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Error-correcting codes are used to achieve reliable and efficient transmission when

storing or sending information across a noisy channel. This thesis investigates a

mathematical approach to coding techniques for storage devices such as flash memory

storage, although many of the resulting codes and coding schemes can be applied in

other contexts. The main contributions of this work include the design of efficient

codes and decoding algorithms using discrete structures such as graphs and finite

geometries, and developing a variety of strategies for adapting codes to a multi-level

setting.

Information storage devices are prone to errors over time, and the frequency of

such errors increases as the storage medium degrades. Flash memory storage tech-

nology has become ubiquitous in devices that require high-density storage. In this

work we discuss two methods of coding that can be used to address the eventual

degradation of the memory.

The first method is rewriting codes, a generalization of codes for write-once mem-

ory (WOM), which can be used to prolong the lifetime of the memory. We present

constructions of binary and ternary rewriting codes using the structure of finite Eu-

clidean geometries. We also develop strategies for reusing binary WOM codes on

multi-level cells, and we prove results on the performance of these strategies.

The second method to address errors in memory storage is to use error-correcting



iii

codes. We present an LDPC code implementation method that is inspired by bit-

error patterns in flash memory. Using this and the binary image mapping for non-

binary codes, we design structured nonbinary LDPC codes for storage. We obtain

performance results by analyzing the probability of decoding error and by using the

graph-based structure of the codes.
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Chapter 1

Introduction

Coding theory has a rich history of drawing motivation from questions that arise in

applications. This has traditionally occurred in the context of sending information

across a communication channel, a system where the output depends probabilistically

on the input. The channel either delivers the information to another point in space

(transmission) or another point in time (storage). The Shannon capacity of a channel

is the maximum transmission rate that a code family can achieve while a fixed decoder

returns an error with probability approaching zero. This is the theoretical ‘best’ that

a code can do on a given communication channel.

This thesis explores coding techniques motivated by storage applications, focusing

particularly on motivation from the structure of flash memory. The encoding schemes

and analysis that we present can be applied in a variety of settings, and we also address

classical questions in the context of modern code constructions.

Write-once memory (WOM) codes were developed in the 1980s as a method of

reusing write-once memory media, such as punch cards. Both the WOM model and

the flash memory model share an asymmetric write/erase property that allows for

rewriting with certain restrictions. In a WOM, information is stored in the form of
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a binary vector. The current state of the memory can be changed, or rewritten, to

represent a new message at a later time, with the restriction that a ‘one’ that has

been written in the memory cannot be changed back to a ‘zero’. Flash memory has

a similar constraint. The information is encoded and stored in the memory in blocks

of cells, where each cell can be charged up to one of q levels. The process for increas-

ing charge allows a single cell to be increased at a time, but to decrease the charge

of a cell, the entire block containing that cell must be erased and reprogrammed.

After many erasures, the quality of the memory begins to degrade. Thus, it is ad-

vantageous to rewrite on the same space in the memory as many times as possible,

always increasing the cell levels, before requiring an erasure. This can be viewed as

a mapping from a given sequence of information vectors at time t = 1, 2, . . . to a

sequence of distinct component-wise monotonically increasing memory states, where

the decoding is given by the inverse map. Contrary to WOM, flash memory allows

for decreases in cell charge, but at a long-term cost in reliability. We refer to WOM

codes and q-ary generalizations collectively as rewriting codes. An important feature

of this asymmetric write/erase model is that the information stored at a given time

t need not be retained at subsequent time-steps.

A notable difference between error-correcting codes and rewriting codes is that

rewriting codes are generally not linear codes, and they often rely on ad hoc mapping

schemes that are specific to the parameters of the construction. In this thesis we

take a mathematical approach to creating families of codes with explicit mapping

schemes using discrete structures. First, we introduce infinite WOM code families

based on finite geometries. Moreover, we present new multi-level coding schemes for

rewriting codes that have flexible component codes to fulfill a variety of parameters.

These approaches include concatenation involving error correction and rewriting, and

generalizations of the coset encoding and position modulation schemes for write-once
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memories. The coset encoding scheme relies on knowledge about the covering radius

of an error-correcting code, and to that end we also find bounds on the covering radius

of codes based on the incidence structure of finite geometries.

Since all memory devices are susceptible to errors, it is important to consider

how error-correcting codes should be implemented in the memory. Families of long

blocklength low-density parity-check (LDPC) codes used with iterative decoding al-

gorithms are excellent candidates for error-correction in storage. We use a common

representation of these codes—a sparse bipartite (Tanner) graph. We perform an

iterative analysis based on the probability of decoding failure, using the degree dis-

tribution of the underlying graph. These general ideas are applied to LDPC codes

in MLC (four-level) flash memory. In this thesis we give a description of optimal

code implementation that uses the check node degrees, and in particular we show

that the standard scheme of bit-interleaved coded modulation results in the worst

case implementation of an LDPC code in MLC flash memory. We also demonstrate

how to choose the check node connections to the types of variable nodes so that the

performance is optimized.

This thesis is focused on three general areas of study—codes using the structure of

finite geometries, multi-level coding schemes using component codes, and the imple-

mentation of graph-based codes in flash memory. Our new construction of a family

of WOM codes that utilizes the incidence structure of finite geometries benefits from

simple encoding and decoding descriptions based on the incidence of the geometry,

and from blocklengths that are powers of two. We also derive bounds on the covering

radius of LDPC codes constructed from finite geometries. We then present several

methods of combining rewriting codes to create a diverse and applicable collection

of coding techniques for multi-level flash memory. Finally, we present a framework

for studying the application of graph-based error-correcting codes to a storage set-
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ting in which different bit-error probabilities can be identified in the memory. By

synthesizing these areas of study and using ideas from applied discrete mathematics,

we provide a novel approach to two of the major directions in coding for storage:

rewriting codes, and the application of error-correcting codes.

The thesis is organized as follows. Chapter 2 introduces the necessary background

in coding theory and the flash memory application. In Chapter 3 we use the incidence

structure of finite geometries to create encoding and decoding maps for WOM codes

and ternary flash codes, and we provide proofs of the parameters of the resulting

codes. Chapter 4 presents methods of designing flash codes, including the methods of

generalized position modulation, concatenation involving both error-correction and

increased rewriting, and a generalization of the binary coset encoding scheme to multi-

level cells. We provide parameters for the resulting codes and give examples of the

large variety of code families that result from these construction methods. Chapter

5 explores the application of binary LDPC codes to flash memory with q = 4 levels,

where the memory contains two distinct channel bit-error probabilities. We analyze

the probability of decoding error for the Gallager A and B decoding algorithms, and

we determine the optimum configuration of coded bits to positions in the memory. In

Chapter 6 we use the binary image of a code over F4, along with insights from Chapter

5 to determine nonbinary edge labels for (3, 6)-regular LDPC codes. We analyze these

configurations using binary decoding on the binary expanded graph, and we also use

nonbinary Gallager-type hard-decision decoding to assess the performance of the edge

label sets. Chapter 7 contains bounds on the covering radius of finite geometry LDPC

codes, which show that in general the covering radius of these codes grows with the

field size of the underlying geometry. Chapter 8 concludes the thesis.
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Chapter 2

Preliminaries

Since the time of telegraphs in the 19th century, people have attempted to create re-

liable ways of sending messages across a noisy channel [4]. However, Claude Shannon

was the first person to formalize this study and place it on firm mathematical footing

[67]. A communication channel is a collection of triples: an input, an output, and a

transition probability. The larger context of a digital communication system is shown

in Figure 2.1.

Figure 2.1: A model of a digital communication system [58].

Channel coding is concerned with adding redundancy to information in a struc-

tured way so that after modulation, channel transmission, and demodulation, the
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original message can be recovered. Structure is needed to ensure that the encoding

and decoding processes can be accomplished in a practical and efficient way.

Figure 2.2 shows a simple box diagram of the process of information encoding and

decoding. The main channel that we are concerned with in this thesis is the flash

memory storage channel. Some common channel models that we will use to model

the physical system include the binary symmetric channel (BSC) and the Additive

White Gaussian Noise (AWGN) channel.

Figure 2.2: A model of channel coding for transmission over a binary memoryless
channel.

The BSC has input and output alphabet {0, 1}, and has a crossover probability

p. Figure 2.3 shows this channel.

Figure 2.3: The binary symmetric channel with crossover probability p.

Every communication channel has an associated parameter called the channel

capacity, which captures the maximum rate at which information can be sent reliably
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across the channel1. The BSC has capacity

C = 1 + p log(p) + (1− p) log(1− p).

The AWGN channel is another common channel model. Rather than flipping

bits, the noise in this case is an additive model, where if x is sent, then y = x + n is

received, where n is a vector capturing the noise in the channel. The model reflects

natural occurrences of noise that can perturb the transmitted symbol by a continuous

rather than a discrete amount. Each entry of the noise vector n is independent and

identically distributed, with a normal distribution with zero mean and variance σ2.

The continuous values are then mapped to discrete symbols at the receiver.

Shannon showed that the essential limit on communication comes in the form of

time rather than reliability. Shannon’s Noisy Channel Coding Theorem is as follows:

Theorem 2.0.1 (Shannon, 1948). Given a channel with capacity C, for any ε > 0

and R < C, for large enough N , there exists a code of length N and rate at least R

and a decoding algorithm, such that the maximal probability of block error is smaller

than ε.

Shannon’s Noisy Channel Coding theorem shows that coding can be used to trans-

mit information over a noisy channel at any rate below the channel capacity within

a desired probability of decoding error.

2.1 Error-correcting codes

A linear error-correcting code C is a subspace of a finite-dimensional vector space

over a finite field Fq. The dimension n of the vector space is the blocklength of the

1While such a parameter always exists, the exact value may not be known.
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code. The dimension k of the subspace is the number of information symbols. The

Hamming distance between two vectors is the number of positions in which they

differ. The minimum Hamming distance between any two distinct codewords in C is

denoted by d. To correct t Hamming errors and decode to the nearest codeword, it

is necessary to have d ≥ 2t + 1. Thus, codes with large minimum distance perform

well under “nearest neighbor” decoding algorithms. The relative minimum distance

of a code is d
n
. For a code C with blocklength n, dimension k, and minimum distance

d, we say that C is an [n, k, d] code.

A code family {Ci} is called asymptotically good if both the rate and the relative

minimum distance are bounded away from zero in the limit as i→∞.

Since C is a subspace, we can use a matrix to define the code. A generator matrix

is a matrix G whose image is the code. A parity check matrix is a matrix H whose

kernel is C, i.e., v ∈ C if and only if HvT = 0. For v ∈ Fnq , the vector u = HvT is

the syndrome of v. If a transmitted codeword results in a nonzero syndrome at the

receiver, then at least one error has occurred (a zero syndrome does not guarantee

perfect transmission, however).

The covering radius of an error-correcting code C ⊆ Fnq is the smallest integer R

such that Hamming spheres of radius R centered at codewords cover the space Fnq .

The covering radius is a parameter that is difficult to determine in general, but it

is feasible to obtain bounds on the covering radius of particular families of codes.

Equivalently,

R(C) = max
x∈Fn2

min
c∈C

d(x, c).

The covering radius of classical binary linear codes has been studied extensively, and

many of the known results are contained in the reference [9].

An [n, k, d] code is called perfect if bd−1
2
c = R(C). In this case, spheres of radius
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R(C) cover the space with no overlap; that is, every vector in the the space is contained

in exactly one sphere around a codeword.

2.1.1 Hamming codes

In 1948, Richard Hamming introduced the first explicit construction of a code family,

now called Hamming codes [22]. They are perfect codes with minimum distance three

and parameters [2m− 1, 2m−m− 1, 3], for m ≥ 2. A binary Hamming code of length

2m − 1 is determined by a parity-check matrix where the columns are precisely all

nonzero binary vectors of length m.

The following parity-check matrix defines the [7, 4, 3] Hamming code.

H =


0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 0 1 0 1 0 1


The three rows of H determine the following parity check equations. Since the code is

the nullspace of the parity-check matrix H, codewords are precisely the (x1, . . . , x7) ∈

F72 such that

x4 + x5 + x6 + x7 = 0 (mod 2)

x2 + x3 + x6 + x7 = 0 (mod 2)

x1 + x3 + x5 + x7 = 0 (mod 2).

For q a power of a prime, a Hamming code over Fq is determined by a parity-

check matrix with columns all nonzero vectors of length m over Fq, such that the

first entry is 1. For any q a power of a prime and m > 1, there is a Hamming code

with parameters [ q
m−1
q−1 ,

qm−1
q−1 − m, 3]. Hamming codes can be easily decoded using
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syndrome decoding.

2.1.2 Reed-Muller codes

The Reed-Muller family of codes is another early construction of error-correcting

codes. There are various combinatorial descriptions of the codes [50], including meth-

ods involving the Kronecker product of matrices, vector concatenation, Boolean al-

gebras, and binary exponentiation [65] (the method described below). The original

code family was introduced by Muller in [53]; Reed [59] devised a decoding algorithm

for the codes. The binary rth order Reed-Muller code of length 2m is denoted by

R(r,m), where m ∈ N and 0 ≤ r ≤ m.

Let S(r,m) ⊆ Fm2 be the set of binary vectors of length m with Hamming weight

at most r (i.e., the sphere of radius r centered at 0).

|S(r,m)| =
r∑
j=0

(
m

j

)
.

The code R(r,m) can be defined by a generator matrix GRM(r,m) that has rows

indexed by elements of S(r,m) and columns indexed by vectors in Fm2 . The entry

in the matrix indexed by the pair (e, a) is 0 if there exists at least one index i ∈

{0, . . . ,m− 1} such that ai = 0 and ei = 1. Otherwise the entry is 1. The resulting

code has parameters [2m, |S(r,m)|, 2m−r]. For a fixed m > 0, the following inclusions

hold:

R(0,m) ⊂ R(1,m) ⊂ · · · ⊂ R(m,m).

The codeR(0,m) consists of two codewords: 0,1 ∈ F2m2 (it is the binary repetition

code of length 2m). R(m,m) consists of all even weight words in F2m2 .

The standard decoding method for Reed-Muller codes is majority-logic decoding



11

[59], a process that decodes subsets of bits based on the majority value, then uses

this to iteratively deduce the values of larger subsets of bits. Majority-logic decoding

can be practically implemented in applications with circuits.

2.1.3 LDPC codes

Low-density parity-check (LDPC) codes were introduced by Robert Gallager in his

1963 thesis [20] and in [19]. The codes and iterative decoding methods that Gallager

discussed were rediscovered several times over the years, notably by Tanner in 1981

[73], but it wasn’t until the mid-1990s when the computational power for iterative

decoding was available that the wider research community became fully aware of

the potential for capacity-approaching families of LDPC codes with efficient iterative

decoders2.

An ensemble of LDPC codes over Fq is a family of linear codes with sparse parity-

check matrices. In this case, sparsity means that as mni → ∞ (where ni represents

the code lengths), there is a constant c such that there are fewer than cmax{m,ni}

ones in the matrix [69]. Denote by C(H) a code determined by a parity-check matrix

H.

Gallager introduced a family of binary LDPC codes, analyzed their distance prop-

erties, and presented an iterative decoding procedure for the codes [19]. In this sub-

section, we review Gallager’s original construction to give an example of an LDPC

code ensemble.

