2013

LARC 331: Site Systems III (Landscape Implementation)—A Peer Review of Teaching Project Benchmark Portfolio

Bret Betnar
University of Nebraska-Lincoln, bbetnar2@unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/prtunl

Part of the Higher Education Commons, Higher Education and Teaching Commons, and the Landscape Architecture Commons

This Portfolio is brought to you for free and open access by the Peer Review of Teaching Project at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in UNL Faculty Course Portfolios by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Course Portfolio

LARC 331 – SITE SYSTEMS III: LANDSCAPE IMPLEMENTATION

For Peer Review of Teaching. UNL. 2012-2013

Assistant Professor Bret Betnar
Landscape Architecture Program
College of Architecture
University of Nebraska – Lincoln

bbetnar2@unl.edu
Table of Contents

1.0 Objectives of Peer Review Course Portfolio

2.0 Course Description + the Broader Curriculum

3.0 Learning Objectives, Methods, Assessment
 3.1 Learning Objectives
 3.2 Teaching Methods and Assessment of Learning Objectives

4.0 Analysis of Student Learning
 4.1 Course Assignments + Grading
 4.2 Grading Breakdown
 4.3 Student Grades

5.0 Planned Changes
 5.1 College + Curriculum
 5.2 Design-Build + Service-Learning
 5.3 Lineweight + Linetype
 5.4 Student Feedback

6.0 Summary of Overall Assessment of Portfolio Process

7.0 Appendix
 7.1 Grading Rubric
 7.2 Syllabus
 7.3 Challenges, Submissions + Redlines
 7.4 Student Work
1.0 **Objectives of Peer Review Course Portfolio**

The course portfolio will provide an overview of the course as it was offered in the Spring of 2013. The documentation of learning objectives, teaching methods, course activities, grading data, and student performance data is meant to serve as a benchmark for future course improvement. This structure will be applied to other courses and eventually utilized in tenure and promotion documentation to demonstrate excellence in teaching.

2.0 **Course Description + the Broader Curriculum**

LARC 331 Site Systems III: Landscape Implementation is a 3rd year undergraduate course that focuses on the implementation of landscape architectural designs. Students take a previous Site Design studio project and develop this project into a landscape architectural construction package. It is a required course for landscape architecture majors.

The course is the final in a 3-course *Site Systems* sequence. The first in the sequence, LARC 230 Site Systems I: Materiality in Landscape Architecture, introduces students to materials and methods for landscape architectural construction. *Materiality* provides the initial framework for students’ construction knowledge.

The second course in the Site Systems sequence is LARC 330 Site Systems II: Site Engineering. In this course students learn how to manipulate the earth’s surface for human use. Because the students concurrently take a Site Design studio, there is an emphasis on technical methods by which sensitive, logical designs may be carried out. By necessity, clear and simple 2D graphic literacy is stressed in this course.

In LARC 331, students take the final design proposal from the previous semester’s Site Design studio and develop a set of construction documents. Two-dimensional drawings sets are still primarily how designers communicate with other interests in the design process. Most importantly, the document sets become a visual and annotated guidebook for the various contractors associated with any given project. The experience of moving from design idea to design drawings is meant to have the students think in greater detail about their proposals and to consider obstacles and opportunities that come with those decisions. It should inform future design decisions and resolutions. Like site engineering, technical proficiency in understanding both construction technique and representation is a cornerstone of design literacy and a fundamental tool of
design. Therefore, students are graded on their ability to produce clear, refined and informative plans, sections and details.

3.0 Learning Objectives, Methods, Assessment

The learning outcomes for the course correlate to the types of activities students will be participating in. The students must take general ideas and common construction techniques and apply them as they relate to their individual design solutions. Usually, this requires the students to re-think original assumptions, and in many cases, re-design some component or components of their site. The following list contains the learning outcomes for the course:

3.1 Learning Objectives

2. Develop an ability to graphically communicate design intent through black and white linework in plan, section and detail.

3. Describe and demonstrate basic AutoCAD file and layer management.

4. Evaluate the work of peers and provide suggestions for improvement.

5. Describe and demonstrate the ability to use topography (and/or walls), three-dimensional hardscape and plant materials in the formation of spaces and human experiences.

6. Describe and demonstrate the use of standard slope and width constraints for streets, walks and drives.

7. Define associated design applications and develop details for selected hardscape materials.

8. Describe, demonstrate and apply basic design and structural principles of gravity and cantilevered retaining walls.

9. Describe and demonstrate common site layout systems and procedures.

10. Describe and demonstrate basic cost estimating in the design process.
3.2 Teaching Methods and Assessment of Learning Objectives

3.2.1 Goal 1: Comprehend and organize the completion of a partial Design Development document package.

Objective(s): Complete the eight sheets assigned. Compile into a comprehensible Design Development package.

Method: The course is fashioned around the goal of each student producing a construction document set for his/her designs. The structure of the course is thus broken down through a series of Challenges which correspond to a single sheet or set of sheets. Each of these sheets must meet requirements of the given rubric. Titleblocks and other components of Design Document sets are required to be legible and updated. Challenges are listed below:

Challenge I: Composite Plan
Challenge II: Grading Plan (includes Composite)
Challenge III: Material and Furnishing Plan
Challenge IV: Hardscape Details, Retaining Wall Details, Furnishing Details
Challenge V: Planting Plan
Challenge VI: Layout Plan
Submission I: Includes sheets from Challenge I - V
Submission II: Includes sheets from Challenge I - VI

For specific information on each Challenge, see Appendix 7.3 Challenges, Submissions + Redlines.

Assessment: For each Challenge submittal there is a related Redline required. The students redline, or mark up, each other’s work and fill out a grading form determining whether or not their peer has completed a set task or not. The professor then checks this against the work and revises the rubric as required. The professor additionally adds new notes to student work before handing back. At two points in the semester, the students are required to turn in a completed set of drawings, known as Submissions (See Appendix 7.2). Submissions require the students to complete all redline corrections for previously completed sheets. (see Appendix: 7.1 Grading Rubric for complete criteria)

3.2.2 Goal 2: Develop an ability to graphically communicate design intent through black and white linework in plan, section and detail.

Objective: Highlight importance of clarity and legibility throughout course.
Method: Students begin with a reading on the importance of linework clarity and throughout the course are given multiple examples of construction document sets. From the beginning, the students are made aware of linework, linetype and legibility specific criteria in their grading rubric. The criteria are as follows: Clarity, Lineweight Hierarchy, Linetype, Labels, Text Size, Text Legibility, Symbols Legend, Sheet Notes, and UFO’s (Unidentified Floating Objects) These are known throughout the course as ‘The Ten’, meaning the ten most critical components to insure thoroughness and legibility.

Assessment: This component of the course represents 8% of the total grade of the class (see 4.2 Grading Breakdown). ‘The Ten’ are included in every grading rubric.

3.2.3 Goal 3: Describe and demonstrate basic AutoCAD file and layer management.

Objective: Introduce standards of AutoCAD file and layer management.

Method: Students are required to use AutoCAD to produce their document sets. Handouts and professional examples are provided. Three AutoCAD related lectures introduce the basics of computer-aided drafting. Troubleshooting problems is ongoing throughout the semester.

Assessment: Students have their files checked twice during the semester.

3.2.4 Goal 4: Evaluate the work of peers and provide suggestions for improvement.

Objective: Include workshop days where students read and interpret drawings.

Method: The course provides seven formal redlines sessions where students peer-review their classmate’s drawings based on a specific rubric for that assignment. There are also periodic days throughout the semester where informal in-class peer-review and group-review sessions are conducted. Peer-review rubrics are completed on a pass/fail basis, leaving little ambiguity.
Assessment: The formal redlines provided by the students are checked against the professor’s interpretation. Students’ interpretation matched the professor’s 86% of the time for the semester.

3.2.5 Goal 5: Describe and demonstrate the ability to use topography (and/or walls), three-dimensional hardscape and plant materials in the formation of spaces and human experiences.

Objective: Continue to develop their thinking about the formation of space. The site design studio (where the students developed their projects) makes this the foundation of its learning objectives.

Method: The course seeks to build upon those skills by questioning design decisions in light of buildability. Examples of built professional work, lectures, and detail examples aid in shaping how students think about constructing space. Grading Plan, Material + Furnishing Plan, Hardscape Details, Retaining Wall Details, and Planting Plan include criteria relating to this goal.

Assessment: Criteria are included in rubric. In-class workshops also facilitate the translation from studio idea to buildable space.

