Improving the Freight Transportation Roadway System during Snow Events: A Performance Evaluation of Deicing Chemicals

Christopher Y. Tuan
University of Nebraska-Lincoln, ctuan1@unl.edu

Barbara M. Gerbino-Bevins
University of Nebraska-Lincoln, barbara.gerbino-bevins@nebraska.gov

Follow this and additional works at: https://digitalcommons.unl.edu/matcreports

Part of the Civil Engineering Commons
Improving the Freight Transportation Roadway System during Snow Events: A Performance Evaluation of Deicing Chemicals

Christopher Y. Tuan, Ph.D.
Professor
Department of Civil Engineering
University of Nebraska-Lincoln

Barbara Gerbino-Bevins
Graduate Assistant
Department of Civil Engineering
University of Nebraska-Lincoln

2011

A Cooperative Research Project sponsored by the U.S. Department of Transportation Research and Innovative Technology Administration

The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the information presented herein. This document is disseminated under the sponsorship of the Department of Transportation University Transportation Centers Program, in the interest of information exchange. The U.S. Government assumes no liability for the contents or use thereof.
Improving the Freight Transportation Roadway System during Snow Events: A Performance Evaluation of Deicing Chemicals

Christopher Y. Tuan, Ph.D., P.E.
Professor
Department of Civil Engineering
University of Nebraska-Lincoln

Barbara Gerbino-Bevins
Graduate Assistant
Department of Civil Engineering
University of Nebraska-Lincoln

A Report on Research Sponsored by

Mid-America Transportation Center
University of Nebraska-Lincoln

May 2012
Abstract

The ability of state DOTs to adequately clear roadways during winter weather conditions is critical for a safe and effective freight transportation system. Variables affecting winter maintenance operations include the type of precipitation, air and pavement temperature, traffic, wind, time of day, day of week, and maintenance equipment. The main objective of this study is to identify the best practices for normal deicing operations, based on the performance rating of deicing chemicals. Optimum deicer/brine ratios and the associated application rates will be determined for various weather conditions. The best practices will ensure effective deicing operation and economical use of deicing chemicals. Common deicing chemicals include sodium chloride, magnesium chloride, calcium chloride, calcium magnesium acetate, potassium acetate, potassium formate and carbohydrate–based (corn or beet) deicer solution. Deicers take the form of pellets or liquids. Liquid deicers are commonly used for prewetting road salt or other chemicals, or they are used as liquid solution. Several laboratory tests for deicer performance evaluation have been developed. However, none of these tests have been correlated with field performance data nor have they provided standardized results to ensure an acceptable performance in the field. Nebraska will serve as the test bed for this study although the results can be generalized to other locations. This is an ideal test site because a large quantity of automatic vehicle location (AVL) system data from NDOR plow trucks will be available. The AVL data includes truck location with GPS coordinates and time stamps. In addition, the snow plow trucks are equipped with digital cameras, which take snapshots of the roadway. These onboard systems will also provide real-time surface temperatures, air temperatures, wind speed, deicer application rates, and roadway conditions. The field data will be available for correlation analysis with the data from laboratory testing through the use of a Maintenance Decision Support System (MDSS). The correlations between the field deicing performance and the laboratory testing are crucial for the development of the best practices using competing deicing products for a variety of weather conditions. The end result will be clearer roads during snow events, which will lead to a safer and more efficient freight and passenger roadway system.

Key Words

Winter Maintenance, Deicing Chemicals, Ice Melting Capacities, Friction Tests, Refreeze Time, Field Data, Automatic Vehicle Locator (AVL), Maintenance Decision Support System (MDSS)
Table of Contents

CHAPTER 1 INTRODUCTION.. VIII
 1.1 Background Information... 1
 1.2 Research Objectives... 1
 1.3 Organization of the Report... 2

CHAPTER 2 LITERATURE REVIEW... 4
 2.1 Laboratory Tests ... 4
 2.1.1 Ice Melting Capacity .. 4
 2.1.2 Ice Penetration .. 5
 2.1.3 Ice Debonding ... 7
 2.1.4 Thermal Properties .. 10
 2.1.5 Resulting Surface Friction Coefficient ... 11
 2.1.6 Viscosity and Specific Gravity ... 16
 2.2 Standards of Practice .. 17
 2.2.1 Solid Deicers .. 17
 2.2.2 Liquid Deicers .. 18
 2.2.3 Prewet Solid Deicers ... 19
 2.2.4 Abrasives ... 20
 2.2.5 Application Rates ... 22

CHAPTER 3 DEICING CHEMICALS PERFORMANCE TESTS ... 25
 3.1 SHRP Ice Melting Capacity Test ... 26
 3.1.1 Equipment ... 27
 3.1.2 Procedure .. 28
 3.1.2.1 Preparation of Test Samples ... 28
 3.1.2.2 Testing Procedure ... 29
 3.1.3 Data Processing .. 30
 3.2 Shaker Test ... 31
 3.2.1 Equipment .. 32
 3.2.2 Procedure .. 34
 3.2.3 Data Processing ... 37
 3.3 Friction Test .. 37
 3.3.1 Equipment ... 39
 3.3.2 Procedure .. 42
 3.3.2.1 Preparation of the Steel Angle ... 42
 3.3.2.2 Preparation of the Concrete Slab ... 42
 3.3.3 Data Processing ... 43
 3.4 Sunlight Test .. 47
 3.4.1 Equipment ... 47
 3.4.2 Procedure .. 48
 3.4.2.1 Sample Preparation ... 48
 3.4.2.2 Testing Procedure ... 49
 3.4.3 Data Processing ... 50
 3.5 Refreeze Test .. 51
 3.5.1 Equipment ... 52
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Ice Melting Capacity Dish</td>
<td>5</td>
</tr>
<tr>
<td>2.2</td>
<td>Ice Penetration Test Apparatus (Nixon et al., 2007)</td>
<td>6</td>
</tr>
<tr>
<td>2.3</td>
<td>Ice Debonding Test Results (Shi et al., 2009)</td>
<td>8</td>
</tr>
<tr>
<td>2.4</td>
<td>Heating-Cycle Thermogram Example (Shi et al., 2009)</td>
<td>10</td>
</tr>
<tr>
<td>2.5</td>
<td>British Pendulum Thermometer</td>
<td>13</td>
</tr>
<tr>
<td>2.6</td>
<td>Results for SAAB Friction Tester (Alger et al., 1994)</td>
<td>14</td>
</tr>
<tr>
<td>2.7</td>
<td>A Tribometer</td>
<td>15</td>
</tr>
<tr>
<td>2.8</td>
<td>Friction Test Results (Shi et al., 2009)</td>
<td>16</td>
</tr>
<tr>
<td>2.9</td>
<td>Sand Prewet with Hot Water on a Roadway (Transportation Research Circular, 2004)</td>
<td>21</td>
</tr>
<tr>
<td>3.1</td>
<td>SHRP Ice Melting Capacity Test Setup inside Freezer</td>
<td>28</td>
</tr>
<tr>
<td>3.2</td>
<td>Collecting Brine</td>
<td>30</td>
</tr>
<tr>
<td>3.3</td>
<td>(a) Martini Shaker (b) with Insulation</td>
<td>32</td>
</tr>
<tr>
<td>3.4</td>
<td>Thermocouple Wire</td>
<td>33</td>
</tr>
<tr>
<td>3.5</td>
<td>Shaking Angle</td>
<td>35</td>
</tr>
<tr>
<td>3.6</td>
<td>Remaining Ice in Strainer Section of Lid</td>
<td>36</td>
</tr>
<tr>
<td>3.7</td>
<td>Details of Liquid Pooling Issue</td>
<td>39</td>
</tr>
<tr>
<td>3.8</td>
<td>Rubber Contact Points</td>
<td>40</td>
</tr>
<tr>
<td>3.9</td>
<td>Equipment and Setup to Drag Sled</td>
<td>41</td>
</tr>
<tr>
<td>3.10</td>
<td>Applying Acrylic Sealant on Concrete Slab</td>
<td>43</td>
</tr>
<tr>
<td>3.11</td>
<td>Making Ice Layer</td>
<td>44</td>
</tr>
<tr>
<td>3.12</td>
<td>Friction Test Setup</td>
<td>45</td>
</tr>
<tr>
<td>3.13</td>
<td>Sunlight Test Surface</td>
<td>48</td>
</tr>
<tr>
<td>3.14</td>
<td>Sunlight Test Sample Preparation</td>
<td>49</td>
</tr>
<tr>
<td>3.15</td>
<td>Deicing Samples in Shaded and Sunlit Areas</td>
<td>50</td>
</tr>
<tr>
<td>3.16</td>
<td>Refreeze Test Liquid Measurement</td>
<td>51</td>
</tr>
<tr>
<td>4.1</td>
<td>SHRP Ice Melting Capacity Test Results at 0°F for 60 min</td>
<td>54</td>
</tr>
<tr>
<td>4.2</td>
<td>SHRP Ice Melting Capacity Test Results at 10°F for 60 min</td>
<td>56</td>
</tr>
<tr>
<td>4.3</td>
<td>SHRP Ice Melting Capacity Test Rates at 0°F for 100% of Indicated Deicer</td>
<td>57</td>
</tr>
<tr>
<td>4.4</td>
<td>SHRP Ice Melting Capacity Test Rates at 0°F for 50/50 Mixes of Indicated Deicer and Sodium Chloride</td>
<td>57</td>
</tr>
<tr>
<td>4.5</td>
<td>SHRP Ice Melting Capacity Test Rates at 0°F for 40/60 Mixes of Indicated Deicer and Sodium Chloride</td>
<td>58</td>
</tr>
<tr>
<td>4.6</td>
<td>SHRP Ice Melting Capacity Test Rates at 0°F for 25/75 Mixes of Indicated Deicer and Sodium Chloride</td>
<td>58</td>
</tr>
<tr>
<td>4.7</td>
<td>SHRP Ice Melting Capacity Test Rates at 10°F for 50/50 Mixes of Indicated Deicer and Sodium Chloride</td>
<td>59</td>
</tr>
<tr>
<td>4.8</td>
<td>SHRP Ice Melting Capacity Test Rates at 10°F for 25/75 Mixes of Indicated Deicer and Sodium Chloride</td>
<td>59</td>
</tr>
<tr>
<td>4.9</td>
<td>SHRP Ice Melting Capacity Test Rates at 20°F for 50/50 Mixes of Indicated Deicer and Sodium Chloride</td>
<td>59</td>
</tr>
<tr>
<td>4.10</td>
<td>(Left) Clear Deicers in Separate Syringes, (Middle) Precipitate Formed After Mixing Deicers, (Right) Settled Precipitate</td>
<td>60</td>
</tr>
<tr>
<td>4.11</td>
<td>SHRP Ice Melting Capacity Test Results (Alger and Haase, 2006)</td>
<td>62</td>
</tr>
</tbody>
</table>

iv
Figure 4.12 Modified SHRP Ice Melting Capacity 60-min Test Results at 15°F (Akin and Shi, 2010) .. 65
Figure 4.13 Modified SHRP Ice Melting Capacity 60-min Test Results at 30°F (Akin and Shi, 2010) .. 65
Figure 4.14 Modified SHRP Ice Melting Capacity 60-min Test Results at 30°F (Akin and Shi, 2010) .. 65
Figure 4.15 SHRP Ice Melting Capacity Test Results at 60-min (Nixon et al., 2007) 66
Figure 4.16 Temperature Change inside the Shaker during the Shaker Test 69
Figure 4.17 Shaker Test Liquid Results at 20°F .. 70
Figure 4.18 Shaker Test Liquid Results at 10°F ... 71
Figure 4.19 Shaker Test Liquid Results at 0°F ... 71
Figure 4.20 Shaker Test Solid Results ... 74
Figure 4.21 Shaker Test Results for Prewet Road Salt at 10°F; each Bar Represents 3 Tests 76
Figure 4.22 Shaker Test Results for Prewet Road Salt at 0°F; each Bar Represents 3 Tests 76
Figure 4.23 Potassium Acetate Reacted with Road Salt 77
Figure 4.24 Shaker Test Results for Beet Juice-A Mixes at 20°F; each Bar Represents 3 Tests 79
Figure 4.25 Repeatability of Shaker Test using Liquid Deicers 81
Figure 4.26 Friction Force vs. Time .. 82
Figure 4.27 Sunlight Test Results .. 85
Figure 4.28 Refreeze Test Results for Agricultural Byproduct or “Beet Juice” Deicers 87
Figure 4.29 Refreeze Test Results for Magnesium Chloride Deicers 88
Figure 4.30 Refreeze Test Results for Calcium Chloride Deicer 89
Figure 4.31 Refreeze Test Results for Solid Deicers 90
Figure 6.1 Sunlight Test Results .. 114
List of Tables

Table 2.1 Comparison of Ice Penetration (mm) at 60 min ... 7
Table 2.2 Method for Estimating Application Rates (Peterson et al., 2010) 23
Table 2.3 Standard of Practice Summary .. 24
Table 3.1 Liquid Deicers used in SHRP Ice Melting Capacity Test ... 26
Table 3.2 Liquid Deicers used in Shaker Test ... 32
Table 3.3 Liquid Deicers used in Friction Test .. 38
Table 3.4 Liquid and Solid Deicers used in Sunlight Test ... 47
Table 3.5 Chemical Deicers used in Refreeze Test ... 51
Table 4.1 Chemical Deicers used in Refreeze Test ... 64
Table 4.2 Variances in Shaker Test Liquid Results (%) ... 73
Table 4.3 Variances in Shaker Test Solid Results (%) ... 75
Table 4.4 Variances in Shaker Test Solid Results (%) ... 78
Table 4.5 Friction Test Results ... 83
Table 4.6 Friction Results Comparison ... 84
Table 5.1 Rating System for Roadway Level of Service ... 93
Table 5.2 Mg-A and Beet Juice-A Comparison .. 97
Table 5.3 Beet Juice-A Comparison .. 99
Table 5.4 Road Salt Comparison: High Winds .. 98
Table 5.5 10/90 Beet Juice-A/NaCl Mix: High Winds ... 100
Table 5.6 Liquid Sodium Chloride Comparison at Low Temperatures ... 102
Table 5.7 Liquid Sodium Chloride Comparison .. 106
Table 5.8 Road Salt Prewet with 5gal/ton MgCl₂ Comparison ... 106
Table 5.9 A Storm Producing High Volume of Snow ... 106
Table 6.1 Shaker Test Results for Liquids (Grams of Ice Melted per mL of Deicer) 108
Table 6.2 Recommendations for Deicer Usage ... 117
Acknowledgments

This project was sponsored by the Materials and Research Division of the Nebraska Department of Roads (NDOR) and the Mid-America Transportation Center (MATC) of the University of Nebraska-Lincoln. The authors wish to thank Matt Beran, Jasmine Dondlinger, Jodi Gibson, Lieska Halsey, Wally Heyen, Mike Mattison, Dalyce Ronnau, and Amy Starr of NDOR and Gary Story of the City of Kearney for their collaborations and feedback. The authors also wish to thank Ray Branstiter, Dale Butler, Kelly Doyle, Chris Ford, Allen Horak, Roger Kalkwarf, and Roger Klasna of NDOR and Scott McIntyre of Omaha Public Works for providing their common practices of using deicing chemicals for winter roadway maintenance.
Abstract

The ability of state DOTs to adequately clear roadways during winter weather conditions is critical for a safe and effective freight transportation system. Variables affecting winter maintenance operations include the type of precipitation, air and pavement temperature, traffic, wind, time of day, day of week, and maintenance equipment. The main objective of this study is to identify the best practices for normal deicing operations, based on the performance rating of deicing chemicals. Optimum deicer/brine ratios and the associated application rates will be determined for various weather conditions. The best practices will ensure effective deicing operation and economical use of deicing chemicals. Common deicing chemicals include sodium chloride, magnesium chloride, calcium chloride, calcium magnesium acetate, potassium acetate, potassium formate and carbohydrate-based (corn or beet) deicer solution. Deicers take the form of pellets or liquids. Liquid deicers are commonly used for prewetting road salt or other chemicals, or they are used as liquid solution. Several laboratory tests for deicer performance evaluation have been developed. However, none of these tests have been correlated with field performance data nor have they provided standardized results to ensure an acceptable performance in the field. Nebraska will serve as the test bed for this study although the results can be generalized to other locations. This is an ideal test site because a large quantity of automatic vehicle location (AVL) system data from NDOR plow trucks will be available. The AVL data includes truck location with GPS coordinates and time stamps. In addition, the snow plow trucks are equipped with digital cameras, which take snapshots of the roadway. These onboard systems will also provide real-time surface temperatures, air temperatures, wind speed, deicer application rates, and roadway conditions. The field data will be available for correlation analysis with the data from laboratory testing through the use of a Maintenance Decision Support
System (MDSS). The correlations between the field deicing performance and the laboratory
testing are crucial for the development of the best practices using competing deicing products for
a variety of weather conditions. The end result will be clearer roads during snow events, which
will lead to a safer and more efficient freight and passenger roadway system.
Chapter 1 Introduction

1.1 Background Information

The cost of deicing chemicals is a significant part of the Nebraska Department of Road’s winter maintenance budget. The use of deicing chemicals is increasing every year to improve a Level of Service (LOS), and the price of the chemicals is also going up every year. The use of Maintenance Decision Support Systems (MDSS) allows users to be more precise in the selection of chemicals and the application rate for specified weather and pavement conditions.

Many products are available for use in highway and bridge deicing and new products are introduced each year. Data from the manufacturers provide theoretical performance under specified conditions. A test procedure for acceptance of new commercial deicing chemicals is needed to confirm the manufacturers’ claims and to compare competing products under the same controlled conditions.

1.2 Research Objectives

The purpose of this project was to gather information regarding accepted test methods used to evaluate chemical deicer performance and to develop new test methods if necessary. The purpose of this project was also to research and generate a best practices summary for the Nebraska Department of Roads. The results of this research will help the state of Nebraska use deicing chemicals more effectively.

This research consists of a literature review and the documentation of the development of new testing procedures used to evaluate the performance of selected chemical deicers. After conducting a test standardized by the Strategic Highway Research Program, it was decided a new, simple, and repeatable test would be needed to evaluate the performance of chemical deicers. The performance test developed by this project has been named the Shaker Test.
Other performance tests developed by this research include the Friction Test, the Sunlight Test, and the Refreeze Test. The purpose of the Friction Test was to confirm if a particular liquid deicer would cause roadways to become slick. The Sunlight Test was used to determine if darker colored chemical deicers have a significant advantage over lighter colored chemical deicers in direct sunlight. The purpose of the Refreeze Test was to determine when a deicing product will cease to function and begin to refreeze with the melted ice on the roadway.

The field data used in this project was collected by the MDSS and plow trucks equipped with the automated vehicle locator (AVL). The MDSS collected real-time weather data including temperature, wind speed, and type and amount of precipitation. The field data collected by the AVL includes real-time information of the vehicle location, type and amount of material being used per lane-mile, and pictures of the roadway conditions taken from the cab of the truck. The main purpose of collecting field data was to document the effect different chemical deicers had on the LOS of the roadway. The field data and observations were then compared against the data from the ice melting capacity tests conducted in the laboratory. Strong correlations between the field data and the laboratory test results would validate the laboratory tests developed in this research. Further, the deicing performance of the different chemicals will be ranked based on both the laboratory tests and the field data. The findings from this study can then be used to fine-tune the current practices suggested by the MDSS.

