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The multilevel inverters are one of the great solutions that are proposed to satisfy 

the demand for high-power application and the significant integration of renewable energy.  

The conversion process from DC to AC must be done at high efficiency to decrease the 

energy loss and to ensure the electric grid power quality. The Total Harmonic Distortion 

(THD) is the most important feature that indicates the efficiency of the conversion process. 

In this research, due to the advantages of the cascade H-bridge inverter over other 

topologies, it has been used with the virtual stage PWM technique to investigate two 

different methods for selective harmonics elimination. The first method is looking from the 

single-phase perspective, and the second method is looking from the three-phase 

perspective. A comparison has been done on a wide range of modulation indices using five- 

and seven- level inverters. The three-phase method provides better results in terms of the 

THD and the fundamental component. Also, it guarantees the amplitude and shape of 

output voltage signal in the three-phase application. 
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CHAPTER 1 

INTRODUCTION 

1.1 General  

The multilevel inverters are one of the great solutions that are proposed to satisfy the 

demand for high-power application and the significant integration of renewable energy. In 

this research, the H-bridge multilevel inverter is used to compare the output voltage quality 

of two different methods. These methods are used to find the switching angles for the 

virtual stage PWM modulation technique. 

The following chapter contains Section 1.2 that presents the motivation behind this 

research. Section 1.3 describes the main objective of the thesis. Section 1.4 provides the 

thesis outline.  

1.2 Motivation 

In the last few years, there has been a huge development in inverters in either topologies 

or control. This development has been due to the high demand in power equipment that 

reaches the megawatts scale. These megawatts applications usually are supplied by 

medium voltage grids [1]. Also, the recent integration of renewable energy and the large 

scale of integration that reaches to megawatts is usually connected to medium-voltage 

distribution networks or sometimes the transmission networks. The power semiconductor 

devices that typically are used in the industry are insulated gate bipolar transistor (IGBT), 

integrated gate commutated thyristor (IGCT), and gate turn-off thyristor (GTO) [2]. The 

maximum rating voltage for a power semiconductor device is around 6.5kV [3], and the 

ratings for the medium voltage grids range from 2kV to 35kV. Therefore, no power 
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semiconductor can be directly connected to the grid above 6.5kV. Multilevel inverters have 

been introduced because of the aforementioned reasons.  

In 1975, the concept of the cascade H-bridge (CHB) multilevel inverter was introduced 

by [4]. Since then, several multilevel inverter (MI) topologies have been proposed, 

including neutral point clamped (NPC) [5] [6] and flying capacitor (capacitor clamped) [7]. 

The unique construction of the MI gives it the ability to reach the high-voltage ratings 

without transformers. Also, it produces an output voltage waveform with low harmonic 

content. The idea behind the MI is that it accumulates several voltage levels to reach the 

desirable voltage level. The general shape of the output waveform of the MIs is a staircase. 

As the steps in the staircase increase, the harmonic contents decrease [1]. 

The MIs do not just solve the voltage ratings problem; they also provide several 

advantages over other topologies. The output voltage in the MIs has very low distortion 

with a reduction of the electromagnetic compatibility problems by reducing the dv/dt 

stresses. In addition, low distraction in the input current results in a reduction in the total 

harmonic distortion (THD) and better signal quality. Also, the small production of the 

common mode (CM) voltage reduces the stress on the motor’s bearing. Furthermore, it can 

be controlled using high and low switching frequency where the latter can provide better 

efficiency. [8], [9]. 

1.3 Thesis Objective  

The importance of multilevel inverters in the industry is due to the increase in high-

power demand and the high integration of renewable energy sources. The MIs structure 

and control are developed rapidly to improve the power quality and reliability to contribute 

to this field, this thesis presents an existing modulation, which is the virtual stage PWM 
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(VSPWM) technique from the three-phase perspective and apply it on a single phase 

topology the CHB. The three-phase perspective decreases the output voltage THD by 25% 

in the five-level inverter and by 17% in the seven-level inverter. Also, the three-phase 

perspective increases the minimum value for the fundamental component by 125% in the 

five-level inverter and by 38% in the seven-level inverter. This research uses an existing 

topology, the CHB, due to its advantages over other topologies. Simulations and 

experiments have been done to validate these improvements, and the Raspberry Pi has been 

used as the controller for the inverters.  

1.4 Thesis Outline  

In this chapter, a general idea about multilevel inverter motivation and principle has 

been presented, as well as advantages of the MIs over other topologies. In addition, the 

contribution of this thesis has been introduced.  

Chapter 2 presents literature review of MIs and their principle function, along with a 

literature review of the three main topologies of MIs.  

Chapter 3 provides the different types of the modulation techniques for MIs and the 

classification of these techniques. 

Chapter 4 introduces the virtual stage PWM for both the five- and seven-level inverters 

from two perspectives depending on the method used to calculate the unknown angles and, 

in addition, the derivation of the set of equations that represents it. The chapter also 

provides the simulation results and analysis. 

The purpose of Chapter 5 is to present the experiment methodology and results of the two 

methods used to calculate the unknown angles to validate the simulation results. 
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Chapter 6 provides a brief summary of the thesis, and from this summary, the contribution 

of the thesis is illustrated. Finally, the ongoing work and future suggestions are mentioned.  
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CHAPTER 2 

INVERTER TOPOLOGIES 

2.1 General 

Increasing demand for electricity and the need for energy independence has led to the 

fast-growing availability of renewable energy sources, such as solar, wind, bio, and 

geothermal energy—among others. Due to these growing energy sources, a variety of 

power converters became common components of the electrical system to achieve their 

integration into the smart electrical grid. [10] 

Generally, the electricity generation is divided into two types: the direct current (DC) 

generation (i.e., renewable energy systems and batteries) and alternative current (AC) 

generation (i.e., moving turbine, including steam, fossil fuel, and hydropower). To 

integrate DC generation with the utility grids, power inverters are needed to convert the 

DC to AC.  

Three main types of inverters have been classified depending on the output waveform: 

sine wave, square wave, and modified-sine wave. A sine wave inverter converts the DC 

energy to a near-perfect sine wave—similar to utility grid electricity waveform. This sine 

wave contains the least amount of THD, which makes it more suitable for sensitive 

equipment and electronics. This also makes it more expensive than other types. Square 

wave is the output of typical inverters, where the waveform keeps regularly alternating 

between positive and negative. The modified square wave looks like a square wave but has 

an additional step or steps that make it closer to the sine wave shape. 
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Pure sinusoidal is the ideal inverter output waveform. However, because the sine wave 

inverter is considered an expensive and complicated solution, the modified sine wave 

inverter is considered a less expensive and easier solution in most of the applications. 

Figure 2.1 shows the three different types of the inverter output waveforms [11]. 

Square Wave 

Sine Wave

Modified Sine 

Wave 

Time

V
o

lt
ag

e

 

Figure 2.1: Sine, Square, and Modified Sine wave 

One of the basic circuits to convert DC to AC is the full-bridge converter. The operation 

of this circuit depends on the opening and closing sequence of the switches to convert the 

DC to AC. The output voltage amplitude can be one of the following values: +Vdc, -Vdc, 

and zero depending on each switch position. Table 2.1 shows each switch position and the 

resultant output voltage. Figure 2.2 shows the coordination of the switches during one full 

cycle to generate the desirable waveform. Figure 2.3 shows the output voltage waveform 

generated from the full-bridge converter.  

 



7 
 

Table 2.1: Full-bridge converter relationships between switches and output voltage 

Closed Switches Open Switches Output Voltage Vo 

S1 and S2 S3 and S4 +Vdc 

S3 and S4 S1 and S2 -Vdc 

S1 and S3 S2 and S4 0 

S2 and S4 S1 and S3 0 

 

Vo

S1 S3

S4 S2

+ -+

-
Vdc

Vdc

S1

S2

+ -+

-
Vdc

-Vdc

S3

S4

+ -+

-

0
S1 S3

+ -+

-
Vdc

0

S4

S2

+ -+

-

Vdc

Vdc

(a)

(b) (c)

(d) (e)
 

Figure 2.2: (a) Full-bridge converter; (b) S1 and S2 closed; (c) S3 and S4 closed; (d) S1 and S3 

closed; (e) S2 and S4 closed 
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Figure 2.3: Output voltage waveform generated by full-bridge circuit 

 

In all cases, it is prohibited to close S1 and S4 and S2 and S3 at the same time. If that happens, 

a short circuit will occur across the DC source. This should be taken into consideration 

when installing real-time switches in experiments because they will not work 

instantaneously [12]. 

  

In general, there is a contradiction between a “converter” and an “inverter.” A converter 

refers to the device itself that does the conversion process for the waveform. It operates in 

two modes depending on the power flow. If it converts the energy from AC to DC, it is 

called a rectifier. If it converts the energy from the DC to AC, it is called an inverter.  
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2.2 Multilevel Inverter (MI) 

In 1975, the concept of a multilevel inverter (MI) was introduced [4]. It is considered 

one of the most feasible solutions for medium- and high-power applications.  

The semiconductors and the capacitor voltage sources are the main components for MIs 

and are organized in a way that generates the output voltage in staircase format. The 

operation of the switches determines the output voltage level depending on its position. 

Figure 2.4 shows multilevel inverters with one phase leg [13] 

+

-

Vo

Vdc

+

-
+

-

Vo

Vdc

+

-

Vdc

+

-

+

-

Vo
Vdc

+

-

+

-
+

-

Vdc

Vdc

(a) (b) (c)   

Figure 2.4: a) Two-level inverter; b) three-level inverter; c) n-level inverter [5] 

As the number of the levels increases, the output waveform becomes more similar to 

the desired sine wave. Figure 2.5 shows an 11-level multilevel inverter output voltage. 

Vd

2Vd

-2Vd

-Vd

0

3Vd

-3Vd

4Vd

5Vd

-4Vd

-5Vd

V
o
lt

ag
e 

[V
]

Time  [Sec]  

Figure 2.5: Eleven-level multilevel inverter output voltage waveform  
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The output will not be an exact sine wave despite increasing the number of  levels. So, to 

describe the quality of the output voltage of a nonsinusoidal wave, the term “total 

harmonic distortion (THD)” has been presented [12].  

𝑇𝐻𝐷 =  
√∑ (𝑉𝑛,𝑟𝑚𝑠)

2∞
𝑛=2

𝑉1,𝑟𝑚𝑠
=  

√𝑉𝑟𝑚𝑠
2 − 𝑉1,𝑟𝑚𝑠

2

𝑉1,𝑟𝑚𝑠
                                                                       (2.1) 

Where 𝑉𝑛,𝑟𝑚𝑠 is the voltage rms value at harmonic n, 𝑉1,𝑟𝑚𝑠 is the voltage rms value for 

the fundamental component and 𝑉𝑟𝑚𝑠  is the output voltage rms value.  

The THD for the current depends on the connected load. To find the value of the THD 

for the current, substitute the voltage by the current using the above equation [12]. 

The presence of MIs took an important place in industrial applications due to their 

advantages over other conventional two-level inverters. The output voltage in the MIs has 

very low distortion with a reduction of the electromagnetic compatibility problems by 

reducing the dv/dt stresses. Also, low distraction in the input current results in a reduction 

in the THD and better signal quality [8]. Additionally, the small production of the common 

mode (CM) voltage reduces the stress on the motor’s bearing [9]. It can also be controlled 

using high and low switching frequency where the latter can provide better efficiency.   

Different topologies have been developed for the multilevel inverters [14] [15] [16] 

[17] [18] [19] [20] [21]. The main inverters’ topologies are: cascade H-bridge (CHB) with 

separate DC sources [7] [4], neutral point clamped (NPC) [5] [6], and flying capacitor 

(capacitor clamped) [7].  
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In this chapter, the working principle of each inverting topology will be discussed, and 

the advantages and disadvantages will be illustrated. The CHB will be used in this research 

due to its advantages over other topologies. 

2.2.1 Cascade H-Bridge Inverter  

The CHB inverter is the first MI based on semiconductors and was described and 

constructed by [4]. It was a cascaded topology, which is a serial connection of a one-phase 

inverter. This MI is based on the series connection of single-phase H-bridge inverters with 

separate DC sources without clamping diodes or voltage capacitors [7].  Each bridge 

consists of four switches with their diodes—S1, S2, S3, S4—and one independent voltage 

source, “Vd.” The voltage sources can include batteries, fuel cells, and solar cells. All the 

voltage sources have an identical voltage. The output voltage of each bridge can obtain 

values “-Vd,” “0,” or “+Vd.” Figure 2.6 illustrates the output voltage from a single H-bridge 

inverter with a single DC source when considering the normal switch operations as shown 

in Table 2.2.  

 

Vd

0

-Vd

Vd

S1 S2

S3 S4

Vo

(b)(a)

V1

+

-

V2

+

-

 

Figure 2.6: CHB circuit (a) single H-bridge inverter with single DC source (b) output 

voltage from (a) 
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Table 2.2: Three-level cascaded H-bridge leg relationships between configurations and 

output voltage 

S1 S2 S3 S4 Vo 

1 0 0 1 -Vd 

1 1 0 0 0 

0 0 1 1 0 

0 1 1 0 +Vd 

   

Increasing the number of levels will smooth the output voltage signal and decrease 

the total harmonic distortion (THD). In addition, high and low couples of switching can be 

defined with respect to the voltage output direction. Considering Figure 2.7 with two 

bridges, the high output of one bridge is a shortcut to the low output of another one, 

resulting in a cascade connection between two bridges. Each bridge in the cascade adds 

two more levels to the output waveform. The following equation represents the maximum 

number of voltage levels that can be generated in the phase voltage from cascaded H-bridge 

cells, where N is the number of H-bridge cells: 

Vph = 2 × N + 1                                                                                                                          (2.2) 

Figure 2.7 shows the two H-bridge inverter cells cascaded to generate five-level output 

voltage. Table 2.3 shows the relationship between the transistor on/off situation and the 

output voltage. 
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Vd

S’1 S’2

S’3 S’4

Vo

Vd

S1 S2

S3 S4

 

Figure 2.7: Two cascaded H-bridge inverter cells  

 

Figure 2.8 shows the output voltage from the lower cell and the upper cell as well as the 

resultant output voltage from the whole circuit.  

