
University of Nebraska - Lincoln University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

The R Journal Statistics, Department of

12-2021

CompModels: A Suite of Computer Model Test Functions for CompModels: A Suite of Computer Model Test Functions for

Bayesian Optimization Bayesian Optimization

Tony Pourmohamad

Follow this and additional works at: https://digitalcommons.unl.edu/r-journal

 Part of the Numerical Analysis and Scientific Computing Commons, and the Programming Languages

and Compilers Commons

This Article is brought to you for free and open access by the Statistics, Department of at
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in The R Journal by an
authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/r-journal
https://digitalcommons.unl.edu/statistics
https://digitalcommons.unl.edu/r-journal?utm_source=digitalcommons.unl.edu%2Fr-journal%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=digitalcommons.unl.edu%2Fr-journal%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=digitalcommons.unl.edu%2Fr-journal%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=digitalcommons.unl.edu%2Fr-journal%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages

CONTRIBUTED RESEARCH ARTICLES 441

CompModels: A Suite of Computer Model
Test Functions for Bayesian Optimization
by Tony Pourmohamad

Abstract The CompModels package for R provides a suite of computer model test functions that can be
used for computer model prediction/emulation, uncertainty quantification, and calibration. Moreover,
the CompModels package is especially well suited for the sequential optimization of computer models.
The package is a mix of real-world physics problems, known mathematical functions, and black-box
functions that have been converted into computer models with the goal of Bayesian (i.e., sequential)
optimization in mind. Likewise, the package contains computer models that represent either the
constrained or unconstrained optimization case, each with varying levels of difficulty. In this paper,
we illustrate the use of the package with both real-world examples and black-box functions by solving
constrained optimization problems via Bayesian optimization. Ultimately, the package is shown to
provide users with a source of computer model test functions that are reproducible, shareable, and
that can be used for benchmarking of novel optimization methods.

Introduction

The CompModels package (Pourmohamad, 2020) for R (R Core Team, 2020) is a suite of test functions
designed to mimic computer models. Usually deployed when physical experimentation is not possible,
a computer model (or code) is a mathematical model that simulates a complex phenomena or system
under study via a computer program. For example, weather phenomena, such as hurricanes or
global warming, are not reproducible physical experiments. Therefore, computer models based on
climatology are used to study these events. At its simplest, a computer model is a mathematical model
of the form

y = f (x1, . . . , xd) = f (x), x = (x1, . . . , xd)
T ∈ X , (1)

where x is an input variable to the computer model, y is a (possibly multivariate) deterministic output
from the computer model, and X is the domain of the input variable. A defining characteristic of
most computer models is that, for a given input x, the evaluation of the underlying mathematical
model, f , is a time intensive endeavor. Computationally expensive computer models helped spur
the development of the computer modeling field in statistics (Santner et al., 2003), and in particular,
the development of “cheap-to-compute" statistical models, or surrogate models, that resemble the true
computer model very closely but are much faster to run. Outside the scope of this paper, but useful
for forthcoming discussion and illustrations, we simply mention that Gaussian processes (GPs) (Stein,
1999) have been used as the typical modeling choice for building statistical surrogate models. GPs are
the preferred choice of statistical surrogate model due to their flexibility, well-calibrated uncertainty,
and analytic properties (Gramacy, 2020).

Another typical trait of computer models is that they are often treated as black-box functions. Here,
a black-box computer model is a computer model where evaluation requires running computer code
that reveals little information about the functional form of the underlying mathematical function, f .
The black-box assumption often arises due to the fact that f may be extremely complex, analytically
intractable, or that access to the internal workings of the computer model are restricted, say, for such
reasons as being proprietary software. The latter restricted cases have led to a dearth of real-world
computer models that are freely available and/or accessible to statisticians that hope to develop
novel methods for the computer modeling field. It is for this reason that we have developed the
CompModels package which serves as a repository of pseudo computer models for statistical use.

