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Linear Empirical Bayes Estimation of Survival 
Probabilities with Partial Data 

Mostafa Mashayekhi* 

Abstractt 

In this paper we consider linear empirical Bayes estimation of survival prob­
abilities with partial data from right-censored and possibly left-truncated ob­
servations. Such data are produced by studies in which the exact times of 
death are not recorded and the length of time that each subject may be under 
observation cannot exceed one unit of time. We obtain asymptotically optimal 
linear empirical Bayes estimators, with respect to the squared error loss func­
tion, under the assumption that the probability of death under observation in 
a unit time interval is proportional to the length of observation. This assump­
tion is sometimes implied by Balducci's assumption and sometimes is implied 
by the assumption of uniform distribution of deaths. 
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1 Introduction 

Consider the problem of estimating the mortality rate qx or Px with 
partial data from right-censored and possibly left-truncated observa­
tions1 from a study Of n individuals. Suppose the i th individual comes 
under observation at age x + Yi and is scheduled to be under observa­
tion for Ui years until age x + Si, where Ui = Si - Yi and 0 ::; Yi < Si ::; l. 
The data are partial in the sense that the exact times of death are not 
recorded. For each i, the data only show whether the ith individual did 
or did not die under observation. Here the observable random variables 
are 8 1, ... ,8n where 

8i = {I if the i th person dies under observation; and 
o otherwise. 

Thus a typical record of data would contain i, x, Yi, Ui, and 8i. 

Because the times of death are not known, one cannot find the 
product-limit estimator with these data. Even when the exact times of 
death are known, the product limit estimator based on left-truncated 
observations (Klein and Moeschberger, 1997, pp. 114-115) can produce 
an unreasonable estimate of Px. 

The maximum likelihood method does not provide a compelling so­
lution in this case either. The maximum likelihood method requires 
a distributional assumption that makes it possible to write u;qx+r; in 
terms of qx. The three well-known assumptions that actuaries use for 
0::; t ::; 1 are: (i) the Balducci assumption, i.e., I-tqxH = (1 - t)qx; (ii) 
the assumption of uniform distribution of deaths, Le., tqx = tqx; and 
(iii) the constant force of mortality, Le., tqx = 1 - (1 - qx)t. Under each 
of these assumptions, except for trivial cases, the likelihood equation 
dL / dqx = 0, where 

n 
L = n (1 - u;qx+r;) 1-0; (u;qX+rJO; 

i=1 

does not have a closed form solution unless n is small. When there is no 
closed form solution, one may find a solution by numerical methods. As 
the likelihood equation dL/dqx = 0 may have multiple roots, it is diffi­
cult to determine, however, if the solution obtained by numerical meth­
ods is the value of the root that has optimal large sample properties. 

1 An observation is said to be right-censored if the individual being observed is alive 
when the study ends. An observation is said to be left-truncated if the individual entered 
the study after age x. 
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Because maximum likelihood estimators are justified mainly by their 
desired large sample properties, the maximum likelihood approach in 
this case may not be appealing. 

Another method of estimation is the method of moments. This 
method is one of the oldest statistical estimation methods. One of its 
biggest advantages over other statistical estimation methods is that it 
produces easy-to-compute estimates. One of its disadvantages is that 
it may produce an estimate that is outside the possible range of the 
parameter. Another disadvantage of the method of moments is that it 
may produce multiple estimators for the same parameter. 

