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Abstract

Introduction: Despite efforts to control for confounding vari
ables using stringent sampling plans, selection bias typi
cally exists in observational studies, resulting in unbalanced 
compar ison groups. Ignoring selection bias can result in un
reliable or misleading estimates of the causal effect.

Methods: Generalized boosted models were used to estimate 
propensity scores from 42 confounding variables for a sam
ple of 361 neonates. Using emergent neonatal attention and 
orienta tion skills as an example developmental outcome, we 
examined the impact of tobacco exposure with and without 
accounting for selection bias. Weight at birth, an outcome 
related to tobacco exposure, also was used to examine the 
functionality of the propensity score approach.

Results: Without inclusion of propensity scores, tobaccoex
posed neonates did not differ from their nonexposed peers 
in attention skills over the first month or in weight at birth. 
When the propen sity score was included as a covariate, ex
posed infants had margin ally lower attention and a slower 
linear change rate at 4 weeks, with greater quadratic deceler
ation over the first month. Similarly, exposure-related differ
ences in birth weight emerged when pro pensity scores were 
included as a covariate.

Conclusions: The propensity score method captured the selec
tion bias intrinsic to this observational study of prenatal to
bacco exposure. Selection bias obscured the deleterious im
pact of to bacco exposure on the development of neonatal 
attention. The illustrated analytic strategy offers an example 
to better charac terize the impact of prenatal tobacco expo
sure on important developmental outcomes by directly mod
eling and statistically accounting for the selection bias from 
the sampling process.

Introduction

Unlike preclinical animal studies where confounding vari
ables can be controlled and prenatal tobacco exposure can be 
assigned randomly as a treatment group, typical human expo
sure outcome studies use observational designs where sam
ple likely differs in confounding variables between exposure 
groups. In statistical terms, unobserved selection bias exists, 
where exposure groups are not balanced as in a true experi
mental design. In fact, even with the best efforts of research
ers to con trol for confounding variables using stringent sam
pling meth ods, unobserved selection bias typically exists 
(D’Agostino, 1998; Rosenbaum & Rubin, 1983, 1984). Ignor
ing selection bias can lead to unreliable or misleading esti
mates of causal effect that are the target of observational stud
ies (Rosenbaum, 2002).

To address selection bias in observational studies and al
low researchers to draw a causal inference from studies where 
ran domization is not possible, an analytic method to control 
for selection bias is needed. Although there are several avail
able, propensity score methods are being increasingly used. 
A pro pensity score is a probability value, estimated from con
founding variables via a statistical model, for each subject who 
has the chance to belong to the “treatment” group (here those 
offspring who are tobacco exposed [TE]). In seminal work, 
Rosenbaum and Rubin (1983, 1984) showed that using propen
sity scores in hypotheses testing produced unbiased estimates 
of the true group difference. Unlike analysis of covariance, 
propensity score methods account for group differences by 
modeling the sampling process and addressing selection bias 
with a theoreti cally unlimited number of confounding vari
ables related in any way to group selection (McCaffrey, Ridge
way, & Morral, 2004; Shadish, Cook, & Campbell, 2002; West, 
Biesanz, & Pitts, 2000).
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Once calculated, the propensity score can be included into 
statistical models as a single covariate, allowing researchers 
to statistically balance groups with less complex models and 
more statistical power (Braitman & Rosenbaum, 2002; Wang & 
Donnan, 2001).

To estimate propensity scores, most studies have used 
a parametric logistic regression model that assumes a spe
cific underlying distribution and that the covariates are lin
ear and additive on the log odds scale. Because covariates 
are usually nonnormal, nonlinear, and not additive, general
ized boosted models (GBM; McCaffrey et al., 2004) that in
corporate data mining and statistical techniques are a bet
ter alternative to calculate propen sity scores (e.g., Friedman, 
2001; Imbens, 2003). In data mining and machine learning 
literature, the term “boosting” refers to an algorithm that 
identifies the strongest model by building upon and learn
ing from weaker models (Freund & Schapire, 1997; Fried
man, 2002; Schapire & Singer, 1999). GBM expands boost-
ing algorithms by using a collection of regression trees that 
out perform traditional approaches (Breiman, Friedman, Ol
shen, & Stone, 1984; Buhlmann & Yu, 2003; Friedman, 2002; 
McCaffrey et al., 2004). Compared with typical logistic re
gression, the ap pealing features of GBM include (a) using an 
automated dataadaptive modeling algorithm that can es
timate the nonlinear relation between a variable of interest 
and a large number of covariates; (b) reduction in the chance 
of model misspecification and as nonparametric models, do 
not assume underlying distri butions; (c) accommodation of 
various types of covariates (con tinuous, nominal, or ordinal) 
and missing values while allowing multicollinearity; (d) al
lowing estimated propensity scores to be used for covariate 
adjustment, weighting, matching, or stratifica tion; (e) better 
balance of covariates, with fewer prediction errors; (f) and 
greater capability of removing bias in baseline differences be
tween treatment and control groups.