Gallager’s construction consists of families of (j, k)-regular low-density codes, where

each column of each parity check matrix has j ones, and each row has k ones. Let n

denote the blocklength of a particular code, and let K denote the dimension. There

2Gallager’s paper was cited about 80 times during the years 1962-1995. The total number of
citations from 1962-2014 exceeds 8400.
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are m = nj
k

rows in the parity check matrix H. Here, n
k

is an integer, and n
k

= m
j

.

The construction begins with H∗, an (n
k
× n) matrix where each row consists of k

ones, as follows:

H∗ =



1 · · · 1 0 0 · · · 0 · · · 0

0 · · · 0 1 · · · 1 0 · · · 0

...
. . .

...

0 · · · 0 1 · · · 1


A parity check matrix of a low-density code in the (j, k) family is formed by taking

random permutations of the columns, denoted σi(H
∗), of this matrix and stacking

them:

H =



H∗

σ1(H
∗)

...

σj−1(H
∗)


Define (j, k)-Gallager codes to be the ensemble of codes obtained over all random

permutation of the columns of H∗ in the bottom j − 1 submatrices, where each

permutation is assigned equal probability.

A Tanner graph for C(H) is a bipartite graph with vertices U ∪V whose incidence

matrix is H. The columns of H correspond to the vertex set U , known as variable

nodes, and the rows of H correspond to the vertex set V , or check nodes. If the i, jth

entry in H is γ 6= 0, it results in an edge labeled γ in the Tanner graph3. If the entry

is zero there is no edge in the Tanner graph. A vector (v0, . . . , vn−1) ∈ Fnq is in the

code C(H) if and only if for every check node c the linear combination of neighbors

of c with coefficients given by edge labels is zero in the field.

3If γ = 1 no edge label is used since 1 is implied.
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Example 2.1.1. Take n = 16, j = 3, and k = 4. The following is a parity-check

matrix for a (3, 4)-Gallager code of length 16, which determines a [16, 6, 6] binary

code. The rank of H is 10.

H =



1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0

0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0

0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0



.

A Tanner graph constructed from H is given in Figure 2.4.

Fix a parity check matrix H belonging to the (j, k)-Gallager ensemble. First, note

that the dimension K of the code C that is the nullspace of H satisfies the following

bound:

K ≥ n−m.

Recall that m = nj
k

. Thus, we get

K ≥ n− nj

k
= n(1− j

k
).
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Figure 2.4: Tanner graph for C.

Therefore the rate of the code satisfies:

K

n
≥ 1− j

k
.

LDPC codes (along with message-passing decoding) have emerged as the first class

of codes to approach capacity [62, 60]. This remarkable result was shown roughly 50

years after Shannon’s work [67] and after many earlier sophisticated constructions

of codes. The simple definition of these codes allows for the construction of random

ensembles of codes, and in fact random families of (j, k)-regular LDPC codes are

provably asymptotically good for j ≥ 3 [19, 10]. An explicit family of asymptotically

good LDPC codes based on expander graphs were presented in [71]. Some important

features of code design are the degree distribution on the Tanner graph, which has

an impact on the decoding threshold [48], and the minimum distance of the code.

The typical performance simulation of a code plots SNR (signal-to-noise ratio) versus
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the frame error rate. In this setting the error floor is the region where the “waterfall

curve” begins to flatten out as the SNR increases (i.e., the decoding performance does

not improve with better channel quality). Richardson [63] observed that error floors

of LDPC codes are often the result of near-codewords, and Kelley and Sridhara later

gave a characterization of such occurrences in terms of the Tanner graph [39]. Study

of the error floor effect and the design of structured LDPC codes have become two

important topics in modern coding theory. Moreover, LDPC codes are currently used

in many applications requiring reliable codes with good rate and efficient decoding.

2.2 Coding for flash memories

As data creation and usage proliferates, digital storage media is becoming increasingly

important. Storage technology must be fast, reliable, and have high storage capacity.

Flash memory is a type of non-volatile memory device, meaning that the information

is retained even when the power source is removed. The codes and techniques in

this thesis were inspired by the structure of flash memory, but the ideas have broad

applications in storage technologies. Examples of other types of storage media include

magnetic recording, phase-change memory, and millipede memory, a nanotechnology

version of a punch card.

2.2.1 Flash memory structure

Flash memories are useful due to their potential for high storage capacity and low

power consumption. Flash memory storage is a technology that is based on organizing

the memory into blocks of cells in which each cell can be charged up to one of q levels.

While increasing the charge of a cell is easy, decreasing the charge is costly since the

entire block containing the cell must be erased and rewritten. Such an operation
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involves reprogramming roughly 105 cells. Moreover, frequent block erasures also

reduce the lifetime of the flash device. It is therefore desirable to be able to write as

many times as possible before having to erase a block [64, 14, 38, 5]. Like any storage

device, the flash cells are also prone to errors due to charge leakage or the writing

process. Thus, the coding design goals for flash memories include maximizing the

number of writes between block erasures, correcting cell charge leakage errors, and

correcting errors that occur during the writing process.

Figure 2.5: Model of flash memory cells holding charges (2, 3, 1, 2).

An information theoretic approach to writing on memories with defects was first

considered by Kuznetsov and Tsybakov [45], and later surveyed in [46]. These binary

defects are commonly in the form of a “stuck-at bit”, meaning that a bit in the

memory is either stuck at the value zero or one. The write-once memory (WOM)

model, introduced by Rivest and Shamir [64], and other constrained memory models

(WUM, WIM, WEM4) can be considered as particular cases of the general defective

channel [46, 1, 7], where the positions with ones are regarded as ‘defects’ for the second

write, since the ones cannot be changed back to zeros. Although WOM codes—first

motivated by punch cards—were studied extensively in the 1980s [64, 83], interest in

these rewriting schemes continued through the 1990s [16], and was renewed in 2007

due to the notable link to flash memory applications observed by Jiang [29]. Due to

4WUM, WIM, and WEM stand for write-unidirectional, write-isolated, and write-efficient mem-
ory, respectively.
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the asymmetric costs associated with increasing and decreasing cell levels, the flash

memory model can be viewed as a generalization of the WOM model.

As a result, new constructions of binary WOM codes have been proposed for

flash cells having two levels (i.e., capable of storing one bit of information per cell)

[29, 32, 82], including some capacity-achieving schemes [70]. Error-correcting codes for

the general defective channel and for WOM have also been considered, although ad-

dressing errors while incorporating rewriting capabilities is difficult, and many codes

in the literature are optimized primarily for one of these goals [5, 35, 33, 32, 84, 29].

Next we present the terminology and notation for WOM and flash codes that will be

used in this thesis.

2.2.2 WOM codes

A write-once memory (WOM) is a storage device over a binary alphabet where a zero

can be increased to a one, but a one cannot be changed back to a zero. An information

message is encoded and stored in a string of cells in the memory, referred to as a cell

state vector 5. The cells in the cell state vector form the symbols of the codeword and

can be updated, or rewritten, to yield a new cell state vector representing a different

message.

A write-once memory code is composed of a set V of information words and a set

S of cell state vectors with S ⊆ Fn2 , corresponding to the codewords of the WOM

code. Many different cell state vectors can represent the same information message.

In addition, the WOM code is equipped with an encoding and decoding function. The

encoding function takes as inputs both the current state of the memory and the new

information message to be stored. Specifically, it maps the current cell state vector

5This terminology was introduced in [29] in reference to the structure of flash memory, but it is
convenient to use in the WOM case as well.
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to an updated cell state vector that represents the new information message and is

component-wise greater than or equal to the previous state. The decoding function

maps the resulting cell state vector to the updated information message. Only the

most recently written message is retained. The amount of information messages that

can be encoded at each time step need not be the same, however, as the following

notation conveys.

Definition 2.2.1. Let 〈v1, . . . , vt〉/n denote a t-write variable-rate WOM code on n

cells, where vi is the number of messages that can be represented on the ith write.

In the fixed information case, i.e., when v1 = · · · = vt, a t-write WOM code will be

denoted by 〈v〉t/n, and be called a fixed-rate WOM code.

The sum-rate (or simply rate) of a WOM code is

R =
log2(v1 · · · vt)

n
.

The next example, from [64], is the canonical example of a WOM code.

Example 2.2.2. The Rivest and Shamir WOM code is shown in Table 2.2.2 [64].

It maps two information bits to three coded bits and is capable of tolerating two

writes. It has rate log2(16)
3

= 4
3
. Any of the four messages may be written at either

write. The table is interpreted as follows: on the first write, the encoding function

takes the current all-zero state and the new information message v and maps it to

the representation of v in the ‘first write’ column. On the second write, the encoding

function takes the current cell state and the new information message v′ and outputs

the cell state vector opposite v′ in the ‘second write’ column. For example, the

message sequence 01→ 11 would be recorded as 100→ 110. If the new information

message is the same as the information represented by the current cell state vector, the
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Information 1st write 2nd write
00 000 111
01 100 011
10 010 101
11 001 110

Table 2.1: 〈4〉2/3 WOM-code by Rivest and Shamir.

memory remains unchanged. Decoding is as follows: the cell state vector (a1, a2, a3)

can be decoded as ((a2 + a3) (mod 2) , (a1 + a3) (mod 2)).

�

2.2.3 Flash Codes

When q = 2, the flash cell is called a single level cell (SLC) since the cell can only

represent one nonzero value, and a multi-level cell when q > 2. Since flash memory

applications often have q = 4, we will use multi-level cell (MLC) to mean specifically

q = 4 in Chapters 5 and 6. An SLC can store one bit of information per cell whereas

an MLC with q = 4 can store two bits of information per cell. Fiat and Shamir

considered a generalized version of a WOM, in which the storage cells have more

than two states with transitions given by a directed acyclic graph [14]. The idea

of extending to multi-level cells was further explored by Jiang in [29], in which he

considered generalizing error-correcting WOM codes. Techniques for rewriting codes

on q-ary cells include floating codes, which were introduced by Jiang, Bohossian,

and Bruck [30], and more generally, trajectory codes, which are described in [34].

Although these are similar objects (i.e., mapping schemes for rewriting), we will use

the term flash codes, introduced in [82], to refer to a rewriting code on multi-level

cells.
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Definition 2.2.3. When q > 2, 〈v〉tq/n will denote a t-write flash code for use on n

cells having q levels, where v messages can be represented at each write. The capacity

of a flash memory is the maximum amount of information that can be stored per cell

with q levels for t writes.

Fu and Han Vinck [16] proved the following theorem on the theoretical limit on

the rate of a flash code.

Theorem 2.2.4 (Fu, Han Vinck, 1999). The maximum total number of information

bits that can be stored per q-ary cell over t writes is

log2(1 + (q − 1)t).

This gives that the best rate possible for a binary WOM code with two writes is

log2(3). The Rivest-Shamir code in Example 2.2.2 is approximately 0.252 from the

best possible rate.
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Chapter 3

Write-once memory codes from

finite geometries1

In this chapter, we review an early construction of WOM codes from finite projective

geometries and we present new constructions of both binary and ternary WOM codes

from finite Euclidean geometries. These constructions have simple encoding and

decoding maps, and they yield a wide variety of blocklengths for codes that can be

used in multi-level flash coding schemes, to be discussed in Chapter 4.

3.1 Finite geometries

Finite geometries are incidence structures consisting of a set of points and subsets

of points that define incidence relations. Here we present relevant definitions and

examples of finite Euclidean and finite projective geometries. Further details are

available in [2, 50].

1Material in this chapter has appeared in [25], Designs, Codes and Cryptography (Section 3.3),
and in [24], the Proceedings of the Asilomar Conference on Signals, Systems, and Computing (Section
3.4).
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Definition 3.1.1. Them-dimensional Euclidean geometry over F2, denoted byEG(m, 2),

is an incidence structure with 2m points and 2(m−1)(2m − 1) lines. The set of points

in EG(m, 2) may be regarded as all m-tuples over F2, and each pair of points defines

a unique line.

For m > 0 and p a prime, EG(m, ps) is the m-dimensional Euclidean geometry

over Fps . Points are in correspondence with m-tuples over Fps . The vector space

structure of the m-tuples over Fps can be used to define the incidence structure of the

geometry. A µ-flat is a µ-dimensional subspace of the vector space or a coset of such

a subspace. For example, 1-flats are lines, 2-flats planes, and (m− 1)-flats are called

hyperplanes.

Similarly, PG(m, ps) is the m-dimensional projective geometry over Fps . Points

in the geometry are in correspondence with one-dimensional subspaces of the vector

space of (m+ 1)-tuples over Fps .

Since the constructions in the following sections deal with q = 2, we give a more

specific description of the geometries EG(m, 2) and PG(m, 2).

Let X be the set of points in EG(m, 2). A µ-flat in EG(m, 2) passing through a

point a0 consists of points of the form a0 + β1a1 + · · · + βµaµ, where a0, . . . , aµ ∈ X

are linearly independent and β1, . . . , βµ ∈ F2.

The number of µ-flats in EG(m, 2) is

2(m−µ)
µ∏
i=1

2(m−i+1) − 1

2(µ−i+1) − 1
.

Moreover, each µ-flat in EG(m, 2) is a coset of a EG(µ, 2), and thus contains 2µ

points.

Definition 3.1.2. The finite projective geometry of dimension m over F2, denoted
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PG(m, 2), is an incidence structure with 2m+1−1 points and (2m+1−1)(2m−1)
3

lines. The

points are the nonzero (m+ 1)-tuples (a0, a1, . . . , am) ∈ Fm+1
2 , and a line through two

distinct points a0 and a1 contains exactly the set of points {a0, a1, a0 + a1}.

Example 3.1.3. PG(2, 2) is the 2-dimensional finite projective geometry over F2,

known as the Fano plane. It has seven points, labeled 1-7, and seven lines, as shown

in Figure 3.1. Each line contains three points, and each point lies on exactly three

lines.

3.2 The Merkx construction

In 1984, Merkx constructed a family of WOM codes based on the m-dimensional finite

projective geometries over F2 [52]. The construction exploits a connection between

the binary Hamming codes and PG(m, 2) that allows the WOM codes to be decoded

easily via syndrome decoding. Specifically, Merkx uses the fact that the minimum

weight codewords of the [2m+1 − 1, 2m+1 − m, 3] Hamming code C generate C and

correspond to the incidence vectors of lines in PG(m, 2) (see [50], e.g.).

For example, in Figure 3.1 incidence vectors of lines in the Fano plane correspond

to the minimum weight nonzero codewords of the [7, 4, 3] Hamming code presented

in Section 2.2.1.

Figure 3.1: PG(2, 2) with labels that correspond to the [7, 4, 3] Hamming code.
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The nonzero minimum weight words in the [7, 4, 3] Hamming code corresponding

to the incidence vectors of lines are given in the following array.

P1 P2 P3 P4 P5 P6 P7

0 1 0 1 0 1 0

1 0 0 0 0 1 1

1 1 1 0 0 0 0

1 0 0 1 1 0 0

0 0 1 1 0 0 1

0 0 1 0 1 1 0

0 1 0 0 1 0 1

In Merkx’s construction, the messages correspond to points in the geometry. The

WOM codewords, i.e. the cell state vectors, are a subset of Fm+1
2 \ C, and thus,

since the Hamming code is perfect, these codewords are always one error away from

a binary Hamming codeword. The location of the error indicates the point in the

geometry that corresponds to the information message.