The CompModels package can be used to test and develop methods for computer model emulation
(prediction), uncertainty quantification, and calibration. However, the main focus when developing
the package was placed on building computer models for optimization. Real-world computer models
are often built with the goal of understanding some physical system of interest, and with that goal
usually comes the need to optimize some output of interest from the computer model. For example, in
hydrology, the minimization of contaminants in rivers and soils is of interest and so computer models
representing pump-and-treat remediation plans are often used in order to optimize objectives, such
as the associated costs of running pumps for pump-and-treat remediation, while also ensuring that
contaminants do not spread (Pourmohamad and Lee, 2019). Recalling that most computer models
are computationally expensive to run, the need for efficient sequential optimization algorithms (also
known as Bayesian optimization) that do not require many functional evaluations is high, which is
why the focus of the test functions in the CompModels package is placed on optimization. More

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=CompModels
https://CRAN.R-project.org/package=CompModels

CONTRIBUTED RESEARCH ARTICLES 442

specifically, the CompModels package presents functions to optimize of the following form

min
x

{ f (x) : c(x) ≤ 0, x ∈ X}, (2)

where X ⊂ Rd is a known, bounded region such that f : X → R denotes a scalar-valued objective
function, and c : X → Rm denotes a vector of m constraint functions. However, many of the package
functions omit the constraint functions and thus the package is a mix of constrained and unconstrained
optimization problems.

Some of the functions in the CompModels package have known functional forms, for example, the
gram() and mtp() functions. However, most all functions are intended to serve as black-box computer
models. All of the black-box computer model functions within the package are aptly named bbox
(short for black-box) and followed by a unique integer value to make the functions discernible. For
example, bbox1() and bbox2() are two unique function calls to two different black-box computer
models that can be used for constrained and unconstrained optimization, respectively. R is an open-
source programming language, and so none of the computer models within the package can ever
truly be a completely black-box function. However, the developers of the CompModels package have
done their best to obscure the analytical forms of the mathematical functions underlying the computer
models. For example, at the first level of the code, a call to the bbox1() function tells the user the
following:

R> bbox1
function(x1,x2){

if(!is.numeric(x1) | !is.numeric(x2) | length(x1) != 1 | length(x2) !=1){
stop("Input is invalid.")

}else if(x1 < -1.5 | x1 > 2.5 | x2 < -3 | x2 > 3){
stop("Input is outside of the domain.")

}else{
ans <- .C("bbox1c",x1=x1,x2=x2,fx=0,c1x=0,c2x=0)
return(list(obj = ans$fx, con = c(ans$c1x,ans$c2x)))

}
}

The only discernible information that the user can glean from this output is that the bbox1()
function has an input dimension of d = 2, where the domain X = [−1.5, 2.5]× [−3, 3], and that there
is one objective function, fx, to minimize, and two constraint functions, c1x and c2x, to satisfy. As
we see from the .C() command, the actual source code for the black-box function has been written
using the C programming language. The C programs are publicly available, but the code within those
programs has been heavily obfuscated to the best of our abilities in order to obscure the source code
such that the computer models remain black-box functions. Moreover, we believe that a good robust
methodology developed for computer models benefits from being applied to black-box functions and
so any attempt to decipher the black-box computer models is simply a disservice to the statistician
developing the methodology.

When developing the computer models in the package, we kept in mind that the best computer
model examples typically have roots in real applications. When possible, we tried to develop computer
models that were either based on physics or that appeared in the literature with real use cases.
For example, one computer model, pressure(), is based on the real-world engineering problem of
minimizing the cost associated with constructing a pressure vessel (Figure 1). Given the thickness of
the shell (x1), the thickness of the head (x2), the inner radius (x3), and the length of the cylindrical
section of the vessel (x4) not including the head, the cost of constructing the pressure vessel is to be
minimized subject to four constraints on the cost of materials, forming, and welding.

!!

!"
!#!$

!"

Figure 1: The physical representation of the pressure vessel computer model.