1.3 Organization of the Report

There are six chapters in this report: Chapter 1 contains the introduction. Chapter 2 provides a summary of the literature review. Chapter 3 details the equipment required and the procedures for the tests conducted in this project. Chapter 4 presents the test results and an evaluation of each test. Chapter 5 summarizes field data from selected truck routes in a number
of winter storms from the MDSS and examines a correlation with results from the Shaker Test. Chapter 6 presents the findings and provides recommendations for the effective use of chemical deicers and further research needs.
Chapter 2 Literature Review

The objectives of the literature review were to survey accepted or standardized performance tests for chemical deicers and to research general standards of practice for chemical deicers. Several lab tests have been developed and published by the Strategic Highway Research Program (SHRP) in the *Handbook of Test Methods for Evaluating Chemical Deicers* (Chappelow et al. 1992). Many researchers used a number of these lab tests in their studies, but some also utilized different tests to evaluate various properties of chemical deicers.

2.1 Laboratory Tests

Each lab test used to quantify chemical deicer properties was evaluated to determine its effectiveness. Many tests were found to be useful, but some produced unreliable results or were found to be nonessential. This section will discuss some of the tests and their effectiveness in the evaluation of chemical deicers.

Performance properties of chemical deicers include ice melting capacity, ice penetration, ice debonding, thermal properties, and the resulting friction coefficient of a deiced roadway. Other deicer properties, such as viscosity and specific gravity, are more related to its applicability than its performance.

2.1.1 Ice Melting Capacity

Two tests were found pertaining to ice melting capacity: one test for solid chemicals and the other test for liquid chemicals. These tests are in the SHRP *Handbook* (Chappelow et al. 1992). The designation for the solid chemical test is SHRP H-205.1 and the designation for the liquid chemical test is SHRP H-205.2.

The tests have a similar procedure and require a freezer or cold-room, some measuring equipment, and three square 11 in by 11 in Plexiglas dishes, as seen in figure 2.1.
Ice is formed in the dish, deicer is applied, and the resulting brine is measured at intervals over a 60-min period. This test can be utilized at different temperatures and will provide the total volume of melted ice and the melting rate.

At this time, there is no set standard for what volumes of ice should be melted to confirm an acceptable performance. This test is best used when doing a comparison with a chemical deicer known to have acceptable field performance. The results of this test from other research will be discussed in Chapter 4.

2.1.2 Ice Penetration

Two tests pertaining to ice penetration were found: one test for solid chemicals and the other test for liquid chemicals. These tests are also in the SHRP Handbook. The designation for the solid chemical test is SHRP H-205.3 and the designation for the liquid chemical test is SHRP H-205.4.
The tests have a similar procedure to the ice melting capacity tests and require a freezer or cold-room, some measuring equipment, and a rectangular 8 in by 2 in Plexiglas plate with 35 mm depressions in the plate, as seen in figure 2.2.

![Figure 2.2 Ice penetration test apparatus (Nixon et al. 2007)](image)

Ice is formed in the depressions, a few drops or grains of deicer are applied, and the resulting penetration is measured at intervals over a 60-min period. This test can be utilized at different temperatures and will provide the total ice penetration and the rate of penetration. The 60-min test results from Nixon et al. (2007), Shi et al. (2009), and Akin and Shi (2010) are compared in table 2.1. The results from different sources do not correlate, which suggests that this test produces inconsistent data and does not appear to be repeatable. It is also not advisable to use solid deicing chemicals for this test because the grains would often become physically wedged in the narrow depression of the test apparatus.
Table 2.1 Comparison of ice penetration (mm) at 60 min

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30°F</td>
<td>10°F</td>
<td>0°F</td>
</tr>
<tr>
<td>NaCl (liquid)</td>
<td>3.5</td>
<td>1</td>
<td>1.5</td>
</tr>
<tr>
<td>NaCl (solid)</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>MgCl₂ (liquid)</td>
<td>5.6</td>
<td>3.5</td>
<td>0</td>
</tr>
<tr>
<td>MgCl₂ (solid)</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>CaCl₂ (liquid)</td>
<td>4.1</td>
<td>3</td>
<td>2.5</td>
</tr>
<tr>
<td>CaCl₂ (solid)</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>KAc</td>
<td>5.4</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

This test requires further development to produce more usable results. However, the depth at which a chemical deicer can penetrate may be of little importance. Many states do not put liquid deicing chemicals on accumulated ice as part of their standard of practice. Also, roadway traffic would help to fragment an ice sheet, making the penetration ability of a chemical deicer less crucial.

2.1.3 Ice Debonding

Two tests were found pertaining to ice debonding or undercutting: one test for solid chemicals and the other test for liquid chemicals. These tests are also in the SHRP Handbook. The designation for the solid chemical test is SHRP H-205.5 and the designation for the liquid chemical test is SHRP H-205.6.

The tests have a similar procedure to the SHRP tests described above and require a freezer or cold-room, some measuring equipment, colored dye such as bromcresol green, a
concrete substrate, a camera, and a dish or apparatus capable of molding a 1/8-in thick sheet of ice.

Large drops of dye are placed on the ice sheet, a drop or grain of deicer is placed in the middle of the dye, and pictures are taken at intervals over a 60-min period. The pictures are used to determine the debonded area. Shi et al. (2009) used Adobe Photoshop to measure the debonded area, but other techniques could also have been used. When using liquid deicer, a hole through the ice to the substrate is needed to prevent the deicer from dispersing across the ice surface.

In Shi et al. (2009) and Akin and Shi (2010), this test produced unreliable and inconsistent results. The debonded area has an irregular shape and the dye tends to disperse on the ice surface, making the debonded area difficult to distinguish. The results from Shi et al. (2009) are shown in Figure 2.3.

![Figure 2.3 Ice debonding test results (Shi et al. 2009)](image-url)
This test requires further development to produce more usable results. However, the area which a chemical deicer can debond an ice sheet from a substrate may be of little importance. This test cannot be used to compare solid and liquid deicers because they function differently in the field. And again, roadway traffic would help to fragment an ice sheet, making the debonding ability of a chemical deicer less crucial.

Several different test methods have been developed (Chappelow et al. 1992; Cuelho et al. 2010) to measure the bond strength between snow and ice and the roadway surface, but no standardized method exists. The purpose of these tests is to determine when a deicer will break this interfacial bond at a particular temperature. The common variables for the different test methods are temperature, type of chemical deicer, and application rate for the chemical deicer. Snow or ice and chemical deicer are applied to a substrate and then scraped off. The tests measure the amount of force needed to remove the snow or ice at different temperatures and time intervals.

The differences between the test methods are the type of substrate, snow compaction methods, and scraping methods. The substrate is usually mortar, concrete, or asphalt mix, but some tests used aluminum with different surface treatments to increase the bond strength. Each test method uses a different technique or apparatus for scraping the surface of the substrate, but it usually consists of some type of blade that imitates a plow. The force needed for scraping was recorded by load cells.

Similar to the SHRP ice debonding tests, data obtained from these tests had very large scatter due to irregular debonding interface. All of these test methods require a cold-room and expensive equipment for the testing. Measuring the force needed to break the interfacial bond seems to be an inefficient way to determine when the deicing chemicals have become effective.
2.1.4 Thermal Properties

Two tests were found pertaining to the thermal properties or, more specifically, the eutectic points of chemical deicers. There is no test in the SHRP *Handbook* pertaining to thermal properties.

The two tests have very different procedures, but both result in a heating-cycle thermogram for the tested deicing chemical. An example is shown in figure 2.4. The chemicals must be in liquid form for the test. Solid chemicals are mixed with de-ionized water to form a saturated solution.

![Figure 2.4 Heating-cycle thermogram example (Shi et al. 2009)](image)

The test conducted by Shi et al. (2009) uses a differential scanning calorimeter (DSC) to create the thermograms. A sample of deicer at a chosen concentration is positioned in the DSC
and is exposed to temperatures ranging from -76° to 77° F to determine its freezing point. The temperature at which the deicer begins to freeze is marked by a sharp peak on the thermogram. This peak strongly correlates to the temperature at which this particular concentration of deicer remains effective.

The test conducted by Nixon et al. (2007) uses a procedure to manually perform the same analysis as the DSC. It requires a cold-room, an ethylene glycol bath capable of reaching -76°F, a thermistor, and some sort of stirring unit. A sample of deicer at a chosen concentration is positioned in the bath and is exposed to temperatures ranging from the temperature of the cold room to -76°F to determine the deicer’s freezing point. The thermistor is used during the test to record the temperature of the sample. The presence of forming ice crystals is determined visually and that particular temperature is recorded as the freezing point.

In Nixon et al. (2007), Shi et al. (2009), and Akin and Shi (2010), these tests produced very reliable data that can be used to determine if a deicing solution with a known freezing point has the correct chemical concentration. The results also show some correlation with the Ice Melting Capacity Test results.

The equipment needed for this test is relatively expensive and can be difficult to locate. Many existing differential scanning calorimeters cannot achieve temperatures below the room temperature. Also, it seems much of the data from this test can be determined more economically by using the ice melting capacity test and the specific gravity test, which will be discussed later.

2.1.5 Resulting Surface Friction Coefficient

Four different methods have been used to determine the resulting friction coefficient of a deiced roadway. One of the tests has been standardized by the Pacific Northwest Snowfighters (PNS). Another test has been standardized by the SHRP under the designation SHRP H-205.10.
The test developed by the PNS (Specifications and Test Protocols 2008) requires the friction analysis to be performed on a pavement surface within a controlled humidity chamber. The PNS guidelines are not specific as to what apparatus should be used when determining the friction coefficient, just that it be calibrated and certified prior to the analysis. The PNS has used dragged sleds or tires for this test. The recommended amount of a deicing chemical is applied to the pavement surface and the friction coefficient is measured while the humidity is raised and lowered over a period of time.

This test, if done properly, can generate a friction coefficient that is comparative to the “real-life” friction coefficient between vehicle tires and pavement. This test may be helpful for areas with a high relative humidity because a deicing chemical will take longer to dry in higher humidity. However, this test does not take into account the effect of sunlight or wind on the drying time. A controlled humidity chamber may be difficult to obtain and one may question how significant humidity is to the friction coefficient when other important factors are ignored.

The test developed by the SHRP (Chappelow et al. 1992) uses a British Pendulum Tester as seen in figure 2.5. A glass surface is used in the laboratory test. The pendulum is calibrated so the rubber end barely touches the glass surface as it swings. A deicing chemical is applied to the glass surface and the pendulum is allowed to swing. The pointer will indicate a British Pendulum Number (BPN). Greater friction between the glass and the rubber is indicated by a greater BPN.
This test can also be done on concrete or asphalt surfaces. The testing apparatus is quite small and can perform testing onsite. Because this test does not yield an actual friction coefficient, it is best used by comparing its results to a known outcome. The findings from Lu and Steven (2006) suggest the results of this test do not correlate with the real-world friction between a tire and the roadway. The test apparatus is expensive and rather delicate. It would also be difficult and time consuming for a maintenance worker driving a snowplow to stop and perform a test.

An alternative to the British Pendulum Tester for collecting real-time, onsite surface friction data is a piece of equipment called a Friction Wheel, also known as a Mu-Meter or a SAAB friction tester. The Friction Wheel can be attached to a snowplow or other vehicle as a fifth wheel or removable trailer. It measures the roadway friction as the vehicle travels and outputs the data to a read-out or computer inside the vehicle. Figure 2.6 shows the results from SAAB friction tests by Alger et al. (1994).
Collecting data in this fashion is much more workable for the maintenance workers and can be used in concert with global positioning systems (GPS) to determine the exact locations of problem areas. This equipment can be especially useful for locating “black ice” and less visible slippery areas. Although the Friction Wheel can yield invaluable information, the current cost for this equipment is too high to justify in a state budget. However, the costs of systems such as GPS and mixing tanks have been declining over the recent years. This may also be true for the Friction Wheel and similar systems in the future.

A tribometer was used by Shi et al. (2009) to test the resulting surface friction coefficient. The test apparatus is shown in figure 2.7.

Figure 2.6 Results for SAAB friction tester (Alger et al. 1994)
A tribometer is a piece of laboratory equipment used to test friction or surface wear between two surfaces. Often a single tribometer is designed for a specific surface. The surfaces in this test were rubber and ice frozen on a small concrete sample. A liquid deicer was applied to the ice surface and then the tribometer ran 100 cycles over 200 seconds.

The results from Shi et al. (2009) are shown in figure 2.8. Shi et al. (2009) stated that the test was in need of modification because the results showed no clear differences among liquids, fragmented solids, and chemical bases. The test equipment is expensive and requires very specific surfaces to test. Since this apparatus was only designed for rubber and ice surfaces, it may not be useful for other surfaces.
2.1.6 Viscosity and Specific Gravity

Testing the viscosity and specific gravity of a liquid chemical deicer helps to determine the workability of the product. Both tests are relatively inexpensive and simple to perform. Determining the specific gravity of a liquid deicer with a hydrometer test is the best way to determine that product’s quality. A deviation in specific gravity could indicate a manufacturing error or fermentation in some products.

Testing the viscosity of a liquid deicer can be done with a viscometer, a timed falling ball, or a timed rising bubble. A high viscosity liquid could clog spray nozzles or cause pumps to fail in the field. Any time spent unclogging or repairing equipment is time taken away from servicing the roadways.
2.2 Standards of Practice

Standards of practice concerning chemical deicers were researched to determine which techniques should be used under certain circumstances. Recommended application rates were also researched to determine the amount of deicer to use with varying types and amounts of precipitation.

Because of a lack of performance, chemical deicers are typically not used when roadway temperatures are below 12° F (Blackburn et al. 2004; Shi et al. 2004; Ketcham et al. 1996). This section also discusses the circumstances under which solid deicers, liquid deicers, prewet solids, and abrasives are best used.

2.2.1 Solid Deicers

Solid deicers have been widely used in winter maintenance operations for several decades. In the studies by Blackburn et al. (2004) and Cuelho et al. (2010), solid deicers work the best for penetrating thick accumulations of snow or ice. Blackburn et al. (2004) also states the best time to apply solid deicers is early in a storm event. Applying at this time allows brine to form before the ice-pavement bond can strengthen.

One critical characteristic of solid deicers is the gradation of the particles. Blackburn et al. (2004) state finer gradations can work faster, but do not last as long as more coarse gradations of deicers. The study also states that finer gradations should not be used for large amounts of precipitation because they are quickly diluted and washed away. CTC & Associates LLC (2009) recommends the use of coarse grained deicers for precipitation rates greater than 0.5 in per hr because they will not dilute as quickly.

The most significant problem with solid deicers is the amount of chlorides and acetates needed to achieve the desired level of service. This chemical residue from the deicers damages
the roadway infrastructure and has a negative impact on the environment. As a result of the cumulative effect of chlorides being released into the environment, some bodies of surface water and groundwater have become undrinkable (Canada, Parks and Outdoor Recreation, 2010).

2.2.2 Liquid Deicers

Liquid deicers are used in winter maintenance operations because smaller amounts of chlorides or acetates can be used to achieve the desired level of service (Peterson et al. 2010). Blackburn et al. (2004) and Peterson et al. (2010) state that liquid deicers work very well in temperatures above 28° F, but have a high potential to refreeze at temperatures below 20° F. They recommend that the area be retreated every 1½ hr to prevent refreezing if liquids are used in lower temperatures. Blackburn et al. (2004) also state that liquids are not readily able to penetrate ice or compacted snow layers. Instead, liquids work well for treating the thin layers of snow or ice that remain after plowing (Alger et al. 1994).

Anti-icing is a relatively new technique that agencies have begun to use over the past 10 years. Anti-icing is a proactive deicing technique used to prevent the ice-pavement bond from forming. Liquids are the best choice for anti-icing operations (Alger et al. 1994). A liquid deicer is placed on the roadway 24 hr before a storm. The liquids evaporate leaving a stratum of crystallized chlorides or acetates on the roadway. The most significant obstacles for the use of anti-icing are the upfront costs of new equipment, training, and reliable weather forecasts. A survey done by Shi et al. (2005), however, found that the anti-icing practice can lead to significant long-term savings.

Cuelho et al. (2010) estimate that five times less energy is needed to break the ice-pavement bond when anti-icing is used. Shi et al. (2005) state that anti-icing can lead to a reduced use of abrasives, and the Colorado, Kansas, Oregon, and Washington departments of
transportation reported significant savings in material and labor when using the anti-icing technique.

The best time to perform anti-icing operations as recommended by Blackburn et al. (2004) and CTC & Associates LLC (2009) is before a snow event in temperatures above 20° F. It also performs well when used to treat for frost and black ice. Lower temperatures could cause the deicer to freeze. Anti-icing should not be used before rain or freezing rain events because the material will be washed from the road. Wind speeds above 15 mph could also inhibit anti-icing operations (Blackburn et al. 2004; CTC & Associates LLC 2009; Ketcham et al 1996).

Calcium chloride and magnesium chloride are both hydroscopic materials, meaning they absorb water from the air. Because of this trait, those materials do not require prewetting for high moisture storms, but they can cause slick roadways under certain conditions. Shi et al. (2004) found that calcium chloride and magnesium chloride residues can attract more moisture than sodium chloride, causing slippery conditions. CTC & Associates LLC (2009) found that calcium chloride and magnesium chloride can cause slick roads when used in temperatures above 28° F and with humidity greater than 40%. Kuhl et al. (1999) found that liquid magnesium chloride can cause slick conditions if applied to snowpack greater than 1/4-in thick. Donahey and Burkheimer (1996) found that calcium chloride can leave a roadway wet for several days after use, while sodium chloride will dry a few hours after the end of a storm.

2.2.3 Prewet Solid Deicers

Prewetting solid deicers is also a relatively new technique that agencies have begun to use over the past 10 years. Prewetting is most often used to help solid deicers adhere to the roadway. Shi and O’Keefe (2005) found that prewet road salt had a 96% material retention on a roadway while dry road salt had a 70% material retention. Donahey and Burkheimer (1996)
found that after 100 vehicles passed through the roadway, 30% of prewet material remained on the roadway while only 5% of dry material remained on the roadway. Blackburn et al. (2004) state a prewet of 10-12 gallons per ton is sufficient to minimize bounce and scatter of the solids. This can result in significant material savings.

Roosevelt (1997) and Donahey and Burkheimer (1996) state that prewet helps the salt go into solution faster or work faster. Many agencies prewet the stockpile to prevent freezing or caking of the solids. The Michigan State Department of Transportation found small quantities of solid calcium chloride could be mixed into the stockpile to keep it from freezing (Public Sector Consultants 1993).

Shi et al. (2005) cautioned that prewet material is typically discouraged for use on unpaved roadways because it may cause the roads to thaw and become unstable. Prewet is not needed if snow events are preceded by rain or for use on wet snow at about 32° F (Roosevelt 1997). Use of prewet results in additional cleaning of the application equipment, but the amount of cleaning can be reduced if the prewet is performed at the spinner just before landing on the roadway.

2.2.4 Abrasives

Abrasives or sand are used at low temperatures, typically below 12° F (Shi et al. 2004; Blackburn et al. 2004), to create traction on a roadway covered in snow or ice. Shi et al. (2005) and Fuller (2011) discovered dry sand does not stick to the roadway and can be swept off by as few as 50 passing vehicles. This problem can be minimized by prewetting the sand with salt brine or by mixing in a small amount of a solid hygroscopic material like calcium chloride. The salt brine helps the sand take root in the snow or ice on the roadway, keeping it on the road and creating more traction (Shi and O’Keefe 2005).
The gradation of the sand can affect the friction performance of the sand. Al-Qadi et al. (2002) found coarse graded sands worked best at temperatures below 14° F and fine graded sands worked best above 27° F. Sands with gradation between 0.04 and 0.08 in worked well at all temperatures.

Vaa (2004) found that sand prewet with water heated to a temperature of 194-203° F helped the sand stay on the roadway after as many as 2,000 passing vehicles. The sand is prewet with hot water at the chute or spinner leaving a film of hot water on the sand. The water has a brief melting effect and then the sand and water mix freezes to the roadways in small lumps. Figure 2.9 shows an example of the end product of this practice.

