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LAND APPLICATION OF MANURE FOR BENEFICIAL REUSE 

L. M. Risse1, M. L. Cabrera1, A. J. Franzluebbers2, J. W. Gaskin1, 
J. E. Gilley3, R. Killorn4, D. E. Radcliffe1, W. E. Tollner1, H. Zhang5 

SUMMARY 
The concentration of animal production systems has increased efficiency and improved overall 

economic return for animal producers. This concentration, along with the advent of commercial fer-
tilizers, has led to a change in the way animal producers view manure. Manure, once valued as a 
resource by farmers, is now treated as a waste. Air and water quality concerns that arise primarily 
from the under-utilization or inefficient use of manure contribute to these changing views. How-
ever, when properly used, manure is a resource and should be regulated as such. In the United 
States, the USDA/EPA Unified National Strategy for Animal Feeding Operations outlines how ani-
mal feeding operations should be regulated and acknowledges that land application at proper agro-
nomic rates is the preferred use for manures. However, many limitations such as water quality con-
cerns, uncertainty in manure nutrient availability, high transportation costs, and odor concerns 
cause some to question land application. This paper documents the benefits of land application of 
manure, discusses limitations that hinder greater manure utilization, and outlines research and ex-
tension needs for improving manure utilization. 

INTRODUCTION 
Manure is an excellent source of major plant nutrients such as nitrogen, phosphorus, and potas-

sium, as well as the secondary nutrients that plants require. Plant nutrients in commercial fertilizers 
are mostly water soluble and readily available for plant uptake, while the nutrients in manure are 
less available. This complicates the determination of application rates but the slower release con-
tributes to improved plant utilization and decreased nutrient losses to surface and ground water. 
Many studies have demonstrated that crop yields on land application areas are equivalent or supe-
rior to those attainable with inorganic fertilizers. Crop quality has also been improved by manure 
additions. These improved responses are usually attributed to manure-supplied nutrients or im-
proved soil conditions not provided by inorganic fertilizer. Manure, especially poultry litter, can 
also neutralize soil acidity and raise soil pH. This liming effect can further increase the value of 
manure. 

Research has shown manure application can have a significant impact on the chemical, physical 
and biological properties of the soil. Most of these effects are due to an increase in soil organic mat-
ter resulting from manure application. The ability of manure to promote formation of water-stable 
aggregates in the soil has a profound effect on soil structure and physical characteristics. Water-
stable aggregates increase infiltration, porosity, and water holding capacity and decrease soil com-
paction and erosion. Through improvement in soil physical properties, manure application also re-
duces the energy required for tillage and the impedance to seedling emergence and root penetration. 
Soil organic matter is known to affect a number of soil chemical properties such as the cation ex-
change capacity and the soil buffering capacity that enable manure treated soils to retain nutrients 
and other chemicals for longer periods of time. Soil organic matter is known to affect activity, deg-
radation, and persistence of pesticides, and several studies have shown reduced pesticide losses 
from manure treated fields. 
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The land application of manure can affect soil erosion and surface water runoff. Several labora-
tory and rainfall simulator studies on manure-amended soils indicate runoff and erosion rates are 
influenced by manure characteristics, loading rates, incorporation and the time between application 
and the first rainfall. The broad range of research objectives, underlying assumptions, manure 
types, and environmental conditions create differing results. Field plots established to collect runoff 
from natural precipitation events consistently indicate that manure can substantially reduce both 
runoff and soil erosion when solid manures are land applied. Results using lagoon effluent or slur-
ries are less conclusive. Nevertheless, this is a substantial benefit that should be considered when 
determining the water quality impacts of land application. 

Land application of animal manures can help mitigate potentially negative consequences of ris-
ing atmospheric CO2 on the global climate by contributing to greater sequestration of carbon in 
soil. In general, soil organic carbon sequestration on an area basis appears to be greater with an in-
creased rate of manure application. Climate appears to affect potential retention of applied carbon 
in soil with warmer regions tending to have lower carbon retention rates from manure (7±5%) than 
temperate or frigid regions (23±15%). Methane is also a significant contributor to global warming 
and animal agriculture is a significant contributor of methane emissions globally. Land application 
of manure can significantly decrease the net quantity of methane emitted to the atmosphere com-
pared with stockpiling or long-term lagoon storage of manure. 

The benefits of utilizing manure through land application are apparent. However, there are sev-
eral impediments that discourage greater use of manure nutrients in cropping systems. These in-
clude potential water quality problems associated with runoff, uncertainty associated with the nutri-
ent availability, high transportation and handling costs that discourage transport and greater utiliza-
tion, and public perception or odor issues. 

Potential pollutants of concern in livestock wastes are organic materials, nutrients, and patho-
genic microorganisms. Surface water is primarily affected through soluble contaminants in runoff 
or insoluble pollutants carried on soil particles during soil erosion events. Groundwater can be con-
taminated with excessive pollutants from percolation, seepage, and direct infiltration. Nutrients are 
the most common pollutant associated with animal waste. Several studies have documented that 
watersheds with predominantly animal agriculture tend to have higher nutrient levels in their drain-
age systems. Over-application of manure to crops or grasses can result in leaching of nitrate to 
ground water or high levels of N in surface waters resulting in eutrophication and low dissolved 
oxygen levels. Research has shown that the concentration of P in runoff increases as the P concen-
tration in the topsoil increases. Manure presents a special problem because the N-to-P ratio in ma-
nures is lower than that needed by crops. As a result of the low N-to-P ratio in manure, excess P 
builds up to environmentally harmful levels in fields that receive repeated applications. Compared 
to N and P, much less research has been done on bacteria and other pathogens in manures and their 
impact on water quality. 

The primary way to reduce the risks associated with land application of manure involves ad-
dressing the application rate, timing, and location. These issues are commonly addressed through 
nutrient management planning. The USDA/EPA Unified National Strategy for Animal Feeding Op-
erations establishes a national performance expectation that all AFOs should develop and imple-
ment technically sound, economically feasible Comprehensive Nutrient Management Plans 
(CNMPs). Traditionally, nutrient management has involved optimizing the economic return from 
nutrients used for crop production. Today, the agronomic and economic requirements of nutrient 
management remain central, but the process is being expanded to include the potential environ-
mental impacts of nutrients on the entire farm operation. This increases both the cost and complex-
ity of these plans, yet few studies have documented the effectiveness of nutrient management plans 
and some studies suggest it is difficult for farmers to reduce environmental impacts even with well-
developed plans. Often nutrient management plans do result in benefits for farmers and society, es-
pecially as an educational process, however, implementation has not been as great as desired. 

Even under ideal conditions, there is still a significant risk of losses to the environment. Agricul-
tural systems leak and elimination of non-point source impacts is practically impossible. Therefore, 
secondary treatment or preventative systems should also be incorporated into the design of all land 
application systems regardless of the choice of nutrient source. There are a number of best man-
agement practices (BMPs) that can be adopted to reduce the water quality impact of land-applied 
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manure. The method and timing of manure application can be adjusted to reduce the amounts of 
constituents transported in runoff. Practices that limit soil erosion or runoff will positively impact 
surface water quality, while practices that reduce leaching should help prevent groundwater con-
tamination. Conservation tillage, contouring and strip cropping, terraces, and vegetated waterways 
have all been used effectively to minimize runoff. Narrow grass hedges have also been employed to 
reduce runoff, control erosion, decrease nutrient transport, and provide wildlife habitat. Secondary 
treatment systems such as vegetative buffer zones, grass filter strips, riparian zones, and/or other 
vegetative filters can prevent nutrient and pathogen movement to surface waters. Containment sys-
tems like ponds and diversions may also be used. Ultimately, the goal of these systems should not 
be treatment, but should be a secondary system that insures that contaminated runoff does not di-
rectly enter surface water. The need for these types of systems is highly dependent on the receiving 
water body as often these secondary systems are not economically justified. Studies addressing the 
cost-benefit and efficiency of these systems on the farm and comprehensive watershed scale are 
needed to aid in producer decisions and help with water quality modeling efforts. Educational pro-
grams and policies to inform and to encourage adoption of current conservation technologies and 
BMPs by farmers is also an immediate need. 

Farmers often choose to use commercial sources of fertilizers instead of manure because of vari-
ability and uncertainty concerning manure nutrient availability. Although estimates of nutritional 
content can be obtained through published literature, due to the variability in farming practices, 
animal diets, climate, and waste storage facilities, manure nutrient analysis is usually recom-
mended. Currently, most farmers sample their manure regularly but wait extended periods for test 
results. The development of inexpensive, on-farm nutrient tests would allow for testing at the time 
of application and more frequent and dependable test results. Obtaining representative manure 
samples presents unique challenges depending on the physical nature of the manure involved. In 
the case of wet manure, one of the main sampling challenges is to obtain a representative sample 
from manure slurry that has different liquid and solid phases. 

Where animal production is concentrated, the land base available for manure application is usu-
ally limited. This limitation arises from restrictions imposed by the economics of manure transpor-
tation. The transport, collection, intermediate storage and general handling of manure to and from 
the point of processing or use is and will continue to be a problem. Little research emphasis is be-
ing placed on the concepts of materials handling and metering for animal manure, yet the econom-
ics of transporting the material to the point of use is often the greatest concern limiting the livestock 
producers from maximizing the use of this biomass resource. The export of manure from surplus to 
deficit areas for use as a fertilizer is often economically viable at larger scales. However, large scale 
transfers of manure are not occurring, suggesting a need for increases in the incentives given to 
commercial firms to provide manure brokering. Better integration of farms that produce crops and 
livestock and educational programs aimed at showing farmers the economic value of manure as a 
fertilizer are other methods of reducing the transport costs. Separation, screening, condensing, and 
dewatering technologies could also be used to produce more transportable products; however, little 
research is being conducted in these areas. 

Public perception of agriculture in general and land application in particular is critical to contin-
ued acceptance of manure application as the primary utilization strategy. Public concerns with ani-
mal manures can be broken into three major categories; water quality, air quality, and food quality. 
Land application of manures has the potential to negatively impact all three. Improved technical 
information should to be communicated to the general public about environmental, social and po-
litical concerns and potential solutions. 

HISTORICAL PERSPECTIVES 
Traditional American agriculture often includes a vision of a farm with a diversity of animals and 

a flock of chickens being raised in addition to other labor demands of the crop production enter-
prise. It was routine for the farm wife to be responsible for the management of the chicken flock, 
and to market eggs and fryers as an ongoing source of cash (Miner et al., 2000). Dairy herd size 
was frequently less than 20 cows. Poultry flocks ran on grounds near the farmhouse. Draft animals 
placed demands on the resources of the farm for feed production. Agricultural waste was not a seri-
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ous problem because of the extensive nature of the operations. Manure was viewed as an agricul-
tural resource during the formative years of agriculture in the 17th through the 19th centuries (Burn, 
1889; Murray, 1910). Manure provided nutrients in slow release form (Buckman and Brady, 1969). 
Manure application helped maintain soil organic matter (SOM), which in turn resulted in increased 
water infiltration and reduced soil erosion. This helped the farmer grow feed as well as other crops 
for export off the farm. 

World War II brought about profound changes in American life and agriculture. The farm labor 
supply was short during the war. The end of the war resulted in an excess capacity for fuel and ni-
trogen-based munitions that could be converted into inorganic fertilizer production capacity. Urban 
populations, with their promise of regular hours and better pay, grew at unprecedented rates in the 
middle of the last century. Urban population growth, farm labor shortages, the ingenuity of the 
American farmer with the support of Land Grant Agricultural Experiment Stations, abundant en-
ergy and nutrients, excellent soils and favorable climate provided the foundation for the ability to 
produce feed, food and fiber with incredible efficiency. The American farmer and consumer now 
have a consistent and high quality supply of meat, dairy and poultry products, largely due to effi-
cient production methods. 

Increases in production efficiency resulted in dense concentrations of beef, dairy, swine, and 
poultry animals. The resulting concentration of manure has created potential environmental prob-
lems. These problems contributed in part to the passage of the Clean Water Act in 1972. Because of 
the significant imbalance in manure nitrogen compared to available nearby cropland at many pro-
duction centers, manure is now often viewed as a disposal problem. Urban encroachment into his-
toric animal production regions sometimes results in conflicts over water and air quality issues and 
odors. These problems caused some to question the appropriateness of land application as a sound 
manure utilization strategy. 

Animal manure is by far the largest byproduct resulting from animal production. The total quan-
tity of collectable manure produced in the United States is estimated to be over 61 million tons per 
year on a dry weight basis including approximately 1.12 million Mg of nitrogen (N) and 0.60 mil-
lion Mg of phosphorus (P) (CAST, 1996; Gollehon et al., 2001). In the United States, the Depart-
ment of Agriculture and the Environmental Protection Agency have determined that land applica-
tion of manure at proper agronomic rates is the most desirable method for utilizing manure re-
sources (USDA-EPA, 1999). While the utilization of manure offers benefits such as increases in 
soil fertility and quality, reductions in runoff and soil erosion, and opportunities for carbon (C) se-
questration, improper use can impair water quality and produce odor and air quality concerns. 
Based on an analysis of manure’s potential fertilizer value, recoverable N in manure represents 
about 15% of the N and 42% of the P purchased in the United States as crop fertilizers (CAST, 
1996). If properly distributed and utilized on productive cropland, manure could substantially re-
duce commercial fertilizer purchases. However, when applied at excessive rates, manure can cause 
water quality impairments. 

This paper provides a summary of the benefits derived from the land application of manure. It 
then discusses limitations and concerns involved in manure application, and concludes with a re-
view of research and extension needs to validate continued land application of manure. 

BENEFITS OF MANURE APPLICATION 
Land application of manure provides many benefits to farmers and society. Manure serves as an 

excellent source of both primary and secondary nutrients required for crop growth. In addition, land 
application improves overall soil quality that supplies indirect benefits to the farmer through im-
proved crop response, reductions in inorganic inputs of fertilizers, liming materials, and pesticides, 
and reduced soil and water losses. Society can obtain other benefits such as improved water quality 
and carbon sequestration through proper agronomic use of manure. This section provides the scien-
tific documentation for these benefits. 
Manure Serves as a Fertilizer 

Manure is an excellent source of major plant nutrients such as N, P, and potassium (K) and also 
provides many of the secondary nutrients that plants require. The actual nutrient value of manure 
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 Table 1. Nutrient analysis of manure for various handling systems (Bates and Gagon, 1981). 
Nonliquid Systems (kg/Mg) Liquid Systems (Kg/1,000 L)  

Animal Species N P2O5 K20 N P2O5 K20 
Dairy 3-8 1-8 1-16 0.4-6.1 0.2-2.5 0.2-6.9 
Beef 2-10 1-7 2-15 0.7-4.4 0.1-3.5 0.6-3.6 

Swine 2-14 1-31 1-9 0.1-7.3 0.1-7.5 0.1-5.9 
Poultry 2-66 1-48 1-28 4.2-9.0 1.6-10.9 1.6-4.7 

 
from a particular operation will differ considerably due to the type of animal, its food ration, 
method of collection and storage, method of application and climate. Estimated fertilizer nutrient 
contents for various manures are shown in Table 1. Nutrients in manure may be lost or transformed 
during treatment, storage and handling affecting their availability for use by growing plants. 

Animal manures are important sources of both micro and macronutrients for plants, but their ap-
plication rates are usually determined based on the content of macronutrients such as N, P, and K. 
Plants can only use nutrients that are in an inorganic form. Manure N and P are present in organic 
and inorganic forms, and are not considered 100% available to plants. The organic forms must be 
mineralized or converted into inorganic forms over time before plants can use them. The availabil-
ity of K in manure is considered similar to that in commercial fertilizer since the majority of K in 
manure is in the inorganic form (Motavalli et al., 1989). In general, 90 to 100% of K in the manure 
is considered available during the first year of application. 
Available Nitrogen 

When using manure as a fertilizer, knowledge of the N that is available to the plant is critical to 
insuring that plant nutrient needs are met. The following model has been proposed for estimating 
available N in animal manures (Beauchamp, 1983; Sims, 1986): 

 Available N = Fi  Ni + Fm No 
where:  

Ni and No = inorganic and organic N, respectively 
Fi = the fraction (0 to 1) of inorganic N that is available 
Fm = the fraction (0 to 1) of organic N that is mineralizable or decomposable to inorganic N 

Inorganic N in the above equation is multiplied by an availability factor because N losses 
(through nitrate leaching, ammonia volatilization, and denitrification) and microbial immobilization 
can reduce the amount of inorganic N available for plant uptake. Similarly, organic N is multiplied 
by a mineralizable fraction (Fm) because not all of the organic N in animal manure can be converted 
to inorganic N and become available to plants. The importance of each of the terms in the model 
depends on the relative proportion of organic and inorganic N in the manure under consideration. In 
general, dry and composted manure contains less inorganic than organic N. Expressed as a percent-
age of total N, inorganic N has been found to make up 1 to 11% in cattle manure, 4 to 15% in swine 
manure, 3 to 50% in poultry manure, and 1 to 13% in composted manure (Cabrera and Gordillo, 
1995). On the other hand, slurries commonly contain more inorganic than organic N. Expressed as 
a percentage of total N, inorganic N has been found to range from 60 to 79% in cattle slurry (Som-
mer et al., 1992), from 68 to 89% in swine slurry (Sommer et al., 1992), and from 84 to 95% in 
poultry slurry (Beauchamp, 1986). Consequently, the most important component of plant available 
N is usually inorganic N in slurries and mineralizable N in dry and composted manure. 
Available Inorganic Nitrogen 

Inorganic N in manure is relatively easy to measure by routine analytical laboratories. Further-
more, there are rapid on-farm methods that can provide fairly accurate estimates of the concentra-
tion of ammonium in manure slurries (Van Kessel et al., 2000). Because most of the N in slurries is 
present as ammonium (Sommer et al., 1992), these rapid methods are useful for predicting plant 
available N in conjunction with estimates of the availability of the ammonium N which is present. 
The availability of inorganic N (Fi) in slurries can vary with the method of slurry application be-
cause the main mechanism of N loss can change with method of application. In general, the main 
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mechanism of N loss is ammonia volatilization for surface applications and denitrification for in-
jected or incorporated applications. 