 

 

 

 

 

 

 

 

b) 
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Table 2.3: Five-level cascaded H-bridge leg relationships between configurations and output 

voltages  

The Upper Cell The Lower Cell 

Vout 

S’1 S’2 S’3 S’4 S1 S2 S3 S4 

1 0 0 1 1 0 0 1 2Vd 

1 1 0 0 1 0 0 1 Vd 

1 0 0 1 0 0 1 1 Vd 

1 0 0 1 1 1 0 0 Vd 

0 0 1 1 1 0 0 1 Vd 

1 1 0 0 1 1 0 0 0 

1 1 0 0 0 0 1 1 0 

1 0 0 1 0 1 1 0 0 

0 1 1 0 1 0 0 1 0 

0 0 1 1 1 1 0 0 0 

0 0 1 1 0 0 1 1 0 

0 1 1 0 1 1 0 0 -Vd 

0 0 1 1 0 1 1 0 -Vd 

0 1 1 0 0 0 1 1 -Vd 

1 1 0 0 0 1 1 0 -Vd 

0 1 1 0 0 1 1 0 -2Vd 
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Vd

Vd

Vd

2Vd

-2Vd

-Vd

0
θ1 θ2 π

θ1 

θ2 π

π

 

 

Figure 2.8: Voltage output from the lower cell, upper cell, and total voltage from both cells 

 The CHB inverter can be connected in a Y or ∆ configuration to formulate the three-

phase source. Figure 2.9 shows the three-phase Y structure for a five-level CHB inverter 

[22]. 
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Vd

Vd

Vd

Vd

Vd

Vd

N

A B C

 

Figure 2.9: Three-phase Y connection structure for five-level cascade H-bridge inverter 

 

The CHB inverter can be considered a suitable solution for many applications due to its 

advantages over other topologies.  

One of the main advantages is the number of the output voltage levels. The number 

of levels is more than twice the DC source (M = 2*S+1), where S is the number of DC 

sources. Another advantage from the production point of view is the modularization and 

packing of the series H-bridge, making it a quicker and less expensive process [7] [23]. 

Also, it does not require additional clamping diodes or balancing capacitors such as those 

needed with other topologies [7]. 

The main disadvantage for the CHB inverter is that it requires separate DC sources. This 

disadvantage limits the application that it can be used with, mainly the batteries and the 

photovoltaic panels. However, a new approach has been developed to reduce the number 

of isolated DC sources by replacing them with capacitors. The proposed approach uses 

fewer active switches, diodes, capacitors, drivers and DC sources [24]. Also, [25] makes 
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CHB more suitable for photovoltaic and battery-fed applications. The photovoltaic panels 

and the batteries can easily be rearranged in several separated sources to feed CHB bridges. 

As discussed previously, to increase the output voltage quality, more CHB cells must be 

used. This increment in the number of CHB cells will increase the number of transistors 

used. A new topology has been developed to reduce the number of transistors that are used 

in the CHB inverter. This reduction has been accomplished by replacing some of the 

transistors with diodes, and it also reduces the total energy loss across the transistors [26]. 

2.2.2 Diode-Clamped Inverter  

In 1980, the diode-clamped multilevel inverter was derived from the cascade 

inverter [5]. The first proposed diode-clamped inverter was a three-level inverter. The 

neutral point has been defined to be mid-level voltage; thus, the diode clamp inverter has 

another name: neutral point clamped (NPC) inverter [13] as shown in Figure 2.10 (a).  The 

first implantation of this topology was done using pulse width modulation (PWM) in 1981 

by [6]. Figure 2.10 shows a diode-clamped multilevel inverter with three and five levels.  



18 
 

Vd

S1

S2

a

S’1

S’2

D1

D’1

n

C1

C2

0

Vd

S’1

S’2

a

S’3

S’4

D3

D’3

n

C1

0

S1

S2

S3

S4

C2

C3

C4

D1

D’1 D2

D’2

(a) (b)  

Figure 2.10: Diode-clamped multilevel inverter schematic diagram (a) three-level; (b) five-

level [13] 

In Figure 2.10 (a), the three-level diode-clamped multilevel inverter contains two bulk 

series connected capacitors that split the DC bus voltage into three voltage levels. The 

output voltage Van of this inverter is Vd/2, 0, and -Vd/2 [13]. Table 2.4 shows the 

relationship between the output voltage and the on/off status of the switch. 
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Table 2.4: Diode-clamped three-level inverter voltage levels and corresponding switch states 

S1 S2 Sʹ
1 Sʹ

2 Van 

1 1 0 0 Vd/2 

0 0 1 1 -Vd/2 

0 1 1 0 0 

 

What differentiates this topology from others is the implemented diodes that clamp the 

voltage across switches to half of the DC bus voltage level. In the three-level inverter, as 

shown in Figure 2.10 (a), if S1 and S2 are ON, then Va0 will be Vd. In this case, the voltage 

will be equally distributed between switches S’1 and S’2 because of D’1. Also, the voltage 

across C1 will be blocked by switch S’2, and the voltage across C2 will be blocked by S’1. 

The output AC voltage from the inverter must be taken a Van. Because the output voltage 

from Va0 is DC, it will be a DC/DC converter, not DC/AC inverter. The difference between 

the two is the voltage across C2, which is equal to Vd/2 [13]. 

The five-level diode-clamped inverter is shown in Figure 2.10 (b). There are four 

capacitors parallel with the DC source. The voltage across each capacitor is Vd/4 [13]. 

Table 2.5 shows the relationship between the output voltage and the switch states.  
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Table 2.5: Diode-clamped five-level inverter voltage levels and corresponding switch states 

S1 S2 S3 S4 S’1 S’2 S’3 S’4 Van  

1 1 1 1 0 0 0 0 Vd/2 

0 1 1 1 1 0 0 0 Vd/4 

0 0 1 1 1 1 0 0 0 

0 0 0 1 1 1 1 0 -Vd/4 

0 0 0 0 1 1 1 1 -Vd/2 

There are four switch pairs that work in complementary mode in the diode-clamped 

multilevel inverter: (S1, S’1), (S2, S’2), (S3, S’3), and (S4, S’4). If one of them is on, the other 

is off. In addition, Vd/(n-1) is the required voltage to be blocked by each switch, where n 

is the number of levels. However, each diode has a different voltage level that needs to be 

blocked. In the five-level inverter, D’1 has to block 3Vd/4, but D1 needs to block Vd/4. D2 

and D’2 will have the same voltage values, 2Vd/4. The number of diodes required for each 

phase in the diode-clamped inverter, taking into consideration that each diode blocks rating 

voltage the same as the active switch voltage rating, is: 

Ndiodes = (n − 1) × (n − 2)                                                                                                   (2.3) 

The number of diodes increases quadratically as the number of levels increase, which 

makes it very difficult to build. Also, with high-voltage, high-power application, the 

reverse recovery time for the diode will be the major issue in the design, especially when 

it runs under PWM [13]. Another disadvantage of the diode-clamped inverter is the lack of 

monitoring and control that makes the real power flow difficult in a certain inverter [7]. 

An advantage of the diode-clamped multilevel inverter is the presence of the capacitors, 

which allows a control for the reactive power flow. In addition, fundamental switching 
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frequency will provide high efficiency because all the devices operate at low frequency 

[7]. 

2.2.3 Capacitor-Clamped Inverter  

In 1992, the capacitor-clamped multilevel inverter was introduced [27]. The difference 

between the capacitor-clamped inverter circuit and the diode-clamped circuit is that 

capacitors have been used instead of diodes. Each capacitor leg has its own voltage that 

determines the voltage level for each step [8]. Figure 2.11 shows capacitor-clamped 

multilevel inverter schematic diagrams for three and five levels.  
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n
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S2

S3

S4

C4
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C4

(a) (b)

C1

C2

C2

C3

C3

C3C1

 

Figure 2.11: Capacitor-clamped multilevel inverter schematic diagram (a) three-level; (b) 

five-level [13] 



22 
 

The three-level capacitor-clamped inverter will generate three voltage levels across a 

and n. Van = Vd/2, 0, and -Vd/2. Table 2.6 shows the relationship between the output voltage 

and switch states for a three-level capacitor-clamped inverter.  

Table 2.6: Capacitor-clamped three-level inverter voltage levels and corresponding switch 

states 

S1 S2 Sʹ
1 Sʹ

2 Van 

1 1 0 0 Vd/2 

0 0 1 1 -Vd/2 

1 0 1 0 0 

0 1 0 1 0 

 

Turning on S1 and S’1 will charge clamping capacitor C1. Turning on S2 and S’2 will 

discharge clamping capacitor C1. The zero-level combination will affect the charging 

balance of C1, so it should be selected carefully [13]. 

A more flexible combination can be found for a dedicated voltage level in the capacitor-

clamped inverter compared with the diode-clamped inverter. Table 2.7 shows the 

relationship between the output voltage and switch states for a five-level capacitor-clamped 

inverter. 
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Table 2.7: Capacitor-clamped five-level inverter voltage levels and corresponding switch 

states 

S1 S2 S3 S4 S’1 S’2 S’3 S’4 Van 

1 1 1 1 0 0 0 0 Vd/2 

1 1 1 0 1 0 0 0 Vd/4 

0 1 1 1 0 0 0 1 Vd/4 

1 0 1 1 0 0 1 0 Vd/4 

1 1 0 0 1 1 0 0 0 

0 0 1 1 0 0 1 1 0 

1 0 1 0 1 0 1 0 0 

1 0 0 1 0 1 1 0 0 

0 1 0 1 0 1 0 1 0 

0 1 1 0 1 0 0 1 0 

1 0 0 0 1 1 1 0 -Vd/4 

0 0 0 1 0 1 1 1 -Vd/4 

0 0 1 0 1 0 1 1 -Vd/4 

0 0 0 0 1 1 1 1 -Vd/2 

 

In the capacitor-clamped multilevel inverter, the number of capacitors needed 

depends on the number of levels. Equation (2.3) expresses the required number of 

capacitors needed in the capacitor-clamped inverter per phase [13]. 

Ncapacitors = (n − 1) +
(n − 1) × (n − 2)

2
                                                                          (2.4) 
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The large amount of capacitors can provide large storage that gives extra time during a 

power outage and gets over voltage sags. However, the increment in the voltage levels will 

require a higher number of capacitors, which makes the inverter packaging very difficult 

and very expensive [7]. 

The capacitor-clamped multilevel inverter is a good option for the high-voltage DC 

transmission because the flow for both the real and the reactive power are controllable. On 

the other hand, in the real power transmission, the inverter requires a high switching 

frequency that increases the switching losses and control complexity [7]. 

2.3 Conclusion  

The multilevel inverter development has been progressing since 1975 when the first 

topology was presented in because of its advantages over other types of inverters [4]. Also, 

the high integration of  renewable energy sources to the grid and the electric vehicle 

existence speeds the development to achieve better performance and reliability of this type 

of inverter. 

The working principle of the cascade H-bridge (CHB), diode-clamped, and capacitor-

clamped topologies was discussed in this chapter. Also, the advantages and disadvantages 

of each of the three main topologies of the multilevel inverters have been presented.  
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CHAPTER 3 

MIs MODULATION TECHNIQUES  

3.1 General 

In Chapter 2, the construction and the operation principle of the three main 

multilevel inverter topologies were illustrated. The relationships between switch states and 

the desired output voltage level were presented in Tables 2.2-2.7. To control the switch 

state of 1 or 0, several modulation techniques were developed. They have been modified 

from the conventional inverters to be used in the multilevel inverters and were classified 

depending on their switching frequency, as shown in Figure 3.1 [8]. 

This chapter will discuss the modulation techniques used for the MIs.  

 

Multilevel Inverter 

Modulation Techniques 

High Switching Frequency 

PWM

Fundamental Switching 

Frequency 

Space 

Vector 

Control 

Selective 

Harmonic 

Elimination 

Space 

Vector 

PWM

Selective 

Harmonic 

Elimination PWM

Sinusoidal 

PWM
 

Figure 3.1: Multilevel inverter PWM modulation techniques 
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3.2 Fundamental Switching Frequency 

 3.2.1 Space Vector Control (SVC) 

 The space vector control (SVC) modulation technique works with low switching 

frequency; it is presented using (d-q) complex plane. This plane is divided into several 

hexagonal zones [28]. 

The generated voltage vector by an inverter can be expressed in the following equation:  

𝑣(𝑡) =  
2

3
 × (𝑣𝐴𝑁(𝑡) + 𝑎. 𝑣𝐵𝑁(𝑡) + 𝑎2𝑣𝐶𝑁(𝑡))                                                                   (3.1) 

Where 𝑣𝐴𝑁 , 𝑣𝐵𝑁, and 𝑣𝐶𝑁 are the voltages between the terminals A, B, and C with respect 

to neutral N and a is the complex operator [28]: 

𝑎 = −
1

2
+ 𝑗 

√3

2
                                                                                                                           (3.2) 

The voltage vector representation in the complex plane can be expressed by: 

𝑣(𝑡) =  𝑣𝑑 + 𝑗 𝑣𝑞                                                                                                                          (3.3) 

Where: 

𝑣𝑑 =
1

3
× (2 × 𝑣𝐴𝑁 − 𝑣𝐵𝑁 − 𝑣𝐶𝑁)                                                                                           (3.4) 

𝑣𝑞 =
1

√3
× (𝑣𝐵𝑁 − 𝑣𝐶𝑁)                                                                                                             (3.5) 

The SVC technique selects a voltage vector (Vc) that is the nearest to the reference voltage 

vector (Vref) to minimize the space error and reduce the modulation scheme complexity. 

To make the best selection, the real and the imaginary parts of the reference voltage are 
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used to locate the reference voltage in a certain hexagon, so the selected voltage vector 

must be in the area with the best proximity to the reference [28], as shown in Figure 3.2. 

q

d

Vref
Vc

 

Figure 3.2: Load voltage space vector generated by five-level inverter  

This method is more appropriate for inverters with a higher number of voltage levels. The 

errors will be small in comparison to the reference vector [13].   