To demonstrate this, consider, for example, estimation of qx with 
partial data as described above under the assumption that 

(1) 

for each i. The assumed equality in equation (1) is the exact form 
of the approximation given in equation (6.3) of London (1988). Note 
that equation (1) cannot be satisfied without restrictions on ri and 
Ui. Specifically, equation (1) without restrictions on ri and Ui gives 
o.sqx = o.sqx+o.s = 0.5qx, which, for qx > 0, contradicts the identity 

The equality in equation (1) is practically plausible in three cases 
only: (i) with Si = 1 and ri = 0 for all i in which case the equality is 
trivially true; (H) under Balducci's assumption with Si = 1 for all i; and 
(Hi) under the uniform distribution of deaths assumption with Yi = 0 
for all i. Under these three cases London (1988) (equations (6.7), (6.10), 
(6.13)) proposes the method of moments estimator given by 

(2) 

which is obtained by setting the random variable L~l Di equal to its 
expected value and solving for qx. Another observable random variable 
that one can equate to its expected value to yield a method of moments 
estimator is L~l Ui1Di, which has expected value equal to nqx. This 
method of moments estimator is given by 
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(3) 

Note that ilia) and il;:) are linear estimators of qx. In general let 
WI,· .. ,Wn be non-negative weights such that 2:~1 Wi = 1. Because 

the method of moments estimator is given by 

(4) 

Clearly ilia) and il;:) are special cases of iliW ). 

Because iliW ) is linear in the 6i/UiS, tt is natural to ask if there are 
better linear estimators than ilia) and il;:). From a Bayesian perspective, 
one can achieve a better result using the linear Bayes estimator, which 
is presented in Section 2. As will be seen, the linear Bayes estimator 
depends on the first two moments of the prior distribution. When these 
moments are known the linear Bayes estimator is available. If these 
two moments are unknown, however, they must be estimated and one 
can use the linear empirical Bayes estimator described in Section 3, 
which also contains a discussion of the asymptotic optimality of linear 
empirical Bayes estimators of qx. 

2 The Linear Bayes Estimator 

In a Bayes estimation problem, one is faced with a data set consisting 
of n observable k-dimensional random vectors (k can be 1), Xl, ... ,Xn , 

and an unobservable random variable or vector e. Given e, Xl, ... ,Xn 
are mutually independent. 

The loss function L(t, e) specifies the loss of estimating (predict­
ing) e by t = t(XI, ... ,Xn ). Bayesians are interested in estimators that 
minimize the expected loss in some sense. 
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Definition 1. An estimator 8 = 8(XI,'" ,Xn ) is called a Bayes estimator 
if 

where lE [] denotes the expectation with respect to the joint distribution 
of all of the random variables involved. 

In other words, a Bayes estimator for a given loss function is an 
estimator that minimizes the expected loss over all estimators. As the 
basic method of moments estimators are linear (see equation (4)), we 
will consider linear Bayes estimators. 

Definition 2. An estimator 8* is called linear Bayes if 

n 
for t a linear function of the data, i.e., t = ao + L: aiXi. 

i=l 

Observe that for the squared error loss function given by L(8, 0) = 

(8-0)2, we have L(I-e, 1-0) = (8-0)2 = L(8, 0). Hence an estimator 
8 is a Bayes (linear Bayes) estimator of 0 if, and only if, (1- 8) is a Bayes 
(linear Bayes) estimator of (1 - 8). Therefore, the linear Bayes (linear 
empirical Bayes) estimator of Px is automatically found when we find 
the linear Bayes (linear empirical Bayes) estimator of qx. 

The following assumption gives a formal description of the model 
for our estimation problem. 

Assumption 1. Let 0 = qx and Xi = 6i/Ui, then 0, Xl, ... ,Xn are 
random variables such that 

1.1 lP'[0:$ 0:$ 1] = 1, lP'[0 = 1] < 1, andlP' [0 = 0] < 1; 

1.2 Given 0, the random variables Xl, ... ,Xn are uncorrelated; and 

1.3 UiXi is a Bernoulli random variable taking the values 0 or 1 such 
that 

where 0 < Ui :$ 1 is a known constant for i = 1, ... ,n. 
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Assumption 1.3 corresponds to the assumed equality given in equa­
tion (1). Under Assumption 1, lE [XiI8] = 8, and Var [XiI8] = Ui8(1 -

Ui 8 )/Ur 
Let J1 = lE [8] and (J"2 = Var [8]. Then we have lE [Xd = J1 and 

Var [Xd = lE [Var [XiI8]] + Var [lE [XiI8]] = Ui1J1- J1 2. Therefore 

(5) 

and, for i f. j, 

lE [XiXj] = lE [lE [XiXjI8]] = lE [82
] = J12 + (J"2. (6) 

The following theorem gives the linear Bayes estimator of 8, Le., of 
qx. Its proof is given in the appendix. 