Surface application of manure slurries has resulted in ammonia losses ranging from 33 to 89% of 
the applied ammonium (Sommer et al., 1991; Sharpe and Harper, 1997). These losses would corre-
spond to availability factors ranging from 0.11 to 0.67. Injection of slurries has caused denitrifica-
tion losses ranging from 7 to 21% of the applied N (Thompson et al., 1987), which would corre-
spond to a range of 0.79 to 0.93 in the availability factor. Thus, the availability of inorganic N in 
slurries may be larger when injected than when surface-applied. 

Data on the availability of inorganic N in fresh manure are scarce, but in a study with surface-
applied poultry litter, Marshall et al. (1998) measured ammonia losses that ranged from 28 to 46% 
of the ammonium applied. Considering that ammonium in the poultry litter used made up 65 to 
85% of the inorganic N, the corresponding availability factor for inorganic N ranged from 0.60 to 
0.82. In a laboratory study with poultry litter incorporated into soil, Cabrera et al. (1994) found de-
nitrification losses that corresponded to 33% of the inorganic N initially present in the litter. This 
would correspond to an availability factor of 0.67. Although limited in scope, these results suggest 
that the availability of inorganic N in poultry litter may be similar in surface-applied and incorpo-
rated applications. Additional research is needed to develop availability factors for inorganic N in 
slurries and fresh manure applied using varying methods and under different environmental condi-
tions. 
Available Organic Nitrogen 

Mineralizable N has been traditionally estimated with biological and chemical methods because 
it is more difficult to measure than inorganic N. Biological methods predict mineralizable N by in-
cubating a manure-soil mixture during an extended period of time and determining the inorganic N 
released during the incubation (Qafoku et al., 2001). In contrast, chemical methods estimate miner-
alizable N by extracting or measuring a chemical fraction that is related to mineralizable N (Serna 
and Pomares, 1991). Although biological methods are more accurate than chemical methods, they 
are not practical for routine laboratory analysis because they are laborious and time consuming. 
Chemical methods are faster and thus more desirable for routine analysis. Work with biological 
methods has generated estimates of the fraction of organic N that is mineralizable (Fm) in some ma-
nure. Values have ranged from 0.08 to 0.52 for swine manure, from 0 to 0.51 for cattle manure, and 
from 0.17 to 0.73 for poultry litter (Cabrera and Gordillo, 1995). 

A chemical method applicable to all manure has not yet been developed, but work with specific 
manure types has shown promising results. For example, mineralizable N in poultry litter has been 
found to be strongly related to total N and uric acid concentrations (r2 = 0.91; Gordillo and Cabrera, 
1997), and to water-soluble organic N (r2 = 0.87; Qafoku et al., 2001). In addition, recent work has 
shown the feasibility of using near infrared reflectance spectroscopy to estimate mineralizable N in 
dairy manure (Reeves and Van Kessel, 1999) and poultry litter (Qafoku et al., 2001). 
Available Phosphorus 

Available P in manure is made up of inorganic P and mineralizable P. Some researchers have re-
ported that the availability of P in manure is equal to or superior to that of inorganic fertilizers 
(During and Weeda, 1973; May and Martin, 1966); others have shown lower responses from ma-
nure than fertilizer P (Goss and Stewart, 1979; Motavalli et al., 1989). Although data on manure P 
availability are limited, it is currently assumed that 80 to 90% of manure P is plant available be-
cause inorganic P commonly makes up 60 to 90% of total P (Gerritse and Vriesema, 1984; Barnett, 
1994b; Sharpley and Moyer, 2000). The extent of research on manure P availability has been lim-
ited because manure has been typically applied based on the N requirements of plants, which leads 
to an over-application of P and eliminates the need to accurately estimate plant available P. More 
accurate estimates of plant available P in animal manure will be needed as current concerns with P 
contamination of surface waters lead to manure applications based on P requirements. 
Crops Respond to Manure 

Animal manure is an excellent nutrient source because it contains most of the plant essential 
elements (Follett et al., 1992; Jokela, 1992; Sawyer et al., 1992; Xie and MacKenzie, 1986). The 
potential value of manure as a source of plant nutrients for crop production is great although the 
concentrations of nutrients in the manure tend to be low. Over the last decade, great numbers of 
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confined animal feeding operations have resulted in an increase in the amount of manure available. 
Many studies have demonstrated that land application of manure will produce crop yields equiva-
lent or superior to those obtained with chemical fertilizers (Motavalli et al., 1989; Xie and 
MacKenzie, 1986). Crop quality has also been improved by manure application (Eck et al., 1990; 
Pimpini et al., 1992). When crop improvements with manure were greater than those attained with 
commercial fertilizer, response was usually attributed to manure supplied nutrients or to improved 
soil conditions not provided by commercial fertilizer (CAST, 1996). Zhang et al. (1998) found that 
2 kg of manure-N were equivalent to 1 kg of urea-N in terms of plant uptake and yield response in 
the first year of cattle feedlot manure application. 

Manure improves the physical condition of the soil and increases P and biological activity 
(CAST, 1996; Sommerfeldt and Chang, 1985; Chang et al., 1990). The organic matter, total N con-
tent, and the micronutrient content of the surface soil are increased as a result of manure applica-
tion. More studies are needed to quantify the benefits of manure nutrients other than N and the eco-
nomic advantage associated with these improvements. 
Manure Maintains Soil pH 

Most people recognize the value of manure as a plant nutrient source or soil amendment, but the 
potential of manure, especially poultry litter, to neutralize soil acidity and raise soil pH is less 
known. Long-term field and greenhouse studies have demonstrated the liming effect of animal ma-
nure in acid and neutral soils. The Magruder Plots at Oklahoma State University Agronomy Re-
search Farm in Stillwater are the oldest continuous soil fertility wheat research plots in the Great 
Plains region (Boman et al., 1996). Animal manure has been applied on some of these plots for 
many decades. The soil pH of the top six inches of the manured plots (pH of 6.32) is greater than 
those from control plots (5.83), those receiving annual inorganic fertilizer applications (pH ranges 
from 5.21 to 5.66), and even those receiving inorganic fertilizer and lime (pH of 5.51). Sharpley et 
al. (1993) conducted a study in Eastern Oklahoma and found the soil pH of the surface 0.6 m of soil 
that received swine and poultry manure for 5 years was significantly higher than the pH of the soils 
that received no manure during the same period. Eghball (1999) found beef cattle feedlot manure 
and compost raised soil pH while inorganic N fertilizer application significantly reduced soil pH. 
Researchers from Alabama studied the impact of long-term (15 years) land application of broiler 
litter on environmentally related soil properties, and found soil pH was 0.5 unit higher to a depth of 
0.6 m under littered soils than unlittered counterparts (Kingery, et al., 1994). Another study in Ha-
waii compared the growth response of a tropical forage legume to lime and organic manure as acid 
soil amendments in a green house. They found that chicken manure was as effective as lime in rais-
ing soil pH and in reducing aluminum (Al) toxicity (Hue, 1992). This study suggested that tropical 
forage legumes were able to absorb more Ca from the manure than from lime. 

The main reason manure raises soil pH is due to materials such as calcium (Ca) and magnesium 
contained in the manure. For example, poultry litter contains about 50 Kg Ca per Mg on a dry 
weight basis. Therefore, applying manure to acid soils not only supplies much needed nutrients and 
organic matter for plant growth but also reduces soil acidity, thus improving P availability and re-
ducing Al toxicity. 
Manure Increases Soil Organic Matter 

Research has shown manure application has a significant effect on the chemical, physical and 
biological properties of the soil (Haynes and Naidu, 1998; Khaleel et al., 1991; Sommerfeldt and 
Chang, 1985). Most of these effects are due to an increase in soil organic matter (SOM) with ma-
nure applications (Haynes and Naidu, 1998). The organic matter deposited enhances soil physical 
properties such as tilth, structure, water-holding capacity, water infiltration rate, and soil microbial 
activity (Sweeten and Mathers, 1985). Studies over a wide variety of soil textures, climates and 
cropping systems report increases in SOM with manure addition (Aoyama et al., 1999; Brown et 
al., 2000; Fraser et al., 1988; Haynes and Naidu, 1998; Kandeler et al., 1999; Kingery et al., 1993; 
Kubat et al., 1999; Nyakatawa et al., 2001; Porter et al., 1999; Stewart, 1991; Vitosh et al., 1973; 
Tiarks et al., 1974). The SOM increase is due to both the organic matter input from the manure and 
to greater plant growth in response to nutrients, which increases root biomass and residues for in-
corporation into SOM. 
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The rate of increase in SOM depends on temperature, moisture and tillage conditions, as well as 
the amount of manure added. Nyakatawa et al. (2001) reported increases of SOM of 55 to 80% in 
the silt loam soils of northern Alabama after three years of poultry litter additions. Most studies in-
dicate at least two years of manure additions are necessary to see increases in SOM (Stewart, 
1991). Manure application can also reduce SOM losses in production systems under tillage (Ao-
yama et al., 1999; Kapkiyai et al., 1999). Manure application increases the protected pools of C in 
small macroaggregates (Aoyama et al., 1999) and microaggregates (Kapkiyai et al., 1999). Manure 
is also more effective than plant residues in replenishing particulate SOM (Kapkiyai et al., 1999) 
that is associated with stabilized organic matter in many agricultural systems. 

Organic matter is known to influence a number of chemical properties of the soil. One well 
known effect is a pH dependent change in cation exchange capacity (CEC) through the dissociation 
of carboxyl, phenolic, and hydroxyl groups on the organic molecules that compose SOM (Tisdale et 
al., 1993). The form and size-fraction of SOM affects its contribution to CEC. Recent research from 
sandy sub-Saharan soils indicates an increase in CEC due to manure application only when clay-
sized particulate organic matter is present (Guibert et al., 1999). Due to the buffering capacity of 
organic matter, in acidic soils, manure tends to increase soil pH (Brown et al., 2000; Kingery et al., 
1993; Wong et al., 1998), and decrease pH in alkaline soils (Wahid et al., 1998). In regions where P 
is deficient, manure supplies P and also makes P more available by complexing Al. The organic 
complexing of Al also reduces Al toxicity (Haynes and Mokolobate, 2001). Manure can also be 
used to improve crop production in saline and sodic soils under certain conditions (Dubrey and 
Mondal, 1994; Wahid et al., 1998). 
Manure Improves Physical Soil Properties 

The ability of manure to promote the formation of water-stable aggregates (WSA) has a pro-
found effect on soil structure and thus on soil physical characteristics (Haynes and Naidu, 1998). 
Numerous studies have shown increases in WSA with manure application (Albiach et al., 2001; 
Angers, 1998; Barthes et al., 1999; Brown et al., 2000; Estevez et al., 1996; Porter et al., 1999). 
However, high rates of manure application can disperse soil structure by creating high concentra-
tions of monovalent cations and hydrophobic compounds (Haynes and Naidu, 1998; Paré et al. 
1999). A high percentage of WSA increases infiltration (Roberts, 2000), porosity (Kirchmann and 
Gerzabek, 1999), and water-holding capacity (Mosaddeghi et al., 2000). WSA are also associated 
with decreased compaction (Mosaddeghi et al., 2000) and erosion (Barthes et al., 1999). Angers 
(1998) reported that even in silty clay soils with high organic matter contents, the addition of ma-
nure increases macro-aggregation, which helps prevent structural degradation. Other research has 
shown that manure application to fine textured soils (silty clay loams) reduced compaction and in-
creased trafficability (Mosaddeghi et al., 2000). Schjonning et al. (1994) in a study of sandy loam 
soils in a 90-year fertilization experiment in Denmark, showed that manured soils had less compac-
tion under large stresses compared to inorganic fertilized or unfertilized soil at comparable water 
contents and bulk densities. This study indicated that the greater SOM in manured soils increased 
soil friability. These changes in soil physical properties allow the soil to be worked under wetter 
conditions. Through improvement in soil physical properties, manure application also reduces the 
energy required for tillage and the impedance to seedling emergence and root penetration (Eghball 
and Power, 1994). 
Manure Reduces Pesticide Dependence 

The presence and forms of organic C in the soil affects the structure and complexity of the soil 
food web, which in turn, affects nutrient cycling and both plant diseases and parasites. Most re-
search indicates that microbial biomass and activity increases with manure additions (Estevez et al., 
1996; Haynes and Naidu, 1998; Kandeler et al., 1999; Lalande et al., 2000; Lazarovits, 2001). With 
increases in microbial populations, shifts in nutrient cycling occur. Several studies indicate manure 
additions increase bacteria involved in the nitrogen cycle. Lalande et al. (2000) reported an increase 
in the nitrogen mineralizer population after application of liquid swine manure. Kubat et al. (1999b) 
showed an increase in nitrification with manure addition compared to mineral fertilizers on a fallow 
field. These increases can be beneficial in terms of supplying crop nutrients, but can contribute to 
nitrate leaching if manure is applied at high rates. 
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Plant diseases can decrease with the increase in microbial biomass and species diversity, because 
competition between microbial consumers and an increase in predatory species will limit the 
growth of pathogens. There are two recent studies that report disease suppression with manure by 
this mechanism. Bullock et al. (1999) found swine manure significantly decreased the occurrence 
of southern blight (Sclerotium rolfsii) in tomatoes and increased populations of bacteria that are an-
tagonistic to Sclerotia. Aryantha et al. (2000) attributed the suppression of Phytophthora cinna-
momi by composted poultry manure to its ability to sustain biological activity of endospore-
forming bacteria. This study did not find consistent disease suppression with either fresh or com-
posted cow, sheep or horse manure. 

Other work indicates high nitrogen manure, such as that from poultry and swine, can suppress 
diseases by generating high ammonia and/or nitrous acid concentrations in the soil (Lazarovits, 
2001). Preliminary testing of additions of anhydrous ammonia and synthetic nitrite additions indi-
cated these do not provide the same disease control. Volatile fatty acids and acetic acid in swine 
manure were also shown to be effective reducing verticillium wilt and potato scab (Lazarovits, 
2001). The ability of manure to generate a sufficient concentration of these compounds to suppress 
disease depended on pH, organic matter content, buffering capacity and nitrification rate of the soil. 

Reported manure effects on plant-parasitic nematode populations are variable. Nematodes play 
an important role in agricultural systems, both as plant parasites and as important contributors to 
the re-mobilization of nutrients (Coleman et al., 1984). Griffiths et al. (1994) reported decreases in 
plant parasitic nematodes with poultry manure, but no effects from cattle manure. Neher and Olsen 
(1999) reported increases in plant-parasitic nematodes in manure-only systems. They indicated the 
abundance of plant parasitic nematodes were due to a wide variety of factors including quality and 
quantity of the organic amendment, other soil fertility factors, the use of pesticides, crop rotations 
and other management factors. Several studies reported increases in bacterivorus nematodes with 
manure additions (Bohlen and Edwards, 1994; Griffiths et al., 1994; Neher and Olsen, 1999). This 
may have the effect of increasing availability of nutrients for plant growth (Ingham, 1985). 

Organic matter is known to affect activity, degradation, and persistence of pesticides (Benoit et 
al., 1996; Bollag et al., 1992; Piccolo et al., 1998), and the application rates of some pesticides are 
based on SOM content. There are several recent laboratory studies reporting manure effects on the 
leaching and degradation of pesticides. Gan et al. (1998) reported composted manure reduced vola-
tilization of the fungicides methyl bromide and methyl isocyanate. Poultry litter has been shown to 
double the degradation rate of atrazine (Gupta and Baummer, 1996). This effect may be beneficial 
in terms of preventing leaching to groundwater and is thought to be due to an increase in micro-
organism activity. Guo et al. (1991) showed that manure decreased atrazine leaching in coarse-
textured soils, though not as effectively as waste activated C or digested municipal sewage sludge. 

Some studies suggest that the agronomic qualities of composted manure are superior to those of 
raw manure (Rynk, 1994). The stabilized organic matter in high quality composts quickly adds hu-
mus to the soil. Land application of composted rather than fresh manure has the potential for reduc-
ing weed seed viability and thus reducing herbicides needed (Edwards et al., 1994). Maynard 
(1994) found that yearly applications of spent mushroom compost and poultry manure compost in-
creased the yields of eight varieties of vegetables when compared to control plots fertilized with 
equivalent rates of N, P, and K. Part of the advantage that compost offers may lie in the fact that the 
variety of microbial and biological stimulants in the compost may actually inoculate the soils. 
Manure Reduces Runoff and Soil Loss 

As discussed above, soil physical properties such as infiltration, aggregation and bulk density 
can be improved by manure application (Mielke and Mazurak, 1976; Sommerfeldt and Chang, 
1985). The agronomic benefits from the land application of manure can also affect soil erodibility. 
These changes in soil properties can have a substantial impact on the runoff and soil loss from 
fields where manure has been land applied. 

