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A Monte Carlo Power Analysis of Traditional Repeated Measures and Hierarchical 
Multivariate Linear Models in Longitudinal Data Analysis 

 
               Hua Fang             Gordon P. Brooks                            Maria L. Rizzo     
University of Nebraska-Lincoln                Ohio University                      Bowling Green State University                         
     
            Kimberly A. Espy                           Robert S. Barcikowski   

     University of Nebraska-Lincoln                   Ohio University   
 

 
The power properties of traditional repeated measures and hierarchical linear models have not been 
clearly determined in the balanced design for longitudinal studies in the current literature. A Monte Carlo 
power analysis of traditional repeated measures and hierarchical multivariate linear models are presented 
under three variance-covariance structures. Results suggest that traditional repeated measures have higher 
power than hierarchical linear models for main effects, but lower power for interaction effects. Significant 
power differences are also exhibited when power is compared across different covariance structures. 
Results also supplement more comprehensive empirical indexes for estimating model precision via 
bootstrap estimates and the approximate power for both main effects and interaction tests under standard 
model assumptions. 
 
Key Words: Monte Carlo, power analysis, traditional repeated measures, hierarchical multivariate linear 
models, longitudinal study. 

 
 

Introduction 
 
 In longitudinal studies, both traditional repeated 
measures (TRM) and hierarchical multivariate 
linear models (HMLM) can be applied for a 
balanced design when the focus is testing fixed 
main effects. The balanced design assumes an 
equal number and spacing of measurements over 
time for each subject. TRM can be used for this  
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design with univariate or multivariate 
approaches. When sphericity is met, the 
univariate tests are appropriate; when sphericity 
is not met, we can employ adjusted univariate 
tests or traditional multivariate tests, which do 
not assume the variance-covariance (VC) 
structure (cf., Greenhouse & Geisser, 1959; 
Huynh & Feldt, 1976; Jennrich & Schluchter, 
1986; Wolfinger & Chang, 1995). For the same 
longitudinal design, HMLM treat the repeated 
observations nested within the subjects, that is, 
repeated measures at level-1 and subjects at 
level-2. A third or higher level of HMLM can be 
introduced to represent the contextual effects on 
the subjects’ growth (Raudenbush & Bryk, 
2002).   

HMLM and TRM are essentially 
interrelated in their theoretical development, 
especially after advanced computational 
methods were developed to handle missing 
values and model the VC structures (Dempster, 
Laird & Rubin, 1977; Dempster, Rubin & 
Tsutakawa, 1981; Goldstein 1995; Jennrich & 
Schluchter, 1986; Littell, Milliken, Stroup & 
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Wolfinger, 2006; Little, 1995; Little & Rubin, 
2002; Maas & Snijders, 2003; McCulloch & 
Searle, 2001; Raudenbush &  Bryk, 2002; Van 
der Leenden, Vrijburg & de Leeuw, 1996). 
Jennrich and Schluchter were the first to model 
specific VC structures directly through 
maximum likelihood estimation based on 
traditional multivariate repeated measures 
approach whereas HMLM incorporates Jennrich 
and Schlutchter’s multivariate repeated 
measures approach to longitudinal data analysis 
(Schluchter, 1988; Van der Leenden, 1998; 
Jennrich & Schlutchter, 1986; Raudenbush & 
Bryk, 2002). In literature, HMLM is simply 
called hierarchical linear models, more generally 
known as multilevel models, growth mixture 
models or generalized latent variable models 
(e.g., Goldstein, 1994, 1995; Hox, 2002; Maas 
& Snijders, 2003; Muthén, 2002, 2004; Muthén 
& Muthén, 2006; Raudenbush & Bryk, 2002; 
Singer & Willett, 2003; Skrondal & Rabe-
Hesketh, 2004).  

The power analysis in longitudinal 
studies has been an active area but a uniform and 
standard criterion has not been established, 
especially based on the VC structures (cf., 
Hedeker, Gibbons & Waternaux, 1999; Littell et 
al., 2006; Raudenbush et al., 2005; Snijders, 
2005). As the current analytical power 
approximations are not comprehensive or 
necessarily accurate (Littell et al., 2006) and the 
power properties of TRM and HMLM have not 
yet been clearly compared in the balanced 
design, using Monte Carlo (MC) simulation 
approach would be efficient to examine their 
power properties simultaneously.  

For parsimonious and exploratory 
purposes, TRM and three common VC 
structures were examined with the longitudinal 
data generated from a 2-level HMLM in this 
study. The three VC structures were: (a) 
Random slope with homogeneous level-1 
variance (RC); (b) unstructured (UN); (c) and 
first-order autoregressive (AR(1)). Additionally, 
the bootstrap estimates for the treatment effect 
were compared for TRM and the three VC 
structures. 
 
