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Abstract Hydrogen peroxide (H,O,) as a source of
reactive oxygen species (ROS) significantly stimulated ger-
mination of switchgrass (Panicum virgatum L.) seeds with
an optimal concentration of 20 mM at both 25 and 35°C.
For non-dormant switchgrass seeds exhibiting different
levels of germination, treatment with H,O, resulted in rapid
germination (<3 days) of all germinable seeds as compared
to seeds placed on water. Exposure to 20 mM H,0, elicited
simultaneous growth of the root and shoot system, resulting
in more uniform seedling development. Seeds of big
bluestem (Andropogon gerardii Vitman) and indiangrass
[Sorghastrum nutans (L.) Nash] also responded positively
to H,O, treatment, indicating the universality of the effect
of H,O, on seed germination in warm-season prairie
grasses. For switchgrass seeds, abscisic acid (ABA) and the
NADPH-oxidase inhibitor, diphenyleneiodonium (DPI) at
20 uM retarded germination (radicle emergence), stunted
root growth and partially inhibited NADPH-oxidase activ-
ity in seeds. H,O, reversed the inhibitory effects of DPI and
ABA on germination and coleoptile elongation, but did not
overcome DPI inhibition of root elongation. Treatment with
H,0, appeared to enhance endogenous production of nitric
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oxide, and a scavenger of nitric oxide abolished the perox-
ide-responsive stimulation of switchgrass seed germination.
The activities and levels of several proteins changed earlier
in seeds imbibed on H,0, as compared to seeds maintained
on water or on ABA. These data demonstrate that seed ger-
mination of warm-season grasses is significantly responsive
to oxidative conditions and highlights the complex inter-
play between seed redox status, ABA, ROS and NO in this
system.

Keywords ABA - Diphenyleneiodonium -
Hydrogen peroxide - Nitric oxide - Reactive oxygen species -
Seed germination - Switchgrass - Warm-season C, grasses

Abbreviations
AscPx Ascorbate peroxidase
DPI Diphenyleneiodonium

GPx Guaiacol peroxidase

DAF-FM 4-Amino-5-methylamino-2’,7
difluorofluorescein

H,DCFDA 2’,7’-Dichlorodihydrofluorescein diacetate

MAT Methionine-adenosyl transferase

NBT Nitroblue tetrazolium

NO Nitric oxide

PTIO 2-Phenyl-4.,4,5,5,-tetramethylimidazoline-1-
oxyl 3-oxide

Px Hydrogen peroxide

Rboh Respiratory burst oxidases
ROS Reactive oxygen species
Introduction

Exogenously supplied donors of NO significantly enhanced
germination and overcame residual dormancy in three
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warm-season C, grass seeds (Sarath etal. 2006b). In a
response similar to barley (Hordeum vulgare L.) and
Arabidopsis seeds (Bethke etal. 2004, 2005) cyanide-
releasing compounds also stimulated germination of
switchgrass (Panicum virgatum L.) seeds. 2-Phenyl-
4.4.5,5,-tetramethylimidazoline-1-oxyl 3-oxide (PTIO), a
chemical scavenger of NO, blocked both the NO and cya-
nide-responsive stimulation of grass seed germination, indi-
cating that adequate levels of endogenous NO were
required for germination (Sarath et al. 2006b). For switch-
grass seeds, application of abscisic acid (ABA) signifi-
cantly retarded radicle elongation and essentially abolished
coleoptile growth. Simultaneous imbibition with external
donors of NO failed to overcome the inhibitory effects of
ABA, suggesting that ABA and NO targeted different parts
of the germination machinery (Sarath et al. 2006b).

An important link between ABA and NO action in plants
are reactive oxygen species (ROS) (Neill 2005; Bright et al.
2006) and plants appear to have redundancy in signaling
mechanisms for these molecules (Kwak et al. 2003; Apel
and Hirt 2004; Shi et al. 2005; Zago et al. 2006). Therefore,
cross-talk between different elicitation pathways could
result in identical biological outputs for different stimuli.
This is especially true for complex events such as plant
growth processes (Zhang et al. 2005; Torres and Dangl
2005) where the same signaling molecule elicits differential
responses in different tissues.

Whereas the cellular interactions between these small
regulatory molecules are not fully known, exogenously
supplied sources of ROS, such as hydrogen peroxide
(H,O,) can impact a wide variety of plant responses,
including seed germination and breaking of dormancy
(Ogawa and Iwabuchi 2001; Clerkx et al. 2004; Gechev
and Hille 2005). Plants have evolved several mechanisms
that control seed dormancy and germination (Koornneef
etal. 2002). For example, for physiological barriers to
embryo germination to be removed post-maturation
changes are frequently involved. These after-ripening pro-
cesses enhance the ability of a seed to germinate (Heggie
and Halliday 2005; Gubler et al. 2005). Although release
from dormancy favors germination, the germination
process is still affected by internal and external events
(Koornneef et al. 2002; Bethke et al. 2004).

The roles and interactions of plant hormones in imposing
seed dormancy and promoting seed germination have been
extensively studied in monocots and dicots (for example,
Loch et al. 2004; Chiwocha et al. 2005; Gubler et al. 2005).
Studies from a number of systems reviewed by Gubler et al.
(2005) indicate that ABA levels in the seed are of overrid-
ing importance in the control of dormancy. As a seed exits
from dormancy, ABA levels decrease, with concomitant
increases in other hormones such as GAs which promote
germination (also see Seo and Koshiba 2002; Heggie and
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Halliday 2005). Plant hormones catalyze their cellular
actions through receptors. Subsequent interactions between
the receptors and their cognate proteins then drive signaling
cascades resulting in biological outputs. Additionally,
second messengers such as calcium, NO, ROS and G-pro-
teins are intrinsically linked to most hormone responsive
cellular processes (Lovegrove and Hooley 2000; Zentella
et al. 2002; Chen et al. 2004; Higuchi et al. 2004; Verslues
and Zhu 2005; Chiwocha et al. 2005; Okamoto et al. 2006;
Pandey et al. 2006).