Several laboratory studies using rainfall simulators have been conducted to measure the effects 
of manure application on runoff and erosion (Mitchell and Gunther, 1976; Westerman et al., 1983). 
Runoff and erosion rates were found to be influenced by manure characteristics, loading rates, in-
corporation and the time between application and the first rainfall. The addition of either swine, cat-
tle or poultry manure in these studies caused a reduction in runoff and soil loss from relatively 
small laboratory test areas. However, Gilley et al. (1999) found that the long-term application (55 



292 Land Application of Manure for Beneficial Reuse 

years) of beef cattle manure at a rate of 27 Mg/ha to a Tripp sandy loam soil did not significantly 
influence interrill erosion. Barrington and Madramootoo (1989) investigated seal formation on two 
soils using a swine manure slurry. They found that manure solids did form seals and the location of 
these seals was dependent on soil type and the solids content of the slurry. Chandra and De (1983) 
showed that the effects of manure on soil erosion change with time. In their lab study on several 
soils in India, soil erosion did not vary on samples where cattle manure was incubated for 15 days 
while it decreased on samples incubated for 30 days. This may be due to the time required for or-
ganic matter in manure to impact soil properties and indicates why longer-term experiments under 
field conditions may be necessary to determine the impacts of manure on runoff and erosion. 

Rainfall simulators have also been used to measure runoff and erosion on field sites where ma-
nure has been added. Poultry litter applied to fallow soil was found to cause substantial decreases in 
runoff and soil loss (Giddens and Barnett, 1980). Reduced soil losses are also reported from the ad-
dition of dairy manure to corn plots (Mueller et al., 1984). Bushee et al. (1999) found that runoff 
from simulated rainfall after swine slurry application was lower, but not significantly different from 
sites with no manure, and that chemical amendments could alter the amount of runoff produced. 
Sauer et al. (1999) showed that runoff volumes for treatments with dairy manure or poultry litter 
were higher or not significantly different under simulated rainfall. However, Gilley and Eghball 
(1998) found that runoff and erosion immediately following two simulated rainfall events were not 
significantly influenced by a single application of beef cattle manure or compost under either no-till 
or tillage conditions. The time period required for beneficial soil properties to develop following 
manure application is not known. Rainfall simulators have been effectively used to provide valu-
able data for a given set of experimental conditions. However, repeated rainfall simulation runs 
would be required to characterize temporal changes in cropping and management factors resulting 
from land application. Field plots established to collect runoff from natural precipitation events 
may be better suited for identifying the effects of manure application on annual runoff and soil loss. 

When conducting studies of solid manure application and its impact on soil erosion, it is impor-
tant to distinguish between manure solids loss and soil loss. Westerman et al. (1983) found that sol-
ids lost from bare plots treated with poultry litter were between 8 and 92% greater than solids lost 
from untreated clay and sandy loam plots. However, Giddens and Barnett (1980) found that solids 
loss was reduced by as much as 50% when up to 22.4 Mg/ha of poultry litter was applied to bare 
plots on a sandy loam soil. Khaleel et al. (1979) developed a soil/manure particle transport model 
that accounted for different erodibilities of soil and manure particles; however, erodibility values 
for manure are difficult to determine. Edwards et al. (1994) looked at the relationships between sol-
ids yield and the erodibility of poultry litter and litter application rate, rainfall intensity, and interval 
between litter application and the first rainfall event using simulated rainfall on a fescue pasture. 
They found the solids yield increased with both litter application rate and rainfall intensity and at-
tributed the increase to the relatively high erodibility of poultry litter particles in comparison to soil. 
They suggested that water quality models could account for this through an appropriate increase in 
soil erodibilty (K values) for the first few post-application storms. 

Monitoring soil and water losses from natural precipitation events is labor-intensive and expen-
sive. As a result, few studies have recently been initiated in which runoff and soil loss were meas-
ured from land application areas. Long et al. (1975) did not report erosion values but did report sig-
nificantly less runoff over three years from natural runoff plots (0.04 ha) that were treated with 45 
Mg/ha of dairy manure. Wood et al. (1999) conducted a study on 33 by 33 m plots planted in corn 
and rye on a silty clay soil with two rates of broiler litter and a fertilized control. They observed a 
nonsignificant trend toward reduced runoff on the broiler litter treated plots and significantly lower 
flow-weighted sediment losses than the fertilizer control in the second year of the study. Vories et 
al. (1999) found similar results on 0.6 ha cotton fields where treatments that received poultry litter 
exhibited significantly less total runoff and sediment losses than treatments of commercial fertil-
izer; however, they noted that sediment concentrations tended to increase on the litter treated plots 
for events immediately following application. An extensive review of natural runoff plot data was 
presented by Gilley and Risse (2001). They reviewed more than 70 plot-years worth of data from 
seven locations under a variety of tillage and cropping conditions. For locations where manure was 
applied annually, manure treated plots reduced runoff from 2 to 62% and soil loss from 15 to 65% 
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compared to untreated plots. At every location, runoff and soil loss reductions were observed. The 
amount of reduction was strongly related to the amount of manure added. 

Many of the studies on runoff and erosion present mixed or unclear results; however, it does ap-
pear that most suggest less runoff and soil erosion when solid manures are land-applied. The results 
using lagoon effluent or slurries are less conclusive. Nevertheless, this is a substantial benefit that 
should be considered when determining the water quality impacts of land application of manures. 
Many studies look at the concentration of pollutants coming from fields where manure has been 
used. These concentrations may be higher, while if runoff is reduced, the total loads may be lower. 
Recently, increased emphasis has been placed on water quality models to help manage water re-
sources. These models are being used to both assess water quality and allocate non-point source 
loads. Often these models adequately account for the land application of manure through increased 
nutrient availability, however, adjustments to runoff or soil erosion are rarely made. If modifica-
tions are not made, these models may overestimate the impacts of manure on pollutant loads in sur-
face runoff. Likewise, decreases in runoff may result in greater N leaching that could impact losses 
to groundwater and this should be studied in greater detail. 
Manure Application Can Sequester Carbon 

Global climate change is driven by increased emissions of carbon dioxide (CO2). The terrestrial 
pool of C is dominated by organic C in soil (IPCC, 2000). Fixation of CO2 from the atmosphere 
into plant biomass via photosynthesis drives the C cycle. Consumption of plant tissue by animals 
ultimately leads to a partitioning of C into animal biomass, CO2 respired by animals, and fecal 
deposition of C in unutilized byproducts. Animal manures in modern, confined agricultural systems 
are collected to avoid stockpiles and often applied to cropland or grazing land to replenish soil fer-
tility. The fate of animal manures in soil depends upon the environmental conditions, primarily 
temperature and precipitation, as well as tillage, handling procedures, and the method and timing of 
application. Animal manures are eventually decomposed by soil microorganisms and may contrib-
ute to the pool of SOM, if stabilized biochemically or biophysically. Land application of animal 
manures could help mitigate potentially negative consequences of rising atmospheric CO2 on the 
global climate by contributing to greater sequestration of C in soil (CAST, 1992). 

From a whole-farm simulation of the relative contributions of various agricultural components to 
soil organic C in Ontario, Beauchamp and Voroney (1994) concluded “...manure contributes a rela-
tively small proportion of the C to soil compared to crop roots and residue, especially in swine sys-
tems, unless straw bedding is included.” The small contribution of manure to soil organic C is sup-
ported by a study in Georgia, where poultry litter applied at rates between 4.5 and 26.9 kg . m-2 yr-1 
for two years resulted in a decline in organic matter from loss on ignition and no change in total N 
(Jackson et al., 1977). However, this interpretation is not supported by several other studies. Long-
term data from a maize-bean rotation in Kenya with application of cattle manure increased soil or-
ganic C an average of 0.21 kg . m-2, while crop stover retention increased soil organic C an average 
of 0.11 kg . m-2 during 18 years without inorganic fertilization (Kapkiyai et al., 1999). As a percent-
age of C applied in manure, 5 to 12% was retained as soil organic C, suggesting that significant soil 
C sequestration (i.e., 10 to 23 g . m-2 . yr-1) is possible in the humid tropics with repeated and long-
term application. The rate of soil organic C sequestration with cattle manure (20 to 22 g . m-2 . yr-1; 
~10% retention of applied C) was similar in a cotton-guinea corn-groundnut rotation conducted for 
45 years under the warm-moist climate in Nigeria (Agbenin and Goladi, 1997). In Georgia, soil or-
ganic C sequestration due to five years of poultry litter applied to bermudagrass pasture was 26±55 
g . m-2 . yr-1 (14±30% retention of applied C) under various harvest strategies (Franzluebbers et al., 
2001). In Alabama, tall fescue pastures supplied with poultry litter for 21±4 years sequestered soil 
organic C at a rate of approximately 30 g . m-2 . yr-1 (8% retention of applied C) (Kingery et al., 
1994). 

In the warm, semiarid region of India, application of farmyard manure to a pearl millet-wheat 
cropping system for 20 years resulted in a sequestration rate of 5, 4, and 3% of applied manure C at 
dry-matter rates of 1.5, 3.0, and 4.5 kg . m-2 . yr-1 (Gupta et al., 1992). The quantity of soil organic C 
accumulated in these systems increased with application of inorganic fertilizers, which may have 
further stimulated plant productivity and water uptake to slow decomposition. The rate of soil or-
ganic C sequestration on an area basis was between 21 and 54 g . m-2 . yr-1, with greater values at 
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higher application rates. At the end of 22 years of cattle manure application to a soil in Italy, soil 
organic C was 53 to 66% greater, equivalent to a soil organic C sequestration rate of 20 g . m-2 . yr-1 
to a depth of 10 cm (Govi et al., 1992). 

At the long-term experiment on Sanborn Field in Missouri, manure application resulted in soil 
organic C sequestration rate that averaged 33 g . m-2 . yr-1 greater than with inorganic fertilizer un-
der wheat and 53 g . m-2 . yr-1 greater than with inorganic fertilizer under maize (Buyanovsky and 
Wagner, 1998). During 56 years of continuous manure application in eastern Oregon, soil organic C 
to a depth of 20 cm was 36% greater than with inorganic fertilization, equivalent to a soil organic C 
sequestration rate of 19 g . m-2 . yr-1 (~23% retention of applied C) (Collins et al., 1992). At the end 
of 4 years of poultry litter application on a sandy soil in England, the quantity of C retained as 
SOM was 48% of that applied, equivalent to a soil C sequestration rate of 102 g . m-2 . yr-1 (Bhogal 
and Shepherd, 1997). With 135 years of continuous farmyard manure application in England, soil 
organic C sequestration was equivalent to 50 g . m-2 . yr-1 (17% retention of applied C) (Webster 
and Goulding, 1989). 

In the cold, semiarid region of Alberta, cattle manure applied to cropland at selected rates for 11 
years nearly doubled soil organic C of the 0-15-cm depth under dryland conditions and more than 
doubled soil organic C under irrigated conditions (Sommerfeldt et al., 1988). The rate of soil or-
ganic C sequestration in this study was predominantly a function of the quantity of manure applied, 
where C retention rates were 32±4% of applied C, irrespective of water management (Chang et al., 
1991). Calculated rates of soil organic C sequestration were 164, 309, and 400 g . m-2 . yr-1 when 
manure was applied at 3, 6, and 9 kg . m-2 . yr-1, respectively. In northern Alberta, farmyard manure 
applied to an 8-year rotation resulted in a relative soil organic C sequestration rate of 40 to 90 g .m-2 
. yr-1 compared with a continuous grain system with inorganic fertilizer (Wani et al., 1994). 

In the cold, moist climate of Quebec, cattle manure applied to corn grown for silage during 10 
years resulted in 7 to 10% retention of applied C in soil, which was equivalent to soil organic C se-
questration rates of 146 and 223 g . m-2 . yr-1 at manure application rates of 4 and 8 kg . m-2 . yr-1 
(Angers and N’Dayegamiye, 1991). In Ontario, a maize cropping system supplied with cattle ma-
nure sequestered soil organic C at a rate of 122 g . m-2 . yr-1 to a depth of 20 cm (Liang and 
Mackenzie, 1992). From a long-term crop rotation experiment with 18 years of manure application 
in Quebec, approximately half of the soil organic C sequestration (56 to 90 g . m-2 . yr-1) was found 
in macroaggregates and half in microaggregates, suggesting that C supplied with manure to tilled 
soils can be physically protected within water-stable aggregates (Aoyama et al., 1999). Manure ap-
plication to soil for 60 years in Denmark resulted in a soil organic C sequestration rate of 15 g . m-2 
. yr-1, with two-thirds of the increase in the clay fraction and essentially no increase in the sand frac-
tion (Christensen, 1988). In contrast, 60% of the C sequestered with manure application in Quebec 
was in the silt fraction and equal quantities of remaining C in the clay and sand fractions (Angers 
and N’Dayegamiye, 1991). 

In general, soil organic C sequestration on a land area basis appears to be greater with an in-
creased rate of manure application (Sommerfeldt et al., 1988; Gupta et al., 1992). However, high 
nutrient loading could pose environmental threats to water quality. Climatic regime is another im-
portant variable that appears to affect potential retention of applied C in soil. Thermic regions 
tended to have lower C retention rates from manure (7±5%) than temperate or frigid regions 
(23±15%). Higher temperature would be expected to decompose manure more completely based on 
thermodynamic mechanisms that control soil microbial activity. Higher moisture would also be ex-
pected to accelerate decomposition of applied C to soil, yet C retention rates in moist regions 
(8±4%) did not vary significantly from dry regions (11±14%). 
Manure Impacts Emissions of Methane and Nitrous Oxide 

Climate forcing potential is a function of radiative forcing (i.e., the expected effect from the ad-
dition of a unit of gas on the radiation balance of the earth), mean lifetime (i.e., how long the forc-
ing by a unit of gas is expected to continue), and emissions (i.e., total quantity of gas emitted). Of 
the three main gases that are influenced by land management and that are responsible for the poten-
tial greenhouse effect, carbon dioxide (CO2) has the greatest climate forcing potential (57%), while 
methane (CH4) and nitrous oxide (N2O) account for 27% and 16% respectively (CAST, 1992). 
Methane and N2O emissions on a global scale are only 2 and 0.1% of those of CO2, but since they 
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have 58 and 206 times greater radiative forcing potential, they are of significance to potential cli-
mate change issues. A significant portion of CH4 emitted to the atmosphere can be sequestered by 
aerobic soils. Thus, land application of manure could decrease significantly the net quantity of CH4 
emitted to the atmosphere compared with stockpiling or long-term lagoon storage of manure. 

Methane is emitted biologically to the atmosphere via methanogenic bacteria living in anaerobic 
soils, the rumen of cattle and sheep, and the intestinal tract of termites. Livestock production of 
CH4 (i.e., both from enteric fermentation and from animal waste storage) is estimated to be 20 to 
34% of all CH4 produced globally (CAST, 1992; IPCC, 2000). The fraction of C in feedstuffs con-
verted to CH4 in high-quality grain diets is less than in low-quality grass diets (Harper et al., 1999). 
However, how manure is handled could have major significance on the net quantity of CH4 emitted 
to the atmosphere from livestock. It remains unclear what the net emission rate would be from cat-
tle fed on pastures (i.e., higher enteric release of CH4, but lower manure release of CH4) compared 
with cattle managed in confinement (i.e., lower enteric release of CH4, but higher manure release of 
CH4). 

Nitrous oxide is emitted to the atmosphere primarily through the process of denitrification occur-
ring in soil. The process of denitrification emits both N2 and N2O, the former being a harmless gas 
that dominates the atmosphere and the latter being a radiatively active trace gas. The proportion of 
denitrification occurring as N2O increases under more aerobic conditions, with lower soil organic C 
content, soil pH, and soil temperature (Betlach and Tiedje, 1981). 

Potential denitrification is strongly influenced by the water-soluble organic C content of ma-
nures, with slurries often containing greater concentrations of this important component than 
stacked or composted manures (Paul and Beauchamp, 1989). A soil with 3 times greater soil or-
ganic C due to long-term manure application resulted in 2.9 g N . m-2 lost via denitrification during 
the October-November period following barley harvest compared with 0.5 g N . m-2 lost in soil 
without manure application (Webster and Goulding, 1989). Despite differences in surface SOM, 
denitrification in the subsoil was unaffected by long-term application of farmyard manure because 
of the lack of biologically active C deep in the profile (Richards and Webster, 1999). However, on a 
sandy soil receiving poultry litter, 5% of the total applied C was leached as dissolved organic C at a 
depth of 1 m, although the extent of denitrification was not determined (Bhogal and Shepherd, 
1997). 

Liquid manure provides readily oxidizable C and sufficient mineralizable N to activate the popu-
lation of denitrifiers in soil. Comfort et al. (1990) found that most of the N2O emission occurred 
within the first 5 days following injection of manure into soil when soil CO2 evolution was greatest. 
Rainfall to saturate soil at 25 days following injection resulted in little emission of N2O despite the 
presence of significant nitrate, due to much lower microbial activity following exhaustion of readily 
decomposable C. Rapid, but relatively brief (i.e., within 30 days) emission of N2O occurred follow-
ing swine slurry application to a soil with a history of manure application in Quebec (Rochette et 
al., 2000). Cumulative N2O-N loss was 0.1 g . m-2 . yr-1 (0.6% of total N applied) from inorganically 
fertilized soil, 0.2 g . m-2 . yr-1 (1.2% of total N applied) from soil receiving 6 kg . m-2 . yr-1 of swine 
slurry, and 0.4 g . m-2 . yr-1 (1.7% of total N applied) from soil receiving 12 kg . m-2 . yr-1 of swine 
slurry. 

Lagoon storage of liquid animal waste could be a significant source of radiatively active trace 
gases, because of the anaerobic conditions and high organic C and nutrient contents. In a series of 
four lagoons designed to successively purify water from a swine production facility, the gas flux 
from Lagoon 1 (directly receiving animal waste) was dominated by CH4 (79% of total gas flux) 
with smaller quantities of N2 (15%) and N2O (<1%) (Harper et al., 2000). The gas flux from La-
goons 2, 3, and 4 was dominated by N2 (54, 59, and 69%, respectively) with smaller quantities of 
CH4 (26, 13, and 8%, respectively) and N2O (<1, 3, and 18%, respectively). Total gas flux (15.9, 
2.1, 2.0, and 1.7 g . m-2 . d-1 in Lagoons 1, 2, 3, and 4, respectively) was inversely related to dis-
solved oxygen in the lagoons (1, 8, 19, and 20 mg . L-1 in Lagoons 1, 2, 3, and 4, respectively). 

