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Development and Application of Combined Quantum Mechanical and Molecular 
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Compromising of computational cost and accuracy, combined quantum 

mechanical and molecular mechanical (QM/MM) methods are practical methods for 

studying large molecular systems. The use of induced dipole polarizable force fields can 

significantly improve the accuracy of MM and QM/MM methods. However, induced 

dipole models tend to overestimate the polarization energy at short interaction distances. 

Damping functions can be applied to reduce the over polarization. MM-MM damping 

schemes have been developed to correct the overestimated polarization between MM 

atoms; QM-MM damping scheme has not been developed. In this thesis, a QM-MM 

damping scheme is developed for the damping of the MM dipole polarizability when the 

MM atoms are in short interacting distance with QM atoms. With this damping scheme, 

the induced dipole polarization energies in QM/MM calculation can reproduce the values 

from accurate QM calculations. A general protocol for applying QM/MM methods to 

study enzyme catalysis is established, and applied to compute the activation free energy 

of the hydrogen abstraction reaction of camphor catalyzed by cytochrome enzyme 

P450cam. The estimated activation free energy is in good agreement with the 

experiments and the results obtained from other QM/MM methods. 
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List of Abbreviations 
 
AMBER Assisted Model Building with Energy Refinement 

B3LYP A hybrid functional used in DFT with 20% HF and 80% Becke88 

exchange combined with the Lee-Yang-Parr correlation functional  

CHARMM Chemistry at Harvard Molecular Mechanics 

Cpd I The active species of heme enzymes, Compound I 

DFT  Density Function Theory 

FCM  Force constant matrix 

GAMESS General Atomic and Molecular Electronic Structure System 

HF  Hartree-Fock 

MD  Molecular Dynamics  

MM  Molecular Mechanics 

MP2 Second order Møller-Plesset perturbation theory method 

OPLS   Optimized Potentials for Liquid Simulations 

PBC  Periodic Boundary Condition  

P450cam A bacterial enzyme belongs to the group of cytochrome P450 enzymes 

QM  Quantum Mechanics 

QuanPol Quantum Chemistry Polarizable Force Field program 

UB3LYP Unrestricted B3LYP 

6-31G*  A valence double-zeta polarized basis set defined for the atoms H-Zn 
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CHAPTER 1 Introduction 

1.1 General Overview 

Computational chemistry is a branch of chemistry in that computers are used to 

solve mathematic equations that describe behavior of chemical systems1. In 

computational chemistry, theoretical models are used to represent real systems. Various 

approximations are involved in the solution of electronic wavefunctions and the modeling 

of intermolecular interactions, as well as phase space sampling. It is always necessary to 

develop more accurate and more efficient computational chemistry methods to solve 

emerging chemical problems related to life, materials and energy. 

According to the postulates of quantum mechanics (QM)2, a system can be 

completely described by a wavefunction that satisfies time-dependent Schrödinger 

equitation3. QM methods that solve electronic Schrödinger equations have been proved to 

be very accurate for atomic and molecular systems. However, due to high computational 

costs, QM methods are not affordable for large molecular systems4. On the other hand, 

the empirical molecular mechanical (MM) methods are very efficient for simulating large 

molecular systems. However, because they are based on ball-spring model, MM methods 

cannot be used to describe electronic properties and their changes, such as chemical 

reactions1. The combined QM and MM methods (QM/MM) proposed by Warshel and 

Levitt in 19765 can be used to study local chemical reactions in a large molecular system, 

for example, enzyme catalyzed biological reactions.  

The use of induced dipole polarizable force fields can significantly improve the 

accuracy of MM and QM/MM methods. However, induced dipole models tend to 

overestimate the polarization energy at short interaction distances. Damping functions 
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can be applied to reduce the over polarization. In chapter 2, a QM-MM damping scheme 

is developed for the damping of the MM dipole polarizability when the MM atoms are in 

short interaction distance with QM atoms. With this damping scheme, the induced dipole 

polarization energies in QM/MM calculation can reproduce the values from accurate QM 

calculations. In chapter 3, a general protocol for applying QM/MM methods to study 

enzyme catalysis is established, and applied to compute the activation free energy of the 

hydrogen abstraction reaction of camphor catalyzed by the enzyme P450cam.  

 

1.2 Theoretical Background 

1.2.1 Quantum Mechanical (QM) Methods 

 Based on the Schrödinger equation, a molecular system can be described by a 

wavefunction that satisfies the time dependent Schrödinger equation is: 

 
H(r,t)Ψ(r,t) = i! ∂Ψ(r,t)

∂t
       (1-1) 

In equation (1-1), Ψ  is the wavefunction and H  is the Hamiltonian operator, which is 

the sum of kinetic energy operator and the potential energy operator: 

 
H(r,t) = − !

2

2m
∇2 +V (r,t)        (1-2) 

where ∇2  is the Laplace operator: 

 ∇2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
       (1-3) 

For the cases that the potential energy operators are independent of time, the 

wavefunction can be divided into a spatial part and a time part: 

Ψ(r,t) =ψ (r)T (t)          (1-4) 
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The spatial part satisfies the time-independent Schrödinger equation: 

 H(r)Ψ(r) = EΨ(r)         (1-5) 

The total energy of the system can be obtained from the solution of equation (1-5). The 

total energy of the system typically contains five parts: the kinetic energy of electrons, 

the kinetic energy of nuclei, the electrons and nuclei attraction energy, the repulsion 

energy of electrons and the repulsion energy of nuclei6. Therefore, the Hamiltonian 

operator for a system that contains p  electrons and q  nuclei can be written as a 

combination of the accordingly five parts: 

H = − 1
2
∇2 − 1

2mkk

q

∑
i

p

∑ ∇2 − Zk

riki

p

∑
k

q

∑ + 1
riji< j

p

∑ + ZkZl
rklk<l

q

∑    (1-6) 

In equation (1-6), i  and j  represent two different electrons in the system, k  and l  are 

for two different nuclei, mk  is the mass of nucleus k, Z  is the charge of nucleus, and r  is 

the distance between electrons, nuclei, or the distance between electron and nucleus 

accordingly.  

 According to the Born-Oppenheimer approximation7, the nuclei move much 

slower than electrons, so the molecular wavefunction can be separated into two parts: 

electronic part and nuclear part. The electronic Hamiltonian can be written as: 

 He = − 1
2
∇2

i

p

∑ − Zk

riki

p

∑
k

q

∑ + 1
riji< j

p

∑ + ZkZl
rklk<l

q

∑      (1-7) 

The electronic Schrödinger equation can be written as: 

HeΨe = EeΨe          (1-8) 
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The electronic energy including nuclear repulsion energy can be obtained by solving 

equation (1-8) and the nuclear kinetic energy can be obtained by a Hessian vibrational 

analysis. 

 From the above description, the electronic energy can be computed simply by 

solving equation (1-8). However, equation (1-8) cannot be exactly solved for systems 

with multiple elctrons. Many approximations have been introduced to solve the equation. 

One of the most fundamental and widely used approximations is the Hartree-Fock 

method8, 9. In Hartree’s method, the total electronic wavefunction of a multi-electron 

system is approximated as the product of independent one-electron wavefunctions: 

  Ψe =ψ e(1)ψ e(2)ψ e(3)!ψ e(n)       (1-9) 

It is called a Hartree product. ψ e(n)  is the spatial orbitals. There are two problems for the 

Hartree product. One is that electrons are indistinguishable thus the wavefunction should 

be antisymmetric. The other is that electrons have the property of spin. In Hartree’s 

method, the wavefunctions are symmetric and the spins of electrons are not included in 

the wavefunctions. To solve these problems, Fock9 and Slater10 made a correction to this 

method by using a determinant of spin orbitals, which is the product of a spatial orbital 

and a spin function: 

  χ i ( j) =
ψ i ( j)α ( j)

or
ψ i ( j)β( j)

⎧

⎨
⎪

⎩
⎪

       (1-10) 

For n electrons and n spin orbitals, the Slater determinant is: 
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Ψ = 1
n!

χ1(1) χ2 (1) ! χN (1)
χ1(2) χ1(2) ! χN (2)
" " " "

χ1(n) χ1(n) ! χN (n)

     (1-11) 

Given the Hamiltonian He and the determinant wavefunction, the best wavefunction that 

minimizes the energy can be obtained by using the variation principle.  

