




8. Conclusion

A DG-Chimera scheme has been developed and demonstrated on
a set of inviscid subsonic, transonic, and supersonic internal and

external flow problems. The scheme does not require the use of
fringe points in order to maintain the interior DG discretization
scheme across inter-grid communication boundaries. Hence, proper
communication between grids can be established so long as artificial

Fig. 30. Convecting isentropic vortex after 12 characteristic times, M1 ¼ 0:5ð Þ.
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boundaries overlap or abut neighboring grids, and the scheme natu-
rally reduces to a zonal scheme for abutting grids without any addi-
tional logic. The inter-grid communication scheme relies on the cell
local DG polynomial approximation to interpolate information and
hence does not require an interpolation scheme with a large stencil.
This feature further simplifies the inter-grid communication scheme
and hole cutting procedures relative to traditional finite volume and
finite difference Chimera schemes. The DG-Chimera scheme readily
extends to three-dimensions and is expected to greatly simplify grid
generation as grids can be generated without regard to fringe points
or interpolation stencils.

Inviscid channel flow demonstrated that the numerical mass
flux errors associated with the artificial boundaries are consistent
for all orders of accuracy and small for N � 1. The mass flux error
associated with the artificial boundaries is reduced by using a
Gauss-Quadrature node count of NGQ ¼ 3N=2d e þ 1. Even though
the mass flux errors are small, their presences does suggest explo-
ration of methods that can reduce or eliminate these errors and are
also extensible to three-dimensions is warranted.

Inviscid internal and external subsonic, transonic, and super-
sonic flow fields obtained using Chimera overset meshes agree
well with flow fields obtained using a single grid with comparable
mesh resolution for N � 1. Notably, the DG-Chimera scheme is able
to transfer strong gradients, such as shocks, across artificial bound-
aries. The scheme was used to compute the inviscid flow about the
SKF 1.1. airfoil with a flap; a flow problem that represents tradi-
tional use of the Chimera method to represent complex geometry.
The convection of an isentropic vortex demonstrates that the 3rd-
order and 4th-order DG schemes are able to maintain the pressure
deficit associated with the vortex without significant dissipation
for a fixed number of degrees of freedom relative to the 1st-order
and 2nd-order DG schemes. The artificial boundary did not intro-
duce significant errors in the time accurate calculation.
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