![Figure 2.9 Sand prewet with hot water on a roadway (Transportation Research Circular 2004)](image)

The amount of water needed to achieve this kind of effect is 30% by weight of the sand. This practice requires a sand gradation of 0.08 in or smaller with an application rate of 2,600 pounds per lane-mile. The geographical areas that would benefit most from this practice are
places with large amounts of snowfall with steep roads, like mountain ranges. For the most part, the State of Nebraska probably would not benefit from this practice.

2.2.5 Application Rates

A method to estimate the deicer application rate for particular situations was developed by Blackburn et al. (2004). The method accounts for several variables, including precipitation rate, type of precipitation, traffic, cycle times, and type of deicing chemical. This method is complicated and requires the use of six different tables. Defining the precipitation rate is the most significant source of difficulty with this procedure because the rate is defined visually as light, moderate, heavy, and unknown. Because technology exists to determine the real-time rate of precipitation, one way to improve the effectiveness of this procedure would be to replace the light, medium, and heavy precipitation rates with actual numbers.

The Federal Highway Administration (Ketcham et al. 1996) also has recommendations and suggestions for chemical application rates for liquids, solids, and prewet solids. The document addresses what should be used before and after light snow storms, light snow with periods of moderate to heavy snow, moderate to heavy snow storms, frost or black ice, freezing rain, and sleet.

CTC & Associates LLC (2009) compiled the standards of practice for application rates, anti-icing, and other winter maintenance considerations from 12 different states. Most standards of practice are the same from state to state, but differences emerge about application rates.

Peterson et al. (2010) presents a simple estimation table, shown in table 2.2, utilized by the Iowa Department of Transportation. In this method, application rates are based on temperature, cycle times, storm type, and precipitation rates. Some of the current practices
adopted by many agencies referenced in Ketcham et al. (1996), CTC & Associates LLC (2009), Peterson et al. (2010), and Blackburn et al. (2004) are summarized in table 2.3.

Table 2.2 Method for estimating application rates (Peterson et al. 2010)

<table>
<thead>
<tr>
<th>Example During-Storm Direct Application Rates for Salt Brine (NaCl)2,3</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Illustration Only (adjust based on local factors and experience)</td>
<td>Gallons Per Lane Mile (gplm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pounds Per Lane Mile (gplm) shown in parentheses</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Event Type</td>
<td>32-30°F</td>
<td>29-27°F</td>
<td>26-24°F</td>
<td>23-21°F</td>
</tr>
<tr>
<td>For 2-Hour (or less) Cycle Times</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Light Snow (less than 0.5”/hour)</td>
<td>20 (45)</td>
<td>35 (80)</td>
<td>40 (91)</td>
<td>55 (125)</td>
</tr>
<tr>
<td>Medium Snow1 (0.5”/hour to 1.0”/hour)</td>
<td>35 (80)</td>
<td>45 (102)</td>
<td>55 (125)</td>
<td>NR</td>
</tr>
<tr>
<td>For 3-Hour Cycle Time3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Light Snow (less than 0.5”/hour)</td>
<td>35 (80)</td>
<td>50 (114)</td>
<td>65 (148)</td>
<td>80 (182)</td>
</tr>
<tr>
<td>Medium Snow1 (0.5”/hour to 1.0”/hour)</td>
<td>50 (114)</td>
<td>65 (148)</td>
<td>80 (182)</td>
<td>NR</td>
</tr>
</tbody>
</table>

Notes:

1. Only consider using DLA for medium snow events based on your experience, and when other factors are highly favorable such as pavement temperature and moisture content.
2. It is suggested to generally **supplement the DLA application with a light direct pre-wet granular application** (70 ppm) when possible (especially as dilution-refreeze potential increases).
3. **For cycle times greater than 2 hours**, supplementing DLA with direct granular is strongly suggested (see Note 2).
4. NR = Not recommended
5. For enhanced chemicals and blends, work with vendors. Verify that these rates are reasonable or where they should be adjusted.

NOTE: DLA = Direct Liquid Application
Table 2.3 Standard of practice summary

<table>
<thead>
<tr>
<th>Weather/Road Conditions</th>
<th>Temperature Range, °F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Above 32</td>
</tr>
<tr>
<td>Rain</td>
<td>Use little to no</td>
</tr>
<tr>
<td></td>
<td>treatment unless the</td>
</tr>
<tr>
<td></td>
<td>temperature is</td>
</tr>
<tr>
<td></td>
<td>expected to drop. In</td>
</tr>
<tr>
<td></td>
<td>that case, pretreat</td>
</tr>
<tr>
<td></td>
<td>with road salt less</td>
</tr>
<tr>
<td></td>
<td>than 100 lbs/lane-mile.</td>
</tr>
<tr>
<td>Freezing Rain</td>
<td></td>
</tr>
<tr>
<td>Sleet</td>
<td></td>
</tr>
<tr>
<td>Ice</td>
<td>If not preceded by</td>
</tr>
<tr>
<td></td>
<td>any of the above,</td>
</tr>
<tr>
<td></td>
<td>pretreat with liquid</td>
</tr>
<tr>
<td></td>
<td>NaCl can be used for</td>
</tr>
<tr>
<td></td>
<td>pre and post-</td>
</tr>
<tr>
<td></td>
<td>treatment and during</td>
</tr>
<tr>
<td></td>
<td>the event.</td>
</tr>
<tr>
<td>Light Snow (less than 0.5 in/hr)</td>
<td>If not preceded by rain, freezing rain, or sleet, liquid NaCl can be used for pre and post-treatment and during the event.</td>
</tr>
<tr>
<td>Moderate to Heavy Snow (greater than 0.5 in/hr)</td>
<td>Pretreat with liquid NaCl 20-50 gal/lane-mile. Use road salt during and after the event. Prewet is not necessary during the event.</td>
</tr>
<tr>
<td>Compacted Snow</td>
<td>Use road salt if</td>
</tr>
<tr>
<td></td>
<td>necessary.</td>
</tr>
<tr>
<td>Winds Greater than 15mph</td>
<td>Treatment may cause blowing snow to stick to roadway.</td>
</tr>
</tbody>
</table>
Chapter 3 Deicing Chemicals Performance Tests

This chapter describes the purpose and procedures of the five performance tests for chemical deicers that were studied or developed as a result of this project. The five tests are the SHRP Ice Melting Capacity Test (Chappelow et al. 1992), Shaker Test, Friction Test, Sunlight Test, and Refreeze Test.

The SHRP Ice Melting Capacity Test has been used by several state departments of transportation, including the Iowa and Colorado DOTs. It has also been used in several research studies by Nixon et al. (2007), Shi et al. (2009), and Akin and Shi (2010). It is a frequently cited test, but its results do not necessarily correlate with what has been observed in the field. The test is not known to be repeatable between laboratories. This test was conducted in this research as a starting point.

The Shaker Test was developed by this research as a performance test for chemical deicers. Its purpose was to determine the ice melting capacity of a deicer while simulating the stirring effect of traffic. Current data show consistent results and that the test is repeatable.

The Friction Test is used to determine if a liquid deicer will have a detrimental effect on roadway friction. It is possible for a deicer to have a high ice melting capacity but cause slippery roadways. Many tests have been developed to test roadway friction. The test chosen for this research uses a weighted sled with rubber contact points. This test most closely resembles the friction test used by the Pacific Northwest Snowfighters (2008).

The Sunlight Test was developed to determine if a dark colored chemical deicer had an advantage over a lighter colored deicer when exposed to direct sunlight. The decision was made to develop this test after processing some data from both the SHRP Ice Melting Capacity Test and the Shaker Test. A very dark colored chemical deicer that is known to do well in the field did
poorly in both performance tests. The results of the Sunlight Test helped to determine how certain chemical deicers work in the field.

The Refreeze Test was developed to determine the point at which a treated roadway will begin to refreeze. This test was also used to evaluate the effect of particle size on the refreeze time for solid chemical deicers.

3.1 SHRP Ice Melting Capacity Test

This test was developed by the Strategic Highway Research Program (Chappelow et al. 1992) and is used to analyze the ice melting capacity of both liquid and solid chemical deicers. The current research suggests this test is not repeatable between different laboratories.

The tests were conducted using the SHRP H205.1 and H205.2 test methods (Chappelow et al. 1992). Testing was performed at 20°, 10°, and 0° F. The samples of deicers consisted of 3 g of road salt that passed through a #4 sieve and were prewet with 1 mL of liquid deicer. The variables in these tests were the environmental temperature and the prewetting liquid. The prewetting liquid deicers used are given in Table 3.1.

<table>
<thead>
<tr>
<th>Deicer</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salt Brine</td>
<td>23% NaCl</td>
</tr>
<tr>
<td>Mg-A</td>
<td>29% MgCl₂</td>
</tr>
<tr>
<td>Mg-B</td>
<td>30% MgCl₂</td>
</tr>
<tr>
<td>K Ace</td>
<td>50% Potassium Acetate</td>
</tr>
<tr>
<td>Beet Juice-A</td>
<td>Carbohydrate Byproduct</td>
</tr>
</tbody>
</table>

Because salt brine is much less expensive than all other liquid deicers, in the field it is often mixed with other liquid deicers to help lower the cost of roadway treatment. Different salt
brine/liquid deicer ratios were used in the SHRP Ice Melting Capacity Test to study the effect mixing ratios had on the end product. The ratios used—besides a mix of 100% liquid deicer—were 50/50 salt brine/liquid deicer, 60/40 salt brine/liquid deicer, and 85/15 salt brine/liquid deicer. These ratios are commonly used in the field.

3.1.1 Equipment

The following equipment is required for the SHRP Ice Melting Capacity Test:

a. 19.7 ft3 chest freezer with temperature controls

b. 3 circular Plexiglas test dishes, 9 in in diameter and ¾ in deep

c. 3 thermocouple wires

d. A scale capable of measuring to the nearest 0.0001 g

e. A #4 sieve

f. Other equipment: timer, syringes, graduated cylinders, and containers

The use of a 19.7 ft3 chest freezer was a deviation from SHRP, which recommended the test be performed in a walk-in freezer or a modified upright freezer. The chest freezer was chosen as a less expensive alternative. The obvious problem with using a chest freezer is fluctuations in temperature in the chest due to opening the door. Hence, thermocouple wires were embedded in the ice strata to monitor the ice temperature. The test setup is shown in figure 3.1.
3.1.2 Procedure

Each test is conducted in triplicate.

3.1.2.1 Preparation of Test Samples

1. Pass the solid deicer through a #4 sieve. The passing solids are used for testing.
2. Dry the solid deicer in an oven for 24 hr and then store it in a desiccator.
3. Weigh and record the empty container.
4. Place 3 g of solid deicer in the small container with a lid.
5. Use a syringe to dribble 1 mL of liquid deicer or liquid deicer/salt brine mix onto the 3 g of solid deicer.
6. Place the lid on the container to prevent any losses or water vapor absorption.
7. Weigh and record the container and deicer sample. Subtract the weight of the empty container to get the weight of the deicer sample.

8. Place the container in the freezer set at the desired temperature. Allow the deicer sample to cool and equilibrate for 5-6 hr.

3.1.2.2 Testing Procedure

1. Place the three test dishes within the freezer set at the desired temperature and allow to cool overnight. The dishes should rest on spacers to ensure airflow underneath the dishes and to assist the leveling process.

2. Place 130 mL of distilled water in each test dish. This amount of water will create a 1/8 in thick ice sheet in the dish.

3. Place thermocouple wires in the water within the test dish.

4. Give the water at least 5-6 hr to freeze.

5. Take a temperature reading of the ice surfaces using the thermocouple reader.

6. Take the deicer samples from the containers and apply to the ice sheets. The deicer should be as evenly distributed as possible. Inevitably, some liquid deicer will remain in the containers.

7. Record the surface temperatures after application.

8. Temperature readings of the ice surfaces should be taken before and after each brine measurement. The temperature should not be allowed to deviate more than 3°F.

9. Allow the deicer samples to melt the ice. Brine measurement should be done one dish at a time. As shown in figure 3.2, at a specific time interval the test dish is tipped so the brine can collect at one end and be decanted using a syringe. The brine is weighed using a scale.
and returned to the test dish. The weight is recorded to the nearest 0.0001 g. The actual removal, weighing, and return of the brine should be done in less than 2 min.

![Collecting brine](image)

Figure 3.2 Collecting brine

10. Step 9 should be performed at 10, 20, 30, 45, and 60 min from the time of application. Different time intervals can be used if needed or preferred.

11. The test is complete after 60 min unless specified otherwise. The test dishes can be removed from the freezer, rinsed clean with distilled water, towel dried as much as possible, and placed back in the freezer.

3.1.3 Data Processing

There are two ways to present the data from this test. The data can be presented as melting rates for the different chemical deicers or as melting totals for a particular time interval, usually 60 min. The melting capacity is commonly presented as the amount of ice melted per
amount of deicer. In the case of this research the measured amounts are divided by approximately 4 g. The number is a little different for each liquid chemical deicer.

3.2 Shaker Test

Due to the inaccuracies of the SHRP Ice Melting Capacity Test, there is a need to develop a simple and repeatable test that can be used to accurately determine the ice melting capacity of a deicer. It can be used to test liquid and solid deicers, but more modifications may be needed for testing prewetted solids. The idea behind this test was to use a modified martini shaker to simulate the effect of traffic on the roadway while evaluating the ice melting capacity of a deicer. This research utilized four modified martini shakers. The four shakers are made from similar materials and are of similar construction, and each produced similar test results.

The primary advantage of the Shaker Test is the ability to perform the test without a large freezer. Current data also suggests this test yields consistent results between laboratories. The test can be performed inside a small freezer in which the shaker can sit in an upright position. The shaker has enough insulation to maintain its internal temperature when taken out of the freezer. When the lid is taken off, it will maintain its temperature for several seconds. With the lid on it will maintain its temperature for about 2 ½ min. The retention of steady temperature allows the shaking to be done outside the freezer.

Testing was performed at 20°, 10°, and 0° F. Deicer samples consisted of 7 mL of liquid deicer, 5 g of dry solid deicer, or 5 g of solid deicer soaked in a liquid deicer to simulate prewetting at a stockpile. The liquid deicers evaluated are listed in table 3.2. As was done in the SHRP Ice Melting Capacity Test, pure deicing chemicals and different deicer/brine ratios were evaluated using the Shaker Test. The most commonly used brine/deicer ratios were 85/15 and 50/50, though one of the chemicals was extensively evaluated for various ratios.
Table 3.2 Liquid deicers used in Shaker Test

<table>
<thead>
<tr>
<th>Deicer</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salt Brine</td>
<td>23% NaCl</td>
</tr>
<tr>
<td>Mg-A</td>
<td>29% MgCl₂</td>
</tr>
<tr>
<td>Mg-B</td>
<td>30% MgCl₂</td>
</tr>
<tr>
<td>K Ace</td>
<td>50% Potassium Acetate</td>
</tr>
<tr>
<td>Beet Juice-A</td>
<td>Carbohydrate Byproduct</td>
</tr>
<tr>
<td>Mg-C</td>
<td>Carbohydrate Byproduct and 26.9% MgCl₂</td>
</tr>
<tr>
<td>Mg-D</td>
<td>Carbohydrate Byproduct and 25% MgCl₂</td>
</tr>
<tr>
<td>Beet Juice-B</td>
<td>Carbohydrate Byproduct</td>
</tr>
<tr>
<td>Calcium Chloride</td>
<td>Carbohydrate Byproduct and 30% CaCl₂</td>
</tr>
</tbody>
</table>

3.2.1 Equipment

a. Modified Martini Shaker

As shown in figure 3.3 (a), plastic martini shakers were used for this research because many chemical deicers will quickly corrode steel, even stainless steel. The type of insulation material used on the shakers is commonly used to insulate copper water pipes and can be obtained at hardware stores, as shown in figure 3.3 (b).

Figure 3.3 (a) Martini shaker (b) with insulation
b. Freezer

The freezer attached to an upright refrigerator is large enough for testing. A thermostat may be needed to set the temperature in the freezer.

c. Thermocouple Reader and 4 ft Wires (Optional)

A thermocouple reader and wires are used to monitor the temperature inside the shaker without having to open the shaker. The wire is installed by drilling a small hole into the side of the shaker located at mid-height. The hole should be just large enough to fit the wire. The hole is then sealed with glue or rubber cement, as shown in figure 3.4.

![Figure 3.4 Thermocouple wire](image)

Figure 3.4 Thermocouple wire

d. Mini Ice Cube Tray, Producing 1 cm³ Ice Cubes

e. Scale Measuring to the Nearest 0.01 g
f. Clock with Second Reading

g. #4 Sieve for Solid Screening

h. Other Equipment: Spoon, Measuring Syringes, 2 Small Bowls

3.2.2 Procedure

Each test is conducted in triplicate.

1. Prepare Ice Cubes. Use a syringe to measure 1 mL of distilled water into each aperture of the ice cube tray.

2. Prepare Deicer Sample. If using a pure sample of liquid chemical deicer, use a syringe to measure 7 mL and discharge into the shaker. If using a liquid deicer/brine mix, measure the needed amounts of deicer and brine, and discharge separately into the shaker. The liquids will mix together in the shaker. If using solid deicer, pass the deicer through a #4 sieve. The solid that remains on the sieve is used for testing. This gradation size is used because smaller gradations tend to stick to the sides of the shaker, disrupting the test.
 Weigh 5.00 ±0.03 g of the solid and place the sample in the shaker.

3. Weigh and record the weight of small bowl #1.

4. Place the shaker with the chemical deicer sample, the shaker lid, the filled ice cube tray, and small bowl #1 in the freezer set at the desired temperature. Place the shaker lid is next to the shaker, not on the shaker.

5. Let the ice freeze. Once frozen, remove 10 ice cubes from the tray and place them in small bowl #1.

6. Weigh and record the weight of small bowl #1 with the ice cubes. Put the bowl with the ice cubes back in the freezer. Once the ice cubes have been weighed they must be used within two days. Otherwise, the ice cubes will evaporate.
7. Let the shaker and the ice acclimate in the freezer for 5-6 hr or overnight. Plug in the thermocouple wire to monitor the internal temperature of the shaker.

8. Take a temperature reading immediately before testing.

9. Open the freezer door and dump the 10 ice cubes from small bowl #1 into the shaker. Place the lid on the shaker. This step must be done quickly as to maintain the internal temperature of the shaker.

10. Begin shaking. Shaking must be done at two cycles per second for liquids and three cycles per second for solids and prewet solids. The shaker must be held at an upward angle of about 30°, as shown in figure 3.5. Holding the shaker at this angle will prevent separation of the liquids from the solids.

![Figure 3.5 Shaking angle](image)

11. Shake for 5 min while setting the shaker down after every min to quickly take a temperature reading.

12. After 5 min, turn the shaker upside-down and return it to the freezer in that position. Keep the plug end of the thermocouple wire outside the freezer. The liquids will drain into the cap portion of the lid while the remaining ice stays in the strainer portion of the lid. The ice will stop melting.
13. Let the shaker sit in the inverted position inside the freezer for 5 min. Take a temperature reading every min.

14. Weigh and record small bowl #2 with the spoon sitting in the bowl.

15. Remove the shaker from the freezer while keeping it in an inverted position.

16. Remove the body of the shaker from the lid. Most of the remaining ice will be in the accessible portion of the lid, as shown in figure 3.6.

![Figure 3.6 Remaining ice in strainer section of lid](image)

17. Quickly use the spoon to move the remaining ice from the lid to small bowl #2. Once in the bowl, the ice is allowed to melt.