The variation treatment starts from the energy expression. For example, the 

energy of a closed-shell molecule can be expressed as: 

E0 = Ψ0 H Ψ0

= hi
i

p

∑ + (2Jij − Kij )
j=1

i−1

∑
i=1

p

∑ +Vqq
      (1-12) 

In equation (1-12), hi  is one-electron integral and Vqq is the repulsion of nuclei: 

hi = χ i
*(1)∫ hiχ i (1)dv1

hi = − 1
2
∇i
2 − Zk

rikk

q

∑
i

p

∑

Vqq =
ZkZl
rkll>k

n

∑
k

n

∑

       (1-13) 

The two-electron integral Jij  is the Coulomb integral, which is repulsion energy between 

electrons: 

Jij = χ i
*(1)∫ χ i (1)

1
rij
χ j
*(2)χ j (2)dv1dv2       (1-14) 

Kij  is the exchange integral: 

Kij = χ i
*(1)∫ χ j

*(2) 1
rij
χ i (2)χ j (1)dv1dv2      (1-15) 

The Hartree-Fock equations can be obtained via a differentiation procedure: 

Fiχe(i) = ε iχe(i)         (1-16) 



! 7 

Fi  is the Fock operator: 

Fi = hi + 2J j −K j⎡⎣ ⎤⎦
j=1

p/2

∑        (1-17) 

J  is the electronic coulomb operator and K  is the exchange operator. When they are 

applied to the wavefunction, we have: 

J jχ i (1) = χ i (1) dv2 χ j (2)∫
2 1
r12

      (1-18) 

K jχ i (1) = χ i (1) dv2χ j (2)
*χ j (2)∫

1
r12

      (1-19) 

The Hartree-Fock equation (1-16) is solved iteratively by using self-consistent 

field (SCF) method. The initial guess is updated during the iteration until the difference 

between two consecutive iterates reaches a certain criteria. The spatial orbitals can be 

expanded by linear combinations of basis functions: 

 ψ i = Cipµp
p
∑          (1-20) 

where Cip  are the molecular orbital expansion coefficients and µp  are the basis 

functions. This method is the basis set approximation introduced by Roothaan11. As the 

basis set becomes larger and larger, the Hartree-Fock energy approaches the complete 

basis set limit. Using the basis set, the Hartree-Fock equations can be written as: 

Fi Cipµp
p
∑ = ε i Cipµp

p
∑        (1-21) 

where ε i  is expressed as: 

ε i = ψ i Fi ψ i = Hi
core + (Jij − Kij )

j=1

i−1

∑
i=1

p

∑      (1-22) 

Using the basis set, equation (1-21) leads to the Roothaan-Hall euqations12: 
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FC = SCε

Fαβ = µα F µβ

Sαβ = µα µβ

        (1-23) 

S  is the overlap matrix contains the overlap integrals of basis functions. F  is the matrix 

representation of Fock operator. The element Fαβ  in the Fock matrix can be expanded: 

Fαβ = µα F µβ = µα h µβ + µα J j −K j µβ
j

occ

∑

= µα h µβ + Pγδ µαµγ
1
r12

µβµδ − µαµγ
1
r12

µδµβ
⎛
⎝⎜

⎞
⎠⎟γδ

Mbasis

∑
  (1-24) 

In equation (1-24), Pγδ  is the density matrix of the expansion coefficients: 

Pγδ = Cγ jCδ j
j

occ

∑         (1-25) 

The coefficients are determined in a self-consistent manner. Therefore, the HF energy in 

basis set can be obtained.  

 The Slater determinant is written as the products of spatial orbital and spin 

functions (α  or β ). In a closed-shell system, all electrons are paired and the same spatial 

orbital function can be used for a pair of electrons with different spins α  or β  and the 

electrons in a pair have the same energy. This method is called as the restricted Hartree-

Fock method (RHF).  

There are two HF methods for open-shell systems. One is known as the 

unrestricted Hartree-Fock method (UHF). In UHF method, the electrons in the same 

orbitals have the freedom to have different spatial orbitals. Due to the contribution of 

higher states in lower states wavefunctions, the spin contamination problem exists in 

UHF method. In the other approach, known as the restricted open-shell HF method 
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(ROHF), two sets of wavefunctions for paired and unpaired electrons are considered. So 

the spin contamination problem does not occur.  

HF method is the basis of other methods, such as second order Møller-Plesset 

perturbation theory (MP2) method, coupled cluster (CC) method and density functional 

theory (DFT) method.  

1.2.2 Molecular Mechanical (MM) Methods 

In MM methods, a molecular system is treated with ball-spring model. Thus, the 

electronic motions in a system are ignored and the energy of a system is studied as a 

function of the nuclear positions only13. These approximations enable the applicability of 

MM methods to describe large molecular systems. MM methods are widely used to 

perform molecular dynamics (MD) simulations, Monte Carlo simulations and ligand 

docking calculations4, 6. Since force fields are used to calculate the potential energy in 

MM methods, they are also known as force field methods. The potential energy given in 

some popular force fields (e.g. AMBER14, CHARMM15, GROMOS16) can be written as 

the sum of several individual energy terms: 

EMM = Ebond + Eang + Etors + Evdw + Eele       (1-26) 

In equation (1-26), Ebond  is the bond stretching energy. Eang  is the energy for bending a 

bond angle. Etors  is the torsional energy for the rotation of three connected bonds. Evdw  

and Eele  describe the non-bonding interactions. Evdw is the van der Waals interactions and 

is usually modeled by the Lenard-Jones potential. Eele is the electrostatic interaction.  

Including electronic polarization to MM force fields is an active area of research. 

Methods used to include polarization effects in force fields are: induced point dipole, 
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Drude oscillator, fluctuating charge, polarizable continuum treatment and electronic 

polarization via QM or QM/MM treatment. The polarizable force field described in this 

thesis is based on induced point dipole model. In this model, the induced dipole 

polarization energy is significantly overestimated when two atoms are in short interacting 

distance. Damping functions are needed to deal with this problem.  

 
1.2.3 QM/MM Methods 

Although MM methods are efficient for large molecular systems, the lack of 

capability in describing the electronic structure prevent them from being routinely used to 

model chemical reactions. QM methods can describe electronic structure changes in 

chemical reactions, but the computational cost is extraordinary high for large molecular 

systems. As a solution, the combined QM and MM methods (QM/MM) have been 

developed5.  

A typical QM/MM molecular system is divided into two regions: A QM region 

and a MM region. The QM region contains the reactive site of the system and the rest of 

the system is the MM region. The total energy of the system calculated in an additive 

scheme is the sum of the energies of the QM subsystems, energies of the MM subsystems 

and the interaction energies between QM and MM regions: 

E = EQM + EMM + EQM−MM        (1-27) 

Typically, the interaction energies between QM and MM regions contain electrostatic 

terms and Van der Waals interaction terms.  

There are several ways to include the electrostatic term17: mechanical embedding, 

electrostatic embedding and polarization embedding. Polarization effect is not considered 

in mechanical embedding since the QM partial charges are obtained by the gas phase 
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calculation of QM subsystems without the MM subsystems. In electrostatic embedding, 

the QM part is polarized by the partial charges of the MM region that are included in QM 

Hamiltonian as one-electron operators. In polarization embedding, QM Hamiltonian 

contains the polarization effect of MM region. When induced dipole polarizable force 

field is used, the polarization energy will be overestimated if the interaction distances of 

QM and MM atoms are short. Therefore, QM-MM damping functions are needed for 

short QM-MM interaction distances. A QM-MM damping function is introduced in this 

thesis. 
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CHAPTER 2 QM-MM Polarization Damping Function 

2.1 Introduction 

Induced dipole polarizable force fields proposed by Vesely18, Stillinger19, 20, 

Barnes21 and Warshel22 can be used to better describe the intermolecular interaction 

potential as compared to non-polarizable force fields. Systematically parameterized 

induced dipole polarizable force fields have been made available in various methods such 

as AMOEBA23-25, AMBER26, 27, OPLS/PFF28, 29. It is well known that induced dipole 

polarization is inaccurate at short interaction distances and damping functions are 

required.30 Several damping functions have been proposed to correct short-distance 

interactions between induced dipoles.30-33 When induced dipole polarizable force fields 

are used to formulate combined quantum mechanical and molecular mechanical 

(QM/MM) methods5, 34-36, the induced dipole polarization energy of the MM atoms can 

also be overestimated at short QM-MM distances, especially when the QM atoms have 

significant charges. Since there is no QM-MM dipole-dipole interaction, the existing 

MM-MM damping function methods30-33 cannot be applied to QM-MM cases. Currently, 

no QM-MM damping function for induced dipole MM methods has been reported in the 

literature.  

In this chapter, a QM-MM damping function is introduced for MM induced 

dipole polarization. The design of this two-parameter Gaussian-type damping function 

allows for efficient evaluation of analytical energy gradients for both QM and MM 

atoms. By adjusting the two parameters, this damping function can produce polarization 

energies that are very similar to those from QM calculations. To deal with the 

polarization at short distances for MM systems, we also implemented the damping 
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function schemes proposed by Thole30, van Duijnen and Swart37 and Ren and Ponder24.   

 

2.2 Theory 

 In a typical QM/MM calculation, the total Hamiltonian of the system can be 

written as: 

 H = HQM + HQM /MM
ele + HQM /MM

pol + HQM /MM
vdw + HMM     (2-1) 

In this equation, HQM  is the time independent, nonrelativistic Hamiltonian of the QM 

subsystem. HQM /MM
ele  , HQM /MM

pol and HQM /MM
vdw are the operators for the electrostatic 

interaction, polarization interaction and Van der Waals interactions between QM and 

MM respectively. HMM  is the operator for all the energy terms (binding and nonbonding 

interactions) of the MM region. Therefore, the inclusion of induced dipole polarizable 

force field in QM/MM calculations will cause the change of polarization interaction 

between QM and MM regions.  