Theorem 1. Under Assumption 1 the linear Bayes estimator e * of 8 un­
der the squared error loss is given by 

where 

n 

e* = q~ = boJ1 + L biXi 
i=l 

lXi = [ui1J1- (J12 + (J"2)]-1, 

n 
bi = (1 + (J"2 L lXi)-1(J"2lXi' 

i=l 

n 
for i = 1, ... ,n, and bo = 1 - I bi. 

i= 1 

(7) 

(8) 

(9) 

The next question is the determination of J1 and (J"2. To a purely 
Bayesian actuary, the prior density of 8, rr(8), is completely known; 
hence, J1 and (J"2 are known so that e* can be determined easily from 
equation (7). An actuary who is not a pure Bayesian, however, would 
not have an explicitly known prior distribution. In this case the actuary 
may use either the uniform distribution as a non-informative prior for 
8 or use the empirical Bayes approach to estimate J1, (J"2, lXi, and bi 
in equation (7). The empirical Bayes approach is described in the next 
section. 

Examples of priors for 8 (Le., for qx) are: 
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• Tr(e) = 1 for 0 < e < 1. This is a non-informative prior because it 
reflects the actuary's complete ignorance of any prior information 
on qx. This is an extreme case. 

• Suppose a mortality study is done every three years on a block of 
policies. In the year 2000 study the actuary feels that mortality 
has dropped between, say, five and 25 percent from its previous 
level of q1199

7) in 1997. In the absence of further information the 
actuary's prior would be 

for 0.75q11997
) < e < 0.95Q11997

) 

otherwise. 

The model described in Assumption 1 is similar to the credibility 
theory model of Biihlmann (1967); it reduces to the Biihlmann (1967) 
model when Ui = 1 for i = 1, 2, ... ,n. 

3 Linear Empirical Bayes Estimators 

In the empirical Bayes approach pioneered by Robbins (1955), one 
is faced with m independent copies of the same decision problem. In 
the ith problem there is a random pair (Xi, ei) where Xi is observable 
and ei is not observable. Conditional on e i = e, Xi has a specified 
density f (', e) for every i. In some of the variations of the empirical 
Bayes estimation that were later developed (e.g., Biihlmann and Straub 
(1970) and its generalization in Sundt (1983), or Ghosh and Meeden 
(1986» in the ith problem there is an observable random vector Xi = 

(Xil, ... ,Xini) where niS are not necessarily equal. There is a non­
negative loss function L(t, e). The unobservable eiS are assumed to be 
LLd. with unknown common distribution function G(·). 

To put this in the context of a mortality study, suppose there are m 
similar portfolios of insured lives, and the ith portfolio consists of ni 

lives. The ph individual in the ith portfolio comes under observation at 
age x + Yij and is scheduled to be under observation for Uij years until 
age x + Sij, where Uij = Sij - rij and 0 ::; rij < Sij ::; 1. For each j, the 
data only show whether the ph individual in the ith portfolio did or did 
not die under observation. Here the observable random variables are 
Oil, ... ,Oini where 
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(k = { I if the ph person in i th portfolio dies under observation; and 
J 0 otherwise. 

Each individual in the i th portfolio is characterized by an unobservable 
random mortality rate e i = q;J) and the eis are values of an unobserv­
able random sample from the same distribution. The data consist of 
the available observations as shown in Table 1. The random variables 
Xi} are defined by 

for j = 1,2, ... ,ni and i = 1,2, ... ,m. The problem is the simultane­
ous estimation of the eis. 