Example 3.2.1. The PG(2, 2) WOM code of [52] is a 〈7〉4/7 code. Each position

of a codeword corresponds to a point of the Fano Plane, and each codeword is the

incidence vector of a substructure of the geometry that highlights a particular point

being represented. WOM codewords are incidences of the following: on the first

write, a point on the Fano Plane; on the second write, a line missing a point; on the

third write, the union of a line with an additional point; on the final write, either the

union of two lines or the plane missing a point. To decode the WOM code, Merkx

observed that syndrome decoding identifies the information message. Figure 3.2.1

shows the write sequence 3→ 5→ 7→ 3 using the 〈7〉4/7 code from the Fano Plane.
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The arrow indicates the information point and the corresponding cell state vector

representing that information is listed below each write. Note that the sequence of

cell state vectors is monotonically increasing in each component as the write iteration

increases.

Figure 3.2: Four writes using the Merkx PG(2, 2) WOM code.

The following proposition by Cohen, Godlewski, and Merkx in [8] formulates more

precisely the parameters of the WOM codes that result from this construction method.

Proposition 3.2.2 (Cohen, Godlewski, Merkx, 1986). For m ≥ 4, the [2m− 1, 2m−

1−m] Hamming code yields a length (2m − 1) WOM code that can store m bits over

2m−2 + 2 writes.

3.3 WOM codes from EG(m, 2)

Since Hamming codes are punctured Reed-Muller codes, and are given by geometric

designs over the binary field, we apply a similar construction strategy for designing

WOM codes using EG(m, 2). Minimum weight codewords of the rth order Reed-

Muller code of length 2m, R(r,m), generate the code, and correspond to (m−r)-flats

in the Euclidean geometry EG(m,m− r). Analogous to the Merkx construction, we

will use the connection between minimum weight words inR(m−2,m) and the planes
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in EG(m, 2) to construct our WOM code so that it inherits the easy decoding of the

corresponding Reed-Muller code. We design the WOM codewords to be Hamming

distance one away from a codeword of R(m − 2,m). The WOM codewords are

incidence vectors of configurations of points in the Euclidean geometry EG(m, 2),

including a point, a plane with a point missing, and the union of a plane with an

additional point. These WOM codes may be decoded using any Reed-Muller decoding

technique.

The next two examples illustrate this construction for m = 3 and m = 4.

Example 3.3.1. Using EG(3, 2), the resulting code is an 〈8, 8, 8, 4〉/8 WOM code.

The code attains four writes on eight cells, where eight possible messages can be stored

in the first three writes, and four messages can be stored in the fourth write. Recall

that EG(3, 2) has eight points, 28 lines, and 56 planes. Each message corresponds

to one of the points in the geometry. On the first write, a message i ∈ {1, . . . , 8} is

represented by a weight one cell state vector, where the one is in the ith coordinate.

On the second write, the WOM codeword is a weight three cell state vector in-

dicating a plane with a point missing, where the missing point is the information

message. Since there are a several choices of planes containing the points i from the

first write and the new message point j, the choice of plane can be made by putting

an ordering on the points in the geometry and choosing the plane P containing both

i and j which has a third point k that is smallest according to the ordering. Without

this stipulation, the encoding process during the second write is not unique. Say that

P = {i, j, k, k′}. After the second write, the cell state vector has weight three, with

ones in positions i, k, k′.

On the third write, the ones in the cell state vector correspond to a plane union a

point, where the additional point is the message2 l. If l is not contained in the plane

2If l = j, then leave the contents of the cell state vector from the second write unchanged.
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P from write two, then the cell state vector has ones in the positions corresponding

to the four points in P and the position corresponding to l. If l 6= j is contained in

the plane P , then l ∈ {i, k, k′}, and there is a plane containing the other two points

which does not contain l. Again, choose the plane that satisfied this requirement,

and use the ordering on the points as indicated above. Observe that on each of the

first three writes, it is possible to represent any of the eight messages.

Finally, on the fourth write, only messages corresponding to positions of the cell

state vector with entry zero can be represented (except for the message represented

in the third write, which can always remain on the fourth write, if needed). If i′ is

one of these messages, then to represent i′ on the fourth write, the cell state vector

will have a one in every coordinate except position i′.

As an example, the message sequence 1→ 3→ 2→ 7 is demonstrated in Figure

3.3.

Figure 3.3: The message sequence 1→ 3→ 2→ 7 in the EG(3, 2) WOM code.

In constructing the WOM code from EG(3, 2), it is not possible to represent more

than four messages on the fourth write. Indeed, after the third write, the cell state

vector contains five ones and three zeros, so at most log2(3) information bits can

be conveyed by the remaining zero-valued positions. The message that is stored in
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Figure 3.4: EG(4, 2), with four parallel planes shaded, as in [50].

the third write can always be represented on the fourth write, simply by leaving the

memory state unchanged. Thus, one of at most four messages can be represented on

the fourth write.

Example 3.3.2. Using EG(4, 2), the resulting WOM code has parameters

〈16, 16, 16, 12, 8, 8, 8, 4〉/ 16.

Recall that EG(4, 2), shown in Figure 3.3, has 16 points and 140 planes, and can be

partitioned into two parallel 3-flats. The first four writes are the same as in Example

3.3.1, by using the EG(3, 2) code on a 3-flat that contains the points corresponding

to the first four information messages. After the fourth write, the points in that 3-flat

are all programmed to one, and the EG(3, 2) WOM code may be applied to the points

of the remaining 3-flat to encode the final four writes.

Proposition 3.3.3. The EG(m, 2) WOM code achieves 4(m − 2) writes and has

parameters

〈2m, 2m, 2m, 2m − 4, 2m−1, 2m−1, 2m−1, 2m−1 − 4, . . . , 8, 8, 8, 4︸ ︷︷ ︸
4(m−2)

〉/2m.
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Proof. The cell state vector has length 2m, equal to the number of points in EG(m, 2).

Recall that each cell state vector in the EG(m, 2) WOM code will be Hamming dis-

tance one away from a codeword of the Reed-Muller codeR(m−2,m). We proceed by

induction on the dimension of the finite geometry. The base case is the EG(3, 2) WOM

code. Now suppose that there exists an EG(k, 2) WOM code with the parameters

described in the Proposition. Consider the finite Euclidean geometry EG(k + 1, 2),

which can be partitioned into two parallel hyperplanes, i.e., two disjoint copies of

EG(k, 2). Since any four points lie on a common hyperplane (in fact, many), there

exists a hyperplane that contains the points that correspond to the first four infor-

mation messages to be written. These messages can be encoded using the EG(3, 2)

WOM code on a cube within this hyperplane containing those points. After the first

four writes, all points in the hyperplane are set to one, and the EG(k, 2) code can

be used on the remaining hyperplane. Thus, this EG(k+ 1, 2) WOM code allows for

4((k + 1)− 2) writes, and has the parameters listed above, with m = k + 1.

Since codewords of the WOM code are Hamming distance one from a codeword of

the corresponding Reed-Muller code, performing majority-logic decoding on a stored

cell state vector will provide the location of the position of the “error”. The code is

designed so that this position corresponds to an information message, i.e., a point in

the geometry. Thus, majority-logic decoding identifies the message, and can be used

to decode the EG(m, 2) WOM code.

3.3.1 Comparison

Table 3.1 shows the rates of the proposed EG(m, 2) WOM codes and the PG(m, 2)

WOM codes from [52] for small values of m. As expected from the geometric struc-
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Code length rate
PG(2,2) 7 1.60
EG(3,2) 8 1.38
PG(3,2) 15 1.82
EG(4,2) 16 1.66
PG(4,2) 31 1.60
EG(5,2) 32 1.50

Table 3.1: Comparison of rates of small dimension projective and Euclidean geometry
WOM codes.

ture, the efficiency of the EG WOM codes is less than that of the PG codes. Indeed,

for the special cases when m = 2 and 3, the PG(m, 2) WOM codes attain the max-

imum number of writes indicated in Proposition 3.2.2 [52] due to the fact that the

Hamming code is perfect and certain shortened versions retain maximal. The Merkx

construction does not have a general geometric description with explicit parameters

for m > 3. On the other hand, the EG(m, 2) family of codes has a geometric de-

scription for all m. Moreover, the EG(m, 2) construction presented here yields a new

family of WOM codes with new blocklengths, decent rate, and simple encoding and

decoding algorithms. The blocklengths of the EG codes, all powers of two, make

them amenable to code concatenation techniques, and the construction shows that

variable information WOM codes can be obtained from incidence structures.

In general, designing efficient WOM codes from incidence structures requires low

weight incidence vectors, and intersections of these structures that can point to spe-

cific messages. In the case of EG(m, 2), the (m − 2)th order Reed-Muller code was

chosen so that the corresponding minimum weight codewords would be planes and

therefore have low weight. Since any two distinct planes intersect in 0 or exactly 2

points, taking unions of multiple planes does not uniquely designate any one partic-
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ular point when multiplicity is considered.

Remark 3.3.4. Since the sum-rate of the EG WOM code family decreases as m

grows, we compared the strategy of reusing EG(3, 2) repeatedly on adjacent sections

of the memory to the construction above. The general EG construction outperforms

the repeated use of the EG(3, 2) code for m = 4 and 5, but when m = 6 the reappli-

cation of the EG(3, 2) code achieves a better sum-rate on the same number of cells,

26. However, the number of writes differs—in the case of the EG(6, 2) code, 16 writes

are achieved, but the reapplication of the EG(3, 2) code achieves only four writes.

The strategy can be tailored to the needs of the application: many writes but a lower

sum-rate, or fewer writes and higher sum-rate.

3.4 Ternary flash codes from EG(m, 3)

Consider the finite Euclidean geometry of dimension m over F3, denoted EG(m, 3).

This incidence structure consists of 3m points and 3m(3m−1)
6

lines. Each line contains

three points, and every point lies on 3m−1
2

lines. Given two points a,b, there is a

unique line that contains these points, and a unique third point c that lies on that

line. For this code, we assume each cell has q = 3 levels, which we will denote with

symbols 0, 1, and 2, and say that these correspond to increasing cell levels in the

memory. Thus 0 < 1 < 2, even though finite fields do not have a linear ordering. For

x,y ∈ Fm3 , the vector notation x < y means that xi ≤ yi, for 1 ≤ i ≤ m.

3.4.1 Encoding and decoding

We construct a 〈3m〉23/(2m) WOM code from EG(m, 3). Each of the 3m messages

is represented by a point in Fm3 . The memory state vector c will have 2m cells.



32

For convenience, we organize the memory state vector in the form c = (a,b) where

a,b ∈ Fm3 . Assume the memory cells are each initialized at 0, i.e., the current memory

state vector is c = (0,0).

The encoding rule is as follows.

1) First Write: Given message v = (v0, . . . , vm−1) ∈ Fm3 , if the largest component

of v is at most one, then set c = (v,0). If v contains 2 as an entry, locate the

unique line that contains v and the point 0 = (0, 0). There is a unique third

point on that line, which we denote by y. If y has largest component 1, set

c = (0,y). If y also contains an entry 2, then choose two points a,b that form

a line with v where each has largest component 1, and set c = (a,b).

2) Subsequent Writes: Let c = (a,b) be the current memory state vector, and

suppose the message v′ = (v′0, v
′
1, . . . , v

′
m−1) is to be stored.

– If b = 0: If a < v′, set c = (v′,0). If a ≮ v′, set c = (a,b′) where b′ is

the third point on the unique line containing v′ and a.

– If a = 0 and b 6= 0: Consider the vector w = (w0, w1, . . . , wm−1) where

wi + vi ≡ 0 (mod 3) for i = 0, 1, . . . ,m− 1. If b < w, then set c = (0,w).

If b ≮ w, then set c = (a′,b) where a′ is the third point on the unique

line containing v′ and b.

– If a 6= 0 and b 6= 0: Let y be the third point on the unique line containing

v′ and a, and let x be the third point on the unique line containing v′ and

b. If b < y and a ≮ x, set c = (a,y). If a < x and b ≮ y set c = (x,b). If

both b < y and a < x, then choose a vector in {(a,y), (x,b)} that results

in fewer cell increases.
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Figure 3.5: EG(1, 3)

If none of the above, then consider the 3m−1
2
− 2 lines incident with v′ that

do not contain a or b. Suppose the ith line consists of points {v′,wi, zi}

for i = 1, . . . ,
(
3m−1

2
− 2
)
. Let J = {i|(a,b) < (wi, zi)}. If J 6= ∅ then

set c = (wi, zi) for some i ∈ J for which the vector (wi, zi) has minimum

weight. If such a vector does not exist, then the message v′ can not be

written.

Two writes are guaranteed because the weight of the memory state vector is either

one or two after the first write.

The rule for decoding is as follows.

• If the memory state vector is

c = (a0, a1, . . . , am−1, b0, b1, . . . , bm−1),

then when b0 = b1 = · · · = bm−1 = 0, decode to the point (a0, a1, . . . , am−1).

• Otherwise, c decode to the point (v0, v1, . . . , vm−1) such that vi + ai + bi ≡ 0

(mod 3) for i = 0, 1, . . . ,m− 1.

3.4.2 Examples

Example 3.4.1. Consider EG(1, 3), consisting of one line and three points, as shown

in Figure 3.5. The corresponding WOM code has parameters 〈3〉23/2 and rate 2 log2(3)
2

.

The code based on EG(1, 3) has a simple encoding map, shown by the tree in Fig-
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Figure 3.6: EG(1, 3) WOM code, where the ith layer of the tree corresponds to the
ith write.

Figure 3.7: The finite geometry EG(2, 3), with color classes denoting bundles of
parallel lines.

ure 3.6. Note that more than two writes are possible in some cases, but we only

demonstrate the guaranteed writes in the figure.

Example 3.4.2. Consider EG(2, 3), consisting of nine points and 12 lines in Figure

3.7. We construct a 〈9〉23/4 WOM code from EG(2, 3). Each of the 9 messages

is represented by a point. The memory state vector c will have four cells, denoted
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(a,b) where a,b ∈ F23. While the code guarantees two writes, often more are possible.

The following is an example message sequence that can obtain five writes:

Info. (01) (22) (21) (00) (02)

Writes [0, 1, 0, 0] [0, 1, 1, 0] [0, 2, 1, 0] [1, 2, 2, 1] [1, 2, 2, 2]

In contrast, the message sequence below yields two writes:

Info. (12) (20)

Writes [1, 0, 1, 1] [2, 1, 2, 2]

When viewed as a variable-rate WOM code, the EG(2, 3) code obtains 3.108

writes, on average. This average was obtained by running 106 random message se-

quences in MATLAB and averaging over the number of writes achieved. If we restrict

certain bad message sequences such as that above, more writes may be guaranteed,

but at a significant cost in the number of messages that can be represented at each

generation. Consider the trivial scheme of representing some nonzero message v on

the first write using (v,0), and a nonzero message v′ on the second write using (v,v′).

The EG(2, 3) construction only does better than this scheme when it attains three

or more writes.

Example 3.4.3. Consider EG(3, 3), consisting of 27 points and 117 lines, shown

partly in Figure 3.8. The corresponding WOM code has parameters 〈27〉23/6 and rate

2 log2(27)
6

.