In this study we evaluated the response of warm-season
grass seed germination to exogenously supplied H,O,
(source of ROS), ABA and their intersection with endoge-
nous NO. H,0, significantly enhanced germination at two
different temperatures and elicited a simultaneous develop-
ment of the seedling root and shoot system. ABA and the
NADPH-oxidase inhibitor, diphenyleneiodonium (DPI),
significantly inhibited seed germination. DPI in addition
strongly retarded root growth and seeds imbibed on DPI
had lowered levels of NADPH-oxidase activities. H,0,
substantially reversed the effects of ABA and DPI on seed
germination and seedling growth. A scavenger of NO par-
tially inhibited germination of switchgrass seeds and abol-
ished the stimulation in seed germination observed upon
peroxide treatment. We also assessed aleurone activation
status through analyses of hydrolytic enzymes and protein
markers known to accompany seedling growth. Levels of
a-amylase and guaiacol peroxidase (GPx) increased sooner
and more dramatically in seeds imbibed on peroxide. Like-
wise, protein levels for ascorbate peroxidase (AscPx) and
methionine-adenosyl transferase (MAT) increased earlier
in seeds imbibed in the presence of 20 mM H,0,. Levels of
all of these proteins were significantly reduced by ABA.
Our results indicate that exogenous one-off hydrogen per-
oxide strongly stimulates seed germination in switchgrass
and appears to overcome endogenous/exogenous inhibition
modulated by ABA. Both H,0, and ABA appear to inter-
sect with NO production and NADPH-oxidases during the
germination process in switchgrass.

Materials and methods
Plant materials and germination assays

Panicum virgatum L. cv Kanlow seeds were obtained from
plants grown in the field at Mead, NE. Seeds were surface
sterilized and assayed for germination. For biochemical
analyses 0.20 g of seeds were used in duplicate. Plates were
sealed with parafilm and placed in temperature-controlled
incubators. Conditions for seed sterilization and germina-
tion were as described earlier (Sarath et al. 2006b), except
experiments were conducted at 35°C unless noted otherwise.
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Seeds were considered as germinated when the radicle had
protruded through the seed coat. All germination experi-
ments were repeated thrice and data were analyzed from
this pooled set. Statistical analyses for analysis of variance
(ANOVA) were performed using the statistical routines
available in Microsoft Excel. Critical values of the ¢-distri-
bution were obtained from published tables (Steel and Tor-
rie 1982). Seeds of big bluestem (Andropogon gerardii
Vitman) and indiangrass [Sorghastrum nutans (L.) Nash]
were surface-sterilized using bleach and germinated and
counted as described above. Root and coleoptile lengths
when measured were performed 6 days post-imbibition
using a dissecting microscope and a plastic scale with mm
markings. Root and coleoptile lengths were measured from
the tip to the seed and rounded to the nearest mm.

Any direct degradation of ABA by peroxide was moni-
tored by incubating ABA in a solution of H,O, for a period
of 4 days in the incubator used for seed germination assays.
Triplicate aliquots corresponding to approximately 30 ng
ABA were removed daily, dried and analyzed as its silyl
esters using N,O-bis-(trimethylsilyl)trifluoroacetamide and
trimethylchlorosilane using manufacturer recommended
protocols (Pierce Chemical Company; Rockford, IL). Gas
chromatography-mass spectrometry analyses were per-
formed as described by Sarath et al. (2006a). We did not
observe a loss of ABA (inferred from peak heights) even
when the ratio of ABA to peroxide was increased from
1:1,000 (conditions of assay) to 1:1,00,000 (data not
shown). Based on these observations it is unlikely that
peroxide contributed to a direct chemical degradation of
ABA within the conditions of our assay.

Confocal microscopy

Seeds were imbibed on filter papers wetted with the indi-
cated solutions containing 2.5 ug ml~" of 4-amino-5-meth-
ylamino-2’,7" difluorofluorescein diacetate (DAF-FM) a
specific cell permeable probe for NO (for example, Sarath
et al. 2006b). Seeds from different experimental groups
were examined and imaged with an Olympus confocal laser
scanning microscope (FluView500, Olympus, USA). The
confocal settings including laser power were maintained
the same during the period of imaging. Several seeds were
imaged from each treatment, and fluorescence in the green
channel (fluorescein) and in the red channel (Cy 3; autoflu-
orescence) and the merged images were obtained. At least
ten seeds were viewed for each treatment and the experi-
ment repeated thrice. Representative images are shown.

Seed extraction and enzyme assays

Germinating seeds were harvested 2 days after imbibition,
frozen on dry-ice and stored at —20°C until analyzed. This

time point was chosen to detect changes, if any, in enzymes
and proteins known to accompany seed germination and
seedling development. We anticipated obtaining data that
would indicate relative aleurone activity in switchgrass
seeds as a response to treatments.