Likewise, when possible, we sought out real-world problems where solutions already existed that

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 443

could be benchmarked to. For example, the tension spring computer model, tension(), is designed
to minimize the weight of a tension spring (Figure 2) subject to four constraints on the shear stress,
surge frequency, and deflection. The three inputs to the computer model are for the wire diameter (x1),
mean coil diameter (x2), and the number of active coils (x3).

!!

!"

!# = Number of Coils

Figure 2: The physical representation of the tension spring computer model.

The tension spring problem has been solved many times in the literature, and Table 1 summarizes
some of the best solutions.

Optimal Inputs
Source x1 x2 x3 Best Solution

Coello (2000) 0.051480 0.351661 11.632201 0.012704
He and Wang (2007) 0.051728 0.357644 11.244543 0.012675
Gandomi et al. (2013) 0.051690 0.356730 11.288500 0.012670
Mirjalili et al. (2014) 0.051690 0.356737 11.288850 0.012666
Lee and Geem (2005) 0.051154 0.349871 12.076432 0.012671
Askarzadeh (2016) 0.051689 0.356717 11.289012 0.012665
Mirjalili et al. (2017) 0.051207 0.345215 12.004032 0.012676
Li et al. (2019) 0.051618 0.355004 11.390144 0.012665

Table 1: Best solutions to the tension spring optimization problem from the literature.

We stress the need for benchmarking in our examples because we believe that benchmarking
also helps with allowing for good computer model methodology to be developed. In the computer
modeling literature, one tends to see real-world optimization results that stand alone and cannot be
compared against or even replicated because practitioners do not have access to the same computer
models as others. Being able to benchmark one’s results to others helps discern how well a given
optimization method performs and allows for useful internal feedback when developing a method.
Thus, a key reason we have developed the CompModels package is so that equitable access to
computer models for benchmarking exists. Similarly, a problem with real-world computer models is
that they can change over time, and often older versions will be phased out, unsupported, or disappear
entirely. For example, the optimization results for the MODFLOW-96 computer model (McDonald
and Harbaugh, 1996) from Pourmohamad and Lee (2016) was benchmarked to the work in Lindberg
and Lee (2015). However, this computer model is no longer supported by its developers, and so future
benchmarking may become infeasible. Thus, the CompModels package also stands as a repository
of computer models that should be available to all users for the foreseeable future. Lastly, computer
models can often be platform and operating system specific, which ultimately limits the number of
potential users of the computer model. Given that R packages, for the most part, tend to be immune to
this problem, the CompModels package would be available to as wide of an audience as possible,
again providing equitable access to computer models.

The remainder of the paper is organized as follows. Section 2.2 gives a brief introduction to
Bayesian optimization and expected feasible improvement so that the computer models within the
CompModels package can be demonstrated. Section 2.3 illustrates practical applications of package
use for optimization, and Section 2.4 concludes with a discussion.

Bayesian Optimization

Tracing its roots as far back as to Mockus et al. (1978), Bayesian optimization (BO) is a sequential design
strategy for efficiently optimizing black-box functions in a few steps that does not require gradient

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 444

information (Brochu et al., 2010). More specifically, BO seeks to solve the minimization problem

x∗ = argmin
x∈X

f (x). (3)

The minimization problem in (3) is solved by iteratively developing a statistical surrogate model
of the unknown objective function f , and at each step of this iterative process, using predictions
from the statistical surrogate model to maximize an acquisition (or utility) function, a(x). The role
of the acquisition function is to measure how promising each location in the input space, x ∈ X , is
if it were to be the next chosen point to evaluate. As alluded to in Section 2.1, the GP is the typical
choice of surrogate model in the computer modeling literature, and so we adopt that stance as well
in this paper. Lastly, although the general definition of BO is that of an unconstrained optimization
problem, extensions to the constrained optimization case are straightforward and many (Lee et al.,
2011; Gramacy et al., 2016; Letham et al., 2019; Pourmohamad and Lee, 2020). Here, we merely
augment the original problem statement in (3) to be

x∗ = argmin
x∈X

f (x) subject to c(x) ≤ 0, (4)

where now both f and c can be modeled using independent GPs, and all other steps proceed as before.

