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Abstract 

 The current design procedure for seismic isolation bearings for bridges is a simplified 

method that assigns the bearings with an elastic stiffness. Bridges subjected to ground motions 

actually act in a hysteric, nonlinear fashion when force is plotted against displacement. The goal 

of this research was to gain further insight as to whether simplifying seismic isolation bearings to 

a simplified stiffness is adequate or not. Design procedures were followed in the modeling of a 

bridge with seismic isolation. Linear modal time history analyses and with nonlinear direct 

integration time history analyses of ground motions were compared. At the conclusion of this 

study, it is still unclear as to whether the simplification of the bearings’ motions that are used in 

contemporary bridge design were adequate or not. It should be noted that structural modeling 

methods are very sensitive that require rigorous and complex calculations to check. Additional 

work would be required on the bridge model developed in order to determine whether the current 

design standards for seismic isolators are adequate.  
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A Review of the Seismic Isolation Design Procedure 

Introduction 

 Isolation refers to a strategy of introducing flexible elements between the ground and a 

structure, reducing the transmissibility of seismic ground motion to and corresponding inertial 

loads in the structure.  While isolation seems to provide superior performance, common design 

procedures have also been greatly simplified to facilitate use in practice. Safety is ensured in 

structural design through consideration of probabilistic combinations of hazard sources and 

intensities, but the deterministic formulations mask the true variability expected in structural 

behavior and performance, particularly for earthquakes. In modern bridge design specifications 

(AASHTO, 2017), seismic demands are considered in the Extreme Event I load combination, 

and are commonly addressed using Equivalent Lateral Force (ELF) approaches.  ELF procedures 

treat seismic loads as equivalent static loads, but seismically induced demands are highly 

dynamic.  Acceptable designs meeting code-specified requirements (typically satisfied through 

ELFs) only ensure that bridges do not collapse during major earthquakes.  However, 

supplementary discrete thresholds of damage may also be required by bridge owners 

corresponding to a range of earthquake severity levels (Marsh and Stringer, 2013).  

 Furthermore, seismic isolation reduces damage and downtime for structures. There was a 

6.7 magnitude earthquake in Northridge, CA in 1994 that cost $20 billion in damages to 31 Los 

Angeles area hospitals (Mayes, 2012). On top of that, nine of the hospitals had to evacuate. The 

only hospital that faced no damage at all was the USC Hospital which had a base isolation 

system installed. A km away, the Los Angeles County General Hospital sustained $389 million 

in damages.  



The Kobe, Japan 7.1 magnitude earthquake of 1995 caused $150 billion (Mayes, 2012). 

Despite the earthquake’s severity, the world’s largest base-isolated computer center, a 6-story, 

reinforced concrete building, suffered no damages. A similar 6-story, non-isolated, reinforced 

concrete building on an adjacent block serves as great way of analyzing the impact the isolation 

system had. The non-isolated building amplified the ground motions by a factor of 3 at the roof 

as opposed to the isolated building which actually reduced ground motions by a factor of 10 at 

the roof.  

The 4th edition of the American Association of State Highway and Transportation 

Officials (AASHTO) Guide Specifications for Seismic Isolation Design (GSSID) outlines a 

design process wherein seismic isolation bridge bearings are placed between the substructure 

(piers and foundations) and the superstructure (girders and roadway deck) of a bridge (AASHTO 

GSSID, 2014) . The bearings that were studied are lead rubber bearings, a subset of elastomeric 

bearing isolators available in practice.  

Each bearing physically consists of a dense lead core surrounded by steel-reinforced 

rubber. A thick steel plate is bonded to the rubber at the top and bottom surfaces to enable 

positive connection to super- and substructure elements. This type of isolation bearing is 

relatively common in bridge isolation design. A design stiffness is determined which is then used 

to proportion the size and dimensions of the lead core, steel plates, and the rubber with steel 

reinforcement. Elastomeric bearings can be designed to be rectangular or circular.  

The bearings offer flexibility in the transverse and longitudinal directions by deforming 

due to shear so that the superstructure and substructure experience large relative deformations, 

yet do not physically break off from each other. The idea of isolation systems is that they are 

‘isolated’ from the ground motion so that bridges can survive earthquakes by reducing 



transmissibility of ground motions from sub- to superstructure and therefore reducing inertial 

force demands.  

 Work by Dr. Ian Buckle of the University of Nevada, Reno was reviewed extensively. 

Buckle is a prominent researcher in bridge isolation and has contributed extensively to the 

AASHTO GSSID, including the development of a suite of detailed, parametric design examples. 

The examples portray design procedures for two benchmark bridges. The first benchmark bridge 

is a short-span concrete bridge, and the second is a long-span steel bridge. Six variations of the 

two bridges were considered with various seismic hazards, site classes, pier heights, skew, and 

isolator types. Isolator types included lead-rubber bearings, spherical friction bearings (friction 

pendulum bearings), and Eradiquake bearings. Spherical friction bearings work by allowing the 

structure above the bearing to slide during an earthquake on a low friction, curved surface.  

Buckle, Moustafa Al-Ani, and Eric Monzon illustrated the design methodology for 

seismic isolation bearings in a presentation for the Technical Subcommittee for Bearings and 

Expansion Devices at the Annual AASHTO subcommittee meeting on bridges and structures 

(Buckle et al., 2012). The general isolation system design procedure begins with assembling 

bridge and site data. Performance objectives also have to be defined. Next, the bridge is analyzed 

in the longitudinal direction. This step can be done by using a simplified method or a multi-

modal spectral analysis method. After that, the bridge is analyzed in the transverse direction with 

the simplified or multi-modal method. The results are combined and the performance of the 

bridge is checked. Finally, the physical bearing properties can be designed for.  