18. Move any remaining ice from the body of the shaker to small bowl #2, if any.

19. Weigh and record small bowl #2 with the spoon and the remaining ice.
3.2.3 Data Processing

The total amount of melted ice is determined using the following equation:

\[
\frac{(\text{Weight of Bowl } \#1 \text{ and 10 Ice Cubes} - \text{Weight of Bowl } \#1)}{(\text{Weight of Bowl } \#2 \text{ and Spoon and Remaining Ice} - \text{Weight of Bowl } \#2 \text{ and Spoon})}
\]

Ice melting capacities data from the Shaker Tests are presented as the amount of melted ice per amount of deicer. For liquids, data is presented as grams of melted ice per milliliter of deicer. For solids and prewet solids, data are presented as grams of ice melted per g of deicer. The standard deviation and variance are calculated for each data point.

3.3 Friction Test

The purpose of this test was to determine if liquid chemical deicers could cause slippery conditions when applied to an ice covered roadway. It is important to test if a liquid deicer will create a slippery roadway because the deicer may have an acceptable ice melting capacity but still have a negative effect on the level of service of the roadway. Many liquid chemical deicers, especially those with organic components, have been known to ferment and cause slippery roadways. Many tests can be used to determine whether fermentation has occurred: the easiest is to smell the liquid for fermentation odor. The test described in this section measures the actual friction coefficients of a surface during and after a chemical deicer has been used to remove a given amount of ice. This test closely represents one tire of a small car whose brakes have locked and is sliding across a concrete surface covered by a thin layer of ice at about 20° F. These conditions are described in detail as follows.

This test was meant to emulate reality as much as possible, but the surface of a roadway is not uniform. A roadway surface will probably not have the same friction coefficients at
different locations. The best ways to utilize this test are to compare the performances of different liquid deicers to each other and to have a baseline performance for comparison. The baseline performance used in this test was a concrete surface saturated with water. When the data from this test are processed in this manner, the composition of the roadway becomes a much less significant variable.

These tests were done in a walk-in freezer at 20 ±4°F. Only liquid deicers were used because the varying shape, size, and hardness of solid deicers would have caused considerable variance in the results. The liquid deicers evaluated by the Friction Test are given in table 3.3.

Table 3.3 Liquid deicers used in Friction Test

<table>
<thead>
<tr>
<th>Deicer</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salt Brine</td>
<td>23% NaCl</td>
</tr>
<tr>
<td>Mg-A</td>
<td>29% MgCl₂</td>
</tr>
<tr>
<td>Mg-B</td>
<td>30% MgCl₂</td>
</tr>
<tr>
<td>K Ace</td>
<td>50% Potassium Acetate</td>
</tr>
<tr>
<td>Beet Juice-A</td>
<td>Carbohydrate Byproduct</td>
</tr>
<tr>
<td>Mg-C</td>
<td>Carbohydrate Byproduct and 26.9% MgCl₂</td>
</tr>
<tr>
<td>Mg-D</td>
<td>Carbohydrate Byproduct and 25% MgCl₂</td>
</tr>
<tr>
<td>Calcium Chloride</td>
<td>Carbohydrate Byproduct and 30% CaCl₂</td>
</tr>
</tbody>
</table>

This test used a weighted sled with rubber contact points pulled across a concrete surface to determine the static and kinetic friction coefficients while a chemical deicer was being used to remove a thin ice layer from that surface. The total surface area of the rubber contact points was 9 in² and the total weight of the sled was 270 lbs. The values of surface area and total weight were chosen to accommodate the laboratory’s existing resources. The weight creates 30 psi of pressure on the roadway, similar to the pressure of a small car. A load cell and data acquisition
system were also used in this test to continuously sample the force needed to pull the weighted sled. This test was intended to simulate the sudden braking of a vehicle.

The ice layer was created by spraying a fine mist of 25 mL of distilled water on a 2.5 ft2 area of the concrete slab. The water instantly freezes with the slab on contact creating an uneven ice layer. This technique produces an ice layer similar to that formed by light sleet on a roadway surface.

Many state departments of transportation make it a policy not to use liquid deicers on ice layers due to runoff. During this test, this problem was rectified by limiting the flow of the liquids using acrylic-based sealant. This caused the liquid deicer and melted ice to pool in the location and the path of the rubber contact points on the sled, as shown in figure 3.7. The depth of the pooling was not consistent, but could be as much as 1/8 in.

![Figure 3.7 Details of liquid pooling issue](image)

3.3.1 Equipment

a. Walk-in Freezer with Temperature Controls

b. Steel Sled with Rubber Contact Points
As shown in figure 3.8, the sled is made of 1-in steel tubing and four 3-in square steel plates welded together to produce a stiff frame. The stiff frame helps to ensure an evenly distributed load. The purpose of the steel plates is to transfer the load to the rubber contact points as evenly as possible. The rubber contact points are cut from the tread of a tire and are oriented symmetrically to mimic the common position of a tire on a roadway, with the tread parallel to the roadway. The rubber contact points were glued to the steel plates. The shape of the sled was dictated by the shape of the available weights.

![Rubber Contact Points on Sled](image1.png) ![Rubber Contact Points Cut from Center of Tread](image2.png)

Figure 3.8 Rubber contact points

a. Weights

The sled was built to accommodate 1-ft square weights. The total weight of the sled needed to be 270 lbs. Several weights were used to approach the target weight of 270 lbs. A bucket of sand was used to attain the exact weight of 270 lbs.

b. Small Load Cell and Data Acquisition System

c. Spray Bottle Capable of Producing a Fine Mist
d. Graduated Cylinder

e. Squeegee

The squeegee is used to spread the liquid deicer and to clean the concrete surface after testing.

f. Threaded Bar with 1-in Diameter, 2 Nuts, 1 washer, ¼ in thick Modified Steel Angle, and Grease

The threaded bar, nuts and washer, and steel angle are used to pull the sled. The Friction Test details and setup are shown in figure 3.9. One nut is welded to the sled and is used to secure the threaded bar to the sled. When the other nut is tightened, the sled is dragged forward. The load cell records the amount of force used to pull the sled. The threaded bar and all contact points must be very well greased.

![Figure 3.9 Equipment and setup to drag sled](image)
3.3.2 Procedure

Tests are repeated at least twice for each chemical.

3.3.2.1 Preparation of the Steel Angle

The purpose of the steel angle is to provide a stiff segment to place the load cell against when the sled is being dragged across the slab. Ideally, when one side of the steel angle is placed under the slab, the other side will fit around the side of the slab and stick up over the surface of the slab. A hole was drilled in one leg of the steel angle sticking up over the surface of the slab so the threaded rod attached to the sled could fit through the hole without touching the sides of the hole.

3.3.2.2 Preparation of the Concrete Slab

1. Make a 2-ft², 2-in thick concrete slab. There is no specified composition of the concrete for this test, but it is recommended to use a mix common to the local area. There is no required concrete thickness to be used for the test, but a thinner slab will cool more quickly.

2. Let the concrete slab set for seven days before testing.

3. Clean the concrete slab surface thoroughly with distilled water and remove all stray granules.

4. Move the slab to the walk-in freezer and place the modified steel angle. This allows the sled to brace against the slab when the sled is pulled.

5. Level the concrete slab as much as possible.

6. If needed, place the acrylic-based sealant on the concrete surface. The best way to do this is to place the sled on the slab in the location needed for testing and trace around it with the sealant, as depicted in figure 3.10.
3.3.2.3 Testing Procedure

1. Activate the walk-in freezer set at the desired temperature.

2. Allow the slab, sled, weights, and other mechanical equipment to equilibrate for 5-6 hr inside the freezer.

3. Put 25 mL of distilled water in the spray bottle and spray the concrete surface area within the sealant. Spray the water as evenly as possible, as shown in figure 3.11. The water will freeze almost instantly.
The following steps (steps 4-9) must be done in 5 to 6 min:

4. Put 25 mL of liquid deicer in a graduated cylinder and deposit the deicer within the frozen area on the slab. Use the squeegee to spread the deicer across the ice. The deicer should be moved to cover the ice with the majority of the deicer remaining in the center to distribute naturally.

5. Place the sled and weights on the frozen area and place the load cell as seen in figure 3.12.

Figure 3.11 Making ice layer
6. Begin data sampling with the computer and load cell. The data acquisition system should be set to sample times per second.

7. Set the load cell in place so the threaded bar is not in contact with the washer.

8. Tighten the nut using a slow, smooth motion. When the load cell is bearing against the washer, force is exerted on the load cell and the sled is moving forward. Continue motion for several seconds.

9. Loosen the nut. Halt sampling on the computer and save the data. Reset the computer for the next sampling.

10. Look at the data and determine the magnitude of the force needed to move the sled.

11. Remove the weights from the sled and move it back to its original position.

12. Repeat steps 5-11 every 5 to 10 min until three consecutive tests yield similar magnitudes of force. The target time intervals are 5, 10, 15, 20, 25, and 30 min from the time the deicer is placed on the slab.

Figure 3.12 Friction Test setup
13. When testing is complete, rinse off the rubber contact points on the sled and flush the concrete surface with warm water. Use the squeegee to remove excess liquid from the surface of the slab.

14. Rinse the squeegee.

3.3.3 Data Processing

The data from testing consists of a time series of the magnitudes of force being exerted on the sled at 1/3 second interval.

No force is applied when the load cell is initially activated. This occurs just before tightening and just after loosening the nut. The applied force will increase as tightening begins. The peak magnitude force occurs when static friction has been reached and the sled has begun to move. The peak force is the value used to calculate the static friction coefficient. The forces gradually decrease after the peak force as the sled is moving. The average of these values is used to calculate the kinetic friction coefficient. The following equations are used to calculate the static and kinetic friction coefficients:

\[
\begin{align*}
\text{Static Friction Coefficient} &= \frac{\text{Peak Force on Graph}}{\text{Weight of Cart}} \\
\text{Kinetic Friction Coefficient} &= \frac{\text{Average of Lesser Forces on Graph}}{\text{Weight of Cart}}
\end{align*}
\]

The static and kinetic friction coefficients are calculated for every time interval. This test should be run at least twice for each liquid deicer to obtain an average performance.
3.4 Sunlight Test

The purpose of this test is to determine if darker colored chemical deicers have a significant advantage over lighter colored chemical deicers in direct sunlight. The prewetting and application rates used in this test are much higher than those used in practice. The results of this test are presented by photos to show how the different samples of deicers compare to each other in direct sunlight and in shaded areas.

Samples of solid chemical deicers are prewet with a liquid chemical deicer with the intention of darkening the color of the solids. The same amounts of liquid and solid are used for each sample and the solids all have a similar gradation. The chemical deicers used in this test are given in table 3.4. The samples are applied to separate plots of ice that are 1/8 in thick. Pictures are taken of the plots at the same time intervals. The performance of the deicers is evaluated visually.

<table>
<thead>
<tr>
<th>Deicer</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salt Brine</td>
<td>Liquid-23% NaCl</td>
</tr>
<tr>
<td>50/50 Mix of Beet Juice-A/Salt Brine</td>
<td>Liquid-Carbohydrate Byproduct/23% NaCl</td>
</tr>
<tr>
<td>15/85 Mix of Beet Juice-A/Salt Brine</td>
<td>Liquid-Carbohydrate Byproduct/23% NaCl</td>
</tr>
<tr>
<td>Road Salt</td>
<td>Solid-NaCl</td>
</tr>
<tr>
<td>Pink Salt</td>
<td>Solid-Complex Chloride NaCl, MgCl₂, KCl</td>
</tr>
</tbody>
</table>

3.4.1 Equipment

a. Sample Containers with Lids

b. Measuring Syringes

c. #4 and #8 Sieves
d. Camera

e. Thermometer

f. Scale Measuring to the Nearest 0.01 G

g. Acrylic-Based Sealant

h. Test Plots

Any substrate can be used for this test. As shown in figure 3.13, the test plots used in this research were constructed of an 18-in by 13-in concrete slab divided into eight plots using acrylic-based sealant.

![Figure 3.13 Sunlight Test surface](image)

3.4.2 Procedure

3.4.2.1 Sample Preparation

1. Pass the solid deicers through a #4 and #8 sieve. The solids caught on the #8 sieve are used for testing.
2. Measure 2.0 ±0.03 grams of solid and place in sample container with lid. Tip the sample container to one side so all the sample is in the same area of the container.

3. Measure \(\frac{1}{2} \) mL of liquid deicer using a syringe. The deicer can be a pure sample or a sample mixed with salt brine.

4. Dribble the \(\frac{1}{2} \) mL of liquid deicer on the sample of solid deicer in the sample container.

5. Steps 2-4 must be done twice for each solid/liquid deicer combination so a test can be done in a sunlit area and a shaded area. Figure 3.14 shows some deicer samples.

6. Place the lids on the sample containers to prevent any losses.

3.4.2.2 Testing Procedure

1. Take deicer samples and test plots outside and let them acclimate overnight.

2. Select a day for testing. The weather must be clear and sunny with air temperature less than or equal to 20° F. The testing must also be done in an area with little to no wind.

3. Place the test plots on a shaded, level area. Fill the test plots with distilled water to create a 1/8-in thick ice sheet on each plot. Each plot may require a different amount of water.
4. Let the water freeze for 3-4 hr.

5. Use the thermometer to determine the air temperature in the shaded and sunlit areas.

6. Spread the deicer samples on separate test plots. Distribute the deicers as evenly as possible. Place the test plots in the sunlight with the appropriate plots remaining in the shade. Take pictures of the test plots immediately before and after application, as shown in figure 3.15.

![Figure 3.15 Deicing samples in shaded and sunlit areas](image)

7. Take pictures every 3 to 5 min for 60 min.

8. When the test is complete, thoroughly rinse the test plots with warm water. Dry the test plots as much as possible. Leave the test plots outside for future tests.

3.4.3 Data Processing

The pictures taken during the test are visually evaluated to determine if a particular solid/liquid deicer combination shows a clear advantage over other combinations. The pictures
taken during the test can reveal whether certain deicers have better deicing performance under sunlight. The picture taken at 60 min—or the final picture—is used to make the comparison. The area affected by the deicer in the separate plots can be determined by using a grid of areas, but obvious visual differences are preferred.

3.5 Refreeze Test

The purpose of the Refreeze Test is to determine when a deicing product will cease to function, as in, when the mixture and melted ice begin to refreeze on the roadway. Estimating when a treated roadway will begin to refreeze helps to determine when trucks should be sent out to treat the roadway again. This test can be used for liquid deicers and solid deicers. Prewet solid deicers were used for testing, but did not yield useful results. The chemical deicers used for this test are given in table 3.5.

<table>
<thead>
<tr>
<th>Deicer</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquids</td>
<td></td>
</tr>
<tr>
<td>Salt Brine</td>
<td>23% NaCl</td>
</tr>
<tr>
<td>Mg-A</td>
<td>29% MgCl₂</td>
</tr>
<tr>
<td>Mg-B</td>
<td>30% MgCl₂</td>
</tr>
<tr>
<td>K Ace</td>
<td>50% Potassium Acetate</td>
</tr>
<tr>
<td>Beet Juice-A</td>
<td>Carbohydrate Byproduct</td>
</tr>
<tr>
<td>Mg-C</td>
<td>Carbohydrate Byproduct and 26.9% MgCl₂</td>
</tr>
<tr>
<td>Mg-D</td>
<td>Carbohydrate Byproduct and 25% MgCl₂</td>
</tr>
<tr>
<td>Beet Juice-B</td>
<td>Carbohydrate Byproduct</td>
</tr>
<tr>
<td>Calcium Chloride</td>
<td>Carbohydrate Byproduct and 30% CaCl₂</td>
</tr>
<tr>
<td>Solids</td>
<td></td>
</tr>
<tr>
<td>Road Salt</td>
<td>Solid-NaCl</td>
</tr>
<tr>
<td>Pink Salt</td>
<td>Solid-Complex Chloride: NaCl, MgCl₂, KCl</td>
</tr>
</tbody>
</table>
This test is based on the SHRP Ice Melting Capacity Test. It consists of placing a sample of deicer on an ice sheet and measuring the amount of liquid that can be removed from the ice surface at particular time intervals over several hours. As time elapses, the amounts of liquid that can be removed will increase as melting occurs and then decrease as the liquid begins to refreeze. The thickness of the ice sheet for these tests was 1/8 in, but a particular thickness is not required as long as the same thickness is used for all the tests.

The amount of deicer used for this test was partially on what was used in the field. For liquid deicers, an amount corresponding to 109 gal per lane-mile was used for testing because it was the smallest amount that could be measured with reasonable accuracy. For solid deicers, an amount corresponding to 910 lbs per lane-mile was used for testing because smaller amounts would not produce measurable results. These are considered large application rates in the state of Nebraska but are not uncommon.

The tests were performed in a walk-in freezer, but it could be adapted for use in a smaller freezer. The temperature during the tests was 14 ±2° F. As was done for the SHRP Ice Melting Capacity Test and the Shaker Test, pure deicing chemicals and different deicer/brine ratios were evaluated using the Refreeze Test. The deicer/NaCl ratios evaluated were 15/85 and 50/50.

The solid deicers were used specifically to study the effect of the particle gradation on the refreeze time. The solids were passed through #4, #8, #20, and #40 sieves. The solids retained on the #8, #20, and #40 sieves were used separately for testing.

3.5.1 Equipment

a. Containers, with and without Lids

b. Syringes Capable of Measuring to the Nearest 0.1 mL

c. Graduated Cylinder
d. Walk-in Freezer with Temperature Controls

e. Scale Measuring to the Nearest 0.01 G

f. #4, #8, #20, and #40 sieves

3.5.2 Procedure

Each test is conducted in triplicate.

1. Pass solid deicers through #4, #8, #20, and #40 sieves. The solids retained on the #8, #20, and #40 sieves are used separately for testing.

2. If needed, premix the liquid deicers at the desired ratios. Place several milliliters of the liquid deicers in containers and place the lids. The deicers are now premixed for all needed testing.

3. Place containers, syringes, and all chemical deicers in the freezer.

4. Set the freezer to the desired temperature.

5. Use the graduated cylinder to place 25 mL of distilled water in each container. This will create a 1/8-in thick ice sheet in the containers.

6. Let the temperature of the ice, equipment, and deicers equilibrate for 4-5 hr.

7. Apply a sample of deicer to the ice sheet. For liquids, use ½ mL. For solids, use 0.5 ±0.03 g.

Use a syringe to remove and measure the liquid from the ice surface, as shown in figure 3.16. Take measurements at 1-hr intervals for 5 hr.
Figure 3.16 Refreeze Test liquid measurement

8. Clean the containers with the leftover ice by thoroughly rinsing with distilled water.

9. Clean the syringes with distilled water.

10. All equipment and deicers may be left in the freezer for later testing.

3.5.3 Data Processing

The refreeze time was determined for the deicers based on the data over a 5-hr test period. The results from the three tests for each deicer are presented in the next chapter.
4.1 SHRP Ice Melting Capacity Test

This test was developed by the Strategic Highway Research Program and can be found in the *Handbook of Test Methods for Evaluating Chemical Deicers* (Chappelow et al. 1992). It served as the starting point for test development in this project. Testing was performed at 20°, 10°, and 0° F. The test samples consisted of 3 g of road salt with 1 mL of liquid prewet. Different liquid deicer/sodium chloride ratios were used as a prewet to study the effect mixing ratios has on the end product. The ratios used were 100% of liquid deicer, 50/50 liquid deicer/sodium chloride, 40/60 liquid deicer/sodium chloride, and 25/75 liquid deicer/sodium chloride.