Two-level HMLM model  

The hypotheses tested in this simulation 
assumed no fixed effects on the individuals’ 

scores over time. The fixed effects were the two-
group treatment effect (β01), time effect (β10) and 
interaction (β11). The underlying mathematical 
model for this simulation is as follows:  
 
Level 1:  yti = π0i + π1i *TIME + eti                   (1) 
 
Level 2: π0i = β00 + β01 * TREATMENT + u0i 

              π1i  = β10 + β11 * TREATMENT + u1i (2) 
 
where yti  represents the score of person i at time 
t; π0i is  the score of person i at time 0; π1i refers 
to the slope of person i (i.e., rate of change with 
respect to time); β00 is the average overall initial 
score at time 0; β01 stands for the hypothesized 
difference in average status from the effect of 
treatment; β10 is the average overall annual rate 
of change at level-2; β11 represents the 
hypothesized difference in average annual rate 
of change from the effect of treatment; u0i is the 
random effect for intercepts (i.e., random error 
of intercepts at level-2); u1i is the random effect 
for slopes (i.e., random error of slopes at level-
2); eti  refers to the random error at the tth time 
point of the ith person at level-1. 
 The above 2-level model can be reduced 
to a single level model by substituting Equation 
(2) into (1): 
 
         yti = (β00  + β01 × TREATMENT + β10  

   × TIME + β11 × TREATMENT × TIME) + rti            
(3) 

 
where the residual term, rti = u0i + u1i * TIME + 
eti, includes the leve-1 random error (eti) and 
level-2 random effects (u0i and u1i); β00, β01, β10, 
β11, u0i, u1i, and eti are the same as those in 
Equation (1) and Equation (2). Hence, the 
HMLM model is also expressed as the mixed 
effect model with a mix of fixed effects in the 
parenthesis and random effects embodied in the 
residual term rti.  
 
TRM and three covariance structures under 
study  

The TRM approach to equation (3) can 
be simply expressed in a matrix form:  
 
                           Y X rβ= +                          (4) 
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where Y is a 1it ×  response vector for subject i, 

and t represents the number of time points and i 
= 1, …, n; X is a it a×  design matrix for fixed 

effect β, where a is the number of fixed effects 
(i.e., the 3 parameters, β01, β10, and β11 in this 
study), and β is an 1a×  vector; residual r is 
independently and normally distributed with a 
mean vector of 0 and variance of Σ , r 

~ (0, )N Σ . The parameter estimates in the 
traditional approach are obtained using the 
method of moments (McCulloch & Searle, 
2001; Montgomery, 2005; Wolfinger & Chang, 
1995). 
 
Random slope with homogeneous level-1 
variance (RC) 

Random slope with homogeneous level-
1 variance is often described as the covariance 
structure for standard MLM, also known as 
standard hierarchical linear model (HLM) or 
random coefficient model (RC) (Raudenbush & 
Bryk, 2002, p. 191; Raudenbush, Bryk & 
Congdon, 2004; Singer & Willett, 2003, p.244-
245, 251-265; Kreft, 1996). For convenience, 
RC is used for this covariance structure 
hereafter. The RC covariance structure of Model 
(3) residual rti, Σr, is expressed as two 
components: 
 

eti ~ N (0, σ2), and 

0 00 01

10 111

0

0
,~i

i

N
u

u

τ τ

τ τ

                  
. 

The variance of level-1 error term (eti) is 
homogeneous and the covariance structure of 
level-2 random errors (u0i and u1i) is arbitrary. 
For Model (3), only 4 variance-covariance 
parameters need to be estimated, that is, σ2, τ00, 
τ11 and τ01. Level-1 variance, σ2, is independent 
of level-2 variance, τ. 
 
Unstructured Covariance Matrix (UN) 

The unstructured covariance matrix 
(also called unrestricted structure in literature) 
places no restrictions on the structure of 
covariance matrix, Σr, and there is redundancy in 
mathematical formulation of this covariance 
structure (Littell, Henry, & Ammerman, 1998, 
pp. 1229-1230; Raudenbush et al., 2004). If the 

covariance structure of Σr is assumed unknown, 
one could fit an UN covariance matrix. The UN 
matrix for each level-2 subject with 3 time 
points can be expressed as 
 
 

                         

2 2 2

11 12 13

2 2 2

21 22

2 2 2

31 32 33

23

σ σ σ

σ σ σ

σ σ σ

 
 
 
 
 
 
 

                 (5) 

 
and requires the estimation of 3 variance 
parameters and 3 covariance parameters. When 
more time points are involved, UN can require 
an exorbitant number of parameters. 
 
First Order Auto-Regressive (AR(1)) 

For Model (3), AR(1) can be written as 
follows: 
 

Var(rti) = τ + σ2 

                     2
( , )

t t
ti t iCov r r τ σ ρ

′−
′ = +             (6) 

 
where τ stands for the level-2 variance and |t – t′| 
is the lag between two time points; ρ is the auto-
correlation and σ2 is the level-1 variance at each 
time point. AR(1) allows the level-1 errors to be 
correlated under Markov assumptions and level-
1 covariance structure is expressed as 
 

2

2

2

1

1

1

ρ ρ

σ ρ ρ

ρ ρ

 
 
 
  
 

                  (7) 

 
As the redundancy is not in the mathematical 
formulation of AR(1), the covariance structure 
of level-2 random effects (u0i and u1i) must be 
specified to estimate the level-2 variance τ (τ00, 
τ11 and τ0) which is usually assumed 
unstructured (cf. Littell, Henry, & Ammerman, 
1998, pp. 1229-1230; McCulloch & Searle, 
2001; Raudenbush & Bryk, 2002; Singer & 
Willett, 2003; Wolfinger, 1993). Thus, 5 
variance-covariance parameters need to be 
estimated for AR(1) of Model (3).  
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Methodology 
Monte Carlo Design    

This research employed a Monte Carlo 
(MC) study to compare the empirical power of 
RC, UN and AR(1). To make the results 
applicable over many possible situations, a 
standardized model, Model (4), was employed in 
this simulation where the grand mean in Model 
(3) was set to zero (i.e., β00 = 0)  
 
    yti = (β01 × TREATMENT +β10 × TIME  +β11    
               × TREATMENT × TIME) + rti         (8)      
 

A stacked SAS macro was written by 
the author (the author, 2006) to generate the 
two-level repeated measures data with the RC 
covariance structure and to calculate the power 
for RC, UN and AR(1). The number of iterations 
for this MC study was 5000, and the nominal 
alpha (α) for each sample test was .10 
considering the relatively small number of 
iterations (e.g., compared to 10,000 iterations).  
 