 

 

 

 

 

 

Figure 1. Elastomeric Bearing 

 

 

 

 

 

 

 

 

 

 

 



Review of AASHTO GSSID 

 The 4th edition of the AASHTO GSSID is reflective of the research and work that Dr. 

Buckle does. This edition was published in 2014 and has few design example for engineers to 

reference when designing isolation systems. The example that was primarily examined in this 

review is called Benchmark Bridge No. 2 (Example 2). This example is described by Dr. Buckle,  

 “Benchmark bridge No. 2 is a straight, 3-span, steel plate-girder structure with single 

column piers and seat-type abutments. The spans are continuous over the piers with span lengths 

of 105 ft, 152.5 ft, and 105 ft for a total length of 362.5 ft (Figure 2.1). The girders are spaced 

11.25 ft apart with 3.75 ft overhangs for a total width of 30 ft. The built-up girders are composed 

of 1.625 in by 22.5 in top and bottom flange plates and 0.9375 in. by 65 in. web plate. The 

reinforced concrete deck slab is 8.125 in thick with 1.875 in. haunch. The support and 

intermediate cross-frames are of V-type configuration as shown in Figure 2.2. Cross-frame 

spacing is about 15 ft throughout the bridge length. The total weight of superstructure is 1,651 

kips. All the piers are single concrete columns with a diameter of 48 in, longitudinal steel ratio of 1%, 

and transverse steel ratio of 1%. The calculated plastic moment is equal to 3,078 kft and the plastic shear 

(in single curvature) is 128k. The total height of the superstructure is 24 ft above the ground. The clear 

height of the column is 19ft. The design of an isolation system for this bridge is given in this section, 

assuming the bridge is located on a rock site where the PGA = 0.4, SS = 0.75 and S1 = 0.20. A 2-column 

format is used for this design example… (p.269).” 

 

 The first step to the design process is to assemble the bridge and site data. The example 

problem does so by calculating the weight of superstructure per support, determining the pier 

stiffnesses assuming a fixed footing, and assembles a design response spectrum in accordance 

with GSSID and LRFD specifications. The pier stiffness, 𝑘𝑠𝑢𝑏,𝑝𝑖𝑒𝑟, was calculated to be different 

than that in the GSID. . After the bridge was modeled using SAP2000 structures modeling 

software, a lower value was found. Unfortunately, the GSSID does not mention how this value 

calculated.  

 The model was checked using different methods. First, a vertical stiffness check was 

used. A simplified model was developed by calculating the weight of the model per foot in the 



longitudinal direction. This model is a two dimensional model that was only used to test the 

validity of the one already made. A load was applied to both bridges in the middle and the  

 

 

 

Figure 2. Map View of Benchmark No. 2 

 

Figure 3. Cross-Section View of Benchmark No. 2 

displacement was found to be the same. This means that everything in the gravity direction was 

acting as expected. Next, a series of calculations were performed to try to validate the 𝑘𝑠𝑢𝑏 



calculated in the GSSID which is 288.87 kips per inch. Once none of the methods were able to 

validated with the GSSID’s pier stiffness, researchers were contacted with some of the following 

calculation details.  

Method 1: Back-calculate stiffness corresponding to a stated structural dynamic period.   

Recalling single degree-of-freedom dynamics, the undamped angular natural frequency, ωn, is 

related to stiffness, k, and mass, m, using:  

 𝜔𝑛 =  √
𝑘

𝑚
 (1) 

 

Angular and regular natural frequency, f, are related by:  

 𝜔𝑛 = 2𝜋𝑓 (2) 

 

And regular natural frequency is the reciprocal of natural period, T: 

 𝑓 =
1

𝑇
 (3) 

 

Substituting and rearranging terms:  

 𝑘 = (
2𝜋

𝑇
)

2

∗ 𝑚 (4) 

 

A natural period, T, equal to 1.463 seconds is given in the GSSID example documentation for 

longitudinal translation (B3.1.2.2.6, Step B2.6).  The weight of the superstructure is given as 

1,651 kips, and the participating weight of the piers for purposes of period calculation is 256 

kips. The total weight, W, for period calculations is approximately 1908 kips (B3.1.1.1, Step 

A1). To avoid any potential confusion associated with force and mass in United States customary 

units, subsequent calculations will be performed in SI units: 

 𝑊 = 1908 𝑘𝑖𝑝𝑠 ∗  
4448 𝑁

1 𝑘𝑖𝑝
= 8.487 ∗ 106 𝑁 =  8.487 ∗ 106  

𝑘𝑔 ∗ 𝑚

𝑠𝑒𝑐2
   (5) 

 

Dividing weight by gravitational acceleration to obtain mass, m, in kg: 

  𝑚 = 8.487 ∗ 106  
𝑘𝑔 ∗ 𝑚𝑒𝑡𝑒𝑟

𝑠𝑒𝑐2
∗  

𝑠𝑒𝑐2

9.81 𝑚𝑒𝑡𝑒𝑟𝑠
= 8.651 ∗  105 𝑘𝑔  (6) 

 



Substituting the mass from Equation (6) and the stated period, T, for longitudinal motion into 

Equation (4):  

 𝑘 = (
2𝜋

1.463 𝑠𝑒𝑐
)

2

∗ 8.651 ∗  105 𝑘𝑔 = 1.596 ∗ 107  
𝑘𝑔

𝑠𝑒𝑐2
 (7) 