4.1.1 Test Results

The results of the SHRP Ice Melting Capacity Test can be presented as melting rates for the different chemical deicers or as melting totals for a particular time interval, usually 60 min. The 60-min totals for 0° F and 10° F are shown in figures 4.1 and 4.2, respectively. The colored bars represent the different deicer/NaCl ratios. The percentages stand for the percent of the specified deicer used in the prewet. For example, the red colored bar represents 25%. This means a mix of 25% deicer and 75% of sodium chloride was used to prewet the road salt, or, the prewet consisted of a 25/75 mix of deicer/NaCl. The performance of 100% salt brine is used as the reference for comparison. The performance of 100% Beet Juice-A is not shown because the high viscosity of this product disrupted the test.
Figure 4.1 SHRP Ice Melting Capacity Test results at 0° F for 60 min

Figure 4.2 SHRP Ice Melting Capacity Test results at 10° F for 60 min
The 60-min totals suggest the Beet Juice-A mixes do not perform as well as the other mixes. It can be seen from these figures that there is a lack of consistency. SHRP Ice Melting Capacity Tests were not performed at 20°F because it was decided the test was too inconsistent to continue. Figures 4.3-4.9 depict the melting rates for each temperature and mix ratio.

Figure 4.3 SHRP Ice Melting Capacity Test rates at 0°F for 100% of indicated deicer

Figure 4.4 SHRP Ice Melting Capacity Test rates at 0°F for 50/50 mixes of indicated deicer and sodium chloride
Figure 4.5 SHRP Ice Melting Capacity Test rates at 0°F for 40/60 mixes of indicated deicer and sodium chloride

Figure 4.6 SHRP Ice Melting Capacity Test rates at 0°F for 25/75 mixes of indicated deicer and sodium chloride
Figure 4.7 SHRP Ice Melting Capacity Test rates at 10°F for 50/50 mixes of indicated deicer and sodium chloride

Figure 4.8 SHRP Ice Melting Capacity Test rates at 10°F for 25/75 mixes of indicated deicer and sodium chloride
Figure 4.9 SHRP Ice Melting Capacity Test rates at 20°F for 50/50 mixes of indicated deicer and sodium chloride

The melting rates are fairly close for the various deicers. At 0°F, it takes at least 30 min for the deicers to start melting the ice. At 10°F, the deicers do not start working until after 15 min of exposure. Potassium acetate and Mg-A consistently perform better than sodium chloride. The results for the Mg-B do not show any consistency. Beet Juice-A consistently performs the same as or worse than sodium chloride. However, the data in figure 4.4 shows a 50/50 mix of Beet Juice-A/NaCl performs better than sodium chloride alone at 0°F, which correlates with what has been reported by roadway maintenance personnel in the state of Nebraska.

At 20°F, all the deicers are producing identical results, suggesting a 50/50 ratio of deicer/NaCl will perform the same as sodium chloride alone. The accuracy of these results is questionable because they do not correlate with the observations that sodium chloride becomes much less effective than other deicers below about 20°F. This data also does not correlate with field reports in the state of Nebraska.
4.1.2 Sources of Error

Many sources of error exist in this test. The variances for these tests at 45 and 60 min vary from 5% to 25%. About half of these variances are greater than 10%. Prevalent sources of error include the use of a chest freezer for testing and the testing of prewet solids. Others sources include liquid retention from cavities formed in the melting ice and problems that come from mixing deicers.

Opening the door of the chest freezer caused the temperature to increase during testing. The temperature of the ice did not increase by more than 3° F, but the air temperature could increase by as much as 10° F. This could result in less consistent ice melting capacities.

Road salt is a much less homogeneous material than the liquid deicers because road salt contains small amounts of gravel. This physical attribute could cause significant error in test results if some samples contain more gravel than others. The granules also created cavities in the ice sheet that retained some liquid even when the test dish is tipped. A research project (Goyal et al. 1989) using the SHRP Ice Melting Capacity Test tried using different types of blotter paper to absorb all the liquids. This method resulted in needing many more tests to determine ice melting capacities of a deicer in 60 min because the liquids could not be adequately returned to the test dish.

Problems with mixing the liquid deicers are believed to cause the most inconsistency in the results between different mix ratios. The problem comes from mixing the liquids in separate graduated cylinders. Any deicer/NaCl mixes with deicer amounts greater than 40% produce a solid precipitate. This did not occur with the Beet Juice-A or Beet Juice-B mixes. As seen in figure 4.10, this precipitate quickly settles and sticks to the inside of the graduated cylinder. There was always residue left in the graduated cylinder after the liquids had been poured for use
as a prewet. The precipitate is most likely solid chlorides and/or acetates that can become separated from the prewet liquid, thus reducing the liquid’s ice melting capacity. The precipitate has also been reported to clog deicer distribution systems on trucks in the state of Nebraska.

Figure 4.10 Clear deicers in separate syringes (left), precipitate formed after mixing deicers (middle), settled precipitate (right)

4.1.3 Test Evaluation

The results of this test were found to be too inconsistent to justify the expense of its use. Some research papers (Akin and Shi 2010; Shi et al. 2009; Nixon et al. 2007; Alger and Haase 2006) have produced more consistent results, but those projects conducted the SHRP Ice Melting Capacity Tests in a walk-in freezer. Each of these research projects used a slightly different procedure from the SHRP Ice Melting Capacity Test, usually having to do with the size of the ice sheet or deicer sample. The results from Akin and Shi (2010), Shi et al. (2009), and Nixon et al.
(2007) cannot be compared with the SHRP test results from this study because those studies did not use prewet solids. However, the results from Alger and Haase (2006) are compared with the results from this study in table 4.1.

Some of the SHRP Ice Melting Capacity Test results from Alger and Haase (2006) are shown in figure 4.11. This research tested samples of prewet road salt. The purpose of their research was to determine how the prewetting rate, at 6, 8, or 10 gal/ton, would improve the ice melting capacity.

![Deicer Melting Test (20 Degrees)](image)

Figure 4.11 SHRP Ice Melting Capacity Test results (Alger and Haase 2006)

Their results did not clearly show different performances between the type and the amount of prewet. There were also several instances where “Dry NaCl” outperformed several other products, which is not consistent with observations from the field. The results from figure 4.11 correlate well with those in figure 4.9; however, the units do not exactly match. One milliliter of brine will typically weigh between 1.0 and 1.18 g. The specific gravity of brine
measured at 60 min was probably closer to 1.0 g in figure 4.9, because of the large volume of water in the brine. The results from figures 4.9 and 4.11 are compared in table 4.1.

Table 4.1 Chemical deicers used in Refreeze Test

<table>
<thead>
<tr>
<th>Deicer</th>
<th>Alger and Haase (2006)</th>
<th>This Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mg-B</td>
<td>3.70</td>
<td>3.34</td>
</tr>
<tr>
<td>29% MgCl₂</td>
<td>3.60</td>
<td>3.36</td>
</tr>
<tr>
<td>Beet Juice-A</td>
<td>3.30</td>
<td>3.30</td>
</tr>
</tbody>
</table>

The 60-min results from Akin and Shi (2010) for the SHRP Ice Melting Capacity Tests at 15° F and 30° F are shown in figure 4.12 and figure 4.13, respectively. This project used different amounts of ice and chemical deicer. The modifications resulted in an application rate of 2,270 lbs/lane-mile and 245 gal/lane-mile rather than the 1,320 lbs/lane-mile and 144 gal/lane-mile as specified in the original SHRP Test. The multiple columns for each chemical represent tests that were done on different days.

The test results are consistent between figures 4.12 and 4.13 and between tests done on different days. Test results for 0° F were not shown because the liquid measurements were very low. Aside from the results at 0° F, the variances from the results at different temperatures and time periods are quite low. The variances range from 0% to 20% with over half less than 10%.

One notable inconsistency between the data in figure 4.12 and known outcomes from the field is the performance of the solid sodium chloride at 15° F. Figure 4.12 shows the solid sodium chloride to have better performance at 15° F than calcium chloride and magnesium chloride, but reports from the field show sodium chloride to have lesser performance at this temperature than the other two chemical deicers. Akin and Shi (2010) commented that the test
results for the solids at 15° F after 20 min of exposure correlated much better with results from the field than the results at 60 min of exposure.

Figure 4.12 Modified SHRP Ice Melting Capacity 60-min Test results at 15° F (Akin and Shi 2010)

Figure 4.13 Modified SHRP Ice Melting Capacity 60-min Test results at 30° F (Akin and Shi 2010)
The 60-min results from Shi et al. (2009) for the SHRP Ice Melting Capacity Tests are shown in figure 4.14. The sodium acetate (NAAC), Peak SF (sodium formate), Pink Salt, and sodium chloride are all solid deicers. The magnesium chloride and IceBan are liquids. These tests were performed in the same manner as the tests from Akin and Shi (2010).

The error bars show the variances to be reasonable for most of these tests. Figure 4.14 compares the ice melting capacities of solid sodium based products with liquid magnesium chloride mixes. However, liquid and solid deicers should not be compared to each other in a laboratory setting as they work differently in the field.

Figure 4.14 Modified SHRP Ice Melting Capacity 60-min Test results at 30° F (Akin and Shi 2010)
The 60-min results from Nixon et al. (2007) for the SHRP Ice Melting Capacity Tests are shown in figure 4.15, where several liquid deicers’ performances are compared. “MB” represents mineral brine, a mix of different chloride bases. “IBU” represents IceBan Ultra, a 25% magnesium chloride mix. They used 80 mL of distilled water to form the ice sheet and 5 mL of liquid deicer per test, but the size of the Plexiglas test dish was not reported.

One inconsistency shown in the data is that the performance at 0° F was better than that at 10° F. In the field, sodium chloride is expected to become ineffective at 0° F and no deicers are expected to perform better at lower temperatures. Another inconsistency is the performance of the IceBan Ultra. The IceBan and the Mg-B have similar magnesium chloride concentrations, but data showed they performed quite differently. Since IceBan is biodegradable, it spoils easily: it is possible that the sample used for testing could have come from a bad batch.

Figure 4.15 SHRP Ice Melting Capacity Test Results at 60-min (Nixon et al. 2007)
Due to the many sources of error, it is evident that the SHRP Ice Melting Capacity Test is not repeatable between different laboratories. Furthermore, the results from this test often do not correlate with field observations.

4.2 Shaker Test

The Shaker Test has several advantages over the SHRP Ice Melting Capacity Test. One advantage is that the test results are not affected by the size of the freezer. The freezer in an upright refrigerator is large enough for testing. Another advantage is that the Shaker Test produces repeatable results between laboratories. The use of this test by other researchers will further confirm this observation. Also, the error caused by mixing liquid deicers in the SHRP Test does not occur in the Shaker Test, as the deicers mix inside the shaker and none of the precipitate is lost. Lastly, the procedure for the Shaker Test is simpler and more flexible than that of the SHRP Ice Melting Capacity Test. The Shaker Test takes 10 min, whereas the SHRP Ice Melting Capacity Test takes at least 20 min to produce results. Many elements in a SHRP Ice Melting Capacity Test can easily be mishandled, therefore disrupting the results.

As part of the evaluation, several actions were taken during the procedure in an active attempt to disrupt the Shaker Test. These actions included dropping the shaker and having the lid fall off, shaking at different frequencies throughout the procedure, holding the shaker in different positions while shaking, and using different amounts of ice between tests.

The above actions led to several conclusions regarding the potential effects these variations have on the results. For instance, if the lid is replaced quickly after its removal, it will not affect the results. The shaking frequency does not have to be exact as long as it is close to the recommended frequency. The shaking position does not seem to have an effect as long as the liquids do not become separated from the solids. Always use the recommended number of ice
cubes; however, the results will not be significantly affected if the amounts of ice differ by less than 1 g.

The test results for liquid deicers, solid deicers, and prewet road salt are presented separately herein.

4.2.1 Test Results

One observation that pertained to all the tests was how the temperature inside the shaker changed during the procedure. As shown in figure 4.16, the temperature in the shaker drops sharply while shaking and then rebounds to its original temperature. The temperature drop is due to the ice melting reaction, which absorbs the heat energy in the shaker. When the ice stops melting, the temperature gradually returns to its original state.

![Figure 4.16 Temperature change inside the shaker during the Shaker Test](image)

Figure 4.16 Temperature change inside the shaker during the Shaker Test
4.2.1.1 Liquid Test Results

Nine different liquid deicers were evaluated at 20° F, 10° F, and 0° F. The effect of mixing liquid deicers with salt brine was also evaluated for deicer/brine ratios of 15/85 and 50/50, although the effect of ratio was extensively evaluated for Beet Juice-A. The chemical bases of the liquid deicers tested are sodium chloride, magnesium chloride, calcium chloride, potassium acetate, and carbohydrate or “beet juice” mixes.

The results for liquid deicers are shown in figures 4.17, 4.18, and 4.19. The percentages at the top of each column represent the ratio of the indicated chemical deicer in that particular mix. The standard deviation and variance are presented as a range on top of each bar.

![Shaker Test Results: Liquids at 20F](image)

Figure 4.17 Shaker Test liquid results at 20° F
Figure 4.18 Shaker Test liquid results at 10° F

Figure 4.19 Shaker Test liquid results at 0° F
The Salt Brine, Beet Juice-A, and Beet Juice-B were ineffective in melting ice at 0°F. The results for liquid deicers show consistent trends with respect to mix ratios and temperatures. Some of the essential findings are:

- Potassium acetate (K Ace), Mg-A, and calcium chloride consistently perform the best at each temperature, with potassium acetate performing very well at 20°F.
- Sodium chloride consistently performs the worst except for the 50/50 mixes of Beet Juice-A/NaCl and Beet Juice-B/NaCl.
- Mg-C and Mg-D are very similar products with similar concentrations of magnesium chloride, and the two produced almost identical results.
- Beet Juice-A and Beet Juice-B are also similar products, and the two mixes produced almost identical results.
- The Mg-C and Mg-D have slightly lower chloride concentrations than Mg-A, calcium chloride, and Mg-B. The Mg-C and Mg-D do not perform as well as these other products.
- The 50/50 and 15/85 mixes of potassium acetate/NaCl do not perform as well as other deicer/NaCl mixes at any temperature.
- Mg-A performed better than the Beet Juice-A mixes. This field data supports the Shaker Test results.

The variances from the 64 liquid test results are presented in table 4.2. These variances show the test can produce consistent results for liquids, even at 0°F.
Table 4.2 Variances in Shaker Test liquid results (%)

<table>
<thead>
<tr>
<th>Deicer</th>
<th>20°F</th>
<th>10°F</th>
<th>0°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium Chloride</td>
<td>1.77</td>
<td>3.27</td>
<td>NA</td>
</tr>
<tr>
<td>15/85 K Acetate/NaCl</td>
<td>1.15</td>
<td>3.75</td>
<td>11.21</td>
</tr>
<tr>
<td>50/50 K Acetate/NaCl</td>
<td>0.37</td>
<td>5.75</td>
<td>12.60</td>
</tr>
<tr>
<td>Potassium Acetate</td>
<td>1.56</td>
<td>3.40</td>
<td>3.19</td>
</tr>
<tr>
<td>15/85 Mg-B/NaCl</td>
<td>1.41</td>
<td>4.97</td>
<td>24.34</td>
</tr>
<tr>
<td>50/50 Mg-B/NaCl</td>
<td>5.67</td>
<td>4.29</td>
<td>3.88</td>
</tr>
<tr>
<td>Mg-B</td>
<td>2.09</td>
<td>3.17</td>
<td>3.11</td>
</tr>
<tr>
<td>15/85 Mg-A/NaCl</td>
<td>8.78</td>
<td>4.93</td>
<td>8.86</td>
</tr>
<tr>
<td>50/50 Mg-A/NaCl</td>
<td>2.79</td>
<td>4.07</td>
<td>1.93</td>
</tr>
<tr>
<td>Mg-A</td>
<td>4.86</td>
<td>1.41</td>
<td>5.56</td>
</tr>
<tr>
<td>15/85 Beet Juice-A/NaCl</td>
<td>3.38</td>
<td>3.28</td>
<td>NA</td>
</tr>
<tr>
<td>50/50 Beet Juice-A/NaCl</td>
<td>4.75</td>
<td>13.28</td>
<td>NA</td>
</tr>
<tr>
<td>15/85 Mg-D/NaCl</td>
<td>11.11</td>
<td>2.47</td>
<td>7.04</td>
</tr>
<tr>
<td>50/50 Mg-D/NaCl</td>
<td>1.09</td>
<td>2.91</td>
<td>13.78</td>
</tr>
<tr>
<td>Mg-D</td>
<td>4.46</td>
<td>1.71</td>
<td>4.17</td>
</tr>
<tr>
<td>15/85 Mg-C/NaCl</td>
<td>3.22</td>
<td>4.15</td>
<td>19.78</td>
</tr>
<tr>
<td>50/50 Mg-C/NaCl</td>
<td>1.47</td>
<td>2.11</td>
<td>1.70</td>
</tr>
<tr>
<td>Mg-C</td>
<td>6.62</td>
<td>2.62</td>
<td>0.99</td>
</tr>
<tr>
<td>15/85 CaCl/NaCl</td>
<td>5.63</td>
<td>5.73</td>
<td>12.10</td>
</tr>
<tr>
<td>50/50 CaCl/NaCl</td>
<td>2.63</td>
<td>4.88</td>
<td>5.29</td>
</tr>
<tr>
<td>Calcium Chloride</td>
<td>3.10</td>
<td>0.46</td>
<td>4.06</td>
</tr>
<tr>
<td>15/85 Beet Juice-B/NaCl</td>
<td>5.41</td>
<td>4.86</td>
<td>NA</td>
</tr>
<tr>
<td>50/50 Beet Juice-B/NaCl</td>
<td>1.37</td>
<td>5.38</td>
<td>NA</td>
</tr>
</tbody>
</table>

4.2.1.2 Solid Test Results

Only two solid chemical deicers, road salt and Pink Salt, were tested. Road salt is solid sodium chloride and Pink Salt is an orange colored, finely graded solid made up mostly of sodium chloride with small amounts of magnesium chloride, calcium chloride, and other chemicals. Of the samples used for testing, the road salt had a gradation greater than 4.75 mm (#4 sieve) and the Pink Salt had a gradation smaller than 4.75 mm (#4 sieve). The results are shown in figure 4.20. Field observations have shown that Pink Salt performs better than road salt. Both solids were passed through sieves to achieve similar gradations before testing.
Results from the Shaker Test showed the rock salt and the Pink Salt to have almost identical ice melting capacities at 20° F and 10° F. The rock salt did not melt ice at 0° F, but the Pink Salt did. It is unclear if this contrast at 0° F is a result of the different chemical compositions or of the gradation of the Pink Salt. Similar gradations were used for both chemicals, but while larger granules of road salt tend to be solid pieces, the larger granules of Pink Salt tend to be smaller granules pressed together. These granules break apart during the Shaker Test and finer particles more effectively melt ice at 0° F.

The results suggest smaller gradations melted ice more quickly than larger gradations. Samples measuring 4 g with a gradation of 2.38 mm (#8 sieve) melted about 0.10 g of ice more than samples measuring 5 g with a gradation of 4.75 mm (#4 sieve).

The variances from the solid test results are given in table 4.3. These variances are higher than those from the liquid results because of the variability of the solid materials.
Table 4.3 Variances in Shaker Test solid results (%)

<table>
<thead>
<tr>
<th>Deicer</th>
<th>20°F</th>
<th>10°F</th>
<th>0°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Road Salt</td>
<td>11.06</td>
<td>6.72</td>
<td>NA</td>
</tr>
<tr>
<td>Pink Salt</td>
<td>5.97</td>
<td>7.80</td>
<td>14.00</td>
</tr>
</tbody>
</table>

4.2.1.3 Prewet Road Salt Test Results

The results for the prewet road salt are not as consistent as the results for liquids or dry solids. These inconsistencies are most likely caused by the preparation of the deicer samples. For serviceability reasons, the samples of road salt were prewet by placing them in containers filled with a liquid deicer. The road salt could have stayed soaking in these containers for several days. When the road salt was moved from the prewetting liquid to the shaker, care was taken to leave as much liquid as possible in the container. This resulted in road salt samples coated with an amount of liquid deicer that can be estimated, but cannot be measured with certainty.