Data generation 

The data generation procedure based on 
Model (3) was carried out as follows: 
 
Level-1 data 

The error term at level-1 (i.e., eti) was 
assumed to be independent of the level-2 
random effects (i.e., u0i and u1i), that is, cov(ui, 
eti) = 0. The level-1 error term followed a normal 
distribution, eti ~ N(0, σ2).  
 
Level-2 data 

The random intercepts u0i (Xintercepts), and 
slopes u1i (Xslopes), assumed a standard bivariate 
normal distribution. A standardized G matrix for 

Xintercepts and Xslopes, G = 
2 2

00 01

2 2

10 11

σ σ

σ σ

 
 
 
 

, and random 

mean vector, 
0

1

μ

μ

 
 
 

 , were specified to simulate 

correlated bivariate normal data for Xintercepts and 
Xslopes. The Cholesky decomposition method was 
utilized to generate the correlated level-2 normal 
data. This simulation was accomplished by 
multiplying the normal data by L which is the 

Cholesky decomposition of G. The estimated 
variables were X


intercepts and X


slopes. 

 
Complete data   

Data were generated in the appropriate 
format required by PROC MIXED (SAS 
Institute Inc., 2003). An index matrix was 
created for time, treatment and individual IDs. 
Two treatment groups were coded by 0 and 1, 
respectively. Individuals (IDs) were considered 
nested within each treatment group, for instance, 
IDs ranged from 1 to 25 for Group 1, and 26 to 
50 for Group 2. Time started from 0 and 
extended to the maximum specified for each 
study condition. Based on Model (4), a 
univariate response vector of yti was created. For 
example, each subject might have had 3 time 
points and each treatment group had 25 subjects.  

The data generator (author, 2006) was 
validated with parameter estimates from Potthoff 
and Roy’s data (1964). The results are shown in 
Appendix A.  
 
Power comparison 

Holding other factors constant, the 
power comparison was implemented by 
changing the levels of one of the four factors, 
respectively: (1) Correlation in G matrix (G), (2) 
reliability of level-1 coefficients (λ), (3) effect 
size (β) and (4) ratio of group sample size to 
time points (n/t) under specified conditions (see 
Table 1).  
      
Power comparison by G matrix 

This study used Cohen’s indices (1988) 
for correlation, { }.1 .3 .5ρ ∈ ; correspondingly, 

G matrix (G) for random intercepts (u0i) and 

slopes (u1i) was specified as 
1 .1

.1 1

 
 
 

, 
1 .3

.3 1

 
 
 

, 

or 
1 .5

.5 1

 
 
 

. To show the power pattern by 

varying correlation in G matrix, the MC design 
incorporated a moderate sample size (n = 75) 
and fixed time points (t = 3) (i.e., ratio of group 
sample size to time points, n/t = 75/3), effect 
size (β01 = .5, β10 = .5 or β11 = .5), and moderate 
reliability λ = .5, to simulate a specific situation 
and compare power at each G matrix. Based on 
the design, a general power pattern of TRM, RC, 
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UN and AR(1) were presented at each of the 
three G matrices in the respective three tests, 
treatment effect (β01) test, time effect (β10) test 
and interaction (β11) test (i.e., 4 × 3 × 3 = 36 
cells). 
 
Power comparison by reliability 

By changing the averaged reliability of 
level-1 coefficients, λ ∈{.01, .25, .5, .75, .1}, 
(Raudenbush & Bryk, 2002), the power pattern 
of RC, UN and AR(1) was compared by setting  

G =
1 .3

.3 1

 
 
 

, n/t = 75/3, and β = .5. The power 

pattern of TRM, RC, UN and AR(1) was 
presented at each of the five reliability indexes 
in the respective three tests, treatment effect 
(β01), time effect (β10) and interaction (β11) (i.e., 
4 × 5 × 3 = 60 cells). 
       
Power comparison by effect size 

Cohen’s indexes were also used for two-
group treatment effect (β01), time effect (β10) and 
interaction (β11), { }.2 .5 .8β ∈ . The MC design 

simulated a moderate situation where n = 75, Cx 

= 
1 .3

.3 1

 
 
 

, λ = .5 and t = 3 to compare power at 

three effect sizes, { }.2 .5 .8β ∈ , of the three 

fixed effects for the four models, TRM, RC, 
AR(1) and UN (i.e., 4 × 3 × 3 = 36 cells).  
        
Power comparison by sample size ratio 

For exploratory purpose, this study fixed 
the time points (t) at 3. As the maximum 
likelihood estimation requires relatively large 
sample sizes, the sample size per treatment 
group (m=2) was changed from 25 to 200 by an 
increase of 25 (n ∈{25  75  100  125  150  175  
200}), that is, the total sample size N∈{150  
300  450  600  750  900  1050  1200} (N = m × 
n × t). To compare the power by varying the 
sample size ratio, the condition was specified as 

β = .5, G = 
1 .3

.3 1

 
 
 

, λ = 3 and t = 3. For each 

specified condition, the power patterns for TRM 
and the three VC structures were presented at 
eight sample sizes, for the three fixed effects 
(i.e., 4 × 8 × 3 = 96 cells). 
 

