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Palm Epiphyll Cover Shifts to Higher Elevations in Tropical 
Cloud Forest, Indicating Local Climate Change	

 	
	
ABSTRACT: 	
	
Intensifying patterns of weather and climate as caused by anthropogenic climate change have 
already caused extensive species extinctions, migrations, and range contractions in endemic 
species (Parmesan 2006), and pose the potential to induce substantial biodiversity loss on a 
global scale (IPCC 2014).  Such trends have proven exceptionally apparent in tropical montane 
forests, where the disappearance of range-restricted species indicates a lifting cloud base as 
caused by rising sea surface temperature (SST) (Pounds et al.1999).  Epiphylls serve as a 
bioindicator of local climate change due to their heightened sensitivity to water availability 
(Drake 2005).  An altitudinal transect of percent epiphyll cover was performed on Geonoma 
palms to study how epiphyllous distribution has changed over the last ten years, replicating 
Drake’s (2005) methods.  Decades of increasingly severe local drying caused a significant 
difference in epiphyll cover and strengthened the negative relationship between altitude and 
percent epiphyll cover.  As climate change increases SSTs and propels moisture up mountains, 
epiphylls serve as an indication of what to expect in the very near future, where species 
disappear at lower elevations and follow the lifting cloud bank upwards.  	
	
	
INTRODUCTION	
	
Global climate change has triggered alterations unparalleled in recent history on natural habitats 
worldwide.  Anthropogenic activities have exacerbated historical patterns of global warming, in 
which rising sea surface temperatures (SSTs) now stimulate augmented evaporation and 
production of water vapor (Pounds et al.1999).  When increased amounts of water vapor 
condense, atmospheric warming advances more rapidly, propelling widespread, long-lasting, and 
significant change to the local climate of terrestrial ecosystems (Pounds et al.1999).  Though 
local climate patterns vary with elevation, climate change has unequivocally caused global 
atmospheric and oceanic warming; increased and more frequent warm temperature extremes; 
fewer cold temperature extremes; more frequent, more extreme weather events; greater 
seasonality; and nonuniform precipitation changes (IPCC 2014).  The effects of climate change 
are exacerbated in the tropics, which contain the highest terrestrial plant and animal species 
richness and biodiversity on the planet, and relatively high endemism (Brown 2014).  Many 
species thrive within a narrow range of ideal abiotic conditions and cannot survive in 
temperature and seasonality extremes that exceed or fall below those limits (Brown 2014).  
Average annual temperature in the Caribbean has increased 0.5°C, and projections anticipate 
even drier weather patterns will occur based on convection zones and rain patterns over the last 
15 years (Olaya 2009).  Climate change has already pushed climate and weather patterns outside 
of range-restricted species’ tolerable ranges, a trend amplified at high elevations on tropical 
mountains (Pounds 1999). Climate change has forced many terrestrial species to shift their 
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geographical ranges (IPCC 2014).  The lifting-cloud-base hypothesis explores the negative 
relationship between rising SSTs induced by anthropogenic climate change, and patterns of dry 
season mist frequency on tropical mountains.  The striking increase in SSTs correlates with the 
decline in dry season mist frequency since the mid-1970’s.  Rising temperatures and decreased 
moisture at lower elevations propel moisture upwards and raise average altitude of the 
orographic cloud bank base (Pounds et al.1999).  	

Such trends towards desiccation may influence the phenology, abundance, and 
distribution of tropical plants that thrive in or rely upon consistently wet conditions. In tropical 
montane cloud forests, changes in local drying patterns and dry-season mist frequency have been 
observed over the past few decades, exacerbating extinction rates of endemic species and causing 
species to shift their local ranges to higher elevations (Pounds et al.1999). Increases in local 
drying, quantified by the number of long dry runs of five or more continuous days, serve as an 
important stimulant for the upward migration or even extinction of certain plants.  Though 
annual, seasonal, and monthly precipitation in Monteverde does not show significant trends from 
1973 to present, dry days have increased significantly in frequency and converge increasingly 
into runs, from 5 to 16 continuously dry days (Pounds et al.1999).	
	