A better way to prepare the samples is to take a larger amount of road salt and prewet with the equivalent of 8 gal/ton to mimic wetting the stockpile. Once prewetting is complete, smaller samples can be used for testing. This was not done because the amount of road salt required was not available.

The results for prewet road salt are shown in figures 4.21 and 4.22. The standard deviation and variance are presented as a range on top of each bar. The potassium acetate (K Ace) results are not shown in figure 4.22 because a problem occurred during the prewet process. The potassium acetate reacted with the road salt forming a pudding-like substance, shown in figure 4.23.
Figure 4.21 Shaker Test results for prewet road salt at 10° F (each bar represents three tests)

Figure 4.22 Shaker Test results for prewet road salt at 0° F (each bar represents three tests)
Beet Juice-A and Beet Juice-B mixes showed different ice melting performance between the prewet results and the liquid results. The data shows those mixes work much better as a prewet than as a straight liquid deicer. The performance of the Beet Juice-A as a prewet correlates with reports from the field in the state of Nebraska. Specifically, the prewet results in which the 50/50 mix of Beet Juice-A/NaCl outperformed the results for the 15/85 mix correlate well with field reports. The performance of Beet Juice-A as a liquid mix does not correlate with field reports, but it does correlate with data collected from the MDSS in the state of Nebraska.

The prewet results at 10° F correlate well with the liquid results, except for the Beet Juice-A and Beet Juice-B mixes. The prewet results at 0° F do not correlate well with the liquid results. Specifically, that the Mg-B performed better than the Mg-A is contrary to the liquid results. Mg-C and Mg-D performed better than the Mg-A and the Mg-B, also being contrary to the liquid results.

![Figure 4.23](image-url) Potassium acetate reacted with road salt
The variances from the 19 prewet test results are given in table 4.4. These variances and test results show the test can produce consistent results for prewet road salt at 10° F; however, further development is needed to improve the results at 0° F.

Table 4.4 Variances in Shaker Test solid results (%)

<table>
<thead>
<tr>
<th>Deicer</th>
<th>10°F</th>
<th>0°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium Chloride</td>
<td>7.84</td>
<td>4.71</td>
</tr>
<tr>
<td>Potassium Acetate</td>
<td>3.68</td>
<td>NA</td>
</tr>
<tr>
<td>Mg-B</td>
<td>9.07</td>
<td>3.36</td>
</tr>
<tr>
<td>Mg-A</td>
<td>4.60</td>
<td>6.52</td>
</tr>
<tr>
<td>15/85 Beet Juice-A/NaCl</td>
<td>7.63</td>
<td>12.39</td>
</tr>
<tr>
<td>50/50 Beet Juice-A/NaCl</td>
<td>6.98</td>
<td>13.89</td>
</tr>
<tr>
<td>Mg-D</td>
<td>4.76</td>
<td>4.44</td>
</tr>
<tr>
<td>Mg-C</td>
<td>22.55</td>
<td>19.77</td>
</tr>
<tr>
<td>Calcium Chloride</td>
<td>5.15</td>
<td>4.44</td>
</tr>
<tr>
<td>15/85 Beet Juice-B/NaCl</td>
<td>4.05</td>
<td>6.34</td>
</tr>
</tbody>
</table>

4.2.1.4 Beet Juice Results

Beet Juice-A mix ratios were extensively evaluated at 20° F. The results in figure 4.24 show that the best results occurred at a ratio of 15/85 Beet Juice-A/NaCl. All other chemical deicers used in this study produced the best results when not mixed with anything. The best results of Beet Juice-A occurred at a ratio of 15/85 because of the stickiness of the material. The Beet Juice-A and Beet Juice-B help the sodium chloride effectively stick to the ice, resulting in a greater ice melting capacity. Mixes with a higher ratio of Beet Juice-A or Beet Juice-B do not perform as well because the advantage from the stickiness can no longer compensate for the smaller amount of sodium chloride in the mix.
4.2.2 Sources of Error

The most significant error that affected the liquid, solid, and prewet road salt results is the size of the ice cubes used for testing. The weight of a group of 10 ice cubes was different from one test to the next. Tests that had very similar ice weights had very small variances. The best way to minimize this error is to measure the water for the ice cubes as accurately as possible and to use the cubes less than 24 hr after freezing.

The higher variances associated with the solid and the prewet road salt results are likely a result of the solids themselves. Some samples of solid deicers, though equal in weight, may not contain the same amount of sodium chloride material. The angularity of the solid granules may also contribute to the variance.

Figure 4.24 Shaker Test results for Beet Juice-A Mixes at 20° F (each bar represents three tests)
A source of error unique to the prewet road salt results is the effect of soaking the solids in the prewet. The solids may have absorbed some prewet causing some samples to have more prewet than others. The best way to minimize this error is to use a measured amount of prewet similar to the application rate used in the field.

4.2.3 Test Evaluation

The results of the Shaker Test are promising. Liquid deicers were evaluated extensively at different deicer/NaCl ratios. The liquid and solid deicers produced consistent results with reasonable variances. More types of solids should be used in this test to further confirm the solid results. The results for the prewet road salt were not as consistent at 0° F. The prewet part of this test requires further study using a standardized prewetting procedure.

Limited testing with liquid deicers was performed at an auxiliary location to verify if the results were reproducible. The freezer used at the auxiliary location was part of an upright refrigerator. The freezer at the auxiliary location could not provide a temperature higher than -2° F. The results from the two locations are compared in figure 4.25.

Sodium chloride did not melt ice at either location. The results for the potassium acetate are very similar. The results for the Mg-B and Mg-C were slightly lower at the auxiliary location, probably due to the lower temperature in the freezer. Overall, the results for these liquids from the different locations are similar. More tests should be performed at different locations to further confirm the repeatability of the Shaker Test.
Much of the data from the Shaker Test correlates with reports from the field, observations from the field, and with some of the data from the SHRP Ice Melting Capacity Test. One example is how the magnesium chloride and the IceBan compare to each other in figure 4.14. Another example is how the calcium chloride, potassium acetate, and the Mg-B compare to each other in figure 4.15. These results correlate closely with the way how similar liquid deicers performed in the Shaker Test. These results also correlate closely with the way the Mg-C and Mg-D products compare to the other magnesium chloride products from the Shaker Test.

The Shaker Test appears to produce results similar to that of the SHRP Ice Melting Capacity Test without the need of a walk-in freezer. The results from the Shaker Test also appear to correlate better with reports from the field in the state of Nebraska.
4.3 Friction Test

The purpose of this test was to determine if liquid chemical deicers could cause slippery conditions when applied to an ice-covered roadway. These tests were done in a walk-in freezer at 20 ±4° F. Only liquid deicers were used because the varying shape, size, and hardness of solid deicers would have caused considerable variance in the results.

Figure 4.26 describes how the static and kinetic friction coefficients are determined from the data. No force is applied when the load cell is initially activated. This occurs just before tightening and just after loosening the nut. The applied force will increase as tightening begins. The peak magnitude force occurs when static friction has been reached and the sled has begun to move. The peak force is the value used to calculate the static friction coefficient. The forces gradually decrease after the peak force as the sled is moving. The average of these values is used to calculate the kinetic friction coefficient. The results of the Friction Test are given in table 4.5. Each value represents the average result of two tests.

Figure 4.26 Friction force vs. time
4.3.1 Test Results

The kinetic friction coefficient for rubber on wet concrete is published in many engineering statics textbooks. The range is slightly lower than the coefficients measured in testing. One probable cause is that the friction in the moving mechanical parts of the test setup could have artificially increased the measured friction coefficients.

Table 4.5 Friction Test results

<table>
<thead>
<tr>
<th></th>
<th>Static Friction Coef. (μ_s)</th>
<th>Kinetic Friction Coef. (μ_k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wet Concrete - Researched</td>
<td>--</td>
<td>0.45 - 0.75</td>
</tr>
<tr>
<td>Wet Concrete - Measured</td>
<td>0.873 ± 0.017</td>
<td>0.817 ± 0.028</td>
</tr>
<tr>
<td>Liquid Deicers: Final Results</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium Chloride</td>
<td>0.755 ± 0.035</td>
<td>0.702 ± 0.022</td>
</tr>
<tr>
<td>Potassium Acetate</td>
<td>0.730 ± 0.056</td>
<td>0.654 ± 0.043</td>
</tr>
<tr>
<td>Mg-B</td>
<td>0.685 ± 0.007</td>
<td>0.647 ± 0.031</td>
</tr>
<tr>
<td>Mg-A</td>
<td>0.845 ± 0.091</td>
<td>0.801 ± 0.067</td>
</tr>
<tr>
<td>Beet Juice/NaCl 15/85</td>
<td>0.705 ± 0.021</td>
<td>0.653 ± 0.040</td>
</tr>
<tr>
<td>Mg-C</td>
<td>0.805 ± 0.049</td>
<td>0.740 ± 0.049</td>
</tr>
<tr>
<td>Mg-D</td>
<td>0.740 ± 0.014</td>
<td>0.702 ± 0.050</td>
</tr>
<tr>
<td>Calcium Chloride</td>
<td>0.795 ± 0.007</td>
<td>0.753 ± 0.007</td>
</tr>
</tbody>
</table>

The results for the deicers are generally lower than the measured results for wet concrete. None of the deicers produced slippery pavement conditions. Mg-A performed the best, but also had the largest standard deviation. A mix of 50/50 Beet Juice-A/NaCl was used in testing but produced relatively poor results because the mix was unable to melt all the ice.

The Friction Test results from Shi et al. (2009) using a tribometer and those from Alger et al. (1994) using a SAAB friction tester are compared with results from this study in table 4.6. The results from this research compare well with the results from the SAAB friction tester.
Table 4.6 Friction results comparison

<table>
<thead>
<tr>
<th>Deicer</th>
<th>SAAB</th>
<th>Tribometer</th>
<th>Sled (This Research)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ice</td>
<td>0.300</td>
<td>0.500</td>
<td>0.450</td>
</tr>
<tr>
<td>NaCl</td>
<td>NA</td>
<td>0.650</td>
<td>0.702</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>0.650</td>
<td>0.500</td>
<td>0.647 (Mg-B)</td>
</tr>
<tr>
<td>KAc</td>
<td>0.700</td>
<td>0.550</td>
<td>0.654</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>NA</td>
<td>0.200</td>
<td>0.702 (Mg-D)</td>
</tr>
</tbody>
</table>

4.3.2 Sources of Error

The primary source of error in this test was change in temperature. The temperature stayed steady during the test, but could change as much as 8° F between tests. Other sources included the friction in the moving mechanical parts and the human error from turning the nut.

The friction between the moving parts was probably consistent in all the tests because the parts were well greased. This would still cause the deviation from the known values shown in table 4.5. The human error could be minimized by using an air ratchet or other mechanism to turn the nut.

4.3.3 Test Evaluation

This version of the Friction Test has a complicated procedure and requires a walk-in freezer. It may be more prudent to test a liquid deicer for potential fermentation, which can produce slippery roadways. The easiest way to test for fermentation is to smell the liquid deicer. If a product is suspected to cause slippery roadways without fermentation, it would be more practical to use a British Pendulum Tester to confirm the friction coefficient. The British Pendulum Tester is described in Chapter 2. It has a simpler procedure, does not require electricity, and is designed for use in the field.
4.4 Sunlight Test

The purpose of this test was to confirm that the darker color of the Beet Juice and the solid Pink Salt would enhance ice melting when exposed to direct sunlight. A typical result is shown in figure 4.27. The test was performed at 15° F and the photos illustrate the effects of the deicers after 60 min. The labels along the side indicate the solid deicer used in that row. The labels along the top represent the liquid deicer used in that column. The areas of melted ice are circled in red.

The 50/50 mixes are darker than the 85/15 mixes. The shaded results do not show any obvious differences between melted areas. The sunlit results show the melted area of the 50/50 mix with road salt is larger than that of the 85/15 mix with road salt. The sunlit results also show the melted area of the 85/15 mix with Pink Salt is larger than that of the 85/15 mix with road salt. These results were consistent with the results from another Sunlight Test performed at 20° F.

![Figure 4.27 Sunlight Test results](image-url)
4.5 Refreeze Test

The purpose of the Refreeze Test was to determine the time elapsed between the applications and refreezing for particular deicers. In the test, a sample of deicer is applied on an ice sheet for a period of time. The resulting liquids are decanted from the ice surface for measurement and then returned to the ice surface to continue testing. As the liquids begin to refreeze, less liquid is able to be decanted and measured. This test can be used for liquid deicers and solid deicers. Prewet solid deicers were used for testing, but did not yield useful results.

4.5.1 Test Results

The same 9 deicers and mix ratios that were used in the Shaker Test were used in the Refreeze Test. The temperature during the tests was 14 ±2° F. Three tests were performed for each deicer. The graphs of the Refreeze Test results are compiled in Appendix A.

4.5.1.1 Liquid Test Results

The results for the beet juice, two examples of magnesium chloride, and calcium chloride are shown in figures 4.28, 4.29, and 4.30. The percentage in each figure’s caption represents the amount deicer present in the deicer/salt brine mix. For example, a caption “Beet Juice-B 15%” indicates a 15/85 mix of Beet Juice-B/salt brine.

The results from three tests are presented in one graph and evaluated visually. It is essential to look for the time at which the peak amount of liquid was collected. The refreeze time is estimated from the gradual decrease in the amount of liquid versus time.

Most of these results indicate the liquids begin to refreeze after 2 to 3 hr. These results confirm the recommendation from Blackburn et al. (2004) to retreat areas every 1½ hr when using liquids below 20° F. This result holds true for all the liquid deicers except for calcium chloride. The results for 100% calcium chloride do not clearly indicate a point of refreeze in the
5-hr test period. This means calcium chloride has a refreeze time as long as 5 hr, much longer than the other deicers used in this test.

Figure 4.28 Refreeze Test results for agricultural byproduct or “beet juice” deicers
Figure 4.29 Refreeze Test results for magnesium chloride deicers
4.5.1.2 Solid Test Results

Road salt and Pink Salt were the solid deicers used in the Refreeze Test. They were each used at three different gradations: 0.422 mm (#40 sieve), 0.841 mm (#20 sieve), and 2.380 mm (#8 sieve). The particle size is indicated on the graphs shown in figure 4.31.

Figure 4.30 Refreeze Test results for calcium chloride deicer

- Calcium Chloride 15%
- Calcium Chloride 50%
- Calcium Chloride 100%
Figure 4.31 Refreeze Test results for solid deicers

The results from the Refreeze Test show the road salt and Pink Salt have almost identical refreeze profiles at all three gradation sizes. The results from the Refreeze Test also showed the gradation size has a significant effect on the refreeze time. Samples with gradations smaller than
0.422 mm (#40 sieve) began to refreeze almost immediately. Samples with a larger gradation of about 2.380 mm (#8 sieve) began to refreeze after 2 hr. The samples with a 0.841 mm (#20 sieve) gradation appear to begin refreezing at 2 hr, but begin to rebound at 4 hr. This could be due to the solids that dissolve into smaller particles and then disperse more evenly onto the ice.

4.5.2 Sources of Error

The primary source of error is the liquid measurement. It was easy to misread the measurements by ±0.1 mL. A way to eliminate this error would be to use smaller syringes, say, 2.0 mL, for the liquid measurements. Other errors include conditions inside the freezer. The inconsistent temperature and humidity between tests is probably what caused much of the variation. Those errors did not exist for the solid deicer results because they were all performed at the same time.

4.5.3 Test Evaluation

The Refreeze Test did not produce completely consistent results, but was functional enough to discover some interesting information about calcium chloride and the gradation of solid deicers. It is a lengthy test, but much of that time is spent waiting for the ice to melt. Although the Refreeze Test was performed in a walk-in freezer for this project, the test could be adapted for use in a smaller freezer. The Refreeze Test shows the potential to become a cost-effective screening test for deicers, but further development to produce consistent results is necessary.
Chapter 5 Field Data Results and Correlation

The field data was collected by plow trucks equipped with Automatic Vehicle Location Systems (AVL) along with the Maintenance Decision Support System (MDSS) managed by Meridian Environmental Technology. The systems record real-time information including vehicle location, amount of material being used per lane-mile, and pictures of the roadway condition taken from the cab of the truck. The MDSS collects weather data for specific routes from different weather stations across several states. Important weather data include air temperature, roadway temperature, wind speed, type and amount of precipitation, and pictures from roadside cameras. These data are used to classify different storms and to determine roadway maintenance actions.

The maintenance actions performed and their results during the storms are analyzed and, if possible, compared to different maintenance actions performed and their results in similar storms. Different storms are grouped by temperature, wind speed, and type of precipitation. An analysis consists of confirming the type and amount of chemical deicer used on a particular route and looking at the pictures from the cab to see how treatment affected the level of service on that roadway.

A particular route must meet a certain criteria before it can be analyzed. The route can only have one truck treating the roadway, since not all trucks are equipped with AVL. There must be several good pictures from the route, either from the cab or a stationary roadside camera. At the moment, only the storms during daylight hours are used because the quality of the pictures taken at night has been poor. The storm has to be severe enough to warrant using deicing material.
A rating system was developed to measure the changes in the level of service of the roadway. The rating system is completely governed by what can be seen from the pictures; therefore, the system does not include changes in ice cover. Table 5.1 defines the rating system used to process the pictures from the field. Very often a roadway with multiple lanes will have different levels of service in different lanes. Therefore, this rating system is a subjective measure due to the lack of a more precise methodology.

Table 5.1 Rating system for roadway level of service

<table>
<thead>
<tr>
<th>Description</th>
<th>Picture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear</td>
<td></td>
</tr>
<tr>
<td>• Can See Inner and Outer Lines</td>
<td></td>
</tr>
<tr>
<td>• Very Little Snow on Roadway</td>
<td></td>
</tr>
<tr>
<td>• Snow Will Not Cause Traffic Issues</td>
<td></td>
</tr>
<tr>
<td>25% Covered</td>
<td></td>
</tr>
<tr>
<td>• Can See Two or More Wheel Tracks</td>
<td></td>
</tr>
<tr>
<td>• Can See One or More Lines</td>
<td></td>
</tr>
<tr>
<td>• Snow May Cause Some Slowdown</td>
<td></td>
</tr>
<tr>
<td>% Covered</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| 50% Covered | - Can See Two Wheel Tracks
- Cannot See Lines
- Snow Will Cause Difficulty When Changing Lanes |
| 75% Covered | - Can See Some of the Dark Colored Roadway
- Cannot See Two Defined, Continuous Wheel Tracks |
| 100% Covered | - Cannot See the Roadway |
Table 5.2 Mg-A and Beet Juice-A comparison

<table>
<thead>
<tr>
<th>Time</th>
<th>Mg-A 60 gal/ln-mi</th>
<th>Deicer App. Rate</th>
<th>30/70 Beet Juice-A/NaCl 50 gal/ln-mi</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:05am</td>
<td>6:15am</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4 in snow</td>
<td>Precipitation</td>
<td>0.5 in snow</td>
<td></td>
</tr>
<tr>
<td>2°F</td>
<td>Air Temp.</td>
<td>15°F</td>
<td></td>
</tr>
<tr>
<td>7°F</td>
<td>Road Temp.</td>
<td>21°F</td>
<td></td>
</tr>
<tr>
<td>10 mph</td>
<td>Winds</td>
<td>11 mph</td>
<td></td>
</tr>
<tr>
<td>02/24/11</td>
<td>Date</td>
<td>01/19/11</td>
<td></td>
</tr>
<tr>
<td>US-26</td>
<td>Location</td>
<td>US-385</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>Mg-A 180 gal/ln-mi</th>
<th>Deicer App. Rate</th>
<th>30/70 Beet Juice-A/NaCl 300 gal/ln-mi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:35 PM</td>
<td>1:06 PM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.9 in snow</td>
<td>Precipitation</td>
<td>1.0 in snow</td>
<td></td>
</tr>
<tr>
<td>7°F</td>
<td>Air Temp.</td>
<td>14°F</td>
<td></td>
</tr>
<tr>
<td>16°F</td>
<td>Road Temp.</td>
<td>20°F</td>
<td></td>
</tr>
<tr>
<td>11 mph</td>
<td>Winds</td>
<td>11 mph</td>
<td></td>
</tr>
<tr>
<td>02/24/11</td>
<td>Date</td>
<td>01/19/11</td>
<td></td>
</tr>
<tr>
<td>US 26</td>
<td>Location</td>
<td>US 385</td>
<td></td>
</tr>
</tbody>
</table>
Table 5.2 is a comparison of the Mg-A deicer (left) and a 30/70 mix of Beet Juice-A/NaCl (right). The pictures on the left were taken by a stationary camera. The pictures on the right were taken by a plow truck near the same location marked by the motel sign in both pictures.