3.2.6 Goal 6: Describe and demonstrate the use of standard slope and width constraints for streets, walks and drives.

Objective: Build upon learning from LARC 330: Site Engineering where students first learned standard slope conventions.

Method: Students are asked to produce a rough grading plan at the beginning of the semester and are required to refine it as design changes occur. Emphasis is placed on spot elevations and the grading of hardscape. In-class workshops allow students to discuss and correct any problems they incur.

Assessment: Completion of final Grading Plan. Outcome specific criteria included in rubric.

3.2.7 Goal 7: Define associated design applications and develop details for selected hardscape materials.
Objective: Have students explore the potential hardscape options available to them. The students are introduced to buildability and geometric consequences associated with selected hardscape choices.

Method: Students are required to produce measured drawings of hardscape plans, details and sections. Lectures, examples of built professional work, and construction document examples are utilized to begin the discussion. In-class workshops aid students in their decision-making and geometric refinement.

Assessment: Completion of final Material + Furnishing Plan, Hardscape Details, Retaining Wall Details, and Furnishing Details. Outcome specific criteria included in rubric.

3.2.8 Goal 8: Describe, demonstrate and apply basic design and structural principles of gravity and cantilevered retaining walls.

Objective: Facilitate exploration of retaining walls as both design feature and structural component.

Method: Students are required to produce measured drawings of at least one retaining wall, including plan, section and details. Lectures, examples of built professional work, and construction document examples are utilized to begin the discussion. In-class workshops assist students in refinement of retaining wall design.

Assessment: Completion of Retaining Wall Details and Final Grading Plan. Outcome specific criteria are included in grading rubric.

3.2.9 Goal 9: Describe and demonstrate common site layout systems and procedures.

Objective: Familiarize students with common site layout systems. Enable students to understand the relationship of design intent and layout technique.

Method: Students are required to produce a measured drawing (Layout Plan) demonstrating their understanding of site layout and horizontal control. Lectures, handouts and construction document examples introduce students to common methods and illustrate standards. In-class workshops aid students in connecting their chosen layout technique with their design intent.
Assessment: Completion of Layout Plan. Outcome specific criteria are included in grading rubric.

3.2.10 Goal 10: Describe and demonstrate basic cost estimating in the design process.

Objective: Enable the students to consider monetary consequences of design decisions.

Method: Students are taught how to measure drawings (take-offs), convert from area measurements to cubic measurements and tonnage, and fill out cost estimating template. Students are asked to produce a detailed cost estimate with their Submission 2.

Assessment: Professor checks for accuracy after Submission 2.

4.0 Analysis of Student Learning

4.1 Course Assignments + Grading

Grading for the course is broken down in the chart below. As more sheets are added to the Challenges, more points are given. Redlines are typically 50 points except where many sheets must be checked. These are worth 200 points. 800 points is reserved for student progress and participation.

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Challenge I:</td>
<td>50</td>
</tr>
<tr>
<td>Challenge II:</td>
<td>100</td>
</tr>
<tr>
<td>Challenge III:</td>
<td>150</td>
</tr>
<tr>
<td>Challenge IV:</td>
<td>250</td>
</tr>
<tr>
<td>Challenge V:</td>
<td>200</td>
</tr>
<tr>
<td>Challenge VI:</td>
<td>200</td>
</tr>
<tr>
<td>Submission I:</td>
<td>500</td>
</tr>
<tr>
<td>Submission II:</td>
<td>1100</td>
</tr>
<tr>
<td>Redline I:</td>
<td>50</td>
</tr>
<tr>
<td>Redline II:</td>
<td>50</td>
</tr>
<tr>
<td>Redline III:</td>
<td>50</td>
</tr>
<tr>
<td>Redline IV:</td>
<td>200</td>
</tr>
<tr>
<td>Redline V:</td>
<td>50</td>
</tr>
<tr>
<td>Redline VI:</td>
<td>50</td>
</tr>
<tr>
<td>Redline Sub. 1:</td>
<td>200</td>
</tr>
<tr>
<td>Progress:</td>
<td>800</td>
</tr>
</tbody>
</table>

Total: 4000 x 5 students = 20,000 points
Although four thousand points are listed in the syllabus as the maximum points for the course there are two added components in the grading system. First, during Redlines, students assess whether a given task has been completed or not. If so, they receive a passing mark. If not, a failing mark. The pass/fail system is meant to reduce ambiguity in the grading process. For example, if the criterion is “Scale-North Arrow” and one sheet is without a scale, then zero points are given for the criterion “Scale-North Arrow” for the entire Challenge. This makes for rather low marks in our A-F system. Because of this, a system of Multipliers has been added to the course grading system.

Multipliers function to assist in increasing students’ ability to increase their point totals throughout the semester. Multipliers are given on each Challenge for completion of things such as, Timesheets, Design Progress, Additional Details, and a Cover Sheet. If completed, they give a percentage increase to the overall score. This works differently than a bonus where a defined number of points is given. Multipliers add a percentage; creating an incentive to perform well on the fundamental material required in the Challenges. Assuming a student makes a perfect 100% on all Challenges and Submissions, he/she would be able to collect 6995 points rather than 4000. It is assumed that students will invariably not be able to achieve this goal. Considering 6995 as the maximum available points, multipliers make up 26% of the course. The bulk of the multipliers are given towards the end of the semester when students are in most need of additional points. Multipliers are intended to make up for the difficulty students have adjusting to a grading system that demands them to work towards perfection in their drawings.

4.2 Grading Breakdown

The grade breakdown for each sheet (as shown in rubric) as a percent of course is as follows:

<table>
<thead>
<tr>
<th>Including Multipliers</th>
<th>Without Multipliers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set Up/Turn in:</td>
<td>10%</td>
</tr>
<tr>
<td>The Ten:</td>
<td>8%</td>
</tr>
<tr>
<td>Titleblock</td>
<td>2%</td>
</tr>
<tr>
<td>Composite Plan</td>
<td>3%</td>
</tr>
<tr>
<td>Grading Plan</td>
<td>3%</td>
</tr>
<tr>
<td>Material/Furnishing Plan</td>
<td>3%</td>
</tr>
<tr>
<td>Detail/Material Set Up</td>
<td><1%</td>
</tr>
<tr>
<td>Hardscape Details</td>
<td>3%</td>
</tr>
<tr>
<td>Retaining Wall Details</td>
<td>3%</td>
</tr>
<tr>
<td>Furnishings Details</td>
<td>3%</td>
</tr>
<tr>
<td>Planting Plan</td>
<td>5%</td>
</tr>
</tbody>
</table>
The sheets themselves make up 27% of the total scoring for the course, where multipliers are included. Without multipliers, they make up 32% of the course. Regardless of which breakdown used, the document sheets make up the largest component of the course. This makes sense considering most learning objectives focus on this material.

4.3 Student Grades

The course for Spring 2013 began with six students, all majoring in Landscape Architecture. One student opted to take and ‘Incomplete’ partway through the semester. As a result, this student’s data has not been included.

Student 1: A-
Student 2: B
Student 3: A-
Student 4: B
Student 5: A-

Average (by %): 89%

4.3.1 Percentage of total student points earned by category

The chart below illustrates the percentage of student points earned according to each category. This represents the total points earned by the class in each of these categories. 100% represents total student points earned, not total points available.

<table>
<thead>
<tr>
<th>Category</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set Up/Turn in:</td>
<td>12%</td>
</tr>
<tr>
<td>The Ten:</td>
<td>8%</td>
</tr>
<tr>
<td>Titleblock</td>
<td>3%</td>
</tr>
<tr>
<td>Composite Plan</td>
<td>4%</td>
</tr>
<tr>
<td>Grading Plan</td>
<td>3%</td>
</tr>
<tr>
<td>Material/Furnishing Plan</td>
<td>4%</td>
</tr>
<tr>
<td>Detail/Material Set Up</td>
<td><1%</td>
</tr>
<tr>
<td>Hardscape Details</td>
<td>3%</td>
</tr>
<tr>
<td>Retaining Wall Details</td>
<td>2%</td>
</tr>
<tr>
<td>Furnishings Details</td>
<td>2%</td>
</tr>
</tbody>
</table>
When all sheets are added together, the students earned 27% of their grade from successful completion of sheet sets. Only 10% of the grade was from multipliers suggesting several possibilities. One, students were already overburdened with work. Two, students chose not to take advantage of this option. Or three, multipliers were not completed correctly. The students earned a great deal of their grade from some basic set-up, turn-in, and participation related categories.

4.3.2 Percent success by category

The following chart represents the maximum points available for each category, the amount the students earned, and the percentage of these points they earned. This is the average over a number of criteria for each category. The mean number for all criteria was 60%; the average was 63%. For a list of all criteria by category, see Grading Rubric.