Table 1 
illustration of the Empirical Bayes Problem 

Mortality Outcome Death or Survival 
Portfolio Rate Observations Period 

1 el 8 n 8 ln1 Un Uln1 

i e i 8il 8in; Uil Uin; 

m em 8m l 8 mnm Uml u mnm 

To avoid needless complications, Robbins assumes the existence of 
a Bayes decision function te such that 

Robbins shows that when G is not known (and, hence, te is not directly 
available) for each problem, one may use asymptotically optimal deci­
sion rules that use the data from all of the m decision problems. These 
decision rules asymptotically give us the same risk that we would have 
with the knowledge of te. According to Robbins' definition, a sequence 
of decision rules tm ( .) = tm (Xl, ... ,Xm ; .) is asymptotically optimal 
relative to G as m - 00 if 
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JE [L(tm(Xm ), 8m )] -JE [L(tc(Xm ), 8m )] ~ 0 as m~ 00, 

where JE [] denotes the expectation over all random variables. Though 
tm (.) is a decision function and not an estimator, its value tm (Xm ) = 

tm(Xl, ... ,Xm;Xm) is an empirical Bayes estimator for the m th estima­
tion problem, and, in the context of this paper, its value tm (Xk) = 

tm(Xl, ... ,Xm;Xk) is the empirical Bayes estimator for the kth problem, 
k = 1,2, ... ,m.2 

In the linear empirical Bayes estimation problem considered by Rob­
bins (1983), the minimizing rule is the linear Bayes rule in the sense that 
it minimizes the Bayes risk for the ith problem within the class of all 
estimators of the form aXi + b. Thus, tm is asymptotically optimal if 
the excess of risk of using tm over the risk of using the linear Bayes 
rule converges to zero as the number of problems m increases. 

Many variations of the linear empirical Bayes approach have been 
used by statisticians; see, for example, Morris (1983) for a list of some 
remarkable examples. These variations usually occur in cases where 
there are many similar independent estimation problems and the num­
ber of observations in each problem is small. In such cases one can do 
significantly better by borrowing strength from data from other prob­
lems. The strength is obtained through estimation of the prior distri­
bution (in unrestricted empirical Bayes) or estimation of the necessary 
moments of the prior distribution (in the case of linear empirical Bayes) 
by using similar data. A notable example of linear Bayes (linear empir­
ical Bayes approach) well known to actuaries is the Buhlmann (1967) 
approach in credibility theory. 

The variation that we are conSidering is slightly different from Rob­
bins' empirical Bayes or linear empirical Bayes in the sense that our m 
problems are not identical when the sample sizes are different or when 
the durations of time that different subjects are under observation are 

2It must be emphasized that although tm (Xkl = tm (Xl, ... ,Xm;Xk) is an estimator 
for the klh problem, k = 1,2, ... ,m in the context of this paper, it is not true for what 
Robbins does. Robbins (1955) uses so-called delete bootstrap rules because he has posed 
his problem in a non-parametric unrestricted empirical Bayes context. Non-delete boot­
strap rules, although desirable, are difficult to use in the non-parametric unrestricted 
empirical Bayes context. In this paper, however, we consider a linear empirical Bayes 
estimation problem, which can be solved through the estimation of only the first two 
moments of the prior distribution. This has allowed us use the more desirable non­
delete rules. Specifically, we have used all of the observations to find estimators for the 
first two moments of the prior distribution and hence the shape of the decision rule. 
We then have used observations from each problem to find the linear empirical Bayes 
estimator for that problem. This is not what RobbinS (1955) has done. He conSiders 
empirical Bayes estimators for the m th problem only. 
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not equal. Still, we may define the linear empirical Bayes estimators 
erB, ••• , e~ to be asymptotically optimal if, with e7 denoting the linear 
Bayes estimator for the i th problem, for each i = 1, ... ,m we have 

IE [(erB - Bi)2] -IE [(e7 - Bi)2] - 0 as m- 00. 

The model we are conSidering is formalized in the following assump­
tion. 