 

Finally, converting back to United States customary units to obtain the effective system stiffness: 

 𝑘 = 1.596 ∗ 107  
𝑁

𝑚
∗

1 𝑘𝑖𝑝𝑠

4448 𝑁
∗ 

0.0254 𝑚

1 𝑖𝑛
= 91.14 

𝑘𝑖𝑝𝑠

𝑖𝑛
 (8) 

 

Alternatively, considering an equivalent viscous damping ratio of 30% as noted in B3.1.2.1.10 

(Step B1.10) and Table B3.1.2.1.12-1, the damped and undamped angular natural frequencies are 

related using: 

 𝜔𝐷 = 𝜔𝑛√1 − 𝜁2 (9) 

 

And the damped period becomes: 

 𝑇𝐷 =  
2𝜋

𝜔𝑛√1 − 𝜁2
 (10) 

 

So, the stiffness accounting for damping becomes: 

 𝑘𝐷 = 𝑚 (
2𝜋

𝑇𝐷
)

2 1

(1 − 𝜁2)
 (11) 

 

 𝑘𝐷 = 8.651 ∗  105 𝑘𝑔 (
2𝜋

1.463 𝑠
)

2 1

(1 − 0.32)
= 1.753 ∗ 107  

𝑁

𝑚
 (12) 

 

 𝑘𝐷 = 1.753 ∗ 107  
𝑁

𝑚
∗

1 𝑘𝑖𝑝𝑠

4448 𝑁
∗  

0.0254 𝑚

1 𝑖𝑛
= 100.10 

𝑘𝑖𝑝𝑠

𝑖𝑛
 (13) 

 

For substructures acting as parallel springs, using GSSID Eq. (7.1-6) (B3.1.2.1.4, Step B1.4): 

 (𝑘 𝑜𝑟 𝑘𝐷) = 𝐾𝑒𝑓𝑓 = ∑ 𝐾𝑒𝑓𝑓,𝑗

𝑚 𝑠𝑢𝑏𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠

𝑗=1

 (14) 

 

The GSSID presents Eq. (7.1-7) to characterize the series stiffness of the pier, ksub, and the 

isolators, keff, with an effective individual substructure stiffness, Keff,j (note: the j subscript has 



been maintained throughout all terms, although it is omitted on the right side of the equation in 

the GSSID): 

 𝐾𝑒𝑓𝑓,𝑗 =
𝑘𝑠𝑢𝑏,𝑗 ∗ 𝑘𝑒𝑓𝑓,𝑗

𝑘𝑠𝑢𝑏,𝑗 + 𝑘𝑒𝑓𝑓,𝑗
 (15) 

 

The keff term represents the stiffness of all isolators at a substructure unit, so, at each pier or 

abutment: 

 𝑘𝑒𝑓𝑓,𝑗 = 𝐾𝑖𝑠𝑜𝑙,𝑗 = ∑ 𝐾𝑖𝑠𝑜𝑙,𝑖 (16) 

 

Because the piers are identical and the abutments are identical: 

 (𝑘 𝑜𝑟 𝑘𝐷) = 𝐾𝑒𝑓𝑓 = 2 ∗ 𝐾𝑒𝑓𝑓,𝑝𝑖𝑒𝑟 + 2 ∗ 𝐾𝑒𝑓𝑓,𝑎𝑏𝑢𝑡 (17) 

 

 𝐾𝑒𝑓𝑓,𝑝𝑖𝑒𝑟 =
(𝑘 𝑜𝑟 𝑘𝐷)

2
− 𝐾𝑒𝑓𝑓,𝑎𝑏𝑢𝑡 (18) 

 

According to Table B3.1.2.1.12-1, the abutment substructure stiffness, ksub,abut, was assumed to 

be approximately 10,000 kips / in.  The total stiffness of the isolators, ∑ 𝐾𝑖𝑠𝑜𝑙,𝑎𝑏𝑢𝑡, is listed under 

Kisol,j in the same table, as 10.216 kips / in. 

 𝐾𝑒𝑓𝑓,𝑎𝑏𝑢𝑡 =
𝑘𝑠𝑢𝑏,𝑎𝑏𝑢𝑡 ∗ ∑ 𝐾𝑖𝑠𝑜𝑙,𝑎𝑏𝑢𝑡

𝑘𝑠𝑢𝑏,𝑎𝑏𝑢𝑡 + ∑ 𝐾𝑖𝑠𝑜𝑙,𝑎𝑏𝑢𝑡
=

10,000 
𝑘𝑖𝑝
𝑖𝑛 ∗ 10.216

𝑘𝑖𝑝
𝑖𝑛

10,000 
𝑘𝑖𝑝
𝑖𝑛 + 10.216

𝑘𝑖𝑝
𝑖𝑛

= 10.21 
𝑘𝑖𝑝

𝑖𝑛
 (19) 

 

So, using undamped stiffness, k, 

 
𝐾𝑒𝑓𝑓,𝑝𝑖𝑒𝑟 =

91.14
𝑘𝑖𝑝
𝑖𝑛

2
− 10.21 

𝑘𝑖𝑝

𝑖𝑛
= 35.36

𝑘𝑖𝑝

𝑖𝑛
 

(20) 

 

 