<table>
<thead>
<tr>
<th>Category</th>
<th>Max</th>
<th>Earned</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set Up/Turn in:</td>
<td>2650</td>
<td>2190</td>
<td>83%</td>
</tr>
<tr>
<td>The Ten:</td>
<td>2090</td>
<td>1491</td>
<td>71%</td>
</tr>
<tr>
<td>Titleblock</td>
<td>650</td>
<td>530</td>
<td>82%</td>
</tr>
<tr>
<td>Composite Plan</td>
<td>773</td>
<td>751</td>
<td>97%</td>
</tr>
<tr>
<td>Grading Plan</td>
<td>863</td>
<td>509</td>
<td>59%</td>
</tr>
<tr>
<td>Material/Furnishing Plan</td>
<td>963</td>
<td>763</td>
<td>79%</td>
</tr>
<tr>
<td>Detail/Material Set Up</td>
<td>100</td>
<td>40</td>
<td>40%</td>
</tr>
<tr>
<td>Hardscape Details</td>
<td>813</td>
<td>477</td>
<td>59%</td>
</tr>
<tr>
<td>Retaining Wall Details</td>
<td>813</td>
<td>387</td>
<td>48%</td>
</tr>
<tr>
<td>Furnishings Details</td>
<td>763</td>
<td>398</td>
<td>52%</td>
</tr>
<tr>
<td>Planting Plan</td>
<td>1263</td>
<td>798</td>
<td>63%</td>
</tr>
<tr>
<td>Layout Plan</td>
<td>1013</td>
<td>663</td>
<td>65%</td>
</tr>
<tr>
<td>Peer Redlines</td>
<td>3250</td>
<td>3150</td>
<td>96%</td>
</tr>
<tr>
<td>Progress/Participation</td>
<td>4000</td>
<td>3850</td>
<td>96%</td>
</tr>
</tbody>
</table>

Subtotal w/o Multipliers 20000 15997 80%

<table>
<thead>
<tr>
<th>Category</th>
<th>Max</th>
<th>Earned</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multipliers</td>
<td>6995</td>
<td>1754</td>
<td>25%</td>
</tr>
</tbody>
</table>

w/ Multipliers 26995 17751 66%

Total + Multiplier points 20000 17751 89%
It is worrisome that students performed poorly on the sheet-related categories. There could be various reasons for this. The first could be the fact that for many of these students this is the first time they had to do this type of exercise using the software, AutoCAD. They’ve had little or no formal instruction in how to utilize the software. A new computer course for first-year students will seek to remedy this problem. The second possibility could be that the students are truly confused about the subject matter and it’s relation to them professionally. Thinking in terms of design vs. building that design idea is a very difficult step for many students to take. The abstract nature of the 2D drawings and lack of familiarity with construction conventions could be part of the lack of success. The third possibility is suggested through observed behavior. Many students prioritize their studio course over all other courses. This is to be expected in the design fields, but students leave this course to the last minute. It is stressed in the course that students should work in small amounts of time, continuously throughout the course. Many clearly do not do this.

4.3.3 Drafting Basics

A distinct set of criteria was measured throughout the semester in order to assess the students’ drafting skills. See learning objectives, Goal 2 for more information. The learning objective is as follows: *Develop an ability to graphically communicate design intent through black and white linework in plan, section and detail.* Students were measured on ‘The Ten’ with every Challenge, so there is significant data for this category. The results are below:

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Max</th>
<th>Earned</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Ten</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clarity</td>
<td>230</td>
<td>171</td>
<td>74%</td>
</tr>
<tr>
<td>Lineweight Hierarchy</td>
<td>230</td>
<td>121</td>
<td>53%</td>
</tr>
<tr>
<td>Linetype</td>
<td>210</td>
<td>102</td>
<td>49%</td>
</tr>
<tr>
<td>Scale + North Arrow</td>
<td>210</td>
<td>193</td>
<td>92%</td>
</tr>
<tr>
<td>Labels</td>
<td>210</td>
<td>156</td>
<td>74%</td>
</tr>
<tr>
<td>Text Size</td>
<td>210</td>
<td>112</td>
<td>53%</td>
</tr>
<tr>
<td>Text Legibility</td>
<td>210</td>
<td>194</td>
<td>92%</td>
</tr>
<tr>
<td>Symbols Legend</td>
<td>195</td>
<td>156</td>
<td>80%</td>
</tr>
<tr>
<td>Sheet Notes</td>
<td>175</td>
<td>132</td>
<td>75%</td>
</tr>
<tr>
<td>UFO’s</td>
<td>210</td>
<td>154</td>
<td>73%</td>
</tr>
</tbody>
</table>

(identified floating objects)

The three lowest percentages are found in Lineweight Hierarchy, Linetype, and Text Size. The students’ difficulty with text size likely has a lot to do with lack of familiarity with ACAD text styles. It also likely derives
from the students’ own inattention to detail, i.e. checking their own work before having it redlined.

The two criteria related to Linetype and Lineweight are also significantly lower than the mean of 60%. These two criteria are the foundations of good drafting. Without success in these categories, students will have a hard time developing drawings that read with any depth and clarity. The mastering of these two categories ripples through the rest of their work in other classes as well.

5.0 Planned Changes

5.1 College + Curriculum

The College of Architecture and the Landscape Architecture Program have been undergoing a significant curriculum overhaul during the past year. For Landscape Architecture, the Regents’ mandate that all majors reduce their hour requirements to 120 has meant the evaluation and transformation of the curriculum. In order for a student of landscape architecture to graduate, he/she must acquire roughly 150 hours, much of which is directly related to the field of landscape architecture, design fundamentals and ecology. The Site Systems sequence incurred only two changes. First, the sequence begins in the fall semester of the 2nd year, rather than in the spring of 2nd. This shift is only a semester, but does change the time of year in which Site Systems III: Implementation is delivered. The course will now be delivered in the fall beginning with the fall semester of 2014.

The above change is of relatively little import without considering the second change. Site Systems III will now become a 4 credit hour course which focuses on design/build. The completion of a design continuum from design idea through to design making is seen by the faculty as a very important way in which to teach design. The positioning of the course in the fall semester allows for building to occur in the fall when the weather is more amenable. The change in focus will require contaminant changes to the course addressed in the portfolio; however, much of the content will still need to be taught.

5.2 Design-Build + Service-Learning

There will be one more version of this course taught before it shifts to a design-build focus. Because the course is already having students think deeper about their design ideas, the transition to design-build will be a natural one. Much of the content will need to remain the same to ensure the students have a broad understanding of common construction techniques. The course must necessarily
focus on the project to be constructed; therefore, each semester could see a shift of emphasis in the direction of the course. This is one of the primary reasons for setting up extensive and perhaps rigid criteria. If we are to build our designs, we must be sure to get them right.

In the fall of 2013, my course, Site Systems II: Site Engineering will embark upon the first phase of this transition with a service-learning project for an external agency. The project will fit within the learning objectives of the course with particular focus on terrace grading and simple retaining walls. The students will need background on retaining walls; therefore, the Retaining Walls component of SS III will likely move to SSII for that semester. For the Site Engineering course, only preliminary design alternatives, models, grading plans, rudimentary details and cost estimates will be a part of the course instruction. Final details, layout plans and planting plans will remain a part of the ‘build’ component of site systems SSIII. There will likely be simpler sets of drawings required for this course due to the design problem also being simpler. The intent is that students will be able to achieve deeper or higher learning as a result of actualizing the design.

The college is engaged in a service-learning initiative established through a grant from the Rural Futures Institute. More than ten faculty members will be changing a course or portion of a course to include a service-learning component. While there is a great deal of literature describing the benefits of the service-learning pedagogy, I feel it will be a tremendous boost for student motivation in this course. This should integrate well with the design-build concentration. Working for real people with real problems shifts responsibility from student-to-teacher to student-to-partner. Therefore, new learning objective will be added to address the ‘social responsibility’ component of the course.

5.3 Lineweight + Linetype

Due to the lack of success students seem to be showing regarding their ability to understand and utilize basic drafting techniques, there will be a number of changes to assist students.

Even before Site Systems III, students need to understand the importance of lineweight and linetype. The shift in the curriculum and new courses in the College’s common first year may help in this matter. However, there will be an additional exercise that relates directly to this learning objective. It will likely be a hand drafting exercise or additional emphasis will be placed upon exercises in Site Systems II to help students improve.
5.4 Student Feedback

Feedback from students during the semester will also be included in future courses. This will be particularly important when the course includes service-learning components. This will be in the form of reflection questions. Any additional student feedback to be incorporated will be addressed once student comments are analyzed.