3.2.2 Selective Harmonic Elimination  

In this type of modulation, the fundamental frequency is the same as the switching 

frequency. The output voltage signal is a staircase, as shown in Figure 3.3 for a five-level 

inverter. The duration of each step depends on its conducting angle θ1, θ2, θ3, … that is 

found depending on the eliminated harmonic component. This section presents two 

methods to find the unknown angles. The first method uses π/2 interval for a single-phase 

perspective. The second method uses π/3 interval for a three-phase perspective.  
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Figure 3.3: Five-level multilevel inverter output voltage signal fundamental frequency 

modulation 

3.2.2.1 Selective Harmonic Elimination Using π/2 Method 

Any periodic signal including the output voltage from the multilevel inverter that 

uses the fundamental switching frequency can be expressed using the Fourier series 

expansion [29]:  

𝑣𝑜(𝑡) = 𝑎𝑣 + ∑ 𝑎𝑛 cos(𝑛𝜔0𝑡) + 𝑏𝑛 sin(𝑛𝜔0𝑡)

∞

𝑛=1,2,3,4…..

                                                    (3.6) 

Where 𝑎𝑣, 𝑎𝑛 𝑎𝑛𝑑 𝑏𝑛 are the Fourier coefficients.  

𝑎𝑣 =
1

𝑇
∫ 𝑣𝑜(𝑡)

𝑡0+𝑇

𝑡0

𝑑𝑡                                                                                                             (3.7) 

𝑎𝑛 =
2

𝑇
∫ 𝑣𝑜(𝑡) cos(𝑛𝜔0𝑡)𝑑𝑡

𝑡0+𝑇

𝑡0

                                                                                        (3.8) 
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𝑏𝑛 =
2

𝑇
∫ 𝑣𝑜(𝑡) 𝑠𝑖𝑛(𝑛𝜔0𝑡)𝑑𝑡

𝑡0+𝑇

𝑡0

                                                                                        (3.9) 

Where to is the time reference, and T is the fundamental period of 𝑣𝑜(𝑡). 

To simplify the Fourier series, coefficient multiple symmetries will be taken into 

consideration for the sine wave odd symmetry, half-wave symmetry, and the odd 

quarter-wave symmetry. 

1- Odd symmetry 

If the periodic function has an odd symmetry, the following occurs:  

𝑓(𝑡) =  −𝑓 (−𝑡)                                                                                                          (3.10) 

Due to this property, the Fourier series coefficient will be [29]: 

𝑎𝑣 = 0                                                                                                                            (3.11) 

𝑎𝑛 = 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛                                                                                                         (3.12) 

𝑏𝑛 =
4

𝑇
∫ 𝑣𝑜(𝑡) 𝑠𝑖𝑛(𝑛𝜔0𝑡)𝑑𝑡

𝑇 2⁄

0

                                                                               (3.13) 

2- Half-wave symmetry  

If the periodic function satisfies equation (3.14), it has a half-wave symmetry: 

𝑓(𝑡) =  −𝑓 (𝑡 − 𝑇 2⁄ )                                                                                                (3.14) 

Due to this property, the Fourier series coefficient will be [29]: 

𝑎𝑣 = 0                                                                                                                          (3.15) 

𝑎𝑛 = 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 𝑒𝑣𝑒𝑛                                                                                              (3.16) 
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𝑎𝑛 =
4

𝑇
∫ 𝑣𝑜(𝑡) 𝑐𝑜𝑠(𝑛𝜔0𝑡)𝑑𝑡

𝑇 2⁄

0

 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 𝑜𝑑𝑑                                                   (3.17) 

𝑏𝑛 = 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 𝑒𝑣𝑒𝑛                                                                                             (3.18) 

𝑏𝑛 =
4

𝑇
∫ 𝑣𝑜(𝑡) 𝑠𝑖𝑛(𝑛𝜔0𝑡)𝑑𝑡  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 𝑜𝑑𝑑

𝑇 2⁄

0

                                                 (3.19) 

3- Quarter-wave symmetry 

If the periodic function has a half-wave symmetry and symmetry around the 

midpoint of the positive and negative half-cycle, it has quarter-wave symmetry. So, 

the Fourier series coefficient becomes [29]: 

𝑎𝑣 = 0, 𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝑡ℎ𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 𝑜𝑑𝑑 

𝑎𝑛 = 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝑡ℎ𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 𝑜𝑑𝑑  

𝑏𝑛 = 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 𝑒𝑣𝑒𝑛, 𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝑜𝑓 ℎ𝑎𝑙𝑓 𝑤𝑎𝑣𝑒 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 

𝑏𝑛 =
8

𝑇
∫ 𝑣𝑜(𝑡) 𝑠𝑖𝑛(𝑛𝜔0𝑡)𝑑𝑡  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 𝑜𝑑𝑑

𝑇 4⁄

0

                                                   (3.20) 

Due to the above symmetries, the Fourier expression can be conveyed as in equation 

(3.21) because of the wave symmetry (0, π/2) [29]. 

𝑣𝑜(𝑡) =
4𝑉𝑑𝑐

𝜋𝑛
 ∑ [ cos(𝑛𝜃1) +  cos(𝑛𝜃2)  +  cos(𝑛𝜃3) + ⋯ ] 

∞

𝑛=1,3,5,7,…..

×  sin (𝑛𝜔0𝑡)                                                                                          (3.21) 
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The values for θ1, θ2, and θ3 can be chosen to eliminate the lower frequency harmonics or 

to get the minimum total harmonic distortion (THD) [30]. 

The number of the eliminated harmonics is equal to: 

𝑁𝐸𝑙𝑖𝑚𝑖𝑛𝑎𝑡𝑒𝑑 ℎ𝑎𝑟𝑚 =  𝑁𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑛𝑔 𝑎𝑛𝑔𝑙𝑒𝑠 − 1                                                                       (3.22) 

 For example, to eliminate the fifth and seventh harmonic in the five-level MI, the 

following set of equations are solved using the Newton-Raphson method. 

cos(5𝜃1) + cos(5𝜃2) + cos(5𝜃3) = 0                                                                                (3.23) 

cos(7𝜃1) + cos(7𝜃2) + cos(7𝜃3) = 0                                                                                (3.24) 

cos(𝜃1) + cos(𝜃2) + cos(𝜃3) = 2 ∗ 𝑚𝑎                                                                              (3.25) 

𝑚𝑎 =
𝑉𝐿

∗

𝑉𝐿𝑚𝑎𝑥
                                                                                                                               (3.26) 

Where ma is the modulation index, 𝑉𝐿
∗ is the amplitude command of the inverter for a sine 

wave output phase voltage, and 𝑉𝐿𝑚𝑎𝑥 is the maximum output voltage from the multilevel 

inverter [8]. 

All of the above derivations are based on a single-phase perspective due to the single-

phase output voltage symmetry properties.  

 

3.2.2.2 Selective Harmonic Elimination Using π/3 Method 

From a three-phase perspective, several properties can be found that provide a narrower 

interval to find a solution to the above set of equations. So, instead of looking (0, π/2), it 
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will be (0, π/3). The steps are shown as follows. Start by listing the properties and 

characteristics of the ideal voltage waveform of the three balanced voltages as shown in 

Figure 3.4 [31]: 

0
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Figure 3.4: Three line to line voltage waveforms in a three-phase system 

1. Property (1): 𝑣𝑎𝑏 is an even function with respect to zero 

For every 𝜃 [0 ,
𝜋

2
] , 𝑣𝑎𝑏(−𝜃) = 𝑣𝑎𝑏(𝜃) 

2. Property (2): 𝑣𝑎𝑏 is an odd function with respect to π/2 

For every 𝜃 ∈ [0 ,
𝜋

2
] , 𝑣𝑎𝑏 (

𝜋

2
+ 𝜃) = −𝑣𝑎𝑏 (

𝜋

2
− 𝜃) 

3. Property (3): 𝑣𝑏𝑐 is symmetrical to 𝑣𝑎𝑏with respect to π/3 

For every 𝜃 ∈ [0 ,
𝜋

3
] , 𝑣𝑏𝑐 (

𝜋

3
+ 𝜃) = −𝑣𝑎𝑏 (

𝜋

3
− 𝜃) 

4. Property (4): 𝑣𝑐𝑎 is an inverted and shifted version of 𝑣𝑎𝑏 

For every 𝜃 ∈ [0 ,
𝜋

3
] , 𝑣𝑐𝑎 (

𝜋

3
+ 𝜃) = −𝑣𝑎𝑏(𝜃) 
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5. Property (5): 𝑣𝑎𝑏, 𝑣𝑏𝑐, and 𝑣𝑐𝑎 are balanced three-phase voltages 

For every 𝜃 ∈ [0 , 2𝜋], 𝑣𝑎𝑏(𝜃) + 𝑣𝑏𝑐(𝜃) +  𝑣𝑐𝑎(𝜃) = 0 
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Figure 3.5: Ideal balanced three-phase system in interval (0, π/3) 

Assign the above properties of the ideal voltage waveform of the three balanced voltages 

to the inverter’s output voltage by focusing on the (0, π/3) range as shown in Figure 3.5. 

Also, use the Fourier coefficients of the phase-to-phase output voltage given by (3.27-3.28) 

because it is well-known that each periodic function of variable can be composed of a set 

of sine and cosine functions [31]: 

𝑎𝑛 =
1

𝜋
∫ 𝑣𝑎𝑏(𝜃). cos(𝑛𝜃)𝑑𝜃

𝜋

−𝜋

                                                                                              (3.27) 

𝑏𝑛 =
1

𝜋
∫ 𝑣𝑎𝑏(𝜃). sin(𝑛𝜃)𝑑𝜃                                                                                              (3.28)

𝜋

−𝜋

 

Use property (1) and apply it to the Fourier coefficients to become:  
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𝑎𝑛 =
2

𝜋
∫ 𝑣𝑎𝑏(𝜃). cos(𝑛𝜃)𝑑𝜃                                                                                              (3.29)

𝜋

0

 

𝑏𝑛 = 0                                                                                                                                          (3.30) 

Use property (2) and apply it to the Fourier coefficients to become:  

𝑎𝑛 = 0 𝑓𝑜𝑟 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛                                                                                                              (3.31) 

𝑎𝑛 =
4

𝜋
∫ 𝑣𝑎𝑏(𝜃). cos(𝑛𝜃)𝑑𝜃  𝑓𝑜𝑟 𝑛 𝑖𝑠 𝑜𝑑𝑑                                                                  (3.32)

𝜋/2

0

 

Use property [5] and apply it to the Fourier coefficients to become:  

𝑎𝑛 =
4

𝜋
[∫ 𝑣𝑎𝑏(𝜃). cos(𝑛𝜃)𝑑𝜃 − ∫ (𝑣𝑏𝑐(𝜃) + 𝑣𝑐𝑎(𝜃)). cos(𝑛𝜃)𝑑𝜃

𝜋/2

𝜋/3

𝜋/3

0

]               (3.33) 

Use properties (3) and (4) and apply them to the Fourier coefficients to become:  

𝑎𝑛 =
4

𝜋
[∫ 𝑣𝑎𝑏(𝜃). cos(𝑛𝜃)𝑑𝜃

𝜋/3

0

− ∫ (𝑣𝑏𝑐 (
2𝜋

3
− 𝜃) + 𝑣𝑐𝑎 (𝜃 −

𝜋

3
)) . cos(𝑛𝜃)𝑑𝜃

𝜋/2

𝜋/3

]                          (3.34) 

Due to the above three-phase output voltage properties and after some mathematical 

manipulation, the following occur [31]: 

𝑎𝑛 =
8

𝜋
cos (𝑛

𝜋

6
) ∫ 𝑣𝜑−𝜑(𝜃) cos (𝑛 (

𝜋

6
+ 𝜃)) 𝑑𝜃                                                         (3.35)

𝜋
3⁄

0

 

𝑏𝑛 = 0                                                                                                                                          (3.36) 
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Where n is the odd and non-triple harmonics and 𝑣𝜑−𝜑 is line-to-line voltage.  

All even harmonics will be zero in both the single-phase and the three-phase output voltage 

waveform, but all of the triple harmonics will be zero only in the three-phase output voltage 

because they will be canceled for each phase-to-phase signal. 

3.3 High Switching Frequency 

3.3.1 Space Vector PWM (SVPWM) 

The space vector PWM (SVPWM) method generates the desired mean load voltage value 

in every switching interval. Figure 3.6 shows a space vector diagram for two- and three-

level inverters. 

Vb

Vc

Va

q

d

Vb

Vc

Va

q

d

(a)

(b)

0,0,0 1,0,0

1,1,00,1,0

0,1,1

0,0,1 1,0,1

0,0,0 1,0,0 2,0,0

1,1,0 2,1,0

2,2,01,2,00,2,0

0,1,00,2,1

0,2,2

0,0,1

0,1,1

0,1,2 1,0,1 2,0,1

0,0,2 1,0,2 2,0,2

 

Figure 3.6: Space vector diagram for (a) two-level inverter; (b) three-level inverter   
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The three-phase output voltages are represented by certain points in the space vector 

diagram depending on the inverter state. For point (2,1,0) in Figure 3.6 (b), Va = 2 Vdc, Vb 

= 1Vdc, and Vc = 0 with respect to ground. Figure 3.7 shows the states of the switches on a 

three-level DC-link referring to this switching combination. 

Vc2

Vc1

Va0Vb0Vc0

0
 

Figure 3.7: Three-level DC-link  

 The algebraic representation for the output voltages and the switching states are 

presented in the following equation [32]: 

𝑉𝑎𝑏𝑐0 = 𝐻𝑎𝑏𝑐𝑉𝑐                                                                                                                          (3.37) 

Where:  

𝑉𝑐 = [𝑉𝑐1 𝑉𝑐2 𝑉𝑐3 ⋯ 𝑉𝑐𝑚]𝑇 , 𝐻𝑎𝑏𝑐 =  [

ℎ𝑎1 ℎ𝑎2 ℎ𝑎3 … ℎ𝑎𝑚

ℎ𝑏1 ℎ𝑏2 ℎ𝑏2 … ℎ𝑏𝑚

ℎ𝑐1 ℎ𝑐2 ℎ𝑐2 … ℎ𝑐𝑚

] , and 

 ℎ𝑎𝑗 = ∑ 𝛿(ℎ𝑎 − 𝑡)

𝑚

0
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ha represents the switch state, and t represents an integer from 0 to m. If (ha-t) ≥ 0, then 

δ(ha-t) = 1; if (ha-t) < 0, then δ(ha-t) = 0, where m = n-1 and n is the number of levels in 

the inverter.  