Remark 3.4.4. We observe that attempting to create flash coding schemes with

finite geometries over alphabets with q > 3 generally does not yield codes that are

more efficient for multi-level flash memory. The problem is that many points in the
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Figure 3.8: EG(3, 3), with select lines drawn.

geometry have labels that would require writing q− 1 in a cell during the first write,

which effectively prevents that cell from being reused (until the erase operation is

performed). However, the incidence structure of finite geometries over higher alpha-

bets remain a good source for constructions of binary WOM codes. In the following

example, we use EG(2, 3) to create a binary WOM code of length nine with sum rate

1.41.

Example 3.4.5. Figure 3.7 shows EG(2, 3), which we will use to create a binary

WOM code of length nine. Since every line has three points and each pair of points

is contained in a unique line, we can create an encoding map similar to the pro-

cess in described in Sections 3.2 and 3.3. We construct a 〈9, 9, 9, 9〉4/9 WOM code.

The length-nine cell state vector will be an indicator vector of the points, labeled

{1, 2, . . . , 9}. The four writes are as follows:

1. To store the point i on the first write, place a one in the ith position in the

vector.

2. To store the point j 6= i on the second write, find the unique line that contains

i and j. There is a unique third point on that line, k. Place a one in the kth

position in the cell state vector.
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3. The third write is characterized by a line union a point. If the message is i, then

choose any line L that contains k (with L 6= {i, j, k}), and place ones in the

positions indicated by the points in L (follow a similar process if the message is

k). If the message is l 6= i, k, then place ones in positions j and l of the vector.

4. On the final write, the message is indicated as either the intersection of two

lines, or it is the point corresponding to the only position in the vector that has

a zero in it.

One of the advantages of the EG(m, q) families of codes is that they are good can-

didates for concatenation-type schemes. Their simple encoding and decoding maps

allow for repeated use of the codes as components of larger schemes without ham-

pering the efficiency of the encoding and decoding of the overall code. In the next

chapter, we will use the ternary codes as component codes for a scheme called gen-

eralized coset encoding, and the binary Euclidean geometry WOM codes will be used

as components in multi-level concatenation.
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Chapter 4

Coding methods for multi-level

flash memories1

The development of flash memory cells on q > 2 levels has renewed interest in efficient

coding strategies for ‘generalized’ write-once memories, i.e., those with greater than

two states per cell. This chapter is devoted to approaches to designing flash codes

from WOM codes. In Section 4.1, we present strategies for the efficient reapplication

of WOM codes to q-ary cells. Section 4.2 discusses methods of concatenating WOM

codes and error-correcting codes that result in a variety of flash coding schemes. In

Section 4.3 we present a construction called generalized position modulation, which

uses a component flash code to create a longer code with greater rewriting capability.

Finally, Section 4.4 presents a generalization of the classical coset encoding scheme.

The original construction uses the cosets of an error-correcting code to create a WOM

code; the generalization presented in this thesis details a method for using component

flash codes in order to apply coset encoding when q > 2. Together, these approaches

1Material in this chapter first appeared in [23], the Proceedings of the Int’l Castle Meeting on
Coding Theory and Applications (Sections 4.1, 4.2), and in [24], the Proceedings of the Asilomar
Conference on Signals, Systems, and Computing (Section 4.4).
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x µ1(x) µ2(x) µ3(x) µ4(x)
00 000 111 111 222
01 100 011 211 122
10 010 101 121 212
11 001 110 112 221

Table 4.1: Rivest-Shamir code adapted to q = 3 levels.

yield codes with a wide variety parameters that can be applied in any asymmetric

memory setting.

4.1 Strategies for reusing binary WOM codes

A natural approach to creating flash codes is to reuse WOM codes on q-ary cells. The

strategies presented here make use of efficient existing codes and also provide a basis

for comparison for new flash coding schemes. In this section we examine construction

methods for adapting binary WOM codes for use on multi-level cells.

One way to use binary codes2 on q-level cells is to read the cells modulo 2. A naive

approach is to let the set of codewords consist of all cell state vectors that reduce

modulo 2 to a binary codeword. A more efficient application of a 〈v〉t/n code to q-level

cells is to increase the charge of all cells to 1 after the tth write, and then employ the

code again. We will refer to this scheme as the complement scheme, since reduction

modulo 2 either reveals a WOM codeword or the complement of a codeword. More

precisely, in the complement scheme, let x denote the information message, and ci(x)

be a codeword that represents x on the ith write. We reuse the binary WOM code by

taking ct+i(x) = ci(x) + 1, for i < t, where 1 is the all ones vector. Similarly, after

2 The idea of reducing the cell state vectors modulo 2 was also used in [28] to adapt classical
codes for use on multi-level cells.
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mt writes, the cell values are increased to m, and we set cmt+k(x) = ck(x) +m · 1 for

k = 1, . . . , t − 1. Note that this scheme guarantees (q − 1)t writes. Table 4.1 shows

Example 2.2.2 adapted to q = 3-level cells in this way.

We will use this simple scheme as a basis for comparison when considering the

following methods of adapting binary WOM codes to q levels.

Construction: Consider a 〈2k〉t/n WOM code. Let x be a binary information

sequence of length k, and let U(x) = {u : u = ci(x) for some i = 1, . . . , t}. Let s be

a length n cell state vector representing the message x. Given s, suppose we want

to write a new message y 6= x. Let V be the set of n-tuples with all entries even

(possibly 0) and less than q. We present two strategies.

• Strategy A: To minimize the number of cells that are increased, search the

set U(y) + V for the representation whose difference from s requires the fewest

cells to increase. Thus, look for s′ ∈ U(y)+V such that s′ ≥ s (componentwise,

all entries in s′ are at least as much as those in s) and further that s and s′

differ in the least number of places, i.e. the Hamming weight, wtH(s′ − s) is

minimized. The new cell state vector is s′ and represents the new message y.

In searching the set U(y) + V as the cell values approach q, we omit the values

of s′ that would cause a block erasure.

• Strategy B: To minimize the magnitude of the resulting cell state vector s′,

search the set U(y) + V for the representation whose difference from s is such

that the maximum cell entry of s′ is minimized. If there is a tie, arbitrarily

choose one that requires the fewest number of cells to increase. Thus, look for

s′ ∈ U(y)+V such that s′ ≥ s and that the maximum entry in s′ is the smallest.
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For specific codes, the strategies can be described more explicitly. For example,

the following flash code encoding map is based on Example 2.2.2, and uses reduction

modulo 2 to identify the decoding map from the cell state vectors to the variable

vectors. Following Strategy A, the rewriting rule is as follows. Let s be the current

cell state vector representing the message x, and y the new message to be written.

• If x, y ∈ F22 \ {00},

– If s mod 2 = c1(x), add the weight one vector w = c2(y) − c1(x) to the

current state, to obtain the new cell state vector s′ = s+ w.

– If s mod 2= c2(x) write w = c1(z), where z ∈ F22 \ {00, x, y}, to obtain

s′ = s+ w.

• If x = 00, write c1(y).

• If y = 00, then if s mod 2 = c1(x), add c1(x) to s; otherwise add 1− c2(x) to s.

Following Strategy B, the rewriting rule depends on the actual magnitude (in

{0, . . . , q − 1}) of each cell entry.

The general rule is to increase a subset of the cells such that the new vector reduces

to either c1(y) or c2(y) modulo 2 and no one cell is allowed to gain too much charge.

Example 4.1.1. Using the rules above for the Rivest-Shamir WOM code in Example

2.2.2, suppose the following information sequence is to be stored in a given set of cells

with q = 4 levels.

11→ 00→ 01→ 10→ 11→ 01

Following Strategy A, the sequence of cell state vectors is as follows

A : 001→ 002→ 102→ 103→ 203→ 213
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Following Strategy B, the sequence of cell state vectors is as follows

B : 001→ 111→ 211→ 212→ 312→ 322

�

Example 4.1.2. To further illustrate the different strategies, consider writing the

sequence 1 → 2 → 1 → 3 using the PG(2, 2) WOM code in Example 3.2.1, where

the labeling on the Fano Plane is as in Figure 1. Following Strategies A and B, the

sequence of cell state vectors is as follows:

A : (1000000)→ (1001000)→ (1002000)→ (1002001)

B : (1000000)→ (1001000)→ (1001101)→ (1101111)

�

4.1.1 Analysis of Strategies A and B

The expected number of writes for floating codes was studied in [15, 6] and can be

more important than the worst case analysis in determining which codes to use in

practice. Code constructions in [30] have a guarantee of (q − 1) + b q−1
2
c writes for a

k = 2-dimensional message space and n = 2 cells. The same paper also proved the

existence of floating codes that achieve (q − 1)n − o(n) writes as n → ∞ for fixed

k and q. Asymptotically optimal codes for the average case with k = 2 have been

constructed where the expected number of writes grows like n(q− 1)− o(q) [6]. Both

cases include the assumption that only one cell level changes at each write, which

is reasonable when n � 2k. However, since Strategies A and B are intended to be
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used for any WOM code, not just those that meet this criterion, we do not use this

assumption.

The guaranteed number of writes using Strategy B for the 〈4〉2/3 Rivest-Shamir

WOM code on q level cells is 2(q − 1). This can be seen by examining a sequence of

messages that causes the maximum number of cell increases under Strategy B. For

example, the alternating sequence of messages 00 → 01 → 00 → 01 → 00 → · · · →

01 → 00 has cell state vector sequence 000 → 100 → 111 → 211 → 222 → · · · →

(q−1)(q−2)(q−2)→ (q−1)(q−1)(q−1). Observe that for every two writes, the cell

state vector does not increase a cell level more than once, and both representations

of a given message are used. Thus, the guaranteed number of writes using Strategy

B is 2(q − 1).

The guaranteed number of writes using Strategy A for the 〈4〉2/3 Rivest-Shamir

WOM code on q level cells is also 2(q− 1). Again we consider a sequence of messages

that causes the maximum number of cell increases. For example, the alternating

sequence of messages 00 → 01 → 00 → 01 → 00 → · · · → 01 → 00 → 01 has

cell state vector sequence 000 → 100 → 200 → 300 → 400 → · · · → (q − 2)00 →

(q − 1)00→ (q − 1)11→ (q − 1)22→ · · · → (q − 1)(q − 1)(q − 1). Observe that the

first q−1 writes follow the Strategy A protocol to increase the fewest number of cells,

but that once any cell attains the maximum charge, the strategy continues to write

using the next best representation choice for each message. Thus, a total of 2(q − 1)

writes are guaranteed.

The following theorem shows that the guaranteed number of writes for both Strate-

gies A and B is at least as good as the complement scheme for any general binary

WOM code.

Theorem 4.1.3. Let C be a 〈v〉t/n binary WOM code. Then the guaranteed number
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of writes by applying either Strategy A or Strategy B to C on q-level flash cells is at

least (q − 1)t.

Proof. We proceed by induction on q. For q = 2, the WOM code already guarantees

t writes. So assume the hypothesis holds for q = r. That is, for any sequence of

messages, we are guaranteed at least (r − 1)t writes using Strategy A or B. Now let

us consider the case when q = r + 1. Then for any sequence of (r − 1)t messages,

using Strategy A or Strategy B, by the induction hypothesis we will reach a cell

state vector (c1, c2, . . . , cn), with entries ci ≤ r − 1, i = 1, 2, . . . , n. We can now

artificially increase each cell levels to r− 1 at the end of (r− 1)t writes to yield a cell

state vector (r − 1, r − 1, . . . , r − 1). Without loss of generality, the cell state vector

(r − 1, r − 1, · · · , r − 1) can be thought of as being the all-zero vector (0, 0, · · · , 0).

It is now easy to see that either Strategy A or Strategy B will allow us to write at

least t more times using the original t writes of the binary WOM code C. Thus, a

total of rt writes is guaranteed for either strategy when q = r + 1, thereby proving

the result.

To see if the lower bound of (q − 1)t writes is met in Theorem 4.1.3, the weight

distributions of the different representations for each message in the original WOM

code have to be taken into account. For example, for two-write WOM codes where

the minimal weight representation for each message is unique, the guaranteed number

of writes is 2(q − 1) as above.

Strategies A and B applied to the Rivest-Shamir code each guarantee two writes

when q = 2 and four writes when q = 3, whereas the expected number of writes using

the strategies for this code (assuming a uniform distribution on the message space)

is approximately 2.47 for q = 2 and 4.89 for q = 3 for each case. Note that the

simple application of the Rivest-Shamir code to q-level cells using the complement
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scheme requires q ≥ 3 to get more than two guaranteed writes. Figure 4.1 compares

the average number of writes of the complement scheme, Strategy A, and Strategy B

on q-level cells when applied to the binary Rivest-Shamir WOM code from Example

2.2.2. In Monte Carlo simulations, 105 random message sequences were generated

and the number of writes was recorded for the three different methods. As shown in

Figure 4.1, the strategies applied to the Rivest-Shamir code exhibit a noticeable gain

over the the complement scheme that is growing as q → ∞. However, the average

number of writes for each strategy is still quite far from the capacity limit on the

number of writes possible for representing four messages per write using three cells

on q levels (see Theorem 2.2.4).

Strategies A and B did not exhibit much gain over the complement scheme when

the PG(2, 2) code in Example 3.2.1 was simulated for small q. This is possibly due to

the near-optimality of the PG(2, 2) WOM code. Further, it is likely that in general,

the more optimal a code is, the less it will benefit from the strategies, since the

reapplication of the code under the complement scheme already generates an efficient

code.
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Figure 4.1: Comparison of the average number of writes achieved by Strategies A and
B and the complement scheme.

In [6], two coding schemes are presented that have a similar flavor to Strategies

A and B, but apply in the different setting of random floating codes. In that work,

the authors propose two random coding schemes: a “Simple scheme” that randomly

chooses to increase a single cell by one, and a “Least scheme” that chooses a message

representation that increases the coordinate with the lowest charge level. In con-

trast, Strategies A and B in this dissertation apply to any WOM code without the

assumption that only one cell increases at each write.

4.2 Concatenation with WOM codes

In this section we consider ways that code concatenation may be used to obtain new

WOM or flash codes. Let [n, k, d]q denote a classical q-ary linear code of block length

n, dimension k, and minimum distance d. Two classical codes may be concatenated

as follows.

Definition 4.2.1. Let A be an [n1, k1, d1]qk2 code and B be an [n2, k2, d2]q code. Then
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the concatenated code C = A � B is an [n1n2, k1k2, d1d2]q code with outer code A

and inner code B. The k1 information symbols (each chosen from a qk2-ary alphabet)

are first encoded into n1 symbols using A. Each of the encoded symbols is then

represented by k2 q-ary symbols. Each group of these k2 symbols is then encoded

into n2 q-ary symbols using B. Thus, n1n2 encoded symbols are obtained to form a

codeword in C.

The above concatenation may be seen by the following mapping

Fk1
qk2

A−−−−→ Fn1

qk2
q-ary representation−−−−−−−−−−−−−−→ Fn1k2

q B−−−→ Fn1n2
q

Concatenating classical codes with binary WOM or flash codes yields codes with

both error correction and rewrite capabilities.

Several researchers have observed that an outer 〈2k〉t/n WOM code A when con-

catenated with an inner [m, 1]2 repetition code B yields a 〈2k〉t/nm binary WOM

code C = A� B, where C can correct bm−1
2
c errors [84, 81, 29]. We expand on these

ideas to obtain codes for multi-level flash cells.