In order to solve the problems in (3) and (4), an acquisition function must be chosen for efficiently
guiding the search. Perhaps, one of the most popular acquisition functions for unconstrained Bayesian
optimization is that of expected improvement (EI) (Jones et al., 1998). Originally introduced in the
computer modeling literature, Jones et al. (1998) defined the improvement statistic at a proposed
input x to be I(x) = maxx{0, f n

min − Y(x)}, where, after n runs of the computer model, f n
min =

min{ f (x1), ..., f (xn)} is the current minimum value observed. Since the proposed input x has not yet
been observed, Y(x) is unknown and can be regarded as a random variable. Likewise, I(x) can be
regarded as a random variable, and so new candidate inputs, x∗, can be selected by maximizing the
expected improvement, i.e.,

x∗ = arg max
x∈X

E[I(x)]. (5)

Fortunately, if we treat Y(x) as coming from a GP then, conditional on a particular parameterization
of the GP, the EI acquisition function is available in closed form as

E[I(x)] = (f n
min − µn(x))Φ

(
f n
min − µn(x)

σn(x)

)
+ σn(x)ϕ

(
f n
min − µn(x)

σn(x)

)
. (6)

Here, µn(x) and σn(x) are the mean and standard deviation of the predictive distribution of Y(x), and
Φ(·) and ϕ(·) are the standard normal cdf and pdf, respectively.

Extending EI to the constrained optimization case, Schonlau et al. (1998) defined expected feasible
improvement (EFI) as

EFI(x) = E[I(x)]× Pr(c(x) ≤ 0), (7)

where Pr(c(x) ≤ 0) is the probability of satisfying the joint constraints. Here, I(x) uses an f n
min defined

over the region where the constraint functions are satisfied. Again, new candidate inputs, x∗, can now
be selected by maximizing the expected feasible improvement, i.e.,

x∗ = arg max
x∈X

E[I(x)]× Pr(c(x) ≤ 0). (8)

Here the formula in (6) still holds. However, we are now weighting EI by the probability that x is
feasible.

Illustrations

We illustrate the use and functionality of the computer models in the CompModels package by solving
two constrained optimization problems using the EFI method outlined in Section 2.2. We optimize the
tension spring computer model, tension(), as well as the black-box 1 computer model, bbox1(). In
both cases, we perform Monte Carlo experiments where we repeat the optimization routine a total of
30 times to judge the robustness of the solutions. We take advantage of the function optim.efi() in
the laGP package (Gramacy, 2016) for running the EFI algorithm. A full list of the available computer
models in the CompModels package is given in the Appendix and is generalizable to the proceeding
examples.

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=laGP

CONTRIBUTED RESEARCH ARTICLES 445

Tension Spring Computer Model

The goal of the tension spring computer model is to minimize the weight of the tension spring subject
to four constraints on the shear stress, surge frequency, and deflection. Here, the inputs to the tension
spring computer model are the wire diameter (x1), mean coil diameter (x2), and the number of active
coils (x3), where x1 ∈ [0.05, 2], x2 ∈ [0.25, 1.3], and x3 ∈ [2, 15]. To evaluate the computer model at a
given input, a user needs to supply an input within the given domain, i.e.,

R> tension(x1 = 1, x2 = 1, x3 = 3)
$obj
[1] 5

$con
[1] 0.9999582 -45.8166667 -0.9995655 0.3333333

All of the computer model functions in the package will return a list where the first element in the list
is the value of the objective function, and (in the case of constrained optimization) the second element
contains the values of the constraint functions. Here we see that for a wire diameter of x1 = 1, mean
coil diameter of x2 = 1, and x3 = 3 active coils, that the weight of the tension spring is five. However,
the first and last constraint has not been satisfied since those values of $con are non-negative. Thus,
the input is not a feasible solution to the problem. The input of x = (1, 1, 3) was merely a guess for
illustrative purposes. A more reasonable approach to minimizing the tension spring computer model
would be to employ the EFI method in Section 2.2. In order to do so, we make use of the function
optim.efi() in the laGP package. To be able to use the optim.efi() function, we need to first build a
wrapper function (which we call bbox) for our tension() function that conforms to the specifications
of the optim.efi() function.