And 

 𝐾𝑒𝑓𝑓,𝑝𝑖𝑒𝑟 = 35.36
𝑘𝑖𝑝

𝑖𝑛
=

𝑘𝑠𝑢𝑏,𝑝𝑖𝑒𝑟 ∗ ∑ 𝐾𝑖𝑠𝑜𝑙,𝑝𝑖𝑒𝑟

𝑘𝑠𝑢𝑏,𝑝𝑖𝑒𝑟 + ∑ 𝐾𝑖𝑠𝑜𝑙,𝑝𝑖𝑒𝑟
 (21) 

 

 

 



 

Finally, with ∑ 𝐾𝑖𝑠𝑜𝑙,𝑝𝑖𝑒𝑟 taken as 42.778 kips / in (again from Table B3.1.2.1.12-1), 

 
𝑘𝑠𝑢𝑏,𝑝𝑖𝑒𝑟 =

𝐾𝑒𝑓𝑓,𝑝𝑖𝑒𝑟

(1 −
𝐾𝑒𝑓𝑓,𝑝𝑖𝑒𝑟

∑ 𝐾𝑖𝑠𝑜𝑙,𝑝𝑖𝑒𝑟
)

=
35.36

𝑘𝑖𝑝
𝑖𝑛

(1 −
35.36

𝑘𝑖𝑝
𝑖𝑛

42.778
𝑘𝑖𝑝
𝑖𝑛

)

= 204
𝑘𝑖𝑝

𝑖𝑛
 

(22) 

 

This value is 28% lower than the published pier substructure stiffness, 288.87 kips / in.   

If the damped stiffness is used (substituting the value of 100.10 kips / in obtained in Equation 

(13) into Equation (20)), instead of the undamped stiffness (91.14 kips / in obtained in Equation 

(8)), the pier stiffness is determined to be 581.4 kips / in, 101% higher than the published value.   

If a commonly assumed value of 5% damping is used, matching the value typically associated 

with ground motion hazard maps, the pier stiffness is estimated to be 207.9 kips / in, 28% lower 

than the published value. 

The substructure stiffness inferred using the structural period could not be brought into 

agreement with the substructure stiffnesses documented in the GSSID Example No. 2.  The 

inferred values enveloped the published values, depending on the level of damping used for the 

calculations.  

 

Method 2: Directly calculate pier stiffness from fundamental mechanics.   

This method analyzes the pier as a vertical cantilever beam, with a fixed end at the base.  The 

pier is assumed to have no or negligible rotational or translational restraint at the top.  Loading 

consists of a concentrated shear load corresponding to superstructure inertia during seismic 

excitation (horizontal and parallel to the superstructure span direction).  The assumption of a true 

cantilever is believed to be consistent with the GSSID example, which indicates only 

translational stiffness quantities for the bearings.  The stiffness of a cantilever beam with cross-

section flexural rigidity EI and length L, loaded with a concentrated force at the free end, is 

known from fundamental mechanics to be 

 𝑘𝑠𝑢𝑏,𝑝𝑖𝑒𝑟 =
3𝐸𝐼

𝐿3
 (23) 

 

The modulus of elasticity for concrete can be estimated using guidance available from ACI 318.  

However, doing so requires knowledge of concrete strength.  The concrete strength was not 

found in the example documentation.  The concrete strength was assumed to be 4,000 psi.  The 

modulus of elasticity was then estimated to be 



 𝐸 = 57,000√𝑓′
𝑐

 =
57,000√4,000 𝑝𝑠𝑖 (𝑝𝑠𝑖)

1000 𝑝𝑠𝑖
 𝑘𝑠𝑖 = 3,605 𝑘𝑠𝑖 (24) 

 

The moment of inertia, I, is determined from dimensions provided in the example.  The pier is 

composed of a circular column 4 ft in diameter and 19 ft tall (clear height to the bottom of the 

cap), topped by a hammerhead cap approximately 22.5 ft wide, 4 ft long, and 5 ft tall.  For the 

gross circular section,  

 
𝐼𝑔𝑟𝑜𝑠𝑠 =

𝜋𝐷4

64
=

𝜋 (4 𝑓𝑡 ∗  
12 𝑖𝑛
1 𝑓𝑡

= 48𝑖𝑛)
4

64
= 260,600 𝑖𝑛4 

(25) 

 

The example documentation states in B3.1.1.1, with regard to substructure stiffness: “The 

calculation of these quantities requires careful consideration of several factors, such as the use of 

cracked sections when estimating column or wall flexural stiffness, foundation flexibility, and 

effective column height.”  Foundation flexibility is disregarded, and the foundation is assumed to 

be infinitely rigid against rotation, because no details of the soil conditions or foundation design 

were found in the example documentation.  The example does not specifically state whether 

cracked section properties were used, but the quoted text suggests that pier substructures may 

have considered cracked stiffness.  ACI 318 suggests that only 70% of column moment of inertia 

should be considered effective to reflect a loss of stiffness associated with cracking.  