6.0 Summary of Overall Assessment of Portfolio Process

The peer review of teaching portfolio required me to think closely about the integration of learning objectives, teaching methods and assessment for this course. It will serve as a model for continual reflection upon the teaching and learning in all my courses.

7.0 Appendix

7.1 Grading Rubric

The following is a list of the grading criteria by category. Each, with the exception of Peer Redlines and Participation, is graded on pass/fail basis.

7.1.1 Set Up/Turn in
ACAD Folder Setup
ACAD Base Files
Layer Names
Print 310 Studio
310_Project Reflection
PDF Version
Turn in Previous Redlines
Submission 1 PDF
Scan Submission 1 Redlines

7.1.2 The Ten
Clarity
Lineweight Hierarchy
Linetype
Scale + North Arrow
Labels
Text Size
Text Legibility
Symbols Legend
Sheet Notes
UFO’s (unidentified floating objects)
7.1.3 **Titleblock**
Submission Date
Key Map
Sheet Name
Sheet Number
Student Name

7.1.4 **Composite Plan**
Existing + Proposed Site Features
Redline Corrections

7.1.5 **Grading Plan**
Design Assumptions match with Applied Grading
Spot Elevations – Perimeter
Spot Elevations – Paved Surfaces, Curbs and Walls
Spot Elevations – Change in Slope/Materials
Slope – Labeled with Arrows
Walks, Paths 1-5% (ADA)
Patio Paving is 1-5% (ADA)
Contours – Shown and Labeled
Contours – Existing/Proposed
Accurate Tie-in to Existing Elevations
Redline Corrections

7.1.6 **Material/Furnishing Plan**
All Materials Designated and Legible
Material Schedule Matches Plan
All Furnishings Designated and Legible
Furnishings are Shown to Appropriate Scale
Callouts for: Materials
Callouts for: Furnishings
Callouts Relate to Correct Detail: Materials
Callouts Relate to Correct Detail: Furnishings
Redline Corrections

7.1.7 **Detail/Material Set Up**
Images of Materials
Preliminary Detailing for Hardscape

7.1.8 **Hardscape Details**
Minimum 5 Hardscape Details
Details are Consistent with Material Plan
Details are Appropriate for Site Conditions
Details are Consistent between Themselves
Details are Completed – None Incomplete
Dimensions are Legible + Correct
Redline Corrections

7.1.9 Retaining Wall Details
Elevation, 2 Details, Including Footing
Details are Consistent with Material Plan
Details are Appropriate for Site Conditions
Details are Consistent between Themselves
Details are Completed – None Incomplete
Dimensions are Legible + Correct
Redline Corrections

7.1.10 Furnishings Details
Minimum 2 Details, Including Ground Attachment
Details are Consistent with Furnishing Plan
Details are Appropriate for Site Conditions
Details are Consistent between Themselves
Details are Completed – None Incomplete
Dimensions are Legible + Correct
Redline Corrections

7.1.11 Planting Plan
Plant Material are Appropriate for Site Conditions
Design Scheme Offers Varied Interest Throughout Year
Softscape Materials are Clearly Designated
Plant Schedule is Complete and Correct
Plant Symbols match Plant Sizing
Plant Symbols match Plant Type
Plant Tags reflect Number of Plants
Plant Tags match Plant Name
Redline Corrections

7.1.12 Layout Plan
Major Site Elements Included in Layout
Major Site Elements Dimensioned Accurately
POB’s are Located
POB’s Appropriate Location
Dimensions Follow from POB
Flex Dimensions are Included
Simplified Methods of Dimensioning (EQ,TYP, MIN)
Redline Corrections

7.1.13 Peer Redlines
Completed
7.1.14 Progress/Participation
Absenses

7.1.15 Multipliers
Timesheets (10%)
Detail List
Design Progress 1 (20%)
Design Progress 2 (10%)
Design Progress 3 (25%)
Design Progress 4 (20%)
10 Hardscape Details (30%)
15 Hardscape Details (40%)
New Wall Details (50%)
Additional Details
Interesting Plant Combinations
Cover Sheet
Cost Estimate
Demo Plan
“If you can't draw something, you probably can't make it” - Laurie Olin

Catalogue Description: Investigation and application of landscape architectural design analysis, process and technology to landscape utility/circulation systems, structures, site layout, construction observation and implementation.

Course Prerequisites: LARC 330 - Site Engineering

Course Introduction: Implementation

- carry out, accomplish: to give practical effect to and ensure of actual fulfillment by concrete measures
- to provide instruments or means of expression for

Within the practice of landscape architecture there is often the desire to achieve simple, buildable and long-lasting solutions that also resonate with excitement and originality. Regardless of the grandness of an idea, to truly accomplish a design, one must have a practical plan to reach those ends.

The development of construction drawings enable designers to communicate with other interests in the design process. Most importantly, they become a visual and annotated guidebook for the various contractors associated with any given project.

For this course we will take the design ideas of your Fall studio project and develop them an additional step towards realization through the production of a Design Development package. This experience is meant to have you think in greater detail about what you have proposed and to consider the obstacles and opportunities that come with those decisions. It should also inform future design decisions and resolutions.

Like site engineering, technical proficiency in understanding both construction technique and representation is a cornerstone of design literacy and a fundamental tool of design. Therefore, you will be graded on your ability to produce clear, refined and informative plans, sections and details.
Learning Goals and Objectives:

1. **Comprehend** and **apply** the connection between site engineering and site design.

2. **Comprehend** and **organize** the completion of a partial Design Development document package.

3. **Describe** and **demonstrate** the ability to use topography, 3 dimensional hardscape and plant materials in the formation of spaces and human experiences.

4. **Identify** the visual and physical properties of common hardscape materials such as concrete, stone, brick, gravel and wood.

5. **Define** associated design applications and **develop** details for selected hardscape materials.

6. **Describe** and **demonstrate** common site layout systems and procedures.

7. **Describe** and **demonstrate** the use of standard slope and width constraints for streets, walks and drives.

8. **Describe** and **demonstrate** basic design and structural principles of gravity and cantilevered retaining walls.

9. **Develop** an ability to graphically communicate design intent through black and white linework in plan, section and detail.

10. **Describe** and **demonstrate** basic cost estimating in the design process.

Course Structure:

This is a lecture/workshop course that meets 4 hours per week. The format for most class days will be one hour of lecture/instruction and one hour of workshop where students will be able to work on the challenges in class. Challenges and submissions will also require time outside of class.
Required Material:

Every class the students should have the following:

<table>
<thead>
<tr>
<th>Item</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architect and Engineers Scale</td>
<td>Drawing Triangles</td>
</tr>
<tr>
<td>Tracing Paper</td>
<td>Pencils, Colored Pencils</td>
</tr>
<tr>
<td>Sketchbook/Notebook</td>
<td>Calculator</td>
</tr>
<tr>
<td>Open Mind, Passion</td>
<td>Good Fortune</td>
</tr>
</tbody>
</table>

Computer Requirements:

See UNL CoA Computer Policy. Students will be using GIS, Rhino, AutoCAD and Adobe CS suite for this course.

Evaluation and Assessment:

Final grades will be based on the information below:

Submission I

<table>
<thead>
<tr>
<th>Challenge</th>
<th>points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Challenge_01</td>
<td>50</td>
</tr>
<tr>
<td>Challenge_02</td>
<td>100</td>
</tr>
<tr>
<td>Challenge_03</td>
<td>150</td>
</tr>
<tr>
<td>Challenge_04</td>
<td>250</td>
</tr>
<tr>
<td>Challenge_05</td>
<td>200</td>
</tr>
<tr>
<td>Submission 01</td>
<td>500</td>
</tr>
</tbody>
</table>

Submission II

<table>
<thead>
<tr>
<th>Challenge</th>
<th>points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Challenge_06</td>
<td>200</td>
</tr>
<tr>
<td>Submission 02</td>
<td>1100</td>
</tr>
</tbody>
</table>

Peer-Redlines + Progress

<table>
<thead>
<tr>
<th>Redlines</th>
<th>points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Redlines_01</td>
<td>50</td>
</tr>
<tr>
<td>Redlines_02</td>
<td>50</td>
</tr>
<tr>
<td>Redlines_03</td>
<td>50</td>
</tr>
<tr>
<td>Redlines_04</td>
<td>200</td>
</tr>
<tr>
<td>Redlines_05</td>
<td>50</td>
</tr>
<tr>
<td>Redlines_06</td>
<td>50</td>
</tr>
<tr>
<td>Redlines s01</td>
<td>200</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Progress</th>
<th>points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Progress</td>
<td>800</td>
</tr>
</tbody>
</table>

Total

<table>
<thead>
<tr>
<th></th>
<th>points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>4000</td>
</tr>
</tbody>
</table>
Definitions:

A+, A, A-

An outstanding performance in which the student demonstrates superior grasp of the subject matter, and an ability to go beyond the given material in a critical and constructive manner. The student demonstrates a high degree of creative and/or logical thinking; a superior ability to organize, to analyze, and to integrate ideas; and a thorough familiarity with the relevant literature and techniques.