Monte Carlo Analysis 
The following function was employed to 

calculate the upper bound of standard errors for 
pairwise empirical power (i.e., the standard error 
for the difference in proportions). 
                                                          

                
(1 )

2upper
p p

SE
n

× −
= ×               (9) 

 
where p = .5 and n = 5000. If the pairwise 
differences are twice the upper bound of SE (i.e., 
SEupper = .20), then the differences are labeled as 
significant. The power patterns are illustrated in 
tables and graphs. In addition to the power 
analysis, bootstrap standard CI, estimates, bias 
and standard errors for the estimates of the 
treatment mean difference (β01) were calculated 
to compare the model precision.  
 

Results 
Empirical Power by G Matrix 

The results (see Figure 1) indicated two 
general patterns when varying the G matrix 
under the specific circumstance in all three tests, 
treatment effect (β01), time effect (β10) and 
interaction (β11). The first pattern showed that as 
the correlation in G matrix increases, the power 
of TRM, RC, UN and AR(1) decreased slightly, 
which may imply that the lower the correlation 
between intercepts and slopes, the higher the 
power we can obtain. But it should be noted that 
the power change across G matrices seems to be 
minimal. 

The pairwise power tests (see Table 2) 
showed that TRM power was significantly 
higher than the other three in the treatment and 
time tests, but significantly lower than the other 
three in the interaction test by varying G 
matrices. Among the three VC structures, UN 
had significantly higher power than RC and 
AR(1) in both treatment and interaction tests, 
whereas AR(1) has significantly higher power 
than RC in the same two tests. As to the time 
test, UN power was significantly higher than RC 
across the three G matrices but was not 
significantly higher than AR(1) at all three G 
matrices. 
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Empirical Power by Reliability 
Two power patterns were displayed by 

varying reliability indexes in the specified 
condition. First, with the increase of reliability, 
the power of TRM, RC, AR(1) and UN 
increased in all three tests. TRM had a higher 
power-increasing rate than the other three below 
the reliability of .5. Above the reliability of .5, 
all four seemed to increase power at a 
decreasing rate. The power of all four 
approached to the asymptote of 1 as the 
reliability reached 1 (see Figure 2)..80. In the 
time test, all four had power above .80. Yet, in 
the interaction test, TRM power was significant 
in all three tests, that is, TRM had significantly 

higher power than the other three, reliability 
reached 1 (see Figure 2).  

The second pattern showed that TRM 
gained the highest power in the treatment and 
time tests but had the lowest power than the 
other three in the interaction test across the 
reliability indexes (see Table 3). Among RC, 
AR(1) and UN, UN power ranked the highest, 
AR(1) the second and RC the lowest across all 
reliability indexes in all three tests. At the 
reliability of .75, TRM power was above .80 in 
the treatment test whereas the power of all three 
VC structures seemed to be above .60 but below 
.80. In the time test, all four had power above 
.80. Yet, in the interaction test, TRM power was  

 

Table 1. MC Design for Power Analysis of TRM, RC, AR(1) and UN by G Matrix, Effect Size and 
Sample Size of 5000 MC Samples at α = .10 
 

Factors (Cells) a Conditions b 

G Matrix (G) (36) 

{
1 .1

.1 1

 
 
 

1 .3

.3 1

 
 
 

 
1 .5

.5 1

 
 
 

} 

Fixed c: n = 75, t = 3 and λ= 3  
1. β01 = .5, β10 = 0, β11 = 0 d 
2. β01 = 0, β10 = .5, β11 = 0 d 
3. β01 = 0, β10 = 0, β11 = .5 d 

Reliability (λ) (60) 
{.01  .25  .5  .75  1} 

Fixed c: t = 3, λ = 3 and G = 
1 .3

.3 1

 
 
 

 

1. β01 = .5, β10 = 0, β11 = 0 d 
2. β01 = 0, β10 = .5, β11 = 0 d 
3. β01 = 0, β10 = 0, β11 = .5 d 

Effect Size (β) (36) 
{ }.2 .5 .8  

Fixed c: n = 75, t = 3, λ = 3 and G = 
1 .3

.3 1

 
 
 

  

1. β10 = 0, β11 = 0 d 
2. β01 = 0, β11 = 0 d 
3. β01 = 0, β10 = 0 d 

Sample Size per Treatment Group  
(n) (96) 
{25 50 75 100 125 150 175 200} 

Fixed c: t = 3, λ = 3 and G = 
1 .3

.3 1

 
 
 

 

1. β01 = .5, β10 = 0, β11 = 0 d 
2. β01 = 0, β10 = .5, β11 = 0 d 
3. β01 = 0, β10 = 0, β11 = .5 d  

  Note. a The factors are not crossed 
            b Conditions are specified for testing each fixed effect (β01, β10, and β11) within each factor 
            C “Fixed” indicates the fixed parameters in the design within each factor 
            d Settings for testing the three fixed effects 
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below .60 while the power of the other three was 
at or above .60. 

Table 4 indicated that when the 
reliability was between .5 and 1, the pairwise 
power differences among the four were 
significant in all three tests, that is, TRM had 
significantly higher power than the other three, 
respectively, in the treatment and time tests, but 
significantly lower power than the three in the 
interaction test. Generally, among the three VC 
structures, UN power was statistically higher 
than AR(1) and RC while AR(1) power was 
significantly higher than RC under the specified 
condition. Below the reliability of .5, the 
pairwise power differences among the four were 
not all significant across the three tests. 
 

 

 
 
Empirical Power by Effect Size 

As effect sizes increased, the power of 
the four models was enhanced in the treatment, 
time and interaction tests. Also, it seemed that 
the power of the four has a higher increasing rate 
from the small to the medium effect size than 
from the medium to the large effect size (Fig. 3).  