 

Lastly, the example documentation mentions “effective column height”.  It is unclear whether 

the full height, including the cap, was included in the substructure stiffnesses.  Four options were 

therefore considered for validation calculations: 

 Option 1: L = 19 ft (ignore cap), I = Igross 

 Option 2: L = 19 ft (ignore cap), I = Icracked = 70% of Igross 

 Option 3: L = 24 ft (include cap), I = Icracked = 70% of Igross constant for the full height 

(neglect increased moment of inertia through cap height) 

 Option 4: L = 24 ft (include cap), I = Igross for the circular portion of the height, I assumed 

practically infinite at the cap 

 

For Option 1: 

 𝑘𝑠𝑢𝑏,𝑝𝑖𝑒𝑟 =
3(3605 𝑘𝑠𝑖)(260600 𝑖𝑛4)

(19 ∗ 12 𝑖𝑛)3
= 237 𝑘𝑖𝑝/𝑖𝑛 (26) 

 

 

 



For Option 2: 

 𝑘𝑠𝑢𝑏,𝑝𝑖𝑒𝑟 =
3(3605 𝑘𝑠𝑖)(0.7 ∗ 260600 𝑖𝑛4)

(19 ∗ 12 𝑖𝑛)3
= 166 𝑘𝑖𝑝/𝑖𝑛 (27) 

 

For Option 3: 

 𝑘𝑠𝑢𝑏,𝑝𝑖𝑒𝑟 =
3(3605 𝑘𝑠𝑖)(0.7 ∗ 260600 𝑖𝑛4)

(24 ∗ 12 𝑖𝑛)3
= 82.5 𝑘𝑖𝑝/𝑖𝑛 (28) 

 

For Option 4: 

First, the deformation at the top of the 19 ft segment was evaluated.  The full uncracked moment 

of inertia was assumed to be effective (as in Equation (26), above).  A unit load at the top of the 

cap will effectively impose a unit shear and a 5 k-ft moment (1 kip * 5 ft hammerhead cap 

height) at the top of the 19 ft segment.  The deflections from these load effects will be 4.206 x 

10-3 inches and 1.660 x 10-3 inches, respectively, at the top of the 19 ft segment.  The rotations 

will be 2.767 x 10-5 radians and 1.456 x 10-5 radians, respectively.  Summing the rotations and 

multiplying by the (5 ft = 60 inches) hammerhead height produces an additional 2.534 x 10-3 

inches of deformation at the top of the cap relative to the top of the 19 ft segment, using small 

angle theory and assuming the cap to be a rigid block undergoing a rotation.  Combining this 

additional displacement with the sum of the displacements from the concentrated load and 

moment at the top of the 19 ft. segment results in a total displacement of 8.40 x 10-3 inches of 

total deformation at the top of the cap as a result of a 1 kip load.  Therefore, 

 𝑘𝑠𝑢𝑏,𝑝𝑖𝑒𝑟 =
1 𝑘𝑖𝑝

8.40 ∗ 10−3 𝑖𝑛
= 119.0 𝑘𝑖𝑝/𝑖𝑛 (29) 

 

In summary, the documented substructure stiffnesses could not be replicated using fundamental 

mechanics.  All cases considered produced stiffness estimates lower than the published values 

provided in the example documentation.  The value obtained using only the 19 ft height and the 

full uncracked moment of inertia would seem to be an unrealistic option, yet it provided the 

closest value to those published in the example documentation.  The calculated pier substructure 

stiffnesses, relative to the stated value in the example, were: 

 

 Option 1: 18% lower 

 Option 2: 43% lower 

 Option 3: 71% lower 

 Option 4: 59% lower 

 



Fortunately, the researchers were able to address the discrepancies our calculations claim. 

The ACI estimate for concrete compressive strength was not the same. Dr. Buckle used an 

expected concrete strength of 5.5 kips per square inch instead of 4 kips per square inch. Once 

this value is used, we can calculate a different concrete modulus of elasticity using an equation 

for modulus of elasticity. This formula comes from the AASHTO LRFD specifications, not ACI. 

The value they calculated the compressive strength to be is 4,496 kips per square inch.  

𝐸𝑐 = 33,000 𝑤𝑐
1.5√𝑓′𝑐 = 33,000 (0.150 𝑘𝑖𝑝𝑠/𝑓𝑒𝑒𝑡3)1.5√5.5 𝑘𝑠𝑖 = 4,496 𝑘𝑠𝑖 

 Assuming a pier length of 19 ft. with uncracked section properties, the researchers found 

the stiffness value that is in the GSSID by using equation 26.  

𝑘𝑠𝑢𝑏,𝑝𝑖𝑒𝑟 =
3(4496 𝑘𝑠𝑖)(260600 𝑖𝑛4)

(19 ∗ 12 𝑖𝑛)3
= 288.87 𝑘𝑖𝑝/𝑖𝑛 

The validity of this number should be checked for two reason. One reason that this may be 

wrong is because the researchers assume that the pier height is 19ft. This assumption neglects all 

of the stiffness the pier cap has. This assumption should not be taken lightly since this is taken to 

the third power in equation 26. Neglecting the five feet could affect the pier stiffness 

significantly. Furthermore, the researchers assumed that the effective moment of inertia of the 

column is 100% of the gross moment of inertia. Factors usually reduce the effective moment of 

inertia because of cracking. ACI for example allows for the effective moment of inertia to be 

70% of the gross moment of inertia for columns.  

 The next step of the design procedure is to determine the isolator stiffness, 𝑘𝑖𝑠𝑜𝑙, based on 

bilinear isolator properties. This can be done with a simplified method that was verified. Since 

the force is dependent on the displacement, the process is iterative and can be solved with a 



spreadsheet program. A summary of how 𝑘𝑖𝑠𝑜𝑙 is described below. Buckle claims that using 𝑘𝑖𝑠𝑜𝑙 

is an adequate representation of the bearing’s hysteric motion.  

 

Figure 4. Properties of Bilinear Isolators 

 In B3 .1.2.1.1-2 of the GSSID, 𝑄𝑑 is taken to be five percent of the bridge weight.  

𝑄𝑑 = 0.05 ∗ 𝑊 = 0.05 ∗ 1651.32 𝑘𝑖𝑝𝑠 = 82.56 𝑘𝑖𝑝𝑠 

 Equation B3.1.2.1.1-3 sets the minimum post-yield stiffness, 𝑘𝑑. The researchers claim 

that a good place to start is twice the minimum value. An initial displacement of 2 inches is 

assumed to begin the iterative process.  