Methane and nitrous oxide emissions are major trace gases evolved in liquid manure handling 
facilities. Engineering and biochemical strategies are needed to mitigate emissions of these gases to 
the atmosphere. 
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Composting of Manure to Enhance Soil Organic C Sequestration 
Composting of animal manure reduces volume, limits odors, stabilizes nutrients, kills weed seeds 

and pathogens, and reduces volatile organic compounds that can be detrimental to sensitive plants. 
Chemical changes during composting can affect C cycling processes. Composting of cattle manure 
doubled the proportion of humic substances from 35% before composting to 70% at the end of 100 
days of composting (Inbar et al., 1990). The humic component that increased the most was humic 
acid (i.e., from 18% before composting to 45% after composting). Composting of feedlot cattle 
manure resulted in 51±9% loss of C (almost all through biological oxidation) and 31±12% loss of 
N (>90% through NH3 volatilization) during three different years (Eghball et al., 1997). 

Composting of poultry litter resulted in 16% loss of C via decomposition during 65 days (Mond-
ini et al., 1996). The loss of N during composting was more substantial (49%), largely due to NH3 
volatilization during initial aeration and mixing of moist compost. Drying of poultry litter preserved 
much of the C and N of the original material (8% loss of C, but 21% gain of N), as well as in-
creased the humic fraction with time although not as much as with composting (Mondini et al., 
1996). The gain in N during drying of poultry litter was probably due to NH3 deposition from air 
circulated inside the poultry house. 

Decomposition of animal manures in soil is dependent upon a number of factors including type 
of manure, feeding ration, animal age, living conditions of animal, and how manure is handled, as 
well as moisture and temperature conditions in the soil. The proportion of C in manure that decom-
posed during four weeks of incubation was 35±9% among six fresh manures, but was only 12±12% 
among four composted manures (Castellanos and Pratt, 1981). Similarly, the proportion of C in 
sheep manure that was mineralized to CO2 during four weeks was ~18% when fresh, but only 
~13% when anaerobically stored (Sørensen and Jensen, 1995). However, during the subsequent 
eight weeks of incubation, no difference in decomposition occurred between fresh and anaerobi-
cally stored sheep manures. The proportion of C in manure that was mineralized during 10 weeks 
of aerobic incubation in soil was 23% from aerobically composted swine manure, 75% from fresh 
swine manure, and 105% from anaerobically composted swine manure (Bernal and Kirchmann, 
1992). Overall, these results suggest that C in manures is lost during composting, and because of 
this loss, the remainder of C is less decomposable when applied to land. 

LIMITATIONS OF LAND APPLICATION 
There are several impediments that discourage greater use of manure nutrients in cropping sys-

tems including potential water quality problems associated with runoff from fields receiving ma-
nure, uncertainty associated with the nutrient availability in manure, and high transportation, appli-
cation, and handling costs that discourage transport and greater utilization. Public perception and 
odor issues also impend greater use. In this section a brief review of each of these obstacles is pre-
sented as well as the current state of science in attempting to overcome these barriers. 
Excessive Application Results in Water Quality Impacts 

The EPA has identified agriculture as the leading source of pollution to rivers and streams (EPA, 
1998). Animal agriculture, in particular, has been the focus of increasing regulatory pressure 
throughout the nation. As with any type of nutrient application to the land, there are environmental 
risks associated with land application of animal manures. Although land application of manures has 
many beneficial aspects, there are potentially detrimental effects for ground and surface waters if 
manure is not applied properly. The primary pollutants of concern are N, P, oxygen demand, patho-
gens, and hormones. Surface water is primarily affected through soluble contaminants in runoff or 
insoluble pollutants carried on soil particles during soil erosion events. Ground water can be con-
taminated from percolation, seepage, and direct infiltration. 

When organic matter enters waterways, it is degraded by aerobic bacteria exerting biochemical 
oxygen demand (BOD) or chemical oxygen demand (COD). Most animal manures have BOD in 
excess of 20,000 mg/l and COD over 50,000 mg/l. This compares with BOD and COD for domes-
tic sewage in the range of 200 mg/l and 500 mg/l respectively. The high oxygen demand associated 
with runoff from livestock waste can rapidly deplete the water's natural dissolved oxygen supply. 
This results in fish kills and selectivity of other aquatic life (Tchobanoglous and Schroeder, 1987; 
Loehr, 1984). Organic matter also increases the total suspended solids in a stream, thus increasing 



Animal Agriculture and the Environment 297 

the turbidity. The decomposition of organic matter contributes to color, taste, and odor problems in 
public water systems (Tchobanoglous, 1987). 

Nutrients are the most common pollutant associated with animal waste. Several studies have 
documented the fact that watersheds with predominantly animal agriculture tend to have higher nu-
trient levels in their drainage systems. In fact, an EPA study of 928 watersheds across the nation 
(Omenik, 1977) found that mean concentrations of N and P in streams draining agricultural lands 
were nearly nine times higher than streams draining forested areas. Nitrogen and phosphorous 
compounds are needed for cellular growth; however, excessive amounts in surface waters result in 
eutrophication, algal blooms, and fish kills (Loehr, 1984). 

Application of manures to crops or grasses at rates that exceed plant requirements for N can re-
sult in leaching of nitrate to ground water. For example, in Sussex County, Delaware, which pro-
duces more chickens than any other county in the U.S., there is a large area where ground water is 
contaminated by nitrate (Andres, 1995). Seepage from unlined lagoons can also cause ground water 
contamination by nitrate (Huffman and Westerman, 1995). Runoff from fields with recently ap-
plied, unincorporated manure can result in high levels of N in surface waters. This can cause eutro-
phication and low dissolved oxygen levels, especially in estuaries where N is more limiting than P 
for algal growth. Also, ammonium at high concentrations can cause a direct toxicity to fish (Frick et 
al., 1998). 

While both N and P contribute to eutrophication, P is the primary agent in freshwater eutrophica-
tion. So in most cases, controlling eutrophication requires reducing P inputs to surface waters. Soil 
P exists in a number of mineral and organic forms, but most of it is adsorbed to iron and Al oxides 
(Sharpley and Sheffield, 2000). These oxides create a large, but not unlimited, number of adsorp-
tion sites for P. When adsorption sites are saturated, there is a potential for increased P dissolved in 
the soil water. This dissolved P is available to plants, and susceptible to runoff. As manure and fer-
tilizers are added to soil, P levels at the soil surface increase sharply, but there is typically little in-
crease the subsoil due to P adsorption. In very sandy soils that are low in iron and Al oxides, P can 
move into the subsoil or shallow groundwater. Ground water is not affected by P because of the ab-
sence of algae. Only when ground water returns quickly to a stream, river, or lake, is P leaching to 
ground water a concern (Sims et al., 1998). 

In recent years, research has shown that the concentration of P in runoff from agricultural fields 
becomes greater as the P content in the topsoil increases (Pote et al., 1996). This is partly due to soil 
particles with high concentrations of adsorbed P being washed off the field through natural soil ero-
sion processes. However, even in grass fields, where there is little erosion, dissolved P concentra-
tions in runoff increase with soil test P. P is cycled from roots to aboveground parts of the plant and 
redeposited in crop residues on the soil surface. When rain occurs there is a thin layer of water near 
the surface that mixes with the soil water and can run off. If the concentration of P in the soil water 
is high (because most of the adsorption sites near the surface are filled with P), then the concentra-
tion in the runoff water will also be high. 

Soil P levels at the surface are unlikely to reach concentrations that will cause environmentally 
harmful concentrations in runoff unless manures are being used. Even though farmers have been 
encouraged to increase soil P levels in the past, the cost of fertilizers usually discourages over-
application of P. Manure presents a special problem because the N-to-P ratio in manure is lower 
than that needed by crops. In most crop tissues, there are about 10 lb of N for every lb of P, or a ra-
tio of 10 to 1, but manure usually has a much lower ratio. For example, a typical sample of swine 
anaerobic lagoon slurry would have 128 lbs of total N and 22 lbs of P per acre-inch of lagoon efflu-
ent (Barker et al., 1994). Since only about half of the manure N is available to plants (due to gase-
ous and other losses), the true ratio of N-to-P is about 3 to 1. As a result of the low N-to-P ratio in 
manure, residual P builds up to environmentally harmful levels in fields that receive repeated appli-
cations. 

Dry manures present a special additional problem when they are applied to grass fields and not 
incorporated. Under these circumstances, there is very little contact between the manure P and the 
soil. Rainwater mixing directly with the manure can cause a high concentration of dissolved P in 
the runoff. Some of the adsorbed organic P is transported by runoff as the manure is eroded from 
the site. Research has shown that runoff P concentrations are unrelated to soil P in these situations. 
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Runoff P concentrations can be quite high (>25 mg/L) when runoff occurs within a few weeks of 
manure application (Kuykendall et al., 1999). 

Compared to N and P, much less research has been done on bacteria and other pathogens in ma-
nures and their impact on water quality. Microorganisms occurring naturally in livestock waste can 
contaminate surface waters making them unfit for consumption, recreational, and industrial use. 
Pathogenic organisms in wastes may survive for days in surface waters depending upon environ-
mental conditions. Factors affecting microbial survival include pH, temperature, nutrient supply, 
competition with other organisms, ability to form spores, and resistance to inhibitors. The ability of 
pathogenic organisms to cause disease depends upon their concentration, virulence, ingestion and 
resistance (Loehr, 1984). The standard indicator organism for bacteria is fecal coliform (FC), which 
is harmless to humans but indicates the presence of fecal matter and other potentially harmful bac-
teria and viruses. Concentrations of FC in fresh manures are typically on the order of 106 CFUs per 
gram (Barker et al., 1994). A number of studies have measured FC concentrations in runoff or in 
streams from agricultural areas. The concentrations were usually between 103 and 106 CFUs per 
100 mL of water (Edwards and Daniels, 1994; Thelin and Gifford, 1983; Doran and Linn, 1979; 
Jawson et al., 1982; Edwards et al., 1997; Cook et al., 1998; Stephenson and Street, 1978; Tiede-
mann et al., 1988; Gary et al., 1983). Bacterial decay is caused by extremes in temperature, drying, 
and sunlight. Decay can generally be described with an exponential decay equation and reported 
half-lives are relatively short, ranging from one to four and a half days (Crane et al., 1980; Crane 
and Moore, 1986). A more in-depth review of pathogen-related issues associated with manure can 
be found in Strauch and Ballarini (1994) and the white paper on pathogens in this volume (p. 611). 

Hormones such as estrogen and testosterone are present at relatively high concentrations in ma-
nures, especially poultry manure (Shore et al., 1995). These, along with other similar synthetic 
chemicals, are called endocrine disrupters and high levels in streams and drinking water are 
thought to cause a number of biological development abnormalities including sterility. Nichols et 
al. (1997) measured levels of estradiol (the most potent form of estrogen) in runoff from plots re-
ceiving different rates of poultry litter using a rainfall simulator immediately after application and 7 
days after application. Estradiol increased linearly with application rate. Concentrations after 7 days 
were much lower than on first day but still above the control. Finlay-Moore et al. (2000) measured 
estradiol in runoff caused by natural rainfall from fields receiving poultry litter. Runoff concentra-
tions were between 20 and 2,530 ng/L, depending on the rate of application and the time since ap-
plication. Peterson et al. (2000) measured estradiol concentrations between 6 and 66 ng/L in spring 
water draining from an area in Arkansas where poultry litter had been applied to fields. Concentra-
tions above 25 ng/L are thought to have an impact on stream biota. 

It is generally accepted that the principal ways to reduce risks associated with land application 
involve appropriate application rate, timing, and location. These issues are commonly addressed 
through nutrient management planning. Even under ideal conditions with a well-planned system, 
there is still a significant risk of losses to the environment. Agricultural systems leak and elimina-
tion of non-point source impacts is practically impossible. Therefore, secondary treatment or pre-
ventative systems should also be incorporated into the design of all land application systems re-
gardless of the choice of nutrient source. 
Nutrient Management Planning to Reduce Impacts 

The determination of application rates that provide crops with sufficient nutrients without having 
adverse environmental effects is one of the most critical land application issues. This is commonly 
accomplished through the development of nutrient management plans (NMPs). Studies have shown 
that the best method of avoiding groundwater and surface water contamination and possible crop 
damage is to limit applied manure to the amount required by the crop (CAST, 1996). This means 
that the total crop requirement, the nutrient pool in the soil, and the nutrient content of the manure 
must all be considered. Crop nutrient requirements are generally well-known and can be obtained 
from a variety of sources. To apply the amount of manure to meet the nutritional requirements of 
the crop without applying excessive amounts that could be lost to the environment, producers need 
a measure of the amount of nutrients in their soil and manure. The nutrient content of the soil can 
be determined through soil testing. The quantity and characteristics of livestock or poultry waste 
are highly variable and differ significantly from the initial values for manure excreted by the animal 
to the time of land application. Therefore, manure analysis is required. 
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Nutrients applied from animal manure should match the needs of the crop, but the ratios of N, P, 
K, and the various micronutrients excreted by animals are generally different from crop require-
ments. Not only does this present problems for the development of application rate recommenda-
tions, but it also produces nutrient imbalances in the soils and crops that receive animal manures 
(See the white papers on phosphorus issues and soil remediation in this volume.) Plans can be 
based on the N or P content of the manure, depending on which nutrient has the greater impact on 
receiving waters. P-based NMPs will also control N since they call for much lower application 
rates. Another way to reduce the P content in manure is to alter the feed ration by making the P 
more digestible through the use of phytase or new corn hybrids with a highly digestible form of P 
(Ertl et al., 1998). Alum can also be used to immobilize P in manure (Moore and Miller, 1994). The 
long-term solution to excess P is to return to a regional balance where locally grown grain is fed to 
livestock and the manure P returned to the grain fields. Ideally, the value of animal manures could 
be maximized if each individual nutrient could be separated and removed from the waste mixture 
and crop and soil specific fertilizer mixtures could then be reformulated. 

By reducing application rates through the use of NMPs, concentrations of FC and hormones are 
also reduced. Another way to reduce FC and perhaps hormones is by storing manure for a short pe-
riod of time before applying it to fields. Hartel et al. (2000) found that FC in fresh broiler litter 
ranged from <10 to 108 cols/g (45% of samples had FC below the detection level of 10 cols/g). By 
comparison, all stacked samples had FC concentrations less than the detection level. Because of the 
relatively high die-off rates of bacteria when manure is applied to fields, direct deposition of ma-
nure in streams by cattle can have a disproportionately large effect on stream FC concentrations. 
Therefore, fencing cattle out of streams may substantially reduce FC contamination (Cook et al., 
1998). 

Proper and timely application of animal manure is important in reducing nutrient losses and pol-
lution potential. Time and method of application depend on climate, cropping system, management 
system, source and form of animal waste, and equipment and labor availability (Gilbertson et al., 
1979). Animal waste should only be applied at periods when the nutrients can be used. For crops 
the best time is immediately prior to planting, while immediately following each hay harvest or 
grazing cycle usually results in optimal use in forage systems. More frequent applications of 
smaller amounts can increase plant uptake and use while decreasing the amount lost to the envi-
ronment. The method of application is dependent on the form of the manure. Whatever form, the 
keys to successful application are that a known amount is applied at the proper location with mini-
mal losses. All manure application systems should be calibrated regularly. Incorporation is also a 
recommended practice as it reduces odors, maximizes nutrient availability, and limits nutrient 
losses. Injection systems reduce odors and losses of ammonia and may be the most efficient appli-
cation method; however, they are not used extensively because of the difficulty in injecting solid 
materials. Considerable improvements could be made in both the application equipment and meth-
ods. 

The USDA/EPA Unified National Strategy for Animal Feeding (USDA-EPA, 1999) establishes a 
national performance expectation that all AFOs should develop and implement technically sound, 
economically feasible Comprehensive Nutrient Management Plans (CNMPs). It goes on to refer-
ence the USDA Natural Resources Conservation Service Technical Guidance on Comprehensive 
Nutrient Management Plans (USDA, 2000) as the primary technical reference on CNMPs. Fur-
thermore, nutrient management is recognized as the internationally accepted strategy to address 
field nutrient losses (Beegle et al., 2000). Traditionally, nutrient management has been concerned 
with optimizing the economic return from nutrients used for crop production. Land Grant Universi-
ties and crop consultants have been developing and using these types of NMPs for years. Today, the 
agronomic and economic requirements of nutrient management remain central, but in addition, the 
process is being expanded to include all of the potential environmental impacts of nutrients in the 
entire farm operation (Beegle et al., 2000). 