The purpose of the present study is to demonstrate the ap
plication of this novel method, GBM, in a prenatal tobacco ex
posure study to test unobserved selection bias between TE and 
nonexposed (NE) neonates. In this study, exposure was mea
sured prospectively, using selfreport measures and bioas
says during pregnancy. We selected emergent attention skills 
as the outcome from our earlier study (Espy et al., in press). 
Neo natal attention skills were measured three times during 
the first month of life. We hypothesized that propensity score 
modeling would account for substantial unobserved selection 
bias and that inclusion of the propensity score as a covariate 
would alter the pattern of prenatal tobacco exposurerelated 
effects on early attention development. We also used birth 
weight, the most commonly reported outcome that is affected 
deleteriously by prenatal tobacco exposure (e.g., DiFranza, 
Aligne, & Weitzman, 2004), as a second exemplar outcome to 
test the efficacy of the propensity score method, where the in
clusion of the propensity score as a covariate again was ex
pected to reveal the magnitude of change of the exposurere
lated effects on birth weight.

Methods

Participants
Study flyers were distributed to pregnant women over a 

4.5-year period at all obstetric and prenatal clinics at two sites 
in the Midwest: a rural five-county region and a small-sized 
city. Nine hundred and fifteen women contacted the labora

tory and com pleted a screening interview to gather demo
graphic information for selection and determine study eligi
bility (i.e., plan to deliver at a local hospital, speak English in 
the home, no binge drinking defined as ≥4 drinks per day, and 
no illegal drug use). Screened women who reported smoking 
around the last menstrual peri od (to capture smokers who un
derreport smoking during very early pregnancy and are of
ten misclassified; England et al., 2007) or were actively smok
ing during pregnancy were recruit ed and enrolled. To reduce 
known demographic disparities between exposure groups, 
screened eligible nonsmokers were oversampled for enroll
ment based on Medicaid insurance status (a less intrusive 
proxy for income), race/ethnicity, and educa tion (<14 years), 
resulting in 387 participants.

Participants completed a comprehensive adapted timeline 
followback interview during pregnancy at 16 weeks, 28 weeks, 
and just after delivery (termed 40 weeks hereafter). The inter
view gathered detailed information on smoking before and 
dur ing pregnancy. Questions regarding use of alcohol and 
other substances, background, and healthrelated questions, 
such as diet, exercise, and medication use, were also included. 
A bio logical measure of tobacco exposure via cotinine levels 
was gath ered for mothers and children using the DRI Cotinine 
Assay from U.S. Drug Laboratories. Mothers provided a urine 
sample at each interview during pregnancy, while neonatal 
cotinine was measured using a meconium sample taken from 
the neonate’s diaper shortly after birth and urine samples at 2 
and 4weeks.

Despite our efforts to selectively focus on tobacco use and 
eliminate the confounding of illegal drug use through screen
ing, 53 women denied use of marijuana during screening but 
admit ted use on subsequent prenatal interviews or their neo
nate tested positive for marijuana at birth. We retained their 
data as it is not uncommon in prospective exposure studies 
for women to answer sensitive questions differently at screen
ing than later dur ing study enrollment when they are more 
comfortable. Because of the comorbidity of tobacco, alcohol, 
and marijuana use during pregnancy, particularly in heavier 
smokers, we elected to include a binary marijuana use vari
able in the propensity score estima tion. However, due to the 
known large impacts on neonatal be havior that would mask 
prenatal tobacco effects, women/neonate data were excluded 
from eight participants with heavy drinking during any pre
natal month (≥1 drink per day), 1 participant who was pre
scribed antipsychotic medication throughout pregnancy, and 
17 participants who were born ≤ 35-week gestation.