Assumption 2. (Xll, ... ,Xlnjl BI>, ... , (Xml. ... ,Xmnm , Bm) are in­
dependent random vectors such that 

2.1 Bl, ... , Bm are identically distributed random variables with 
lP'[0:::.; Bi :::.; 1] = 1, lP'[Bi = 1] < 1, andlP'[Bi = 0] < 1; 

2.2 Conditional on Bi, the Xil, ... ,Xin; are uncorrelated and; 

2.3 UijXij is Bernoulli with parameter UijBi where 0 < U* :::.; uij :::.; 1 
are known numbers; and 

2.4 There exists a K such that 2 :::.; ni :::.; K < 00 for all i. 

Assumption 2 is similar to BOblmannand Straub (1970). In the Biihlmann 
and Straub model (Bl,Xll, ... ,Xlnj ), ... , (Bm,Xml, ... ,Xmnm ) are m 
independent random vectors such that the BiS are unobservable and 
Xij is observable for i = 1, ... , m and j = 1, ... , ni. There are functions 
PI and u such that 

and 

where the PirS are known constants. In Biihlmann-Straub the niS are 
equal. In later variations, however, niS are not necessarily equal. Ob­
serve that when UijS are all equal our model satisfies the above as­
sumptions by choosing pdB) = B, and u(B) = u- l B(1 - uB), and 
Pij = 1, with U being the common value of the UijS. Also note that 
in the Biihlmann (1967) model the conditional distributions are not 
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completely specified. In our model the conditional distributions are 
completely specified to be Bernoulli. 

Assumption 2 is used throughout the rest of this paper and there­
fore we will not mention it in the statement of every lemma or theorem. 
In the remainder of this paper all incompletely described limits are as 
m ~ 00 through positive integers. 

Let J.l and (T2 denote the mean and variance of (:h, respectively. Ob­
serve that under Assumption 2 we have 

Similar to equations (5) and (6), we have 

and for k -1= j 

(10) 

Let 

ni m 

Xi. = I WijXij, N = I ni, and 
j=l i=l 

1 
Yi = (ni) I XijXik, 

2 l,,;j<k,,;ni 

where the WijS are non-negative weights such that L.j~l Wij = 1. We 
propose using the following estimates for J.l and (T2 

p = X •• (11) 

and 

(12) 

respectively, where 

1 m 
y=-IYi. 

m i=l 
(13) 
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The linear empirical Bayes estimator of ei, based on these estimators 
of jJ and (52 is given by 

where 

and 

ni 

efB = qJ:l = biOP + I bijXij 
j=l 

&'j = { u;} {l- ({l2+6"2 l 

° 
ni 

if ui/- (P 2 + (52) > ° 
otherwise 

b~ (1 ~2" ~ )-1~2~ ij = + (5 L.. (Xij (5 (Xij, 
j=l 

for i = 1, ... ,m and j = 1, ... ,ni, and 

ni 

biO = 1 - I bij. 
j=l 

(14) 

(15) 

(16) 

(17) 

It can be proved (see Theorem 2 in the appendix) that the efBs are 
asymptotically optimal linear empirical Bayes estimators in the sense 
that for every i = 1, ... ,m 

(18) 

where et is the linear Bayes estimator of ei. 
If we choose (5 = 0, so that the class of prior distributions under 

consideration reduces to the class of point priors (the traditional fre­
quentist approach) then with m = 1, the linear empirical Bayes estima­
tors in equation (14) will be the same as the estimator qiWl in equation 
(4). 

A natural question to ask now is how do we choose the WijS? Ob­
serve that according to Theorem 2 every choice of WijS provides an 
asymptotically optimal estimator. However a smaller variance of X •• 
means a better speed of convergence. Because the variance of x .. is 
minimized when variance of each Xi. is minimized and 
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ni ( 2 2) '" 2 /1-Uij(/1 +(J") 2 
= L.W.. +(J" 

~J U" ' 
j-I . 0 

we need to minimize 

subject to the constraint 2.:.;~I Wij = 1. Writing the Lagrangian 

and setting the partial derivatives equal to zero yields the minimizer 

where 

Uij 
Cij = ----",:,----=­

/1 - Uij (/12 + (J"2) . 