As the concept of nutrient management planning is evolving, there is considerable confusion 
over exactly what it entails. Part of this confusion is due to the conflicting goals of the agencies in-
volved in developing and implementing nutrient management plans. The NRCS, a conservation 
planning organization, states that a CNMP is a grouping of conservation practices and management 
activities which, when implemented as part of a conservation system, will help ensure that both 
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production and natural resource goals are achieved (USDA, 2000). They define CNMPs to include 
not only land application but also manure and wastewater handling and storage, land treatment in-
cluding conservation practices addressing soil erosion and surface runoff, record keeping, feed 
management, and even off-farm utilization. Meanwhile, the U.S. EPA has proposed to include a 
Permit Nutrient Plan (PNP) as part of their regulations on animal feeding operations (U.S. EPA, 
2001 a). The stated goals for these plans are to protect water quality and the environment by insur-
ing that a confined animal feeding operation (CAFO) meets effluent discharge limitations and other 
requirements of the Clean Water Act permits. Some of these standards go beyond those required in 
CNMPs but the requirements generally do not include the depth associated with CNMPs. In fact, 
the EPA defines a PNP as a subset of a CNMP (U.S. EPA, 2001b). Both CNMPs and PNPs go well 
beyond land application and expand the role of nutrient management planning to tracking nutrient 
flows throughout the animal feeding operation. Many of the issues that were covered under State 
regulations in the permits issued to AFOs are now being addressed through nutrient management 
plans making them more like a permit than a management plan. This increases both the cost and 
complexity of these plans while there is little evidence that it will decrease nutrient losses to the 
environment. 

Few studies have documented the effectiveness of nutrient management plans and some studies 
suggest that it will be difficult for farmers to reduce environmental impacts even with well devel-
oped plans (Hutson et al., 1998). Often nutrient management plans do result in benefits for farmers 
and society, especially as an educational process; however, implementation has not been as great as 
desired (Beegle et al., 2000). Nowak et al. (1998) in a study of over 1,150 farms in Wisconsin 
found that very few farmers actually take nutrient credit for manure application and few recognize 
the economic or soil quality benefits derived from proper nutrient management. They found that, on 
average, these farmers could save $38.86 per ha on commercial fertilizer through better utilization 
of on-farm nutrients. They concluded that a primary reason for this failure to credit manure nutri-
ents was the complexity involved in the determination of these values and that only through the re-
duction or elimination of these constraints would proper nutrient management be realized. Jackson 
et al. (2000) looked at ten CAFOs in Iowa and found that operators minimized the area required for 
manure utilization in plans by underestimating manure N content, projecting above-average crop 
yields, and applying manure to soybeans. Parsons et al. (1998) conducted an in-depth modeling 
study to examine the economic and environmental impact of nutrient management on dairy and 
poultry farms in Virginia. Their analysis included three differing approaches: requiring all manure 
to be incorporated and N- and P-based application rates. They found that requiring incorporation 
was not economically or environmentally sound, that an N-based strategy would significantly re-
duce N losses at little cost to the farmers while reducing P losses only 3 to 15%, and that the P-
based strategy would provide the best environmental benefit but also come with a substantial cost 
to the farmer. In a similar study, Van Dyke et al. (1999) found that average N and P losses were re-
duced 23-45% and 23-66% while net income increased by $395 to $4,593 on three Virginia farms. 
Much of this economic data is dependent on assumptions concerning manure markets that are not 
well quantified. 

A NMP must be practical to be effective (Beegle et al., 2000). For example, calculated manure 
application rates must be achievable in the field and the farmer must understand the principles in-
volved in determining the application rate. As these plans become more comprehensive in nature, 
often requiring a “certified specialist” to develop them, they often become less practical and tend to 
become more difficult to practically implement. In fact, the bottom line to most producers is the 
determination of a recommended application rate. A slightly imperfect, less comprehensive, but 
practical plan will almost always provide greater results than a perfect one that is not practical to 
implement. More research is needed to determine the effectiveness of NMPs at addressing water 
quality concerns and the key components that should be addressed in these plans. This should be 
done in conjunction with detailed cost-benefit analysis to determine key components. 

There are also substantial extension needs to establish planning processes and to educate produc-
ers on the need for and benefits of NMPs. Currently, there is very little infrastructure in place and 
the impacts of requiring plans before it is available to farmers would lead to considerable confusion 
and misinformation (Meyer and Mullinax, 1999). It could also lead to frustration and reluctance on 
the part of smaller operators who are being encouraged to voluntarily develop plans. Some com-
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puter tools have been developed to assist farmers in developing nutrient management plans; how-
ever, most of these focus on obtaining proper and economical manure application rates and not de-
veloping a comprehensive plan for the farm (Levins et al., 1996; Thompson et al., 1997). Computer 
tools and decision support systems will be needed to develop CNMPs or PNPs on a national basis. 
These on-farm tools should attempt to minimize input data requirements and should serve as both 
development tools and educational aids for nutrient management plans. 

Models should also be developed to evaluate manure management alternatives and farm policy. 
Due to the expense and labor intensivity of long-term field studies required to reliably quantify ag-
ricultural nonpoint source pollutants, computer models of nutrient management are needed to 
evaluate different management scenarios and application conditions (Sharpley and Meyer, 1994). 
These models should be developed at different levels. Research-type models that require extensive 
inputs should be developed to evaluate manure management alternatives for the development of 
best management practice recommendations and farm policy (Tim and Jolly, 1994; Gelata et al., 
1994). However, a major limitation to these models is often the lack of detailed parameterization 
data on soil properties and climate, crop, and tillage information. There is also a need for on-farm 
type models that require less input data and can be used as educational tools by farm owners and 
operators. Recent developments in geographical information systems (GIS) and advanced inter-
faces could make many existing models more user friendly and help them to gain broader accep-
tance and use. GIS systems also have the potential to be used for targeting sensitive areas and for 
the development of nutrient management plans for smaller areas under site-specific or “precision” 
conditions. 
BMPs and Water Quality Protection 

There are a number of other best management practices (BMPs) that can be adopted to minimize 
the water quality impact of manure. Any practice that reduces the amount of soil erosion or runoff 
from a field positively impacts surface water while practices that minimize leaching should prevent 
groundwater contamination. Excessive runoff should be avoided on areas where manure has been 
applied. The principal elements affecting runoff are rainfall characteristics, soil factors, climate and 
land use. The total amount, timing, and intensity of rainfall influences the quantity of runoff that 
occurs from a given region. One of the most effective means of reducing runoff is to maintain high 
infiltration rates. Areas with a complete ground cover usually have high infiltration rates and are 
least susceptible to runoff. Conservation tillage, contouring and strip cropping, terraces, and vege-
tated waterways have all been used effectively to minimize runoff. Narrow grass hedges have also 
been employed to reduce runoff, control erosion, decrease nutrient transport, and provide wildlife 
habitat. The method and timing of manure application should be adjusted to reduce the amounts of 
constituents transported in runoff. 

Regardless of how effectively agricultural systems are managed, they will impact non-point 
source water quality. Secondary treatment systems such as vegetative buffer zones, grass filter 
strips, riparian zones, and/or other vegetative filters can prevent nutrient and pathogen movement to 
surface waters. One of the most important BMPs is the use of grass filter strips and riparian buffers. 
Riparian buffers are very effective at reducing ground water N inputs to streams where ground wa-
ter flow is restricted to shallow depths (Lowrance et al., 1995). The ideal stream-side buffer con-
sists of an undisturbed forest zone next to the stream and a managed zone next to the field, which 
could consist of trees or a grass filter strip. Grass filter strips are very effective in filtering out N 
and P adsorbed to sediment because they slow down the flow of water and cause the sediment to 
settle out. They have less of an effect on the P dissolved in runoff. Contour filter strips also reduce 
FC concentrations (Coyne et al., 1995), but more research is needed in this area. 

Secondary containment systems and diversions can also reduce water quality impacts. These 
types of systems consist of berms or ditches around application areas to keep clean water from 
coming into contact with manure or wetlands. Sedimentation basins and farm ponds that trap and 
treat contaminated runoff also serve as effective management practices. Ultimately, the goal of 
these systems should not be treatment, but should be a secondary system that insures that contami-
nated runoff does not directly enter surface water. The need for these types of systems is highly de-
pendent on the receiving water body because secondary systems are not always economically justi-
fied. 
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Studies addressing the cost-benefit and efficiency of these systems to the farm and comprehen-
sive watershed scale are needed to aid in producer decisions and to help with TMDL modeling ef-
forts. Research efforts should focus on developing technologies that use natural and modified 
drainage patterns to limit off-site transport of nutrients and the development of BMPs to synchro-
nize nutrient availability from manure with crop nutrient needs. Tillage impacts on nutrient and 
pathogen loads should also be investigated as the trade-offs between nutrient distribution and non-
point source loads are not clearly established. Educational programs and policies to inform and to 
encourage adoption of current conservation technologies and BMPs by farmers is also an immedi-
ate need. 

For BMPs to be effective, they must be implemented as part of a total management system rather 
than individual practices because systems minimize the impact of the pollutant at several points: the 
source, the transport process, and the delivery (Osmond et al., 1995). Properly designed BMP sys-
tems must also be site specific and placed in the appropriate locations. Finally, since financial re-
sources are limited, BMP implementation should be prioritized and cost-share money should only 
be used in those locations that will have the greatest impact. Successful adaptation of on-farm 
BMPs is highly dependent on education. Producers must understand the impact their practices will 
have on the environment and the mechanism that the BMP uses to reduce this impact. More re-
search is also needed to document the effectiveness of specific BMPs. 

While manure treatment is beyond the scope of this text, the environmental impacts of land ap-
plied manure are highly dependent on treatment. Most treatment processes reduce nutrient and 
pathogen loads and therefore impact the quality of runoff and leachate coming from fields where 
manure has been applied. Composting manure can reduce its impact on water quality. Most impor-
tantly, it will minimize, if not eliminate, bacterial contaminants. If excess N is a problem, compost-
ing will reduce available N levels due to ammonium volatilization and N transformations to less 
harmful organic forms. Unfortunately, composting reduces the available P content only slightly 
(due to the formation of stabilized organic forms) (Vervoort et al., 1998). The result is that follow-
ing composting the N-to-P ratio is even lower than in fresh manure and more out of balance with 
crop requirements. 
Variability in Manure Nutrient Content Limits Greater Use 

Farmers often choose to use commercial sources of fertilizers instead of manure because of vari-
ability and uncertainty concerning the nutrient content of manure. The quantity and characteristics 
of livestock or poultry wastes are highly variable. They depend on the animal type, ration, manure 
management system, climate, storage system, and time and method of land application (Gilbertson 
et al., 1979). The amount and type of animal bedding can also influence the nutrient content. More 
accurate information is needed concerning the effects of modern rations, breeding, and manure 
management systems on the value of animal wastes. The nutrient composition of manure can vary 
widely depending on animal species (Barnett, 1994a; Millmier et al., 2000) and management 
(Rieck-Hinz et al., 1996; Patterson et al. 1998). For example, P concentration has been found to 
range from 6.0 g P kg-1 in dairy manure to 30.3 g P kg-1 in layer manure (Barnett (1994a). Similarly, 
P concentration in poultry litter has been found to vary from 8.0 to 25.8 g P kg-1 (mean = 14.3 g P 
kg-1 ; Edwards et al., 1992), depending on management. Using these estimates, an application of 
5,000 kg poultry litter ha-1 could provide 40 to 129 kg P ha-1 (mean = 71 kg P ha-1). While 40 kg P 
ha-1 would supply the P required by most crops, 129 kg P ha-1 would result in an excessive applica-
tion. This large difference indicates that it would be difficult to develop useful manure management 
plans based on average nutrient concentrations. Manure nutrient analysis is usually recommended 
to overcome this variability. Currently, most farmers must sample their manure regularly and often 
wait extended periods for test results. The development of inexpensive, on-farm nutrient tests 
would allow for testing at the time of application. For producers not testing their manure, educa-
tional and research emphasis should be placed on developing more site specific and detailed esti-
mates of manure nutrient content as well as the economical and environmental effects of excessive 
application. 
Manure Sampling and Handling Limits Greater Use 

Obtaining representative manure samples presents unique challenges depending on the physical 
nature of the manure. In the case of dry manures (e.g. poultry litter, beef feedlot manure), one of the 
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main challenges is to collect a representative sample from a material that may contain small frag-
ments as well as large clumps. The ideal sample should contain small fragments and clumps in the 
same proportion in which they are present in the manure to be land applied. Furthermore, once the 
ideal sample is obtained, the whole sample should be ground to yield a homogeneous material from 
which to obtain a representative subsample for chemical analysis. Grinding presents challenges of 
its own because above a certain water content dry manures tend to cake during the grinding proc-
ess. This problem leads to the need for drying before grinding, which in turn can lead to losses of N 
through ammonia volatilization (Gale et al., 1991). Several drying methods have been investigated 
in an effort to identify those that minimize N losses. In a study with poultry and other animal ma-
nures, Mahimairaja et al. (1990) found that overnight freezing, followed by freeze-drying for 3 d, 
caused minimum losses of N when compared to air drying for 10 d at room temperature, oven dry-
ing at 105°C for 48 h, and microwave oven drying at 700 W for 30 min. In contrast, Wood and Hall 
(1991) found that freeze-drying poultry litter led to larger losses of total N than oven drying at 
40°C for 3 d or microwave oven drying at 40°C for 30 min. Clearly, additional work is needed on 
sampling and drying methods for dry manures. 

In the case of wet manures (e.g. dairy, poultry, and swine slurries), one of the main sampling 
challenges is to obtain a representative sample from a manure slurry that has different liquid and 
solid phases. Because the nutrient concentration of manure slurries varies depending on the solid 
concentration (Odell et al., 1995; Campbell et al., 1997), the ideal sample should contain liquid and 
solid phases in the same proportion in which they are present in the slurry to be land applied. It 
would therefore be ideal to take the sample while the slurry is being stirred in the same way in 
which it will be stirred during transfer to the spreader. Once the sample is collected, homogeniza-
tion before subsampling is needed to obtain a representative subsample for chemical analysis. 

Problems inherent to the analysis of manure samples were described in the section on nutrient 
availability. Chemical methods are faster than biological methods, but they still need to be con-
ducted in the laboratory and require several days to complete. One of the potential problems with 
methods that require several days is that available N concentration in manure can change between 
sampling and application (Odell et al., 1995). Consequently, the ideal method would allow a quick 
determination of available N in the field, just before the manure is applied. Rapid methods are cur-
rently available for determination of ammonium in manure slurries (Van Kessel et al., 2000), but 
are not available for measuring available N in dry manure. Additional research in this area is 
needed to develop rapid, accurate methods for testing dry manure in the field. 
Transportation and Handling Costs Limit Greater Use 

Most livestock farms (78 and 69% for N and P respectively) have adequate land to apply manure 
at agronomic rates; however, the farms where this is not the case account for over half the nation’s 
manure N and P (Gollehon et al., 2001). Where animal production is concentrated, the land base 
available for manure application is usually limited. Still, even in concentrated production areas, 
there is usually sufficient land available where it would be feasible to apply manure. About 20% of 
the nation’s on-farm excess manure N is produced in counties with insufficient crop land acreage 
for land application at agronomic rates (Gollehon et al., 2001). In these situations, either transport 
to distant areas or alternative utilization strategies will be required. 

The main barrier to increased transport of manure is the economics. The collection, transport, 
storage and handling of manure to and from the point of processing are all an economic concern. 
Freeze and Sommerfeldt (1985) found that manure from large feedlots that haul manure in single-
axle trucks or pull-type manure spreaders could only be economically hauled up to 15 km. The 
economic hauling distance is inherently tied to moisture content as the cost of hauling increases 
with moisture content. For this reason, off-farm transport of dry poultry litter is relatively common 
while lagoon effluent is rarely moved away from the farm of origin. Little research emphasis is be-
ing placed on the concepts of materials handling and metering for animal manure, yet the econom-
ics of transporting the material to the point of use is often the greatest concern limiting the livestock 
producers from maximizing the use of this biomass resource (Gilbertson et al., 1984). Bosch and 
Napit (1992) found that export of poultry litter from surplus to deficit areas for use as a fertilizer in 
Virginia is often economically viable at larger scales; however, large scale transfers of poultry litter 
were not occurring. They suggested that the use of government subsidies to crop producers who 
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purchase litter for use as a fertilizer would encourage more research in transport and increase the 
incentives for commercial firms to provide litter transfer services. Many European governments do 
provide subsidized transport cost for manure and these programs have generally resulted in greater 
use of animal waste (Conway and Pretty, 1991). Better integration of farms that produce crops and 
livestock and educational programs aimed at showing farmers the economic value of manure as a 
fertilizer are other methods of reducing transport costs. Separation, screening, condensing, and de-
watering technologies could also be used to produce more transportable products; however, little 
research is being conducted in these areas. 
Public Perception and Odor Concerns Limit Greater Use 

Public perception of agriculture in general and land application of animal manure in particular is 
critical to continued acceptance of land application as the primary manure utilization strategy be-
cause it generally drives the regulatory process. Public concerns with animal manures can be bro-
ken into three major categories; water quality, air quality, and food quality. Land application of ma-
nures has the potential to negatively impact all three. The general public is dissociated from agri-
culture and the popular press often is their primary source of information. Many issues not directly 
related to land application, such as the changing scale of animal feeding operations, odor concerns 
of neighboring land owners, and atmospheric emissions from lagoons, are increasingly receiving 
negative press. Land application of other materials such as municipal biosolids are also generating 
concerns. Information on the scientific basis for land application, the environmental risks associ-
ated with it, and an open discussion of alternative technologies needs to be communicated to the 
general public in an easily understood manner so that they are equipped to have input on policy de-
cisions. 

Land application is also hindered in areas of urban and suburban populations by concerns about 
odors and flies. Air quality issues associated with land application of manure include off-site drift, 
ammonia emissions, and odor. Odor concerns are drawing increased attention as the urban/  
suburban areas expand into traditional agricultural areas. Odor problems are the number one com-
plaint against animal growers received by state and federal regulatory agencies (Moore et al., 
1995). Odors are a persistent problem near feedlots, loafing areas, and fields receiving land applica-
tions of waste. Since a manure odor is the product of complex interactions of many individual 
odorous components, it is difficult to accurately characterize it in terms of quality or quantity. There 
are many technologies for reducing the odor associated with land application of manures (see asso-
ciated white paper in this volume, p. 723). Odor control methods include treatment of manure, cap-
ture and treatment of emissions, increased odor dispersion, and diet modification (Sweeten, 1992). 
While research has documented many control strategies that can be effective in animal facilities, 
further efforts will be required to incorporate these ideas into land application systems. Odor sup-
pressants, counteractants, masking agents and numerous chemicals have also been used in animal 
production to reduce odors. The results have often been less than satisfactory. Further research 
could refine technologies for reducing odor impacts. 

