon bearing two hydrogen atoms are col-
ored in dark grey because they have densities of opposite sign with respect to the oth-
ers. Signals crossed are related to the peptide moiety of the glycopeptide.  
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the protein because of its diagnostic carbon chemical shift (80.7 ppm), 
while the efficient propagation of magnetization in the TOCSY spec-
trum (Fig. 5) was consistent with the gluco stereochemistry of the resi-
due. This information combined with those from the other experiments 
(COSY, TOCSY and HSQC) identified E as a β-glucose substituted at O-3 
and O-4, due to the displacement at low field of the respective carbons 
signals (Table 1), similar to what was reported for the analogous resi-
due in the PBCV-1 glycopeptide (De Castro et al. 2013). 

Regarding A, inspection of the COSY spectrum (Fig. 5) revealed that 
the signal at 4.67 ppm included signals from two different anomeric pro-
tons, each with a distinct correlation to a H-2 signal. Accordingly, the 
two anomeric signals at 4.67 ppm were labelled A and A′ and for each 
of them it was possible to trace the proton connectivities up to H-4, be-
yond which both COSY and TOCSY spectra failed in detecting H-5 as oc-
curs for galacto configured residues. In contrast, the T-ROESY experi-
ment (Fig. 6) allowed to determine H-5 because connected to H-4 and 

Fig. 5. Superimposition of NE-JV-1 glycopeptide TOCSY (pale grey) and COSY (black 
and dark grey) spectra at 600 MHz, 323 K.  
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H-3 via a strong and a medium NOE effect, respectively; in both cases, 
H-5 was connected to a methyl group. Thus, A (or A′) was a fucose, α 
configured at the anomeric center, as inferred from the proton and car-
bon chemical shift of the anomeric signal (Table 1). Analysis of the car-
bon chemical shift values indicated that both C-3 and C-4 signals were 
shifted at low field due to glycosylation; however, even though C-2 had a 
low carbon chemical shift value (69.6 ppm), the corresponding hydroxyl 
was glycosylated as deduced by T-ROESY analysis, which detected a cor-
relation between H-2 of A, as well as H-2 of A′, to H-1 of B (Fig. 6). 

Indeed, A (or A′), was a fully substituted α-fucose and its 13C chem-
ical shift values diverged from those of the same residue in PBCV-1 N-
glycans (De Castro et al. 2013), a virus in the NC64A group, while they 
were similar to the values reported for Pbi viruses (CVM-1 and MT325) 
and SAG viruses (ATCV-1 and TN603) (De Castro et al. 2016). These val-
ues support the placement of NE-JV-1 virus in the Pbi group. These three 
virus groups share the same conserved core oligosaccharide, but differ 
in the semi-conserved element, which is a l-rhamnose in both SAG and 

Table 1. 1H and 13C chemical shifts (600 MHz) were recorded in D2O at 310 K, using acetone 
as internal standard. C is acetylated at O-2 (chemical shift 1H/13C: 2.19/21.6 ppm) and meth-
ylated at O-3 (1H/13C: 3.44/58.4 ppm). D is substituted at position at O-3 with a methyl group 
(1H/13C: 3.45/57.3 ppm)