	

	
Figure 1. Number of extended dry runs of five days of more per decade from 1970 to 2012 in 
Monteverde Cloud Forest Preserve, Puntarenas, Costa Rica. Number of long dry runs has more 
than doubled since 1970, and can be attributed to local drying induced by climate change. 
Source: Alan Pounds (personal communication).	

Epiphylls have shown promise as bioindicators of local mist and climate conditions in 
tropical montane forests in Costa Rica (Drake 2005). Data has shown that epiphytes inhabit 
climate-defined ecospaces that encompass a narrower range of abiotic conditions in comparison 
to co-occurring species, such as the supporting tree. The unique mechanistic characteristics of 
epiphytes and reliance on near-constant precipitation render them particularly sensitive to 
changes in climate, particularly drying (Benzing 1998) and a decline in dry season mist 
frequency (Drake 2005).  Nonvascular epiphylls lose moisture and capacity to perform 
photosynthesis promptly in dry atmospheric conditions; furthermore, their positive carbon 
budgets necessitate continual high humidity and persistent moisture (Benzing 1998). Epiphytes 
also play an integral role in influencing nearby biota and system processes, such as energetics, 
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hydrology, and mineral cycling.  Epiphytes possess the unique capacity to indicate from an early 
stage the effects of climate change on tropical montane forests (Benzing 1998). 	

 In comparison to nutrient and light availability, water supply has the strongest influence 
on epiphyll growth and proves the most limiting growth factor.  Improved water supply 
increased relative growth rate (RGR) for all sizes of vascular epiphylls, and small and 
intermediate-sized bromeliad epiphylls demonstrated significant correlation between in situ 
growth rate and annual precipitation (Laube and Lotz 2003).  This trend would be exaggerated 
for nonvascular epiphytes, as their growth is more restricted to a consistently wet environment.  
Increasingly, continual wetness is found only at higher elevations along tropical mountain ranges 
(Pounds et al.1999), when Montane Wet Forest transitions to Rain Forest. Thus, past studies 
would support the prediction that epiphylls will be found at increasingly higher altitudes within 
the cloud bank, and will be more susceptible to extremes in growth limiting factors at lower 
elevations, below the lifting cloud base.  With the establishment of epiphyll cover as a 
bioindicator of climate change (Drake 2005), this study seeks to record the changes in epiphyll 
cover across an altitudinal gradient over the past ten years.  This study investigates if decades of 
increasingly severe, climate change-induced local drying caused significant upward shifts in 
epiphyll cover on a Costa Rican montane cloud forest.  	
	
MATERIALS AND METHODS	
	
Study Site 	
Data were collected at seven different altitudinal zone ranges along the principal trail at the 
Estación Biológica in Monteverde, Puntarenas, Costa Rica (10°18’ N, 84°48’ W).  This site is 
classified as Lower Montane Wet Forest from 1450 to 1600 m, and Lower Montane Rain Forest 
from 1550 to 1850 m (Bolaños and Watson 1993, in Haber 2000).  Lower Montane Wet Forest 
receives mean annual rainfall 1850-4000 mm, with mean annual temperature 12 to 17°C and 
canopy height 25 to 35 m.  Lower Montane Rain Forest receives mean annual rainfall 3600-8000 
mm, with mean annual temperature 12 to 17°C and canopy height 20 to 30 m.  The dry season 
lasts for 0 to 3 months for both life zones (Haber 2000).  Altitudinal transects were performed 
between 1505 and 1817 m elevation during the wet season, from July 15th to July 30th, 2015.  
Though this study occurred during an El Niño, data indicate it was weak in strength and did not 
have significant or widespread effects on global climate and weather patterns (NOAA 2015). The 
methods for this study replicated Drake’s (2005) experimental design to enable accurate analysis 
of epiphyll cover change over time. 	
	