Food quality impacts associated with land application have not received as much attention; how-
ever, there is a growing concern among consumers over food quality issues (Strauch and Ballarini, 
1994). Organic production which usually depends on manure to maintain soil fertility, represents 
one of the fastest growing segments in agriculture today. This may lead to increases in the use of 
manure on food crops. The U.S. Food and Drug Administration recognizes that properly treated 
manure can be an effective and safe fertilizer; however, it cautions that growers should follow rec-
ommended agricultural practices for handling manure to minimize microbial hazards (USDA, 
1998). Some of these practices include treatments to reduce pathogens and maximizing the time 
between application and harvest. Recommendations for avoiding disease transmission include steps 
to reduce disease susceptibility and careful handling and spreading of manure from animals at a 
high risk for infection, especially young calves (Pell, 1997). Many producers, food safety organiza-
tions, and the USDA organic standards encourage the use of a 60-day waiting period between ma-
nure application to food crops and harvest. More research is needed to develop application and 
treatment methods to reduce the risk of pathogen transfer to food crops and to verify the safety of 
these practices. This should be coupled with educational programs that document food safety to the 
consumer. 
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SUMMARY OF RESEARCH, EXTENSION AND POLICY NEEDS 
Land application of animal manure has been a cornerstone of animal agriculture. However, if 

used to its potential, manure could represent a much larger percentage of the total applied nutrients 
without concern for environmental degradation. Ultimately, in the pollution prevention hierarchy, 
utilization of manure nutrients on the farm as fertilizer input represents a more sustainable solution 
than other options such as off-site transfer, energy production, or disposal. Further research and ex-
tension efforts could lead to this increased use. The following sections summarize some of the most 
pressing research and extension needs identified in this paper. 
Manure Impacts on Soil Quality and Crop Growth 

• Research and educational programs focusing on quantification of the non-fertilizer value of 
manures is essential for greater utilization. 

• More research should be conducted to demonstrate and place an economic value on the water 
quality benefits that manure offers in terms of reduced runoff and erosion. 

• Studies that compare the agronomic qualities of different types of manure including composts 
are needed to demonstrate the value that processing choices have on soil and water quality. 

• Studies to determine the long-term effects of manure application on soil physical, biological 
and chemical properties, on crop and animal productivity, and on adjacent ecosystems should 
be conducted. 

• Research and extension projects focused on showing non-farm audiences that land application 
is safe, sustainable, and environmentally sound. 

Manure and Carbon Sequestration 
• Research to document the long-term effects of manure handling (e.g., composting, additives) 

and soil management (e.g., tillage, liming, irrigation, fertilization) interactions on carbon diox-
ide, methane, and nitrous oxide fluxes and soil organic C sequestration. 

• Studies to determine if manure treatment practices to reduce P availability (i.e., alum, Fe ox-
ides) affect the stability of C in manure. 

• Research to determine the impact of increasing the stability of C in composts on potential soil 
organic C sequestration on a farm scale. 

• Investigations to find economically viable crop rotations that could sequentially receive sub-
stantial nutrients from manure during high-nutrient-demanding crop phases, while preserving 
the C sequestration potential of manures and crop residues during other phases. 

• Socio-economic studies to determine economic incentives necessary for producers to system-
atically implement agricultural practices to maximize the C sequestration potential in animal 
manures. 

Manure Distribution Issues 
• Research to develop methods to overcome the high transportation costs limiting the potential 

to transport to off farm areas is needed. This should include applied research into technology 
development and economic analysis of separation, screening, condensing, and dewatering 
technologies that could produce more transportable and valuable products. 

• Quantifying the economic and agronomic effects of additives or blends with other materials 
could also result in greater utilization. 

Manure Nutrient Issues 
• Research to address problems encountered in collecting representative manure samples for nu-

trient analysis and determining the nutrient content of manures. 
• Development of inexpensive, on-farm nutrient tests that would allow for testing at the time of 

application and more frequent and dependable test results. 
• Research to improve our understanding and knowledge of mineralization rates and their ef-

fects on crop growth. 
• Develop techniques to assess nutrient availability of manure in specific soil-crop-climate sys-

tems. 
• Research that provides a better understanding of the effectiveness of different methods of ma-

nure application on crop nutrient uptake and utilization. Research should also address the de-
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velopment of application technologies with improved accuracy and precision or lower unit 
costs. 

Nutrient Management Planning 
• Determination of application rates that provide the crop with sufficient nutrients without hav-

ing adverse environmental effects. 
• Development of sustainable planning methodologies that take a systems approach combining 

manure and other fertilizers rather than concentrating on individual nutrients. 
• Research is needed to determine the effectiveness of NMPs at addressing water quality con-

cerns and the key components that should be addressed in these plans. This should be done in 
conjunction with detailed cost benefit analysis to determine key components. 

• There is a need for on-farm decision support systems and environmental models that require 
little input data and can be used by non-scientific users in planning manure application strate-
gies. 

• There are also substantial extension needs to implement planning processes and to educate 
producers on the need for and benefits of NMPs. 

Other Water Quality Measures 
• Continuation of research associated with minimizing the potential for runoff and leaching un-

der various management scenarios and development of BMPs to reduce nutrient losses from 
agricultural areas receiving manure. 

• Research efforts should focus on developing technologies that use natural and modified drain-
age patterns to limit off-site transport of nutrients and identifying BMPs to synchronize nutri-
ent availability from manure with crop nutrient needs. 

• Determine the relationship between soil P and movement of soluble P to surface and shallow 
ground water and develop predictive tools to identify areas susceptible to P losses on a land-
scape. 

• Tillage impacts on nutrient and pathogen loads should also be investigated as the trade-offs be-
tween nutrient distribution and non-point source loads are not clearly established. 

• Studies addressing the cost-benefit and efficiency of these systems to the farm and compre-
hensive watershed scale are needed to aid in producer decisions and help with TMDL model-
ing efforts. 

• Educational programs and policies to inform and to encourage adoption of current conserva-
tion technologies and BMPs by farmers is also an immediate need. 

• With further research on rotational grazing/free range systems and improvements in forage 
genetics and production, extensive systems could become more economical for small to mid-
size producers. 

REFERENCES 
Agbenin, J.O. and J.T. Goladi. 1997. Carbon, nitrogen and phosphorus dynamics under continuous 

cultivation as influenced by farmyard manure and inorganic fertilizers in the savanna of northern 
Nigeria. Agriculture, Ecosystems and Environment 63:17-24. 

Albiach, R., R. Canet, F. Pomares, and F. Ingelmo. 2001. Organic matter components and aggregate 
stability after application of different amendments to a horticultural soil. Bioresource Technology 
76(2):125-129. 

Andres, A.S. 1995. Nitrate loss via ground water flow, Coastal Sussex County, Delaware. In K. 
Steele (Ed). Animal waste and the land-water interface. Lewis Publishers. Boca Raton, FL. Pp. 
69-76. 

Angers, D.A. 1998. Water-stable aggregation of Quebec silty clay soils: some factors controlling its 
dynamics. Soil & Tillage Research 47(1-2):91-96. 

Angers, D.A. and A. N’Dayegamiye. 1991. Effects of manure application on carbon, nitrogen, and 
carbohydrate contents of a silt loam and its particle-size fractions. Biology and Fertility of Soils 
11:79-82. 



Animal Agriculture and the Environment 307 

Aoyama, M., D.A. Angers, A. N’Dayegamieye, and N. Bissonnette. 1999. Protected organic matter 
in water-stable aggregates as affected by mineral fertilizer and manure applications. Can. J. Soil 
Sci. 79(3):419-425. 

Aryantha, I.P., R. Cross, and D.I. Guest. 2000. Suppression of Phytophthora cinnamomi in potting 
soil mixes amended with uncomposted and composted animal manures. Phytopathology 
90(7):775-782. 

Barker, J.C., J.P. Zublena, and C.R. Campbell. 1994. Agri-waste management: Livestock manure 
production and characterization in North Carolina. North Carolina Cooperative Extension 
Service. Raleigh, NC. 

Barnett, G.M. 1994a. Phosphorus forms in animal manure. Bioresour. Technol. 19:139-148. 
Barnett, G.M. 1994b. Manure P fractionation. Bioresour. Technol. 19:149-155. 
Barrington, S.F. and C. A. Madramootoo, 1989. Investigating seal formation from manure 

infiltration into soils. Trans. ASAE 32(3):851-856. 
Barthes, B., A. Albrecht, J. Asseline, G. De Noni, and E. Roose. 1999. Relationship between soil 

erodibility and topsoil aggregate stability or carbon content in a cultivated Mediterranean 
highland (Aveyron, France). Comm. in Soil Sci. and Plant Anal. 30(13-14):1929-1938. 

Bates, T. and E. Gagon. 1981. Nutrient content of manure. University of Guelph, Ontario, Canada. 
Beauchamp, E.G. 1983. Response of corn to nitrogen in preplant and sidedress applications of 

liquid dairy cattle manure. Can. J. Soil Sci. 63:377-386. 
Beauchamp, E.G. 1986. Availability of nitrogen from three manures to corn in the field. Can. J. Soil 

Sci. 66:713-720. 
Beauchamp, E.G. and R.P. Voroney. 1994. Crop carbon contribution to the soil with different 

cropping and livestock systems. J. of Soil and Water Cons. 49:205-209. 
Beegle, D.B., O.T. Carton, and J.S. Bailey, 2000. Nutrient management planning: justification, 

theory, practice. J. Environ. Qual. 29:72-79. 
Benoit, P., E. Barriuso, S. Hovot, and R. Calvert. 1996. Influence of the nature of soil organic 

matter on the sorption-desorption of 4-chlorophenol, 2,4-dichlorophenol and the herbicide 2,4-
dichlorophenoxyacetic acid (2,4-D). European J. Soil Sci. 47(4):567-578. 

Bernal, M.P. and H. Kirchmann. 1992. Carbon and nitrogen mineralization and ammonia 
volatilization from fresh, aerobically and anaerobically treated pig manure during incubation 
with soil. Biology and Fertility of Soils 13:135-141. 

Betlach, M.R. and J.M. Tiedje. 1981. Kinetic explanation for accumulation of nitrite, nitric oxide, 
and nitrous oxide during bacterial denitrification. Applied and Environmental Microbiology 
42:1074-1084. 

Bhogal, A. and M. Shepherd. 1997. Effect of poultry manure on the leaching of carbon from a 
sandy soil as a potential substrate for denitrification in the subsoil. Journal of the Science of 
Food and Agriculture 74:313-322. 

Bohlen, P.J. and C.A. Edwards. 1994. The response of nematode trophic groups to organic and 
inorganic nutrient inputs in agroecosystems. Pp. 235-244. In: J.W. Doran, D.C. Coleman, D.F. 
Bezdicek, and B.A. Stewart (Eds). Defining soil quality for a sustainable environment. SSSA 
Special Publication No. 35. SSSA, ASA, Madison, WI. 

Bollag, J.M., C.J. Meyers, and R.D. Minard. 1992. Biological and chemical interactions of 
pesticides with soil organic matter. Science of the Total Environment 123:205-217. 

Boman, R.K., S.L. Taylor, W.R. Raun, G.V. Johnson, D.J. Bernardo, and L.L. Singleton. 1996. The 
Magruder Plots: A century of wheat research in Oklahoma. Published by Department of 
Agronomy, Oklahoma State University. 

Bosch, D.J. and K.B. Napit. 1992. Economics of transporting poultry litter to achieve more 
effective use as fertilizer. J. of Soil and Water Cons. 47(4):342-346. 

Brown, S.M.A., H.F. Cook, and H.C. Lee. 2000. Topsoil characteristics from a paired farm survey 
of organic versus conventional farming in southern England. Biological Agriculture & 
Horticulture 18(1):37-54. 

Buckman, H.O. and N.C. Brady. 1969. The nature and properties of soils (7th Ed.). MacMillan Co., 
New York, NY. 

Bullock, L.R. III, and J.B. Risaino. 1999. Effects of organic and synthetic fertility amendments on 
southern blight, soil biological communities and yield of processing tomatoes. In: G.B. 



308 Land Application of Manure for Beneficial Reuse 

Havenstein (Ed). Proceedings of 1999 NC State University Animal Waste Management 
Symposium; January 27-28, 1999; Research Triangle Park, NC. NCSU Animal Waste 
Management Field Day Committee; College of Agriculture and Life Sciences: NC State 
University, Raleigh, NC. 

Burn, R.S. 1889. Farming and farming economy: Notes, historical and practical, on farming and 
farming economy. Crosby Lockwood and Son, London, UK. 

Bushee, E.L., D.R. Edwards, R.S. Gates, L.W. Turner, P.A. Moore, and L. Dunn. 1999. Effects of 
chemical amendments on surface water runoff concentrations from swine manure. ASAE paper 
No. 99-2099. 

Buyanovsky, G.A. and G.H. Wagner. 1998. Changing role of cultivated land in the global carbon 
cycle. Biology and Fertility of Soils 27:242-245. 

Cabrera, M.L., S.C. Chiang, W.C. Merka, O.C. Pancorbo, and S.A. Thompson, 1994. Nitrous oxide 
and carbon dioxide emission from pelletized and nonpelletized poultry litter incorporated into 
soil. Plant and Soil 163:189-196. 

Cabrera, M.L. and R.M. Gordillo. 1995. Nitrogen release from land-applied animal manures. In K. 
Steele (Ed.). Animal Waste and the Land-Water Interface, CRC Press, New York. 

Campbell, A.J., J.A. Mcleod, and C. Stewart. 1997. Nutrient characterization of stored liquid hog 
manure. Can. Agric. Engin. 39:43-48. 

CAST. 1992. Preparing U.S. agriculture for global climate change. Task Force Report No. 119, 
Council for Agricultural Science and Technology, Ames, IA, 96 pp. 

CAST. 1995. Waste management and utilization in food production and processing. Council for 
Agricultural Science and Technology Report No. 124. Ames, IA. 125 p. 

CAST. 1996. Integrated animal waste management. Council for Ag. Sci. and Tech., Ames, IA 
Castellanos, J.Z. and P.F. Pratt. 1981. Mineralization of manure nitrogen: Correlation with 

laboratory indexes. Soil Sci. Soc. of Am. J. 45:354-357. 
Chandra, S. and S.K. De. 1983. Effect of cattle manure on soil erosion by water. Soil Sci. 

133:228-231. 
Chang, C., T.G. Sommerfeldt, and T. Entz. 1990. Rates of soil chemical changes with eleven annual 

applications of cattle feedlot manure. Can. J. Soil Sci. 70:673-681. 
Chang, C., T.G. Sommerfeldt, T. Entz. 1991. Soil chemistry after eleven annual applications of 

cattle feedlot manure. J. Env. Qual. 20:475-480. 
Christensen, B.T. 1988. Effects of animal manure and mineral fertilizer on the total carbon and 

nitrogen contents of soil size fractions. Biology and Fertility of Soils 5:304-307. 
Coleman, D.C., R.V. Anderson, C.V. Cole, J.F. McClellan, L.W. Woods, J.A. Trofymow, and E.T. 

Elliot. 1984. Roles of protozoa and nematodes in nutrient cycling. Pp. 17-28. In R.L.Todd, and 
J.E. Giddons (Eds). Microbial-plant interactions. ASA Special Publication 47. ASA, CSSA and 
SSSA, Madison, WI. 

Collins, H.P., P.E. Rasmussen, and C.L. Douglas, Jr. 1992. Crop rotation and residue management 
effects on soil carbon and microbial dynamics. Soil Sci. Soc. Amer. J. 56:783-788. 

Conway, G.R. and J. N. Pretty. 1991. Unwelcome harvest agriculture and pollution. Earthscan 
Publications Ltd. London, England. 645 p. 

Cook, M.N., S. Mostaghimi, and P.W. McClellen. 1998. Animal waste BMPs and the 
bacteriological quality of surface water. ASAE Paper 982030. St Joseph, MI. 

Coyne, M.S., R.A. Gilfillen, R.W. Rhodes, and R.L. Blevins. 1995. Soil and fecal coliform trapping 
by grass filter strips during simulated rain. J. Soil and Water Cons. 50:405-408. 

Crane, S.R. and J.A. Moore. 1986. Modeling enteric bacterial die-off: A review. Water, Air, and Soil 
Pollution 27:411-439. 

Crane, S.R., P.W. Westerman, and M.R. Overcash. 1980. Die-off of fecal indicator organisms 
following land application of poultry manure. J. Environ. Qual. 9:531-537. 

Doran, J.W. and D.M. Linn. 1979. Bacteriological quality of runoff water from pastureland. App. 
and Envir. Microbiology. 37:985-991. 

Dou, Z., J.D. Toth, D.T. Galligan, C.F. Ramberg, Jr., and J.D. Ferguson. 2000. Laboratory 
procedures for characterizing manure phosphorus. J. Environ. Qual. 29:508-514. 

Dubrey, S.K. and Mondal, R.C. 1994. Effect of amendments and saline irrigation water on soil 
properties and yields of rice and wheat in a highly sodic soil. J. Agr. Sci. 122:351-357. 



Animal Agriculture and the Environment 309 

During, C. and W.C. Weeda. 1973. Some effects of cattle dung on soil properties, pasture 
production, and nutrient uptake. I. Dung as a source of phosphorus. New Zealand J. Agric Res. 
16:423-430. 