Seeds (0.2 g) were ground to a fine powder with liquid
nitrogen in a mortar and pestle, weighed and transferred to
2 ml tubes and kept on ice. One milliliter of cold (4°C)
10 mM Na-phosphate buffer, pH 6.0 was added to each tube
and the contents were mixed and sonicated using a microtip
for 15s (Branson Digital Sonifier 250D, VWR Corp).
Homogenates were clarified by centrifugation at 13,400 rpm
for I5min at 4°C in a refrigerated microcentrifuge
(MicroGPR, Thermo Electron Corp). Clarified extracts
were used for all subsequent analyses. Initial experiments
with desalted or non-desalted extracts did not show any
differences in enzyme activities; and centrifuged crude
homogenates were used in all subsequent analyses. Soluble
protein was quantitated by the BCA assay (Pierce Chemical
Co) using bovine serum albumin as a standard. Non-spe-
cific peroxidases were assayed at pH 6.0 in phosphate
buffer essentially according to Cdérdoba-Pedregosa et al.
(2003), and GPx activity was calculated using an extinction
coefficient of 26.6mM~!cm™!. Alpha-amylase was
assayed using the Megazyme kit (Megazyme International
Ltd., Ireland) except the protocol was adapted as follows:
aliquots of seed homogenates were diluted with an equal
amount of 2x assay buffer (Megazyme kit) and “activated”
by incubation at 37°C for 30 min. Five microliter aliquots
of “activated” extracts were assayed in triplicate in a total
volume of 20 pl that contained 5 pl of amylase substrate,
5 pl of 4x assay buffer and 5 pl of water for a total time of
5 min. Reactions were stopped by adding 230 pl of 1x stop
solution (Megazyme kit) and the absorbance measured at
410 nm. Enzyme activity was calculated using an extinc-
tion coefficient of 17.4 mM~' cm™'. Absorbance measure-
ments were performed using a Spectramax Plus plate reader
(Molecular Devices, Sunnyvale, CA, USA). NADPH-oxid-
ases were assayed essentially according to Van Gestelen
etal. (1997) using nitroblue tetrazolium (NBT) and
NADPH. Crude seed homogenates (0.2 ml) were precipi-
tated with acetone (9:1 acetone:homogenate) at —20°C for
15 min. Precipitated proteins were recovered by centrifuga-
tion at 14,000xg for 10 min at 4°C. Protein pellets were
resuspended in buffer (50 mM Tris—Cl, 0.1 mM MgCl,,
0.25 M Suc, 0.1% Triton-X-100, pH 8.0) and used to assay
for NADPH-oxidases. Oxidase activities were calculated
from the difference in NBT reduction using an extinction
coefficient of 12.8 mM~! cm™! in the absence or presence
of 50 U ml~! superoxide dismutase (bovine erythrocytes,
Sigma-Aldrich, St. Louis, MO, USA).

All assays were routinely done in triplicate and the
germination experiments repeated at least thrice.
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For switchgrass seeds, published colorimetric methods
for determining tissue peroxide levels (Park et al. 2004;
Cheeseman 2006) were unsuccessful primarily due to a
high background arising from extractable components that
interfered with these assays. Attempts to clean extracts by
passage through normal or C-18 reverse phase matrices
conditioned with phosphate buffer containing 5 mM KCN
(Cheeseman 2006) were also unsuccessful. Indirect estima-
tion of total ROS produced in switchgrass seeds using the
fluorescent dye DFCDA, either after uptake by seeds or
after base-catalyzed removal of acetate esters were incon-
sistent. A problem noticed during these studies was signifi-
cant quenching of fluorescence by even trace levels of free
peroxide/and or extractables present in switchgrass seeds.
We therefore did not ascertain the actual levels of peroxide
present in switchgrass seeds during germination or in
response to the different chemical treatments. However, the
bulk of our results presented below would suggest that
endogenous levels of ROS are important during switch-
grass seed germination.

Immunoblotting

For immunoblotting, aliquots containing approximately
20 pg protein were separated by SDS-PAGE using 12% gels
(Laemmli 1970). Duplicate gels were stained with Coomas-
sie blue to confirm equal loading (data not shown). Proteins
were transferred to nitrocellulose membranes using a semi-
dry transfer apparatus in 10 mM CAPS-NaOH, pH 11.0
containing 8% (v/v) methanol. Membranes were probed
with antibodies raised to plant proteins and antigen-antibody
complexes were detected by chemiluminescence (Xiang
etal. 2002). Sources of antigens were as follows: AscPx
(soybean root nodules, rabbit; Dalton etal. 1993), MAT
[peptide antibody based on C-terminal of Arabidopsis thali-
ana MAT-3 protein, accession number: gi 15450421,
sequence (ODPDFTWEVVKPLKWDKPQA-AMIDE,
rabbit], and PPDK (recombinant maize leaf, rabbit, gener-
ous gift from Dr Chris Chastain, Morehead State University,
MN). All other chemicals were reagent grade or better and
obtained from commercial sources. Initial experiments did
not reveal any apparent changes in the level of PPDK pro-
tein between the experimental treatments 2 days post-imbi-
bition, and these antibodies were used as a control to verify
equal transfer of proteins separated by gel electrophoresis.

Results
ROS strongly stimulates switchgrass seed germination

Switchgrass seeds incubated at 35°C on water exhibited
about 50% germination after 2 days, and were essentially
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fully germinated after 4 days (73.4%) (Fig. la). Imbibing
seeds on various concentrations of H,O, induced a pro-
nounced stimulation in germination with an apparent con-
centration threshold of about 10 mM. Both 10 and 20 mM
peroxide treatment elicited a significant increase in seed
germination at all time points tested as compared to water
controls (Fig. 1a). In contrast to seeds maintained on water,
seeds imbibed on 20 mM peroxide exhibited almost 88% of
full germination after only 2 days of imbibition (74.1% on day
2 vs 84.3% on day 6). Treatment with H,O, concentrations

0 Water @ 1 mM Pxm 10 mM Px o 20 mM Px

a LSD0.05 = 2.55

90 - o o
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70 4
60
50
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Hoke

Percent germination

Days after imbibition

0O Waterm 20 mM Px

90 LSDO0.05 = 9.55

80 -

70 4

Hkkk
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0 T T |
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Fig. 1 Reactive oxygen species strongly promotes switchgrass seed
germination. Seeds were germinated at 35°C (a) or at 25°C (b) under
continuous light on filter paper wet with water, or the indicated concen-
trations of hydrogen peroxide (Px). Germination as determined by rad-
icle emergence was recorded every 2 days as indicated. Data were
pooled from three different experiments and analyzed. Each experi-
ment was conducted with duplicate plates. In panel a, bars with differ-
ent numbers of asterisks were significantly different at P <0.05 as
compared to water controls. In panel b, bars with different numbers of
asterisks were significantly different at P < 0.05. LSD,, (5 are indicated
for each experiment
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of up to 60 mM did not produce a significant negative effect
on switchgrass seed germination (not shown). Imbibing
seeds on 1 mM H,0, showed an initial inhibition of germi-
nation after 2 days, but was otherwise similar to seeds
maintained on water (Fig. 1a).