This comparison shows the Mg-A transforming the roadway from 100% covered to 0-25% covered in 6½ hr. The Beet Juice mix does not appear to have melted snow after about 7 hr. The roadway treated by the Mg-A is reportedly a busy roadway, while the roadway treated by the Beet Juice mix is not a busy roadway. Hence, traffic may have played an important role. The weather seen in the pictures of the Beet Juice treatment is more overcast than that seen in the pictures of the Mg-A treatment. Nevertheless, this comparison shows that Mg-A significantly outperformed the 30/70 Beet Juice/NaCl at lower temperatures and with more snow. The results correlate with the performance comparison between the two deicers from the Shaker Test.
Table 5.3 Beet Juice-A comparison

<table>
<thead>
<tr>
<th>Time</th>
<th>Deicer App. Rate</th>
<th>Precipitation</th>
<th>Air Temp.</th>
<th>Road Temp.</th>
<th>Winds</th>
<th>Date</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:14 AM</td>
<td>30/70 Beet Juice-A/NaCl 340 gal/mi</td>
<td>1.1 in snow</td>
<td>5°F</td>
<td>10°F</td>
<td>11 mph</td>
<td>01/20/11</td>
<td>US 385</td>
</tr>
<tr>
<td>10:32 AM</td>
<td>30/70 Beet Juice-A/NaCl 340 gal/mi</td>
<td>1.1 in snow</td>
<td>9°F</td>
<td>14°F</td>
<td>7 mph</td>
<td>01/20/11</td>
<td>US 385</td>
</tr>
</tbody>
</table>
Table 5.4 Road salt comparison: high winds

<table>
<thead>
<tr>
<th>Time</th>
<th>Deicer App. Rate</th>
<th>Time</th>
<th>Deicer App. Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:06 PM</td>
<td>Road salt 141 lbs/ln-mi</td>
<td>2:17 PM</td>
<td>Road salt 241 lbs/ln-mi</td>
</tr>
<tr>
<td>2.3 in snow</td>
<td>Precipitation</td>
<td>2.6 in snow</td>
<td></td>
</tr>
<tr>
<td>14° F</td>
<td>Air Temp.</td>
<td>12° F</td>
<td></td>
</tr>
<tr>
<td>15° F</td>
<td>Road Temp.</td>
<td>14° F</td>
<td></td>
</tr>
<tr>
<td>25 mph</td>
<td>Winds</td>
<td>27 mph</td>
<td></td>
</tr>
<tr>
<td>02/01/11</td>
<td>Date</td>
<td>02/01/11</td>
<td></td>
</tr>
<tr>
<td>Hwy 34</td>
<td>Location</td>
<td>Hwy 34</td>
<td></td>
</tr>
</tbody>
</table>
Table 5.3 is a comparison of the 30/70 Beet Juice-A/NaCl just before daylight (left) and on a sunny day about 2 hr later (right). The pictures were not taken at exactly the same location, but they were within 2 to 3 miles of each other. The pictures in table 5.3 are also within 10 miles of the pictures from the previous day, shown in table 5.2 on the right.

The pictures from table 5.2 and on the left in table 5.3 show limited snow melted when there was little daylight; the roadway went from 100% covered to 75-100% covered. The picture on the right in table 5.3 shows significant melting after 2 hr of direct sunlight, even though the temperature was lower than the previous day’s. These comparisons suggest direct sunlight can enhance the ice melting capacity of the 30/70 Beet Juice/NaCl mix, which has dark color to absorb heat from solar radiation.

Table 5.4 demonstrates how significant winds can affect the treatment process. These pictures were taken by a plow truck near the same location marked by the trees that can be seen in the top right corners of both pictures. The right lane shows little improvement after 71 min, but the level of service of the left lane has deteriorated. The road salt is not effective because of the wind, and the melting may cause more snow to stick to the roadway. The data confirm the findings from Blackburn et al. (2004), Ketcham et al. (1996), and CTC & Associates LLC (2009) that wind speeds above 15 mph could inhibit winter maintenance operations.
Table 5.5 10/90 Beet Juice-A/NaCl mix: high winds

<table>
<thead>
<tr>
<th>Time</th>
<th>Date</th>
<th>Deicer App. Rate</th>
<th>Precipitation</th>
<th>Air Temp.</th>
<th>Road Temp.</th>
<th>Winds</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:34 AM</td>
<td>01/31/11</td>
<td>10/90 Beet Juice-A/NaCl 70 gal/ln-mi</td>
<td>0.1 in frost</td>
<td>16(^\circ) F</td>
<td>18(^\circ) F</td>
<td>11 mph</td>
<td>Hwy 275</td>
</tr>
<tr>
<td>3:23 PM</td>
<td>01/31/11</td>
<td>10/90 Beet Juice-A/NaCl 140 gal/ln-mi</td>
<td>0.5 in snow</td>
<td>9(^\circ) F</td>
<td>12(^\circ) F</td>
<td>22 mph</td>
<td>Hwy 275</td>
</tr>
<tr>
<td>11:08 AM</td>
<td>02/01/11</td>
<td>10/90 Beet Juice-A/NaCl 140 gal/ln-mi</td>
<td>2.1 in snow</td>
<td>3(^\circ) F</td>
<td>8(^\circ) F</td>
<td>22 mph</td>
<td>Hwy 275</td>
</tr>
<tr>
<td>9:56 AM</td>
<td>02/02/11</td>
<td>10/90 Beet Juice-A/NaCl 140 gal/ln-mi</td>
<td>2.6 in snow</td>
<td>0(^\circ) F</td>
<td>8(^\circ) F</td>
<td>17 mph</td>
<td>Hwy 275</td>
</tr>
</tbody>
</table>
Table 5.5 is a comparison of the 10/90 Beet Juice-A/NaCl over a 3-day period. The top three pictures were taken at the same location. The picture at the bottom was not taken at the same location, but it was within 2 to 3 miles from the others. The top picture was taken at 8:34 AM, the beginning of the observation period. It shows a blurry but clear road. The roadway was reported to have a thin layer of frost and a wind speed of 11 mph. The Beet Juice-A/NaCl mix was used to treat the frost.

By 3:23 PM, a 1/2 in of snow had fallen and the wind speed had increased to 22 mph. The picture shows snow blowing across and sticking to the roadway. Snow sticking to the roadway at this wind speed means the roadway was still wet from the earlier treatment, which was detrimental to the roadway’s level of service.

At 11:08 AM the next day, a total of 2.1 in of snow had fallen and roadway was reportedly clear. The picture shows the snow blowing across the roadway but not sticking to the roadway. The roadway dried sometime between 7 and 14 hr after the application, even with continuous precipitation. It is possible that the high wind had played a role in drying the roadway.

At 9:58 AM on the third day, the storm was over; the roadway was clear and appeared to be dry. The roadway was at the best level of service because the wind kept snow from accumulating on the road and the maintenance crews were able to keep snow drifts under control. The results from table 5.5 contrast with the results from table 5.4 because far less ice melting material was used on the roadway in the time period shown in table 5.5. This comparison indicates that using deicers during a blowing snow scenario can cause snow to stick to the roadway and result in a lower level of service (Blackburn et al. 2004; Ketcham et al. 1996; CTC & Associates LLC 2009).
Table 5.6 Liquid sodium chloride comparison at low temperatures

<table>
<thead>
<tr>
<th>Time</th>
<th>Date</th>
<th>Deicer App. Rate</th>
<th>Precipitation</th>
<th>Air Temp.</th>
<th>Road Temp.</th>
<th>Winds</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:08 AM</td>
<td>01/23/11</td>
<td>NaCl 150 gal/ln-mi</td>
<td>2.7 in snow</td>
<td>-9° F</td>
<td>0° F</td>
<td>5 mph</td>
<td>Hwy 275</td>
</tr>
<tr>
<td>9:47 AM</td>
<td>01/23/11</td>
<td>NaCl 200 gal/ln-mi</td>
<td>2.7 in snow</td>
<td>-9° F</td>
<td>3° F</td>
<td>3 mph</td>
<td>Hwy 275</td>
</tr>
<tr>
<td>12:02 PM</td>
<td>01/23/11</td>
<td>NaCl 300 gal/ln-mi</td>
<td>2.7 in snow</td>
<td>-3° F</td>
<td>18° F</td>
<td>4 mph</td>
<td>Hwy 275</td>
</tr>
<tr>
<td>1:23 PM</td>
<td>01/23/11</td>
<td>NaCl 350 gal/ln-mi</td>
<td>2.7 in snow</td>
<td>-1° F</td>
<td>20° F</td>
<td>5 mph</td>
<td>Hwy 275</td>
</tr>
</tbody>
</table>
Table 5.6 is a comparison of the liquid sodium chloride over a single day. The top two pictures were taken at the same location. The bottom two pictures were not taken at the same location, but were within 2 to 3 miles of the others. All the snow fell the previous evening and there was no precipitation during the observation.

The plow began working on this route at 4:30 AM, so when the top picture was taken at 8:08 AM, the roadway had been exposed to the sodium chloride for 3½ hours and was still 100% covered. This observation correlates with data from the Shaker Test that shows liquid sodium chloride melting little to no ice at 0° F.

At 9:47 AM, the roadway had gone from 100% covered to 75%-100% covered. The liquid sodium chloride made little progress after 99 min of further treatment, even with total application of 200 gal/lane-mile. This observation correlates with the rule-of-thumb that sodium chloride does not work well at temperatures lower than 18° F.

The roadway temperature begins to rise quickly between 11 AM and 12 PM because of sunlight exposure. At 12:02 PM, the roadway temperature was 18° F and the roadway had gone from 75%-100% covered to 50% covered. At 1:23 PM, 81 min later, the roadway was almost clear. This observation also correlates with the 18° F rule-of-thumb mentioned above.
Table 5.7 Liquid sodium chloride comparison

<table>
<thead>
<tr>
<th>Time</th>
<th>Deicer App. Rate</th>
<th>Precipitation</th>
<th>Air Temp.</th>
<th>Road Temp.</th>
<th>Winds</th>
<th>Date</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:47 PM</td>
<td>NaCl 44 gal/in-mi</td>
<td>0.3 in Snow</td>
<td>25°F</td>
<td>25°F</td>
<td>13mph</td>
<td>02/24/11</td>
<td>US-6</td>
</tr>
<tr>
<td>3:18 PM</td>
<td>NaCl 44 gal/in-mi</td>
<td>0.4 in Snow</td>
<td>25°F</td>
<td>25°F</td>
<td>15mph</td>
<td>02/24/11</td>
<td>US-6</td>
</tr>
</tbody>
</table>

Table 5.8 Road salt prewet with 5 gal/ton MgCl₂ comparison

<table>
<thead>
<tr>
<th>Time</th>
<th>Deicer App. Rate</th>
<th>Precipitation</th>
<th>Air Temp.</th>
<th>Road Temp.</th>
<th>Winds</th>
<th>Date</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:09 AM</td>
<td>None</td>
<td>0.5 in snow</td>
<td>18°F</td>
<td>20°F</td>
<td>9 mph</td>
<td>01/09/11</td>
<td>Hwy 2</td>
</tr>
<tr>
<td>10:47 AM</td>
<td>NaCl 200 lbs/in-mi</td>
<td>0.9 in snow</td>
<td>20°F</td>
<td>23°F</td>
<td>11 mph</td>
<td>01/09/11</td>
<td>Hwy 2</td>
</tr>
</tbody>
</table>
Table 5.7 is a before-and-after comparison of liquid sodium chloride. The pictures are not taken at exactly the same location, but they were taken within 2 to 3 miles of each other. Less than ½ in of snow fell from this storm, but wind speeds were at or just below 15 mph, the speed that begins to cause problems with blowing snow as indicated by Blackburn et al. (2004), Ketcham et al. (1996), and CTC & Associates LLC (2009).

The roadway condition went from 25%-50% covered to clear in 2½ hr. It demonstrates how effective liquid sodium chloride can be at 25° F, even with 15 mph wind. Wind speed at or below 15 mph did not cause problems with blowing snow; however, there was little snowfall in this storm.

Table 5.8 is a before-and-after comparison of road salt prewet with 5 gal/ton of MgCl₂. The pictures were taken from the plow truck at the same location. The roadway condition went from 100% covered to 25%-50% covered in about 2½ hr. The lane shown in the pictures was a turning lane, which means it was very likely the snow on that lane had been compacted. This comparison shows how effective the solid deicer was at penetrating snowpack, but an observation with a liquid deicer on snowpack is also needed for confirmation.
Table 5.9 A storm producing high volume of snow

<table>
<thead>
<tr>
<th>Time</th>
<th>Date</th>
<th>Deicer App. Rate</th>
<th>Precipitation</th>
<th>Air Temp.</th>
<th>Road Temp.</th>
<th>Winds</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>5:19 PM</td>
<td>01/09/11</td>
<td>NaCl 150 gal/in-mi</td>
<td>3.5 in snow</td>
<td>20° F</td>
<td>20° F</td>
<td>13 mph</td>
<td>Hwy 32</td>
</tr>
<tr>
<td>9:17 AM</td>
<td>01/10/11</td>
<td>No app. since 01/09/11</td>
<td>8.3 in snow</td>
<td>21° F</td>
<td>18° F</td>
<td>6 mph</td>
<td>Hwy 32</td>
</tr>
<tr>
<td>4:09 PM</td>
<td>01/10/11</td>
<td>No app. since 01/09/11</td>
<td>9.1 in snow</td>
<td>23° F</td>
<td>20° F</td>
<td>12 mph</td>
<td>Hwy 32</td>
</tr>
<tr>
<td>9:24 AM</td>
<td>01/11/11</td>
<td>No app. since 01/09/11</td>
<td>10.0 in snow</td>
<td>4° F</td>
<td>4° F</td>
<td>15 mph</td>
<td>Hwy 32</td>
</tr>
</tbody>
</table>
Table 5.9 is an observation of the methods used to remove high volumes of snow from the roadway. The pictures were taken at different locations within 2 to 3 miles of each other along the route. The storm produced 10 in of snow, with 6.5 in falling throughout the observation. A total of 150 gal/lane-mile of liquid sodium chloride had been applied on the roadway the morning of January 9 before the observation was made. Most of the snow fell between 5:00 PM January 9 and 12:00 PM January 10. The sodium chloride was probably diluted by the snow and rendered ineffective.

The pictures taken at 9:17 AM and 4:09 PM on January 10 show the roadway going from 100% covered to near 50% covered just with plowing the roadway. The picture taken the next day at 9:24 AM still shows the roadway to be about 50% covered. This observation shows that plowing can improve the level of service of a roadway from 100% covered to 50% covered, but does not facilitate further improvement. Once part of the pavement is exposed, direct sunlight can heat the pavement and melt the rest of the snow on the roadway. In this case, direct sunlight was not available at the critical point on January 10 when the snow stopped at 12:00 PM or before high wind started at about 5:00 PM. Additional deicing chemical could have been applied during this timeframe to clear the roadway.

Winter 2010 was the first season the Nebraska Department of Roads used the AVL and the MDSS to record field data. The system did very well at recording vehicle location and weather data, but data were missing regarding the type and amount of deicer used during each event. As a result, large amounts of MDSS data could not be used for the correlation studies. To address this issue in future operations, the districts should document the deicers’ usage and the application rate manually as a backup for the AVL and MDSS data.
Chapter 6 Conclusions and Recommendations

This chapter summarizes the essential findings and proposed practices for each chemical deicer studied. Table 6.1 shows the results of the Shaker Test for the liquid chemical deicers used in this research. The numbers shown for each chemical at 20° F, 10° F, and 0° F are the grams of ice melted per milliliter of deicer. The best way to use these results is to compare the deicers to each other. The table is only showing the results for the 15/85 optimum ratios for Beet Juice-A and Beet Juice-B. Results for the solid chemical deicers will be discussed separately.

Table 6.1 Shaker Test results for liquids (g of ice melted per mL of deicer)

<table>
<thead>
<tr>
<th>Product</th>
<th>Chemical Base</th>
<th>20°F</th>
<th>10°F</th>
<th>0°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mg-A</td>
<td>29% Magnesium Chloride</td>
<td>1.065</td>
<td>0.910</td>
<td>0.667</td>
</tr>
<tr>
<td>Calcium Chloride</td>
<td>30% Calcium Chloride and “Beet Juice” Byproduct</td>
<td>1.051</td>
<td>0.898</td>
<td>0.704</td>
</tr>
<tr>
<td>Potassium Acetate</td>
<td>49% Potassium Acetate</td>
<td>1.405</td>
<td>0.868</td>
<td>0.656</td>
</tr>
<tr>
<td>Mg-B</td>
<td>30% Magnesium Chloride</td>
<td>1.062</td>
<td>0.781</td>
<td>0.553</td>
</tr>
<tr>
<td>Mg-C</td>
<td>26.9% Magnesium Chloride and Carbohydrate Byproduct</td>
<td>0.978</td>
<td>0.736</td>
<td>0.577</td>
</tr>
<tr>
<td>Mg-D</td>
<td>25% Magnesium Chloride and Carbohydrate Byproduct</td>
<td>0.969</td>
<td>0.675</td>
<td>0.546</td>
</tr>
<tr>
<td>Beet Juice-B/NaCl 15/85</td>
<td>15/85 Mix of “Beet Juice” Byproduct/23% NaCl</td>
<td>0.652</td>
<td>0.359</td>
<td>0.000</td>
</tr>
<tr>
<td>Beet Juice-A/NaCl 15/85</td>
<td>15/85 Mix of “Beet Juice” Byproduct/23% NaCl</td>
<td>0.636</td>
<td>0.326</td>
<td>0.000</td>
</tr>
<tr>
<td>Sodium Chloride</td>
<td>23% Sodium Chloride</td>
<td>0.595</td>
<td>0.302</td>
<td>0.000</td>
</tr>
</tbody>
</table>

6.1 Sodium Chloride

Sodium chloride (NaCl) in its liquid and solid forms has been used in roadway winter maintenance for many decades. It has been used for so long because the material is readily available and relatively inexpensive, but the material is corrosive and has an adverse impact on
the environment. It also becomes much less effective below 18° F when large quantities of sodium chloride are required at lower temperatures.

Sodium chloride is known to corrode steel on vehicles, bridge components, roadside signs, and other apparatus. Many industries have avoided this problem by using stainless or galvanized steel. Many new bridge designs use concrete girders rather than steel girders. However, much of the existing infrastructure still deteriorates rapidly due to the corrosive effects of sodium chloride.

Major environmental concerns include sodium chloride contamination in the soil and waterways. Sodium chloride build-up in soil can make the soil less cohesive and cause difficulties for plant growth. High sodium chloride concentrations in the waterways can destroy the ecosystem by depleting oxygen in the water (Schueler et al. 2009). In Canada, the sodium chloride build-up in local water supplies has caused heavy metals leaching into drinking water. In recent years, many winter maintenance organizations have begun to use other chlorides and acetates in an attempt to reduce the amount of deicing chemicals dispensed. Learning how to use deicing chemicals more effectively will have positive results for the environment, the winter maintenance budget, and maintenance assets vulnerable to corrosion.