(19) 

(20) 

As wt depends on the unknown parameters, it is not available. 
Note, however, that /1 2 + (J"2 = IE [e 2 ]. Therefore in cases when e2 is so 
small that its expectation becomes negligible we have 

The above argument also shows that the choice of weights in the mo­
ment estimator of equation (2) is a reasonable choice when qx is small. 
One can also use the Chebychev's inequality, similar to the proof of 
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consistency of X •• , to show that 41a
) of equation (2) converges in prob­

ability to qx as n- 00. Thus when there is a large homogeneous sam­
ple available for estimation of qx there is not much to gain by using 
the linear empirical Bayes method. The problem, however, is that it is 
not always feasible to have a large sample of homogeneous subjects. 
When there is a large sample of subjects that can be broken into many 
homogenous groups, one can show by using a variation of the weak 
law of large numbers (Hannan and Fabian (1985), Theorem 2.3.9) that 
using the estimator of equation (2) will provide a weighted average of 
the failure probabilities of the homogenous groups that are in the large 
sample. An actuary who uses such a weighted average in the determina­
tion of premiums can expect to face some anti-selection by those who 
feel the premium is unfair to them. Breaking the large sample into many 
homogeneous groups on the other hand may leave a small number of 
subjects in each homogeneous group. In such a case one can gain by 
using a linear empirical Bayes estimator instead of using the moment 
estimator of equation (2) for each homogenous sample separately. 

4 Concluding Remarks 

In this paper we obtain an asymptotically optimal linear empirical 
Bayes estimator of 8i, with the yardstick of performance being the risk 
of the linear Bayes estimator. The main reason for using linear empir­
ical Bayes estimators instead of the empirical Bayes estimators is that 
linear empirical Bayes estimators exist under milder conditions and are 
usually much easier to compute. When it is possible to reduce the risk 
of an asymptotically optimal linear Bayes estimator with a simple ad­
justment, one should not hesitate to do so. 

It is easy to see that by construction we have efB :2:: 0. It is possible, 
however, that the value of e[B could become more than 1. Let er be 
equalto efB when efB ::; 1 and let er = 1 otherwise. The 8iS are known 
to be in [0,1]; therefore, we have lE [(e7* - 8i)2] ::; lE [(efB - 8i)2] be­

cause ler - 8i l ::; le[B - 81. 
We started this paper by considering the survival probabilities as 

related to life insurance. The method of estimation that we present, 
however, may find more applications in the casualty insurance. Con­
sider, for example, the case when an insurer who has insured a large 
number N of drivers is interested in assessing the risk due to severe 
accidents that cannot happen to a person more than once. Examples 
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of such accidents include fatal accidents and accidents resulting in a 
severe disability so that the person will not be able to drive again. 

Suppose that the insurer is able to classify the N policy holders 
according to factors such as age, area, etc. into m homogeneous groups 
with ni drivers in the ith group for i = 1, ... ,m such that m is large 
and each ni is small. Also suppose that it is reasonable to assume the 
probability of an accident for the ph driver in the i th class during the 
policy period is equal to Uij (h where Uij is the duration of time the 
person is insured and ei is the probability of an accident by a typical 
member of the i th class in a unit interval of time. Let Bij denote the 
amount of loss the insurer will suffer if the ph driver in the ith class 
faces an accident. 

In this case because each ni is small and also because when the UijS 

are not equal the probabilities of accident during the policy period for 
different drivers are not equal, the Poisson distribution or the negative 
binomial distribution will not give a good approximation for the dis­
tribution of the number of accidents in each group. Therefore, using 
a compound Poisson model or compound negative binomial model for 
each class will not be accurate. In such a case, using the individual risk 
model (Bowers et aI., 1986) for each class can produce more accurate 
results. In order to use the individual risk model, however, the insurer 
would need an estimate of ei for i = 1, ... ,m. In such a case, the 
method presented in this paper can be used to obtain the desired esti­
mates when the insurer has experience data for these m classes from 
a past year. 