𝐾𝑑 ≥
0.025𝑊

𝑑
 

𝐾𝑑 =
0.05𝑊

𝑑
=

0.05 ∗ 1651.32 𝑘𝑖𝑝𝑠

𝑖𝑛
= 41.28 

𝑘𝑖𝑝𝑠
𝑖𝑛⁄  

 𝑄𝑑 and 𝐾𝑑 reflect the entire isolation system. They can be divided into individual pier 

and abutments by multiplying them by the ratio of the weight that the pier or abutment supports 

over the entire superstructure weight. These are equations B3.1.2.1.2-1 and B3.1.2.1.2-2.  

𝑄𝑑,𝑗=𝑄𝑑
𝑊𝑗

𝑊
 

𝐾𝑑,𝑗=𝐾𝑑
𝑊𝑗

𝑊
 

Next, the effective stiffness for each support is calculated by using equation B3.1.2.1.3-1: 

𝐾𝑒𝑓𝑓,𝑗 =
𝛼𝑗 ∗ 𝑘𝑠𝑢𝑏,𝑗

1 + 𝛼𝑗
 

Where, 𝛼𝑗 is given by equation B3.1.2.1.3-2: 

𝛼𝑗 =
𝐾𝑑,𝑗𝑑 + 𝑄𝑑,𝑗

𝑘𝑠𝑢𝑏,𝑗𝑑 − 𝑄𝑑,𝑗
 

Isolator displacement is calculated as such in B3.1.2..1.5-1 

𝑑𝑖𝑠𝑜𝑙 =
𝑑

1 + 𝛼𝑗
 

 It should be noted that 𝑘𝑠𝑢𝑏,𝑗 is taken as a large number, 10,000 kips per inch, at the 

abutments since it is very stiff there.  𝑘𝑠𝑢𝑏,𝑗 is taken to be 288.87 kips per inch which, as noted 

earlier, may not be as valid as the researchers assumed. Now, the effective period, 𝑇𝑒𝑓𝑓, is 

calculated by using equation B3.1.2.1.10-1.  



𝑇𝑒𝑓𝑓 = 2𝜋√
𝑊𝑒𝑓𝑓

𝑔∑𝐾𝑒𝑓𝑓,𝑗
= 2𝜋√

1907.58

386.4 ∗ 79.02
= 1.57 𝑠 

 Using a damping factor of 30%, the displacement can be calculated using equation 

B3.1.2.1.11-2: 

𝑑 =
9.79𝑆𝐷1𝑇𝑒𝑓𝑓

𝐵𝐿
=

9.79 ∗ 0.2 ∗ 1.57

1.7
= 1.81 𝑖𝑛 

 Since the displacement calculated is not the same as our initial assumption (two inches), 

the iterative process is done again by using an initial displacement of 1.81 inches. The iteration 

converges to 1.65 inch displacement after three iterations. The GSSID recommends spreadsheet 

usage for this iterative procedure.  

 At the end of the iterative process, 𝑄𝑑 = 2.81 𝑘𝑖𝑝𝑠, 𝐾𝑑 = 1.70 
𝑘𝑖𝑝𝑠

𝑖𝑛⁄ ,          𝐾𝑖𝑠𝑜𝑙 =

3.36 
𝑘𝑖𝑝𝑠

𝑖𝑛⁄ , and 𝑑𝑖𝑠𝑜𝑙 = 1.66 𝑖𝑛 for the isolators at the abutments. 𝐾𝑢 was determined by 

using equation B3.1.2.2.2-1.  

𝐾𝑢 = 10 ∗ 𝐾𝑑 = 10 ∗ 1.70 
𝑘𝑖𝑝𝑠

𝑖𝑛⁄ = 10.70 
𝑘𝑖𝑝𝑠

𝑖𝑛⁄  

Equation B3.1.2.2.2-2 provides the yield displacement of the isolator.  

𝑑𝑦 =
𝑄𝑑

𝐾𝑢 − 𝐾𝑑
=

2.81

17 − 1.7
= 0.18 𝑖𝑛  

The isolator yield force can be calculated using simple graph relationships.  

𝐹𝑖𝑠𝑜𝑙 = 𝑄𝑑 + 𝐾𝑑(𝑑𝑖𝑠𝑜𝑙 − 𝑑𝑦) = 2.81 𝑘𝑖𝑝𝑠 + (1.7 𝑘𝑖𝑝𝑠
𝑖𝑛⁄ ) (1.66 𝑖𝑛) = 5.63 𝑘𝑖𝑝𝑠  

https://en.wiktionary.org/wiki/%E2%88%91


Dividing the isolator yield force by the isolator displacement then gives provides the isolator 

stiffness.  

𝑘𝑖𝑠𝑜𝑙 =
𝐹𝑖𝑠𝑜𝑙

𝑑𝑖𝑠𝑜𝑙
=

5.63 𝑘𝑖𝑝𝑠

1.66 𝑖𝑛
= 3.4 

𝑘𝑖𝑝𝑠
𝑖𝑛⁄   

 This stiffness corresponds with what the researchers included in the GSSID. The process can be 

done for the pier columns to get an isolator stiffness of 15.8 kips per inch.  