 

2.2.1 Polarization Energy  

In the quantum chemistry polarizable force field (QuanPol)38 program, induced 

dipole polarizable force field calculations, both pure MM and QM/MM, the following 

linear polarization equation is used39:  

Dp = E          (2-2) 

Here p is a set of induced dipoles, E is a set of electric fields at the polarizability points 

due to MM charges, QM electrons and nuclei.  The electric fields due to induced dipoles 

are not included in E. D is a matrix in which the elements act on induce dipoles to 
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produce electric fields. The diagonal elements of the D matrix is the inverses of the 

polarizability tensors: 

Dii = α i( )−1 =
α i,xx α i,xy α i,xz

α i,yx α i,yy α i,yz

α i,zx α i,zy α i,zz

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

−1

     

(2-3) 

The off-diagonal elements in the D matrix are: 

Dij = −Tij           (i ≠ j)
        

(2-4) 

where the matrix operator 

� 

Tij  is a symmetric matrix:  

Tij = −

1
rij
3 −

3
rij
5 xij xij −

3
rij
5 xij yij −

3
rij
5 xijzij

−
3
rij
5 yij xij

1
rij
3 −

3
rij
5 yij yij −

3
rij
5 yijzij

−
3
rij
5 zij xij −

3
rij
5 zij yij

1
rij
3 −

3
rij
5 zijzij

"

#

$
$
$
$
$
$
$
$

%

&

'
'
'
'
'
'
'
'

    

(2-5) 

where (xi, yi, zi) and (xj, yj, zj)  are the Cartesian coordinates of points i and j  

polarizability points and xij = xi − x j , yij = yi − yj , zij = zi − z j .  

In both pure MM and QM/MM calculation the polarization energy of the induced 

dipoles in the field is the reversible work required to charge the field E from zero to full 

strength39:  

Gpol = − 1
2
ETD−1E

        
(2-6) 

 

2.2.2 MM-MM Damping Schemes 

One way to introduce damping to the interactions between induced dipoles is to 

scale down the interactions between the induced dipoles in the T matrix:  
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Tij = −

fe
rij
3 −
3 ft
rij
5 xij xij − 3 ft

rij
5 xij yij − 3 ft

rij
5 xijzij

− 3 ft
rij
5 yij xij

fe
rij
3 −
3 ft
rij
5 yij yij − 3 ft

rij
5 yijzij

− 3 ft
rij
5 zij xij − 3 ft

rij
5 zij yij

fe
rij
3 −
3 ft
rij
5 zijzij

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

   

(2-7) 

Here fe and ft are MM-MM damping functions.  

The damping function of linear Thole scheme are in the following forms30: 

If (v ≥1)        fe =1.0                  ft =1.0
If (v <1)        fe = 4v

3 −3v4         ft = v
4

     

 (2-8) 

where: 

v = u a

u = rij αiα j( )
1/6

        

 (2-9) 

 a is the damping factor which is a constant but may vary for different damping schemes 

and interacting points. α i  and α j  are the polarizabilities for points i and j respectively. 

This damping function is not smooth, so energy will not be conserved in molecular 

dynamics (MD) simulation. An improvement to the linear Thole scheme is  exponential 

Thole scheme37: 

fe = 1−
a2u2

2
+ au +1⎛

⎝⎜
⎞
⎠⎟
exp −au( )

ft = 1−
1
6
a3u3 + a

2u2

2
+ au +1⎛

⎝⎜
⎞
⎠⎟
exp −au( )

     

(2-10) 

The Tinker-exponential damping functions are in the following forms24: 

fe = 1− exp −au3( )
ft = 1− 1+ au

3( )exp −au3( )        
(2-11) 
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2.2.3 QM-MM Damping Function 

The MM-MM damping scheme cannot be used as a QM-MM damping scheme 

because there are no induced dipoles in the QM region. Here we propose the use of a 

QM-MM damping scheme that scales down the polarizability of the MM atoms when 

they are near QM atoms. The MM polarizability point i is scaled down if its distance to a 

QM atom j is smaller than a cutoff distance rd : 

α i, f = fijα i          (2-12) 

The damping function fij is a Gaussian function, which is based on the distance between 

the two atoms ( rij ) and the cut off distance ( rd ): 

fij = exp −d × rij − rd( )2⎡
⎣

⎤
⎦        (2-13) 

d  is a constant, which should be specific to the types of atoms i and j. If the MM atom i 

is close to n  QM atoms, the polarizability i is scaled by all of the n  damping functions: 

αi, f =αi fij
j=1

n

∏          (2-14) 

where fij  is the damping function for point i  and QM atom j .  

 

2.2.4 Gradients of Polarization Energy 

Based on equation (2-6), the derivative of the polarization energy with respect to a 

coordinate x can be written as: 
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(2-15) 

Since 

� 

p = D−1E, so equation (2-15) can be written as: 
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(2-16) 

Since 
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(2-17) 

if we define 
 
!p = D−1( )T E , equation (2-16) becomes: 
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(2-18) 

For symmetric polarizability tensors, 

� 

˜ p  is equal to 

� 

p. In order to evaluate the derivative 

of the inverse of D, the relation shown below is used.  

∂D−1

∂ x
= −D−1 ∂D

∂ x
⎛
⎝⎜

⎞
⎠⎟D

−1

       

(2-19) 

So for symmetric polarizability tensors, we have:  
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(2-20) 

And the gradient of polarization energy becomes: 

∂Gpol

∂ x
= − ∂E

∂ x
⎛
⎝⎜

⎞
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T

p + 1
2
pT ∂D

∂ x
⎛
⎝⎜

⎞
⎠⎟ p       

(2-21) 

 In the following part, we derive the explicit matrix element expression of the 

gradient for a particular coordinate xi. If run over all of the N induced dipoles in the 

system, equation (2-21) should be expressed as: 
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(2-22) 

where m  and n  are different induced dipoles in the system.  

 When point i  moves, only the electric field at point i  is changed. The electric 

fields at all the other points are not subject to change. Consequently, only ∂Ei /∂ xi  is 

non-zero term. Because the change of xi  only results in the change of elements in line i  

and column i  of D matrix, only ∂Dim /∂ xi  and ∂Dni /∂ xi  are non-zero terms. So the 

gradient can be written as: 
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The third and fourth terms in equation (2-23) are the same, so  
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(2-24) 

Then,      
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(2-25) 

where I is the unit matrix, Fij  and Cij  are in the following forms: 
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Fij =
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ij

2 xij yij xijzij

yij xij y
ij

2 yijzij

zij xij zij yij z
ij

2

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥        

(2-26) 

Cij =

fe + 2 ft( )xij ft yij ft zij
ft xij fe + 2 ft( )yij ft zij
ft xij ft yij fe + 2 ft( )zij
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⎢
⎢
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⎥
⎥
⎥
⎥

    

(2-27) 

Since fe  and ft  are damping functions that depend on the distance of two interacting 

points as described in equations (2-8), (2-10) and (2-11), their derivatives can be 

computed straightforwardly.  

When QM-MM damping function is used, the derivative of Dii  is not zero. As 

described in equation (2-14), if a polarizability point interacts with n  QM atoms and the 

distance between two of these points are smaller than the cutoff distance rd , the 

polarizability will be determined by all the atoms interacting with this point. In this way, 

the gradient of matrix Dii  should be expressed as: 
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(2-28) 

Or simply written as: 

∂Dii

∂xi
= − α i, f( )−1 1

fij

∂ fij
∂xi

⎛

⎝⎜
⎞
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n

∑
       

(2-29) 

According to equation (2-13), the derivatives of the QM-MM damping function can be 

written as: 
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∂ fij
∂xi

= −2dij × rij − rd ,ij( )exp −dij × rij − rd ,ij( )2⎡
⎣

⎤
⎦
∂rij
∂xi     

(2-30) 

or written as: 

1
fij

∂ fij
∂xi

= −2dij × rij − rd ,ij( ) ∂rij∂xi       
(2-31) 

When QM-MM damping function is used, the derivative of Dii  with respect to 

the QM coordinate xj can be similarly derived: 

∂Dii

∂x j
= − α i, f( )−1 1

fij

∂ fij
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⎝⎜
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(2-32) 

1
fij

∂ fij
∂x j

= −2dij × rij − rd ,ij( ) ∂rij∂x j       
(2-33) 

In this way, the gradient of the polarization energy with damping functions can be easily 

computed based on equation (2-24), equation (2-25) and equation (2-29). 

 

2.3 Implementation and Computational Methods 

The method presented above has been implemented in the quantum chemistry 

polarizable force field (QuanPol)38 program, which is integrated in the general atomic 

and molecular electronic system (GAMESS) package40, 41. Numerical tests show that the 

analytic gradients are accurate to 10-6 hartree/bohr. All calculations were performed using 

the QuanPol program and the GAMESS package.  