B+, B, B-

A good to very good performance in which the student demonstrates a thorough grasp of the subject matter, and an ability to organize and examine the material in a critical and constructive manner. The student demonstrates a good understanding of the relevant issues and a solid familiarity with the relevant literature and techniques.

C+, C, C-

A fair performance in which the student demonstrates a general grasp of the subject matter and a moderate ability to examine the material in a critical and constructive manner. The student displays an adequate understanding of the relevant issues, and a general familiarity with the relevant literature and techniques.

D+, D, D-

A poor performance in which the student demonstrates a minimal familiarity with the subject matter, but whose attempts to examine the material in a critical and constructive manner are inadequate. The student displays minimal understanding of the relevant literature and techniques.

F

An inadequate performance. Failure.

Special Accommodation:

Students with disabilities are encouraged to contact the instructor for a confidential discussion of their individual needs for academic accommodation. It is the policy of the University of Nebraska-Lincoln to provide flexible and individualized accommodation to students with documented disabilities that may affect their ability to fully participate in course activities or to meet course requirements. To receive accommodation services, students must be registered with the Services for Students with Disabilities (SSD) Office, 132 Canfield Administration, 472-3787 voice or TTY.
Attendance and Due Date Policy:
Your punctual arrival to class is required. Furthermore, attendance (both physical and mental) for the full class period is required. It is your responsibility to be on-time and attentive each day. Partial attendance for only a portion of class and not for the full duration will result in an absence.

If you are absent for (3) or more class periods, you will automatically receive a failing grade for this course, regardless of your course performance. Accidents happen, so please plan accordingly. (Should you have exceptional circumstances, you are personally responsible for explaining the reasons for your absence to the Department Chair)

Challenges and Submissions are due on the date, time and location specified by your instructor. Late work will not be accepted at all without prior approval and written agreement. Students will be evaluated on their work, involvement, progress and attention to detail. This evaluation will be based on the instructor’s observation of student work, process and proficiency, according to the course learning objectives. Projects are graded individually, generally on or shortly after the due date. As a result, deadlines are strictly enforced.

Retention of Work:
The College of Architecture has the right to retain any student work, either in part or in its entirety, for display, accreditation, documentation, recruitment or any other educational or legal purpose. You are required to submit at CD of your work for the semester at the end of the course.

Academic Integrity:
Any issues which arise relative to academic honesty or integrity will be handled in accordance with UNL Student Code of Conduct (http://stuafs.unl.edu/ja/code/). You are to do your own work on projects, exams, reports, etc. except where a group has been assigned. Any work copied from current or previous student projects or professional work examples will receive a “zero” (0) evaluation for that submittal.

Employment Policy:
The study of landscape architecture is a demanding discipline requiring a significant commitment to succeed. For this reason, the department has adopted a policy recommending that students, who are employed, not exceed the following registration guidelines.

Credit Hours Recommended/ Work Load / Week:

<table>
<thead>
<tr>
<th>Credit Hours</th>
<th>Work Load / Week</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 18 credit</td>
<td>0 hours</td>
</tr>
<tr>
<td>13-16 credit hours</td>
<td>8-16 hours</td>
</tr>
<tr>
<td>10-12 credit hours</td>
<td>17-20 hours</td>
</tr>
<tr>
<td>Up to 6 credit</td>
<td>Full time</td>
</tr>
<tr>
<td>Textbooks + References</td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td></td>
</tr>
<tr>
<td>Constructing Landscape: Materials, Techniques, Structural Components, Zimmerman, Birkhauser, Basel, Switzerland, 2008</td>
<td></td>
</tr>
<tr>
<td>Cities, Halprin, Reinhold Book Corporation, New York, 1963</td>
<td></td>
</tr>
<tr>
<td>Grading for Landscape Architects and Architects, Petschek, Birkhauser, Basel, Switzerland, 2008</td>
<td></td>
</tr>
<tr>
<td>Grade Easy, Richard Unterman, Landscape Architecture Foundation, Washington, DC, 1973</td>
<td></td>
</tr>
<tr>
<td>Contemporary Landscape Architecture, Daab, Cologne, 2008</td>
<td></td>
</tr>
</tbody>
</table>
CHALLENGE 01

50 POINTS

COMPOSITE PLAN

☐ FOLDER SET UP - set up a class folder like what is shown below.
 ☐ LARC 331_S13
 ☐ CAD
 ☐ 310_ARCHIVE
 ☐ WORKING FOLDER
 ☐ OUTDATED
 ☐ W-BLOCKS
 ☐ XREF
 ☐ RESEARCH
 ☐ MATERIALS
 ☐ PROJECT IMAGES
 ☐ SUBMITTALS

/05

☐ SET UP AUTOCAD BASE FILES - xref example to be completed in class.
 ☐ UNL_bb_base_130110
 (company name_your initials_file content_year,month,day)

/20

☐ UNL_survey
 (use this name for the file you were given - includes only existing information)

/10

☐ EDIT + CREATE LAYER NAMES FOR ACAD BASE FILE
 ☐ UNL_bb_base_130110
 (see LARC331_S13_CAD.pdf “Landscape Layer List” for assistance)

/05

PRINT LARC 310 FINAL STUDIO PROJECT (11x17)
 ☐ Place pdf’s in Submittals Folder

/05

☐ REDLINES - BRING RED PENCIL
 (to be completed on day of submission)

/10

☐ PRINTED COMPOSITE PLAN

/50

☐ MULTIPLIER - TIMESHEETS
 (due 9:10 date of submission)
 x .05 ______

/05

TOTAL

/50
<table>
<thead>
<tr>
<th>THE TEN</th>
<th>COMPOSITE PLAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLARITY</td>
<td>EXISTING + PROPOSED</td>
</tr>
<tr>
<td>LINEWEIGHT HIERARCHY</td>
<td>SITE FEATURES</td>
</tr>
<tr>
<td>LINETYPE</td>
<td></td>
</tr>
<tr>
<td>SCALE + NORTH ARROW</td>
<td></td>
</tr>
<tr>
<td>LABELS</td>
<td></td>
</tr>
<tr>
<td>TEXT SIZE</td>
<td></td>
</tr>
<tr>
<td>TEXT LEGIBILITY</td>
<td></td>
</tr>
<tr>
<td>SYMBOLS LEGEND</td>
<td></td>
</tr>
<tr>
<td>SHEET NOTES</td>
<td></td>
</tr>
<tr>
<td>UFO’S (unidentified floating objects)</td>
<td>02</td>
</tr>
</tbody>
</table>

TITLEBLOCK	
UPDATED	
SUBMISSION DATE	
KEY MAP	
SHEET NAME	
SHEET NUMBER	
STUDENT NAME	

TOTAL: 10

UNL College of Architecture Landscape Architecture Program Professor Bret Betnar
challenge_02:

GRADING PLAN

SITE GRADING SHOULD SUPPORT AND REINFORCE DESIGN CONCEPT

- DESIGN ASSUMPTIONS MATCH WITH APPLIED GRADING
- CRITICAL SPOT ELEVATIONS FOR:
 - SITE PERIMETER
 - PAVED SURFACES, CURBS, WALLS +
 - CHANGES IN SLOPES/MATERIALS
- SLOPE (%) ARE LABELED (ARROW POINTS DOWNHILL)
- WALKS + PATHS ARE 1-5% (8.33% WITH LANDINGS)
- PATIO PAVING AREAS ARE 1-5%
- CONTOURS (1 FOOT) ARE SHOWN AND LABELED:
 - EXISTING (DASHED) + PROPOSED (CONTINUOUS)
- ACCURATE TIE-IN TO ALL EXISTING ELEVATIONS

COMPOSITE PLAN

- EXISTING + PROPOSED SITE FEATURES
- REDLINE CORRECTIONS

‘THE TEN’