Table 4 showed the significant pairwise 
power differences among TRM, RC, AR(1) and 
UN at the medium effect size in all three tests: 
TRM power was significantly higher than the 
other three VC structures in treatment and time 
tests, but had significantly lower power than the 
other three in the interaction test. Still at the 
medium effect size, UN was significantly higher 
than RC and AR(1) while AR(1) was  
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Figure 1. Power pattern of HLM, AR(1), UN and TRM by G matrix in treatment, time and interaction tests when 

n = 75, t = 3 and λ = .5 of 5000 MC samples at α = .10. 
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Table 3. Power and Pairwise Power Difference of TRM, RC, AR(1) and UN by Reliability when n = 75, t = 3 

and G = 
1 .3

.3 1

 
 
 

of 5000 MC Samples at α = .10 

 
 Power Power Difference 

λ RC AR(1) UN TRM UN vs. RC
UN vs. 
AR(1) 

AR(1) 
vs.RC 

TRM vs. 
RC 

TRM vs. 
AR(1) 

TRM 
vs.UN

Two-group Treatment Effect (β01 = .5, β10 = 0, β11 = 0) 

.01 .1050 .1092 .1166 0.1148 .0116 .0074 .0042 .0098 .0056 -.0018

.25 .2436 .2650 .2726 0.4472 .0290* .0076 .0214* .2036* .1822* .1746*

.50 .4264 .4688 .4946 0.6762 .0682* .0258* .0424* .2498* .2074* .1816*

.75 .6054 .6646 .7292 0.8208 .1238* .0646* .0592* .2154* .1562* .0916*

1 .7830 .8374 .9334 0.8920 .1504* .0960* .0544* .1090* .0546* -.0414*

 Time Effect (β01 = 0, β10 = .5, β11 = 0) 

.01 .1162 .1200 .1216 .1292 .0054 .0016 .0038 .0130 .0092 .0076

.25 .5210 .5338 .5418 .7050 .0208* .0080 .0128 .1840* .1712* .1632*

.50 .7354 .7576 .7828 .9284 .0474* .0252* .0222* .1930* .1708* .1456*

.75 .8586 .8776 .9208 .9838 .0622* .0432* .0190* .1252* .1062* .0630*

1 .9138 .9330 .9764 .9962 .0626* .0434* .0192* .0824* .0632* .0198*

 Interaction (β01 = 0, β10 = 0, β11 = 0.5) 

.01 .1092 .1146 .1194 .1092 .0102 .0048 .0054 .0000 -.0054 -.0102

.25 .3222 .3336 .3416 .2796 .0194* .0080 .0114 -.0426* -.0540* -.0620*

.50 .4844 .5092 .5390 .4368 .0546* .0298* .0248* -.0476* -.0724* -.1022*

.75 .5972 .6348 .6952 .5576 .0980* .0604* .0376* -.0396* -.0772* -.1376*
1 .6726 .7258 .8220 .6638 .1494* .0962* .0532* -.0088 -.0620* -.1582*

           
 
Note: * indicates the difference is significant, that is, twice the upper bound of standard error for empirical 

power (SE = (1 )
2 .01

p p

n

× −× =  where p = .5 and n =5000), 2× SE = .02. 
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significantly higher than RC. At the small or 
large effect size, the pairwise power differences 
among the three VC structures were not all 
significant across the three tests. 
 
Empirical Power by Sample Size 

With the increase of the sample size, the  
power of TRM, RC AR(1) and UN increased 
(see Figure 4). It seemed that below the sample 
size of 100 (i.e., N = 600), the four models 
increased power at an increasing rate and above 
the sample size of 100, the four enhanced their  
 
 

 
power at a decreasing rate, approaching to the 
asymptote of 1.  

When the sample size was small, n = 25 
(i.e., N = 150), the power of all four models was 
low (e.g., around or below .3 in the treatment 
and interaction tests). At the sample size of 100 
(i.e., N = 600), TRM gained power around .75 
and .95 in the treatment and time tests, 
respectively, but below .55 in the interaction 
test; whereas all three VC structures obtained 
power merely above .50 and .80 in the treatment 
and time tests, respectively, but above .60 in the  

 
 

Table 2. Power Patten and Pairwise Power Difference of TRM, RC, AR(1) and UN by G Matrix when n = 75, t 
= 3 and λ = .5 of 5000 MC Samples at α = .10 
 

 Power Power Difference 

G RC AR(1) UN TRM UN vs. RC
UN vs. 
AR(1) 

AR(1) 
vs.RC 

TRM vs. 
RC 

TRM vs. 
AR(1) 

TRM 
vs.UN 

Two-group Treatment Effect (β01 = .5, β10 = 0, β11 = 0) 

( )1 .1

.1 1
 .4382 .4756 .4982 .7020 .0600* .0226* .0374* .2638* .2264* .2038* 

( )1 .3

.3 1
 .4264 .4688 .4946 .6762 .0682* .0258* .0424* .2498* .2074* .1816* 

( )1 .5

.5 1
 .4070 .4610 .4918 .6562 .0848* .0308* .0540* .2492* .1952* .1644* 

 Time Effect (β01 = 0, β10 = .5, β11 = 0) 