A QM/MM system is used to demonstrate the energy conservation. In this system, 

the QM region is a water molecule, which is treated with MP2/6-31++G(d,p)42 level of 

theory. For the MM region, there are 512 water molecules. This region is obtained by an 

equilibrium MD stimulation that is performed in NPT ensembles (the pressure and the 
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temperature are scaled, the energy may fluctuate). The MD step size is chosen to be 10-15 

s. The three-site induced-dipole water model POL343, 44 polarizable water model is used 

in the simulations. The parameters for POL3 water model are shown in table 2-1 (LT: 

Linear Thole; ET: Exponential Thole; TE: Tinker-exponential). RATTLE45 is used to fix 

the internal geometry of the water molecules. Thereafter, one of the water molecules is 

chosen as the QM region and then QM/MM simulations with the run type as MD are 

performed in NVE ensembles (the volume and total energy of the system is constant, the 

pressure and temperature may fluctuate). When the MM damping functions are included, 

the polarization interactions of 1-2 and 1-3 atom pairs are considered in the simulation. In 

order to minimize the MD integration errors in the demonstration of energy conservation, 

the MD step size is chosen to be 2.5×10-16 s. The size of the periodical boundary 

condition (PBC) box is different for each damping schemes: Linear Thole 24.87 Å, 

Exponential Thole 24.89 Å and Tinker-exponential 24.61 Å. In order to make a 

comparison, a QM/MM simulation only with the QM-MM Gaussian damping function is 

performed and a pure MM simulation without any damping functions is conducted. 

During the QM/MM simulation, the damping constant d is chosen to be 0.0863 bohr-2. 

The cutoff distances in the QM-MM damping function are chosen to be 3.0 Å.  

To find out the best damping constant d  and cutoff distance rd  for the Gaussian 

damping function in QM/MM polarization model, a QM/MM study on M-H2O and M-Cl- 

polarization interaction is used (where M is Na+, K+, Mg2+ or Ca2+). The cations (Na+, 

Mg2+ and Ca2+) are considered as the QM subsystems and treated with MP2/aug-cc-

pVTZ46, 47 method. For K+ QM subsystems, the K+ is treated with modified Wachters’s 

triple zeta valence (TZV) basis set48, 49. No frozen cores are considered for MP2 
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calculation. The water molecule is treated as QP302 flexible polarizable water model38 

except the polarizability. The polarizability of oxygen atom is chosen to be the 

experimental value (1.44 Å3) instead of the assigned polarizability (0.8 Å3) in QP302 

since it has been observed to be suitable to demonstrate the polarization energy at longer 

distances50, 51. Partial charges of - 0.7160 e and +0.3580 e are placed on O and H atoms 

for water molecule. The Van der Waals interactions between QM and MM subsystems 

are modeled with Lennard-Jones (L-J) interactions. These parameters are shown in Table 

2-2. For Cl-, a polarizability of 5.5 Å3 is placed on it47, 52, 53.  

The polarization energies obtained by the localized molecular orbital energy 

decomposition analysis (LMO-EDA)54 that treats the two subsystems as two interacting 

QM monomers are used to compare with the polarization energies obtained by QM/MM 

simulations. For LMO-EDA calculations, MP2/aug-cc-pVTZ is used for Na+, Mg2+ and 

Ca2+ related systems and MP2/aug-pc4 (polarization consistent basis sets)55-58 is 

employed for K+ and Cl- system. The basis set super position error corrected values of 

LMO-EDA are used for comparison. In the LMO-EDA method, the polarization energy 

is defined as the orbital relaxation energy on going from monomer spin orbitals to the 

super molecular spin orbitals. 

The distances of two interacting points chosen to demonstrate the polarization 

energies are based on the optimized distances obtained by using MP2/ aug-cc-pVTZ for 

all the systems except K+-Cl- system. For K+-Cl-, due to the limitation of basis set, we use 

MP2/TZV for K+ and MP2/ aug-cc-pVTZ for Cl-. The optimized distances between two 

interacting points are shown in Table 2-3.  
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!

2.4 Results and Discussions 

2.4.1 MD Energy Conservation 

After 1 million steps of the NPT equilibration, the QM/MM simulations are 

performed within the NVE ensembles. Thereafter, the total energies in the QM/MM 

simulations within NVE ensembles are extracted for each 1000 steps. Clearly, energy is 

Table 2-1. Parameters for POL3 and QP302 polarizable water model 

 POL3 QP302 

Bond length dO-H (Å) 1.0000 1.0300 

Bond angle θH-O-H (˚) 109.47 109.47 

Lennard-Jones ε (kcal/mol) 0.1560 0.1520 

Lennard-Jones Rmin/2 (Å) 1.7980 1.8142 

Charge qO (e) -0.7300 -0.7160 

Charge qH (e) 0.3650 0.3580 

Dipole polarizabilities αO (Å3) 0.5280 1.4400 

Dipole polarizabilities αH (Å3) 0.1700 N/A 

Damping factor a  (LT) 2.4410 N/A 

Damping factor a  (ET) 1.3305 N/A 

Damping factor a  (TE) 0.4246 N/A 

 

!

Table 2-2. Force field parameters for MM subsystems in the QM/MM simulation 

 Na+ Mg2+ K+ Ca2+ Cl- 

L-J ε (kcal/mol) 0.002770 0.875044 0.000328 0.120000 0.100000 

L-J Rmin/2 (Å) 1.868000 0.922928 2.658000 1.367000 2.470000 

Charge q (e) 1.000000 2.000000 2.000000 2.000000 -1.00000 

Polarizabilities α (Å3) N/A N/A N/A N/A 5.5 

!
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conserved very well in these QM/MM simulations with the QM-MM Gaussian damping 

function and the Exponential-Thole or Tinker-exponential damping schemes for the MM 

polarization damping. Due to the MD integration errors, there is an energy drift in 

100000 MD steps for about 0.02 kcal/mol, which is also observed in the pure MM 

simulation. The total energy of all the modeled systems were conserved in 100000 time 

steps, with a standard deviation of 0.03 kcal/mol for Exponential-Thole damping scheme 

(Figure 2-2) and 0.04 kcal/mol for Tinker-exponential damping scheme (Figure 2-3). For 

Linear-Thole scheme, the damping function is not smooth so the energy is not conserved 

(Figure 2-4). The average temperatures are also consistent with a standard deviation of 10 

K for Exponential-Thole and Tinker-exponential damping schemes.  

 

 
Figure 2-1. Energy (red) and temperature (green) in QM/MM simulation with the 

QM-MM damping function and without MM damping function 

!
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Figure 2-2. Energy (red) and temperature (green) in QM/MM simulation with the QM-

MM damping function and the Exponential-Thole MM damping function 

!

 

Figure 2-3. Energy (red) and temperature (green) in QM/MM simulation with the QM-

MM damping function and the Tinker-Exponential MM damping function 

!



! 26 

2.4.2 Application of QM-MM Damping Function 

Since the QM-MM damping function is sensitive to the damping constant d and 

the cutoff distance rd , it is important to estimate d and rd  in this damping function. The 

optimized distances between the cations and the oxygen atom in water molecule or Cl- 

are obtained by using MP2/aug-cc-pVTZ46, 47 method (for K+, it is treated with TZV basis 

set). The obtained optimized distances are shown in Table 2-3. Based on the optimized 

Table 2-3. Polarization energy of optimized structures 

 r  (Å) d (bohr-2) rd  (Å) ELMO−EDA
pol  Edamp

pol  Eno−damp
pol  

Na+-H2O 2.27 0.0863 3.45 -5.99 -5.97 -9.17 

Mg2+-H2O 1.93 0.140 3.00 -38.58 -39.65 -70.99 

Ca2+-H2O 2.45 0.090 3.30 -19.55 -21.31 -26.64 

Na+-Cl- 2.41 0.090 4.00 -12.52 -12.67 -29.15 

K+-Cl- 2.96 0.050 4.00 -9.93 -10.10 -12.29 

!

 

Figure 2-4. Energy (red) and temperature (green) in QM/MM simulation with the QM-

MM Gaussian damping function and Linear-Thole MM damping function 

!
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distances, the LMO-EDA calculations and QM/MM calculations are set in a range of 

most possible distances between the two interacting points. By changing d and the cutoff 

distances rd  simultaneously, we have obtained the best fitting polarization energy (shown 

in Table 2-3, Figure 2-5 to Figure 2-9) for these models. By using suitable d and rd  for 

the QM-MM damping function, the polarization energy is comparable to what calculated 

by using LMO-EDA method.  

Na+-H2O. The optimized distance for Na+ and O is 2.27 Å. In LMO-EDA 

calculation, if the distance between Na+ and O is 2.27 Å, the polarization energy is given 

as -5.99 kcal/mol. By changing d and rd  in QM-MM damping function, we find that for 

rd =3.45 Å and d=0.0863 bohr-2, the polarization energy of the system is -5.97 kcal/mol, 

which is in concert with the LMO-EDA calculation. Meanwhile, if the damping function 

 

Figure 2-5. Polarization energy of O in water molecule calculated using LMO-EDA 

and QM/MM (with and without QM-MM damping function) for Na+-H2O pair. 