Procedures

Prenatal Tobacco Exposure Measurement and Group 
Classification

Prenatal tobacco exposure was determined using the num
ber of maternal selfreported cigarettes during prenatal smok
ing and biospecimen assays in a threestep process. First, 
women who selfreported smoking any cigarettes during the 
prenatal period on any maternal prenatal interview were clas
sified initially as TE and those who reported no smoking dur
ing the period on all interviews were classified initially as NE. 
Then, the consistency of selfreported smoking behavior across 
interviews was exam ined for congruence with initial group as
signment. Where smoking status was consistent across inter
views and agreed with the last smoking date, the exposure 
group assignment remained. If these criteria were not met, 
the reported last smoking dates across the interviews were ex
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amined relative to the last men strual period. If a participant 
was initially classified NE despite last smoking dates falling 
in the window of pregnancy, that par ticipant was reclassified 
as TE. Using this procedure, 16 partici pants were reclassified. 
Finally, the results of the biospecimen sampling were consid
ered, as selfreported smoking can underesti mate true mater
nal smoking due to social undesirability (Pley et al., 1991). Us
ing the cutoff value recommended by U.S. Drug Labo ratories, 
two women with urine cotinine values >100 ng/ml were re
classified as TE. Among the 361 neonates, 189 were clas sified 
as TE and 172 as NE.

The exposure group variable, determined by maternal self
reported cigarette smoking and cotinine levels, reflected the 
direct grouplevel effect of tobacco exposure incurred by the 
neonate during pregnancy. To capture the effects of second
hand environmental smoke exposure to the mother that con
tributes indirectly to offspring exposure, the selfreported 
number of smokers in home during pregnancy and daily part
ner smoking amount in the presence of the participant (aver
age value across the 16, 28, and 40week interviews) were in
cluded as predictors in these models.

As expected, the mean cotinine levels in maternal urine and 
neonate meconium differed among the TE and NE groups at 
all timepoints (all ps < .01). The mean TE maternal urine co
tinine was 364.95 ng/ml at 16 weeks and 333.21 ng/ml at 28 
weeks. Mean NE maternal urine cotinine was 5.70 ng/ml at 16 
weeks and 10.75 ng/ml at 28 weeks. At the 40-week interview, 
the mean ma ternal urinary cotinine level for the TE group 
dropped to 75.7 ng/ml, whereas for NE women remained un
changed (11.69 ng/ml). The mean cotinine level in infant me
conium of the TE (196.19 ng/ml) was significantly higher than 
the NE group (0.63 ng/ml, p< .001).

Outcomes
Neonates were administered a standardized neonatal 

tempera ment assessment (NTA; Riese, 1982, 1986) three times 
in the neo natal period: approximately two days after birth in 
the hospital (called at birth hereafter), 2 weeks in a university 
laboratory, and 4 weeks in the participant’s home. The NTA 
has demonstrated reliability (Riese, 1986), and 4% of all as
sessments were coscored and yielded mean interrater module 
reliabilities between .89 and .99. Individual NTA items were 
treated as multiple behavior indicators of three latent con
structs that were identified empiri cally using principal-com
ponents analysis (Espy et al., in press); Attention/Orientation 
(AT), capturing infants’ responses to audi tory and visual stim
uli and overall degree of alertness; Irritable Reactivity, sum
marizing infants’ irritability during orientation items and 
reflex elicitation procedures; and Stressor Dysregula tion, re
flecting infants’ latency to soothe after the cold disc and pac
ifier withdrawal stress tests. Espy et al. (in press) provide fur
ther details related to NTA administration and data reduction. 
Although three latent constructs captured neonatal behavior, 
substantive exposure effects were noted mainly for the AT fac
tor score in the Espy et al. (in press). Thus for the purposes 
here, only the AT domain was examined. For the second out
come, weight at birth, the neonate’s birth weight in grams as 
recorded by the hospital staff at delivery, was used as the de
pendent variable.