The available unique switching combination in the n-level multilevel inverter is equal to: 

𝑁𝑢𝑛𝑖𝑞𝑢𝑒 𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔 𝑐𝑜𝑚𝑏 =  𝑛3 − (𝑛 − 1)3                                                                             (3.38) 

Thus, the number of repetitions in the switching combination is equal to (𝑛 − 1)3. In the 

three-level inverter, there are 19 unique switching combinations and 27 total combinations.  

The repetition in the switching states helps control the charging and discharging of the 

capacitors and provides the DC-link with good utilization. In addition, a low-ripple output 

current is generated. These two features make this technique more suitable for the high-

voltage application. [8] 

From a hardware perspective, the implementation of the SVPWM is considered easy using 

digital signal processing (DSP) [8]. But, as the number of the inverter levels increases, the 

implementation becomes harder because the switching states increase, the number of 

calculations increase, and the sample time becomes shorter. To reduce calculation 

numbers, a new set of model predictive control (MPC) has been proposed in [33], where 

only three-voltage vectors are considered depending on the reference voltage. 

3.3.2 Sinusoidal PWM (SPWM) 

The pulse width modulation technique generates pulse train with pulse widths proportional 

to a control signal. In the sinusoidal PWM (SPWM), the control signal will be sinusoid, 

and the average voltage of the generated signal varies sinusoidally. Also, the output 
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waveform fundamental frequency is equal to the control signal frequency but contains 

harmonic components [34]. The generated signal is an output of a comparator that is the 

difference between two signals. The first signal is the control signal, and the second signal 

is the carrier signal. There are two switching schemes for this type of modulation: bipolar 

switching and unipolar switching.  

In bipolar switching, the output alternates between the +Vdc and -Vdc. If the reference signal 

is larger than the carrier signal, the output is +Vdc; when the reference signal is less than 

the carrier signal, the output is -Vdc [12]. 

In unipolar switching, the output varies from zero to high or from low to zero, but no 

variation will be between high and low. Figure 3.8 shows the unipolar SPWM applied to 

the H-bridge shown in Figure 2.6(a), where the output voltage is Vo = V1-V2 [12]. 
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Vtri Vsine V-sine
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Vd

Vd

-Vd
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(b)

(c)

(d)
 

Figure 3.8: (a) Carrier and reference voltage signals; (b) leg 1 output voltage; (c) leg 2 

output voltage; (d) H-bridge output voltage  

There are harmonic components in the generated signal. These components are multiples 

of the fundamental frequency. A low pass filter can be used to remove the undesired 

harmonic components because most of them are in the high frequency regions. The 

frequency modulation 𝑚𝑓 is the ratio between the carrier signal frequency 𝑓𝑐𝑎𝑟𝑟𝑖𝑒𝑟  and the 

reference signal frequency 𝑓𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 given in the following equation [12]: 
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𝑚𝑓 =
𝑓𝑐𝑎𝑟𝑟𝑖𝑒𝑟 

𝑓𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
=  

𝑓𝑡𝑟𝑖

𝑓𝑠𝑖𝑛𝑒
                                                                                                         (3.39) 

As the frequency modulation ratio increases, the occurrence of harmonic component 

frequencies increases, which makes it easier to be filtered. To increase the frequency 

modulation ratio, the carrier frequency must increase, but that increases the loss in the 

switches [12]. 

The amplitude modulation ratio 𝑚𝑎 is one of the most important factors that must be 

defined in the PWM. It is the ratio between the reference signal amplitude 𝑉𝑚,𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒  

and the carrier signal amplitude 𝑉𝑚,𝑐𝑎𝑟𝑟𝑖𝑒𝑟  [12]. 

𝑚𝑎 =
𝑉𝑚,𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 

𝑉𝑚,𝑐𝑎𝑟𝑟𝑖𝑒𝑟 
=  

𝑉𝑚,𝑠𝑖𝑛𝑒

𝑓𝑚,𝑡𝑟𝑖
                                                                                               (3.40) 

The amplitude of the fundamental frequency depends on ma. If ma ≤ 1, the fundamental 

frequency amplitude is equal to [12]: 

𝑉𝑓𝑢𝑛𝑑 = 𝑚𝑎 × 𝑉𝑑                                                                                                                      (3.41) 

If ma >1, the relationship between ma and the fundamental frequency will not be a linear 

relationship. 

3.3.3 Selective Harmonic Elimination PWM 

In the fundamental switching frequency, the number of the eliminated harmonics is 

dependent on the number of DC sources. The multilevel inverter hardware cost affects its 

usage in comparison with the conventional two-level inverters. Also, the achievement of 

low THD and the increment in the number of the eliminated low order harmonics in the 
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two-level conventional inverters needs high switching frequency that causes a high 

switching losses [35]. A generalized harmonic modulation method called virtual stage 

PWM [35] has been developed to minimize the THD in the multilevel inverters. The virtual 

stage PWM decreases the THD and increases the number of the eliminated low order 

harmonics using the same number of levels. Also, it uses lower switching frequency than 

is used in the conventional two-level inverters, which significantly decreases the switching 

losses.  

A combination of the unipolar PWM and the fundamental frequency switching is 

used to formalize the virtual PWM [35]. Figure 3.9 shows a five-level single-phase output 

waveform of the virtual stage PWM control. One DC source is used when the unipolar 

PWM is implemented on a multilevel inverter. The output voltage waveform depends on 

the “on” and “off” number of switching times during one fundamental cycle. 

Vd

2Vd

-2Vd

-Vd

0

θ1 θ2 θ3 

π/2

θ4 

 

Figure 3.9: Five-level single-phase output voltage waveform of the virtual stage PWM 

control 
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In both the fundamental frequency and the PWM selective harmonic elimination methods, 

a set of equations must be developed to find the unknown angles depending on the 

eliminated harmonics.  

To solve this set of equations, a good initial guess is needed by applying Newton’s method, 

but sometimes it cannot be solved [36]. The resultant method has been presented in [37] 

[38] [39] to solve this set of equations to find the unknown angles. In this method, the set 

of equations convert to polynomials equations. The resultant theory has been used to 

eliminate specific harmonics: fifth, seventh, eleventh, and thirteenth. When the number of 

conducting angles increase, the polynomial order increases.  To solve this problem, the 

resultant theory has been used to find the initial guess using Newton’s method for the 

fundamental frequency switching. 

Another way to solve the same set of equations has been introduced in [40] using the 

Groebner bases and the symmetric polynomials. At the same time, all possible switching 

patterns and their possible switching angles can be found, which provides different choices 

for the multilevel selective harmonic elimination (SHE). Also, it provides a full study for 

different modulation indices through a different switching patterns.  

3.5 Conclusion  

In this chapter, the control of the multilevel inverter has been discussed and different 

control methodologies have been introduced and illustrated. These methodologies have 

been classified depending on switching frequencies. In this thesis, the selective harmonic 

elimination PWM has been selected as a modulation technique because of its advantages 
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over other techniques. Also, the π/3 method has been used to find the switching angles. All 

of this will be discussed in Chapter 4.  
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CHAPTER 4 

THEORETICAL METHODOLOGY AND SIMULATION 

RESULTS 

4.1 Introduction  

Chapter 2 introduced a literature review for multilevel inverter (MI) topologies. The 

Cascade H-bridge (CHB) topology was selected to conduct this research because of the 

advantages it has over other topologies. Chapter 3 introduced a literature review for MI 

modulation techniques, and the virtual stage PWM was selected as a modulation technique 

for this research.  

 Chapter 4 will provide the theoretical methodology and the simulation results. In section 

4.2, the virtual stage PWM will be discussed in more detail. The generated VSPWM output 

waveform is line-to-line voltage. Both five- and seven-level inverters will be constructed 

using the CHB topology. The generated output waveform is five and seven levels from a 

three-phase perspective and three and five levels from a single-phase perspective. In 

general, if a selected harmonic content is eliminated from the single-phase waveform, it 

will be eliminated from the three-phase waveform. In addition, the triplen harmonics will 

be equal to zero in the three-phase waveform.  

 The conducting angles for this modulation technique will be found using two 

different methods. The first method is to calculate the angles from a single-phase 

perspective, while the second method is to calculate the angles from a three-phase 

perspective. In Section 4.3, simulation results will be provided for different cases regarding 
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eliminated harmonics and the number of levels. Section 4.4 will provide the analysis of the 

results by presenting comparison charts for both methods at different modulation indices.   

4.2 Theoretical Methodology  

The number of the eliminated harmonics in the MI that uses fundamental frequency 

switching depends on the number of the switching angles to achieve the lower THD, and 

the number of the switching angles depends on the number of levels in the MI. In the MI, 

the number of levels depends on the number of DC sources. As the number of DC sources 

increases, the manufacturing process becomes more expensive and the applications become 

limited. On the other hand, a way to decrease the THD can be done using high switching 

control, but this will increase the switching losses. For the same hardware and without 

using a very high switching frequency, the virtual stage PWM (VSPWM) has been 

developed [35].  

The VSPWM is a combination between two different modulation techniques: the 

fundamental frequency switching and the unipolar PWM technique. Figure 4.1 shows this 

combination.  
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Figure 4.1: (a) Fundamental frequency switching output waveform; (b) unipolar switching 

output waveform; (c) VSPWM output waveform for a five-level inverter output voltage 
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4.2.1 Five-Level VSPWM Inverter 

4.2.1.1 Using π/2 Method 

In the following derivation, the fifth and seventh harmonics are eliminated from the single-

phase perspective using equation (4.1). The three-phase output signal will contain the non-

triplen harmonic contents greater than only the seventh because the fifth and seventh have 

been eliminated from the single-phase and will be eliminated from the three-phase 

waveform. In addition, the even harmonic contents will equal zero, as discussed in Chapter 

3. The triplen harmonic contents will equal zero because the proposed system is dealing 

with a balanced three-phase system in which the line to neutral voltage contains multiple 

of three times the fundamental frequency and they are equal in magnitude and phase for 

the triplen harmonics contained in the other two line to neutral voltages. Thus, they will 

cancel each other and the balanced three-phase system will have zero triplen harmonic 

contents [41]. 

The generation of the line-to-line five-level VSPWM waveform has been done using single 

CHB for each phase, and each phase generates a unipolar switching output waveform with 

a 120˚ phase shift.  

Figure 4.2 shows the unipolar generated single-phase waveform from single CHB. This 

waveform will be used to construct the set of equations to find the unknown switching 

angles. 
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Figure 4.2: Unipolar switching output waveform from single-phase, single source CHB 

𝑏𝑛 =
4

𝜋
∫ 𝑓 (

𝜔𝑡

2𝜋𝑓0
) sin(𝑛𝜔𝑡)𝑑𝜔

𝜋/2

0

                                                                                    (4.1) 

0 ≤ 𝜃1 ≤ 𝜃2 ≤ 𝜃3 ≤
𝜋

2
                                                                                                       (4.2) 

Where n is the harmonic order. 

𝑏𝑛 = ∫ 0 × sin (

𝜃1

0

𝑛𝜔𝑡) + ∫ 𝑉𝑑 × sin (

𝜃2

𝜃1

𝑛𝜔𝑡) + ∫ 0 × sin (

𝜃3

𝜃2

𝑛𝜔𝑡)

+ ∫ 𝑉𝑑 × sin (

𝜋
2

𝜃3

𝑛𝜔𝑡)                                                                                       (4.3) 

𝑏𝑛 = 𝑉𝑑 × cos(𝑛𝜃1) − 𝑉𝑑 × cos(𝑛𝜃2) + 𝑉𝑑 × cos(𝑛𝜃3)                                                  (4.4) 

To eliminate the fifth harmonic, equation (4.4) equals zero at n = 5: 

𝑉𝑑 × cos(5𝜃1) − 𝑉𝑑 × cos(5𝜃2) + 𝑉𝑑 × cos(5𝜃3) = 0                                                     (4.5) 

To eliminate the seventh harmonic, equation (4.4) equals zero at n = 7: 
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𝑉𝑑 × cos(7𝜃1) − 𝑉𝑑 × cos(7𝜃2) + 𝑉𝑑 × cos(7𝜃3) = 0                                                     (4.6) 

If the inverter output sine wave fundamental frequency amplitude command is equal to 

V1, equation (4.4) will equal V1 at n = 1: 

4

𝜋
𝑉𝑑[cos(𝜃1) −× cos(𝜃2) + cos(𝜃3)] = 𝑉1                                                                          (4.7) 

Then, the modulation index is equal to: 

𝑚𝑎 =
𝑉1

4𝑉𝑑

𝜋

                                                                                                                                    (4.8) 

For example, if the modulation index is considered equal to 0.8, the set of equations 

becomes: 

cos(5𝜃1) − cos(5𝜃2) + cos(5𝜃3) = 0                                                                                   (4.9) 

cos(7𝜃1) − cos(7𝜃2) + cos(7𝜃3) = 0                                                                                (4.10) 

cos(𝜃1) − cos(𝜃2) + cos(𝜃3) = 0.8                                                                                    (4.11) 

To solve the above set of equations, the MATLAB program has been used. The function 

fsolve in MATLAB uses Newton-Raphson’s method to solve the non-linear equations. The 

three unknown angles will be the following: 

𝜃1 = 23.6303° = 0.41242 𝑟𝑎𝑑  

𝜃2 = 38.0607° = 0.66428 𝑟𝑎𝑑  

𝜃3 = 47.8397° = 0.83496 𝑟𝑎𝑑  
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4.2.1.2 Using π/3 Method 

In the following derivation, the fifth and seventh harmonics will be eliminated. In this 

method, the set of equations will be developed using the three-phase waveform. Figure 4.3 

shows the VSPWM for a three-phase signal in the interval (0, π/3). 

Vd

2Vd

0
θ1 θ2 θ3 π/3

 

 

Figure 4.3: Five-level line-to-line output voltage waveform of the VSPWM technique in the 

interval (0, π/3) 

To eliminate the fifth and seventh harmonic in the three-phase output waveform, equation 

(3.35) from Chapter 3 has been used to develop the set of equations needed to find the 

unknown switching angles.  