 

 

Figure 5. Isolator Properties for Abutments 
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Figure 6. Isolator Properties for Piers Columns 

 The bridge model was subjected to modal analysis and compared to the modes that 

Buckle calculated. The first mode is 1.604 seconds that has a high mass participation ratio in the 

transverse direction. The second mode is 1.463 that has a high modal participation ratio in the 

longitudinal direction. The mode with longitudinal motion is the one that was considered the 

most in our analyses. The model was developed with spring stiffnesses equal to 𝑘𝑖𝑠𝑜𝑙 values for 

abutments and piers. The model prepared had a transverse mode of 1.27 seconds which is off of 

our expected value by about 0.16 seconds. The model’s discrepancies can be attributed to 

differences in bridge models since some assumptions had to be when making the bridge model.  

Nonlinear analysis was performed on the bridge model. One joint links took the place of 

three springs acting as the isolators at the abutments and two joint links replaced the individual 

springs at the piers. The same 𝑘𝑖𝑠𝑜𝑙 values for abutments and piers were entered to ensure that the 

model is still representative of how the bridge should behave. The modal analysis period in the 

longitudinal direction was less than a second off of the longitudinal mode of the model with 
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springs. The links were then altered to account for the hysteric motion that is expected to 

realistically happen during ground motions. Nonlinear direct integration time history was ran for 

scaled ground motions that were obtained from Pacific Earthquake Engineering Research Center 

(PEER) (Ancheta et al., 2013) in accordance with the work of Francys Mosquera (Mosquera, 

2017). Peak displacements and corresponding forces were obtained for the piers and abutments 

from the model’s analysis. Peak displacements and corresponding forces at the two locations for 

linear modal analysis was also performed to be compared to the nonlinear analysis data.  

 

 

 

 

 

 

 

 

 

 

 

 

 



Results 

Table 1. Peak Positive Displacement and Peak Force at Abutments (inches, kips) 

  Analysis Type 

  Nonlinear Linear Analysis 

Ground Motion ID Direct Integration Modal 

225 Brawley Airport 0.235, 3.155 0.366, 3.439 

315 Brawley Airport 0.330, 3.32 0.337, 3.452 

106 Canoga Park 0.195, 3.086 0.361, 3.694 

196 Canoga Park 0.695, 3.954 0.577, 5.907 

000 Capitola 0.183, 3.066 0.190, 1.940 

090 Capitola 0.206, 3.104 0.107, 1.091 

000 Fortuna 0.744, 4.309 2.347, 24.01 

090 Fortuna 0.435, 3.503 1.058, 10.83 

177 Glendale 0.155, 2.642 0.236, 2.411 

267 Glendale 0.332, 3.323 0.300, 3.069 

045 Plaster City 0.278, 3.231 0.240, 2.452 

135 Plaster City 0.260, 3.199 0.261, 2.666 

000 El Centro 0.619, 3.822 0.248, 2.540 

090 El Centro 0.772, 4.087 0.863, 8.832 

 

Table 2. Peak Positive Displacement and Peak Force at Piers (inches, kips) 

  Analysis Type 

  Nonlinear Linear Analysis 

Ground Motion ID Direct Integration Modal 

225 Brawley Airport 0.147, 11.72 0.315, 4.489 

315 Brawley Airport 0.299, 12.76 0.318, 4.534 

106 Canoga Park 0.226, 12.26 0.335, 4.774 

196 Canoga Park 0.652, 15.17 0.542, 7.721 

000 Capitola 0.157, 10.44 0.179, 2.549 

090 Capitola 0.197, 12.07 0.100, 1.429 

000 Fortuna 0.748, 15.83 2.194, 31.29 

090 Fortuna 0.408, 13.50 0.987, 14.08 

177 Glendale 0.169, 11.21 0.220, 3.137 

267 Glendale 0.307, 12.81 0.280, 3.992 

045 Plaster City 0.360, 13.18 0.223, 3.176 

135 Plaster City 0.288, 12.69 0.245, 3.488 

000 El Centro 0.621, 14.96 0.232, 3.312 

090 El Centro 0.780, 16.05 0.806, 11.50 



As we can see from the pier and abutment bearing displacements and forces from the tables, 

the linear analysis does not perfectly capture the movements we would expect to see in a 

nonlinear analysis. One example that the linear analysis does not capture the expected reactions 

is in 000 Fortuna. In the abutments, linear analysis yielded a force nearly six times higher than 

that of nonlinear analysis and a displacement more than triple that of the nonlinear analysis. In 

the piers, the force for the linear analysis had more than double the force and nearly three times 

the displacement of the nonlinear analysis. Similar findings can be seen for 090 Fortuna. This 

high variance may be attributed to the fact that these records had the highest forces and 

displacement in all of the categories. Higher ground motion intensity, characterized by Fortuna 

and El Centro, appear to have more variance in displacements and forces between nonlinear and 

linear analyses than lower intensity ground motions. 

Most of the displacement and force occurat the piers. The analysis’ forces at the piers yield 

much more variance than that of the abutments. However, the linear analysis displacements and 

forces are not too far off of the nonlinear analysis displacement and forces for abutments.  The 

study suggests that the use of 𝑘𝑖𝑠𝑜𝑙 in place of nonlinear bearing properties introduces large 

uncertainties in the predicted performance.  This finding echoes similar studies, such as those by 

Steelman and Hajjar (2009), which noted that nonlinear static approaches generally provide only 

an approximate and appreciably uncertain representation of nonlinear dynamic structural 

behavior.  Structural engineers should be aware of and appreciate these limitations in their design 

processes and expectations for extreme event behavior. 