!
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is not included in the QM/MM calculation, the polarization energy is -9.17 kcal/mol, 

which is nearly twice of what calculated by LMO-EDA method. So with the damping 

function, the QM/MM polarization energy is more reliable. By changing the distance 

between Na+ and O, a series of polarization energies are obtained by using LMO-EDA 

method and QM/MM with rd =3.45 Å and d=0.0863 bohr-2. The results show that the 

polarization energies calculated by QM/MM are in good agreement with the LMO-EDA 

results (Figure 2-5). For cases that Na+ and O are in short interaction distances, Figure 2-

5 shows that the QM/MM polarization energy calculations without the damping function 

are not trustable. 

Mg2+-H2O. The optimized distance between Mg2+ and O is 1.93 Å. By using the 

optimized geometry, the polarization energy of optimized geometry produced by LMO-

EDA calculation is -38.58 kcal/mol. A series of QM/MM simulation show that the best 

 

Figure 2-6. Polarization energy of O in water molecule calculated using LMO-EDA 

and QM/MM (with and without QM-MM damping function) for Mg2+-H2O pair. 

!
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fitting constants for this system are d=0.140 bohr-2 and rd =3.00 Å. The fitting graph is 

shown in Figure 2-6. When the damping function is not used in the QM/MM calculation, 

the polarization energy is much larger than those calculated by LMO-EDA method at 

short distances. After using the QM-MM damping function, the polarization energy fits 

very well with those calculated by using LMO-EDA method (Figure 2-6). The 

polarization energy of the optimized system is obtained as -39.65 kcal/mol when the QM-

MM damping function is used. This value has a deviation of 1.07 kcal/mol compared to 

the LMO-EDA one. However, if the QM-MM damping function is not used in QM/MM 

calculation, the polarization energy is calculated as -70.99 kcal/mol, nearly the twice of 

what estimated by LMO-EDA method. 

Ca2+-H2O. The optimized distance between Ca2+ and O is 2.45 Å. An LMO-EDA 

calculation shows that the polarization energy of the optimized structure is -19.55 

 

Figure 2-7. Polarization energy of O in water molecule calculated using LMO-EDA 

and QM/MM (with and without QM-MM damping function) for Ca2+-H2O pair. 

!
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kcal/mol. A series of QM/MM calculations with the new damping function give the best 

pair of constants as d=0.090 bohr-2 and rd =3.30 Å. By using this pair of constants, 

polarization energies are obtained for different distances between Ca2+ and O (Figure 2-7).  

For the optimized geometry, the polarization energy is calculated as -21.31 kcal/mol with 

1.76 kcal/mol difference compared to LMO-EDA result. If the damping function is not 

used, the QM/MM calculation gives the polarization energy at the optimized distance as -

26.64 kcal/mol (a 7.09 kcal/mol difference with the LMO-EDA result).  Moreover, 

Figure 2-7 shows that if the new damping function is not used, the QM/MM polarization 

energy is quite unreliable at short interaction distances. 

Na+-Cl-. The optimized distance between Na+ and Cl- is 2.41 Å. The LMO-EDA 

calculation produces the polarization energy for the optimized structure as -12.52 

 

Figure 2-8. Polarization energy of Cl calculated using LMO-EDA and QM/MM 

(with and without QM-MM damping function) for Na+-Cl- pair. 

!
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kcal/mol. If the QM-MM damping function is not used in the QM/MM calculation, the 

polarization energy given by QM/MM calculation is -29.15 kcal/mol, which is more than 

twice as great as the LMO-EDA result. With the constants d=0.090 bohr-2 and rd=4.00 Å 

for the QM-MM damping function, the polarization energy is corrected to be -12.67 

kcal/mol at the equilibrium distance. By changing the distances between Na+ and Cl-, the 

QM/MM polarization energies of Na+-Cl- systems are obtained (Figure 2-8). The results 

show that the using of QM-MM damping function corrected the overestimation of the 

polarization energy of Cl-.    

K+-Cl-. The optimized distance between K+ and Cl- is 2.96 Å. The changes of 

distances between K+ and Cl- produce the polarization energies for systems in QM/MM 

calculations and LMO-EDA calculations. When the QM-MM damping function constants 

 

Figure 2-9. Polarization energy of Cl calculated using LMO-EDA and QM/MM (with 

and without QM-MM damping function) for K+-Cl- pair. 

!
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d=0.050 bohr-2 and rd=4.00 Å are used, the polarization energies approach to those 

calculated by using LMO-EDA method (Figure 2-9). The use of the new damping 

function corrects the errors in the polarization energies at short distances for QM/MM 

calculation (Figure 2-9). With the use of damping functions, the polarization energy of 

the optimized geometry calculated by QM/MM is damped from -12.29 kcal/mol to -10.10 

kcal/mol, which is closer to that (-9.93 kcal/mol) calculated by LMO-EDA method. 

Multi-atoms system.  In order to know how the QM-MM damping function 

works for multiple QM atoms interacting with MM atoms, a series of polarization 

energies are obtained by QM/MM calculations on Na+-Cl- systems with two Na+ ion in 

QM regions by using the previously parameterized constants d=0.090 bohr-2 and rd=4.00 

Å. The model is shown in Figure 2-10.  In this model, the two Na+ ions and the Cl- ion 

form an isosceles triangle with the angle as 90˚. With the change of distances between 

Na+ and Cl- (the distances between different Na+ and Cl- are same), a series of 

polarization energies are obtained by QM/MM and LMO-EDA method. The results are 

shown in Figure 2-11. Clearly, the polarization energies are overestimated at short 

interacting distances if the QM-MM damping function is not used in QM/MM 

calculations. As we could see from equation (2-14), the damping function is repeatedly 

working on the polarizabilities of a polarizable atom. From Figure 2-11, with the using of 

QM-MM damping function, the polarization energy is over-corrected at short interaction 

distances. However, with the distance of Na+ and Cl- between 2.0 Å to 4.0 Å, most of the 

polarization energies are more acceptable if compared to those calculated by QM/MM 

methods without damping function. Thus, the QM-MM damping function works well, but 
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a more effective and accurate way should be introduced to deal with the interactions 

between multiple polarizable atoms.    

Clearly, the polarization energy is more reliable by using the damping function 

with an adjustable d constant and a suitable cutoff distances rd  in QM/MM simulations 

 

Figure 2-10. Model for two Na+ ions and one Cl- ion 

!

 

Figure 2-11. Polarization energy of Cl- calculated using LMO-EDA and QM/MM (with 

and without QM-MM damping function) for Na+-Cl--Na+ pair. 

!
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although problems may still exist in current work. The results show that the damping 

function works well in QM/MM simulations with polarizable force fields.  

2.5 Conclusion 

 A damping function is introduced for QM-MM interaction when polarizable force 

field is used in the MM subsystem. This QM-MM damping function scales down the 

polarizability of MM atoms when they are close to QM atoms, and works well with the 

MM-MM damping functions that scale down the dipole-dipole interactions between MM 

atoms. The analytical gradients of the polarization energy with these QM-MM and MM-

MM damping functions are also derived and implemented so geometry optimization and 

energy conserved MD simulation can be performed. The Gaussian-type QM-MM 

damping function introduced for QM/MM interactions performs very well according to 

the comparison of the polarization energies computed by using QM/MM methods and 

LMO-EDA method for Na+-H2O, Mg2+-H2O, Ca2+-H2O, Na+-Cl- and K+-Cl-. The results 

suggest that the damping constant d and the cutoff distance rd in the Gaussian-type QM-

MM damping function can be easily parameterized for different system. 
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CHAPTER 3 QM/MM Study on P450cam 

3.1 Introduction 

Cytochrome P450 enzymes (P450s) exist in a wide variety of biological systems. 

They function as catalysts in a number of biological oxidation reactions, such as the 

metabolism of drugs, xenobiotics and carcinogenesis59-61. One of the important reactions 

is the specific hydroxylation of non-active C-H to form C-O-H catalyzed by P450s at 

physiological conditions (Figure 3-1). A large amount of experimental mechanistic 

studies have been performed to understand how P450s catalyze this kind of reactions. 

Among them, a generally accepted mechanism called rebound mechanism is proposed60, 

62, 63. In the rebound mechanism, a hydrogen abstraction step is considered as the rate-

determining step (Figure 3-2). In the catalysis process, a hydroxylation transition state 

(TSH) is formed from an oxo-ferric active compound, which is named as P450 compound 

I (Cpd I, Figure 3-3, RS in Figure 3-2). Cpd I is considered as the key oxidant in most of 

the important reactions catalyzed by P450s. Cpd I is predicted first by theoretical studies, 

then confirmed by experiments64-67. Thereafter, an iron-hydroxo intermediate radical pair 

(HYD in Figure 3-2) is yielded via the TSH transition state. 