A code CW � CR, where CW is a WOM code and CR is a length-m repetition

code, can be employed as an error-correcting code on q-level cells with the following

strategy: on the first write, the binary codeword is written on the cells. An error

can be detected by majority decision among each set of m consecutive positions. For

subsequent writes and error correction, we will read the q-ary vector as a binary

codeword from CW , by reducing the values in the cells modulo 2. In particular, if a

one was erroneously written on the first write in a cell that should have contained a

zero, we correct the error by increasing the level of the cell to 2, which is viewed as

a 0 (modulo 2). The error has been corrected in the binary word that is read, and

the code can correct bm−1
2
c errors on each write. Subsequent writes are achieved by
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increasing chosen cell levels to obtain the desired parity, modulo 2.

The following theorem uses this method to obtain an error-correcting WOM code.

Note that errors can occur in either direction and are assumed to be of magnitude

one.

Theorem 4.2.2. Let CW be a 〈2k〉t/n WOM code and let CR be the [m, 1,m]2 rep-

etition code. The code CW � CR is an 〈2k〉t/mn bm−1
2
c-error-correcting WOM-code

on SLCs. Moreover, applied to q-level cells and using the reduced binary vector rep-

resentation, CW �CR is a 〈2k〉t′q /mn flash code, where t′ = d (q−1)t
3
e and bm−1

2
c errors

can be corrected at each write.

Proof. For q = 2 the resulting code is a 〈2k〉t/mn bm−1
2
c-error correcting WOM code.

For any q, the length mn-code has dimension k. We show that the worst-case number

of rewrites is d (q−1)t
3
e. The code CW � CR is still binary, but we use it on the q-ary

cells by reading the information stored in the cells via the reduced binary vectors.

Up to bm−1
2
c errors can be detected and corrected at each write. Error correction

consists of increasing the charge level of the cell by one to correct the parity in that

entry of the reduced binary vector. In the worst case, an error occurs in the same

position on every write, and so that position sees an increase of three levels at each

write. However, in the absence of errors we could achieve (q − 1)t writes due to the

rewriting capability of CW and the reapplication of the WOM code on q-level cells.

Thus, the worst-case number of writes in the error case is d (q−1)t
3
e.

As an example of the reading process, if q = 4, n = 1,m = 3, the sequence (332)

in a cell-state vector would be read as (110) in CW �CR, and decoded to (111) using

majority rule. As an example of the error-correction process, consider a cell that is

meant to be increased to 0 (modulo 2); if an error causes the cell to instead be read

as 1 (modulo 2), then to correct it the charge is increased again. Thus that cell has
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seen a total increase of three levels on that write cycle. A similar idea of increasing

the cell levels to correct for errors has also been considered in [29, 35].

Example 4.2.3. Let CW be the 〈4〉2/3 WOM code defined in Example 2.2.2 and

let CR be the [3, 1, 3]2 repetition code. Then the code CW � CR is a 〈4〉2/9 single

error-correcting WOM code on SLCs (first observed in [84]). Moreover, on q-level

cells, the code CW � CR is a 〈4〉d
2(q−1)

3
e

q /9 single error-correcting flash code. �

Example 4.2.4. Let CW be the 〈7〉4/7 code based on PG(2, 2) from [52] and let CR

be the [3, 1, 3]2 binary repetition code. Then the code CW � CR is a 〈7〉4/21 single

error-correcting WOM code on SLCs. Moreover, on q-level cells, the code CW � CR

is a 〈7〉d
4(q−1)

3
e

q /21 single error-correcting flash code. �

We next show how to obtain a flash code with increased error-correction by con-

catenating an inner flash code with an outer classical code.

Theorem 4.2.5. Let C1 be an [n1, k1]qk2 code that corrects e errors, and C2 a 〈2k2〉tq/n2

E-error-correcting WOM code. Then C1�C2 is a 〈2k1k2〉tq/(n1n2) WOM code capable

of correcting (E + 1)(e + 1)− 1 errors.

Proof. The length and dimension of C1�C2 is immediate. This code achieves t writes

since the inner flash code is capable of t writes. The minimum number of errors that

must occur for a decoding failure is (E + 1)(e+ 1), where E + 1 errors occur among

each of e+1 distinct length-k2 q-ary expansions of symbols in C1. Any smaller number

of errors can be corrected by the length n1n2 concatenated code.

For comparison, we show the concatenation of a inner binary repetition code with

a classical binary outer code for use on q-level flash cells.

Theorem 4.2.6. Let C be an [n, k, d]2 e-error-correcting code and let CR be the

[2m+1, 1, 2m+1]2 binary repetition code. Then the code C�CR for q-level cells results



50

in a 〈2k〉tq/((2m + 1)n) flash code that corrects (me + m + e) errors and guarantees

t = d q−1
3
e writes.

Proof. The length and dimension follow from the construction. Concatenating two

binary codes results in a binary code, but we use reduction modulo 2 to adapt the

code to q-ary cells. Errors that result in a change in parity of a cell can be corrected

by increasing the level of the cell by one. In the worst case, an error occurs in the

same cell at every write. In order to correct it, the cell level is increased by one so

that it has the same parity as the entry before the error occurred. Thus this code

guarantees d q−1
3
e writes. Note that the outer code can correct up to e errors and

the inner code can correct up to m errors. Thus, the concatenated code can tolerate

(m+ 1)(e+ 1)− 1 = me+m+ e errors.

Observe that this use of a classical code on multi-level cells gives better error-

correction capabilities than the code in Theorem 4.2.2 but can tolerate fewer rewrites

since the only rewrite capabilites come from the number of levels.

Example 4.2.7. Let C be an [n, k, d]2 e-error-correcting code and let CR be the

[3, 1, 3] binary repetition code. Then the code C � CR for q-level cells yields a

〈2k〉tq/(3n) flash code that corrects 2e + 1 errors and gets t = d q−1
3
e writes. �

4.3 Generalized position modulation

In 2009, Wu and Jiang proposed a WOM code construction called position modulation

[76]. The idea is to partition the block of cells in the memory into sub-blocks, each

of equal size, and use the position and contents of the non-zero sub-blocks to convey

information. In that paper, the authors showed that taking sub-blocks of size two can

yield a WOM code that achieves half the optimal rate for a fixed number of writes.
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Low encoding and decoding complexity is a key feature of the codes, which relies on a

polynomial-time-implementable mapping from the integers {0, . . .
(
n
k

)
−1} to a binary

vector of length n containing k ones.

More specifically, a block of n cells is partitioned into m sub-blocks of size k, and

depending on the amount of information to be stored at each write, j1 of the sub-

blocks are chosen to be made non-zero on the first write. Each of these sub-blocks

can contain one of 2k − 2 messages. The positions of the j1 non-zero sub-blocks and

their contents encode the information. Before the second write, these j1 sub-blocks

are all entirely programmed with ones (if necessary, additional sub-blocks are also

programmed to the all-ones vector before the second write). Then the process is

repeated. Given an initial number of writes t and the desired amount of information

to be stored at each write, the code length and sub-block size is chosen so that the

corresponding position modulation code achieves these goals.

Here we present a generalized position modulation (GPM) scheme that uses a

component t-write WOM code to create a new WOM code with increased rewrite

capabilities. One special case of a GPM construction yields 2t writes, while the

general construction can achieve more than 2t writes. We also describe how GPM

codes compare to the original position modulation codes in [76], as well as other

existing WOM codes.

We construct a WOM code on n = hm cells, using a component t-write WOM

code of length m on each of the h sub-blocks. We will call a group of m cells (a

particular sub-block) active if there is at least one nonzero cell in the group. A group

that is composed of m cells with maximum charge q−1 will be called saturated, and a

group with all zeros is called empty. The cell state vector begins with h empty groups.

On the first write, k1 empty groups are chosen and activated, using the component

WOM code. The positions of the activated groups and their contents both convey
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information. On the second write, the groups activated in write one can be rewritten

using the component WOM code, and consequently will contain second generation

words from the code. Simultaneously, a new collection of empty groups (sub-blocks)

are chosen and activated with first-generation WOM codewords, as in Figure 4.2. The

process continues until t writes have occurred, at which point the groups that were

activated on the first write are set to the saturated state, as in Figure 4.3. In the

following section we present a method for obtaining GPM codes with at least twice

the rewrites as the component code.

Figure 4.2: A GPM cell state vector, split into h groups of m cells, where w − i
denotes an ith generation word in the component code.

Figure 4.3: Once an active component exhausts its t writes, all m cells are set to 1,
shown by the darker shading.

4.3.1 GPM-WOM code construction

Given a 〈v〉t/m WOM code C, we will construct a 〈v1, . . . , vT 〉/hm WOM code C ′.

Start by partitioning the cells into h groups, with m cells in each group. For i =

1, . . . , T let Ki denote the set of new groups chosen in the ith write, and let ki = |Ki|.

For i ≤ t, the groups that are active during the ith write are K1 ∪ · · · ∪ Ki. For

t < i ≤ T , the groups that are active during the ith write are Ki∪Ki−1∪· · ·∪Ki−t+1.

Let Ni := k1 + k2 + · · ·+ ki denote the number of groups that are nonzero at the end

of the ith generation. For i ≤ 0, define Ni = 0. Since this scheme does not erase the



53

cells in Ki before writing information in Ki+1, distinguishing the new groups requires

that we can distinguish all first-generation WOM codewords in C.

Theorem 4.3.1. Given v1, . . . , vT , m ∈ N, and a fixed component WOM code C with

parameters 〈v〉t/m, then if h and k1, . . . , ks satisfy

1. v1 ≤
∑h−(s−1)

k1=1

(
h
k1

)
(v − 1)k1 ,

2. For i ≤ s, vi ≤ (v − 1)Ni−1−Ni−t
∑h−(s−i)−Ni−1

ki=1

(
h−Ni−1

ki

)
(v − 1)ki ,

3. For i ≥ s+ 1, vi ≤ (v − 1)Ni−Ni−t ,

there exists a 〈v1, . . . , vT 〉/(mNs) WOM code.

Proof. On the first write, choose the k1 groups of cells in K1 such that 1 ≤ k1 ≤ h− t.

Using C, each group can represent one of v − 1 information symbols (excluding the

all zeros vector, since the k1 chosen groups must be distinguishable from the h − k1

zero groups). Thus, there are v1 possible states that can be stored on the first write,

where

v1 =

h−(s−1)∑
k1=1

(
h

k1

)
(v − 1)k1 .

Since ki ≥ 1 for all i = 1, . . . , s, it is necessary to restrict the possible value of k1

to be less than h − (s − 1). Now, instead of performing the soft-erase operation

detailed in [76] (setting all active groups to the all-ones word), we will use C to

write on the k1 nonzero groups again in the next t − 1 writes. It remains necessary,

however, to distinguish the groups chosen in the first write from those chosen on

future writes. We therefore require that those groups get rewritten as something

different (whose generation is distinguishable from previous generations) at each of
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the following writes. The soft-erase operation will be performed on these groups after

the tth write.

The second write will proceed as follows: a new message must be written on each

of the k1 non-zero groups in K1 using the WOM code C, and we choose k2 new groups

with 1 ≤ k2 ≤ h−k1− (s−2) from the remaining zero positions. Each group receives

one of v − 1 messages. It is possible to represent up to v2 messages in the second

write, where

v2 = (v − 1)k1
h−k1−(s−2)∑

k2=1

(
h− k1
k2

)
(v − 1)k2 .

The term (v−1)k1 comes from using C to rewrite on the groups in K1. The remaining

terms result from chosing the groups to activate on the second write, and also choosing

the codewords to write in each of those active locations. Let Ni := k1 + k2 + · · ·+ ki,

for i ≥ 1 and define Nj := 0 for j ≤ 0.

After the tth write, the k1 groups in K1 cannot tolerate any further writes. Thus,

at the start of the t+ 1th write, first perform the soft-erase operation by setting all of

the k1m cells in K1 to ones, and continue to write on the remaining (h− k1)m cells.

In general, the soft-erase operation will be applied to the cells in group Ki on the

(i+ t)th write.

In the ith write where i ≤ s, the number of possible messages that may be repre-

sented is

vi ≤ (v − 1)Ni−1−Ni−t
h−(s−i)−Ni−1∑

ki=1

(
h−Ni−1

ki

)
(v − 1)ki .

The most recently activated groups can always be identified from the generation-

one codewords they contain. After a group has been active for t writes, the group is

programmed to all ones.

New groups are activated after the tth write, up until the sth write, since Ns = h.
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Known WOM Known WOM PM code GPM code
code parameters code rate rate rate

t=2 〈26〉2/7 1.34 1.14 –
t=3 〈63〉3/12 1.49 1.35 1.46
t=4 〈7〉4/7 1.60 1.49 1.54
t=5 〈11〉5/11 1.57 1.63 1.66
t=6 〈16〉6/15 1.60 1.71 1.73
t=7 〈15〉7/15 1.82 1.81 1.79
t=8 〈15〉8/19 1.65 1.88 1.83
t=9 〈15〉9/21 1.67 1.95 1.87
t=10 〈15〉10/24 1.63 2.01 1.90

Table 4.2: Table of WOM code, position modulation code, and GPM code rates for
given values of t.

Therefore when i ≥ s+ 1, the number of messages that can be represented on the ith

write is vi ≤ (v − 1)Ni−Ni−t .

The result is a 〈v1, . . . , vT 〉/hm WOM code.

Remark 4.3.2. The constructions resulting from Theorem 4.3.1 require that the

codewords of C can be partitioned by write-generation, and that neither the all zeros

word nor the all ones word is a codeword.

4.3.2 Examples and code performance

In this subsection we provide two examples of a GPM code using a restricted version

of the 〈4〉2/3 Rivest-Shamir code in Example 2.2.2 as the component code, and also a

version of the Merkx WOM code in Example 3.2.1 as a component code. In the Rivest-

Shamir case, we eliminate the message 00 since the corresponding WOM codewords

for that message are 000 and 111, which are prohibited by Theorem 4.3.1. This gives

a 〈3〉2/3 WOM code as the component code.
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Example 4.3.3. Take m = 3 and h = 50, and T = 4. Then the resulting GPM code

satisfies the following constraints, assuming k1 = 25, k2 = 13, k3 = 12.

v1 =

(
50

25

)
325,

v2 =

(
25

13

)
325+13,

v3 = 313+12,

v4 = 312.

Allowing vi to range over different possible values at each stage could further optimize

the code. With the ki values above, we obtain a 〈v1, v2, v3, v4〉4/(150) GPM code with

rate

log2(v1 · · · v4)
150

= 1.518.

Table 4.2 shows the rates of low-complexity WOM codes and position modulation

codes, which were compared in the original work on position modulation [76]. The first

two columns show the parameters and rate of low-complexity, fixed-information WOM

codes that were used for comparison in [76]. The third column shows the comparable

position modulation code rate for given t. Since there has been recent ongoing work

on capacity-approaching WOM codes [70], [80], the parameters and rates in columns

one and two are no longer the best for some values of t, but we continue to use these

classical WOM codes as components in order to maintain consistency with the original

position modulation analysis. The final column of the table gives rates resulting from

the GPM construction. The GPM code rates were calculated using the known WOM

code as the component code, and assuming the maximum value of vi is attained for
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all i. The GPM codes are variable-rate WOM codes, whereas the standard WOM

codes and position modulation codes were designed to give fixed-rate WOM codes,

so direct comparison is not valid.