R> bbox <- function(X){
+ output = tension(X[1], X[2], X[3])
+ return(list(obj = output$obj, c = output$con))
}

Next, we need to create a matrix that encodes the domain of the computer model inputs.

R> B <- matrix(c(.05, .25, 2, 2, 1.3, 15), nrow=3)

We can implement the EFI algorithm by passing our wrapper function and domain variable as
arguments to the optim.efi() function, and then by checking the regions where the solution satisfies
the constraints.

R> ans <- optim.efi(bbox, B, fhat = TRUE, start = 10, end = 300)
R> constraint <- ifelse(apply(ans$C, 1, max) > 0, "Not Met", "Met")

Here, we see that the optim.efi() function started with a random input of 10 data points and
sequentially chose 290 more inputs for a total of 300 evaluations. The output of optim.efi() is a large
list storing all steps of the EFI algorithm. We create the constraint variable in order to be able to find
where the minimum feasible value exists.

R> min(ans$obj[constraint == "Met"])
[1] 0.0112376

R> ans$X[ans$obj == min(ans$obj[constraint == "Met"])]
[1] 0.05345441 0.45253754 6.69064005

Here, we see that the best feasible value found by the EFI algorithm is at a weight of 0.0112376, which
occurs at an input of x = (0.05345441, 0.45253754, 6.69064005). Interestingly, this minimum value
found of 0.0112376 is much smaller than all of the best minimums found in our review of the literature
(Table 1). To evaluate the robustness of the EFI algorithm for the tension spring computer model,
we conduct a Monte Carlo experiment where we repeat the optimization routine 30 times based on
different starting input data sets of size 10.

R> S <- 30
R> results <- rep(NA, S)
R> for(i in 1:S){
+ ans <- optim.efi(bbox, B, fhat = TRUE, start = 10, end = 300)
+ constraint <- ifelse(apply(ans$C, 1, max) > 0, "Not Met", "Met")
+ results[i] <- min(ans$obj[constraint == "Met"])
+}

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 446

R> summary(results)
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.01081 0.01255 0.01302 0.01325 0.01386 0.01859

From the summary of the results, we see that over the 30 Monte Carlo experiments that the EFI
algorithm was not able to reliably find as good of a solution over the 300 computer model evaluations.
The mean value over the 30 runs was 0.01325, which was much higher than the best solutions presented
in Table 1. However, we do see from the summary that the EFI algorithm was able to find at least one
more better solution, as compared to the literature, at a spring weight of 0.01081.

Black-box Computer Model

Recalling Section 2.1, the bbox1() computer model has an input dimension of d = 2, where the domain
X = [−1.5, 2.5]× [−3, 3], and that there is one objective function, fx, to minimize, and two constraint
functions, c1x and c2x, to satisfy. We can, once again, use the optim.efi() function to perform the EFI
algorithm by creating an appropriate wrapper function and domain variable.

R> bbox <- function(X){
+ output = bbox1(X[1], X[2])
+ return(list(obj = output$obj, c = output$con))
+}

R> B <- matrix(c(-1.5, -3, 2.5, 3), nrow = 2)

We initialize the optim.efi() function with an input data set of 10 points and continue to sequentially
evaluate the bbox1() function for a total of 100 input points.