𝑎𝑛 =
8

𝜋
cos (𝑛

𝜋

6
) ∫ 𝑣𝜑−𝜑(𝜃) cos (𝑛 (

𝜋

6
+ 𝜃)) 𝑑𝜃                                                  (3.35)

𝜋
3⁄

0

 

0 ≤ 𝜃1 ≤ 𝜃2 ≤ 𝜃3 ≤
𝜋

3
                                                                                                     (4.12) 

For the fifth harmonic content, equation (3.35) will become the following:  
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𝑎𝑛 =
8

𝜋
cos (5

𝜋

6
) ∫ 2𝑉𝑑 cos (5 (

𝜋

6
+ 𝜃)) 𝑑𝜃

𝜃1

0

+
8

𝜋
cos (5

𝜋

6
) ∫ 𝑉𝑑 cos (5 (

𝜋

6
+ 𝜃)) 𝑑𝜃

𝜃2

𝜃1

+
8

𝜋
cos (5

𝜋

6
) ∫ 2𝑉𝑑 cos (5 (

𝜋

6
+ 𝜃)) 𝑑𝜃

𝜃3

𝜃2

+
8

𝜋
cos (5

𝜋

6
) ∫ 𝑉𝑑 cos (5 (

𝜋

6
+ 𝜃)) 𝑑𝜃                                        (4.13)

𝜋/3

𝜃3

 

For the seventh harmonic content, equation (3.35) will become the following:  

𝑎𝑛 =
8

𝜋
cos (7

𝜋

6
) ∫ 2𝑉𝑑 cos (7 (

𝜋

6
+ 𝜃)) 𝑑𝜃

𝜃1

0

+
8

𝜋
cos (7

𝜋

6
) ∫ 𝑉𝑑 cos (7 (

𝜋

6
+ 𝜃)) 𝑑𝜃

𝜃2

𝜃1

+
8

𝜋
cos (7

𝜋

6
) ∫ 2𝑉𝑑 cos (7 (

𝜋

6
+ 𝜃)) 𝑑𝜃

𝜃3

𝜃2

+
8

𝜋
cos (7

𝜋

6
) ∫ 𝑉𝑑 cos (7 (

𝜋

6
+ 𝜃)) 𝑑𝜃                                               (4.14)

𝜋/3

𝜃3

 

For the fundamental frequency, equation (3.35) will become the following: 
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𝑎𝑛 =
8

𝜋
cos (

𝜋

6
) ∫ 2𝑉𝑑 cos ((

𝜋

6
+ 𝜃)) 𝑑𝜃

𝜃1

0

+
8

𝜋
cos (

𝜋

6
) ∫ 𝑉𝑑 cos ((

𝜋

6
+ 𝜃)) 𝑑𝜃

𝜃2

𝜃1

+
8

𝜋
cos (

𝜋

6
) ∫ 2𝑉𝑑 cos ((

𝜋

6
+ 𝜃)) 𝑑𝜃

𝜃3

𝜃2

+
8

𝜋
cos (

𝜋

6
) ∫ 𝑉𝑑 cos ((

𝜋

6
+ 𝜃)) 𝑑𝜃                                                     (4.15)

𝜋/3

𝜃3

 

To eliminate the fifth and seventh harmonics, an will be equal to zero. After performing 

the integration, the set of equations will become as follows: 

8

𝜋
 cos (

5𝜋

6
) × (

V𝑑

5
  cos (5𝜃1 +

𝜋

3
) −

V𝑑

5
cos (5𝜃2 +

𝜋

3
) +

V𝑑

5
cos (5𝜃3 +

𝜋

3
)) = 0                (4.16) 

8

𝜋
 cos (

𝜋

6
) × (−

V𝑑

7
  cos (7𝜃1 −

𝜋

3
) +

V𝑑

7
cos (7𝜃2 −

𝜋

3
) −

V𝑑

7
cos (7𝜃3 −

𝜋

3
)) = 0              (4.17) 

8

𝜋
 cos (

𝜋

6
) × (V𝑑  cos (𝜃1 −

𝜋

3
) − V𝑑cos (𝜃2 −

𝜋

3
) + V𝑑cos (𝜃3 −

𝜋

3
)) = 22                          (4.18) 

To solve the above set of equations, the MATLAB program has been used. The function 

fsolve in MATLAB uses Newton-Raphson’s method to solve the non-linear equations. The 

three unknown angles will be the following: 

𝜃1 = 13.8648° = 0.24198 𝑟𝑎𝑑  

𝜃2 = 22.3263° = 0.38966 𝑟𝑎𝑑  

𝜃3 = 37.8334° = 0.660317 𝑟𝑎𝑑 
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4.2.2 Seven-Level VSPWM Inverter 

4.2.2.1 Using π/2 Method 

In the following derivation, the fifth, seventh, and eleventh harmonics will be eliminated 

from a single-phase perspective using equation (4.1). The three-phase output signal will 

contain the non-triplen harmonic contents greater than only the eleventh because of reasons 

previously mentioned in this section. The generation of the line-to-line seven-level 

VSPWM waveform has been done using two CHB for each phase, and each phase 

generates a five-level VSPWM waveform with a 120˚ phase shift.  

Figure 4.4 shows the five-level VSPWM single-phase waveform, which will be used to 

construct the set of equations to find the unknown switching angles. 

Vd

2Vd

-2Vd

-Vd

0
θ1 θ2 θ3 π/2θ4 

 

Figure 4.4: Five-level single-phase output voltage waveform of the VSPWM technique 

𝑏𝑛 = ∫ 0 × sin (

𝜃1

0

𝑛𝜔𝑡) + ∫ 𝑉𝑑 × sin (

𝜃2

𝜃1

𝑛𝜔𝑡) + ∫ 2 × 𝑉𝑑 × sin (

𝜃3

𝜃2

𝑛𝜔𝑡)

+ ∫ 𝑉𝑑 × sin (

𝜃4

𝜃3

𝑛𝜔𝑡) + ∫ 2 × 𝑉𝑑 × sin (

𝜋/2

𝜃4

𝑛𝜔𝑡)                                   (4.19) 
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In the seven-level inverter, the eliminated harmonic contents will be fifth, seventh, and 

eleventh. The modulation index, for example, will be 1.34. After some manipulation, the 

set of equations becomes as follows: 

cos(𝜃1) + cos(𝜃2) − cos(𝜃3) + cos(𝜃4) = 1.34                                                              (4.20) 

cos(5𝜃1) + cos(5𝜃2) − cos(5𝜃3) + cos(5𝜃4) = 0                                                          (4.20) 

cos(7𝜃1) + cos(7𝜃2) − cos(7𝜃3) +cos(7𝜃4) = 0                                                           (4.22) 

cos(11𝜃1) + cos(11𝜃2) − cos(11𝜃3) +cos(11𝜃4) = 0                                                 (4.23) 

To solve the above set of equations, the MATLAB program has been used. The function 

fsolve in MATLAB uses Newton-Raphson’s method to solve the non-linear equations. The 

four unknown angles will be as follows: 

𝜃1 = 20.3604° = 0.35535 𝑟𝑎𝑑  

𝜃2 = 60.6732° = 1.05894 𝑟𝑎𝑑  

𝜃3 = 79.9236° = 1.39492 𝑟𝑎𝑑 

𝜃4 = 84.9717° = 1.48303 𝑟𝑎𝑑 

 

4.2.2.2 Using π/3 Method 

In the following derivation, the fifth, seventh, and eleventh harmonics will be eliminated. 

In this method, the set of equations will be developed using the three-phase waveform. 

Figure 4.5 shows the seven-level VSPWM for a three-phase signal in the interval (0, π/3). 
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θ1 θ2 θ3 π/3θ4 

4Vd

3Vd
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Figure 4.5: Three-phase output voltage waveform of the VSPWM technique for the interval 

[0, π/3] 

To eliminate the fifth, seventh, and eleventh harmonic contents in the three-phase output 

waveform, equation (3.35) from Chapter 3 has been used to develop the set of equations 

needed to find the unknown switching angles. After some manipulation, the set of 

equations becomes as follows: 

8

𝜋
 cos (

5𝜋

6
) × (

V𝑑

5
  cos (5𝜃1 +

𝜋

3
) −

V𝑑

5
cos (5𝜃2 +

𝜋

3
) +

V𝑑

5
cos (5𝜃3 +

𝜋

3
)

+
V𝑑

5
cos (5𝜃4 +

𝜋

3
)) = 0                                                                                        (4.24) 

8

𝜋
 cos (

7𝜋

6
) × (−

V𝑑

7
  cos (7𝜃1 −

𝜋

3
) +

V𝑑

7
cos (7𝜃2 −

𝜋

3
) −

V𝑑

7
cos (7𝜃3 −

𝜋

3
)

−
V𝑑

7
cos (7𝜃4 −

𝜋

3
)) = 0                                                                                        (4.25) 
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8

𝜋
 cos (

11𝜋

6
) × (−

V𝑑

11
  cos (11𝜃1 +

𝜋

3
) +

V𝑑

11
cos (11𝜃2 +

𝜋

3
) −

V𝑑

11
cos (11𝜃3 +

𝜋

3
)

−
V𝑑

11
cos (11𝜃4 +

𝜋

3
)) = 0                                                                                     (4.26) 

8

𝜋
 cos (

𝜋

6
) × (V𝑑   cos (𝜃1 −

𝜋

3
) − V𝑑cos (𝜃2 −

𝜋

3
) + V𝑑cos (𝜃3 −

𝜋

3
) + V𝑑cos (𝜃4 −

𝜋

3
))

= 35.82                                                                                                                        (4.27) 

To solve the above set of equations, the MATLAB program has been used. The function 

fsolve in MATLAB uses Newton-Raphson’s method to solve the non-linear equations. The 

four unknown angles will be as follows: 

𝜃1 = 0.3712° = 0.00647 𝑟𝑎𝑑  

𝜃2 = 20.5045° = 0.35787 𝑟𝑎𝑑  

𝜃3 = 25.4500° = 0.44418𝑟𝑎𝑑 

𝜃4 = 35.0481° = 0.61170 𝑟𝑎𝑑 

4.3 Simulation Model and Results  

To compare the results of using the π/2 method and the π/3 method for both the five- and 

seven-level inverters, MATLAB Simulink was used to construct the three-phase CHB 

multilevel inverter. Each CHB is connected with a 12V DC source. Each IGBT will be 

injected by a control signal using a pulse generator.  

4.3.1 Simulation Results for Five-Level Inverter 

In this section, the simulation results for the three-phase five-level inverter will be 

provided, where the three switching angles have been found using both the π/2 method and 
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the π/3 method to eliminate the fifth and seventh harmonic contents. Figure 4.6 shows the 

constructed three-phase five-level CHB in MATLAB.  

1 ohm – 5 mH

1 ohm – 5 mH

1 ohm – 5 mH

Ia

Ib

Ic

Vab

Vbc

Vca

12 V12 V12 V

 

Figure 4.6: MATLAB model for three-phase five-level CHB 

 

 

4.3.1.1 Simulation Results for Five-Level Inverter Using π/2 Method 

In this simulation, the unknown angles that have been found by the π/2 method in sub 

section 4.2.1.1 have been used to generate the control signal by the pulse generator. 

These signals were directly injected in the IGBT to control the output voltage waveform. 

Figures 4.7 and 4.8 show the output voltage for the single- and three-phase, respectively. 
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Figures 4.9 and 4.10 show the harmonic content spectrum for the single-phase voltage 

and the three-phase voltage, respectively. A balanced three-phase delta connected load (1 

Ohm, 5 mH) has been connected to the constructed inverter. Figures 4.11 and 4.12 

present the phase current waveform and harmonic contents, respectively.  
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Figure 4.7: Single-phase output voltage waveform using π/2 method 
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Figure 4.8: Three-phase output voltage waveform using π/2 method 

 

Figure 4.9: Single-phase output voltage harmonic contents using π/2 method 
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Figure 4.10: Three-phase output voltage harmonic contents using π/2 method 
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Figure 4.11: Phase current waveform using π/2 method 
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Figure 4.12: Phase current harmonic contents using π/2 method 

4.3.1.2 Simulation Results for π/3 Method 

In this simulation, the three switching angles that have been found by the π/3 method in 

sub section 4.2.1.2 have been used to generate the control signal by the pulse generator. 

These signals were directly injected in the IGBT to control the output voltage waveform. 

Figures 4.13 and 4.14 show the output voltage for the single- and three-phase, respectively. 

Figures 4.15 and 4.16 show the harmonic content spectrum for the single-phase voltage 

and the three-phase voltage, respectively. A balanced three-phase delta connected load (1 

Ohm, 5 mH) has been connected to the constructed inverter. Figures 4.17 and 4.18 present 

the phase current waveform and harmonic contents, respectively.     
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Figure 4.13: Single-phase output voltage waveform using π/3 method 
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Figure 4.14: Three-phase output voltage waveform using π/3 method 
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Figure 4.15: Single-phase output voltage harmonic contents using π/3 method 

 

Figure 4.16: Three-phase output voltage harmonic contents using π/3 method 
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Figure 4.17: Phase current waveform using π/3 method 

 

Figure 4.18: Phase current harmonic contents using π/3 method 
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4.3.2 Simulation Results for Seven-Level Inverter  

In this section, the simulation results for the three-phase seven-level inverter will be 

provided, where the four switching angles have been found using both the π/2 method and 

the π/3 method to eliminate the fifth, seventh and eleventh harmonic contents. Figure 4.19 

shows the constructed three-phase seven-level CHB in MATLAB.  
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Figure 4.19: MATLAB model for three-phase seven-level CHB 
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4.3.2.1 Simulation Results for Seven-Level Inverter Using π/2 Method 

In this simulation, the four switching angles that have been found by the π/2 method in sub 

section 4.2.2.1 have been used to generate the control signal by the pulse generator. These 

signals were directly injected in the IGBT to control the output voltage waveform. Figures 

4.20 and 4.21 show the output voltage for the single- and three-phase, respectively. Figures 

4.22 and 4.23 show the harmonic content spectrum for the single-phase voltage and the 

three-phase voltage, respectively. A balanced three-phase delta connected load (1 Ohm, 5 

mH) has been connected to the constructed inverter. Figures 4.24 and 4.25 present the 

phase current waveform and harmonic contents, respectively. 
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Figure 4.20: Single-phase output voltage waveform using π/2 method 
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Figure 4.21: Three-phase output voltage waveform using π/2 method 

 

Figure 4.22: Single-phase output voltage harmonic contents using π/2 method 
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Figure 4.23: Three-phase output voltage harmonic contents using π/2 method 
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Figure 4.24: Phase current waveform using π/2 method 
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Figure 4.25: Phase current harmonic contents using π/2 method 

4.3.2.2 Simulation Results for Seven-Level Inverter Using π/3 Method 

In this simulation, the four switching angles that have been found by the π/3 method in sub 

section 4.2.2.2 have been used to generate the control signal by the pulse generator. These 

signals were directly injected in the IGBT to control the output voltage waveform. Figures 

4.26 and 4.27 show the output voltage for the single- and three-phase, respectively. Figures 

4.28 and 4.29 show the harmonic content spectrum for the single-phase voltage and the 

three-phase voltage, respectively. A balanced three-phase delta connected load (1 Ohm, 5 

mH) has been connected to the constructed inverter. Figures 4.30 and 4.31 present the 

phase current waveform and harmonic contents, respectively. 
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Figure 4.26: Single-phase output voltage waveform using π/3 method 
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Figure 4.27: Three-phase output voltage waveform using π/3 method 
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Figure 4.28: Single-phase output voltage harmonic contents using π/3 method 

 

Figure 4.29: Three-phase output voltage harmonic contents using π/3 method 
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Figure 4.30: Phase current waveform using π/3 method 

 

Figure 4.31: Phase current harmonic contents using π/3 method 
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4.4 Analysis  

The simulation results were previously for certain modulation index values to get an 

overview of the simulation results for the five-level three-phase inverter and to recognize 

the difference between the two methods. A variety of simulation has been done for both 

methods at different modulation indices, as shown in Figure 4.32. Figure 4.33 shows the 

fifth harmonic contents for both methods at different modulation indices. Figure 4.34 

shows the seventh harmonic contents for both methods at different modulation indices. 