( )1 .1

.1 1
 .7686 .7814 .8002 .9396 .0316* .0188 .0128 .1710* .1582* .1394* 

( )1 .3

.3 1
 .7354 .7576 .7828 .9284 .0474* .0252* .0222* .1930* .1708* .1456* 

( )1 .5

.5 1
 .7144 .7376 .768 .9146 .0536* .0304* .0232* .2002* .1770* .1466* 

 Interaction (β01 = 0, β10 = 0, β11 = 0.5) 

( )1 .1

.1 1
 .5110 .5318 .5570 .4554 .0460* .0252* .0208* -.0556* -.0764* -.1016* 

( )1 .3

.3 1
 .4844 .5092 .5390 .4368 .0546* .0298* .0248* -.0476* -.0724* -.1022* 

( )1 .5

.5 1
 .4618 .4930 .5210 .4132 .0592* .0280* .0312* -.0486* -.0798* -.1078* 
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Figure 2. Power pattern of HLM, AR(1), UN and TRM by reliability in treatment, time and interaction tests 

when n = 75, t = 3 and G = 
1 .3

.3 1

 
 
 

 of 5000 MC  samples at α = .10 
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Figure 3: Power pattern of HLM, AR(1), UN and TRM by effect size in treatment, time and interaction tests 

when n = 75, t = 3, λ = .5 and G = 
1 .3

.3 1

 
 
 

 of 5000 MC samples  at α = .1 
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Table 4 Power Pattern and Pairwise Power Difference of RC, AR(1) and UN by Effect Size when n = 75, t = 

3, λ = .5 and G = 
1 .3

.3 1

 
 
 

of 5000 MC Samples at α = .10 

 Power Power Difference 

G RC AR(1) UN TRM UN vs. RC
UN vs. 
AR(1) 

AR(1) 
vs.RC 

TRM vs. 
RC 

TRM vs. 
AR(1) 

TRM 
vs.UN 

Two-group Treatment Effect (β01 = .5, β10 = 0, β11 = 0) 

.20 .1372 .1650 .1746 .2166 .0374* .0096 .0278* .0794* .0516* .0420* 

.50 .4264 .4688 .4946 .6762 .0682* .0258* .0424* .2498* .2074* .1816* 

.80 .7758 .8042 .8308 .9642 .0550* .0266* .0284* .1884* .1600* .1334* 

 Time Effect (β01 = 0, β10 = .5, β11 = 0) 

.20 .2316 .2542 .2698 .3168 .0382* .0156* .0226* .0852* .0626* .0470* 

.50 .7354 .7576 .7828 .9284 .0474* .0252* .0222* .1930* .1708* .1456* 

.80 .9804 .9852 .9892 1.0000 .0088 .0040 .0048 .0196* .0148* .0108 

 Interaction (β01 = 0, β10 = 0, β11 = 0.5) 

.20 .1686 .1856 .1928 .1602 .0242* .0072 .0170 -.0084 -.0254* -.0326* 

.50 .4844 .5092 .5390 .4368 .0546* .0298* .0248* -.0476* -.0724* -.1022* 

.80 .8342 .8498 .8680 .7864 .0338* .0182 .0156 -.0478* -.0634* -.0816* 

 
Note: * indicates the difference is significant, that is, twice the upper bound of standard error for empirical 

power (SE = (1 )
2 .01

p p

n

× −× =  where p = .5 and n =5000), 2× SE = .02. 
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Table 5. Power Pattern and Pairwise Power Difference of HLM, AR(1), UN and TRM by Sample Size 

when t = 3, β =.5, λ = .5  and G = 
1 .3

.3 1

 
 
 

of 5000 MC Samples at α = .10 

 Power Power Difference 

G RC AR(1) UN TRM UN vs. RC
UN vs. 
AR(1) 

AR(1) 
vs.RC 

TRM vs. 
RC 

TRM vs. 
AR(1) 

TRM 
vs.UN 

Two-group Treatment Effect (β01 = .5, β10 = 0, β11 = 0) 

25 .1900 .2334 .2572 .3368 .0672* .0238* .0434* .1468* .1034* .0796* 

50 .3166 .3590 .3754 .5270 .0588* .0164 .0424* .2104* .1680* .1516* 

75 .4264 .4688 .4946 .6762 .0682* .0258* .0424* .2498* .2074* .1816* 

100 .5092 .5502 .5836 .7884 .0744* .0334* .0410* .2792* .2382* .2048* 

125 .5976 .6362 .6652 .8538 .0676* .0290* .0386* .2562* .2176* .1886* 

150 .6794 .7130 .7376 .9130 .0582* .0246* .0336* .2336* .2000* .1754* 

175 .7430 .7750 .7982 .9418 .0552* .0232* .0320* .1988* .1668* .1436* 

200 .7950 .8228 .8452 .9704 .0502* .0224* .0278* .1754* .1476* .1252* 

  Time Effect (β01 = 0, β10 = .5, β11 = 0) 

25 .3790 .4050 .4306 .5320 .0516* .0256* .0260* .1530* .1270* .1014* 

50 .5970 .6192 .6416 .8058 .0446* .0224* .0222* .2088* .1866* .1642* 

75 .7354 .7576 .7828 .9284 .0474* .0252* .0222* .1930* .1708* .1456* 

100 .8504 .8644 .8786 .9740 .0282* .0142* .0140 .1236* .1096* .0954* 

125 .9124 .9230 .9386 .9916 .0262* .0156* .0106 .0792* .0686* .0530* 

150 .9496 .9548 .9658 .9976 .0162* .0110 .0052 .0480* .0428* .0318* 

175 .9686 .9736 .9806 .9996 .0120 .0070 .0050 .0310* .0260* .0190* 

200 .9814 .9842 .986 .9996 .0046 .0018 .0028 .0182* .0154* .0136 

Interaction (β01 = 0, β10 = 0, β11 = 0.5) 