Analysis

Using propensity scores in analyses requires three basic 
steps: (a) propensity score estimation, (b) hypotheses testing 
with and without propensity score adjustment, and (c) sensi

tivity analy sis. Each step is described in detail in the follow
ing sections.

Step 1: Propensity Score Estimation

In theory, an unlimited number of confounding variables 
can be considered and included in propensity score estima
tion. These variables do not have to be related to one another 
and can be continuous or categorical variables. However, all 
included con founding variables should have a theoretical ra
tionale for inclusion.

Smoking during pregnancy cooccurs with numerous po
tential confounding variables that are related to childhood out
comes, including maternal psychiatric symptoms of hostility, 
depres sion (Anda et al., 1990; Fergusson, Goodwin, & Hor
wood, 2003; Rodriguez, Bohlin, & Lindmark, 2000; Schuetze 
& Eiden, 2006; Whiteman, Fowkes, Deary, & Lee, 1997), and 
anxiety (Parton et al., 1998), and Attention-Deficit Hyperac
tivity Disorder (ADHD) (Flick et al., 2006; Goodwin, Keyes, & 
Simuro, 2007; Kodl Middlecamp & Wakschlag, 2004). Pregnant 
smokers are also more likely to be young, poor, unmarried, 
and engage in other risky health behaviors during pregnancy, 
including alcohol and other drug use, and have suboptimal nu
trition (Baghurst, Tong, Woodward, & McMichael, 1992; Bre
slau, 1995; Dani & Harris, 2005; Pickett, Wilkinson, & Wak
schlag, 2009). Therefore, in this study, we gathered information 
pertaining to these ma ternal background variables through 
comprehensive interviews during pregnancy at 16, 28, and 40 
week. Table 1 provides the maternal variables collected, which 
included demographic infor mation, healthy diet (calculated by 
an average score of each subject across three visits if consump
tion of tuna, fish, bread, fruit, vegetables, and dairy were re
ported [yes/no]), mother’s weight, prenatal alcohol use (drinks 
per day per month), prenatal mari juana use (yes/no), and pre
natal prescription medication (yes/no for each medication). In 
addition to the interviews, during the 28week session, par
ticipants completed the Brief Symptom Inventory (Derogatis, 
1993) to assess maternal psychopathology symptoms and the 
Connors Adult ADHD Rating Scale—Short Form (Connors, Er
hardt, & Sparrow, 1998) to measure ADHD symptoms. Moth
ers completed the Woodcock–Johnson Brief Intellectual Ability 
assessment during the 44week postnatal interview to measure 
general intelligence (Woodcock, McGrew, & Mather, 2001). 
Standardized scores derived from instrument normative tables 
were used in all analyses. Less than 3% of the data were miss
ing for the included confounding variables. Table 1 provides 
the 42 potential confounding variables means or proportions 
by exposure group.

A propensity score was calculated for each participant us
ing the 42 confounding variables and the GBMbased “twang” 
package in R 2.8.1 (Friedman, 2002; McCaffrey et al., 2004; R 
Development Core Team, 2008; Ridgeway, 2006).

Step 2: Hypotheses Testing of Exposure Effect On AT and Birth 
Weight With and Without Propensity Score Adjustment

Hypothesis testing was conducted to determine if the expo
sure effect estimated from a statistical model would increase, 
decrease, or remain the same after controlling for selection 
bias. The obtained propensity score (single propensity score 
covariate), the exposure grouping variable (predictor of inter
est), and two maternal secondhand smoke exposure variables 
were entered into a latent multiple indicator growth model 
for neonatal attention skills (MIGM, performed in Mplus 6.0; 
Muthén & Muthén, 2007; see Supplementary Figure 1) and a 
linear regression model for infant birth weight.
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Neonatal attention scores and weight at birth were the re
spective outcome variables. For neonatal attention, the multi
ple indicator growth model that characterized developmental 
change in AT scores across age was used. This model inte
grates the struc tural equation approach of the relations be
tween observed be havior indicators and latent constructs 
(e.g., NTA visual stimuli items to the AT construct) with the 
multilevel model conceptual ization of age (at birth, 2, and 4 
weeks) within subjects (Muthén & Muthén, 2007). Measure
ment invariance was specified and test ed by holding the in
tercepts and factor loadings of the indicators equal across age. 
The maximum likelihood estimator with robust SEs (MLR) 
was used to allow for missing data at random as well as non
normal and nonindependence outcomes (Yuan & Bentler, 
2000). For the MLR estimator, the chi-square likelihood ratio 
test based on log likelihood values and scaling correction fac
tors (Satorra, 2000) was used with Akaike’s information crite
rion (AIC) and Bayesian information criteria (BIC) to examine 
model fit. The residual variances of the factor indicators (i.e., 
individual items) and the latent factors were estimated and al
lowed to differ across age. The regression models were used 
to estimate birth weight with TE/NE exposure grouping vari
able and two maternal secondhand smoke exposure variables 
as predictors.

