University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln

United States Department of Transportation --Publications & Papers

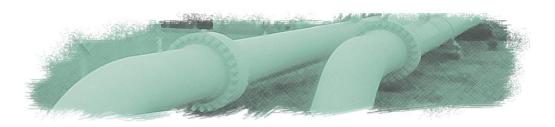
U.S. Department of Transportation

2004

An Overview of PRCI's Research Program

Christina Sames Pipeline Research Council International, Inc.

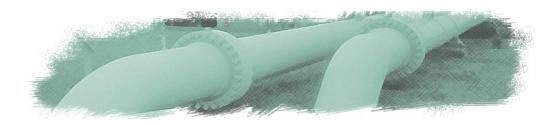
Follow this and additional works at: https://digitalcommons.unl.edu/usdot


Part of the Civil and Environmental Engineering Commons

Sames, Christina, "An Overview of PRCI's Research Program" (2004). United States Department of Transportation -- Publications & Papers. 53.

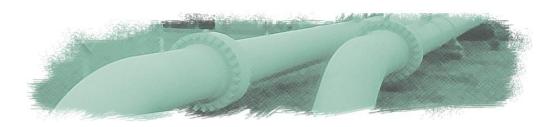
https://digitalcommons.unl.edu/usdot/53

This Article is brought to you for free and open access by the U.S. Department of Transportation at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in United States Department of Transportation -- Publications & Papers by an authorized administrator of DigitalCommons@University of Nebraska --Lincoln.



An Overview of PRCI's Research Program

Christina Sames
Pipeline Research Council International, Inc.
API 2004 Pipeline Conference



Today's Briefing

- Overview of PRCI
- **→** 2003/2004 Focus
- Project Highlights
- **→** Future Focus

Pipeline Research Council International, Inc. (PRCI)

A collaborative technology development organization *Of, By, and For* the energy pipeline industry

A PRCI Snapshot

- **⇒** Established in 1952 by 15 North American natural gas companies to address long-running brittle fractures.
- **→** Not-for-profit corporation since 2000
- **→** Current membership:
 - 33 national & international pipeline companies
 - 300,000 miles of natural gas & hazardous liquid pipelines
 - AÖPL
 - GTI

Who We Are

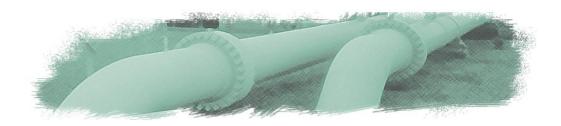
E%onMobil

gti.

ENBRIDGE

How Does it Work?

- → Pipeline member technical experts plan & manage the technical agenda
- → One Member/One-Vote on the Board & Technical Committees
- → Members Have Free Access to All PRCI Technology
- **→ More Than \$185MM Contributed Since 1952**



PRCI Technical Committees

- **→** Corrosion and Inspection
- **→** Design, Construction, and Operations
- **→** Materials
- **→** Measurement
- **→** Underground Storage
- **→** Compressor and Pump Station

R&D Budgets

Program (\$MM)	2003	Co-fund	<u>2004</u>	Co-funds
Design, Const. & Ops.	\$1.6MM	\$1.0MM	\$2.0MM	\$1.5MM
Materials	3.0	0.6	3.0	1.8
Corrosion & Inspect	3.8	0.5	3.7	3.1
Compressor & Pump	1.4	1.9	1.3	0.9
Underground Storage	0.6	0.7	1.0	1.5
Measurement	<u>0.7</u>	<u>0.3</u>	<u>1.0</u>	<u>0.4</u>
Total	\$11.1MM	\$5.0MM	\$12MM	\$9.2MM

2003 total \$16.1MM 2004 total \$21.2MM

PRCI Committees

- Corrosion and Inspection
 - ILI for mechanical damage, cracks, & geometry, direct assessment, coatings & inspection tools, SCC, MIC
- Design Construction and Operations
 - Implementing new integrity standards, reliability based design, preventing 3rd party damage, human factors, abnormal external loads, wrinkles/wripples

Materials

 Stronger steels, (X100 and beyond), repair & assessment tools, new welding and inspection processes, processes to lower construction costs