 

 



Future Works 

 This study should be attempted again for the same structure to validate Buckle’s 

benchmark bridge #2. It may also be worthwhile to validate the linear modal analysis with linear 

direct integration analysis. Unfortunately, this was not able to be completed in this study. Other 

kinds of bridges should also be studied to see how appropriate model simplifications are for 

other kinds of bridges. Validating Buckle’s benchmark bridge #1, a 3-span, 6 pre-cast continuous 

girders, 3 columns piers bridge would be a suitable bridge to model and analyze. Furthermore, 

more complicated kinds of structures could be studied.  

A similar study reviewed is a document with the research code: FHWA-ICT-13-015. The 

study is called “Seismic Performance of Quasi-Isolated Highway Bridges in Illinois” prepared by 

researchers from the University of Illinois at Urbana-Champaign and published by the Illinois 

Center for Transportation (LaFave et al., 2013). Dr. Steelman, the faculty advisor for this 

undergraduate thesis, was a part of this project during his time at Urbana-Champaign. This study 

looked at the performance of multi-span, continuous steel bridges with concrete superstructures 

that are simply supported at the abutments. Stub abutments and H pile foundations were used in 

these models. 48 bridge models were developed using OpenSees software with varying pier 

types (multi-column vs. wall piers), height of piers, soil stiffnesses, type of foundation (fixed vs. 

flexible), and type of elastomeric bearings (Type I vs Type II).  

The Illinois Center for Transportation defines Type I bearings as “A ductile substructure 

with essentially elastic superstructure. This is the conventional seismic design approach, and it is 

representative of the way that many IDOT [Illinois Department of Transportation] bridges are 

currently designed for seismic effects (p.3).” Type I bearings are elastomeric bearings. Type II 

bearings are defined as “An essentially elastic substructure with ductile superstructure. This less 



common approach applies only to steel superstructures with specially detailed ductile cross-

frames.” (p.3)” Type III bearings were not studied closely, but are defined as “An elastic 

superstructure and substructure with a fusing mechanism in between. This approach is 

characteristic of traditional seismic isolation, and is also generally representative of the 

philosophy IDOT is targeting with the quasi-isolated ERS concept. (p.3)”  

The conclusions that the researchers made are that Type II bearings were more likely to 

unseating because “…the area of the bearing surface was often insufficient given the magnitude 

of the displacement demand. (p.59)” Bridges with taller piers were also observed become 

unseated as well. Type I bearings were found to be much less susceptible to unseating.  Bearing 

unseating is a type of failure that bridges are prone to with high ground movement exerted to it. 

Unseating happens just above the piers and leads to the superstructure being very unstable and 

dangerous.   

Another similar study is a dissertation called “Seismic Performance Assessment of 

Quasi-Isolated Highway Bridges with Seat-Type Abutments”, by a University of Illinois at 

Urbana-Champaign researcher, Jie Luo, was reviewed (Luo, 2016). Luo worked to test the 

seismic performance of prototype quasi-isolated bridges and validate design standards that are in 

place. The bridge models that were analyzed in this study were three or four-spans with either 

steel-plate or precast-prestressed-concrete (PPC) girders. They had a concrete deck, sacrificial 

superstructure-substructure connections, seat-type abutments, and multi-column reinforced-

concrete (RC) piers that have steel H-pile foundations beneath them. 

 Four main types of bridge prototypes were developed: 3-span Steel-plate-girder bridges 

(3S), 4-span-Steel-plate-girder bridges (4S), 3-span precast-prestressed-Concrete-girder bridges 

(3C), and 4-span precast-prestressed-Concrete-girder bridges (4C). The bridge models were 



made to reflect typical new designs for earthquake-resistant highway bridges of Illinois. Five 

skew angles ( 0°, 15°, 30°, 45°, and 60°), two pier column clear heights (15 ft. and 40 ft.), and 

two soil conditions (hard and soft soils) were varied in the study to make 20 bridge models per 

main type of prototype (3S, 4S, 3C, or 4C) for a total of 80 models.  

Based on the findings in the FHWA document discussed earlier, Luo only studied the 

results of the Type I elastomeric bearings since they were found to be less prone to unseating 

than Type II bearings. Analysis of the finite models were reviewed and Luo found that most of 

the models exhibited suitable seismic performance, but a few models showed higher risk of 

limited local damage such as bearing unseating or pier column damage. Fortunately, none of the 

bridges exhibited the risk of actually collapsing when ground motions were applied to the bridge. 

Luo observed that models that had a higher risk of bearing unseating were those with highly 

skewed and tall pier columns. Luo also had a smaller number of models with non-skew or 

lightly-skewed and short pier columns that had pier column damage.  

Luo suggests that engineers “strengthen the bearing side retainers at the abutments of 

highly skewed bridges supported by tall piers. (p. 303)” Luo also recommends that engineers 

“weaken the commonly over-designed superstructure-to-fixed-pier connections of non-skew or 

lightly-skewed bridges with short pier columns, in order to mitigate column damage. (p.303)” 

During an earthquake, ground motions cause for the piers to move. Short piers are typically 

stiffer due to their short length which are susceptible to damage when ground motions are 

applied. Making the superstructure to pier more flexible could allow for damage to be 

minimized. Reviewing and changing design procedures challenge engineers because stiffness is 

needed to minimize vibrations while commuters are on the bridge, but flexible enough to not be 

damaged during seismic activity. Studies like these two should be performed in order to improve 



and expand engineers’ knowledge of how different bearings perform under different 

circumstances.  

 

 

 

 

 

Figure 7. Spherical Friction Bearing 
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