Example 4.3.4. In this example we use the Merkx WOM code [52] as an inner code,

and choose h = 50, T = 9, and assume k1 = 15, k2 = 15, k3 = 10, k4 = 5, k5 = 5.

On the first write for any newly activated group, the number of potential messages

is v = 7. On the second write, the number of messages is 6, since the same message

cannot be kept in the activated group (it must subsequently contain a codeword

that is not a generation-one codeword). On the third write of an activated group, the

number of messages again goes up to seven, since the important distinction is between

newly activated and previously activated groups, not second/third generation groups.

we obtain a GPM WOM code with the following parameters:

v1 =

(
50

15

)
· 715,

v2 = 615 ·
(

35

15

)
· 715,

v3 = 715 · 615 ·
(

20

10

)
· 710,

v4 = 730 · 610 ·
(

10

5

)
· 75,

v5 = 725 · 65 ·
(

5

5

)
75,

v6 = 715 · 65,

v7 = 715,

v8 = 710,

v9 = 75.
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The sum rate is 1.973. Again, letting ki range over various values sometimes yields

a higher rate code, but there is always a tradeoff between the amount of information

that can be stored in early writes and the amount of information that can be stored

during future writes. For example, a greater value of k1 limits the possible values for

ki, i ≥ 2.

In summary, the GPM scheme results in a code with increases rewrites, and yields

codes with a wide variety of block-lengths and corresponding rates.

4.4 Coset encoding on multi-level cells

The main results for this section are two construction methods that combine the

coset encoding scheme with nonbinary WOM codes to obtain codes for q-ary flash

cells. Throughout this section, q ∈ N, and q need not be a power of a prime. The

construction methods presented here share similarities with concatenation and gen-

eralized position modulation (Section 4.3) but use covering codes for the outer code,

and nonbinary WOM codes for the inner code. We show how to apply the coset en-

coding scheme of [8] and rewrite on the components, and detail the two-step decoding

process. We illustrate our construction methods with several examples, and discuss

advantages and disadvantages of these constructions.

4.4.1 Binary coset encoding

Coset encoding, a general method for obtaining a WOM code from any error-correcting

code, was introduced in [8]. Let C be an [N,K,D] binary linear code with covering

radius R. Using C, we will encode (N −K) bits on N cells. The messages are associ-
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ated with syndromes of C, so there are 2(N−K) messages on each write. The encoding

process is described below.

1. To encode s1 ∈ F(N−K)
2 , write a minimum weight vector y1 ∈ FN2 with syndrome

s1.

2. To encode the next message s2, find y2 such that y2 + y1 has minimum weight

with syndrome s2 and the support of y2 and y1 are disjoint.

3. Repeat this process until the encoding of a new message is no longer possible.

Definition 4.4.1. A linear error-correcting [n, k, d] code C is called maximal if C

is not a subcode of a code of length n with the same distance. Equivalently, C is

maximal if R(C) ≤ (d− 1).

We will use 1 to denote the all ones vector and 0 to denote the all zeros vector.

The main result relating to the coset encoding method is that when C is a maximal

code and satisfies other maximal conditions on shortened versions, then the resulting

WOM code guarantees T writes of (N−K) bits, where T is an expression in terms of

the minimum distance and covering radius of C, and the number of shortened versions

retaining maximality. Specifically, the authors present the following theorem.

Theorem 4.4.2 (Cohen, Godlewski, Merkx, 1986). Let C be an [n, k, d]R maximal

code. If for some i with i ≤ d⊥-1,3 its shortened versions of lengths at least (n − i)

remain maximal and of minimum distance d, then at least T writings of (n− k) bits

are guaranteed with T = 2 + b(i−R)/(d− 1)c.

Due to the interest in nonbinary WOM codes, it is natural to ask how the coset

encoding scheme works when applied to a nonbinary covering code. In this case, the

3Here, d⊥ denotes the minimum distance of the dual code of C.
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rewriting capabilities come from the process of making disjoint subsets of the cells

nonzero on each write, but once a cell has been programmed, it will never be repro-

grammed. Thus, a major advantage of a multi-level memory—that cell levels may

be increased multiple times—is not utilized. This drawback is also identified in [78],

where nonbinary coset encoding is used to create efficient binary WOM codes. These

authors and, separately, Wu [75] construct binary WOM codes using ideas similar to

coset encoding on the second write of two-write constructions. These modifications

avoid the maximality restrictions on the error-correcting code that make coset encod-

ing difficult to apply to an arbitrary code. A different application of covering codes

was used in the context of flash codes in [31]. The goal in that application was to

obtain bounds on flash codes for large-alphabet messages using existing bounds on

flash codes for small-alphabet messages.

In the following subsections, we present two methods of combining a covering code

and a nonbinary WOM code to obtain a nonbinary rewriting code. The constructions

share some of the features of the generalized position modulation scheme, except the

outer covering code is encoded and decoded using the coset encoding scheme, and the

inner code uses encoding and decoding rules of a nonbinary WOM code.

4.4.2 Construction I

Let C be an [N,K, d] binary linear code with covering radius R, and suppose C is

maximal. Suppose with coset encoding, C produces an 〈M〉T/N binary WOM code

where M = 2(N−K). Let W be an 〈m〉tq/n WOM code on q-ary cells. For both

constructions, assume that codewords in W have distinguishable generations, and

that the all-zeros word is not a codeword in W .

We construct a length Nn q-ary WOM code that guarantees Tt writes as follows.
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View the Nn cells of the memory state vector as N groups of n cells. During the

writing process, each group will be in a state of “active”, “active saturated”, or

“inactive”. Let xij denote the number of groups activated on the ((i − 1)T + j)th

write4. An “i-saturated vector” will be a word of length n that is not in W , and is

“less than” any word in generation i+ 1 of W . Given a codeword c ∈ W such that c

is in generation i, the existence of an i-saturated vector wi such that c < wi will be

a requirement in the first construction detailed next.

The encoding for Construction I is as follows.

1. Given one of M = 2(N−K) messages, coset-encoding using C produces a length

N binary word to be viewed as an indicator vector for which groups will be

activated. One of m symbols can now be written on each active group using

W . The first write can store 2(N−K)mx11 messages, where x11 is the weight of

the memory state vector corresponding to the syndrome message of the outer

covering code, and thus represents the number of groups activated in the first

write.

2. On writes 2 through T, first write a 1-saturated vector on each of the active

groups. Use the outer code to encode one of M messages—such an encoding

activates at least one more group. Write one of m messages fromW on each new

active group. On each of these writes, 2(N−K)mx1j messages can be represented

in total, where x1j is the number of new groups activated during the jth write.

3. For i = 1, . . . , t − 1, on the (iT + 1)th write, first write an iT -saturated vector

on any inactive or active groups remaining after the (iT )th write, and call all

groups “inactive”. As before, any of M messages may be stored by indicating

4This corresponds to the jth write of the outer code in the ith iteration, so the inner codewords
at this stage will be generation i.
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a new set of active groups, and each new “active” group can store one of m

messages using a generation i + 1 word from W . Write (iT + 1) can represent

2(N−K)mxi+1,1 messages.

4. For i = 1, . . . , t − 1, for writes (iT + 2) to (iT + T ), continue in the same way

as Step 2, where at the end of each write, each active group is saturated using

an appropriate i-saturated vector, and at the end of the (iT + T )th write, all

groups have an i-saturated vector. On write (iT + j), for j = 2, 3, . . . , T , a total

of 2(N−K)mxi+1,j messages can be represented.

5. Writing stops once the (Tt)th write is complete.

The decoding proceeds as follows.

1. Create an indicator vector y ∈ FN2 that has yi = 1 if group i is active or active

saturated, and yi = 0 if group i is inactive. The inner codewords in the active

groups have generation j words from W for some j, while the active saturated

and inactive groups have j-saturated and (j−1)-saturated vectors, respectively.

2. Compute the syndrome of y to reveal the message M that was stored by the

outer code.

3. For any group that is active but not saturated, decode the corresponding inner

WOM codeword using W .

Remark 4.4.3. In order to be able to encode the maximum number of messages on

write (iT + j), knowledge of xij should be known beforehand. Thus in most cases,

one can only assume xij ≥ 1 and encode 2(N−K)m messages on an arbitrary write,

which gives the lower guaranteed rate in the result below. However, the more general

rate is also provided in case knowledge of the coset structure and other information

on the outer code messages is available.
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The following sum-rate is achieved from the construction.

Theorem 4.4.4. The method described above (Construction I) produces a q-ary Tt-

write WOM code with length Nn and sum-rate

r ≥ Tt(N −K) + (
∑
xij) log2(m)

Nn

where the sum is over i = 1, . . . , t and j = 1, . . . , T . Note that Tt ≤
∑
xij ≤ Nt, and

so in the worst case, assuming just one activated group per write,

r =
Tt(N −K) + (Tt) log2(m)

Nn
.

4.4.3 Construction II

Let C be an [N,K, d] binary linear code that with coset encoding produces an 〈M〉T/N

binary WOM code where M = 2(N−K). Let W be an 〈m〉tq/n WOM code on q-ary

cells with distinguishable codeword generations, and assume that the all-zeros word

is not a codeword in W .

We construct a length Nn q-ary WOM code that guarantees T + t − 1 writes as

follows. View the Nn cells of the memory state vector as N groups of n cells. During

the writing process, each group will be in a state of “active”, “active saturated”, or

“inactive”. Let xi denote the number of new groups activated on the ith write, for

i = 1, . . . , T , and let w denote the all-(q− 1) vector, called the saturated vector. For

convenience, define xi = 0 for i ≤ 0.

The encoding is as follows.

1. Same as Step 1 in Construction I. Given one of M messages, coset encoding
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using C produces a length N indicator vector for which groups will be activated.

One of m symbols can now be written on each active group using a generation

one codeword of W . The first write can store Mmx1 messages.

2. On writes i, where i = 2, . . . , T , use the outer code to encode one of M messages.

If the current memory state vector of a group is a generation j codeword in W

where j < t, one of m messages may be stored using a generation j+1 codeword

of W . If the current state of a group is a generation t codeword, write the

saturated vector w on that group. For any new groups activated by the outer

code, write one of m messages from W using a generation one codeword. In

total, write i can store Mm(xi−t+1+···+xi) possible messages.

3. Once T writes have been completed, the outer code can no longer be used. On

write T + t − i where i = 1, . . . (t − 1), write one of m messages on each of

the xT−i+1 + · · · + xT active groups remaining that have current states not in

generation t, and saturate any generation t groups using w.

The decoding for Construction II is as follows.

1. Check if there are any generation one codewords of W in any of the groups. If

so, compute the indicator vector of all active and saturated groups, and decode

the outer code message using C. If there are no generation one inner codewords,

then the message does not contain any outer code message.

2. Among the active groups that are not saturated, decode the inner codewords

using W .

The following sum-rate is achieved from the construction.
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Theorem 4.4.5. The method described above (Construction II) produces a q-ary

T + t− 1-write WOM code of length Nn and sum-rate

r ≥ T (N −K) + t
∑

i(xi) log2(m)

Nn
.

In the worst case, assuming just one new activated group per outer code write yields

r =
T (N −K) + (Tt) log2(m)

Nn
.

An advantage of Construction II over Construction I is the relaxed conditions on

the inner WOM code. While the rate and number of writes is inferior, most WOMs

can be used as the inner code in Construction II.

Remark 4.4.6. In this construction, the inactive groups remaining after the T writes

of the outer code are never used. Alternatively, an indicator cell may be added to the

memory state vector to indicate when the first T writes are complete. This would

allow additional messages to be written on those groups using W on writes T + 1

through T + t.

4.4.4 Codes from Constructions I and II

Constructions I and II each require specific features of the inner WOM code. The

following is an example of a nonbinary WOM code that can be used as the inner

code in Construction I, which requires a saturated state between each generation of

writes. It is a variation of the simple q-ary t-write WOM code presented in [18] and

later in [80]. The idea for two writes is to partition the alphabet for each cell into

two groups, {0, 1, . . . , b q
2
c} and {b q

2
c+1, . . . , (q−1)}. On the first write the cells only

take values from the first group, while on the second write the cell values all come
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from the second group, which results in an increase of all cell levels from write one to

write two. The variation we provide is to reserve the word 0 for the inactive state,

the word b q
2
c1 for the 1-saturated state, and the word (q − 1)1 for the 2-saturated

state.

0, 1, . . . , bq
2
c − 1, bq

2
c︸ ︷︷ ︸

write one alphabet

bq
2
c, bq

2
c+ 1, . . . , (q − 2), (q − 1)︸ ︷︷ ︸

write two alphabet

Denote the write one alphabet by A1 and the write two alphabet by A2. Let n be

the number of cells in the memory state vector of the WOM code. Note that in the

variation we present, on the first write any word in (A1)
n may be written except 0

and b q
2
c1, which are reserved for the states “inactive” and “1-saturated”, respectively.

During the second write any word in (A2)
n may be written except b q

2
c1 and the 2-

saturated state, (q− 1)1. This modification allows this WOM code to be used as the

inner code in Construction I. The sum-rate of this WOM code is

log2[((b q2c+ 1)n − 2)(b q
2
cn − 2)]

n
.

This construction can be generalized to t writes, though large q is necessary. The

following partition of the cell alphabet will yield a variable-rate WOM code with t

writes:

0, 1, . . . ,
⌊q
t

⌋
︸ ︷︷ ︸
write 1 alphabet

,

⌊q
t

⌋
, . . . , 2

⌊q
t

⌋
︸ ︷︷ ︸

write 2 alphabet

...
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(t− 1)
⌊q
t

⌋
, . . . , (q − 1)︸ ︷︷ ︸

write t alphabet

.

Note that the saturated states are of the form
(⌊

q
t

⌋)
1,
(
2
⌊
q
t

⌋)
1, etc. Thus, the sum

rate of this inner code is

log2[((b
q
t c+ 1)n − 2)(b qt c

n − 2)(t−2)((q − tb qt c)
n − 2)]

n
.

The EG(3, 2) code from Section 3.4 is suitable as an inner code for Construction

II since the write generations are distinguishable from the contents of the cells. Note

that a slight variation must be used in order to ensure this for all message sequences.

Specifically, in the encoding procedure of the EG(3, 2) WOM code, disregard any

rule that results in a first generation word (a,b), with both components nonzero,

or a second generation word with a zero component. For example, the steps that

state “if b < w, then set c = (0,w),” and “if a < v′, set c = (v′,0)” (i.e., those

that indicate a second generation memory state that is indistinguishable from a first

generation state) should both be omitted, so that all second generation words have

the form (a,b) such that a 6= 0 and b 6= 0. These rules were originally created to

allow for possible third writes and beyond, but since the second and third generation

memory state vectors are not distinguishable, we restrict to using the inner WOM

code over only two writes. As we discussed above, the simple scheme is just as good,

and in the context of Construction II we can use either inner code with the same

basic result.

Note that in both constructions the outer binary code can come from a more

general class of WOM codes than those obtained from coset encoding, but possibly

at the cost of decoding complexity. Some examples of outer binary WOM codes that
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result from coset encoding are given in [9]:

• A Hamming code of length 2r − 1 produces a 〈2r〉2r−2+1/(2r − 1) WOM code

using the coset encoding scheme.