TITLEBLOCK

- SUBMISSION DATE
- KEY MAP - CITY SCALE
- SHEET NAME
- SHEET NUMBER
- STUDENT NAME

PROJECT REFLECTION

PRINTED C_02

MULTIPLIER - TIMESHEETS

DUE 9:10 DATE OF SUBMISSION

x 0.05

MULTIPLIER - COMPREHENSIVE DETAIL LIST

1% PER 10 DETAILS

x 0.01

TOTAL

100
GRADING PLAN

SITE GRADING SHOULD SUPPORT AND REINFORCE DESIGN CONCEPT

DESIGN ASSUMPTIONS MATCH WITH APPLIED GRADING

CRITICAL SPOT ELEVATIONS FOR:
- SITE PERIMETER
- PAVED SURFACES, CURBS, WALLS +
- CHANGES IN SLOPES/MATERIALS

SLOPE (%) ARE LABELED (ARROW POINTS DOWNHILL)

WALKS + PATHS ARE 1-5% (8.33% WITH LANDINGS)

PATIO PAVING AREAS ARE 1-5%

CONTOURS (1 FOOT) ARE SHOWN AND LABELED:
- EXISTING (DASHED) + PROPOSED (CONTINUOUS)

ACCURATE TIE-IN TO ALL EXISTING ELEVATIONS

40 ________

‘THE TEN’

CLARITY
LINEWEIGHT HIERARCHY
LINETYPE
SCALE + NORTH ARROW
LABELS
TEXT SIZE
TEXT LEGIBILITY
SYMBOLS LEGEND
SHEET NOTES
UFO’S
(unidentified floating objects)

20 ________

TITLEBLOCK

SUBMISSION DATE
KEY MAP - CITY SCALE
SHEET NAME
SHEET NUMBER
STUDENT NAME

10 ________

PRINTED

if yes, x
<table>
<thead>
<tr>
<th>MATERIALS + FURNISHING PLAN (L-202, L-203)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL MATERIALS DESIGNATED AND LEGIBLE</td>
<td></td>
</tr>
<tr>
<td>MATERIAL SCHEDULE MATCHES PLAN</td>
<td></td>
</tr>
<tr>
<td>ALL FURNISHINGS DESIGNATED AND LEGIBLE</td>
<td></td>
</tr>
<tr>
<td>FURNISHINGS ARE SHOWN TO APPROPRIATE SCALE</td>
<td></td>
</tr>
<tr>
<td>CALLOUTS FOR ALL DETAILS</td>
<td></td>
</tr>
<tr>
<td>MATERIALS</td>
<td></td>
</tr>
<tr>
<td>FURNISHINGS</td>
<td></td>
</tr>
<tr>
<td>CALLOUTS RELATE TO CORRECT DETAIL AND SHEET</td>
<td></td>
</tr>
<tr>
<td>MATERIALS</td>
<td></td>
</tr>
<tr>
<td>FURNISHINGS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DETAILS - MATERIALS (L-801, L-802, etc)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IMAGES OF MATERIALS</td>
<td></td>
</tr>
<tr>
<td>PRELIMINARY DETAILING FOR ASSIGNED DETAILS (TBD)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GRADING PLAN (L-401)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DESIGN ASSUMPTIONS MATCH WITH APPLIED GRADING</td>
<td></td>
</tr>
<tr>
<td>REDLINE CORRECTIONS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COMPOSITE PLAN (L-101)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EXISTING + PROPOSED SITE FEATURES</td>
<td></td>
</tr>
<tr>
<td>REDLINE CORRECTIONS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>'THE TEN'</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TITLEBLOCK (All sheets)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SUBMISSION DATE</td>
<td></td>
</tr>
<tr>
<td>KEY MAPS</td>
<td></td>
</tr>
<tr>
<td>SHEET NAME</td>
<td></td>
</tr>
<tr>
<td>SHEET NUMBER</td>
<td></td>
</tr>
<tr>
<td>STUDENT NAME</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PRINTED C_03</th>
<th>150</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>MULTIPLIER - TIMESHEETS</th>
<th>DUE 12 FEB</th>
</tr>
</thead>
<tbody>
<tr>
<td>DUE</td>
<td>x 0.05</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MULTIPLIER - .025% PER ADDITIONAL DETAIL</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x 0.025</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MULTIPLIER - .025% PER PROGRESS PRINT</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x 0.025</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| TOTAL | 150 |
REDLINE EVALUATION III

MATERIALS + FURNISHING PLAN (L-202, L-203)
- All materials designated and legible
- Material schedule matches plan
- All furnishings designated and legible
- Furnishings are shown to appropriate scale
- Callouts for all details
 - Materials
 - Furnishings
- Callouts relate to correct detail and sheet
 - Materials
 - Furnishings

DETAILS - MATERIALS (L-801, L-802, etc)
- Images of materials
- Preliminary detailing for hardscape details

THE TEN
- Clarity
- Lineweight hierarchy
- Linetype
- Scale + north arrow
- Labels
- Text size
- Text legibility
- Symbols legend
- Sheet notes
- UFO’s
 - (unidentified floating objects)

GRADING PLAN (L-401)
- Critical spot elevations for:
 - Site perimeter
 - Paved surfaces, curbs, walls +
 - Changes in slopes/materials
- Slope (%) are labeled (arrow points downhill)
- Walks + paths are 1-5% (8.33% with landings)
- Patio paving areas are 1-5%
- Contours (1 foot) are shown and labeled:
 - Existing (dashed) + proposed (continuous)
- Accurate tie-in to all existing elevations
- Design assumptions match with applied grading
- Redline corrections (BB only)
COMPOSITE PLAN (L-101)
EXISTING + PROPOSED SITE FEATURES
REDLINE CORRECTIONS (BB only)

TITLEBLOCK (All sheets)
SUBMISSION DATE
KEY MAPS
SHEET NAME
SHEET NUMBER
STUDENT NAME

MULTIPLIER - TIMESHEETS DUE 12 FEB

MULTIPLIER - .025% PER ADDITIONAL DETAIL
______ x 0.025

MULTIPLIER - .025% PER PROGRESS PRINT
______ x 0.025

TOTAL 150

UNL College of Architecture Landscape Architecture Program Professor Bret Betnar
challenge_04:

MATERIALS + FURNISHING PLAN (L-201, L-202, L-203)

- All materials designated and legible
- Material schedule matches plan
- All furnishings designated and legible
- Furnishings are shown to appropriate scale
- Callouts for all details
 - Materials
 - Furnishings
- Callouts relate to correct detail and sheet
 - Materials
 - Furnishings

HARDSCAPE DETAILS

- Minimum 5 hardscape details (BB only)
- Details are consistent with material plan
- Details are appropriate for site conditions
- Details are consistent between themselves
- Details are completed - none incomplete
- Dimensions are legible + correct

RETAINING WALL DETAILS

- Elevation, 2 details, including footing (BB only)
- Details are consistent with material plan
- Details are appropriate for site conditions
- Details are consistent between themselves
- Details are completed - none incomplete
- Dimensions are legible + correct

FURNISHING DETAILS

- Minimum 2 details, including ground attachment (BB only)
- Details are consistent with furnishing plan
- Details are appropriate for site conditions
- Details are completed - none incomplete
- Dimensions are legible + correct
THE TEN

DON'T FORGET SYMBOLS LEGEND + SHEET NOTES

50 ________

<table>
<thead>
<tr>
<th>TITLEBLOCK (All sheets)</th>
<th>20 ________</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUBMISSION DATE</td>
<td></td>
</tr>
<tr>
<td>KEY MAPS</td>
<td></td>
</tr>
<tr>
<td>SHEET NAME</td>
<td></td>
</tr>
<tr>
<td>SHEET NUMBER</td>
<td></td>
</tr>
<tr>
<td>STUDENT NAME</td>
<td></td>
</tr>
</tbody>
</table>

PRINTED C_04

MULTIPLIER - HARDSCAPE DETAILS PRINT (14 FEB)	x 0.20 ________
MULTIPLIER - TIMESHEETS DUE 26 FEB	x 0.05 ________
MULTIPLIER - 10 HARDSCAPE/FURNISHING DETAILS	x 0.30 ________
x 30%	x 0.40 ________
MULTIPLIER - 15 HARDSCAPE/FURNISHING DETAILS	x 0.50 ________
x 40%	x 0.10 ________
MULTIPLIER - NEW WALL DETAILS x 50%	x 0.20 ________
MULTIPLIER - PROGRESS PRINT1 (21 FEB before 9:05am)	________
MULTIPLIER - PROGRESS PRINT2 (26 FEB before 9:05am)	________
INCLUDING GRADING PLAN AND COMPOSITE	