A very important question that every practitioner may ask before us­
ing any variations of the empirical Bayes approach is how large should 
m be? Because answering this question accurately requires knowledge 
of the rate of convergence of the risk of the empirical Bayes estimator, 
this question is often a good cause for further research when asymp­
totic results are obtained through application of convergence theorems 
such as the Lebesgue Dominated Convergence Theorem. For some re­
sults that provide a step for further research in this direction, see Hes­
selager (1992). 

Appendix: The Proofs 

In order to prove Theorem 1, we note the following: Suppose that 
(i) e, Xl, ... ,Xn are random variables with finite second moments (so 
that they all belong to the L2 space, and (ii) the loss function is the 
squared error loss function given by L(t, e) = (t - e)2). Then, from the 
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definition of the L2 projection (see, for example, Brockwell and Davis 
1987, Chapter 2), the Bayes estimator of e is the L2 projection of eon 
the set of all functions of Xl, ... ,Xn that belong to the L2 space. The 
linear Bayes estimator ofe is the L2 projection of e on the closed span 
of {l,XI, ... ,Xn }. 

Proof: Because lP' [0 =:; e =:; 1] = 1, lP' [e = 1] < 1, and lP' [e = 0] < 1, we 
have /J = IE [e] > IE [e 2 ] = /J2 + (J"2. Because 0 < Ui =:; 1, it follows 
that each Oli is well defined and greater than zero. We must show that 
e* is a version of the L2 projection of e on the closure of the linear 
span of {l,XI, ... ,Xn }. Thus it is enough to check that (e* ~ e) is L2 
perpendicular to 1 and to Xi for i = 1, ... ,n because, if IE [e* - e] = 0 

and IE [(e* - e)Xi] = 0, then for all ao, ... ,an 

so that e* - e is perpendicular to every element of the closed span of 
{l,XI, ... ,Xn }. We have 

n n 

IE [e* - e] = (1 - L bi)/J + L h/J - /J = O. 
i= I i= I 

So it remains to show that IE [(e* - e)Xi] = 0 for each i = 1, ... ,n. 
Because IE [eXd = IE [IE [eXile]] = IE [elE [Xile]] = IE [e 2 ] = /J2 + (J"2, it 
is enough to show that IE [e* Xi] = /J2 + (J"2. We have 

IE [e* Xi] = bW2 + L bjlE [XjXi] + bilE [xl] . (21) 
Hi 

Thus, from equations (5) and (6) and by definition of Oli, it easily follows 
that the right side of equation (21) is equal to 

and Theorem 1 is proved. o 
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Lemma 1. Let p be as defined in equation (11) and (;-2 be as defined in 
equation (12). Then 

(22) 

and 

(23) 

Proof: Because UijXij is Bernoulli and Uij ;::: U*, we have ° ::; Xij < 
U;l. This gives ° ::; Xi. ::; U;l and hence Var [Xi.] ::; IE [xl.] ::; U;2 
Therefore 

Var [X •• ] = (~ ni) -2 ~ n;var [Xi.] < m-1 Ku,' -". O. (24) 

Hence, equation (22) follows from equation (24), from Chebychev's 
inequality, and from the fact that IE [X •• ] = f.l. 