Eck, H.V., S.R. Winter, and S.J. Smith. 1990. Sugarbeet yield and quality in relation to residual 
beef feedlot waste. Agron. J. 82:250-254. 

Edwards, D.R., M.S. Coyne, T.C. Daniel, P.F. Vendrell, J.F. Murdoch, and P.A. Moore, Jr. 1997. 
Indicator bacteria concentration of two northwest Arkansas streams in relation to flow and 
season. Trans. ASAE 40:103-109. 

Edwards, D.R. and T.C. Daniel. 1994. Environmental impacts of on-farm poultry waste disposal - a 
review. Bioresource. Technol. 41:9-33. 

Edwards, D. R., T.C. Daniel, P.A. Moore, Jr., and A.N. Sharpley, 1994. Solids transport and 
erodibility of poultry litter surface applied to fescue. Trans. ASAE 37(3):771-776. 

Edwards, J.H., R.H. Walker, E.A. Guertal, L.D. Norton, and J.T. Eason. 1994. Options for 
Recycling Organics on Farm Land. Biocycle 35(11):66-68. 

Eghball, B. 1999. Liming effects of beef cattle feedlot manure or compost. Commun. Soil Sci. Plant 
Anal. 30:2563-2570. 

Eghball, B. and J.F. Power. 1994. Beef cattle feedlot manure management. J. Soil and Water Cons. 
49(2):113-122. 

Eghball, B. and J.F. Power. 1999. Phosphorus and nitrogen-based manure and compost 
applications: Corn production and soil phosphorus. Soil Sci. Soc. Am. J. 63(4):895-901. 

Ertl, D.S., K.A. Young, and V. Raboy. 1998. Plant genetic approaches to phosphorous management 
in agricultural production. J. Environ. Qual. 27:299-304. 

Estevez, B., A. N’Dayegamiye, and D.Coderre. 1996. The effect of earthworm abundance and 
selected soil properties after 14 years of solid cattle manure and NPKMg fertilizer application. 
Can. J. of Soil Sci. 76(3):351-355. 

Finlay-Moore, O., P.G. Hartel, and M.L. Cabrera. 2000. 17β-estradiol and testosterone in soil and 
runoff from grasslands amended with broiler litter. J. Environ. Qual. 29:1604-1611. 

Follett, R.H., D.G. Westfall, and R.L. Croissant. 1992. Utilization of animal manure as fertilizer. 
Colorado State University Cooperative Extension Bulletin 552A. 

Franzluebbers, A.J., J.A. Stuedemann, and S.R. Wilkinson. 2001. Bermudagrass management in the 
Southern Piedmont USA. I. Soil and surface residue carbon and sulfur. Soil Sci. Soc. Am. J. 
65:834-841. 

Fraser, D.G., J.W. Doran, W.W. Sahs, and G.W. Lesoing. 1988. Soil microbial populations and 
activities under conventional and organic management. J. Environ. Qual. 17(4):585-590. 

Freeze, B.S., and T.G. Sommerfeldt. 1985. Break-even hauling distances for beef feedlot manure in 
Southern Alberta. Can. J. Soil Sci. 65:687-693. 

Frick, E.A. D.J. Hippe, G.R. Buell, C.A. Couch, E.H. Hopkins, D.J. Wangsness, and J. W. Garrett. 
1998. Water quality in the Apalachicola, Chattahoochee-Flint river basin. U.S. Geological 
Survey. Report No. 1164. Reston, VA. 

Gale, P.M., J.M. Phillips, M.L. May, and D.C. Wolf. 1991. Effect of drying on the plant nutrient 
content of hen manure. J. Prod. Agric. 4:246-250. 

Gan, J., S.R. Yates, S. Papiernik, and D. Crowley. 1998. Application of organic amendments to 
reduce volatile pesticide emissions from soil. Env. Sci. & Tech. 32(20):3094-3098. 

Gary, H.L., S.R. Johnson, and S.L. Ponce. 1983. Cattle grazing impact on surface water quality in a 
Colorado front range stream. J. Soil and Water Cons. 38:124-128. 

Geleta, S., G.J. Sabbagh, J.F. Stone, R.L. Elliot, H.P. Mapp, D.J. Bernardo, and K.B. Watkins. 1994. 
Importance of soil and cropping systems in the development of regional water quality policies. J. 
Env. Qual. 23(1):36-42. 

Gerritse, R.G. and R. Vriesema. 1984. Phosphate distribution in animal waste slurries. J. Agric. Sci. 
(Cambridge) 102:159-161. 

Giddens, J. and A.P. Barnett. 1980. Soil loss and microbiological quality of runoff from land treated 
with poultry litter. J. Environ. Qual. 9(3):518-520. 

Gilbertson, C.B., F.A. Norstadt, A.C. Mathers, R.F. Holt, A.P. Barnett, T.M. McCalla, C.A. Onstad, 
and R.A. Young. 1979. Animal waste utilization on cropland and pastureland. USDA Utilization 
Res. Rep. 6. U.S. Government Printing Office. Washington, D.C. 



310 Land Application of Manure for Beneficial Reuse 

Gilbertson, C.B., L.R. Shuyler, J.A. Moore, and J.R. Miner. 1984. Livestock residue management 
and pollution control. In: Agriculture and the Environment: An Examination of Critical Issues for 
Food Policy, J.M. Sweeten and F.J. Humenik (Eds.). American Society of Agricultural Engineers, 
St. Joseph, Michigan. 117 p. 

Gilley, J.E. and B. Eghball. 1998. Runoff and erosion following field application of beef cattle 
manure and compost. Trans. ASAE 41(5): 1289-1294. 

Gilley, J.E., B. Eghball, J.M. Blumenthal, and D.D. Baltensperger. 1999. Runoff and erosion from 
interrill areas as affected by the application of manure. Trans. ASAE 42(4):975-980. 

Gilley, J.E. and L. M. Risse. 2000. Runoff and soil loss as affected by the application of manure. 
Trans. ASAE 43(6):1583-1588. 

Gollehon, N., M. Caswell, M. Ribaudo, R. Kellogg, C. Lander, and D. Letson, 2001. Confined 
Animal Production and Manure Nutrients. Resource Economics Division, Economic Research 
Service, U.S. Department of Agriculture. Agriculture Information Bulletin No. 771. 

Gordillo, R.M. and M.L. Cabrera. 1997. Mineralizable nitrogen in broiler litter: I. Effect of selected 
litter chemical characteristics. J. Environ. Qual. 26:1672-1679. 

Goss, D.W. and B.A. Stewart. 1979. Efficiency of phosphorus utilization by alfalfa from manure 
and superphosphate. Soil Sci Soc Am J 43:523-528. 

Govi, M., O. Francioso, C. Ciavatta, P. Sequi. 1992. Influence of long-term residue and fertilizer 
applications on soil humic substances: A case study by electrofocusing. Soil Science 154:8-13. 

Griffiths, B.S., K. Ritz, and R.E. Wheatley. 1994. Nematodes as indicators of enhanced 
microbiological activity in a Scottish organic farming system. Soil Use and Man.10(1):20-24. 

Guibert, H., P. Fallavier, and J.J. Romero. 1999. Carbon content in soil particle size and 
consequence on cation exchange capacity of alfisols. Com. Soil Sci. Plant Anal. 30(17-18):2521-
2537. 

Guo, L., T.J. Bicki, T.D. Hinesley, and A.S. Felsot. 1991. Effect of carbon-rich waste materials on 
movement and sorption of atrazine in a sandy, coarse-textured soil. Environmental Toxicology 
and Chemistry 10:1273-1282. 

Gupta, A.P., R.P. Narwal, R,S, Antil, and S. Dev. 1992. Sustaining soil fertility with organic-C, N, 
P, and K by using farmyard manure and fertilizer-N in a semiarid zone: A long-term study. Arid 
Soil Research and Rehabilitation 6:243-251. 

Gupta, G. and J. Baummer. 1996. Biodegradation of atrazine in soil using poultry litter. Journal of 
Hazardous Materials 45(2-3):185-192. 

Harper, L.A., O.T. Denmead, J.R. Freney, and F.M. Byers. 1999. Direct measurements of methane 
emissions from grazing and feedlot cattle. Journal of Animal Science 77:1392-1401. 

Harper, L.A., R.R. Sharpe, and T.B. Parkin. 2000. Gaseous nitrogen emissions from anaerobic 
swine lagoons: Ammonia, nitrous oxide, and dinitrogen gas. J. Environ. Qual. 29:1356-1365. 

Hartel, P.G., W.I. Segars, J.D. Summer, J.V. Collins, A.T. Phillips, and E. Whittle. 2000. Survival of 
fecal coliforms in fresh and stacked broiler litter. J. Appl. Poultry Res. 9:505-512. 

Haynes, R.J. and M.S. Mokolobate. 2001. Amelioration of Al toxicity and P deficiency in acid soils 
by addition of organic residues: A critical review of the phenomenon and the mechanisms 
involved. Nutrient Cycling in Agroecosystems 59(1):47-63. 

Haynes, R.J. and R. Naidu. 1998. Influence of lime, fertilizer and manure applications on soil 
organic matter content and soil physical conditions: A review. Nutrient Cycling in 
Agroecosystems 51:123-137. 

Holloway, M.P., A.B. Bottcher, and R. St. John. 1994. Design of a rotationally grazed dairy in 
North Florida. In: Environmentally Sound Agriculture, Proceedings of the Second Conference, 
K.L. Campbell, W.D. Grahman, and A.B. Bottcher (Ed). Orlando, Florida. Pp. 300-306. 

Hue, N.V. 1992. Correcting soil acidity of a highly weathered ultisol with chicken manure and 
sewage sludge. Commun. Soil Sci. Plant Anal. 23:241-264. 

Huffman, R.L. and P. W. Westerman. 1995. Estimated seepage losses from established swine 
lagoons in the lower coastal plain of North Carolina. Trans ASAE 38:449-453. 

Hutson, J.L., R.E. Pitt, R. K. Koelsch, J.B. Houser, and R.J. Wagenet. 1998. Improving dairy farm 
sustainability II: Environmental losses and nutrient flows. J. Prod. Agric. 11(2):233-239. 

Inbar, Y., Y. Chen, and Y. Hadar. 1990. Humic substances formed during the composting of organic 
matter. Soil Science Society of America Journal 54:1316-1323. 



Animal Agriculture and the Environment 311 

Ingham, R.E., E.R. Trofymow, E.R. Ingham, and D.C. Coleman. 1985. Interactions of bacteria, 
fungi and their nematode grazers: Effects on nutrient cycling and plant growth. Ecological 
Monographs 5:119-140. 

IPCC. 2000. Land use, land-use change and forestry. Intergovernmental Panel on Climate Change 
Special Report. Watson, R.T., Noble, I.R., Bolin, B., Ravindranath, N.H., Verardo, D.J., Dokken, 
D.J. (Eds). Cambridge University Press, UK, pp. 375. 

Jackson, L.L., D.R. Keeney, and E.M. Gilbert. 2000. Swine manure management plans in North 
Central Iowa: Nutrient loading and policy implications. J. Soil and Water Cons. 55(2):205-212. 

Jackson, W.A., S.R. Wilkinson, and R.A. Leonard. 1977. Land disposal of broiler litter: Changes in 
concentration of chloride, nitrate nitrogen, total nitrogen, and organic matter in a Cecil sandy 
loam. J. Environ. Qual. 6:58-62. 

Jawson, M.D., L.F. Elliott, K.E. Saxton, and D.H. Fortier. 1982. The effect of cattle grazing on 
indicator bacteria in runoff from a Pacific Northwest watershed. J. Environ. Qual. 11:621-627. 

Jokela, W.E. 1992. Nitrogen fertilizer and dairy manure effects on corn yield and soil nitrate. Soil 
Sci. Soc. Am. J. 56:148-154. 

Kandeler, E., M. Stemmer, and E.M. Klimanek. 1999. Response of soil microbial biomass, urease 
and xylanase within particle size fractions to long-term soil management. Soil Biology and 
Biochemistry 31(2):261-273. 

Kapkiyai, J.J., N.K. Karanja, J.N. Qureshi, P.C. Smithson, and P.L. Woomer. 1999. Soil organic 
matter and nutrient dynamics in a Kenyan nitisol under long-term fertilizer and organic input 
management. Soil Biology and Biochemistry 31(13):1773-1782. 

Khaleel, R., G.R. Foster, K.R. Reddy, M.R. Overcash, and P.W. Westerman. 1979. A nonpoint 
source model for sediment and manure transport: III. A conceptual model for sediment and 
manure transport. Trans. ASAE 22(6):1362-1368. 

Khaleel, R., K.R. Reddy, and M.R. Overcash. 1991. Changes in soil physical properties due to 
organic waste applications: A review. J. Environ. Qual. 10:133-141. 

Kingery, W.L., C.W. Wood, D.P. Delaney, J.C. Williams, and G.L. Mullins. 1994. Impact of long-
term land application of broiler litter on environmentally related soil properties. J. Environ. Qual. 
23:139-147. 

Kingery, W.L., C.W. Wood, D.P. Delaney, J.C. Williams, G.L. Mullins, and E. Vansanten. 1993. 
Implications of long-term land application of poultry litter on tall fescue pastures. J. Prod. Agric. 
6(3):390-395. 

Kirchmann, H. and M.H. Gerzabek. 1999. Relationship between soil organic matter and micropores 
in a long-term experiment at Ultuna, Sweden. Journal of Plant Nutrition and Soil Science 
162(5):493-498. 

Kubat, J., J. Novakova, D. Cerhanova, and R. Apfelthaler. 1999. Organic nitrogen cycle, 
ammonification and nitrification activity in long-term field experiment. Rostlinna Vyroba 
45(9):397-402. 

Kubat, J., J. Novakova, O. Mikanova, and R. Apfelthaler. 1999. Organic carbon cycle, incidence of 
microorganisms and respiration activity in long-term field experiment. Rostlinna Vyroba 
45(9):389-395. 

Kuykendall, H.A., M.L. Cabrera, C.S. Hoveland, M.A. McCann, and L.T. West. 1999. Stocking 
method effects on nutrient runoff from pastures with broiler litter. J. Environ. Qual. 28:1886-
1890. 

Lalande, R., B. Gagnon, R.R. Simard, and D. Cote. 2000. Soil microbial biomass and enzyme 
activity following liquid hog manure application in a long-term field trial. Can. J. Soil Sci. 
80(2):263-269. 

Lazarovits, G. 2001. Management of soil-borne pathogens with organic soil amendments: A disease 
control strategy salvaged from the past. Can. J. Plant Path. 23:1-7. 

Levins, R.A., M.A. Schmitt, and D. Wynn Richardson. 1996. Extension programming for teaching 
manure management to farmers. Review of Agricultural Economics 18:275-280. 

Liang, B.C. and A.F. Mackenzie. 1992. Changes in soil organic carbon and nitrogen after six years 
of corn production. Soil Science 153:307-313. 

Loehr, R. 1984. Pollution Control For Agricultural, 2nd ED. Academic Press, Inc. Orlando. P. 42. 



312 Land Application of Manure for Beneficial Reuse 

Long, F.L., Z. F. Lund, and R. E. Hermanson. 1975. Effect of soil incorporated dairy cattle manure 
on runoff water quality and soil properties. J. Environ. Qual. 4(2):163-166. 

Lowrance, R.R., L.S. Alter, J.D. Newbold, et al. 1995. Water quality functions of riparian forest 
buffer systems in the Chesapeake Bay Watershed. U.S. EPA, Washington, DC. 

Magdoff, F.R. 1978. Influence of manure application rates and continuous corn on soil-N. Agron J 
70:629-632. 

Maihairaja, S., N.S. Bolan, M.J. Hedley, and A.N. MacGregor. 1990. Evaluation of methods of 
measurement of nitrogen in poultry and animal manures. Fert. Res. 24:141-148. 

Marshall, S.B., C.W. Wood, L.C. Braun, M.L. Cabrera, M.D. Mullen, and E.A. Guertal. 1998. 
Ammonia volatilization from tall fescue pastures fertilized with broiler litter. J. Environ. Qual. 
27:1125-1129. 

May, D.M. and W.E. Martin. 1966. Manures are good sources of phosphorus. Calif. Agric 20:11-12. 
Maynard, A.A. 1994. Sustained vegetable production for three years using composted animal 

manures. Compost Science and Utilization 2(1):88-96. 
Meisinger, J.J. 1984. Evaluating plant available nitrogen in soil-crop systems. In R.D. Hauck (Ed.). 

Nitrogen in Crop Production. American Society of Agronomy, Crop Science Society Association, 
and Soil Science Society Association, Madison, Wisconsin. Pp. 391-416. 

Meyer, D. and D.D. Mullinax, 1999. Livestock nutrient management concerns: Regulatory and 
legislative overview. J. Anim. Sci. 77(Suppl. 2/J):51-62. 

Mielke, L.N. and A.P. Mazurak. 1976. Infiltration of water on a cattle feedlot. Trans. ASAE 
19(2):341-344. 

Millmier, A., J. Lorimor, C. Hurburth, Jr., C. Fulhage, J. Hattey, and H. Zhang. 2000. Trans. ASAE 
43:903-908. 

Miner, J.R., F.J. Humenik, and M.R. Overcash. 2000. Managing livestock waste to preserve 
environmental quality. Iowa State University Press. Ames, IA. 

Mitchell, J.K. and R.W. Gunther. 1976. The effects of manure applications on runoff, erosion and 
nitrate losses. Trans ASAE 19(6):1104-1106. 

Mondini, C., R. Chiumenti, F. da Borso, L. Leita, and M. De Nobili. 1996. Changes during 
processing in the organic matter of composted and air-dried poultry manure. Bioresource 
Technology 55:243-249. 