Step 3: Sensitivity Analysis
Using propensity scores helps examine the influences 

of mea sured confounding variables on exposure effects, al
though no study can measure all the possible confounding 
influences. The inability to include all potential confound
ing variables can result in hidden bias for estimated effects 
(Rosenbaum, 2002). In this study, sensitivity analyses were 
performed in R 2.8.1 (Friedman, 2002; McCaffrey et al., 2004; 
R Development Core Team, 2008; Ridgeway, 2006). To begin, 
one observed confounding variable was removed from the 
propensity score model, treating it as an unobserved variable, 
and then the propensity score recalculated. Next, an obtained 
ratio of propensity scores with and without this confounding 
variable was computed for each person (McCaffrey et al., 2004; 
Ridgeway, 2006; Rosenbaum, 2002). This confounding variable 
then was added back into the model, the next confounding 
variable removed, and the process repeat ed. Finally, a worst
case scenario was repeatedly simulated for each removed con
founding variable to reexamine the exposure effects on de
velopmental parameters (i.e., intercepts, linear slopes, and 
quadratic decelerations for AT scores from our growth mod
els) and birth weight. The worstcase scenario as sumes a 
larger and more unlikely relation between the develop mental 
parameters and calculated ratios than the actual observed cor
relations. In this study, an absolute correlation of .99 was used 
to illustrate this highly unlikely circumstance. If the worst
case scenario resulted in dramatically different model esti
mates, then exposure effects were considered susceptible to 
hidden bias (McCaffrey et al., 2004). That is, the estimate expo
sure effects may be dramatically affected by latent confound
ing variables.

Results

Propensity Score Estimation

The relative influence, or percentage increase in the logis
tic log likelihood (Friedman, 2001), of each confounding vari

able was obtained from the GBM. Relative influence, provided 
in the rightmost column of Table 1, indicates a variable’s con
tribution to estimating the propensity score. The rank among 
confound ing variables was created according to the degree of 
relative in fluence, with the higher the contribution, the more 
important the confounding variable is to propensity score cal
culation. Re sults showed maternal alcohol use during first 
month of preg nancy, education, and alcohol use around con
ception as being the three most influential variables. It is im
portant to note that we cannot conclude or infer any relation
ship between any con founding variable and outcomes through 
the propensity scores. The propensity score approach in hy
pothesis testing is only used to balance compared groups, re
duce the selection bias for a spe cific sample, and help reveal 
the more accurate exposure effect, regardless of the relation 
among confounding variables and outcomes. As shown in Ta
ble 1, 26% of the increase in model likelihood was due to al
coholuse variables, 28% to maternal mental health variables 
(e.g., maternal depression, anxiety, hos tility, inattention, im
pulsivity, and hyperactivity), 26% to de mographics (e.g., mari
tal status, age, education, intelligence, ethnicity, insurance sta
tus, and number of pregnancies), and 20% to maternal health 
variables. Figure 1 displays the distribu tion of calculated pro
pensity scores by exposure groups. The large difference be
tween the TE and NE groups indicates that selection bias 
exists despite the stringent sampling plan used to reduce con
founding influences. Based on these results, the pro pensity 
score variable was included as a covariate in the multiple in
dictor growth model for AT and in the regression model for 
weight at birth.