R> ans <- optim.efi(bbox, B, fhat = TRUE, start = 10, end = 100)
R> constraint <- ifelse(apply(ans$C, 1, max) > 0, "Not Met", "Met")

Checking the EFI algorithm results in the areas where the constraint functions were satisfied, we obtain
a best feasible minimum objective function value of -4.61008, which occurs at x = (0.204649, 2.072964).

R> min(ans$obj[constraint == "Met"])
[1] -4.610088

R> xbest <- ans$X[ans$obj == min(ans$obj[constraint == "Met"])]
R> xbest
[1] 0.204649 2.072964

Now, since the bbox1() function is a black-box computer model, we do not have any analytical way
of checking whether or not our solution to the optimization problem is a good one. However, the
functions in the CompModels package were not developed with the intent of forcing them to be
computationally expensive if they need not be. Thus, with an input dimension of d = 2, it is very
easy to evaluate the bbox1() function on a very dense grid to understand what the potential surface of
the objective and constraint functions look like. Doing so does not guarantee us analytically that our
solution is a good one, but we will be able to tell visually whether or not our solution is a good one.
Plotting the objective and constraint surfaces, we obtain the following (Figure 3).

R> n <- 200
R> x1 <- seq(-1.5, 2.5, len = n)
R> x2 <- seq(-3, 3, len = n)

R> x <- expand.grid(x1, x2)
R> obj <- rep(NA, nrow(x))
R> con <- matrix(NA, nrow = nrow(x), ncol = 2)

R> for(i in 1:nrow(x)){
+ temp <- bbox1(x[i,1], x[i,2])
+ obj[i] <- temp$obj
+ con[i,] <- temp$con
+}

R> y <- obj
R> y[con[,1] > 0 | con[,2] > 0] <- NA

R> z <- obj

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 447

R> z[!(con[,1] > 0 | con[,2] > 0)] <- NA

R> par(ps=15)
R> plot(0, 0, type = "n", xlim = c(-1.5, 2.5), ylim = c(-3, 3),
+ xlab = expression(x[1]), ylab = expression(x[2]), main = "Black-box Function")
R> c1 <- matrix(con[,1], ncol = n)
R> contour(x1, x2, c1, nlevels = 1, levels = 0, drawlabels = FALSE, add = TRUE,
+ lwd = 2)
R> c2 <- matrix(con[,2], ncol = n)
R> contour(x1, x2, c2, nlevels = 1, levels = 0, drawlabels = FALSE, add = TRUE,
+ lwd = 2, lty = 2)
R> contour(x1, x2, matrix(y, ncol = n), nlevels = 10, add = TRUE, col = "forestgreen")
R> contour(x1, x2, matrix(z, ncol = n), nlevels = 20, add = TRUE, col = 2, lty = 2)
R> points(xbest[1], xbest[2], pch = 21, bg = "deepskyblue")

-1 0 1 2

-3
-2

-1
0

1
2

3

Black-box Function

x1

x 2

Figure 3: The objective function colored by the two constraints. The solid black line denotes one
constraint function, while the dashed black line denotes the other constraint function. Contours that
are red are areas where the constraints are not satisfied, while green contours indicate areas where the
constraints are satisfied. The blue point represents the best feasible solution found by EFI.

By plotting the objective function surface, and the constraint functions, we see that the space where the
constraints are satisfied are two disconnected regions where the feasible region with x1 > 0 has much
lower objective function values than the feasible region where x1 < 0. We plotted our best minimum
objective value found, by EFI, as a blue circle in (Figure 3). Visually, our best minimum objective
value found appears to be around the global minimum value based on the calculated contour lines
of the plot. Although this visual inspection suggests that our EFI algorithm has correctly identified
the global solution to the optimization problem, confirmation of our solution could come from others
using the CompModels package in order to benchmark the solution. Lastly, we check the robustness
of the solution found by the EFI algorithm by conducting a Monte Carlo experiment where we repeat
the optimization routine for a total of 30 times.

R> summary(results)
Min. 1st Qu. Median Mean 3rd Qu. Max.