25 .2428 .2638 .2800 .2126 .0372* .0162 .0210* -.0302* -.0512* -.0674* 

50 .3692 .3902 .4166 .3208 .0474* .0264* .0210* -.0484* -.0694* -.0958* 

75 .4844 .5092 .5390 .4368 .0546* .0298* .0248* -.0476* -.0724* -.1022* 

100 .5956 .6162 .6422 .5340 .0466* .0260* .0206* -.0616* -.0822* -.1082* 

125 .6812 .7008 .7264 .6158 .0452* .0256* .0196 -.0654* -.0850* -.1106* 

150 .7442 .7630 .7916 .6896 .0474* .0286* .0188 -.0546* -.0734* -.1020* 

175 .7982 .8146 .8378 .7436 .0396* .0232* .0164 -.0546* -.0710* -.0942* 

200 .8498 .8622 .8838 .8000 .0340* .0216* .0124 -.0498* -.0622* -.0838* 

 
Note: * indicates the difference is significant, that is, twice the upper bound of standard error for 

empirical power (SE = (1 )
2 .01

p p

n

× −× =  where p = .5 and n =5000), 2× SE = .02. 
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interaction test. As the sample size reached 200 
(i.e., N = 1200), the power of all four was above 
.80 (see Table 5).  

Table 5 also showed that the pairwise 
differences between TRM and the three VC 
structures were significant across the samples  
sizes in all three tests. Generally, TRM had 
significantly higher power than the three VC 
structures in the treatment and time tests but 
significantly lower power in the interaction test. 
It also appeared that the pair-wise differences 
shrunk as sample sizes increased. 
Bootstrap Estimates 

The bootstrap estimates, bias, standard 
errors and standard 95% confidence intervals of 
the treatment effect were examined within the 
three factors, G matrix, effect size and sample 
size per treatment group under specified 
conditions (see Appendix B). The results 
indicate that TRM, RC, AR(1) and UN generate 
unbiased and  identical estimates of the 
treatment effect. TRM has slightly smaller 
bootstrap standard errors and hence slightly 
narrower confidence intervals. The bootstrap 
estimates of all three VC structures have similar 
patterns within each factor. As the correlation 
increases, the standard errors become slightly 
larger and therefore the confidence intervals are 
wider. As the reliability and sample sizes 
increase, the bootstrap standard errors decrease 
and confidence intervals become narrower. 
 

Conclusion 
This MC study primarily concerns the empirical 
power of TRM and HMLM under three 
variance-covariance (VC) structures in the 
longitudinal study. Specifically, this paper 
compared the power of TRM, AR (1) and UN in 
three tests, two-group treatment effect (β01), time 
effect (β10) and time-by-treatment interaction (β11), 
under the balanced design in longitudinal studies. 
The three factors in this power study are the G matrix 
(G), reliability (λ), effect size (β) and sample size per 
treatment group (n).  

Researchers have raised the question on 
what is the power to detect the interactions when 
they do exist in the HMLM data and expected 
HMLM perform better than traditional models 
but without proof (Davison, Kwak, Seo, and 
Choi, 2002; Kreft, 1996; Raudenbush, 1995). 
This study provided an empirical power 

estimates in the interaction test for both TRM 
and HMLM. One of the interesting findings in 
this power study indicates that TRM has 
significantly lower power than the other three 
HMLM models, RC, AR(1) and UN, in the 
interaction test, although it gains the 
significantly highest power in the main effects 
tests, treatment and time tests under the balanced 
design in the specified generic situations.  

This study also supplements more 
comprehensive empirical indexes for estimating 
the model precision based on the bootstrap 
estimates and the approximate power for both 
main effects and interaction tests under more 
generic situations, including the empirical power 
indexes of HMLM under three different 
covariance structures which have not yet been 
specifically addressed in the literature. Based on 
this study, TRM could be the choice if 
researchers are more interested in main effect 
tests and the practical situation is most similar to 
this research where the balanced design is 
assumed and fixed effects are primarily the 
concern. If researchers are more concerned with 
interaction tests, this study recommends that 
UN, AR(1) or RC be the method of choice. 
When the number of repeated measures is 3, UN 
has the higher power than AR(1) or RC in the 
three tests within each factor. UN could be the 
choice if the practical situation is most similar to 
this research and if we need to try an exploratory 
analysis when the VC structure is assumed 
unknown.  
 From this study, we noticed that the 
power can be significantly different among 
different VC structures when using the HMLM 
models in the longitudinal study. In addition to 
referring to the model fit statistics (Akaike, 
1973; Littell et al., 2006; Pinheiro & Bates, 
2000; Schwarz, 1978; Singer & Willett, 2003), 
the empirical power results from this study could 
be a reference source when applying HMLM 
models.  Also from these empirical results, the 
practitioners may estimate the sample sizes, the 
reliability, effect size or the correlation in G 
matrix for their studies if scenarios are similar to 
this study.  

Future studies may consider extending 
this MC study by comparing power across 
factors instead of within each factor or fixing 
conditions and comparing the power by varying 
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the sample size ratios between the number of 
subjects and time points while holding the total 
sample size. Instead of reliability, interclass 
correlation (ICC) could be considered in the 
power analysis. Although the magnitude of 
power difference and power decreasing or 
increasing rates can vary, the general power 
patterns among TRM and the three VC 
structures are expected to be similar to this 
study. The HMLM data generator and power 
comparison macro (the author, 2006) could be 
expanded to generate missing data or non-
normal longitudinal data in order to be more 
practical and to examine the statistical properties 
and power of more complex growth models. 
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Appendix B 

Table 7. Bootstrap Estimates of Treatment Effect for RC, AR(1), UN and TRM by G Matrix, Effect Size, 
Reliability and Sample Size of 5000 MC Samples at α = .10. Table continued on next page. 