	
Study Organism	
 Epiphyll cover was obtained from 186 Geonoma spp.(Araceaea); identification did not 
discriminate between species of Geonoma as field guides did not lend comprehensive guidance 
on species composition within Monteverde cloud forest.  An average of 26.6 Geonoma palms 
were analyzed for each altitudinal zone, centering around 50m increments from 1500 to 1800m 
elevation.	
	
Altitudinal Transect of Epiphyll Cover on Geonoma spp. Palms 	
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Leaflets were selected based on a simple visual analysis of epiphyll cover distribution. The 
youngest leaflets were located higher on each palm, and the older leaflets were lower, closer to 
the ground.  To control for height and age, in which it may be assumed that older fronds provide 
greater time for epiphyll colonization than younger fronds, , selection favored the middle leaflet 
or leaflet that best represented average epiphyll cover.  A fine chicken wire grid was placed over 
an area of the leaflet that demonstrated the palm’s average epiphyll cover, and a digital picture 
was taken 30 cm away.  Altitude and proportional rank, the ratio of frond number to total number 
of fronds, were recorded. 	
Frond number is calculated by counting from newest, topmost frond to selected frond. The 
following equation, as stipulated by Drake (2005), ascertains frond age to account for time 
available for epiphyll colonization.  Age (in weeks) = -1.43 + (proportional rank * 83.6) (Daniels 
1998).    	
 Digital pictures were analyzed on a computer to quantify percent epiphyll cover for 25 
grid cells.  A cell demonstrated significant epiphyll cover if epiphyll growth covered at least one 
third of the cell.  Percent cover constitutes the area occupied by epiphylls (the number of cells 
with significant epiphyll growth) divided by the total area (25 cells) sampled.  	
	
Additional Observations Though the majority of Geonoma palms surveyed were trunkless, six 
palms surveyed at higher altitudinal zones contained trunks and one trunked palm in the lowest 
altitudinal zone was noted. 	
	
	
RESULTS	
	
Altitudinal Transect 	
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Figure 2. Square root of percent epiphyll cover on Geonoma spp. to altitude (meters).  Epiphyll 
cover was calculated by number of cells with significant epiphyll coverage (at least one third of 
cell covered) divided by total area (25 cells) using a fine chicken wire grid.  N = 186.  Y = 
0.0196x - 29.713.  R² = 0.52316.  As altitude increased, epiphyll cover on Geonoma spp. palms 
increased significantly with p < 0.05.  	

Square root of percent epiphyll cover increased significantly (ANOVA, p <  0.05; d.f. = 1; F = 
202.96814) with increasing altitude, as demonstrated above in a linear regression.  In 
subsequently higher altitudinal zones, a higher proportion of Geonoma spp. palms exhibited 
more epiphyll coverage.  A stronger R² was found for this data, (Regression, R² = 0.52316), than 
quantified for Drake (2005) data (Regression, R² = 0.49698). 	
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Figure	3.	Square root of percent epiphyll cover on Geonoma spp. to altitude (meters), 
comparison between Drake (2005) data in red versus data collected from this study in blue. Solid 
line represents the linear trendline for Drake data, N = 160. Y = 0.0131x - 18.483. R² = 0.49698.  
Drake Figure 2 (2005) was printed and manually analyzed to obtain data points.  Dashed line 
represents linear trendline for 2015 data, N = 186. Y = 0.0196x - 29.713. R² = 0.52316.  Slopes 
were significantly different (ANOVA).   	

Lower altitudes contained greater percent epiphyll cover in 2005 than at present.  Over the past 
ten years, the slope of the linear relationship between percent epiphyll cover and altitude has 
increased/ grown steeper, as the 2005 slope of .0131 < 2015 slope of 0.0196.  Though both 
Drake (2005) and this study found significant results in the linear relationship (Drake found p < 
0.0001), R² increased from 2005 to present data.  The data manually obtained from a print of 
Drake’s Figure 2 lent an R² = 0.49698, but Drake (2005) reported an R² = 0.517.  As this study 
found a stronger R² (Regression, R² = 0.52316) the difference between slopes and linear 
regressions is significant (ANOVA).  	
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Figure 4. Square root of percent epiphyll cover of Geonoma spp. to altitude (meters), controlling 
for frond age withfronds 35 weeks old displayed.  N = 59. Y=0.0242x -37.303. R²=0.56633. 
Average frond age = 39.80421121 weeks. Difference between slopes, when controlling for frond 
age of about 40 weeks old versus total data (from 12.503 to 82.17 weeks old,) was nonsignificant 
(ANOVA). 	