Figure 4.35 shows the eleventh harmonic contents for both methods, which is the first non-

zero harmonic. Figure 4.36 shows the fundamental component amplitude for both methods 

at different modulation indices. 

 

Figure 4.32: THD for both methods at different modulation indices 
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Figure 4.33: Fifth harmonic contents for both methods at different modulation indices 

 

Figure 4.34: Seventh harmonic contents for both methods at different modulation indices 
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Figure 4.35: Eleventh harmonic contents for both methods at different modulation indices

 

Figure 4.36: Fundamental component amplitude for both methods at different modulation 

indices 
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methods at different modulation indices. Figures 4.38, 4.39, and 4.40 show the fifth, 

seventh, and eleventh harmonic contents for both methods at different modulation indices, 

respectively. Figure 4.41 shows the thirteenth harmonic contents for both methods, which 

is the first non-zero harmonic. Figure 4.42 shows the fundamental component amplitude 

for both methods at different modulation indices. 

 

Figure 4.37: THD for both methods at different modulation indices 
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Figure 4.38: Fifth harmonic contents for both methods at different modulation indices 

 

Figure 4.39: Seventh harmonic contents for both methods at different modulation indices 
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Figure 4.40: Eleventh harmonic contents for both methods at different modulation indices 

 

Figure 4.41: Thirteenth harmonic contents for both methods at different modulation indices 
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Figure 4.42: Fundamental component amplitude for both methods at different modulation 

indices 

Based on the above comparison charts, Tables 4.1 and 4.2 have been developed to illustrate 

the differences in the THD results between the two method that have been used to find 

switching angles. Table 4.1 shows the THD values for the five-level inverter for both 

methods. Table 4.2 shows the THD values for the seven-level inverter. 

Table 4.1: THD values for the five-level inverter for both methods 

Method Min Voltage THD (%) Max Voltage THD (%) 

π/2 Method 22.52 135.77 

π/3 Method 16.75 92.96 
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Table 4.2: THD values for the seven-level inverter for both methods 

Method Min Voltage THD (%) Max Voltage THD (%) 

π/2 Method 14.27 40.6 

π/3 Method 11.83 41.74 

 

From the two tables above, it can be concluded that the minimum THD provided by the 

π/3 method is lower than the one provided by the π/2 method by 25% in the five-level 

inverter and 17% in the seven-level inverter. Also, it can be seen from the presented 

comparison charts that a lower THD can be delivered using the π/3 method during low 

modulation indices. This satisfies the main purpose of the VSPWM for minimizing the 

THD at a wide range of modulation indices.  

Based on the above comparison charts, Tables 4.3 and 4.4 have been developed to illustrate 

the differences in the fundamental components value between the two method that have 

been used to find switching angles. Table 4.1 shows the THD values for the five-level 

inverter for both methods. Table 4.2 shows the THD values for the seven-level inverter. 

Table 4.3: Fundamental component values for the five-level inverter for both methods 

Method Min Value  (V) Max Value (V) 

π/2 Method 6.423 24.11 

π/3 Method 14.4 25.31 
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Table 4.4 Fundamental components values for the seven-level inverter for both methods 

Method Min Value  (V) Max Value (V) 

π/2 Method 27.52 48.3 

π/3 Method 37.81 47.1 

From the above two tables, better fundamental frequency amplitude values can be 

generated with the π/3 method. The minimum value for the fundamental component that 

can be generated by the π/3 method is higher than the minimum value that can be generated 

by the π/2 method by 125% in the five-level inverter and 38% in the seven-level inverter. 

In addition, a lower content can be noted for the values of the first non-zero harmonic 

contents.  

4.5 Conclusion  

 In this chapter, the theoretical methodology was discussed. Both the π/2 method 

and the π/3 method were presented to derive the set of equations needed to find the 

unknown switching angles. The π/2 method looks to the waveform from a single-phase 

perspective. The π/3 method looks to the waveform from a three-phase perspective. Several 

sets of equations have been presented and solved for five- and seven-level inverters. The 

values of the unknown switching angles were different in each method.  

A simulation model has been built for the five- and seven-level inverters using the 

MATLAB program to run the single-phase and the three-phase model of the proposed 

solutions. The simulation has been done for both inverters, and the unknown switching 

angles were found using both the π/2 method and the π/3 method. The single- and the three-
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phase output voltage were presented with their harmonic contents. Also, the line current 

and its harmonic contents were illustrated.  

To get a better look at the results, both inverter outcomes have been compared depending 

on the findings of the unknown angles. These angles have been found in two different 

methods. The comparison has been done at different modulation indices to provide an 

overview of the results. 

Based on the comparison, the three-phase perspective decreases the output voltage THD 

by 25% in the five-level inverter and by 17% in the seven-level inverter. Also, the three-

phase perspective increases the minimum value for the fundamental component by 125% 

in the five-level inverter and by 38% in the seven-level inverter. 
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CHAPTER 5 

EXPERIMENT RESULTS  

5.1 Introduction  

All of the simulation results in this thesis have been done using MATLAB simulation 

software, with ideal condition for the switches and diodes. In this chapter, the experiment 

methodology and results will be shown for two methods that have been used to calculate 

the unknown switching angles for the five-level inverter to validate the simulation results.  

The first section will illustrate the experimental construction and the equipment that have 

been used to generate the desired output voltage waveform in terms of the controller and 

the used inverter connection. The next section will provide the experiment results for both 

methods. 

5.2 Experiment Methodology  

In this research, an actual experiment has been built. This section has been divided in to 

two subsections. The first subsection will present the general items that have been used. 

The second subsection will discuss the control methodology in the experiment.  

5.2.1 General Equipment 

A three-phase, Wye-connected, five-level (three-phase perspective) cascade H-bridge 

multilevel inverter was used. The used inverter data sheet is provided in the appendix. The 

power electronic switches were IGBT with maximum DC voltage 750V and maximum 

current 30A. Lead acid rechargeable (12V) batteries were used as a separate DC source for 

the CHB.  
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For measurements and monitoring, a digital multi-meter and digital storage oscilloscope 

were used. In addition, a power and energy analyzer and logger was used to measure the 

THD and display real-time monitoring on a computer.  

5.2.2 Experiment Control Methodology 

In this experiment, a Raspberry Pi 3 Model B was used to generate the control signal for 

several IGBTs to generate the desirable output voltage waveform.  

The Raspberry Pi is an inexpensive, open-source, credit card-size and single-board 

computer introduced in 2012 by the Raspberry Pi Foundation [42]. The Raspberry Pi can 

be used by connecting it to a monitor and using a standard mouse and keyboard. Several 

programming languages can be used with Raspberry Pi, such as: Scratch, Python, HTML5, 

and JavaScript. These programming languages allows the Raspberry Pi to do everything a 

desktop computer can do. In this experiment, Python was selected as the programming 

language. Different models have been released by the Raspberry Pi Foundation; the most 

recent was Raspberry Pi 3 Model B, which is the model used in this experiment. Table 5.1 

shows Raspberry Pi models’ features: 

Table 5.1: Raspberry Pi model features 

Model 

Raspberry Pi 3 

Model B 

Raspberry Pi 

Zero 

Raspberry Pi 2 

Model B 

Raspberry Pi 

Model B+ 

Release 

Date 

2/29/2016 11/25/2015 2/2/2015 7/14/2014 

SoC BCM2837 BCM2835 BCM2836 BCM2835 
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CPU 

Quad Cortex 

A53 @ 1.2 GHz 

Arm11 @ 1 

GHz 

Quedan Cortex 

A7 @ 900 MHz 

Arm11 @ 700 

MHz 

Instructio

n Set 

ARMv8-A ARMv6 ARMv7-A ARMv6 

GPU 

400 MHz 

VideoCore IV 

250 MHz 

VideoCore IV 

250 MHz 

VideoCore IV 

250 MHz 

VideoCore IV 

RAM 1 GB SDRAM 

512 MB 

SDRAM 

1 GB SDRAM 

512 MB 

SDRAM 

Storage Micro-SD Micro-SD Micro-SD Micro-SD 

Ethernet 10/100 none 10/100 10/100 

Wireless 

802.11n/Bluetoot

h 4.0 

none none none 

Video 

Output 

HDMI/Composit

e 

HDMI/Compos

ite 

HDMI/Composit

e 

HDMI/Composit

e 

Audio 

Output 

HDMI/Headpho

nes 

HDMI 

HDMI/Headpho

nes 

HDMI/Headpho

nes 

GPIO 40 40 40 40 

Price ($) 35 5 35 35 

 

Figure 5.1 presents the Raspberry Pi 3 Model B components:   
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Figure 5.1: Raspberry Pi 3 Model B components [43] 

One of the main parts of the Raspberry Pi is the GPIO header, which consists of 40 pins. 

Each pin has a function, as shown in Figure 5.2. The control signal has been taken from 

the output pins in the GPIO header. This control signal from the GPIO consists of highs 

and lows. If it is high, the output voltage is 3.3V; if it is low, the output voltage is 0. On 

the other hand, to control the IGBT inside the inverter, the high signal must be 15V. Thus, 

an amplification circuit has been built to increase the voltage amplitude of the control 

signal that is generated from the Raspberry Pi from 3.3V to 15V. The operational amplifier 

is the one that has been used. Chip LM324-N from Texas Instruments has been 

implemented with combinations of resistors to amplify the voltage to the desirable value. 

Figures 5.3 and 5.4 present the experiment block diagram and experiment actual setup, 

respectively.  
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Figure 5.2: GPIO header map [44] 
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Figure 5.3: Experiment block diagram 
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Figure 5.4: Experiment actual setup 

 

5.3 Experimental Result 

To validate the simulation results for the five-level inverter, an experiment was built, as 

discussed in Section 5.2 The output voltage waveform results were taken from digital 

oscilloscope. Also, the harmonic contents charts were recoded using a power analyzer 

connected to a PC. Next, a load of 21 Ohms was connected to validate the harmonic 

contents in the output current. Figures 5.5 and 5.6 show the line-to-line output voltage 

waveform using the π/2 method and the π/3 method, respectively. Figures 5.7 and 5.8 

portray the line-to-line output voltage harmonic contents using the π/2 method and the π/3 

method, respectively. Figures 5.9 and 5.10 show the output line current harmonic contents 

using the π/2 method and the π/3 method, respectively. 
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Figure 5.5: Line-to-line output voltage waveform using π/2 method 
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Figure 5.6: Line-to-line output voltage waveform using π/3 method 



90 
 

 

Harmonic Order

M
ag

 (
%

 f
u
n
d
am

en
ta

l)

 

Figure 5.7: Line-to-line output voltage harmonic contents using π/2 method 

 

Figure 5.8: Line-to-line output voltage harmonic contents using π/3 method 
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Figure 5.9: Output line current harmonic contents using π/2 method 

 

Figure 5.10: Output line current harmonic contents using π/3 method 
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5.5 Conclusion  

In this chapter, the experiment methodology for the five-level inverter was illustrated. The 

main purpose of the experiment was to validate the simulation results that are presented in 

Chapter 4. A detailed discussion has been provided about the equipment and controller that 

were used. The results for the three-phase system validate the simulation results from the 

THD, the eliminated harmonic contents, and the fundamental component differences 

between the two methods. Then, to validate the simulation results, the experiment results 

were presented for the three-phase parameters. Table 6.1 shows the simulation and the 

experimental results. 

Table 6.1: The simulation and experimental results 

  Single phase perspective method  Three phase perspective method 

Simulation  Experiment Simulation  Experiment 

Fundamental 21V 20.2 V 21.7 V 20.9 V 

THD 30.58 % 27.5 % 26.61% 24.26 % 

The next chapter will provide a brief summary of the thesis. Also, it will give the 

conclusions that have been made regarding the research. Finally, an illustration and 

suggestions for future work will be presented.  
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CHAPTER 6 

SUMMARY AND FUTURE WORK  

6.1 Introduction  

This chapter will include both the thesis summary and future work. Section 6.2 will provide 

a summary for the thesis. Section 6.3 will include the final results and conclusion of the 

work. In Section 6.4, a presentation of extension for this work and new ideas in the field 

of multilevel inverters will be provided. 

6.2 Thesis Summary  

Chapter 1 presented the motivation behind this thesis by giving a brief summary about the 

value and development of multilevel inverters. Also, it provided the objective of the work 

and the thesis outline.   

Chapter 2 illustrated the general idea of the multilevel inverters and its working principle. 