  1  2  3  4  5 (5eq; 5ax)  6; 6′

A  1H  5.67  4.25  4.35  4.18  4.76  1.33
2,3,4-α-l-Fuc  13C  98.3  69.6  73.1  76.0  67.7  16.3
A′  1H  5.67  4.22  4.36  4.22  4.76  1.33
2,3,4-α-l-Fuc  13C  98.3  69.6  73.1  76.3  67.7  16.3
B  1H  5.26  3.87  3.86  4.04  3.99  3.76; 3.71
α-d-Gal  13C  99.5  69.5  70.8  70.5  72.8  62.5
C  1H  5.15  5.46  3.55  3.49  4.22  1.35
α-l-2OAc,3OMe-Rha  13C  94.4  69.3  80.2  72.5  70.1  18.9
D  1H  5.11  4.19  3.38  3.51  4.11  1.31
α-l-3OMe-Rha  13C  96.7  67.1  81.3  72.4  70.0  18.9
E  1H  4.99  3.63  3.95  3.72  3.64  3.93; 3.82
3,4-β-d-Glc  13C  80.7  74.9  77.0  74.8  78.1  60.8
F  1H  4.44  3.41  3.44  3.67  3.94; 3.29  –
β-d-Xyl  13C  105.6  74.7  76.9  70.5  66.2  –
G  1H  4.42  3.14  3.45  3.46  4.08; 3.27  –
β-d-Xyl  13C  103.8  75.0  76.8  70.9  66.4  –
H  1H  4.42  3.41  3.44  3.661  3.86; 3.19  –
β-d-Xyl  13C  105.6  74.7  76.9  70.5  66.2  –
I  1H  4.42  3.14  3.45  3.49  4.14; 3.26  –
β-d-Xyl  13C  103.8  75.0  76.8  70.9  66.4  –
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Pbi viruses, while a d-rhamnose occurs in the NC64A and Syn viruses. 
Indeed, the carbon chemical shift pattern of A (or A′) suggested that the 
nature of the residue at O-3 was a rhamnose with l, and not d, absolute 
configuration. Last, A (or A′) was linked at O-3 of E as deduced by the 
pertinent correlation in the T-ROESY spectrum (Fig. 6). 

The spectroscopic pattern of B residue was comparable to that of A, 
with the difference that H-5 was connected to a hydroxymethylene group 
instead of a methyl group. Indeed, this unit was a galactose, α configured 
at the anomeric carbon, not further substituted according to the carbon 
chemical shift values found, and connected at O-2 of A as inferred from 
the T-ROESY spectrum (Fig. 6). 

Regarding the anomeric protons of C and D, the TOCSY spectrum 
(Fig. 5) only displayed the correlation with H-2, which instead had cor-
relations with all the other ring protons, including a methyl group, in-
deed C and D were two rhamnose units. This information combined 
with those of the HSQC and HMBC spectra, identified these residues 
as terminal rhamnose units, α configured at the anomeric center. In 

Fig. 6. Expansion of NE-JV-1 glycopeptide T-ROESY spectrum measured at 600 MHz, 
323 K.      



S p e c i a l e  e t  a l .  i n  A n t o n i e  va n  L e e u w e n h o e k  1 1 0  ( 2 0 1 7 )      11

addition, both were methylated at O-3 due to the low field C-3 value 
(13C of C: 80.2 ppm; 13C of D: 81.3 ppm), as confirmed by the long-range 
correlations H-3/C-3OMe and H-3OMe/C-3 in the HMBC spectrum (Fig. 
4). Different from D, the O-2 position in C was acetylated as suggested 
by the low-field chemical shift of H-2 (5.61 ppm) along with the pres-
ence of an acetyl group in the spectrum (1H/13C 2.19/21.5 ppm). The 
T-ROESY spectrum showed that C was connected at O-3 of A, while D 
was linked at O-3 of A′ (Fig. 6). 

The HSQC spectrum displayed two anomeric carbon signals at ca. 105 
and 103 ppm (Fig. 4), diagnostic of residues β configured at the anomeric 
center, but the corresponding region in the proton spectrum (ca. 4.42 
ppm) had a complex pattern of anomeric signals. Based on our previous 
experience (De Castro et al. 2016), these signals arise from the βxylose 
units either proximal or distal to the peptide backbone and their full at-
tribution is possible starting spectra interpretation from the signal of 
H-5 in axial position (H-5ax) instead of the anomeric proton. Accordingly, 
COSY spectrum combined with information from HSQC, identified four 
different H-5ax protons, labelled F–H, each correlated with the gemi-
nal H-5eq proton and to H-4; of note, signals from these protons did not 
overlap, which enabled the tracing of all correlations up to H-1 (Fig. 5). 
Thus, two xylose units were identified, one having H-2 density at high 
field (ca. 4.14 ppm) containing signals from the residues G and I, and 
one with H-2 at a lower field (4.41 ppm) with signals from the residues 
F and H. The anomeric signal of F (4.44 ppm) did not overlap with the 
others and its carbon chemical shift was at 105.6 ppm; the same value 
was given to H due to the analogies between the proton chemical shifts 
of the two residues. Accordingly, anomeric carbon chemical shift of G 
and I was at 103.8 ppm. Analysis of the T-ROESY spectrum (Fig. 6) es-
tablished that F was linked to O-4 of A′,H at O-4 of A, while G, or I, was 
linked at O-4 of E (Fig. 6). Thus, F, or H, occupied the distal position at 
the conserved core oligosaccharide, while G, or I, was proximal at the 
peptide backbone. 