Peroxide treatment (20 mM) at 25°C resulted in a signifi-
cant enhancement in switchgrass seed germination after
2 days as compared to water controls (Fig. 1b). Germination
after 2 days of imbibition on peroxide was equal to germina-
tion on water after 4 days, 50.1% vs 49.6% respectively.
Percent germination in seeds imbibed on 20 mM peroxide at
25°C continued to be significantly greater across all days as
compared to water controls (Fig. 1b). At both temperatures
tested, 20 mM H,0, resulted in a near simultaneous devel-
opment of the coleoptile along with the root.

ROS accelerates seed germination in other warm-season
grasses

We evaluated the responses of seeds from two other
warm-season grasses, big bluestem (A. gerardii Vitman.)
and indiangrass [S. nutans (L.) Nash] to peroxide treat-
ment. Data for each species was analyzed separately and
are shown in Table 1. Seed germination in both species
was significantly stimulated by H,0, at 35°C. However
the concentrations of H,0, required to elicit maximal
response were different for the two species. For big blue-
stem, all concentrations of peroxide tested significantly

Table 1 Exogenous hydrogen peroxide (H,0,) accelerates germina-
tion of two other native prairie grasses

Species Percent radicle emergence

Days after imbibition

2 4 7
Big bluestem
Water 273 a 40.3b 4740
20 mM H,0, 46.1b 623 ¢ 74.2d
40 mM H,0, 45.7b 70.4 cd 729d
60 mM H,0, 62.6 cd 77.5d 80.1d
LSDy s = 8.42
Indiangrass
Water 27.2a 425D 46.1 bc
20 mM H,0, 59.3d 71.1e 73.6 ef
40 mM H,0, 45.3 be 64.4d 66.9 de
60 mM H,0, 29.6 a 44.1b 51.0 bc
LSD s = 6.41

Data are the means of three experiments with duplicate plates. Germi-
nation data were analyzed separately for each species across all days,
and values followed by a different letter were significantly different at
P <0.05 within each species. LSDy, ;5 values are indicated for each
dataset

accelerated germination as compared to seeds maintained
on water. For seeds maintained on 20 mM or 40 mM
H,0,, the percent germination 2 days post-imbibition on
was essentially equal to the percent germination for seeds
maintained on water for 7 days (46.1 and 45.7% vs 47.4%
respectively). At 60 mM H,O, germination after 2 days
was greater than twofold as compared to water controls
(62.6% vs 27.3% respectively). Highest germination was
observed for big bluestem seeds maintained on 60 mM
H,0, for 7 days.

For indiangrass, imbibition on 20 mM H,0, caused the
most rapid germination and by day 2 the percent germina-
tion was already significantly greater than those observed
for seeds maintained on water for 7 days (59.3% vs 46.1%
respectively) (Table 1). With increasing concentrations of
peroxide, seed germination rates declined, and at 60 mM
H,0,, germination was essentially similar to water controls
(Table 1). Indiangrass seeds imbibed on 40 mM H,0,
exhibited an intermediate level of germination as compared
to seeds maintained on 20 or 60 mM H,0,.

Inhibitory effects of ABA and DPI on switchgrass
seed germination are reversed by ROS

Earlier studies had shown that ABA significantly retarded
switchgrass seed germination and essentially abolished
coleoptile elongation at 25°C. External compounds that
generated NO did not appreciably reverse the inhibitory
effects of ABA (Sarath et al. 2006b), suggesting that ABA
was affecting processes both upstream and downstream of
NO action. To more fully understand these relationships,
switchgrass seed germination and early seedling growth
were monitored in the presence or absence of ABA, H,0,
and an inhibitor of NADPH oxidases, DPI.

Germination data as scored by radicle emergence and
coleoptile emergence were analyzed independently of each
other and are shown in Table 2. Treatment with 20 mM
H,0, significantly stimulated switchgrass seed germination
2 days post-imbibition as compared to water controls
(56.2% vs 31.6% respectively). Both 20 uM DPI and 20 pM
ABA significantly retarded radicle emergence after 2 days
as compared to seeds maintained on water or on H,O,
(Table 2). Over the next 4 days about 66% of seeds main-
tained on water had germinated, as compared to 83.5% ger-
mination for seeds maintained on H,0, and 44.3 and 51.7%
for seeds maintained on DPI and ABA respectively. In
marked contrast, imbibing switchgrass seeds on filter paper
wet with solutions containing either DPI or ABA and H,0,
resulted in a significant reversal of the inhibitory effects
observed in the presence of these compounds alone.
Co-treatment with H,0O, + DPI resulted in germination per-
centages which were essentially similar to seeds that were
maintained on H,O, alone. For seeds imbibed on solutions
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Table 2 Negative effects of DPI and ABA on switchgrass seed germi-
nation are reversed by H,0,. Seeds were germinated in the light at
35°C and radicle and coleoptile emergence score 2 and 6 days after
imbibition