HO

OO

P450cam

!
Figure 3-1. Hydroxylation of camphor catalyzed by P450cam 

!
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Many QM/MM calculations have been performed to derive the activation free 

energy of the H-abstraction reaction. However, the results are controversial with values 

between 7 kcal/mol to 18 kcal/mol68-72. Because defects exist in most of the reported 

QM/MM studies, in this chapter, a general protocol for applying QM/MM methods to 

study the activation free energy is established. This protocol is applied to compute the 

activation free energy of the camphor hydrogen abstraction reaction catalyzed by 

P450cam. P450cam is a bacterial (Pseudomonas Putida) enzyme that catalyzes 5-exo-

hydroxylation of camphor. It is the first crystallized cytochrome P450 enzyme73 and has 

been used in a large amount of experimental and computational studies to illustrate the 

P450s catalytic mechanisms74. Since the hydrogen abstraction process conducted by Cpd 

I is generally considered as the rate-determining step74, only the activation free energy of 

RS

TSH

HYD

Fe

O

Cys357

Fe

O

Cys357

H
R

Fe

O

Cys357

HR
R

H

 

Figure 3-2. The rate-determining step (hydrogen abstraction step) in the rebound 
mechanism of C-H hydroxylation 

!
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the hydrogen abstraction step is studied in this work. By using the QM/MM protocol in 

this chapter, the calculated activation free energy is in good agreement with the 

experimental results and the results obtained from other QM/MM methods. 

 

3.2 Computational Methods 

3.2.1 Preparation 

The X-ray structure 1DZ975 for P450cam (Figure 3-4; Graph generated by 

MacPyMOL76) from Pseudomonas Putida was obtained from the Protein Data Bank 

(PDB)77. All water molecules in 1DZ9 were kept except WAT2206, which is believed to 

be the water molecule formed by one of the two atoms in O2. When Cpd I is formed, this 

water molecule should not present at the active site. Hydrogen atoms were added to the 

X-ray structure by using the WHAT IF web interface78. The file was manually edited so 

His355 is positively charged and Asp297 is neutral. The protein was described with the 

AMBER12 protein force field79. The water molecules in the PDB file were described 

with a three-point flexible and non-polarizable water model (QP301)38. Heme, Fe, O and 

camphor were described using a simplified universal force field implemented in QuanPol 

with the keywords LOUT=1 and NFFTYP=0. Lennard-Jones (LJ) parameters in this 

N N

NN
Fe

Scys357H3C
CH

CH3

CH
H3C

CH3

CH2

CH2-O2C(H2C)2

-O2C(H2C)2

O

 

Figure 3-3. The structure of Cytochrome P450 Cpd I 
!
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force field are very similar to those in the AMBER force field. The atomic charges were 

determined by using accumulated bond polarization charges, and were similar to those 

parameterized in protein force field for common atoms such as H, C, N, O, F, P, S, and 

Cl.  The atomic charges for metal ions, their ligand atoms, and ionized functional groups, 

such as ammonium and carboxylate, were modified manually. Covalent terms, including 

bond stretching, bond angle bending, dihedral angle rotation and dihedral angle bending 

(i.e., out of plane bending) parameters, were generated in a way that they favor the given 

conformation of the molecule. In this case, they were the covalent terms in camphor and 

heme, with the Fe and O ions. The AMBER12 force field file for the protein and the 

simplified universal force field file for the substrates were prepared separately and then 

combined together by using the keyword ICOMBIN=1 in QuanPol. After the 

combination, an additional bond stretching potential for Fe-SCys357 with the force constant 

k=300 kcal/mol/Å2 for E=k(r-r0)2 and r0=2.271 Å, and an additional bond angle bending 

potential for Fe-SCys357-CCys357  with the force constant k=50 kcal/mol/rad2 and θ0=111.5˚ 

for E=k(θ-θ0)2 were added manually. The standard AMBER12 charge for free thiolate 

SCys357 was -0.8844 e. It was reduced manually by 0.5 e to -0.3844 e together with an 

equal increase of the Fe ion charge (finally Fe charge is +3.3 e). These partial atomic 

charge assignments, as force field parameters, were consistent with the following formal 

charges (or oxidation states): O is -2, Fe is +5, S is -1, each heme N is -0.5 (total -2). The 

net charge of the heme catalytic site is zero. The heme has two carboxylate groups. Each 

of the groups has -1 e charge.  So the total charge of the heme/camphor is -2 e. These two 

negative charges are stabilized by three nearby positively charged residues: Arg112, 

Arg299, and His355.  Arg112 is at the protein surface so its positive charge is partially 
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stabilized by the bulk solvent. As mentioned above, the nearby Asp297 is neutral. The 

total charge of the protein and substrates is -14 e. 

The protein/substrates were then solvated in an 80×70×90 Å3 periodic boundary 

condition water box filled with 13600 water molecules, and with 30 Na+ and 16 Cl-1 ions 

randomly added. The AMBER12 LJ parameters were used for Na+ and Cl-. The total 

number of atoms is 48268, with a zero net charge. All water molecules (the crystalline 

waters in the PDB file and the 13600 added water molecules) were described with the 

three-point flexible and non-polarizable water model (QP301)38.   

!
3.2.2 Molecular Dynamics Simulation 

Molecular dynamics (MD) simulation was run for the system by using pure MM 

method. The system was pre-equilibrated for 20,000 steps (20 ps). This process went 

smoothly. The volume and pressure of the system were stabilized. Then the system was 

equilibrated for one million steps (1 ns). Periodic boundary condition (PBC) was used in 

the MD simulation by using a shifting function in QuanPol with a cutoff distance of 12.0 

 

Figure 3-4. P450cam (PDB file 1DZ9 visualized with MacPyMOL) 
!
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Å for the charge-charge interactions, and a switching function in QuanPol with the 

switching range from 10.0 to 12.0 Å for the LJ interactions. The constant particle 

number, pressure and temperature (NPT, with Pbath=1.00 bar and Tbath=298.15 K) 

ensemble was used in the MD simulation with Berendsen barostat and thermostat80. The 

Beeman MD integrator81 was used. After the equilibration, the average temperature and 

pressure were 298.13 K and 1.00 bar, respectively. The volume stabilized at 

78.1×68.3×87.8 Å3. After the MD simulation, the added 30 Na+ and 16 Cl- ions stayed in 

the bulk water, and did not penetrate into the protein. Using the one million MD 

configurations, the dielectric constant of the whole protein/water/ions system was 

simulated to be 77.6, a very reasonable value. After one million MD steps, the overall 

geometry of the protein is similar to that in the PDB file. 

 

3.2.3 Geometry Optimization 

Based on the geometry of the system at the last step of the MD simulation, 

QM/MM style UB3LYP (unrestricted B3LYP: Becke, three-parameter, Lee-Yang-Parr 

exchange-correlation functional82) geometry optimizations were performed for 1869 

atoms around the reactive H atom of the camphor. In this study, we considered both 

S=1/2 (doublet state) and S=3/2 (quartet state) in the UB3LYP calculation to estimate the 

activation free energy.  The 1869 atoms were selected by drawing a 16.0-Å-radius sphere 

around the 5-exo-H atom as in the last step of the MD simulation, including solvent water 

molecules. For comparability, the same 1869 atoms were consistently used in all 

subsequent geometry optimization and Hessian calculations. In the QM/MM calculation, 

the QM region had 106 atoms: the heme, Fe, O, camphor, and the side chain of Cys357 
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as SCH3 (Figure 3-5).  Of course, all of these 106 QM atoms are within the 1869 atoms to 

be optimized.  Periodic boundary condition (PBC) was used in the QM/MM system with 

the volume fixed at the value of the last step of the MD simulation. The same shifting and 

switching functions were used for MM charge-charge and LJ interactions as in the MD 

simulation. The QM-MM interaction uses a special switching function83 in the range 

from 22.0 to 32.0 Å. The capping H atom method implemented in QuanPol was used to 

treat the covalent bonds between QM and MM atoms 38 (here only the Cys357 lies across 

QM and MM). The forces on all QM and MM atoms are evaluated analytically and 

rigorously (including the effects of the shifting and switching functions) with an accuracy 

near 1.0×10-6 hartree/bohr.  In the QM/MM calculations a modified Wachters’s triple zeta 

valence (TZV84, as implemented in GAMESS) basis set was used for Fe, the aug-cc-

 

Figure 3-5. The atoms in QM region for reaction state (Cpd I and camphor) 
 

!
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pVDZ85 basis set was used for the Fe ligand atoms (S, N, N, N, N, O) and the two 

reacting atoms (5-exo-H and C5) of camphor, and the 6-31G* basis set86 was used for all 

other QM atoms.  The total number of Cartesian Gaussian basis functions is 1077. The 

number of basis functions is larger than most of the calculations in the literature. In the 

current QM/MM calculation, atomic charges of the QM atoms were not used because 

they interact with the MM atomic charges using electrons and nuclear charges; the LJ 

interactions between QM and MM atoms were used.  

The QM/MM geometry optimization of 1869 atoms (106 QM and 1763 MM) 

requires a significant computing time. In general, geometry optimization processes can be 

accelerated with Hessian methods. For the reactant state (RS), we used MM method to 

complete a geometry optimization of the 1869 atoms with a steepest-descent method. 

This typically requires tens of thousands of optimization steps and a few hours on a 32-

core parallel computer. We found that a tight gradient criterion of 1.0×10-5 hartree/bohr 

can guarantee a good optimized minimum on the potential energy surface (PES). Then, a 

MM Hessian calculation was performed for the 1869 atoms via double displacement 

(total 11215 energy and gradient evaluations) method and a 0.01 bohr step size.  