• The length 23 Golay WOM code produces a 〈211〉3/23 WOM code using the

coset encoding scheme.

Table 4.3 shows parameters of codes obtained using various inner WOM codes

W of the type given in the previous section. The outer codes are various Hamming

codes using the parameters detailed above [9]. Note that the rates are given as a

range, using the upper and lower bounds on rate indicated in Subsection 4.4.2. Even

the upper bound generally lies well below the theoretical upper limit on rate given in

[16], indicating that the use of variable rate WOM codes for the inner and outer codes

could lead to an improvement in rate. One gain associated with Constructions I and

II is that the number of guaranteed writes increases significantly, depending on the

constituent codes. Table 4.4 shows parameters of codes obtained using Construction

II.

4.4.5 Error correction

In addition to obtaining many writes, Constructions I and II may be used for error

correction when the constituent WOM codes have some error correction capability.

Error correction in the context of a concatenation-type scheme for WOM has been

explored in [28, 23], but in the former case the outer code in the concatenation was

a traditional error-correcting code rather than a binary WOM code.

Particular types of errors that occur in Constructions I and II are distinguished

in the following way: errors that effect the decoding of the outer codeword are called
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Outer code Inner code Nn q rate r Tt
〈8〉32/7 〈2〉26/1 7 6 3.428 ≤ r ≤ 4.571 6

〈16〉52/15 〈2〉26/1 15 6 3.333 ≤ r ≤ 4.667 10

〈8〉32/7 〈4〉310/2 14 10 3.214 ≤ r ≤ 4.928 9

〈16〉52/15 〈4〉310/2 30 10 3 ≤ r ≤ 5 15

〈8〉32/7 〈4〉211/1 7 11 4.285 ≤ r ≤ 6.571 6

〈16〉52/15 〈4〉211/1 15 11 4 ≤ r ≤ 6.667 10

〈32〉92/31 〈4〉211/1 31 11 4.0645 ≤ r ≤ 6.903 18

〈8〉32/7 〈16〉211/4 28 11 2.357 ≤ r ≤ 4.643 6

〈16〉52/15 〈16〉211/4 60 11 2 ≤ r ≤ 4.667 10

〈8〉32/7 〈9〉313/2 14 13 3.966 ≤ r ≤ 6.684 9

〈16〉52/15 〈9〉313/2 30 13 3.585 ≤ r ≤ 6.755 15

〈8〉32/7 〈4〉516/2 14 16 5.357 ≤ r ≤ 8.214 15

〈16〉52/15 〈4〉516/2 30 16 5 ≤ r ≤ 8.333 25

〈8〉32/7 〈9〉417/2 14 17 5.285 ≤ r ≤ 8.913 12

〈16〉52/15 〈9〉417/2 30 17 4.78 ≤ r ≤ 9.006 20

〈8〉32/7 〈4〉722/2 14 22 7.5 ≤ r ≤ 11.5 21

〈16〉52/15 〈4〉722/2 30 22 7 ≤ r ≤ 11.667 35

Table 4.3: Parameters for various choices of inner and outer codes in Construction I.

Outer code Inner code Nn q rate r T+t-1
〈8〉32/7 〈2〉26/1 7 6 2.142 ≤ r ≤ 3.285 4

〈16〉52/15 〈2〉26/1 15 6 2.0 ≤ r ≤ 3.333 6

〈8〉32/7 〈4〉310/2 14 10 1.928 ≤ r ≤ 3.642 5

〈16〉52/15 〈9〉417/2 30 17 2.779 ≤ r ≤ 7.006 8

〈8〉32/7 〈4〉722/2 14 22 3.642 ≤ r ≤ 7.642 9

〈16〉52/15 〈4〉722/2 30 22 3.0 ≤ r ≤ 7.667 13

Table 4.4: Parameters for various choices of inner and outer codes in Construction II.
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global errors; errors that impact the inner codewords are called local errors. Global

errors in the outer code can be of the type (1) active group becomes inactive, or (2)

inactive becomes active. Local errors in the inner code are Hamming errors.

The following proposition gives a general result about using codes with some error

correction as the inner and outer codes of the constructions.

Proposition 4.4.7. Let C be the outer 〈M〉T2 /N E-error-correcting WOM code, and

W be the inner e-error-correcting 〈m〉tq/n WOM code. Then the code C �W under

either Construction I or II has parameters as indicated in Theorems 4.4.4 or 4.4.5,

respectively, and can correct at least (E + 1)(e+ 1)− 1 errors.

Proof. The constructions detailed in Subsections 4.4.2 and 4.4.3 hold the same for the

error-correcting case. What remains is to check that all patterns of (E+ 1)(e+ 1)− 1

can be corrected. Indeed, for an inner word to be read in error, at least e + 1 errors

must occur in a subblock of length n. Further, an outer word can be corrected

as long as at most E of the N blocks are in error. Thus, as long as no more than

(E+1)(e+1)−1 cells are in error, the memory contents can be decoded correctly.

Many local error patterns will not actually result in a global error. For example,

if an active group is read in error as a different active group, a global error does not

occur.

Example 4.4.8. For the outer code, consider a single-error-correcting WOM code

(formed from a two-error-correcting BCH code), presented in [84]. The WOM code

has parameters 〈6〉t/63, where t ≥ 4. For the inner WOM code, use an error-correcting

WOM code construction in [25] that yields a 〈16〉516/21 WOM code that can correct

three Hamming errors. Construction II provides a length-1323 WOM code that can

correct seven Hamming errors with q = 16, and that guarantees eight writes.
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We presented two constructions that give a general framework to obtain a non-

binary WOM code from an outer binary code and an inner nonbinary code. In

particular, we showed how to use the classical coset encoding scheme on an outer

binary code in order to get nonbinary WOM codes from Constructions I and II. The

two constructions have tradeoffs in the number of writes versus the amount of infor-

mation that can be stored at each write. While Construction I allows for more writes,

less information can be guaranteed at each generation of the code. Conversely, Con-

struction II allows for more information at each generation, but fewer writes overall.

An advantage of Construction II is that it carries fewer restrictions on the properties

of the inner nonbinary WOM code that can be used.
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Chapter 5

Binary structured bit-interleaved

LDPC codes1

Recently, the storage capacity of flash memory devices has increased dramatically,

due in part to the development of multi-level cell (MLC) flash composed of cells that

can store two bits, and triple-level cell (TLC) flash composed of cells that can store

three bits [75]. The physical layout of the memory (as observed in the flash memory

products used in the experiments in [77]) is as follows: the cells are organized into

pages, the pages are organized into blocks, and each block contains 256 pages (resp.,

384 pages) of cells in MLC (resp., TLC) flash.

In MLC flash, each cell can hold one of four symbols that may be viewed as

binary 2-tuples. The left-most bit is called the most significant bit (MSB) and the

right-most bit is the least significant bit (LSB), as in Figure 5.1. The two bits of a

single cell are distributed among different pages so that pages contain only MSBs or

only LSBs. Similarly, in TLC flash, each cell can hold one of eight symbols whose

1Material in this chapter will appear in [26], the IEEE Journal on Selected Areas of Commu-
nications (JSAC), Special Issue on Communication Methodologies for the Next-Generation Storage
Systems.
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Figure 5.1: MLC flash cells and a binary mapping.

bits are distributed among MSB and LSB pages, as well as pages containing central

significant bits (CSBs).

In [77, 17] the authors observe that in the TLC flash memory that they tested,

a large majority of observed errors (96%) were single-bit errors, and further that

the MSB pages have a lower page error rate than the CSB and LSB pages. Similar

differences in MSB and LSB bit error probabilities for MLC were observed in [79].

The extent to which the bit error probability of an MSB differs from that of an LSB

or CSB bit depends on the mappings of cell levels to binary representations in MLC

and TLC flash that are used. An earlier analysis in [21] revealed further differences

between the overall performance of SLC (single-level cell) and MLC flash products,

including power, lifetime, and error rates.

Using these observations as motivation, this chapter explores how the bit assign-

ments to MSB and LSB pages affect decoding thresholds when a binary low-density

parity-check (LDPC) code is used for MLC flash. This gives insight to the optimal

check node degree distributions to MSBs and LSBs for MLC flash bit-interleaved

coded modulation. The degree distributions for binary LDPC codes have been shown

to determine decoding performance under message-passing decoding [61, 49, 68]. In

the flash memory setting, there are different bit error rates for MSBs and LSBs.
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Therefore we consider the MSB-degree and LSB-degree of check nodes in the Tanner

graph. The way to compare various MSB and LSB degree distributions is to compute

the decoding thresholds using iterative calculations of decoding error. In general,

the threshold provides a reliable indicator of the decoding performance of a partic-

ular code. Chapters 5 and 6 both use MATLAB and recursive probability-of-error

calculations to determine decoding thresholds.

We consider hard decision decoding for our analysis due to both its low complexity

and the fact that flash applications are aimed to provide high throughputs and access

speeds. It is worth noting that several construction and decoding strategies for binary

LDPC codes have been proposed [54, 44, 55] that deal with unequal error probabilities

and nonuniform channels, but these are not specific to the flash memory structure.

The chapter is outlined as follows. Background and notation are presented in

Section 5.1. In Section 5.2 we analyze the decoding threshold of binary regular LDPC

codes for different check node to MSB and LSB degree distributions using the Gallager

A and B decoding algorithms. We characterize check nodes based on the number of

MSB and LSB connections (MSB and LSB degrees). Section 5.2 presents decoding

thresholds in the case of graphs with two types of check node degrees. Section 5.3

presents decoding thresholds for graphs with more than two types of check node

degrees. The decoding thresholds in these sections assume that different bit error

probabilities are independent, which is a simplification of the physical reality, where

these probabilities are in fact closely related. Therefore, Section 5.4 uses a particular

signal mapping which results in related bit error probabilities, and we consider an

AWGN model to obtain decoding thresholds in terms of the variance of the noise.
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5.1 Motivation from MLC flash memory

In MLC flash memory, the two bits representing a symbol in a cell are stored on

two different pages, one having only MSBs and one having only LSBs. One com-

mon method of storing data is to take a binary code and arbitrarily assign the bits

to MSB and LSB pages, for example in an alternating fashion (Figure 5.2). This

bit-interleaved coded modulation approach allows any binary code to be applicable

on MLC flash. In this way, the two bits that compose a symbol are encoded inde-

pendently but readable from the stored symbol. An alternative approach is to use

multi-level coding in which a message is split in half and two (possibly different) codes

are used on each page type (Figure 5.3). Again, this implementation uses binary codes

for each page, but allows for a code with better error correction capabilities to be used

on the pages with higher bit error rate.

Figure 5.2: Bit-interleaved coded modu-
lation in MLC flash cells.

Figure 5.3: multi-level coding in MLC
flash cells.

For an LDPC code used in the bit-interleaved method for MLC flash, it is natural

to ask whether the number of MSB and LSB neighbors of each check node impacts

the decoding performance, particularly when the voltages representing the symbols

in the cells result in a greater disparity between the MSB and LSB bit error rates.

In the next section we will investigate this question for binary (j, k)-regular LDPC

codes in which each variable node has degree j and each check node has degree k. We

say a check node has type T (α, β) if it has α MSB neighbors and β LSB neighbors.
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Clearly, α + β is the degree of the check node.

5.2 Bit assignments for binary regular LDPC

codes

In this section, we assume a binary (j, k)-regular LDPC code and examine different

combinations of check nodes types to determine which has the best decoding threshold

based on density evolution [19, 60, 62]. We focus on the case where the code has two

types of check nodes. For 0 ≤ g ≤ 1, let g be the fraction of check nodes having

type T (α1, β1) and (1− g) be the fraction of check nodes having type T (α2, β2). Our

convention in this section is to consider cases where α1 ≤ α2 to avoid repetition.

Let ` be the number of check nodes. Since half of the variable nodes are necessarily

assigned to MSB pages and the other half to LSB pages, the following constraint

holds:

(5.2.1) α1g`+ α2(1− g)` =
k`

2
=

# edges

2
.

Consequently, α2 = (k
2
− α1g) 1

1−g , and observe that β1 = k − α1 and β2 = k − α2.

For a given (j, k)-regular “cycle-free” LDPC code with two check node types as

above, we will analyze the probability, as a function of the decoding iteration, that a

message from a variable node to a check node is in error using the Gallager A and B

algorithms [19]. Let b1 and b2 be the initial channel probability of error of an MSB

and an LSB bit, respectively, and assume that b1 < b2.

Remark 5.2.1. An analysis of results when b2 < b1 is analogous, and can be obtained

by simply reversing the roles of the MSB and LSB bits. When b1 = b2 the result is
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the standard case where all bits have the same probability of error.

The Gallager A hard decision message passing algorithm requires all of the check

node neighbors of a given variable node v to agree (except the neighbor c that v is

sending to) in order to change the value that v sends to c in the next iteration. When

calculating the probability that the message sent from a variable node to a check node

in the (t+ 1)th decoding iteration is incorrect, we must consider two cases: either the

variable node is an MSB, denoted vM , or the variable node is an LSB, denoted vL.

Furthermore, denote the probability that a message sent from vM to a neighboring

check node on the (t + 1)th iteration is in error by p
(t+1)
M , and define p

(t+1)
L similarly.

Finally, let q
(t)
M and q

(t)
L denote the probability that a message sent on iteration t from

a check node to an MSB or LSB, respectively, is in error.

Using calculations analogous to those in [19, 48] for a (j, k)-regular graph having

girth at least 2t, we obtain the following.

Proposition 5.2.2. If x1 and x2 are the number of MSB and LSB neighbors2, re-

spectively, involved in a message update at a check node c, then the probability that

the message from c is in error on iteration t is

q(t) =
1− (1− 2p

(t)
M )x1(1− 2p

(t)
L )x2

2
.

Moreover,

p
(t+1)
M = b1

(
1−

(
1− q(t)

)j−1)
+ (1− b1)

(
q(t)
)j−1

, and

p
(t+1)
L = b2

(
1−

(
1− q(t)

)j−1)
+ (1− b2)

(
q(t)
)j−1

.

2Here, x1 + x2 = k − 1 since the check node has degree k and the variable node receiving the
message is not included in the message update.
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Proof. Assume that c has α MSB neighbors and β LSB neighbors. If c is sending

a message to an MSB neighbor vM , then x1 = α − 1 and x2 = β. Likewise, if the

message is being sent from c to vL, then x1 = α and x2 = β − 1. Denote by p
(t)
Yi

the probability that the ith neighbor, vYi , of c sends an incorrect message on the

tth iteration, where Yi ∈ {M,L} for i = 1, . . . , k − 1. Note that c sends an incorrect

message exactly when an odd number of neighboring variable nodes are incorrect. Let

g(x) be the generating function in which the coefficient of xl records the probability

that exactly l neighbors of c are incorrect on iteration t:

g(x) =
k−1∏
i=1

((1− p(t)Yi ) + p
(t)
Yi
x).

The function g(x)+g(−x)
2

yields precisely the even powers of x. Substituting x = 1

into this expression gives the probability that an even number of neighbors of c send

incorrect messages. Thus, the probability that c is incorrect on the tth iteration is

1− g(1) + g(−1)

2
= 1−

∏k−1
i=1 ((1− p(t)Yi ) + p

(t)
Yi

) +
∏k−1

i=0 ((1− p(t)Yi )− p
(t)
Yi

)

2

= 1−
1 +

∏k−1
i=1 (1− 2p

(t)
Yi

)

2

=
1−

∏k−1
i=1 (1− 2p

(t)
Yi

)

2

=
1− (1− 2p

(t)
M )x1(1− 2p

(t)
L )x2

2
.