Hypotheses Testing With and Without Propensity Score 
Adjustment

Attention
Smaller AIC and BIC and significant MLR chi-square 

likelihood ratio tests indicated that the quadratic model 
(AIC = –4,517.59; BIC = –4,311.48; χ2

_MLR difference = 28.76, 
p < .01) fit better than the linear model (AIC = –4,302.90; 
BIC = –4,116.23). These three indices (AIC = –2,101.00; BIC 
= –1,872.38; χ2

_MLR difference = 24.89, p < 0.05) also indicated 
that the full model including the propensity score fits the 
data better than the model with out propensity scores (AIC 
= –1,882.20; BIC = –1,665.21). The calculated developmental 
trajectories of the AT scores across age by exposure groups 
are plotted in Figure 2. Center ing at 4 weeks of age, the 
growth models without a propensity score showed that the 
intercept and linear change rate of TE neonates did not dif
fer from their NE peers (γ_intecept = 0.016, SE = 0.018, p =0.39; 
γ_slope = 0.010, SE = 0.017, p = 0.58). The exposure groups also 
did not differ in their quadratic decel eration rate (γ_quadratic = 
–0.001, SE = 0.004, p = 0.77) over the first month of their life. 
The two maternal secondhand expo sure measures were not 
related to neonatal attention growth (number of selfreported 
smokers in home during pregnancy, ps > 0.10, and daily 
partner smoking amount in the presence of the participant, 
ps > 0.30). With propensity scores included, growth models 
showed that neonatal attention differences between TE and 
NE were larger in magnitude. Furthermore, compared with 
NE peers, TE neonates score marginally lower in AT at 4 
weeks of age (γ_intecept_ps = –0.042, SE = 0.027, p = 0.10), with 
a marginally slower linear change rate (γ_slope_ps = –0.041, SE 
= 0.023, p = 0.08) and marginally greater quadratic decelera
tion rate (γ_quadratic_ps = –0.009, SE = 0.006, p = 0.10) over the 
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Table 1. Descriptive Statistics By Exposure Group and Relative Influence in Propensity Scores

           Tobacco exposed                   Nonexposed 

Confounding variables M/% SD M/% SD Ranka %

Maternal age at delivery (years)** 25.2 4.9 26.6 4.9 4 7.65
Maternal education (years)*** 12.98 1.56 13.88 1.71 2 9.83
% Medicaid 85 — 84 — 31 0.26
% Married*** 37 — 57 — 32 0.25
Maternal race (% White) 77 — 77 — 28 0.34
Maternal weight 
 Prepregnancy 162.2 48.2 167.2 45.8 9 3.61 
 Delivery 197.7 47.9 196.6 45.4 16 2.05 
 Gain** 35.5 19.6 29.4 14.9 8 4.38
Number of previous pregnancies 1.68 2.05 1.61 1.55 20 1.44
Healthy diet 4.38 0.69 4.51 0.76 13 2.52
Exercise (% three times per week) 
 Prepregnancy 47 — 53 — 26 0.54 
 16 weeks 39 — 48 — 21 1.33 
 28 weeks 42 — 42 — 35 0.11 
 Delivery 31 — 34 — 34 0.17
% Prenatal marijuana use*** 20 — 5 — 7 4.45
Average number of alcohol drinks per day+ 
 At last menstrual period*** 0.467 0.926 0.109 0.337 3 8.55 
 Month 1 pregnancy*** 0.245 0.398 0.036 0.092 1 14.88 
 Month 2 pregnancy** 0.032 0.114 0.005 0.034 23 1.22 
 Month 3 pregnancy 0.006 0.037 0.002 0.008 33 0.23 
 Month 4 pregnancy 0.003 0.010 0.001 0.007 39 0.03 
 Month 5 pregnancy 0.003 0.012 0.001 0.006 29 0.32 
 Month 6 pregnancy* 0.004 0.016 0.001 0.006 30 0.30 
 Month 7 pregnancy* 0.005 0.018 0.001 0.005 40 0.03 
 Month 8 pregnancy 0.005 0.027 0.001 0.010 38 0.05 
 Month 9 pregnancy 0.005 0.028 0.001 0.007 41 0.02
% Prenatal prescription medication 
 Antidepressants 12 — 8 — 36 0.10 
 Opioid-based analgesics 22 — 19 — 27 0.47 
 Asthma 5 — 7 — 37 0.06 
 Thyroid** 2 — 4 — — 0.00
BIA maternal IQ score*** 95.08 11.52 99.51 12.20 5 6.43
BSI subscale T score 
 Anxiety* 50.70 9.61 48.59 9.21 19 1.54 
 Depression** 53.70 8.74 51.21 9.00 17 1.94 
 Hostility 57.49 9.16 56.33 8.54 18 1.88 
 Interpersonal sensitivity 53.28 9.12 52.95 9.16 15 2.08 
 Obsessive–compulsive 56.91 10.73 56.83 10.18 22 1.31 
 Paranoid ideation 52.59 9.13 51.24 8.81 25 0.88 
 Phobic anxiety** 51.62 8.52 49.35 7.24 11 3.10 
 Psychoticism** 55.40 9.49 52.67 8.73 24 0.98 
 Somatization 58.95 8.70 58.23 8.46 14 2.47
CAARS subscale T score 
 Hyperactivity 47.98 8.32 46.46 7.33 6 5.81 
 Impulsivity 46.16 6.92 45.66 6.94 12 2.78 
 Inattention 48.03 8.40 47.83 7.99 10 3.60