Treatment Percent emergence

Days after imbibition

2 6
Radicle
Water 31.6a 65.7d
20 mM H,0, 56.2b 835e
20 uM DPI 19.1¢ 443 f
20 uM ABA 179 ¢ 51.7b
20 pM DPI + 20 mM H,0, 63.2d 788 ¢
20 uM ABA + 20 mM H,0, 549b 712 ¢g
LSDg 5 = 5.69
Coleoptile (percent of germinated seeds)
Water 158a 793 f
20 mM H,0, 452D 86.1¢g
20 uM DPI 179 a 84.4 gh
20 uM ABA 00c 41.2e
20 pM DPI + 20 mM H,0, 6.7d 81.3 fh
20 uM ABA + 20 mM H,0, 384e 69.6 1

LSDg 5 =3.14

Data are the means of three different experiments containing duplicate
or triplicate plates. Radicle and coleoptile emergence data were ana-
lyzed independent of each other and across all days. Values followed
by different letters are significantly different at P <0.05 for each
parameter analyzed. LSD,, js values are indicated for each dataset

containing ABA + H,0,, germination on day 2 was almost
threefold greater than for seeds imbibed on ABA alone
(54.9% vs 19.1% respectively). After 6 days, total germina-
tion was significantly greater than that observed for seeds
maintained on water or on ABA alone (71.2% vs 65.7% and
51.7% respectively) but less than for seeds imbibed on H,0,
alone (Table 2). Although radicle emergence was used as a
measure of seed germination, seedling development also
requires coleoptile and root growth. Coleoptile emergence
was scored for germinated seeds, and results are shown in
Table 2. For seeds maintained on water about 16% of the
germinated seeds had visible coleoptiles after day 2 and this
percentage increased to nearly 80% after day 6, as compared
to 45.2% of seeds containing visible coleoptiles in seeds
maintained on H,O, after day 2 and 86% after day 6. DPI
did not appear to have an inhibitory effect on coleoptile
emergence in contrast to its inhibitory effect on germination
(Table 2), and after day 6 approximately 81% of germinated
seeds had a shoot system. ABA strongly retarded coleoptile
development as well as radicle emergence, and after 6 days
approximately 41% of germinated seeds maintained on
ABA had functional shoots (Table 2). For seeds imbibed on
solutions containing ABA or DPI+ H,0,, there was a
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marked enhancement in both germination as well as coleop-
tile emergence. In the case of DPI, co-treatment with H,O,
did not stimulate coleoptile emergence after 2 days, but after
6 days coleoptile emergence was similar to water controls
and seeds maintained on H,O, alone (Table 2). For seeds
imbibed on solutions with ABA and H,0,, the reversal of
inhibition was even more striking. After 2 days, the percent-
age of germinated seeds with coleoptiles in the ABA +H,0,
treatment was approximately twofold greater as compared to
water controls (38.4% vs 15.8% respectively). After 6 days,
this number had increased to almost 70% for seeds imbibed
on ABA + H,0, as compared to 41% for seeds maintained
on ABA alone.

Root and coleoptile lengths are affected
by the chemical treatments

Seeds with visible roots and coleoptiles obtained from exper-
iments shown in Table 2, were used to evaluate coleoptile
and root growth as influenced by the imbibition conditions.
Seeds maintained on water exhibited the longest primary
roots, which were significantly different than those for the
other treatments (Fig. 2a). Imbibing switchgrass seeds on
H,0, caused a moderate inhibition in primary root elonga-
tion. ABA induced a more profound change in root elonga-
tion relative to root lengths for seeds imbibed on water. DPI
essentially abolished root growth in the time frame of the
experiment (approximately 12% of water controls). We did
observe new lateral growth in seeds treated with DPI after
about 5-6 days, but these roots were too small to measure.

LSD0.05 =1.77 LSDO0.05 = 0.86
204 « 20 - *x
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Fig. 2 Root (a) and coleoptile (b) lengths in germinated switchgrass
seeds are strongly influenced by ABA and DPI. Root and coleoptile
lengths were measured 6 days after imbibition in 20 germinated seed-
lings chosen at random from triplicate plates (at least six seedlings
from each plate). The data were analyzed from this pooled set using the
statistical routines available in Microsoft Excel. LSD, (5 is indicated in
each panel. Bars with different numbers of asterisks were significantly
different at P < 0.05
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Primary root growth inhibition induced by ABA was
reversed by co-treatment with H,O,, however peroxide was
without effect when supplied along with DPI (Fig. 2a).

Switchgrass seeds imbibed on 20 mM H,0, had longer
coleoptiles as compared to water controls (Fig. 2b). ABA
treatment induced a drastic reduction in coleoptile length
(approximately 32% of seeds imbibed on H,0, alone). DPI
treatment resulted in a smaller, but significant reduction in
coleoptile length. For seeds germinated with ABA + H,0,,
coleoptile lengths were twofold greater as compared to
seeds germinated on ABA alone (12.3 mm vs 6.1 mm).
Coleoptile lengths were reduced for seeds imbibed on DPI
alone or in combination with H,O, as compared to seeds
maintained on water or on H,0O, by itself (15.1 and
15.7 mm vs 17.0 and 18.7 mm respectively) (Fig. 2b).

The NO scavenger PTIO inhibits ROS-induced
stimulation of switchgrass seed germination

Previously it was shown that germination of warm-season
grass seeds was stimulated by exogenous sources capable
of generating NO, and this stimulation was blocked by the
NO scavenger, PTIO (Sarath et al. 2006b). Since peroxide
induced a marked stimulation of switchgrass seed germina-
tion, we studied the interaction between the NO scavenger,
PTIO and H,O, on seed germination. This experiment was
conducted at 25°C.