6.2 Magnesium Chloride

Magnesium chloride mixes are widely used in the state of Nebraska. This research studied four magnesium chloride mixes: Mg-B, Mg-A, Mg-C, and Mg-D.

The Mg-C and Mg-D products are very similar to each other. Both chemicals have settling solids and are byproducts of the ethanol industry. There have been some problems reported with similar products in the state of Nebraska and from the Maine Department of Transportation (Thompson and Peabody 2004). It has been reported that these magnesium
chloride products may significantly decrease the roadway friction after treatment; however, the results from the Friction Test show neither product has a more detrimental effect to roadway friction than the other chemical deicers tested. Mg-C and Mg-D products are prone to fermenting. If the fermentation were left unchecked, the product could cause slick roadways.

The Mg-C and Mg-D products had a similar performance in the Shaker Test, but were consistently outperformed by Mg-A and Mg-B at 20° F and 10° F. The magnesium chloride products did not have more prolonged refreeze times than other chemical deicers. The Friction Test results showed the Mg-A, Mg-C, and the Mg-D products to have friction coefficients comparable to those of the other chemical deicers, while Mg-B had lower roadway friction than the other chemical deicers did.

6.3 Calcium Chloride

Calcium chloride is a liquid chemical deicer. It was the only calcium chloride product tested in this research. It is a 30% calcium chloride mix in a “beet juice” solution. The “beet juice” solution makes the product very dark in color and very sticky. These traits will be discussed more in the section on “beet juice” solutions.

Mg-A, potassium acetate, and calcium chloride had comparable ice melting capacities in the Shaker Test, with potassium acetate being exceptional at 20° F. The results from the Friction Test showed calcium chloride would not cause slippery roadway surfaces.

The calcium chloride showed a clear advantage over all the other chemical deicers in the Refreeze Test. While most of the deicers and deicer/NaCl mixes had refreeze times of 2 hr or less, the refreeze time of calcium was longer than the allotted test time of 4-5 hr. The refreeze results from the Beet Juice products suggest the extraordinary refreeze time of calcium chloride was due to the calcium chloride, not the “beet juice.”
Observations of calcium chloride during testing suggest this product is corrosive to stainless steel. It was not an objective of this research to determine the corrosiveness of the chemical deicers, but the effect was very pronounced. Small spills or incidental drops of calcium chloride would begin to rust stainless table tops after one or two days, even if they had been wiped clean.

The results from the Shaker Test show calcium chloride had similar performance to magnesium chloride chemical deicers. The results from the Refreeze Test show the calcium chloride has a refreeze time possibly longer than 5 hr. These results suggest using a calcium chloride product on a roadway just before sunset or temperature drops may prevent the refreezing of liquids on the roadway.

6.4 Potassium Acetate

The Nebraska Department of Roads uses potassium acetate exclusively for the treatment of bridges because it is believed to have less corrosive effects on the environment. It is also only used on bridges because of the high cost of the material. Although the practice isn’t common in Nebraska, it has been proposed to mix potassium acetate with sodium chloride or another chemical deicer to reduce the overall cost.

This research discovered mixing potassium acetate with sodium chloride was a futile exercise. When used in the Shaker Test, the potassium acetate melted about twice as much ice as sodium chloride at 20° F and almost three times as much at 10° F. However, a 50/50 mix of sodium chloride and potassium acetate melted an amount of ice only slightly greater than that melted by sodium chloride alone.

The mixing of these two liquid chemicals also produced large amounts of solid precipitate. Using potassium chloride as a prewet for road salt also produced a jelly-like
precipitate on the salt. The amount of precipitate produced by mixing it with either solid or liquid sodium chloride could potentially clog the mechanisms on certain distribution systems.

The results from the Refreeze Test did not show the refreeze time of potassium acetate to have any advantage over that of the other chemical deicers. The results from the Friction Test showed potassium acetate to have a slightly more detrimental effect on roadway friction than the other chemical deicers.

As a result of these findings, it should be advised that potassium acetate not be mixed with other solid or liquid chemical deicers.

6.5 Calcium-Magnesium Acetate

Calcium-magnesium acetate (CMA) was not used for this research because of the known performance issues associated with this chemical deicer (Blackburn et al. 2004; EPA 1999; Shi et al. 2004). Large amounts of CMA as compared to sodium chloride are required to achieve the same level of service.

Many winter maintenance organizations use calcium-magnesium acetate because it is believed to have very few environmental effects. However, this chemical is commonly known to have poor performance in the field. Test results from Nixon et al. (2007) and Shi et al. (2009) show CMA to have worse performance than sodium chloride and many other deicers. CMA is more expensive than sodium chloride by a factor of 10-20 (Schueler et al. 1999). Many departments attempt to compensate for this chemical’s poor performance by using much more of the chemical, which causes concern about its unknown environmental effects.

6.6 Carbohydrate or “Beet Juice” Solutions
Beet Juice-A and Beet Juice-B are byproducts of the beet industry. They are very dark colored, almost black, and very sticky. These chemicals tend to seep through the small spaces around the lids and through the plastic seem of the containers.

These kinds of chemicals should be classified as a performance enhancer, rather than a deicer. The results from the SHRP Ice Melting Capacity Test and the liquid results from the Shaker Test show these chemicals do not have a significant ice melting capacity when used alone. Field reports tend to support these test results, especially on days without direct sunlight. The manufacturers recommend mixing this chemical with sodium chloride, usually at a ratio of 15/85 beet juice solution/sodium chloride.

The liquid results from the Shaker Test show mixes of 15/85 Beet Juice-A/NaCl and 15/85 Beet Juice-B/NaCl performed slightly better than sodium chloride alone. However, mixes of 50/50 Beet Juice-A/NaCl and 50/50 Beet Juice-B/NaCl performed slightly worse than sodium chloride, as shown in figure 4.24 in Chapter 4. Although figure 4.24 only shows results for liquids at 20° F, the results for 15/85 and 50/50 mixes of Beet Juice-A/NaCl and Beet Juice-B/NaCl had the same distribution in the liquid tests at 10° F and 0° F.

The liquid test results from the Beet Juice-A and Beet Juice-B show the best results occurring at a ratio of 15/85, while all other chemical deicers used in this study produced the best results when not mixed salt brine. The best results occur at a ratio of 15/85, which appears to be the optimum concentration of these materials. The Beet Juice-A and Beet Juice-B help the sodium chloride stick to the ice more efficiently, resulting in a greater ice melting capacity. Mixes with a higher ratio of Beet Juice-A or Beet Juice-B do not perform as well because the advantage from the stickiness can no longer compensate for the smaller amount of sodium chloride in the mix.
The results from the Shaker Test for prewet road salt suggest a prewet of a 50/50 mix of Beet Juice-A/NaCl produced a better performance than a prewet of a 15/85 mix of Beet Juice-A/NaCl at a temperature of 10°F. The results from the two mix ratios were about the same at 0°F. More research is needed to make the prewet results of the Shaker Test more consistent, but these results do corroborate the field performance of prewet mixes of Beet Juice-A.

The dark color of these chemicals offers an advantage in direct sunlight. The performance of Beet Juice-A mixes improves drastically when exposed to sunlight. The Sunlight Test was developed specifically to study the effect of the darker color. For instance, a 50/50 mix of Beet Juice-A/NaCl clearly outperformed a 15/85 mix of Beet Juice-A/NaCl, as shown in figure 6.1. Beet Juice-A and sodium chloride were the only liquid deicers used in the Sunlight Test.

![Figure 6.1 Sunlight Test results](image)

The area on the left was treated with road salt prewet with a 50/50 mix of Beet Juice-A/NaCl. The area on the right was treated with road salt prewet with a 15/85 mix of Beet Juice-A/NaCl.
A/NaCl. The area encircled in red depicts the sections of ice melted by the deicer. Both areas had the same amount of road salt and prewet. The encircled area on the left is clearly larger than the encircled area on the right.

The results of this research suggest Beet Juice-A and similar products are not chemical deicers but rather chemical performance enhancers. These products should always be mixed with a chloride, acetate, or another chemical deicer. When used as a liquid treatment with sodium chloride, the ratio for the best performance is 15/85 chemical/NaCl. This is also the ratio suggested by the manufacturers of Beet Juice-A.

Results from the Shaker Test and the Sunlight Test suggest liquid mixes used as a prewet for road salt may have a better performance with greater amounts of Beet Juice-A. Direct sunlight may also give these products an advantage because of their darker color. Also, the stickiness of these chemicals is advantageous to any anti-icing activities because they help the deicers stick to the road.

6.7 Solid Chemical Deicers

Two solid chemical deicers, road salt and Pink Salt, were studied in this research. Road salt is solid sodium chloride and Pink Salt is an orange colored, finely graded solid, mostly made of sodium chloride with small amounts of magnesium chloride, calcium chloride, and other chemicals. Field observations have shown Pink Salt to perform better than road salt. Both solids were used in the Shaker Test, Sunlight Test, and Refreeze Test. Both solids were passed through sieves so their performance could be compared for the same gradation.

Results from the Shaker Test showed the rock salt and the Pink Salt to have almost identical ice melting capacities at 20°F and 10°F. The rock salt was ineffective at 0°F, but the Pink Salt was effective. It is unclear if this contrast at 0°F is a result of the chemical composition
or due to the gradation of the Pink Salt. Even though similar gradations were used for both chemicals, larger granules of road salt tend to be solid pieces, while larger granules of Pink Salt tend to be smaller granules pressed together. These granules broke apart during the Shaker Test and were able to perform at 0°F.

Smaller gradations may perform more quickly than larger gradations. Samples measuring 4 grams with a gradation of 2.38 mm (#8 sieve) melted about 0.10 more ice grams than samples measuring 5 grams with a gradation of 4.75 mm (#4 sieve).

The results from the Sunlight Test did not show Pink Salt to have an obvious advantage over road salt when exposed to direct sunlight. However, field observations have suggested that Pink Salt performs better than road salt when exposed to direct sunlight.

The results from the Refreeze Test showed road salt and Pink Salt have almost identical refreeze times at all the different gradation sizes used for testing. The results from the Refreeze Test also showed the gradation size has an effect on the refreeze time. Samples with gradations smaller than 0.422 mm (#40 sieve) began to refreeze almost immediately. Samples with a larger gradation of about 2.38 mm (#8 sieve) began to refreeze after 2 hr.

The results of this research suggest the Pink Salt’s superior performance over road salt in the field may be due to its much finer gradation. The majority of the Pink Salt sample used for testing had a gradation smaller than 4.75 mm (#4 sieve). The majority of the road salt sample used for testing had a gradation larger than 4.75 mm (#4 sieve). The orange color of the Pink Salt may also be advantageous in direct sunlight.

6.8 Standards of Practice

The following is a list of observations and suggestions for chemical use in the field based on the findings from this research. Table 6.2 outlines the recommended deicer usage.
<table>
<thead>
<tr>
<th>Weather/Road Conditions</th>
<th>Temperature Range (°F)</th>
<th>Above 32</th>
<th>32-20</th>
<th>20-12</th>
<th>Below 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rain</td>
<td>Use little to no treatment unless the temperature is expected to drop. In that case, pretreat with road salt less than 100 lbs/lane-mile.</td>
<td>Pretreat with road salt prewet with 8-10 gal/ton NaCl at less than 100 lbs/lane-mile. During event, prewet is not necessary.</td>
<td>Not Applicable</td>
<td>Use road salt prewet with 8-10 gal/ton NaCl. Using MgCl₂ or CaCl₂ could cause slippery conditions. If liquids must be used, retreat every 1.5-2 hr to prevent refreeze.</td>
<td>Use abrasives prewet with 8-10 gal/ton. Prewet can be water or NaCl to help “root” the abrasives. Using MgCl₂ or CaCl₂ could cause slippery conditions. Do not use Beet Juice in a liquid application unless it is a sunny day.</td>
</tr>
<tr>
<td>Freezing Rain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sleet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ice</td>
<td>If not preceded by any of the above, pretreat with liquid NaCl 20-50 gal/lane-mile. Post-treat with road salt prewet with 8-10 gal/ton NaCl.</td>
<td>Use road salt prewet with 8-10 gal/ton NaCl. Use MgCl₂ or CaCl₂ if humidity is low. If liquids must be used, patrol every 1.5-2 hr to prevent refreeze. Beet Juice can be used in direct sunlight.</td>
<td>Use road salt prewet with 8-10 gal/ton. Use MgCl₂ or CaCl₂ if humidity is low. If liquids must be used, retreat every 1.5-2 hr to prevent refreeze. Beet Juice can be used.</td>
<td>Do not use Beet Juice in a liquid application unless it is a sunny day.</td>
<td></td>
</tr>
<tr>
<td>Light Snow (less than 0.5 in/hr)</td>
<td>If not preceded by rain, freezing rain, or sleet, liquid NaCl can be used for pre- and post-treatment and during the event.</td>
<td>Use road salt prewet with 8-10 gal/ton. Use MgCl₂ or CaCl₂ if humidity is low. If liquids must be used, retreat every 1.5-2 hr to prevent refreeze. Beet Juice can be used.</td>
<td>Use road salt prewet with 8-10 gal/ton. Use MgCl₂ or CaCl₂ if humidity is low. If liquids must be used, retreat every 1.5-2 hr to prevent refreeze. Beet Juice can be used.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderate to Heavy Snow (greater than 0.5 in/hr)</td>
<td>Pretreat with liquid NaCl 20-50 gal/lane-mile. A mix of 15/85 Beet Juice/NaCl can be used. Use road salt during and after the event. Pretwet is not necessary during the event.</td>
<td>Use road salt prewet with 8-10 gal/ton. Use MgCl₂ or CaCl₂ if humidity is low. If liquids must be used, retreat every 1.5-2 hr to prevent refreeze. Beet Juice can be used.</td>
<td>Use road salt prewet with 8-10 gal/ton. Use MgCl₂ or CaCl₂ if humidity is low. If liquids must be used, retreat every 1.5-2 hr to prevent refreeze. Beet Juice can be used.</td>
<td>Use road salt prewet with 8-10 gal/ton. Use MgCl₂ or CaCl₂ if humidity is low. If liquids must be used, retreat every 1.5-2 hr to prevent refreeze. Beet Juice can be used.</td>
<td></td>
</tr>
<tr>
<td>Compacted Snow</td>
<td>Use road salt if necessary.</td>
<td>Use road salt prewet with 8-10 gal/ton NaCl.</td>
<td>Use road salt prewet with 8-10 gal/ton. Use MgCl₂ or CaCl₂ if humidity is low.</td>
<td>Use road salt prewet with 8-10 gal/ton. Use MgCl₂ or CaCl₂ if humidity is low.</td>
<td></td>
</tr>
<tr>
<td>Winds Greater than 15 mph</td>
<td>Treatment may cause blowing snow to stick to roadway. Beet Juice is NOT recommended on overcast days.</td>
<td>A prewet mix of 15/85 Beet Juice/NaCl is recommended on sunny days.</td>
<td>No Treatment</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6.2 Recommendations for deicer usage
Some information provided in table 6.2 was compiled from the literature survey and is cited herein:

- Chemical deicers are typically not used in temperatures below 12° F (Shi et al. 2004; Blackburn et al. 2004; Ketcham et al. 1996).

6.8.1 Solid Deicers

- Solid deicers work best if applied early in the storm event (Blackburn et al. 2004).
- When there are large amounts of ice on a roadway, greater than ¼ in, solid deicers will work better than liquid deicers (Kuhl et al. 1999). Solid deicers will penetrate to the bottom of an ice sheet whereas liquid deicers tend to quickly flow off the ice without having much effect.
- Smaller gradations of solid deicers tend to work more quickly, but may also refreeze more quickly (Blackburn et al. 2004).
- Coarse grained deicer should be used during precipitation rates greater than 0.5 in per hr (CTC & Associates LLC 2009).

6.8.2 Liquid Deicers

- Liquid deicers work well in temperatures above 28° F, but have a tendency to freeze in temperatures below 20° F (Blackburn et al. 2004; Peterson et al. 2010).
- Liquid deicers are the best choice for anti-icing procedures because when the liquids evaporate, a stratum of crystallized chlorides or acetates is left on the roadway (Alger et al. 1994).
- The best time to perform anti-icing procedures is before snow events at temperatures higher than 20° F (Blackburn et al. 2004; CTC & Associates LLC 2009).
• Anti-icing will not be effective for rain or freezing rain events because the deicers will be washed off the road.

• Wind speeds above 15 mph can inhibit anti-icing operations (Blackburn et al. 2004; Ketcham et al. 1996; CTC & Associates LLC 2009).

• Calcium and magnesium chlorides absorb water from the air and can cause slippery roadways if the humidity is greater than 40% (CTC & Associates LLC 2009).

• Calcium chloride can leave a roadway wet for several days, while sodium chloride will dry a few hours after a storm (Donahey and Burkheimer 1996).

6.8.3 Prewet Solid Deicers

• Prewet can increase material retention on the roadway by 26% (Shi and O’Keefe 2005).

• A prewet of 10-12 gallon per ton is sufficient to minimize bounce and scatter (Blackburn et al. 2004).

• Prewet is not needed if snow events are preceded by rain or for use on wet snow at about 32° F (Roosevelt 1997).

• Using prewet results in additional cleaning of the application equipment, but this can be minimized if prewet is applied at the spinner.

6.8.4 Abrasives

• Abrasives or sand are used at temperatures below 12° F (Shi et al. 2004; Blackburn et al. 2004)

• Sand prewet with salt brine is more effective than dry sand (Shi and O’Keefe 2005).

• Sands with gradation between 0.04 and 0.08 in work well at all temperatures (Al-Qadi et al. 2002).
6.8.5 Other Observations

- Potassium acetate should not be mixed with other deicers or used as a prewet for solid deicers. This has been confirmed by field observations in the City of Fort Collins, Colorado, to cause large amounts of sludge (Shi et al. 2009).

- Solutions of “beet juice” mixed with sodium chloride are best used in sunlit areas. It may be prudent to use a different deicer in areas with many trees or shaded areas.

- It may be prudent to use calcium chloride right before sunset and temperature drops because it may not refreeze as quickly as other chemical deicers.

6.9 Evaluation of Performance Tests

Due to the many sources of error, it is evident that the SHRP Ice Melting Capacity Test is not repeatable between different laboratories. Furthermore, the results from this test often do not correlate with field observations.

The Shaker Test appears to produce results similar to that of the SHRP Ice Melting Capacity Test without the need of a walk-in freezer. The results from the Shaker Test also correlate well with reports from the field in the state of Nebraska. The test results are repeatable between laboratories, but more tests should be performed at different locations to further confirm this observation.

This version of the Friction Test has a complicated procedure and requires a walk-in freezer. If a product is suspected to cause slippery roadways without fermentation, it would be more practical to use a British Pendulum Tester to confirm the friction coefficient. It has a simpler procedure, does not require electricity, and is designed for use in the field.

The Sunlight Test is difficult to perform because it must be conducted outdoors during specific environmental conditions. Furthermore, field data from the MDSS can be used to come
to the same conclusions as the Sunlight Test concerning the effect of sunlight exposure on dark
colored deicers.

The Refreeze Test did not produce completely consistent results, but was functional
enough to discover some interesting information about calcium chloride and the gradation of
solid deicers. The Refreeze Test shows the potential to become a cost-effective test for deicers,
but requires further development to produce consistent results.
References

Appendix A Refreeze Test Results

Mg-A 15%

Mg-B 15%

Mg-A 50%

Mg-B 50%

Mg-A 100%

Mg-B 100%