PRCI Committees

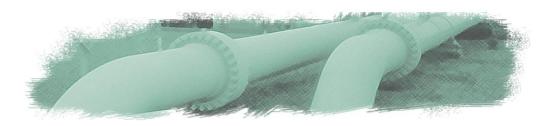
- Compressor and Pump Stations
 - Flexibility, Life Extension & Reliability, Engine Efficiency and Environmental Compliance
- Measurement and Metering
 - Reliability and Accuracy, Wet Gas Solutions, Product/Pipe Compatibility and Integrity
- Underground Storage
 - Cavern Safety, Productivity, & Deliverability
 - Cavern Expansion



Corrosion and Inspection Programs

- **→** 7 Programs, ~ \$11MM in 2003/04
 - Locate Mechanical Damage
 - Enhance Integrity of Non-piggable Pipelines
 - Protect Shielded Pipe and Enhance Environmental Corrosivity Models
 - Identify and Prioritize Locations for Internal Corrosion Inspection, Monitoring, and Mitigation
 - Optimize Integrity Assessment Intervals
 - Improve SCC detection, assessment and management
 - Improve CP System Effectiveness

Corrosion and Inspection Projects


- **→** Locate Mechanical Damage
 - Details of Defect Induces in MFL Signals

Total funding: \$2.2M

Model MFL signal responses to determine stress fields and detect mechanical damage

Completion: 2005

Corrosion and Inspection Projects

- **→ Improve CP System Effectiveness**
 - Develop Quantitative Relationships Required to Define Mitigation Levels Necessary to Prevent Corrosion

Total funding: \$500K

Model distribution paths of AC in confined corridors and suggest mitigation strategies


Completion: 2005

- **→** 7 programs and ~ \$6MM in 2003/2004
 - Prevention of 3rd party damage
 - Implementing integrity standards
 - Reliability-based design alternatives
 - Determination of maximum safe surface loads
 - Leak detection and notification
 - Prevention of critical pipeline strains
 - Solutions for adverse crossings

→ Prevention of 3rd party damage

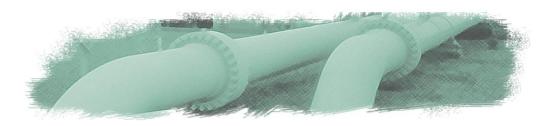

– Detection & Monitoring:

Develop acoustic monitoring for mechanical damage, satellite imagery for unauthorized encroachment and ground movement, and software to detect changes in radar images

Total funding: \$1.7M

Completion: 2004

Leak Detection and Notification


– Liquid Release Detection:

Parametric based model to lower the leak detection threshold for liquid pipelines

Total funding: \$400K

Completion 2005

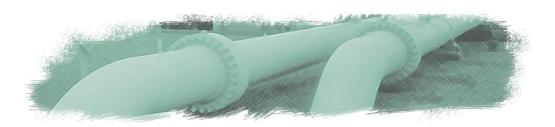
→ Prevention of Critical Pipeline Strains

Pipe – Soil Interaction: \$700K in 2003/2004
 Models and methods for addressing pipe-soil interaction effects in design and mitigation (including frozen soils)

Completion: 2004

Materials Programs

- **→**4 Programs, ~ \$9MM in 2003/04
 - Integrity Assessment and Management of inservice damage
 - New Materials and Welding Processes to Lower the Cost of New Pipeline Construction
 - Maintenance Welding Techniques
 - Advanced Material Design, Safety, and Integrity



Materials Projects

- → Integrity Assessment and Management for In-Service Damage
 - SCC Crack Extension and Coalescence
 Modeling: Extend the SCC crack growth model to project SCC behavior over time under generalized loading conditions
 - SCC Avoidance in Ethanol Pipelines: Identify the primary factors and range of service conditions likely to cause SCC in ethanol pipelines

Materials Projects


- **▶ Integrity Assessment and Management for In-Service Damage**
 - Assessment of Remaining Strength of Corroded Pipe

Guidance to assess remaining strength of corroded pipe subject to biaxial & cyclic loading, of corroded higher strength pipe (x80/100), & failure pressure of corrosion defects in low toughness pipe

Total funding \$400K

Completion 2005

Materials Projects

- → New Materials and Welding Processes
 - Improved Welding Methods for Pipelines
 Multi-wire GMAW procedures for high speed, high deposition fill pass welding
 Total funding \$500K
 Completion 2005

Contact Details

Christina Sames 703/387-0190 X105 csames@PRCI.org

Pipeline Research Council International Inc.
www.prci.org