Imbibing switchgrass seeds on 20 mM H,O, signifi-
cantly stimulated germination relative to all the other
treatments over the 6 days of the experiment at 25°C
(Fig. 3). After 6 days approximately 82% of all seeds
maintained on peroxide had germinated, as compared to
62% for seeds imbibed on water. PTIO by itself signifi-
cantly inhibited germination after 2 days as compared to
water controls (23.7% vs 33.6% for PTIO and water
respectively) and was then without apparent effect
(Fig. 3). However, when seeds were imbibed on filter
paper wet with both PTIO and H,O,, there was an inhibi-
tion in seed germination relative to the germination of
seeds maintained on H,0, by itself; although the percent
germination was significantly enhanced over water and
PTIO treatments across all 6 days of the experiment
(Fig. 3). After 2 days, PTIO in the presence of peroxide
had reduced germination by 18% as compared to seeds
maintained on peroxide alone. This inhibition of switch-
grass seed germination by PTIO in the presence of H,0,
was significant even after 6 days (Fig. 3).

NO is produced in seeds imbibed on H,0,
The results obtained with PTIO and H,O, (Fig. 3), and the

reversal by H,0O, of ABA-induced inhibition of switchgrass
seed germination indicated that NO was a potential com-

W Water [OPx [E PTIO [OPx+PTIO
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Fig. 3 2-Phenyl-4,4,5,5,-tetramethylimidazoline-1-oxyl 3-oxide blocks
ROS induced stimulation of switchgrass seed germination. Seeds were
germinated at 25°C on filter paper wet with water, 200 pM PTIO,
20 mM Px or 200 pM PTIO + 20 mM Px. Germination was deter-
mined by radicle emergence. Data are the means of duplicate plates
from three independent experiments. Bars with different letters were
significantly different at P < 0.01

mon denominator in these reactions. Previous studies had
shown that endogenous NO is produced by germinating
switchgrass seeds (Sarath et al. 2006b).

As expected, signal due to endogenous NO was detected
in germinating seeds across all treatments (Fig. 4a—d),
although the relative signal appeared to be weaker in seeds
imbibed on ABA alone (Fig. 4b). Fluorescent signal inten-
sity was enhanced in seeds imbibed on ABA and H,O,
together (Fig. 4d). Hand sections of seeds indicated that the
fluorescent signal was largely present in the aleurone layer
(Fig. 4e). Green fluorescence was not observed for seeds
imbibed in the absence of DAF-FM, however strong auto-
fluorescence was seen at the chalazal end of the seeds
(yellow color, arrow, Fig. 4d). Experiments to detect fluo-
rescence were repeated at least thrice as were hand section-
ing of germinating seeds. A representative image for each
treatment is shown. Results were essentially identical for
each trial.

Onset of hydrolytic activities and increase in specific
proteins is hastened by ROS

Our data indicated a significant promotive effect of ROS
on grass seed germination and the ability of peroxide to
reverse ABA-induced inhibition of germination. Since
endogenous NO was produced in seeds maintained on
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Aleurone

Endosperm —»

ABA (Sarath et al. 2006b) with or without H,O, (Fig. 4), we
explored some biochemical changes occurring in switchgrass
seeds 2 days post-imbibition to obtain an estimate of aleu-
rone activation and seedling metabolism affected by the treat-
ments. We did not attempt to dissect embryos and aleurone
layers from these small seeds and the data represent proteins
present in the aleurone, embryo and endosperm combined.
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« Fig. 4 Switchgrass seeds produce endogenous NO in the presence of

ABA and hydrogen peroxide. Seeds were germinated in the dark on fil-
ter paper wet with water (a), 20 uM ABA (b), 20 mM H,0, (c), or
20 uM ABA + 20 mM H,0, (d) and hand-sectioned seed imbibed on
water (e) in the presence of the cell-permeable form of the NO-specific
fluor (DAF-FM diacetate) for 2 days in the dark at 25°C. Seeds were
then viewed using an inverted confocal laser scanning microscope
(FluView500, Olympus, USA). Representative images of single seeds
are shown. For panels a, b and ¢, the green image includes signal from
DAF and that due to autofluorescence. In panel d the merged image
indicates green fluorescence specifically attributable to the reaction be-
tween DAF-FM and NO. The white arrow points to a zone of high
autofluorescence at the chalazal end of the seed (yellow in the merged
image). In panel e the endosperm (no fluorescence) and the aleurone
(green fluorescence) are shown with arrows. Seeds imbibed on solu-
tions in the absence of DAF-FM only exhibited red fluorescence and
are not shown

Guaiacol peroxidase activity was present in dry seeds
and increased several-fold with time in all treatments.
Seeds imbibed on water displayed an approximately sixfold
increase in peroxidase activity. ABA treatment reduced
GPx activity approximately 30% as compared to water con-
trols. Seeds imbibed on peroxide or peroxide + ABA dis-
played an approximately eightfold greater activation in
GPx levels as compared to seeds at the start of imbibition
(Fig. 5a).

Trace levels of a-amylase present in dry seeds increased
gradually in seeds maintained on water, with an approxi-
mately threefold increase over 2 days (0.05 nmol
min~! mg~! protein vs 0.14 nmol min~! mg~! protein). For
seeds imbibed on ABA, there was a more modest increase in
a-amylase activity relative to dry seeds; this value was
approximately 50% less compared to seeds imbibed on
water alone (0.07 nmol min~! mg~! protein vs 0.14 nmol
min~! mg~! protein, respectively). In the presence of
20 mM H,0,, the increase in a-amylase was more dramatic.
By 2 days post-imbibition activity level were fivefold
greater than that observed in seeds at the start of imbibition
(day 0), and approximately 71% greater than for water con-
trols. In seeds maintained on ABA + H,0,, levels of a-amy-
lase were greater than in seeds maintained on ABA alone,
but less than those imbibed on peroxide alone (Fig. 5b).