TOTAL POSSIBLE POINTS = 612.50
MATERIALS + FURNISHING PLAN (L-202, L-203)
- ALL MATERIALS DESIGNATED AND LEGIBLE
- MATERIAL SCHEDULE MATCHES PLAN
- ALL FURNISHINGS DESIGNATED AND LEGIBLE
- FURNISHINGS ARE SHOWN TO APPROPRIATE SCALE
- CALLOUTS FOR ALL DETAILS
 - MATERIALS
 - FURNISHINGS
- CALLOUTS RELATE TO CORRECT DETAIL AND SHEET
 - MATERIALS
 - FURNISHINGS

40

HARDSCAPE DETAILS
- MINIMUM 5 HARDSCAPE DETAILS (BB ONLY)
- DETAILS ARE CONSISTENT WITH MATERIAL PLAN
- DETAILS ARE APPROPRIATE FOR SITE CONDITIONS
- DETAILS ARE CONSISTENT BETWEEN THEMSELVES
- DETAILS ARE COMPLETED - NONE INCOMPLETE
- DIMENSIONS ARE LEGIBLE + CORRECT

50

RETAINING WALL DETAILS
- ELEVATION, 2 DETAILS, INCLUDING FOOTING (BB ONLY)
- DETAILS ARE CONSISTENT WITH MATERIAL PLAN
- DETAILS ARE APPROPRIATE FOR SITE CONDITIONS
- DETAILS ARE CONSISTENT BETWEEN THEMSELVES
- DETAILS ARE COMPLETED - NONE INCOMPLETE
- DIMENSIONS ARE LEGIBLE + CORRECT

50

FURNISHING DETAILS
- MINIMUM 2 DETAILS, INCLUDING GROUND ATTACHMENT (BB ONLY)
- DETAILS ARE CONSISTENT WITH FURNISHING PLAN
- DETAILS ARE APPROPRIATE FOR SITE CONDITIONS
- DETAILS ARE COMPLETED - NONE INCOMPLETE
- DIMENSIONS ARE LEGIBLE + CORRECT

40
THE TEN

<table>
<thead>
<tr>
<th>Category</th>
<th>Multiplier</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clarity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lineweight Hierarchy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linetype</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scale + North Arrow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Labels</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Text Size</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Text Legibility</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symbols Legend</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sheet Notes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UFO’s (unidentified floating objects)</td>
<td></td>
<td>50</td>
</tr>
</tbody>
</table>

TITLEBLOCK (All sheets)

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Multiplier</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Submission Date</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key Maps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sheet Name</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sheet Number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Student Name</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Multiplier</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Printed C_04</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>Multiplier - Hardscape Details Print (14 FEB)</td>
<td>x 0.20</td>
<td></td>
</tr>
<tr>
<td>Multiplier - Timesheets</td>
<td>x 0.05</td>
<td></td>
</tr>
<tr>
<td>Multiplier - 10 Hardscape/Furnishing Details</td>
<td>x 0.30</td>
<td></td>
</tr>
<tr>
<td>Multiplier - 15 Hardscape/Furnishing Details</td>
<td>x 0.40</td>
<td></td>
</tr>
<tr>
<td>Multiplier - New Wall Details</td>
<td>x 0.50</td>
<td></td>
</tr>
<tr>
<td>Multiplier - Progress Print1 (26 FEB before 9:05am)</td>
<td>x 0.10</td>
<td></td>
</tr>
<tr>
<td>Multiplier - Progress Print2 (28 FEB before 9:05am)</td>
<td>x 0.20</td>
<td></td>
</tr>
</tbody>
</table>

TOTAL

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total possible points = 612.50</td>
<td></td>
</tr>
</tbody>
</table>

REDLINES

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Redlines</td>
<td>200</td>
</tr>
</tbody>
</table>
challenge_05:
PLANTING PLAN L-601

<table>
<thead>
<tr>
<th>PLANTING PLAN (L-601)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PLANT MATERIAL ARE APPROPRIATE FOR SITE CONDITIONS</td>
<td></td>
</tr>
<tr>
<td>DESIGN SCHEME OFFERS VARIED INTEREST THROUGH SEASONS</td>
<td></td>
</tr>
<tr>
<td>SOFTSCAPE MATERIALS ARE CLEARLY DESIGNATED AND LEGIBLE</td>
<td></td>
</tr>
<tr>
<td>PLANT SCHEDULE IS COMPLETE AND CORRECT</td>
<td></td>
</tr>
<tr>
<td>PLANT SYMBOLS RELATE TO CORRECT:</td>
<td></td>
</tr>
<tr>
<td>PLANT SIZING</td>
<td></td>
</tr>
<tr>
<td>PLANT TYPE</td>
<td></td>
</tr>
<tr>
<td>PLANT TAGS RELATE TO CORRECT:</td>
<td></td>
</tr>
<tr>
<td>NUMBER OF PLANTS</td>
<td>140</td>
</tr>
<tr>
<td>PLANT NAME (PLANT LEGEND)</td>
<td></td>
</tr>
</tbody>
</table>

'THE TEN'

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
</tr>
</tbody>
</table>

TITLEBLOCK (All sheets)

SUBMISSION DATE	
KEY MAPS	
SHEET NAME	
SHEET NUMBER	
STUDENT NAME	10

PRINTED C_05

<table>
<thead>
<tr>
<th>MULTIPLIER - TIMESHEETS</th>
<th>DUE 26 MAR</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>x 0.10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MULTIPLIER - DESIGN PROGRESS</th>
<th>(26 MAR before 9:05am)</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>x 0.20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MULTIPLIER - INTERESTING PLANT COMBINATION</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>x 0.10</td>
<td></td>
</tr>
</tbody>
</table>

TOTAL

| 200 |

REDLINES

| 50 |
THE TEN

- Clarity
- Lineweight Hierarchy
- Linetype
- Scale + North Arrow
- Labels
- Text Size
- Text Legibility
- Symbols Legend
- Sheet Notes
- UFO's (unidentified floating objects)

TITLEBLOCK (All sheets)

- Submission Date
- Key Maps
- Sheet Name
- Sheet Number
- Student Name

PLANTING PLAN (L-601)

- Plant material are appropriate for site conditions
- Design scheme offers varied interest through seasons
- Softscape materials are clearly designated and legible
- Plant schedule is complete and correct
- Plant symbols relate to correct:
 - Plant Sizing
 - Plant Type
- Plant tags relate to correct:
 - Number of Plants
 - Plant Name (Plant Legend)

PRINTED C_05

- Multiplier - Timesheets DUE 26 MAR \(\times 0.10 \)
- Multiplier - Design Progress (26 MAR before 9:05am) \(\times 0.20 \)
- Multiplier - Interesting Plant Combination \(\times 0.10 \)

TOTAL

200

REDLINES

50
COMPLETE YOUR REDLINES FOR THE FOLLOWING SHEETS:

COMPOSITE PLAN (L-101)
MATERIALS + FURNISHING PLAN (L-202, L-203)
GRADING PLAN (L-401)
PLANTING PLAN (L-601)
HARDSCAPE DETAILS (L-801)
RETAINING WALL DETAILS (L-802)
FURNISHING DETAILS (L-803)

\[350 \]

‘THE TEN’

\[100 \]

TITLEBLOCK (All sheets)

\[20 \]

PDF VERSION

\[10 \]

TURN IN PREVIOUS REDLINES

\[20 \]

PRINTED C_05

\[500 \]

MULTIPLIER - TIMESHEETS
DUE 02 APRIL
\[x \ 0.10 \]

MULTIPLIER - AWESOME GRAPHIC COVER SHEET WITH TABLE OF CONTENTS. BLACK/WHITE ONLY. DUE 02 APRIL
\[x \ 0.20 \]

TOTAL

\[500 \]
COMPLETE YOUR REDLINES FOR THE FOLLOWING SHEETS:

- COMPOSITE PLAN (L-101)
- MATERIALS + FURNISHING PLAN (L-202, L-203)
- GRADING PLAN (L-401)
- PLANTING PLAN (L-601)
- HARDSCAPE DETAILS (L-801)
- RETAINING WALL DETAILS (L-802)
- FURNISHING DETAILS (L-803)

350 ________

‘THE TEN’

- CLARITY
- LINEWEIGHT HIERARCHY
- LINETYPE
- SCALE + NORTH ARROW
- LABELS
- TEXT SIZE
- TEXT LEGIBILITY
- SYMBOLS LEGEND
- SHEET NOTES
- UFO’S
 (unidentified floating objects)