-4.681 -4.661 -4.645 -4.645 -4.632 -4.602

From the summary of the results, we see that the variation in the results show up in the hundredth
decimal point and beyond, which we regard as representing a very robust solution.

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 448

Discussion

The primary goal of the package is to provide users with a source of computer model test functions
that are reproducible, shareable, and that can ultimately be used for benchmarking of Bayesian
optimization methods. The package will greatly benefit those who do not have access, or connections,
to real-world computer models. In time, it is our hope that the package will come to be viewed as a
suite of real computer models rather than solely as pseudo ones. Likewise, the CompModels package
is not a static package in that we envision it to be a living repository, and so more computer model
functions will be expected to be added over time. The success of any R package ultimately comes from
the feedback received from its users. We greatly encourage all interested users of the package to please
contact the developers in order to provide any insights or examples for new computer models to be
added.

Bibliography

A. Askarzadeh. A novel metaheuristic method for solving constrained engineering optimization
problems: Crow search algorithm. Computers and Structures, 169:1–12, 2016. doi: 10.1016/j.compstruc.
2016.03.001. [p443]

E. Brochu, V. M. Cora, and N. de Freitas. A tutorial on bayesian optimization of expensive cost
functions, with application to active user modeling and hierarchical reinforcement learning, 2010.
[p444]

C. Coello. Use of a self-adaptive penalty approach for engineering optimization problems. Computers
in Industry, 41(2):113–127, 2000. doi: 10.1016/S0166-3615(99)00046-9. [p443]

A. Gandomi, X. Yang, A. Alavi, and S. Talatahari. Bat algorithm for constrained optimization tasks.
Neural Computing and Applications, 22:1239–1255, 2013. [p443]

R. B. Gramacy. laGP: Large-scale spatial modeling via local approximate Gaussian processes in R.
Journal of Statistical Software, 72(1):1–46, 2016. doi: 10.18637/jss.v072.i01. [p444]

R. B. Gramacy. Surrogates: Gaussian Process Modeling, Design, and Optimization for the Applied Sciences.
Chapman & Hall/CRC, first edition, 2020. [p441]

R. B. Gramacy, G. A. Gray, S. L. Digabel, H. K. H. Lee, P. Ranjan, G. Wells, and S. M. Wild. Modeling
an augmented Lagrangian for blackbox constrained optimization. Technometrics, 58(1):1–11, 2016.
[p444]

Q. He and L. Wang. An effective co-evolutionary particle swarm optimization for constrained
engineering design problems. Engineering Applications of Artificial Intelligence, 20(1):89–99, 2007. doi:
10.1016/j.engappai.2006.03.003. [p443]

D. Jones, M. Schonlau, and W. J. Welch. Efficient global optimization of expensive black box functions.
Journal of Global Optimization, 13:455–492, 1998. [p444]

H. K. H. Lee, R. B. Gramacy, C. Linkletter, and G. A. Gray. Optimization subject to hidden constraints
via statistical emulation. Pacific Journal of Optimization, 7:467–478, 2011. [p444]

K. Lee and Z. Geem. A new meta-heuristic algorithm for continuous engineering optimization:
harmony search theory and practice. Computer Methods in Applied Mechanics and Engineering, 194
(36–38):3902–3933, 2005. doi: 10.1016/j.cma.2004.09.007. [p443]

B. Letham, B. Karrer, G. Ottoni, and E. Bakshy. Constrained bayesian optimization with noisy
experiments. Bayesian Analysis, 14(2):495–519, 2019. [p444]

G. Li, F. Shuang, P. Zhao, and C. Le. An improved butterfly optimization algorithm for engineering
design problems using the cross-entropy method. Symmetry, 11(8):1049, 2019. doi: 10.3390/
sym11081049. [p443]

D. Lindberg and H. K. H. Lee. Optimization under constraints by applying an asymmetric entropy
measure. Journal of Computational and Graphical Statistics, 24:379–393, 2015. [p443]