BIA = Woodcock-Johnson III Brief Intellectual Ability; BSI = Brief Symptom Inventory; CAARS = Connors Adult ADHD Rating Scale-Short 
Form.

a. Rank based on the magnitude of the relative influence listed in the last column; rank is not given if the relative influence is 0%.
* p < .05 ; ** p < .01 ; *** p < .001
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first month. Again, maternal secondhand smoke exposure 
variables were unrelated to attention growth (number of self
reported smokers in home during pregnancy, ps >0.12, and 
daily partner smoking amount in the presence of the partici
pant, ps > 0.32).

Birth Weight
Similar to the AT results without propensity scores in

cluded, TE and NE groups did not differ in birth weight (γ_
bwt = –71.352, SE = 49.826, p =0.15). However, inclusion of the 
GBM estimat ed propensity scores, the weight difference be
tween the two ex posure groups, was greater in magnitude and 
reached marginal statistical significance (γ_bwt = –133.309, SE = 
73.371, p = 0.07).

Sensitivity Analysis
The Supplementary Table selectively presents resulting pre

natal exposure effects on the AT developmental parameters 

under the worstcase scenario after removing each of the top 
five influen tial confounding variables (as indicated in Table 1). 
These re sults indicated that the prenatal tobacco exposure effect 
did not appear to be sensitive to hidden bias as the worstcase 
scenario did not result in any dramatic change in the exposure 
effect on these developmental parameters. The same proce
dures were used to examine the hidden bias for the exposure ef
fect on birth weight and again with no hidden bias found.

Discussion

The purpose of this study was to test the presence and 
evaluate the impact of selection bias in a carefully selected 
prospectively recruited observational sample. We then ap
plied a GBM model to derive a propensity score for each in
dividual. Using the de rived propensity score as a covariate, 
hypothesis testing was conducted to determine if there were 

Figure 1. Propensity score distribution by tobacco exposure group status (the two dots indicated two nonexposed [NE] have relatively high pro pensity scores 
and the rest of NE neonates have propensity scores below .40).

Figure 2. Exposure-related group differences in Attention/Orientation (AT) with and without propensity score adjustment.
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changes in the effects of prenatal tobacco exposure on im
portant outcomes when pro pensity score covariate was in
cluded. Without propensity scores, the TE and NE groups 
did not differ in orientation to, and attentive tracking of, au
ditory and visual stimuli or in weight at birth. However, 
with a propensity score covariate in cluded in the models, the 
exposurerelated effects were larger in magnitude. In com
parison with NE neonates, those exposed had lower atten
tion and linear change rate at 4 weeks of age, a greater de
celeration in attention skills over the first month of life, and 
weighed less at birth. These attention differences ob served 
at 4 weeks of age, well after direct prenatal exposure has 
ceased, were not apparent in other studies when other analy
ses of covariance methods are used (Yolton et al., 2009). Sim
ilarly, the inclusion of propensity scores helped uncover the 
exposure grouplevel differences in birth weight that are not 
always evi dent in modern tobacco studies where the amount 
of smoking is substantially lower than studies conducted in 
earlier decades (Lumley, 1987; Shiono, Klebanoff, & Rhoads, 
1986). Without the inclusion of propensity scores, the selec
tion bias related to unaccounted background variables ap
pears to have obscured exposurerelated differences in neo
natal attention and weight at birth. Of course, a different 
result might be obtained for other outcomes, for example, the 
Irritable Reactivity or Stressor Dys regulation domains from 
the NTA that were not examined here.