Diagonalization of the mass-weighted force constant matrix (FCM) yielded no imaginary 

frequencies. The FCM obtained at the MM level was used to guide the QM/MM 

geometry optimization of the same 1869 atoms.  Using a 32-core parallel computer, the 

QM/MM optimization took ~2.6 hours to finish one step, and took around 100 steps (260 

hours) to reach the gradient criterion (maximum unsigned gradient 1.0×10-4 hartree/bohr, 

average unsigned gradient 0.333×10-4 hartree/bohr). The FCM was updated using the 

Broyden-Fletcher-Goldfarb-Shanno formula87 in the QM/MM optimization process.  



! 43 

For the QM/MM transition state (TS) search, however, no MM force field is 

readily available to generate a FCM for the TS. We used the following procedure to 

generate a FCM for the TS. We implemented in QuanPol a keyword NQMVIB to input 

the specific QM atoms so they vibrate in Hessian calculation to update part of the FCM. 

The FCM is started from an existing reactant state. Here for P450, the FCM was obtained 

from the previous RS geometry optimization. The single displacement step size is set to 

be 0.01 bohr in this case. The MM charge is internally turned off so the QM-MM 

interactions are simply LJ interactions. This will not significantly affect the force 

constants between QM atoms, but can shorten the QM/MM computing time.!The general 

way to use this function is to run a QM/MM geometry optimization for some steps and 

obtain a good approximate FCM for the reactant or product state, then reposition a few 

QM atoms to form the transition state. Here for P450, we assigned the camphor C-H 

distance to be 1.30 Å, the O-H distance to be 1.20 Å, and the O-C distance to be 2.50 Å, 

these values are known from the literature71, 72, 88. Then a QM/MM Hessian calculation is 

run with the specifically assigned NQMVIB atoms. Only the force constant matrix 

elements that belong to a pair of NQMVIB atoms are updated. This may lead to one or 

more imaginary frequencies depending on the quality of the guessed TS geometry. 

Visualization of the vibration modes can help one select the correct imaginary mode to 

follow by using the keyword IFOLOW=I (typically I is 1, the most negative mode) in the 

subsequent TS search for the QM/MM system, with the FCM supplied. This TS search 

may not necessarily lead to the anticipated TS geometry. It may be necessary to take the 

geometry after ~10 optimization steps, and run Hessian calculation with NQMVIB again 

to obtain a better FCM. In general, TS search is tricky so a few rounds may be required. 
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After several rounds, normal mode visualization using the MacMolPlt graphic software89 

shows that the imaginary frequency mode indeed describes the vibration of the H atom 

between the C and O atoms. This scheme is critical for accelerating QM/MM TS search. 

It is impractical to compute the FCM using the QM/MM method for all the 1869 atoms, 

which would take ~3.2 years using our parallel computers. This “Partial Vibrating 

Scheme” works very well, and is very efficient.  For the purpose of making the final 

QM/MM energies comparable between the RS and the TS, the geometries of the entire 

QM/MM system must be very similar.  Otherwise the energy difference cannot be taken 

as the activation energy of the TS.  Therefore, we used the QM/MM optimized RS 

geometry and positioned the H atom to the middle of the O and C atoms to start the TS 

search. The FCM was updated using the Davidon-Fletcher-Powell formula90, 91 in the 

QM/MM TS search process. 

 
3.3 Results and Discussions 

3.3.1  Activation Free Energy 

For the doublet state S=1/2, the <S2> should be 3/4. However, the computed value 

from UB3LYP calculation is 1.80, implying that there is a large spin contamination. This 

large spin contamination is not sensitive to the geometry of the QM region, and is similar 

in both RS and TS. It suggests that the spin quantum number S should not be 1/2. Recent 

experimental results65 suggest that the electronic spin quantum number of the heme/Fe/O 

system (the P450 Cpd I without substrate) can be effectively represented by S=1/2. 

However, our results show that the quartet state is better in representing the electronic 

structure.  Therefore, in the following discussion we only present the results of S=3/2.  
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The P450cam Cpd I activation electronic energy computed using the 

UB3LYP/AMBER geometry optimization method is 22.7 kcal/mol for S=3/2. To find out 

the activation free energy, the zero point energy (ZPE) correction should be considered. 

The ZPE change is mainly due to the disappearance of the camphor C-H stretching mode, 

which has a frequency of ~2900 cm-1, corresponding to a ZPE around 4.0 kcal/mol. A 

value is found in literature, which is 3.6 kcal/mol for quartet state71. With this correction, 

the activation free energy ∆Ga can be estimated as 19.1 kcal/mol for S=3/2. Lonsdale et 

al.92 found that the inclusion of dispersion correction in DFT calculation lowers the 

activation electronic energy by ~3.6 kcal/mol for 5-exo-Hydroxylation of camphor and 

significantly improves the accuracy of activation energy. In our work, single point energy 

calculations by using the optimized geometry of RS and TS show that, the activation 

electronic energy is lowered by 3.9 kcal/mol with Grimme’s empirical dispersion 

 

Figure 3-6. The optimized QM region of transition state geometry (distances are in 

Å, doublet/quartet). 

!
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correction93, 94. Therefore, with the empirical dispersion correction, the activation free 

energy should be lowered to 15.2 kcal/mol for the quartet state. This is the best 

estimation from the current work. 

Experimental activation free energy can be estimated using the first-order rate 

constant reported by Rittle and Green65, who obtained a lower limit of 1400 s-1 for the 

thermophilic P450 from Sulfolobus Acidocaldarius and substrate lauric acid.  The actual 

rate constant may be significantly higher.  The higher limit of the activation free energy 

∆Ga can be estimated as 12.2 kcal/mol at T=277 K with the unimolecular transition state 

theory formula: 

k = kBT
h
exp −ΔGa

RT
⎛
⎝⎜

⎞
⎠⎟         (3-1) 

!
 

Figure 3-7. Visualization of spin densities in RS 
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Here k is the first order rate constant, kB is Boltzmann constant, T is the temperature, h is 

Planck’s constant, and R is the gas constant. It is very likely that the ∆Ga for P450 and 

camphor is similar to P450 and lauric acid. So the activation free energy given by the 

quartet state is higher than the experimental value by 3 kcal/mol. This difference is within 

the error of UB3LYP calculations.  

 The transition state geometry for quartet state show that the active atoms in QM 

region are Fe-S: 2.38 Å, Fe-O: 1.76 Å, O-H: 1.19 Å, C-H: 1.36 Å (shown in Figure 3-6). 

These distances are quite similar to most of current literature works. In general, the TS 

should be closer to the product side. As we see in Figure 3-2, the product of the H-

abstraction reaction is a hydroxo intermediate and a radical.  Therefore, the obtained TS 

geometry is reasonable. In this view, the H atom at the active site should be closer to O 

atom than to the C atom. Inspection of the spin density of the RS and TS shows that there 

 
Figure 3-8. Visualization of spin densities in TS 
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is a shift of unpaired spin density from the O atom to the C atom in camphor (Figure 3-7 

and Figure 3-8). It is also observed that the unpaired spin density in Fe atom and S atom 

is decreased. The reduction of spin density on Fe and S can be used to explain why the 

distance between Fe and S is shortened from 2.57 Å in RS to 2.38 Å in TS (shown in 

Figure 3-9 and Table 3-1).       

 

3.3.2 Comparison to Other Calculations 

Various QM/MM methods have been used to study the catalytic mechanisms of 

P450s.  Here we compare our methods and results with those in the literature (Table 3-2).  

Guallar et al64 obtained 11.7 kcal/mol for the quartet spin state, but with the water 

molecule Wat903 included near the oxo ligand of Cpd I. They used UB3LYP with the 

Table 3-1. Spin densities (e/bohr3) of the atoms in the active site 

 Fe O C H S 

RS -0.19244 0.08643 0.00243 -0.00001 0.08833 

TS -0.17755 0.07182 0.11919 -0.01809 0.07360 
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Figure 3-9. Selected structural data for reactant state and transition state 
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force field OPLS-AA95. The system studied was treated as neutral and with 7448 atoms 

without consideration of adding solvent molecules. The QM/MM boundary was treated 

with frozen orbitals. With the ZPE contribution, the activation energy calculated by them 

was lowered to be 8.2 kcal/mol. In another paper, Guallar et al70 figured out that the 

important intermediate distances in the transition state as O-H: 1.20 Å, C-H: 1.38 Å, Fe-

O: 1.81 Å, Fe-S: 2.39 Å. Their calculations are questionable since the solvent effect is not 

considered in the QM/MM simulation. And the Wat903 should not be included in the 

active site since it is formed by one of the oxygen atom during the process of forming 

Cpd I. In addition, it has been shown that the inclusion of Wat903 will lower the 

calculated activation energy significantly68. In our calculation, the water molecule 

WAT2206 (the same water molecule with Wat903) was excluded. Furthermore, the 

protein system is solvated with water molecules and neutralized by adding 30 Na+ and 16 

Cl- ions. This system is more similar to a real experimental system. Therefore, we believe 

our results are more reliable.  