 
(a) RC and RM 

 
 Model 
 RC RM 
 β01  BIAS SE CI_low CI_high B01 BIAS SE CI_low CI_high 

G Matrix (ρ) 
0.10 0.50 0.00 0.31 -0.11 1.11 0.50 0.00 0.23 0.06 0.95 
0.30 0.50 0.00 0.31 -0.12 1.12 0.50 0.00 0.23 0.04 0.96 
0.50 0.50 0.00 0.32 -0.12 1.12 0.50 0.00 0.24 0.03 0.97 

Effect size (d) 
0.20 0.20 0.00 0.31 -0.42 0.82 0.20 0.00 0.23 -0.26 0.66 
0.50 0.50 0.00 0.31 -0.12 1.12 0.50 0.00 0.23 0.04 0.96 
0.80 0.80 0.00 0.31 0.18 1.42 0.80 0.00 0.23 0.34 1.26 

Reliability (λ) 
0.01 0.49 -0.01 2.59 -4.59 5.58 0.49 -0.01 1.62 -2.68 3.66 
0.25 0.50 0.00 0.48 -0.45 1.45 0.50 0.00 0.33 -0.14 1.14 
0.50 0.50 0.00 0.31 -0.12 1.12 0.50 0.00 0.23 0.04 0.96 
0.75 0.50 0.00 0.23 0.05 0.95 0.50 0.00 0.19 0.12 0.88 
1.00 0.50 0.00 0.17 0.16 0.84 0.50 0.00 0.17 0.16 0.84 

Sample Size (n) 
25 0.50 0.00 0.54 -0.56 1.56 0.50 0.00 0.41 -0.31 1.31 
50 0.50 0.00 0.38 -0.24 1.24 0.50 0.00 0.29 -0.06 1.06 
75 0.50 0.00 0.31 -0.12 1.12 0.50 0.00 0.23 0.04 0.96 

100 0.50 0.00 0.27 -0.04 1.03 0.50 0.00 0.20 0.10 0.90 
125 0.50 0.00 0.25 0.02 0.98 0.50 0.00 0.18 0.14 0.86 
150 0.50 0.00 0.23 0.06 0.94 0.50 0.00 0.17 0.17 0.83 
175 0.50 0.00 0.20 0.10 0.90 0.50 0.00 0.16 0.19 0.81 
200 0.50 0.00 0.19 0.12 0.88 0.50 0.00 0.15 0.22 0.79 

 
 

Appendix A. 
 

Table 6. Validation of Data Generator Using Potthoff and Roy’s Data 
 

 Potthoff and Roy’s Data Simulated Data 
Intercept 21.2091 21.2063 
Gender 1.4065 1.4065 
Time 0.9591 0.9587 
Gender*Time 0.6097 0.6115 
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(b) AR(1) and UN 

 Model 
 AR(1) UN 
 β01 BIAS SE CI_low CI_high B01 BIAS SE CI_low CI_high 

G Matrix (ρ) 
0.10 0.50 0.00 0.31 -0.12 1.12 0.50 0.00 0.31 -0.11 1.11 
0.30 0.50 0.00 0.32 -0.12 1.12 0.50 0.00 0.31 -0.11 1.11 
0.50 0.50 0.00 0.32 -0.13 1.13 0.50 0.00 0.31 -0.11 1.11 

Effect Sizes (d) 
0.20 0.20 0.00 0.32 -0.42 0.82 0.20 0.00 0.31 -0.41 0.81 
0.50 0.50 0.00 0.32 -0.12 1.12 0.50 0.00 0.31 -0.11 1.11 
0.80 0.80 0.00 0.32 0.18 1.42 0.80 0.00 0.31 0.19 1.41 

Reliability (λ) 
0.01 0.49 -0.01 2.60 -4.60 5.58 0.49 -0.01 2.60 -4.60 5.59 
0.25 0.50 0.00 0.49 -0.45 1.45 0.50 0.00 0.48 -0.45 1.45 
0.50 0.50 0.00 0.32 -0.12 1.12 0.50 0.00 0.31 -0.11 1.11 
0.75 0.50 0.00 0.24 0.04 0.96 0.50 0.00 0.22 0.06 0.93 
1.00 0.50 0.00 0.18 0.14 0.86 0.50 0.00 0.16 0.19 0.81 

Sample Size (n) 
25 0.50 0.00 0.55 -0.58 1.57 0.50 0.00 0.54 -0.56 1.56 
50 0.50 0.00 0.38 -0.25 1.25 0.50 0.00 0.37 -0.24 1.23 
75 0.50 0.00 0.32 -0.12 1.12 0.50 0.00 0.31 -0.11 1.11 

100 0.50 0.00 0.28 -0.04 1.04 0.50 0.00 0.27 -0.03 1.02 
125 0.50 0.00 0.25 0.01 0.98 0.50 0.00 0.24 0.02 0.97 
150 0.50 0.00 0.23 0.05 0.95 0.50 0.00 0.22 0.06 0.93 
175 0.50 0.00 0.21 0.10 0.90 0.50 0.00 0.20 0.11 0.89 
200 0.50 0.00 0.19 0.12 0.88 0.50 0.00 0.19 0.13 0.87 
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