Then, a detailed discussion was presented for the three most well-known topologies: H-

bridge inverter (CHB), neutral point clamped (NPC), and the flying capacitor (capacitor-

clamped). In addition, the advantages and disadvantages of each of these three topologies 

was mentioned. 

Chapter 3 covered the multilevel inverter modulation techniques and illustrated the 

classification of them depending on their switching frequency. However, it provided the 

idea of the Fourier series to eliminate several harmonic orders and the derivation for both 

the π/2 method from the single-phase perspective and the π/3 method from the three-phase 

perspective.   
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The purpose of Chapter 4 was to discuss the methodology that has been used in this 

research. An illustration of the theoretical part of this research was provided, as well as the 

idea behind the VSPWM and the benefits of such a modulation technique. In addition, the 

chapter provided the derivation of the sets of equations that were used to find the three 

switching angles in both methods to eliminate the fifth and the seventh harmonic orders in 

the VSPWM for five-level inverters—as well as to find the four switching angles in both 

methods to eliminate the fifth, seventh, and eleventh harmonic orders for seven-level 

inverters. The derivation has been made for a certain modulation index. To get a better 

overview of the behavior of both methods at different modulation indices, a comparison 

between the two methods was presented for both inverters. Finally, depending on the 

finding of the unknown angles for the VSPWM, a three-phase H-bridge multilevel inverter 

was constructed using the MATLAB program. The simulation results were presented for 

each inverter for both the single-phase and the three-phase for both methods that were used 

to find the unknown angles. 

The experimental methodology was presented in Chapter 5 to validate the simulation 

results. The general equipment that was used to construct the experiment was illustrated. 

Also, Chapter 5 described the construction of the Raspberry Pi that was used as a controller 

in this research. In addition, the chapter illustrated the circuits used with this type of 

controller to allow it to control the inverter. Then, the construction of the actual experiment 

was shown. Finally, the experimental results were presented to validate the previous 

simulation results.  
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6.3 Thesis Conclusions 

The multilevel level inverters took a place in today’s market due to their advantages over 

other types of inverters. Also, the CHB gained more importance in recent years because of 

its advantages over other topologies for the multilevel inverter. The THD for any inverting 

process is considered one of the most important features. Also, the low harmonics order is 

the most dangerous harmonic for any system. The number of the eliminated harmonics in 

the CHB depends on the number of voltage levels. To increase the number of the eliminated 

harmonics without increasing the level, the switching frequency must increase. In case of 

high frequency, the efficiency of the inverter decreases. So, to keep high efficiency and to 

eliminate more low harmonic orders, the VSPWM was represented. To find the switching 

angles in the VSPWM for both five- and seven-level inverters, two different methods have 

been presented. The first method finds them from the single-phase perspective in the 

interval (0, π/2), and the other method finds them from the three-phase perspective in the 

interval (0, π/3). The results show that the three-phase perspective method decreases the 

output voltage THD by 25% in the five-level inverter and by 17% in the seven-level 

inverter. Also, the three-phase perspective method increases the minimum value for the 

fundamental component by 125% in the five-level inverter and by 38% in the seven-level 

inverter. On the other hand, finding the angles from the three-phase perspective guarantees 

the three-phase output voltage signal shape that guarantees a minimum amplitude for the 

output generated voltage.  
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6.4 Future Work 

6.4.1 Validation on other topologies  

To provide better efficiencies and better output quality for the generated voltage from other 

MI topologies, an extension to this work can be done by testing and operating different MI 

topologies using the same concept of the VSPWM with the three-phase method to find the 

unknown angles and compare it with the single-phase method. 

6.4.2 Unequal DC sources  

In this research, three equal DC voltage sources were used to build the five-level inverter. 

Another concern for future research is using different voltage sources and finding the 

switching angles using the three-phase method to find the switching angles and then apply 

it to the CHB multilevel inverter to investigate the effect of the unequal sources on the 

results regarding the THD and the fundamental frequency components amplitude.  

6.4.3 Seven-level inverter Experiment 

The simulation was built to cover both five- and seven-level inverters. The experiment was 

built to validate the five-level inverter only. The extension for this work is to validate the 

seven-level inverter simulation results.  

6.4.4 Harmonics elimination depending on the application  

In this thesis, an elimination to the low order harmonics for the five- and seven-level 

inverters was studied as a conclusion to provide the lowest THD. Another general study 

will be conducted to eliminate a different harmonics order at different modulation indices 

to derive the optimal eliminated harmonic contents for each MI application.  
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6.4.5 Input control methodology  

All of the above future work was regarding the inverter itself. A new idea of increasing the 

system efficiency and solving the problem of unequal DC sources will be done by 

monitoring and controlling the battery strings, which will control the input side of the 

inverter. Figure 2.8 illustrated the output wave from two CHB multilevel inverters. 

Vd

Vd

Vd

2Vd

-2Vd

-Vd

0
θ1 θ2 π

θ1 

θ2 π

π

 

 

Figure 2.8: Voltage output from the lower cell, upper cell, and total voltage from both cells 

 It can be seen that the output from the lower cell is much larger than the output from the 

upper cell. This difference in discharge in each cycle creates an imbalance in the state of 

charge of the batteries that affects the performance of the system. It also creates an 

undesired output voltage waveform. A proposed solution for this problem is monitoring 
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the battery bank strings to provide a good indication of the strings’ state. Depending on 

this state, an algorithm can be built to control which string will be used as a source on each 

cycle to keep a healthy, balanced battery bank. Power electronic switches will be installed 

on top of each string to allow this type of control. Figure 6.1 illustrates the schematic 

diagram for the proposed control methodology for the single-phase five-level CHB. 

S1 S2

S3 S4

Vd

Vd

Vd

Vd

Se1 Se2

S’1 S’2

S’3 S’4

Vo

Vd

Vd

Vd

Vd

Se3 Se4

 

Figure 6.1: Proposed control methodology for single-phase five-level CHB 

In this case, the number of power switches will not be as high as if each single battery was 

controlled separately. It is a promising solution, especially for high-power applications 

where multistring battery banks will be used to supply the MIs. In addition, the imbalance 

in the sources in such applications will provide undesired harmonic contents in the 

generated voltage signal. 
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APPENDIX 
Table 1: Switching angles, harmonic contents, and THD for a five-level inverter using π/2 

method 

ma θ1 θ2 θ3 H5 H7 H11 THD 

Fundamental 

(V) 

0.01 15.166 44.6618 74.6984 74.72 52.7 8.66 101.25 13.62 

0.02 15.334 44.3224 74.3963 75.82 52.1 9.33 101.1 13.53 

0.05 15.838 43.2965 73.4877 76.55 49.37 8.84 98.62 13.62 

0.1 16.676 41.555 71.9637 77.08 45.46 10.39 95.59 13.48 

0.15 17.495 39.7615 70.426 76.42 36.47 10.96 91.41 13.66 

0.2 18.266 37.8949 68.8715 76.16 28.57 13.69 89.86 13.52 

0.25 55.583 63.5916 82.5557 2.02 1.67 83.15 135.77 6.423 

0.3 54.633 64.0672 80.8792 1.88 0.53 74.16 114 7.85 

0.35 53.650 64.364 79.0508 1.66 5.51 63.19 94.7 9.265 

0.4 52.612 64.3694 76.976 1.2 0.71 53.45 81.46 10.47 

0.45 51.468 63.8533 74.4707 0.46 1.86 40.23 65.68 11.8 

0.5 50.065 62.2669 71.1289 0.37 0.66 24 46.21 13.18 

0.55 N.S N.S N.S N.S N.S N.S N.S N.S 

0.6 41.623 48.734 59.201 1.23 2.63 21.01 41.17 15.65 

0.65 34.291 41.8415 55.3328 1.94 0.28 12 42.67 16.64 

0.7 29.730 39.4188 52.8316 2.93 0.83 2.17 41.53 18.49 

0.75 26.431 38.5453 50.4575 0.37 0.47 13.24 36.31 19.64 

0.8 23.630 38.0607 47.8397 0.51 0.29 18.21 31.71 20.91 
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0.85 20.968 37.1168 44.4691 0.11 0.33 20.51 30.22 22.23 

0.9 17.863 33.1446 38.233 0.16 0.17 14.95 31.12 23.59 

0.92 15.215 26.9516 32.1732 0.08 0.34 4.29 22.52 24.11 

1 15.655 59.9916 62.9177 9.2 10.69 6.01 26.72 23.98 

1.1 9.7466 43.9985 52.7766 29.94 11.57 5.03 43.2 22.85 

1.2 1.1533 38.2031 54.1532 49.97 35.59 1.26 68.76 20.85 
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Table 2: Switching angles, harmonic contents, and THD for a five-level inverter using π/3 

method 

ma θ1 θ2 θ3 H5 H7 H11 THD Fundamental (V) 

0.00377 14.886 15.127 44.937 5.37 3.85 9.19 16.8 25.31 

0.00755 14.772 15.255 75.125 4.83 4.34 9.18 16.8 25.28 

0.01133 14.658 15.383 44.811 6.39 3.15 10.7 19.3 24.92 

0.01511 14.543 15.511 75.252 5 4.18 9.14 16.7 25.3 

0.01889 14.429 15.64 75.315 4.63 4.57 9.3 16.8 25.25 

0.02267 14.315 15.768 75.378 3.07 6.09 9.44 16.9 25.15 

0.02645 14.201 15.897 75.442 3.98 5.21 9.42 16.8 25.21 

0.03023 14.086 16.026 75.505 3.54 5.66 9.29 16.8 25.21 

0.03400 13.972 16.155 75.569 3.3 5.88 9.43 16.9 25.17 

0.03778 13.858 16.284 44.367 5.66 3.87 11.9 20.0 24.56 

0.05668 13.284 16.933 44.049 5.47 4.13 12.9 21.5 24.21 

0.07557 12.709 17.588 43.731 5.94 3.98 13.9 23.1 23.82 

0.09446 12.132 18.250 43.415 5.14 4.52 14.0 23.7 23.64 

0.11336 11.554 18.918 43.101 6.47 3.99 15. 25.8 23.05 

0.13225 2.0692 2.2714 26.173 61.9 59.4 10.7 92.9 16.71 

0.15115 2.3399 2.608 25.613 60.6 60.3 11.4 92.2 16.51 

0.17004 2.6022 2.9475 25.047 57.7 60.5 10.8 90.1 16.59 

0.18893 2.8551 3.2898 24.473 56.1 60.6 12.4 89.2 16.43 

0.22672 3.3274 3.9831 23.300 51.5 60.0 11.2 85.8 16.54 

0.26451 6.8348 24.679 40.873 7.66 5.84 8.47 37.6 19.71 
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0.30230 5.6211 26.327 40.500 8.53 5.91 3.45 41.0 18.8 

0.34008 4.3876 28.128 40.292 8.64 6.56 2.68 45.0 18.03 

0.37787 3.1286 30.195 40.362 9.67 6.39 9.6 47.7 17.01 

0.41566 1.8346 32.728 40.944 9.58 6.97 17.8 46.2 16.61 

0.45345 0.4887 36.238 42.626 10.5 4.93 23.8 44.3 15.13 

0.49123 N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. 

0.52902 N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. 

0.56681 3.7081 4.5372 13.694 26.0 43.8 21.0 71.8 15.18 

0.60460 1.2985 12.174 19.155 35.7 36.5 6.71 62.8 14.4 

0.64238 4.2282 17.502 24.806 24.5 28.3 16.0 53.5 15.67 

0.68017 6.2219 19.911 28.683 18.9 24.3 29.0 52.8 17.06 

0.71796 8.013 20.992 31.544 13.9 18.2 31.8 47.8 18.24 

0.75575 9.8249 21.515 33.907 5.48 11.4 29.1 39.5 19.5 

0.79354 11.795 21.872 36.021 4.84 6.08 26.2 34.8 20.64 

0.82565 13.738 22.292 37.733 0.2 0.26 20.3 28.5 21.61 

0.82754 13.864 22.326 37.833 0.75 0.57 19.8 28.4 21.65 

0.83132 14.123 22.399 38.033 2.16 2.47 19.4 27.7 21.78 

0.86911 17.303 23.715 40.092 8.46 11.2 6.41 24.5 23.28 

0.90690 23.357 28.2774 42.7717 17.75 15.36 6.75 28.36 23.07 

0.94469 N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. 

0.982478 N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. 

1.020265 N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. 

1.058053 6.6095 12.5874 47.8754 19.93 1.83 4.52 28.51 23.72 
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1.095841 7.2179 15.7122 50.0118 9.62 5.38 1.01 23.77 24.15 

1.133628 7.0172 18.1313 52.3081 0.89 9.36 8.33 19.31 24.65 

1.171416 6.4371 20.2673 55.0812 4.09 11.84 7.25 18.83 24.57 

1.209204 N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. 
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Table 3: Switching angles, harmonic contents, and THD for a seven-level inverter using π/2 

method 

ma θ1 θ2 θ3 θ4 H5 H7 H11 h13 THD 
Fundam

ental 

(V) 

0.1 29.63 34.45 64.66 68.12 20.7 15.8 9.38 2.13 30.8 
42.82 

0.15 52.97 56.36 76.00 81.95 3.68 26.7 13.2 20.4 40.6 
27.61 

0.2 N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. 
N.S 

0.25 N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. 
N.S 

0.3 24.53 39.64 61.20 71.25 14.1 19.2 0.9 6.57 28.3 
39.88 

0.35 23.08 41.14 60.38 71.87 12.3 18.1 4.21 8.72 27.8 
38.96 

0.4 21.45 42.88 59.62 72.32 7.48 17.0 6.78 11.1 25.7 
38.24 

0.45 19.46 45.03 59.03 72.45 3.33 13.9 10.4 12.6 24.3 
37.64 

0.5 16.55 48.75 59.12 71.79 3.73 8.84 12.5 12.4 22.9 
37.17 

0.55 12.65 57.05 64.87 72.15 13.0 0.43 9.9 1.48 26.7 
36.56 

0.6 12.41 60.21 69.29 76.49 13.6 1 9.81 3.19 23.3 
35.46 

0.65 12.79 61.51 70.04 79.08 12.9 0.75 10.7 5.2 23.4 
34.08 

0.7 13.27 62.44 69.73 80.96 12.6 1.42 11.8 5.02 25.1 
32.53 

0.75 20.84 44.63 52.79 85.55 8.49 21.0 10.5 1.28 35.0 
29.34 

0.8 18.49 47.32 52.56 85.50 1.37 16.5 15.6 4.76 32.0 
28.85 

0.85 15.04 61.90 64.15 85.37 9.53 7.37 16.2 3.02 26.7 
28.27 

0.9 15.61 56.71 58.29 86.07 8.02 8.87 17.4 0.43 26.7 
27.57 

0.95 16.01 76.73 79.74 86.40 9.53 7.37 16.2 3.02 26.7 
28.15 

1 16.65 70.23 74.26 88.57 4.74 4.59 4.75 7.63 22.0 
27.52 
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1.05 17.26 67.98 73.95 89.79 0.62 0.98 0.81 7.93 21.1 
27.86 