 To control for frond age and epiphyll colonization, Drake selected for fronds 40 weeks old 
(Drake 2005). To ensure that variation in frond age did not influence data for this study, analysis 
was performed on palms from 35.726 to 45.014 weeks in age, with an average equal to 39.804 
weeks old.  In comparing the regression lines between total data and data restricted to 35 to 45 
weeks old, the statistical tests reported a nonsignificant relationship (ANOVA, p = 0.8788).  
Though the slope differed after controlling for frond age, the slope remained significant 
(ANOVA, p < 0.05; d.f. = 1) and in fact proved to have a stronger linear regression (Regression, 
R²  = .56633; ANOVA, F = 74.4367). 	

	
Noteworthy Observations	
At higher altitudinal zones, Geonoma spp. tended to grow larger and more abundant.  The 
relationship between trunk presence and epiphyll cover was not analyzed because a minority of 
seven palms classified as trunked, rendering further investigation of minimal, if any significance.   	
	
DISCUSSION	
	
Key Findings 	
Results indicate that epiphyll percent cover increases significantly at higher altitudes within the 
Lower Montane Wet and Rain Forest life zones ((Bolaños and Watson 1993, in Haber 2000).  
Data indicate a significant negative relationship between altitude and epiphyll cover on Geonoma 
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spp. palms with a stronger regression and slope (ANOVA Test) than ascertained in 2005 (Drake 
2005).  While epiphylls are increasingly found at higher altitudinal zones within tropical cloud 
forests, they have largely disappeared from lower elevations.  The upslope migration of epiphylls 
to higher altitudes with consistently cooler, wetter climates was supported by the significant 
difference in linear regression slopes from 2005 to today (ANOVA Test).  This trend may be 
attributed to local drying and decline in dry season mist frequency as stipulated by the lifting-
cloud-base hypothesis (Pounds et al.1999).  Weather data reporting the more than twofold 
increase in number of extended dry runs in Monteverde Cloud Forest Preserve from 1970 to 
2012 reinforces the long-term trends of local climate desiccation as caused by rising SSTs 
(Figure 1). 	

This study reinforces the conclusions drawn in other studies regarding both the lifting-
cloud-base hypothesis and percent epiphyll cover as a bioindicator of climate change, based on 
nonvascular epiphylls’ unique vulnerability to fluctuations in climate patterns.  Past studies show 
that water availability represents the most limiting factor for epiphyll growth; as dry season mist 
frequency declines with increasing number of dry days and continuous dry runs, water becomes 
less available to nonvascular epiphylls.  The results for this study suggest that the intensification 
of local drying conditions over the past ten years have stripped the lower altitudinal zones of 
adequate moisture to support nonvascular epiphyll growth on Geonoma palms. 	
 	
Potential Limitations 	
An interesting point to consider is the discrepancy between Drake’s (2005) measurements, taken 
from 1490 to1765 m along the principal trail, to this study site from 1505 to 1817 m.  Though the 
data for this study start and end at higher elevations, the slope would remain consistent if limited 
to 1765 m.  Additionally, Drake’s (2005) data did not report any zero epiphyll coverage.  As 
Drake’s (2005) methods do not indicate preference for selecting only Geonoma palms with 
epiphyll cover, it would be assumed that Drake did not encounter any palms lacking epiphylls to 
obtain an unbiased sample.   	