After 2 days post-imbibition, levels of MAT and AscPx
protein were greater in extracts from seeds maintained on
peroxide as compared to seeds imbibed on water. ABA
abolished increases in the levels of these two proteins. For
seed maintained on ABA and peroxide, the levels of AscPx
and MAT were similar to those observed for seeds main-
tained on peroxide alone (Fig. 5¢). As a blotting control, we
used antibodies to PPDK. There was no apparent differ-
ence in the amount of signal for this protein between the
experimental treatments (Fig. 5¢) indicating approximate
equal transfer in the different lanes. Protein loads were also
verified by staining duplicate gels with Coomassie blue
(data not shown).
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GPx activity 2 d post imbibition
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Fig. 5 Enzyme activity of guaiacol peroxidase, GPx, (a), alpha-amy-
lase (b) and immunoblot of proteins (c) extracted from switchgrass
seeds 2 days post-imbibition. Seeds from duplicate plates (0.20 g/
plate) were ground in 20 mM phosphate buffer, pH 6.0 and clarified by
centrifugation. Clarified homogenates were quantitated for total pro-
tein. Enzyme assays were performed in triplicate and bars show s.e.m
for the assays. For immunoblotting, 20 pg aliquots obtained from seeds

NADPH-oxidases are inhibited by DPI

Among the potential sources of endogenous ROS in seeds
are NADPH-oxidases, which utilize molecular oxygen and
NADPH to produce superoxide anions, which can then par-
ticipate in the formation of other ROS (Torres and Dangl
2005). After 2 days of imbibition on different solutions,
activities of putative NADPH-oxidases were enhanced by
treatment with H,O, (Px; ~55%) and decreased in seeds
imbibed on DPI (~30%) relative to seeds maintained on
water (Fig. 6). Seeds imbibed in the presence of ABA pos-
sessed NADPH-oxidase activities similar to water controls.
Addition of H,0, to ABA and DPI enhanced NADPH-oxi-
dase activities relative to imbibition of seeds on ABA or
DPI alone, but were not as high as that observed for seeds
imbibed on H,0, by itself.

Discussion
Our data (Fig. 1; Tables land 2) show that treatment with

H,0, as an exogenous source of ROS significantly pro-
motes seed germination in several warm-season C,-grasses

Alpha-amylase activity 2 d post imbibition
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o
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£
£
g 0.1 4
A
9
2 0.05- -
-

(o] T T
Water Px ABA ABA+ DayoO
Px
Treatment

imbibed on water, H,O, (Px), ABA, and ABA + H,0, (ABA + Px)
were separated by 12% SDS-PAGE and transferred to nitrocellulose
membranes probed with antibodies to the following proteins: MAT,
methionine-adenosyl transferase, AscPx, ascorbate peroxidase and PP-
DK, pyruvate, orthophosphate dikinase. PPDK was used as a control to
establish approximately equal transfer of proteins separated by gel
electrophoresis

such as switchgrass, big bluestem and indiangrass. Treating
seeds with H,O, has been shown to promote germination in
several other species, including zinnia (Zinnia elegans L.)

NADPH-oxidase activity

T

nmole/min/mg/protein
o -
&
1 1

Water Px ABA DPI DPI+ ABA

Px + PXx
Treatment

Fig. 6 Activity of NADPH-oxidases in switchgrass seeds in response
to imbibition on different chemicals. Extracts were prepared from
seeds from duplicate plates for each treatment, and used to assay for
enzyme activities. Enzyme assays were performed in triplicate and
bars show s.e.m for the assays
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(Ogawa and Iwabuchi 2001), rice (Oryza sativa L.)
(Naredo et al. 1998), wheat (Triticum aesitvum L.) (Wahid
et al. 2007) and barley (H. vulgare L.) (Wang et al. 1998).
What has not been explored in warm-season grasses is the
relationship between H,O,, NO and ABA during seed ger-
mination. For switchgrass seeds, ABA inhibited germina-
tion and exogenous NO was unable to overcome ABA
effects on seed germination, suggesting that NO responsive
cascades could be effectively blocked by ABA (Sarath et al.
2006b). Negative effects of ABA were more pronounced on
coleoptile growth as compared to radicle emergence, under-
scoring the differential hormonal responses of the young
seedling tissues. In contrast, imbibition on peroxide
resulted in the simultaneous development of the seedling
shoot and root system (Table 2), and imbibition of switch-
grass seeds on ABA + H,O, resulted in a significant
enhancement in shoot and root growth as compared to
seeds maintained on ABA alone. These data demonstrated
that for switchgrass seeds, addition of H,0, could largely
overcome the negative effects of ABA, possibly by swamp-
ing ABA-dependent signaling, as has been suggested for
barley (Wang et al. 1998).

Conceivably, exogenous peroxide could act through sev-
eral different routes in significantly promoting switchgrass
seed germination. These are: (1) through interactions with
existing ROS mediated GA/ABA/NO dependent signaling
cascades (Beligni et al. 2002; Kwak et al. 2003; Malolepsza
and Rozalska 2005; Bright et al. 2006; Pandey et al. 2006);
(2) by oxidative destruction of germination inhibitors
(Ogawa and Iwabuchi 2001) and enhanced oxygenation of
tissues (for example, Wang et al. 1998); or (3) by a combina-
tion of ABA dependent and ABA-independent mechanisms.