M. McDonald and A. Harbaugh. Programmer’s documentation for MODFLOW-96, an update to
the U.S. geological survey modular finite difference ground-water flow model. Technical report,
Open-File Report 96-486, U.S. Geological Survey, 1996. [p443]

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 449

S. Mirjalili, S. Mirjalili, and A. Lewis. Grey wolf optimizer. Advances in Engineering Software, 69:46–61,
2014. doi: 10.1016/j.advengsoft.2013.12.007. [p443]

S. Mirjalili, A. Gandomi, Z. Mirjalili, S. Saremi, H. Fairs, and S. Mirjalili. Salp Swarm Algorithm:
A bio-inspired optimizer for engineering design problems. Advances in Engineering Software, 114:
163–191, 2017. doi: 10.1016/j.advengsoft.2017.07.002. [p443]

J. Mockus, V. Tiesis, and A. Zilinskas. The application of bayesian methods for seeking the extremum.
Towards Global Optimization, 2:117–129, 1978. [p443]

T. Pourmohamad. CompModels: Pseudo Computer Models for Optimization, 2020. URL https://CRAN.R-
project.org/package=CompModels. R package version 0.2.0. [p441]

T. Pourmohamad and H. K. H. Lee. Multivariate stochastic process models for correlated responses
of mixed type. Bayesian Analysis, 11(3):797–820, 09 2016. doi: 10.1214/15-BA976. URL https:
//doi.org/10.1214/15-BA976. [p443]

T. Pourmohamad and H. K. H. Lee. The statistical filter approach to constrained optimization.
Technometrics, 62(3):303–312, 2019. doi: 10.1080/00401706.2019.1638304. [p441]

T. Pourmohamad and H. K. H. Lee. Bayesian optimization via barrier functions. Technical report,
Deptartment of Statistics, University of California, Santa Cruz, 2020. [p444]

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria, 2020. URL https://www.R-project.org/. [p441]

T. J. Santner, B. J. Williams, and W. I. Notz. The Design and Analysis of Computer Experiments. Springer-
Verlag, New York, NY, 2003. [p441]

M. Schonlau, W. J. Welch, and D. Jones. Global versus local search in constrained optimization of
computer models. Lecture Notes-Monograph Series, pages 11–25, 1998. [p444]

M. L. Stein. Interpolation of Spatial Data. Springer, New York, NY, 1999. [p441]

Appendix: Current Computer Models

Table 2 provides a summary of the current computer models that are available in the CompModels
package. The package is a mix of real-world physics problems, known mathematical functions, and
black-box functions, as well as a mix of constrained or unconstrained optimization problems.

Function Input Dimension Optimization Type No. of Constraints

bbox1() 2 Constrained 2
bbox2() 2 Unconstrained –
bbox3() 2 Unconstrained –
bbox4() 2 Constrained 1
bbox5() 3 Unconstrained –
bbox6() 1 Constrained 2
bbox7() 8 Constrained 2
gram() 2 Constrained 2
mtp() 2 Constrained 2
pressure() 4 Constrained 4
sprinkler() 8 Unconstrained –
tension() 3 Constrained 4

Table 2: Current computer models that are implemented in the CompModels package.

Tony Pourmohamad
Genentech, Inc.
1 DNA Way
South San Francisco, CA 94080
United States
tpourmohamad@gmail.com

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=CompModels
https://CRAN.R-project.org/package=CompModels
https://doi.org/10.1214/15-BA976
https://doi.org/10.1214/15-BA976
https://www.R-project.org/
mailto:tpourmohamad@gmail.com

	CompModels: A Suite of Computer Model Test Functions for Bayesian Optimization
	CompModels: A Suite of Computer Model Test Functions for Bayesian Optimization
	Introduction
	Bayesian Optimization
	Illustrations
	Tension Spring Computer Model
	Black-box Computer Model

	Discussion
	Appendix: Current Computer Models