Schöneboom et al88, studied the full mechanism of rebound scheme with the use 

of four different snapshots of MD simulations. They included a 16 Å water layer and the 

total number of atoms was 24394 with the charge of -10 e. They treated the QM/MM 

boundary by link atoms with charge shifting model. The force filed used for MM region 

was CHARMM15. By using the above QM/MM setting and optimizing 442 atoms in the 

QM/MM system, they obtained the activation electronic energy as 21 kcal/mol. The 

activation electronic energy obtained by them is similar to ours (22.7 kcal/mol). However, 

they did not neutralize the system, so the simulating system is not in consistent with a 
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real protein/solvent system. They only optimized 442 atoms, which is quite a small 

number compared to ours (1869 atoms). So our QM/MM methods are more reliable.  

Altun et al68 revisited the above cited QM/MM  strategies with different treatment 

of basis set and different sizes of QM region. By using UB3LYP/CHARMM single point 

calculation on Guallar’s model64, they obtained the activation electronic energy range 

from 7.7 to 14.2 kcal/mol. Due to the different treatment of QM/MM boundary, they 

could not reproduce the exactly same results. So the treatment of the QM/MM boundary 

is very important in order to obtain reliable activation energy. In our work, we use a H-

capping scheme to treat the QM/MM boundary. Our treatment is more general and simple 

compared to others’ method. Guallar et al64 handled the QM/MM boundary by frozen 

orbitals. In the frozen orbitals method, some localized orbitals are put in the boundary 

atoms but some of them are frozen without taking active in SCF iteration. This scheme is 

questionable for impractical frozen orbitals, the insufficiency in parameters and 

complexity in use. Schöneboom et al88 used a link atom scheme with the charge shifting 

model. In this scheme, additional degrees of freedom will be introduced and sophisticated 

pseudopotentials need to be used. The H-capping method in QuanPol is similar to the 

“link atom” scheme, but no additional degrees of freedom are introduced and no carefully 

assigned pseudopotentials are needed. Furthermore, the H-capping method is generally 

applicable in all QM/MM methods without the need to be specifically parameterized for 

different MM force fields or QM methods.  Altun et al68 also presented that the 

protonation states of Asp297 almost do not affect the activation electronic energy. And 

the protonation of His355 would result in ~1.5 kcal/mol energy barrier difference as 

compared to the deprotonated one. They also showed that the presence of Wat903 would 



! 51 

result in a significant barrier lowering (4 kcal/mol).  In our study, all of these issues are 

specifically considered (Asp297 protonated and His355 positively charged). More 

importantly, we excluded WAT2206 (reported as Wat903 in others’ work) from the 

active site.  

In another paper, Altun et al69 studied the H-abstraction reaction of P450cam on 

the quartet potential energy surface with different basis sets and different treatment of 

QM regions with a similar treatment compared with their previous studies68. For the one 

with a QM region similar to ours, they included 120 atoms (with Cys357, CO group of 

Leu356 and NH-CαH unit of Leu358). When the Wat903 was excluded and Asp297 was 

protonated, with the number of basis functions being 329, 374 and 396, they obtained the 

H-abstraction activation electronic energy as 18.1, 21.0 and 19.1 kcal/mol respectively. 

Based on their results, different basis sets may result in a different (~3 kcal/mol) 

activation electronic energy. In our study, the QM region is smaller (106 atoms), but is 

sufficient. The number of basis functions is 1077, which is nearly 3 times larger than 

most of other authors’ work.  

Zurek et al72 discussed how the activation energy is associated with the protonated 

Asp297 residue. They suggested that a better model would be obtained with the use of 

protonated Asp297. With a preliminary MD equilibration and QM/MM optimization, 

they obtained the activation electronic energy as 15.3/18.3 kcal/mol for the 

deprotonated/protonated models, respectively. With a larger QM region (106 atoms, 

similar to ours) and larger basis set (~400), they obtained the electronic energy barrier 

~20 kcal/mol. They also found out that the key reaction distances for the transition state 

(TS) are Fe-S: 2.56 Å, Fe-O: 1.78 Å, O-H: 1.24 Å, C-H: 1.38 Å. These distances are kind 



! 52 

of similar to our optimized TS geometries (Fe-S: 2.38 Å, Fe-O: 1.76 Å, O-H: 1.19 Å, C-

H: 1.36 Å). In our QM/MM model, the system was solvated and neutralized with Na+ and 

Cl-. All these treatments make the system more close to a real experimental system. Most 

importantly, with a similar QM region, the number of basis functions is larger than theirs. 

From this point of view, our results are more convincible.  

Lai et al71 obtained a H-abstraction barrier as 17.4 kcal/mol for quartet state. They 

discussed that with the dispersion correction, the activation electronic energy should be 

lowered by ~6 kcal/mol. With the ZPE correction, they estimated the activation free 

energy as 7.8 kcal/mol. This value is quite smaller than experimental value (12.2 

kcal/mol). They have excluded Wat903 in the calculation and no MM minimization was 

conducted before QM/MM calculation. The number of basis functions in their study is 

~400. This number is quite smaller than ours (1077). Their optimized distances for 

reactive atoms in the TS are rOH=1.30 Å, rCH=1.28 Å. The geometry of the optimized 

transition state is quite different from ours (rOH=1.19 Å, rCH=1.36 Å). The hydrogen atom 

should be closer to the oxygen atom than to the carbon atom because the product of the 

transition state is iron-hydroxo and an intermediate radical (HYD in Figure 3-2). 

According to the above description, our results are more reliable.   

Table 3-2. Comparison of computed P450cam Cpd I activation free energy 

 QM method QM 
atoms 

MM method opt 
atoms 

∆Eele 
(kcal/mol) 

∆G 
(kcal/mol) 

Experiment      12.2 
This work  B3LYP/[TZV/ACCD/6-31G*] 106 AMBER12 1869 22.7 15.2 
Guallar et al  B3LYP/[LACVP/6-31G*] 126 OPLS-AA N/A 11.7 8.2 
Schöneboom et al B3LYP/[LACVP/6-31G*] 84 CHARMM22 442 21.8 17.7 
Altun et al B3LYP/[LACVP/6-31G*] 120 CHARMM22 ~400 19.1 15.1 
Zurek et al B3LYP/[LACVP/6-31G*] 106 CHARMM27 ~1500 20 16 
Lai et al B3LYP/[LACVP/6-31G*] N/A CHARMM N/A 17.4 7.8 

 

!
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In summary, our QM/MM calculation is more reasonable and reliable since we 

have used more convincible QM/MM settings and the QM/MM system is more similar to 

a real experimental system. The electronic energy difference between reaction state and 

transition state are computed as 22.7 kcal/mol for S=3/2. With the empirical dispersion 

correction, the activation electronic energy is estimated as 18.8 kcal/mol. With the ZPE 

correction, the activation free energy is estimated as 15.2 kcal/mol, close to the value 

(12.2 kcal/mol) estimated from the experimentally measured first order rate constant 

(1400 s-1)66.  

 

3.4 Conclusion 

 In this study, a general protocol for applying QM/MM methods is used to estimate 

the activation free energy of the hydrogen abstraction reaction in the hydroxylation 

process of camphor. A general and simple way to do the activation free energy 

calculation is introduced. The details of the protocol are shown below: 

1) QM/MM model: protein system is solvated with PBC box and neutralized by 

adding Na+ and Cl- into the solvent (a large molecular system with nearly 50000 

atoms);  

2) Perform MD equilibrium with PBC; 

3) Reactant state geometry optimization: large number of optimization atoms 

(around 2000 atoms); simple and general treatment for QM/MM boundary (H-

capping scheme); 

4) Transition state search: FCM is updated with an affordable scheme (Partial 

Vibrating Scheme). 
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This QM/MM protocol can be generally used in QM/MM study of enzymes. 

 In this work, the QM/MM protocol is applied to calculate the activation free 

energy of the H-abstraction reaction catalyzed by P450cam. The P450cam protein system 

is solvated with water molecules and neutralized by adding Na+ and Cl- ions. Therefore, 

the modeled system is more similar to a real enzyme/solvent system. The QM/MM 

boundaries are treated with H-capping scheme, which is more general and simple 

compared to other schemes. A “Partial Vibrating Scheme” is used to generate the force 

constant matrix for transition state geometry search. By using this scheme, the 

computational cost in transition state geometry search is reduced. The geometry 

optimization of 1869 QM/MM atoms can be easily performed by using this scheme. With 

all these treatments, the electronic energy barrier between reaction state and transition 

state are obtained as 22.7 kcal/mol for S=3/2. With DFT empirical dispersion correction 

and the ZPE correction, the activation free energy can be estimated as 15.2 kcal/mol. The 

obtained distances for active atoms in QM region of transition state are Fe-S: 2.38 Å, Fe-

O: 1.76 Å, O-H: 1.19 Å, C-H: 1.36 Å. The calculated activation free energy using our 

QM/MM protocol is in good agreement with experiments.  
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