The known effects of NO, ABA and gibberellic acid on
switchgrass seed germination (Zarnstorff et al. 1994; Loch
etal. 2004; Sarath et al. 2006b) and processes such as
after-ripening and cold-stratification that impact endoge-
nous ABA levels in other species and prime seeds for ger-
mination (Loch etal. 2004; Gubler et al. 2005), would
strongly favor a hormonal basis for controlling seed dor-
mancy and germination in switchgrass. These results
would suggest that non-ABA-related germination inhibi-
tors are unlikely to be present in switchgrass, as has been
suggested for Zinnia (Ogawa and Iwabuchi 2001). Further-
more, the switchgrass seeds used for our current experi-
ments were after-ripened and extensively cold-stratified,
and would be expected to be suitably primed for germina-
tion. In fact germination on water approached nearly 70%
(for example, Fig. 1). In the absence of a significant direct
degradation of ABA by H,0, in-vitro, especially in the
first 48 h, the ability of H,0, to overcome ABA inhibition
suggests that peroxide is acting on ABA-responsive mech-
anisms and potentially on other signaling pathways.
Although our current data do not discriminate between
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these pathways, future experiments using dissected
embryos and aleurone tissues could provide detailed
insights into switchgrass seed signaling cascades.

The strong positive germination response to H,O, indi-
cated the potential for ROS involvement during switchgrass
seed germination. Interestingly, DPI an inhibitor of
NADPH-oxidases (Foreman et al. 2003) inhibited switch-
grass seed germination and root growth (Table 2), but not
coleoptile growth (Fig. 2a, b). This compound is known to
block root development in Arabidopsis (Foreman et al.
2003) through inhibition of a specific NADPH-oxidase
(AtRboh-C).

Simultaneous application of H,O, overcame the inhibi-
tion of germination by DPI, but not its effect on root
elongation, indicating the potential involvement of switch-
grass Rbohs during root elongation in switchgrass as well.
These data also provided further proof that H,O, is proba-
bly not acting on an endogenous chemical inhibitor of seed
germination, but more likely through hormone-responsive
processes. Since DPI can inhibit flavin-containing
enzymes (Foreman et al. 2003), it is possible that proteins
other than NADPH-oxidases are also targets for DPI
inhibition. However, our data on NADPH-oxidase activity
and endogenous ROS levels suggests a role for oxidative
signaling during switchgrass seed germination and high-
lights the fact that exogenous peroxide is able to override
parts of the pathway influenced by ABA and DPI poten-
tially acting through oxidative signaling arising from
NADPH-oxidases.

Peroxide treatment markedly enhanced the levels of
GPx, a-amylase activities and MAT and AscPx proteins
during early stages of germination of switchgrass seeds.
Increase in hydrolytic activities accompanies seed germina-
tion, and increases in o-amylase is a classical indicator of
aleurone activation in grass seeds (for example, Loch et al.
2004; Gubler et al. 2005) MAT is required for generating s-
adenosyl methionine, a key metabolite required for growth
processes and for the formation of ethylene. In Arabidopsis,
methionine synthase and MAT protein and activity are
enhanced during seed germination (Gallardo et al. 2002).
That MAT protein is upregulated in switchgrass seeds
treated with H,O, is also in concordance with the scheme
presented by Zago etal. (2006) for tobacco (Nicotiana
tabacum L). In tobacco, both NO and H,0O, apparently act
on a combination of signaling pathways including ethylene
synthesis via s-adenosylmethionine (Zago et al. 2006). For
AscPx, peroxide treatment caused an earlier appearance of
this protein as compared to the water controls. Interest-
ingly, ABA treatment abolished the appearance of AscPx in
concert with its inhibition of coleoptile development.
Ascorbate metabolism and its importance to redox regula-
tion in plant tissues is well established (Smirnoff et al.
2001). Levels of AscPx are high in metabolically active
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Fig. 7 A model integrating the observed effects of ABA, DPI, hydro-
gen peroxide (ROS) and nitric oxide during germination of switchgrass
seeds. The rationale for the model is explained in Sect. "Discussion”.
Rboh, ROS generating NADPH-oxidases; ABA by itself is able to
block pro-germinative cascades. Finally, external peroxide is able to
overcome both DPI and ABA induced arrest of warm-season grass
seed germination

tissues, and increase during seed germination (Tommasi
etal. 2001). Our results indicated that MAT and AscPx
proteins appear to be markers for seedling development and
seedling vigor in switchgrass.

The relative inhibition by PTIO of H,O,-stimulated
germination (Fig.3) was similar in trend to that
observed for switchgrass seeds imbibed on PTIO and
NO donors (Sarath et al. 2006b) suggesting that residual
dormancy in after-ripened switchgrass seeds is indeed
more directly responsive to NO rather than other stimuli,
as has been shown for Arabidopsis and barley (Bethke
et al. 2004).

Based on our data presented previously (Sarath et al.
2006b) and in this manuscript, we propose the following
model integrating information obtained with warm-season
grass seeds (Fig. 7). In this model, exogenous ABA and
DPI block germination potentially through the involvement
of ROS and NO (broken arrows with question marks). Both
ABA and DPI have been shown to interact with ROS,
Rbohs and NO in other plants (Foreman et al. 2003; Torrey
and Dangl 2005; Bright et al. 2006; Zago et al. 2006) and in
switchgrass (this study).

Application of mM levels of external H,O, stimulated
seed germination and overcame the inhibitory effects of
ABA and DPI. Similarly, external sources of NO or CN™
promoted germination in switchgrass (Sarath et al. 2006b).
That PTIO blocked both H,O, and NO/CN donor-induced
increases in germination (Sarath et al. 2006b; Fig. 3) sug-
gests that NO could be a common denominator (broken
arrow and question mark in Fig. 7). How a switchgrass seed
senses NO levels and how much NO is needed for seed ger-
mination is unknown. However, our data so far suggests
that cellular NO level is likely to be a key indicator of ger-
minability of switchgrass seeds.
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