From equation (10), it follows that IE [Y] = f.l2 + (J"2. Because ° ::; 
Xij ::; U;l, we have Yi ::; U;2 and, hence, Var[(Yd ::; U;4. Therefore 

Var [Y]) ::; m-1u;4 .!... 0. By Chebychev's inequality it follows that 
- p 2 2 - P -2 P 2 
Y - f.l + (J" . Because X •• - f.l, it follows that X •• - f.l and, hence, 
Y - X; • .!... (J"2. Because (J"2 ;::: 0, continuity of the function 9 (x) 
max(O, x) gives equation (23). 0 

Lemma 2. Suppose p .!... f.l and (;-2 .!... (J"2. Let {Xij be given by equation 

(15) and OI.ij = [ui]f.l- (f.l2 + (J"2)]-1. Let bij be as in equation (16) and 

ni 

bij = (1 + (J"2 L OI.ij)-1(J"201.ij. 
j~l 

~ ni ~ ni 
Let bw = 1 - I bij and bw = 1 - I hj. Then for each i = 1, ... ,m 

j~l j~l 

and k = 0,1, ... ,ni, 

(25) 
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Proof: We prove the lemma by first showing that 

A P 0 
(Xij - (Xij - . 

Because 0 < Uii :::; U; 1 we have 

(26) 

( P. ( A 2 A 2) ) 1 P. - J.1 ( A 2 2) ( A 2 2) P 0 (27) -- J.1 +0- --=--- J.1 -J.1 - 0- -0- -+ • 

Uu (Xu Uu 

If am and a~ are two sequences such that am ;::: a > 0 and am -
a~ - 0, then eventually a~ ;::: a/2 > O. Hence, eventually 

Therefore, because (Xii;::: J.1- (J.12 + 0-2) > 0, equation (26) follows from 
equation (27) by the fact (Bilingsley, 1986, p. 274; Royden, 1968, p. 93) 
that a sequence am converges in probability to zero if and only if every 
subsequence of am has a further subsequence that converges to zero 
with probability l. 

ni 

Let E > 0 and i E {I, ... , m}. Observe that I I (Xij - (Xij I > E only 
j=l 

if for some j E {I, ... , nd, 

I A I -1 K- 1 (Xu - (Xij > n i E > E. 

Thus we have 

lP' [I I (Xij - I (Xij I > E] :::; lP' [J~_i1 I (Xij - (Xu I > E] (28) 
j=l j=l 

ni 

:::; LlP'[I(Xij-(Xijl >K-1EJ-0 (29) 
j=l 

by equation (26) and the assumption that ni :::; K. This means that 
ni ni p 
I (Xij - I (Xij - 0 and, hence, 
j=l j=l 

nj nj 

(1 + 0- 2 L (Xij) - (1 + 0- 2 L (Xu) .£. o. (30) 
j=l j=l 
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ni 
Because 1 + (T2 L (Xij :::: 1 it follows from equation (30) that 

j=l 

ni ni 

149 

(1 + 0- 2 2: eXij)-l - (1 + (T2 2: (Xij)-l .!.. O. (31) 
j=l j=l 

It follows from equations (26) and (31) that for j = 1, ... ,ni, we have 
~ p 
bij - bij - O. Because ni ::; K, it follows that 

ni ni 

2: hij - 2: bij .!.. 0 
j=l j=l 

which means we also have hiO - biO .!.. 0, and the proof is complete. 0 

Theorem 2. . Let P be as in Lemma 1. For j = 0, 1, ... ,ni let hij be 
,.. ,.. ni " ,.. 

as defined in Lemma 2. Let efE = biOP + L bijXij. Then efE is an 
j=l 

asymptotically optimal linear empirical Bayes estimator in the sense that 
for every i = 1, ... ,m with et denoting the linear Bayes estimator of ei , 

(32) 

~EB ~ p 
Proof: From Lemma 2, it easily follows that ei - et - O. Because 
o ::; Xij < U;l, we obtain that e[E and et are both bounded. We also 
have 0 ::; ei ::; l. Therefore 

~EB 2 ~ 2 _ ~EB ~* ~EB ~* P IWi -ei) -Wt-ei) I - lei +ei - 2eil.lei -eil-o. 

Because (erB - e i )2 - (et - ei)2 is bounded, the assertion of the theorem 
follows by the bounded convergence theorem. 0 
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