Discussion 

Phylogenetic analysis of the Pbi chloroviruses identified the Pbi virus 
NE-JV-1 as a phylogenetic outlier (Jeanniard et al. 2013), leading us to 
suspect that it might have a unique major capsid protein glycan. Detailed 
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spectroscopic analyses allowed us to determine the structure of the N-
linked glycoforms (Fig. 1b, c) produced by virus NE-JV-1. The structure 
is similar to the oligosaccharide core of the other chloroviruses with a 
β-glucose (E) N-linked to an asparagine, having a terminal α-xylose (G 
or I) at O-4 and a hyperbranched α-fucose (A) at position 3, in turn hav-
ing a terminal α-galactose (B) at O-2 and a β-xylose (F or H) residue at 
O-4. In addition, the hyperbranched fucose has a l-rhamnose unit sub-
stituted at position 3 with a methyl group, a semi-conserved element 
of the common core oligosaccharide, similar to what was reported for 
two other Pbi viruses (De Castro et al. 2016). The 3OMe-l-rhamnose can 
either be acetylated at O-2 (residue C, Fig. 1c) or not acetylated (resi-
due D, Fig. 1b), and depending on the acetylation status, proton chemi-
cal shifts of some other residues are affected as well, e.g., A and A′ or F 
and I, resulting in a complex NMR pattern. Finally, the two NE-JV-1 gly-
coforms are present in almost the same ratio, as indicated by integra-
tion of the glycopeptide mixture prior to purification by size exclusion 
chromatography (Fig. 3a). 

Comparison of the NE-JV-1 glycans to those of Pbi chloroviruses 
CVM-1 and MT325 (Fig. 1d, e) revealed some similarities and some dif-
ferences. NE-JV-1 did not have any additional monosaccharide added to 
the core motif as occurs in MT325, which has added either xylulofura-
nose units or methyl groups (Fig. 1e). Instead, NE-JV-1 presumably en-
codes an acetyltransferase enzyme that adds an acetyl group at O-2 to 
the 3OMe-l-rhamnose unit, which also occurs in CVM-1; however, un-
like NE-JV-1 the CVM-1 acetylation is rare. This second NE-JV-1 glyco-
form is also a minor component of SAG chlorovirus ATCV- 1 N-glycans 
(reported in Fig. 1c, De Castro et al. 2016). 

To date, there are two main hypotheses about the role of chlorovi-
ruses N-glycans: (i) N-glycans play a key role in the capsid stability, (ii) 
N-glycans are involved in the host/guest interaction process. Based on 
the structural data collected so far, the second hypothesis does not seem 
plausible anymore, indeed viruses belonging to different groups, such 
as NE-JV-1 and ATCV-1, share the same glycan epitope but have a differ-
ent host specificity. 

Of interest, instead are the results from our ongoing studies on the an-
tigenic variants of the prototype virus, PBCV-1. These antigenic variants 
present truncated N-glycan structures and are mechanically more frag-
ile compared to the wild type virus, suggesting therefore that N-glycans 
play a structural role probably contributing to the stability of the capsid.  



S p e c i a l e  e t  a l .  i n  A n t o n i e  va n  L e e u w e n h o e k  1 1 0  ( 2 0 1 7 )      13

In this framework, structural elucidation of chloroviruses complex N-
glycans will pave the way to new studies, namely which interactions they 
establish with the underneath protein. All this is now feasible through 
new emerging approaches (Marchetti et al. 2016), that will increase 
our understanding about how N-glycans contribute to the stability of 
the capsid, which in turn is essential to understanding biology of these 
viruses.  
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