Another limitation involves the difficulty in differentiating between Geonoma spp. and 
Calyptrogyne spp., an understory palm highly similar in appearance and often found to occupy 
the same area as Geonoma palms.  A comprehensive analysis of the physical attributes and 
differences between each genus was conducted to ensure correct identification in the field.  As 
field guides did not provide information on the two species of Geonoma studied by Drake, G. 
eludis and G. hoffmaniana, this study did not attempt to discriminate between Geonoma palms 
on a species level and only identified to the genus.  As Drake (2005) did not find significant 
difference in percent cover between G. eludis and G. hoffmaniana, his findings did not separate 
between host species and were reported to the genus level.  This enabled accurate comparison of 
data at the genus level, however a degree of uncertainty remains regarding accurate distinction 
between Geonoma versus Calyptrogyne palms.	

To control for the effects of frond age on epiphyll percent cover, a linear regression of 
fronds between 35 to 45 weeks old was run, excluding all other data.  The average age of those 
fronds equaled 39.8 weeks. As Drake (2005) selected for fronds closest to 40 weeks in age, the 
linear regression confirmed that the total data, ranging from 12.503 to 82.17 weeks old, did not 
have a significantly different slope from the control data (ANOVA, p = .8788).  Hence, frond age 
did not significantly affect the negative relationship between altitude and epiphyll cover and 
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comparison of total data versus Drake (2005) data remains valid (ANOVA).   Despite 
limitations, the methods for this study constitute a reliable way of measuring the change in 
percent epiphyll cover over seven altitudinal zones from 2005 to present.  	
	
Further Research 	
To account for the effect of gap dynamics and canopy height on sun exposure variation and light 
availability for photosynthesis, future research might compare epiphyll relative growth rates 
(RGR) in sun versus shade.  Past growth experiments conducted in Panamian tropical moist 
forest have proved ambiguous on vascular epiphyte RGR in different light conditions, favoring 
analysis of water availability as the most important attribute and the effects of nutrient 
availability dependent on water supply (Laube and Lotz 2003). Despite prominent self-shading, 
Laube and Lotz (2003) unexpectedly found that increased light caused a decrease in RGR but 
difference was not significant.  High vapor pressure deficits induced under high light conditions 
cause stomata to partially close, decreasing RGR.  Further studies expanding on Laube and 
Lotz’s (2003) research might discern whether Geonoma spp. demonstrate the same trends as 
Vriesea sanguinolenta, a tank-forming bromeliad. As canopy height in the Monteverde cloud 
forest decreases transitioning from the Montane Wet Forest to the Montane Rain Forest (Haber 
2000), epiphylls may also receive greater sun exposure at higher elevations. 	

Seasonal variation in precipitation and mist frequency might also play a significant role 
in epiphyll growth.  As Drake (2005) collected data during the end of the dry season from April 
to May, reduced precipitation and other weather variables characteristic of the dry season differ 
markedly from conditions during the wet season.  This study, conducted in the wet season during 
latter half of July, was based on long-scale local drying trends spanning decades, negating the 
impact of seasonal or year-to-year variations in weather patterns. Further research would 
replicate the methods performed for the altitudinal transect during the dry season, to ascertain if 
linear relationship for upward migration proves equivalent or significantly different during the 
dry season versus wet season.   	
 Current climate change projections predict that SSTs will continue to warm, and the 
strongest warming will be observed in tropical and Northern Hemisphere subtropical regions 
(IPCC 2014).  As warming is predicted to affect precipitation patterns differently around the 
globe, future studies would ascertain whether patterns of intensified local drying continue in the 
Monteverde Cloud Forest Preserve, of conditions in comparison to the Estación Biológica, and 
whether the negative relationship grows stronger if the highest radiative forcing scenario (RF 
8.5) proves accurate (IPCC 2014).  	
	

Conclusion	
Overall, this study demonstrates the significant shift in epiphyll cover on Geonoma palms to 
higher elevations in the Monteverde cloud forest over the past ten years.  This study suggests that 
the lifting cloud base, as caused by rising SSTs and local drying due to climate change, promotes 
this trend and will exacerbate decline in epiphyll cover at increasingly higher altitudes in future 
years.  	
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