1.1 17.86 66.42 74.44 89.06 0.03 0.17 0.07 5.91 21.8 
28.84 

1.15 N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. 
N.S 

1.2 18.99 63.87 76.18 86.96 0.4 0.3 0.29 0.49 22.5 
31.36 

1.25 N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. 
N.S 

1.3 20.00 61.57 78.60 85.30 0.98 0.8 0.35 2.49 19.4 
34.11 

1.35 20.44 60.44 80.32 84.96 0.45 0.15 0.19 2.91 15.9 
35.34 

1.4 0 39.37 59.79 84.88 0.56 0.65 0.42 2.84 15.3 
35.67 

1.45 N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. 
N.S 

1.5 N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. 
N.S 

1.55 21.80 56.37 74.02 78.03 3.99 2.18 8.86 11.1 20.9 
37.12 

1.6 N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. 
 

1.65 13.55 39.55 48.38 55.18 0.6 1.08 0.86 5.59 14.2 
43.23 

1.7 12.31 35.64 45.08 51.94 0.14 0.5 0.64 1.18 15.0 
44.58 

1.75 10.85 32.99 43.58 49.19 0.68 0.39 0.35 3.07 16.8 
45.83 

1.8 9.345 30.53 41.06 45.09 0.03 0.33 0.08 2.37 14.9 
47.2 

1.85 13.54 13.54 20.39 32.99 0.15 0.18 0.17 6.89 18.0 
48.28 

1.9 N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. 
N.S. 
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Table 4: Switching angles, harmonic contents, and THD for a seven-level inverter using π/3 

method 

ma θ1 θ2 θ3 θ4 H5 H7 H11 h13 

THD Funda

mental 

(V) 

0.0037 9.90 10.07 29.92 49.98 20.7 20.9 13.0 8.04 36.12 45.65 

0.0188 9.54 10.68 29.63 49.91 20.8 20.7 13.2 8.04 36.95 45.55 

0.0755 8.21 11.46 28.51 49.60 21.3 20.8 13.6 8.25 36.64 44.64 

0.1133 7.33 12.18 27.74 49.36 20.4 18.7 14.5 8.57 34.96 44.06 

0.1511 6.46 12.90 26.96 49.10 20.1 19.3 12.6 8.32 34.29 43.42 

0.1889 5.59 13.60 26.15 48.82 19.6 17.4 12.8 8.11 33.17 42.98 

0.2267 4.73 14.29 25.32 48.54 19.3 16.4 11.3 7.79 32.12 42.36 

0.2645 3.86 14.96 24.46 48.25 18.7 15.2 9.82 7.87 30.53 41.73 

0.3023 N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. 
N.S 

0.3400 N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. 
N.S 

0.3778 N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. 
N.S 

0.4156 1.41 32.66 48.62 55.34 9.78 1.21 15.8 6.7 22.76 44.51 

0.4534 0.22 31.38 45.76 51.20 11.6 4.45 11.5 6.25 21.55 43.35 

0.4912 0.95 30.05 43.01 48.13 10.7 5.82 5.01 7.72 21.25 42.12 

0.5290 2.14 28.63 40.23 45.43 9.38 5.91 1.44 8.64 20.11 42.25 

0.5668 3.31 27.05 37.28 42.99 7.78 5.18 6.75 8.15 18.94 41.92 

0.6046 4.44 25.14 34.11 40.98 5.99 2.65 11.6 6.58 18.85 41.61 

0.6423 5.48 22.83 31.22 39.95 4.66 0.42 14.5 2.82 22.48 41.66 
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0.6801 6.44 20.71 29.66 39.75 4.42 1.95 16.2 0.34 24.99 41.9 

0.7179 7.39 19.10 29.20 39.61 4.9 3.46 17.3 2.76 24.95 42.39 

0.7557 8.39 17.82 29.27 39.34 4.29 4.63 18.0 4.6 24.49 42.87 

0.7935 N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. 
N.S 

0.8313 5.77 24.85 45.21 57.14 12.5 1.31 5.72 13.5 22.25 46.81 

0.8691 N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. 
N.S 

0.9069 N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. 
N.S 

0.9446 N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. 
N.S 

0.9824 N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. 
N.S 

1.0202 7.33 11.43 40.63 46.00 18.8 6.16 11.4 0.16 26.88 47.09 

1.0580 N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. 
N.S 

1.0958 N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. 
N.S 

1.1336 N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. 
N.S 

1.1714 N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. 
N.S 

1.2092 N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. 
N.S 

1.2469 N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. 
N.S 

1.2847 N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. 
N.S 

1.3225 N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. 
N.S 

1.3535 0.37 20.50 25.45 35.04 3.65 2.66 1.63 2.61 11.83 37.81 

1.3546 0.36 20.71 25.20 35.15 3.55 2.78 1.96 3 12.73 37.88 

1.3565 0.34 21.02 25.51 35.31 3.77 3.22 1.58 2.7 13.22 37.86 

1.3603 0.28 21.56 26.03 35.62 3.83 3.38 2.37 3.12 15.65 37.92 

1.3981 0.56 25.63 29.55 37.88 4.45 4.52 3.39 4.27 19.22 38.2 
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1.4359 1.62 30.72 34.33 40.15 3.72 4.05 3.41 6.86 16.62 39.7 

1.4737 N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. 
N.S 

1.5115 N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. 
N.S 

1.5492 N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. 
N.S 

1.5870 4.45 14.18 19.68 38.10 3.84 5.29 5.87 2.17 15.59 39.75 

1.6248 N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. 
N.S 

1.6626 5.90 12.99 21.71 46.69 14.1 15.7 9.83 5.57 29.87 41.87 

1.7004 8.07 14.92 24.37 47.69 13.1 15.6 13.3 8.76 29.27 43.32 

1.7382 10.1 16.06 26.42 48.79 12.3 14.8 15.7 10.4 29.1 44.31 

1.7760 12.6 17.39 28.26 49.92 10.4 12.8 15.8 11.1 27.14 45.44 

1.8138 16.8 20.55 30.28 51.05 6.27 7.94 11.0 9.66 21.53 46.84 

1.8515 N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. 
N.S 

1.8893 N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. 
N.S 

1.9271 N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. 
N.S 

1.9649 3.92 8.151 35.34 55.25 32.9 21.7 2.41 5.94 41.74 45.41 

2.0027 5.14 11.34 36.83 56.74 29.5 18.2 5.16 5.81 37.02 45.93 

2.0405 5.25 13.52 38.36 58.17 27.3 14.8 4.13 7.48 34.02 46.28 

2.0783 4.94 15.37 39.94 60 25.5 11.4 3.25 8.47 31.99 46.34 

2.1161 4.40 17.08 41.60 59.05 23.2 8.41 1.24 9.85 28.81 46.51 

2.1538 N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. 
N.S 

2.1916 2.91 20.38 45.37 55.59 18.8 0.76 3.56 8.47 24.79 46.55 

2.2294 N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. 
N.S 
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The following Python program was used with Raspberry Pi to generate the control signal 

for the three-phase CHB using the π/2 method: 

from time import sleep 

import time 

 

 

def init_gpio(): 

    if RP_ACTIVE: 

        import RPi.GPIO as GPIO 

        GPIO.setmode(GPIO.BCM) 

        for key in gpio_dic: 

            GPIO.setup(gpio_dic[key]['gpio'], GPIO.OUT) 

 

    for key in gpio_dic: 

        gpio_dic[key]['next'] = gpio_dic[key]['delay'] 

 

 

def cleanup(): 

    if RP_ACTIVE: 

        import RPi.GPIO as GPIO 

        GPIO.cleanup() 

 

 

def show_result(gpio): 

    if RP_ACTIVE: 

        import RPi.GPIO as GPIO 

        GPIO.output(gpio['gpio'],gpio['val']) 

        # print ('time: {}: gpio_{}, {}, {}'.format(time.time(), 

gpio['gpio'], gpio['t'], gpio['val'])) 

 

    else: 

        # print ('time: {}: gpio_{}, {}, {}'.format(time.time(), 

gpio['gpio'], gpio['t']-1, (gpio['val'] + 1) % 2 )) 

        print ('time: {}: gpio_{}, {}, {}'.format(time.time(), 

gpio['gpio'], gpio['t'], gpio['val'])) 

 

 

def process_gpio(gpio, counter): 

    if abs(gpio['t'] + counter - gpio['next']) < 1 : 

        gpio['t'] = gpio['next'] 

        gpio['next'] = gpio['t'] + steps[gpio['step']] 

        gpio['step'] = (gpio['step'] + 1) % 6 

        show_result(gpio) 

 

        gpio['val'] = (gpio['val'] + 1) % 2 

 

    else: 

        gpio['t'] += counter 

 

    return (gpio['next'] - gpio['t']) 
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def looper(): 

    counter = 0 

    while(1): 

        min_val = 1000000 

        for key in gpio_dic: 

            diff = process_gpio(gpio_dic[key], counter) 

            if diff < min_val: 

                min_val = diff 

        # print(min_val) 

        sleep((min_val -1)/1663000.0) 

        counter = min_val 

 

 

steps = [668.074, 452.731, 3903.7314, 452.7314, 668.074, 9427.3287] 

 

gpio_dic = { 

        'GPIO_17': {'gpio':17, 'delay': 1093.995, 'step':0, 't': 0, 

'val': 1, 'next':0 }, 

        'GPIO_27': {'gpio':27, 'delay': 9427.328, 'step':0, 't': 0, 

'val': 1, 'next':0 }, 

        'GPIO_22': {'gpio':22, 'delay': 6649.55, 'step':0, 't': 0, 

'val': 1, 'next':0 }, 

        'GPIO_23': {'gpio':23, 'delay': 14982.884, 'step':0, 't': 0, 

'val': 1, 'next':0 }, 

        'GPIO_24': {'gpio':24, 'delay': 12205.106, 'step':0, 't': 0, 

'val': 1, 'next':0 }, 

        'GPIO_25': {'gpio':25, 'delay': 20538.439, 'step':0, 't': 0, 

'val': 1, 'next':0 }, 

        } 

 

RP_ACTIVE = True 

 

 

 

init_gpio() 

looper() 

cleanup() 

 

 

 

 

 

 

 

 



115 
 

The following Python program was used with Raspberry Pi to generate the control signal 

for the three-phase CHB using the π/3 method: 

from time import sleep 

import time 

 

 

def init_gpio(): 

    if RP_ACTIVE: 

        import RPi.GPIO as GPIO 

        GPIO.setmode(GPIO.BCM) 

        for key in gpio_dic: 

            GPIO.setup(gpio_dic[key]['gpio'], GPIO.OUT) 

 

    for key in gpio_dic: 

        gpio_dic[key]['next'] = gpio_dic[key]['delay'] 

 

 

def cleanup(): 

    if RP_ACTIVE: 

        import RPi.GPIO as GPIO 

        GPIO.cleanup() 

 

 

def show_result(gpio): 

    if RP_ACTIVE: 

        import RPi.GPIO as GPIO 

        GPIO.output(gpio['gpio'],gpio['val']) 

        # print ('time: {}: gpio_{}, {}, {}'.format(time.time(), 

gpio['gpio'], gpio['t'], gpio['val'])) 

 

    else: 

        # print ('time: {}: gpio_{}, {}, {}'.format(time.time(), 

gpio['gpio'], gpio['t']-1, (gpio['val'] + 1) % 2 )) 

        print ('time: {}: gpio_{}, {}, {}'.format(time.time(), 

gpio['gpio'], gpio['t'], gpio['val'])) 

 

 

def process_gpio(gpio, counter): 

    if abs(gpio['t'] + counter - gpio['next']) < 1 : 

        gpio['t'] = gpio['next'] 

        gpio['next'] = gpio['t'] + steps[gpio['step']] 

        gpio['step'] = (gpio['step'] + 1) % 6 

        show_result(gpio) 

 

        gpio['val'] = (gpio['val'] + 1) % 2 

 

    else: 

        gpio['t'] += counter 

 

    return (gpio['next'] - gpio['t']) 

 

def looper(): 

    counter = 0 
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    while(1): 

        min_val = 1000000 

        for key in gpio_dic: 

            diff = process_gpio(gpio_dic[key], counter) 

            if diff < min_val: 

                min_val = diff 

        # print(min_val) 

        sleep((min_val -1)/1663000.0) 

        counter = min_val 

 

 

steps = [717.921, 391.7361, 4061.555, 391.7361, 717.921, 9359.564] 

 

gpio_dic = { 

        'GPIO_17': {'gpio':17, 'delay': 1026.23, 'step':0, 't': 0, 

'val': 1, 'next':0 }, 

        'GPIO_27': {'gpio':27, 'delay': 9359.56, 'step':0, 't': 0, 

'val': 1, 'next':0 }, 

        'GPIO_22': {'gpio':22, 'delay': 6581.787, 'step':0, 't': 0, 

'val': 1, 'next':0 }, 

        'GPIO_23': {'gpio':23, 'delay': 14915.120, 'step':0, 't': 0, 

'val': 1, 'next':0 }, 

        'GPIO_24': {'gpio':24, 'delay': 12137.342, 'step':0, 't': 0, 

'val': 1, 'next':0 }, 

        'GPIO_25': {'gpio':25, 'delay': 20470.675, 'step':0, 't': 0, 

'val': 1, 'next':0 }, 

        } 

 

RP_ACTIVE = True 

 

 

 

init_gpio() 

looper() 

cleanup() 
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