Moore, P.A., Jr. and D.M. Miller. 1994. Decreasing phosphorus solubility in poultry litter with 
aluminum, calcium, and iron amendments. J. Environ. Qual. 23:325-330. 

Moore, P.A. Jr., T.C. Daniel, A.N. Sharpley, and C.W. Wood. 1995. Poultry manure management: 
Environmentally sound options. J. Soil Water Cons. 50(3):321-327. 

Mosaddeghi, M.R., M.A. Hajabbasi, A. Hemmat, and M. Afyuni. 2000. Soil compactibilty as 
affected by soil moisture content and farmyard manure in central Iran. Soil & Tillage Research 
55(1-2):87-97. 

Motavalli, P.P., K.A. Kelling, and J.C Converse. 1989. First-year nutrient availability from injected 
dairy manure. J Environ. Qual. 18:180-185. 

Mueller, D.H., R.C. Wendt, and T.C. Daniel. 1984. Soil and water losses as affected by tillage and 
manure application. Soil Sci. Soc. Am. J. 48(4):896-900. 

Murray, J.A. 1910. Soils and Manures. Constable & Company, London, UK. 
Neher, D.A. and R.K. Olsen. 1999. Nematode communities in soils of four farm cropping 

management systems. Pedobiologia 43:430-438. 
Nichols, D.J., T.C. Daniel, P.A. Moore, Jr., D.R. Edwards, and D.H. Pote. 1997. Runoff of estrogen 

hormone 17 beta-estradiol from poultry litter applied to pasture. J. Environ. Qual. 26: 1002-
1006. 

Nowak, P., R. Shepard, and F. Madison. 1998. Farmers and manure management: A critical 
analysis. In: Animal Waste Utilization: Effective use of Manure as a Soil Resource. J.L. Hatfield 
and B.A. Stewart (Ed). Ann Arbor Press, Chelsea, Michigan. Pp 1-32. 

Nyakatawa, E.Z., K.C. Reddy, and K.R. Sistani. 2001. Tillage, cover cropping, and poultry litter 
effects on selected soil chemical properties. Soil & Tillage Research 58:69-79. 

Odell, J.D., M.E. Essington, and D.D. Howard. 1995. Surface application of liquid swine manure - 
chemical variability. Commun. Soil Sci. Plant Anal. 26:19-20. 



Animal Agriculture and the Environment 313 

Omenik, J.M. 1977. Nonpoint source stream nutrient level relationships: A nationwide study. EPA-
600/3-77-105. 150 pp. 

Osmond, D.L., J. Spooner, and D.L. Line. 1995. Systems of best management practices for 
controlling agricultural nonpoint source pollution. RCWP Technology Tranfers Fact Sheet No. 6. 
North Carolina Cooperative Extension Service, N.C. State University, Raleigh, NC. 

Parsons, R., J. Pease, and D. Kenyon. 1998. Economic and environmental impacts of nutrient 
management on dairy and dairy/poultry farms. Virginia Cooperative Extension Bulletin 448-031. 
Department of Agricultural and Applied Economics, Virginia Tech University. 

Patterson, P.H., E.S. Lorenz, W.D. Weaver, and J.H. Schwartz. 1998. Litter production and nutrients 
from commercial broiler chickens. J. Appl. Poultry Res 7:247-252. 

Paul, J.W. and E.G. Beauchamp. 1989. Effect of carbon constituents in manure on denitrification in 
soil. Canadian Journal of Soil Science 69:49-61. 

Pell, A.N. 1997. Manure and microbes: Public and animal health problem? J. Dairy Sci 80:2673-
2681. 

Peterson, E.W., R.K. Davis, and H.A. Orndorff. 2000. 17 β-estradiol as an indicator of animal 
waste contamination in mantled karst aquifers. J. Environ. Qual. 29:826-834. 

Piccolo, A., P. Conte, I. Scheunert, and M. Paci. 1998. Atrazine interactions with soil humic 
substances of different molecular structure. J. Environ. Qual. 27(6):1324-1333. 

Pimpini, F., L. Giardini, M. Borin, and G. Giaquinto. 1992. Effects of poultry manure and mineral 
fertilizers on the quality of crops. J Agric Sci 118:215-221. 

Porter, G.A., G.B. Opena, W.B. Bradbury, J.C. Mc Burnie, and J.A. Sisson. 1999. Soil management 
and supplemental irrigation effects on potato: I. soil properties, tuber yield and quality. 
Agronomy Journal 91(3):416-425. 

Pote, D.H., T.C. Daniel, A.N. Sharpley, P.A. Moore, Jr., D.R. Edwards, and D.J. Nichols. 1996. 
Relating extractable soil phosphorus to phosphorus losses in runoff. Soil Sci. Soc. Am. J. 60: 855-
859. 

Qafoku, O.S., M.L. Cabrera, W.R. Windham, and N.S. Hill. 2001. Rapid methods to determine 
mineralizable nitrogen in broiler litter. J. Environ. Qual. 30:217-221. 

Reeves, J.B., and J.A.S. Van Kessel. 1999. Investigations into near infrared analysis as an 
alternative to traditional procedures in manure nitrogen and carbon mineralization studies. 
Journal of Near Infrared Spectroscopy 7:195-212. 

Richards, J.E. and C.P. Webster. 1999. Denitrification in the subsoil of the Broadbalk continuous 
wheat experiment. Soil Biology and Biochemistry 31:747-755. 

Rieck-Hinz, A.M., G.A. Miller, and J.W. Schafer. 1996. Nutrient content of dairy manure from three 
handling systems. J. Prod. Agric. 9:82-86. 

Roberts, R.J. and C.J. Clanton. 2000. Surface seal hydraulic conductivity as affected by livestock 
manure application. Trans. ASAE 43(3): 603-613. 

Rochette, P., E. van Bochove, D. Prévost, D.A. Angers, D. Côté, and N. Bertrand. 2000. Soil carbon 
and nitrogen dynamics following application of pig slurry for the 19th consecutive year. II. 
Nitrous oxide fluxes and mineral nitrogen. Soil Sci. Soc. Amer. J. 64:1396-1403. 

Rynk, R. 1994. Status of dairy manure composting in North America. Compost Science & 
Utilization 2(1):20-26. 

Safley, L.M., Jr., P.W. Westerman, J.C. Barker, L.D. King, and D.T. Bowman. 1986. Slurry dairy 
manure as a corn nutrient source. Agric Wastes 18:123-136. 

Sauer, T.J., T.C. Daniel, P.A. Moore, Jr., K.P. Coffey, D.J. Nichols, and C.P. West. 1999. Poultry 
litter and grazing animal effects on runoff water quality. J. Environ. Qual. 28(3):860-865. 

Sawyer, J.E. and R.G. Hoeft. 1992. Corn production associated with liquid beef manure application 
methods. J. Prod. Agric. 4:335-344. 

Schønning, P., B.T. Christensen, and B. Carstensen. 1994. Physical and chemical properties of a 
sandy loam receiving animal manure, mineral fertilizer or no fertilizer for 90 years. European 
Journal of Soil Science 45:245-268. 

Serna., M.D. and F. Pomares. 1991. Comparison of biological and chemical methods to predict 
nitrogen mineralization in animal wastes. Biol. Fertil. Soils 12:89-94. 

Sharpe, R.R. and L.A. Harper. 1997. Ammonium and nitrous oxide emissions from sprinkler 
irrigation applications to swine effluent. J. Environ. Qual. 26:1703-1706. 



314 Land Application of Manure for Beneficial Reuse 

Sharpley, A. and M. Meyer. 1994. Minimizing agricultural nonpoint-source impacts: A symposium 
overview. J. Environ. Qual 23(1):1-3. 

Sharpley, A. and B. Moyer. 2000. Phosphorus forms in manure and compost and their release 
during simulated rainfall. J. Environ. Qual. 29:1462-1469. 

Sharpley, A. and R. Sheffield. 2000. Phosphorus management. Lesson 8. USDA/EPA national 
curriculum project. http://www.mwpshq.org/curriculum_project/currproj.htm. 

Sharpley, A.N., S.J. Smith, and R. Bain. 1993. Effect of poultry litter application on the nitrogen 
and phosphorus content of Oklahoma soils. Soil Sci. Soc. Am. J. 57:1131-1137. 

Shore, L.S., D.L. Correl, and P.K. Chakraborty. 1995. Relationship of fertilization with chicken 
manure and concentrations of estrogens in small streams. In K. Steele (Ed). Animal waste and 
the land-water interface. Lewis Publishers. Boca Raton, FL. Pp.155-162. 

Sims, J.T. 1986. Nitrogen transformations in a broiler manure amended soil: Temperature and 
moisture effects. J. Environ. Qual. 15:59-63. 

Sims, J.T., R.R. Simard, and B.C. Joern. 1998. Phosphorus loss in agricultural drainage: Historical 
perspective and current research. J. Environ. Qual. 27:277-293. 

Sommer, S.G., V. Kjellerup, and O. Kristjansen. 1992. Determination of total ammonium nitrogen 
in pig and cattle slurry: Sample preparation and analysis. Acta Agric. Scand. Sect. B, Soil and 
Plant Sci. 42:146-151. 

Sommer, S.G., J.E. Olesen, and B.T. Christensen. 1991. Effects of temperature, wind speed and air 
humidity on ammonia volatilization from surface applied cattle slurry. J. Agric. Sci. (Cambridge) 
117:91-100. 

Sommerfeldt, T.G. and C. Chang. 1985. Changes in soil properties under annual applications of 
feedlot manure and different tillage practices. Soil Sci. Soc. Am. J. 49(4):983-987. 

Sommerfeldt, T.G., C. Chang, and T. Entz. 1988. Long-term annual manure applications increase 
soil organic matter and nitrogen, and decrease carbon to nitrogen ratio. Soil Sci. Soc. Am. J 
52:1668-1672. 

Sørensen, P. and E.S. Jensen. 1995. Mineralization of carbon and nitrogen from fresh and 
anaerobically stored sheep manure in soils of different texture. Biology and Fertility of Soils 
19:29-35. 

Stanford, G. 1982. Assessment of soil nitrogen availability. In F.J. Stevenson (Ed.). Nitrogen Agric 
Soils Agron 22:651-688. 

Stephenson, G.R. and L.V. Street. 1978. Bacterial variations in streams from a southwest Idaho 
rangeland watershed. J. Environ. Qual. 7:150-157. 

Stewart, B.A. 1991. Effect of animal manure on soil physical and chemical properties. In: J. Blake, 
J. Donald and W. Magette (Eds). National Livestock, Poultry and Aquaculture Waste 
Management. Proceedings of the National Workshop; July 29-31, 1991: Kansas City, MO. ASAE 
St. Joseph, MI. 

Strauch, D. and G. Ballarini, 1994. Hygienic aspects of the production and agricultural use of 
animal wastes. J. Vet. Med. B. 41:176-228. 

Sweeten, J.M. 1992. Livestock and poultry waste management: A national overview. National 
Livestock, Poultry and Aquaculture Waste Management: Proceedings of the National Workshop. 
ASAE, St. Joseph, Michigan. Pp. 4-14. 

Sweeten, J.M. and A.C. Mathers. 1985. Improving soils with livestock manure. J. Soil and Water 
Cons. 40(2):206-210. 

Tchobanoglous, G. and E. Schroeder. 1987. Water Quality. Addison-Wesley Publishing Co., 
Reading Massachusetts. 

Thelin, R. and G.F. Gifford. 1983. Fecal coliform release patterns from fecal material of cattle. J. 
Environ. Qual. 12:57-63. 

Thompson, R.B., D. Morse, K.A. Kelling, and L.E. Lanyon. 1997. Computer programs that 
calculate manure application rates. J. Prod. Agric. 10:58-69. 

Thompson, R.B., J.C. Ryden, and D.R. Lockyer. 1987. Fate of nitrogen in cattle slurry following 
surface application or injection to grassland. J. Soil Sci. 38:689-700. 

Tiarks, A.E., A.P. Mazurak, and L. Chesnin. 1974. Physical and chemical properties of soil 
associated with heavy applications of manure from cattle feedlots. Soil Sci. Soc. Am. Proc. 
38(5):826-830. 



Animal Agriculture and the Environment 315 

Tiedmann, A.R. D.A. Higgens, T.M. Quigley, H.R. Sanderson, and C.C. Bohn. 1988. Bacterial 
water quality responses to four grazing strategies – comparisons with Oregon standards. J. 
Environ. Qual. 17:492-498. 

Tim, U.S. and R. Jolly. 1994. Evaluating agricultural nonpoint source pollution using integrated 
geographical information systems and hydrologic/water quality models. . J. Environ. Qual. 
23(1):25-35. 

Tisdale, S.L., W.L. Nelson, J.D. Beaton, and J.L. Havlin. 1993. Soil Fertility and Fertilizers. 5th ed. 
Prentice Hall, NJ. 

USDA, 1998. Guide to minimize microbial food safety hazards for fresh fruits and vegetables. 
Food Safety Initiative Staff, HFS-32, U.S. Food and Drug Administration Center for Food Safety 
and Applied Nutrition. Washington, DC 202204. http://www.foodsafety.gov/~dms/prodguid.html. 

USDA, 2000. Comprehensive nutrient management planning technical guidance. A publication of 
the United States Department of Agriculture Natural Resources Conservation Service, December 
1, 2000. 

USDA-EPA, 1999. Unified national strategy for animal feeding operations. 
U.S. EPA, 1998. National Water Quality Inventory:1998 Report to Congress. United States 

Environmental Protection Agency. http://www.epa.gov/305b/98report/index.html. 
U.S. EPA, 2001a. National Pollutant Discharge Elimination System Permit Regulation and Effluent 

Limitations Guidelines and Standards for Concentrated Animal Feeding Operations. United 
States Environmental Protection Agency. http://www.epa.gov/npdes/pubs/cafo.pdf. 

U.S. EPA, 2001b. Permit nutrient management plans (PNPs) versus comprehensive nutrient 
management plans (CNMPs). United States Environmental Protection Agency Office of 
Wastewater Management. http://cfpub1.epa.gov/npdes/afo/nutrient.cfm. 

VanDyke, L.S., J.W. Pease, D.J. Bosch and J.C. Baker. 1999. Nutrient management planning on 
four Virginia livestock farms: Impacts on net income and nutrient losses. J. Soil Water Cons 
54(2):499-505. 

Van Kessel, J.S. and J.B. Reeves III. 2000. On-farm quick tests for estimating nitrogen in dairy 
manure. J. Dairy Sci. 83:1837-1844. 

Vervoort, R.W., D.E. Radcliffe, M.L. Cabrera, and M. Latimore, Jr. 1998. Field-scale nitrogen and 
phosphorus losses from hayfields receiving fresh and composted broiler litter. J. Environ. Qual. 
2&:1246-1254. 

Vitosh, M.L., J.F. Davis, and B.D. Knezek. 1973. Long-term effects of manure, fertilizer, and plow 
depth on chemical properties of soils and nutrient movement in a monoculture corn system. J. 
Environ. Qual. 2(2):296-299. 

Vitosh, M.L., M.L. Person, and E.D. Purkhiser. 1988. Livestock manure management for efficient 
crop production and water quality preservation. Michigan State University Extension Bulletin 
WQ 12. 

Vories, E.D., T.A. Costello and R.E. Glover. 1999. Impact of poultry litter on runoff from cotton 
fields. ASAE Paper No. 99-2196. 

Wahid, A., S. Akhtar, I. Ali, and E. Rasul. 1998. Amelioration of saline-sodic soils with organic 
matter and their use for wheat growth. Comm. Soil Sci. Plant Anal. 29(15-16):2307-2318. 

Wani, S.P., W.B. McGill, K.L. Haugen-Kozyra, J.A. Robertson, J.J. Thurston. 1994. Improved soil 
quality and barley yields with favabeans, manure, forages and crop rotation on a Gray Luvisol. 
Can. J. Soil Sci. 74:75-84. 

Webster, C.P. and K.W.T. Goulding. 1989. Influence of soil carbon content on denitrification from 
fallow land during autumn. Journal of the Science of Food and Agriculture 49:131-142. 

Westerman, P.W., T.L. Donnelly, and M.R. Overcash. 1983. Erosion of soil and poultry manure: A 
laboratory study. Trans ASAE 26(4):1070-1078, 1084. 

Wong, M.T.E., S. Nortcliff, and R.S. Swift. 1998. Method for determining the acid ameliorating 
capacity of plant residue, urban waste compost, farmyard manure and peat applied to tropical 
soils. Comm. Soil Sci. Plant Anal. 29 (19-20):2927-2937. 

Wood, B.H., C.W. Wood, K.H. Yoo, K.S. Yoon, and D.P. Delany. 1999. Seasonal surface runoff 
losses of nutrients and metals from soils fertilized with broiler litter and commercial fertilizer. J. 
Environ. Qual. 28(4):1210-1218. 



316 Land Application of Manure for Beneficial Reuse 

Wood, C.W. and B.M. Hall. 1991. Impact of drying method on broiler litter analyses. Commun. Soil 
Sci. Plant Anal. 22:1677-1688. 

Xie, R.J. and A.F. MacKenzie. 1986. Urea and manure effects on soil nitrogen and corn dry matter 
yields. Soil Sci. Soc. Am. J. 50:1504-1509. 

Zhang, H., D. Smeal, and J. Tomko. 1998. Nitrogen fertilization value of feedlot manure for 
irrigated corn production. J. Plant Nutrition, 21:287-296. 

 
 


	Land Application of Manure for Beneficial Reuse
	
	Authors

	Microsoft Word - AAE01 fte Peg.doc

	Text6:     This article is a U.S. government work, and is not subject to copyright in the United States.