100 ________

TITLEBLOCK (All sheets)

- SUBMISSION DATE
- KEY MAPS
- SHEET NAME
- SHEET NUMBER
- STUDENT NAME

20 ________

PDF VERSION

10 ________

TURN IN PREVIOUS REDLINES

20 ________

PRINTED SUBMISSION 01

500 ________

MULTIPLIER - TIMESHEETS
DUE 02 APRIL

x 0.10 ________

MULTIPLIER - AWESOME GRAPHIC COVER SHEET WITH TABLE OF CONTENTS. BLACK/WHITE ONLY. DUE 02 APRIL

x 0.20 ________

TOTAL

500 ________
LAYOUT PLAN (L-301)
MAJOR SITE ELEMENTS ARE:
INCLUDED IN LAYOUT PLAN
DIMENSIONED ACCURATELY
POB(s) ARE LOCATED
POB(s) ARE AT APPROPRIATE LOCATION(s)
DIMENSIONS FOLLOW FROM POB(s)
FLEX DIMENSIONS ARE INCLUDED IN LAYOUT PLAN
SIMPLIFIED METHODS OF DIMENSIONING ARE UTILIZED (EQ,TYP,MIN)

140 __________

'THE TEN'

50 __________

TITLEBLOCK (All sheets)
SUBMISSION DATE
KEY MAPS
SHEET NAME
SHEET NUMBER
STUDENT NAME

10 __________

PRINTED C_06
MULTIPLIER - TIMESHEETS DUE 11 APR
\[x \times 0.10 \]
MULTIPLIER - DESIGN PROGRESS (09 APR before 9:05am)
\[x \times 0.20 \]
MULTIPLIER - DEMOLITION PLAN (11 APR before 9:05am)
\[x \times 0.30 \]
TOTAL
200 __________

REDLINES
50 __________
LAYOUT PLAN (L-301)

- Major site elements are:
 - Included in layout plan
 - Dimensioned accurately
- POB(s) are located
- POB(s) are at appropriate location(s)
- Dimensions follow from POB(s)
- Flex dimensions are included in layout plan
- Simplified methods of dimensioning are utilized (EQ,TYP,MIN)

‘THE TEN’

- Clarity
- Lineweight hierarchy
- Linetype
- Scale + north arrow
- Labels
- Text size
- Text legibility
- Symbols legend
- Sheet notes
- UFO’s
 - (unidentified floating objects)

TITLEBLOCK (All sheets)

- Submission date
- Key maps
- Sheet name
- Sheet number
- Student name

PRINTED C_06

- Multiplier - timesheets
 - Due 11 Apr
 - \(\times 0.10 \)
- Multiplier - design progress
 - (09 Apr before 9:05am)
 - \(\times 0.20 \)
- Multiplier - demolition plan
 - (11 Apr before 9:05am)
 - \(\times 0.30 \)

TOTAL

- Redlines
 - 50
Complete Your Redlines for the Following Sheets:

<table>
<thead>
<tr>
<th>Sheet</th>
<th>Redlines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composite Plan (L-101)</td>
<td></td>
</tr>
<tr>
<td>Materials + Furnishing Plan (L-202, L-203)</td>
<td></td>
</tr>
<tr>
<td>Layout Plan (L-301)</td>
<td></td>
</tr>
<tr>
<td>Grading Plan (L-401)</td>
<td></td>
</tr>
<tr>
<td>Planting Plan (L-601)</td>
<td></td>
</tr>
<tr>
<td>Hardscape Details (L-801)</td>
<td></td>
</tr>
<tr>
<td>Retaining Wall Details (L-802)</td>
<td></td>
</tr>
<tr>
<td>Furnishing Details (L-803)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>500</td>
</tr>
</tbody>
</table>

| 'The Ten' | |
| | 100 |

| Titleblock (All sheets) | |
| | 50 |

Printed S_02

<table>
<thead>
<tr>
<th>Description</th>
<th>Multiplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplier - Timesheets DUE 30 April</td>
<td>x 0.10</td>
</tr>
<tr>
<td>Multiplier - Awesome Graphic Cover Sheet with Updated Table of Contents. Black/White Only</td>
<td>x 0.10</td>
</tr>
<tr>
<td>Multiplier - Completed Cost Estimate.</td>
<td>x 0.30</td>
</tr>
</tbody>
</table>

Total 1100

Put all in same PDF package!!!!!!
COMPLETE YOUR REDLINES FOR THE FOLLOWING SHEETS:

COMPOSITE PLAN (L-101)
MATERIALS + FURNISHING PLAN (L-202, L-203)
LAYOUT PLAN (L-301)
GRADING PLAN (L-401)
PLANTING PLAN (L-601)
HARDSCAPE DETAILS (L-801)
RETAINING WALL DETAILS (L-802)
FURNISHING DETAILS (L-803)

500 ________

‘THE TEN’

CLARITY
LINEWEIGHT HIERARCHY
LINETYPE
SCALE + NORTH ARROW
LABELS
TEXT SIZE
TEXT LEGIBILITY
SYMBOLS LEGEND
SHEET NOTES
UFO’S
(unidentified floating objects)

100 ________

TITLEBLOCK (All sheets)

SUBMISSION DATE
KEY MAPS
SHEET NAME
SHEET NUMBER
STUDENT NAME

50 ________
MULTIPLIER - TIMESHEETS DUE 30 APRIL

MULTIPLIER - AWESOME GRAPHIC COVER SHEET WITH UPDATED TABLE OF CONTENTS. BLACK/WHITE ONLY.

MULTIPLIER - COMPLETED COST ESTIMATE.

TOTAL

1100

PRINTED S_02

1100

PDF VERSION

100

TURN IN PREVIOUS REDLINE SET

100

TURN IN SUBMISSION 1

100

SCAN SUBMISSION 1 REDLINES

100

ELECTRONIC CAD FILES

50

MULTIPLIER - COMPLETED COST ESTIMATE.

x 0.10

MULTIPLIER - AWESOME GRAPHIC COVER SHEET WITH UPDATED TABLE OF CONTENTS. BLACK/WHITE ONLY.

x 0.10

MULTIPLIER - TIMESHEETS DUE 30 APRIL

x 0.30

1100
Site Implementation Document Set
SUBMISSION_2
GENERAL NOTES:

1. Jointing conditions and grades were obtained from the survey.

2. Contractor shall verify all existing conditions and dimensions, and notify landscape architect at once in writing of any discrepancies between the existing conditions as indicated on the plan and actual field conditions and receive written instructions prior to proceeding.

3. Contractor shall be responsible for checking existing grades to verify their accuracy.

4. Existing underground utilities have been plotted from drawings and shall be deemed approximate only. Contractor shall verify all utility locations as elevations prior to excavation. Before construction starts, all utility companies shown on this plan contact data and report any discrepancies in writing to landscape architect and project engineer.

5. The contractor shall establish permanent benchmarks, maintain all existing bench marks and bench marks and replace as directed by which are disturbed or destroyed.

6. Contractor shall employ special care in scheduling constructions so as to maintain existing streets, driveways, and sidewalks. Contractor shall also be responsible for making the interior streets of the existing streets clear of debris. Contractor shall also be responsible for making the interior streets clear of debris.

7. The contractor shall exercise special care to avoid any damage to existing buildings resulting from contract operations.

8. Contract limit lines are noted on plan. Contractor is responsible for all damages due to operations inside and outside of the contract limit lines. Contractor shall meet line and grade of existing conditions at the contract limit line. See special conditions for requirements regarding the maintenance and protection of existing utility lines and outside the contract limit lines.
WWM 6" X 6" 6 GAUGE, TO BE SUPPORTED WITH PLASTIC CHAIRS

4,000 PSI CONCRETE, AIR ENTRAINNED PORTLAND CEMENT, LIGHT BROOM FINISH

1/4" WHITE LIMESTONE CHIPS, COMPACTABLE 2" DEEP

FIRM, DRY, UNYIELDING SUBGRADE

WWM 6" X 6" 6 GAUGE, TO BE SUPPORTED WITH PLASTIC CHAIRS

4,000 PSI CONCRETE, AIR ENTRAINNED PORTLAND CEMENT, LIGHT BROOM FINISH

2X2X4" FIBERGLASS PAVER

TALL FESCUE SOD

6" BUFFER TOPSOIL

FIRM, DRY, UNYIELDING SUBGRADE

WWM 6" X 6" 6 GAUGE

C12/15 CONCRETE FOOTING

CONCRETE TO LIMESTONE CEMENT DETAIL

CONCRETE TO TURF FESCUE SOD DETAIL