Although the statistical significance of tobacco expo
sure ef fect “improved” with the inclusion of the propensity 
score, that is not the purpose of propensity score modeling. 
Rather, pro pensity scores are included to minimize and theo
retically elimi nate selection bias related to confounding vari
ables, thereby helping reveal the more accurate exposure ef
fects. Comparing the results of the statistical models without 
and with the pro pensity scores, there are three possible re
sults, that is, the mag nitude of exposure effect can increase, 
decrease, or remain about the same. Larger or smaller expo
sure effects indicate that selection bias exists and needs to 
be tested to better characterize true exposure effects. Effects 
that are similar with and without propensity scores indicate 
that selection bias likely is negligible, which is also an impor
tant insight. Regardless of magnitude and direction of differ
ences, this study indicates that section bias ex isted despite 
careful selection procedures used to minimize dif ference 
in background variables, as is common in modern observa
tional designs for human teratological investigations. Pro
pensity score modeling offers the opportunity to account for 
selection bias and thereby provide a more accurate and com
plete interpretation of statistical results. However, one disad
vantage of propensity score approach is that the propensity 
scores are calculated by treating exposure group as a cate
gorical variable (and cannot be computed directly on a con
tinuous ex posure variable), which might lead to some loss of 
information.

Taken as a whole, our findings illustrate three key points. 
First, the GBM method captured the selection bias and en
hanced estimation of the influence of prenatal tobacco expo-
sure on neonatal attention and birth weight. Second, despite 
careful and prospective selection methods, the influences of 
confounding variables appeared to dilute exposurerelated 
differences in the development of early attention/orientation 
skills, as well as in birth weight, between TE and NE neonates. 
Third, because of the influence of selection bias, exposure-re
lated outcome differences reported previously in other stud
ies may be misattributed in magnitude and/or direction. In
corporating the propensity score methods illustrated here 

into the modeling strategy offers one potential method to bet
ter characterize the true impact of prenatal tobacco exposure 
on important developmental outcomes in observational stud
ies by statistically accounting for selection bias related to con
founding influences.

Supplementary Material — Supplementary Table 1 and Fig
ure 1 follow the References.
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Supplementary Table 1. Partial Results1 from Sensitivity Analyses of PTE Effects for 42 confounding variables

  Absolute PTE Effect on AT
  Evaluated at the Largest 
   Absolute  Absolute Largest                 Hypothesized Correlation 
   Observed    Hypothesized                      (Worst-case Scenario) 
             Removed Top Five Influential                             Correlation   Correlation
Rank     Confounding Variables                                       { ATi,ATs,ATq}2     (Worst-case Scenario)3         Intercept4    Slope4      Quadratic4

1 Average Number of   Alcohol Drinks / Day     
      Month 1 pregnancy {.08, .39, .39} .99 .056 .026 .002

2 Maternal education (years) {.07, .32, .27} .99 .056 .026 .003

3 Average Number of Alcohol Drinks / Day  
      At last menstrual period {.02, .12, .31} .99 .056 .029 .003

4 Maternal age at delivery (years) {.01, .13, .06} .99 .057 .029 .003

5 BIA Maternal IQ Score {.08, .12, .04} .99 .058 .029 .003

1. Only the results for the top five influential confounding variables were included in this table.  
2. {ATi, ATs, ATq } represents the observed correlation between the ratios and intercept(i), slope(s), quadratic term (q) of AT, respectively. The ratio is the one of 

propensity scores with and without this confounding variable for each participant
3. represents the worst scenario
4.  present absolute PTE effect on intercept, slope and quadratic terms of AT evaluated at the worst-case scenario. The results show no sensitivity to hidden bias, 

as no dramatic changes in the exposure effect were observed, compared to absolute values of the exposure effect available in text. 

Supplementary Figure 1. 
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