The second part of the Proposition deals with the probability of an erroneous message

being sent from a variable node to a check node under the Gallager A algorithm on

iteration (t+ 1). A variable node sends an incorrect message if either (1) the channel

information is incorrect and at least one of the incoming check node messages is

incorrect, or (2) the channel information is correct and all incoming check messages
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agree and are incorrect. The expressions p
(t+1)
M and p

(t+1)
L above give exactly these

probabilities for vM and vL, respectively.

For our analysis we assume that half of the bits are MSBs and half are LSBs, and

the graph has two check node types, denoted T (α1, β1) and T (α2, β2), and referred

to as “Type 1” and “Type 2”, respectively. The above expressions are modified

accordingly, where g represents the fraction of check nodes that have Type 1. Let

q
(t)
1,M denote the probability that a message from a check node of Type 1 to an MSB

neighbor on iteration t is in error:

q
(t)
1,M =

(1− (1− 2p
(t)
M )α1−1(1− 2p

(t)
L )β1)

2
.

The error probabilities q
(t)
1,L, q

(t)
2,M , and q

(t)
2,L are defined analogously. On average the

probability that a message sent from a check node to an MSB neighbor on iteration

t is in error is

q
(t)
M = g(q

(t)
1,M) + (1− g)q

(t)
2,M .

Similarly, q
(t)
L = g(q

(t)
1,L) + (1 − g)q

(t)
2,L is the average probability that a message sent

from a check node to an LSB neighbor on iteration t is in error.

The corresponding probability of error of a message from an MSB or LSB variable

node on the (t+ 1)th iteration is

(5.2.2) p
(t+1)
M = b1(1− (1− q(t)M )j−1) + (1− b1)(q(t)M )j−1,

(5.2.3) p
(t+1)
L = b2(1− (1− q(t)L )j−1) + (1− b2)(q(t)L )j−1.

For fixed values of the MSB bit error probability b1, we ran iterations of this
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algorithm in MATLAB to determine the corresponding decoding threshold for the

LSB bit error probability b2. The decoding threshold is the worst-case value of b2

such that the decoding probability of error goes to zero as the decoding iteration

increases. In this case, the specific cut-off was at 100 iterations, and a probability of

p(100) < 10−5 was declared a decoding success.

We considered b1 in the range of 0.0001 to 0.1 to be fixed, and ran 100 iterations

for each b1 tested. We tested (3, 6)-regular, (3, 16)-regular (3, 30)-regular, and (4, 8)-

regular LDPC codes having different check node types, and compared their decoding

thresholds for b2, including that of the standard case of a random code wherein each

neighbor of each check node is equally likely to be an MSB or an LSB. The results

are summarized in the following subsection. This analysis of the thresholds b1 and b2

for which the sequences p
(j)
M and p

(j)
L go to zero as j →∞ gives insight into edge label

choices for the nonbinary construction in Chapter 6.

5.2.1 Results for binary (j, k)-regular codes with Gallager A

Recall that g is the fraction of check nodes of Type 1, and (1 − g) is the fraction of

check nodes of Type 2. We now present the results of testing the Gallager A algorithm

described above for different fractions g of various check node types for (3, 6)-regular,

(3, 16)-regular, (4, 8)-regular, and select (3, 30)-regular codes. Recall that once g and

α1 are fixed, the rest of α2, β1, and β2 are determined. Our results indicate that for

a fixed probability b1, the best b2 threshold occurs when g = 1/2 and the two check

types are T (1, k − 1) and T (k − 1, 1) (i.e. α1 = 1). This suggests that codes having

highly unbalanced check nodes with respect to MSBs and LSBs will perform better

than the expected result of standard bit-interleaving coded modulation, which yields

on average half MSB and half LSB neighbors at each check node.



81

Remark 5.2.3. When the check nodes are of types T (0, k) and T (k, 0), one obtains

the multi-level coding situation where MSB and LSB pages are encoded and decoded

separately.
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Figure 5.4: Thresholds for structured bit-
interleaved (3, 6)-regular codes and corre-
sponding random code.

0 0.005 0.01 0.015 0.02 0.025 0.03
0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

0.09

b1: channel prob of MSB

b
2
 t
h
re

s
h
o
ld

: 
c
h
a
n
n
e
l 
th

re
s
h
o
ld

 f
o
r 

L
S

B
 p

ro
b

Zoom (3,6) LDPC: b1=0,...,0.03

 

 

Random

g=1/2 T(1,5)

g=1/2 T(2,4)

g=2/3 T(2,4)

Figure 5.5: Zoom-in of Figure 5.4 to
small b1 values, specifically where b1 <
b2. A higher b2 threshold indicates a
stronger code.

Figure 5.4 includes a curve for each possible combination of fraction g and Type 1

check node for a binary (3, 6)-regular LDPC code; a close-up of the results for small

values of b1 is given in Figure 5.5. The figure legend gives the value of g and the check

node type that the Type 1 check nodes have. The corresponding Type 2 for the other

(1− g) fraction of check nodes can be found using Equation 5.2.1. The case in which

the average check node has half MSB neighbors and half LSB neighbors (denoted by

“Random” in Figure 5.4) consistently has the lowest b2 threshold, while the curve

for g = 1/2 and Type 1 = T (1, 5) has the highest b2 threshold for every value of b1.

Note in this case that the corresponding Type 2 check nodes are T (5, 1). This implies

that it is advantageous to design binary LDPC codes with more structure than using

random bit assignments.
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Figure 5.6 summarizes the results for binary (3, 16)-regular LDPC codes, where for

each α1 = 1, . . . , 7, only the best result is shown for clarity. For example, when α1 = 7,

there were four values of g that yielded a legitimate value for α2: g = 1/2, 2/3, 3/4,

and 7/8. We ran the simulation for each of these cases, and Figure 5.6 contains

the best-performing curve which occurred when g = 7/8. The other values of α1

were treated analogously. The threshold curve for the random case is also included.

As is evident from Figure 5.6, the gain in b2 threshold that is achieved by the pair

g = 1/2, T (1, 15) for (3, 16)-regular LDPC codes is the greatest, but is more subtle

than the gain seen in (3, 6)-regular LDPC codes. We will see that this trend continues

in the case of (3, 30)-regular LDPC codes; the higher the code rate, the smaller the

gain in b2 thresholds. However, it is notable that the extremely unbalanced check

node types consistently perform among the best in all cases tested.
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Figure 5.6: Thresholds for structured bit-interleaved (3, 16)-regular codes, showing
the best of each α1 = 1, . . . , 7.

Due to the large number of possibilities for pairs {g, α1} when k = 30 (there are 60
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Figure 5.7: Thresholds for (3, 30)-regular
codes, showing random vs. g = 1/2 and
T (1, 29).
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Figure 5.8: Zoom-in of Figure 5.7 to
small b1 values, where b1 < b2. Here, a
finer step size in b1 values is used than in
Figure 5.7.

cases), and the fact that most of the curves lie close together, we ran the simulations

for g = 1/2, T (1, 29), and the random case to see whether a gain in b2 threshold also

exists in this setting. Figure 5.7 shows that for small values of b1, the b2 threshold in

the T (1, 29) case is higher than in the random case. It is important to note that the

axis scales of the plot in Figure 5.7 differ from those in the other plots, because for

values of b1 >> 2× 10−3, the b2 threshold went to zero for both curves in the figure.

Similarly, we tested (4, 8)-regular LDPC codes for different check node types. The

results are shown in Figure 5.9. Most of the cases coincided; however, the structured

cases all outperformed the random case for small values of b1. Observe that for some

of the cases, the b2 thresholds were essentially constant over certain intervals of b1,

suggesting that in these intervals, there is less dependence of b2 on b1 since the check

node types do not have as many MSBs influencing LSBs. All of the structured bit-

interleaved LDPC codes did better than the random code case where each check node

had half MSB and half LSB neighbors on average.
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Figure 5.9: Thresholds for structured bit-interleaved (4, 8)-regular codes and corre-
sponding random code.

The plots in this section used the density evolution equations presented earlier

for the Gallager A algorithm applied to the two initial channel probabilities. This

analysis is accurate when applied to codes with graphs of large girth. We work under

this assumption since random regular bipartite graphs are known to have girth that

increases logarithmically in the blocklength (see e.g., [73]).

5.2.2 Results for binary (j, k)-regular codes with Gallager B

Another hard decision decoding algorithm from [19], commonly referred to as the

Gallager B algorithm, differs from the former in its update rules at the variable nodes.

Rather than requiring all check messages involved in the update message to agree to

change the node’s estimate from that of the channel, only a majority is required. In

the case of j = 3 and j = 4, the expressions for p
(t+1)
M and p

(t+1)
L are the same for both

algorithms, and thus the results in the previous subsection are the same for Gallager

B decoding. Since Gallager B typically has a better performance over Gallager A for
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small check node degree, we compare the decoding thresholds for (5, 10)-regular and

(5, 50)-regular LDPC codes here under both algorithms.

In Figures 5.10 and 5.11, the thresholds for structured bit-interleaved (5, 10)-

regular LDPC codes are shown, using the Gallager A and Gallager B algorithms,

respectively. As expected, the b2 thresholds were better under Gallager B for fixed

values of b1. Under Gallager A, most of the structured codes performed comparably,

but under Gallager B the best b2 threshold was observed for the case where g = 1/2

of the check nodes had type T (1, 9), and the other half had type T (9, 1).
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Figure 5.10: Thresholds for (5, 10)-
regular codes, Gallager A algorithm.
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Figure 5.11: Thresholds for (5, 10)-
regular codes, Gallager B algorithm

In Figures 5.12 and 5.13, the thresholds for (5, 50)-regular LDPC codes are shown

using the Gallager A and Gallager B algorithms, respectively. When the check node

degree is large, Gallager A is expected to perform better than Gallager B, as observed

in the figures. In case A, the structured bit-interleaved codes performed noticeably

better than the random bit-interleaved code.
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Figure 5.12: Thresholds for (5, 50)-
regular codes, Gallager A algorithm.
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Figure 5.13: Thresholds for (5, 50)-
regular codes, Gallager B algorithm

5.3 More than two check node types

In general, for s check types, denoted by T (α1, β1), . . . , T (αs, βs), let gi be the fraction

of check nodes of type i. Then
∑s

i=1 gi = 1, and assuming that half of the variable

nodes are MSBs and half are LSBs, the following equation holds:

k

2
= g1α1 + g2α2 + · · ·+ gsαs.

For a given k and s > 2, there are many solutions to this equation. Although

restricting the values of the gi’s yields a finite solution set, the problem of assigning

bits to pages to achieve the given check node types becomes more complex as s

increases.

The following general recursive equations for three check types were used to cal-

culate the probability of decoding error after 100 iterations. The equations for qm
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and pm are shown, and the equations for ql and pl are analogous.

q1m(t) = (1− (1− 2pm(t))(a1m)(1− 2pl(t))
(b1m))/2

q2m(t) = (1− (1− 2pm(t))(a2m)(1− 2pl(t))
(b2m))/2

q3m(t) = (1− (1− 2pm(t))(a3m)(1− 2pl(t))
(b3m))/2,

where a1m = α1 − 1 and b1m = β1, etc. (For q1l(t), a1l = α1 and b1l = β1 − 1.)

(5.3.1) qm(t) = g1q1m(t) + g2q2m(t) + g3q3m(t)

(5.3.2) pm(t+ 1) = b1(1− (1− qm(t))(j−1)) + (1− b1)(qm(t)(j−1)).

In Figures 5.14, 5.15, and 5.16 we consider three check types in a (3, 6)-regular

LDPC code. The figures show the thresholds for the possible check node types for

certain fixed values of g1, g2, and g3. Figure 5.17 contains thresholds for the case of

four check types when the checks are evenly partitioned; again, the code is assumed

to be (3, 6)-regular. Certain configurations of three check types outperform the best-

performing configurations of two check types, as well as the four types tested in

Figure 5.17.

Observation: Codes with more than half of their check nodes having a majority

of MSB neighbors, i.e., T (5, 1) or T (4, 2), have higher thresholds than the expected

BICM case.
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5.4 Results in terms of noise variance and SNR

thresholds

Since the LSB and MSB probabilities of error are not independent variables in the

physical setup of the memory, we extend the earlier analysis of the decoding using

a particular noise model and a specific signal mapping. In this section, we assume

that the noise in the memory is modeled as additive white Gaussian noise (AWGN),
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which is a common model for noise that is attributed to random natural effects. The

noise is added to the stored symbol, and it is given by a normal distribution centered

at zero and with variance σ2.

In a normal distribution, the probability that a random variable will take on a

value larger than x is given by the Q-function:

Q(x) =

∫ ∞
x

1√
2π
e−t

2/2dt.

Since the noise can potentially impact both the MSB and LSB portion of the cell

in the memory, we consider both parts when choosing the mapping for the symbols.

The four symbols {11, 10, 00, 01} are mapped to the 4-ary signal set {−3,−1,+1,+3}

(i.e., the cell voltage levels), and we assume that AWGN noise is added to the stored

signal [58]. The cutoff between the signals is the halfway point, rounding down; i.e.,

if the retrieved signal is y, where 0 < y ≤ 2, then the stored signal is assumed to be

+1, representing symbol 00.

Figure 5.18: Mapping of two-bit symbols to a 4-ary signal set (cell voltage levels).

First assume that a signal s = +3 is stored, and the retrieved signal that is

obtained while reading the cell is y = s + n. The probability that an MSB error

occurs is P (y ≤ 0|s = +3). This is equivalent to P (n ≤ −3). Given the iid Gaussian
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pdf of the noise, we have

P (n ≤ −3) =

∫ −3
−∞

1√
2πσ2

eu
2/2σ2

du

=

∫ 3
σ

−∞

1√
2π
e
t2

2 dt

=

∫ ∞
3
σ

1√
2π
e
t2

2 dt

= Q

(
3

σ

)
,

where the third equality is due to symmetry of the Q-function.

A difference of one cell level in the stored and retrieved symbols can be estimated

by Q(1/σ); two cell levels can be estimated by Q(3/σ); three cell levels by Q(5/σ).

The Q-function is a decreasing function, and Q(1/σ) is significantly larger than the

other two values.

We can use a similar calculation to show that P (y ≤ 0|s = +1) = Q( 1
σ
). By the

symmetry of the signal set, P (y > 0|s = −1) = Q( 1
σ
), and P (y > 0|x = −3) = Q( 3

σ
).

We assume that all four symbols are equally likely to be stored, and therefore we can

calculate b1 (the probability of MSB error) in terms of the noise variance

b1 =
1

4
Q

(
1

σ

)
+

1

4
Q

(
1

σ

)
+

1

4
Q

(
3

σ

)
+

1

4
Q

(
3

σ

)
=

1

2
Q

(
1

σ

)
+

1

2
Q

(
3

σ

)
.

For the LSB error calculation, we use the fact that Q( 1
σ
) >> Q( 5

σ
) to estimate:

P ( LSB error |s = +3) ≈ P (y ≤ 2|x = +3) = Q

(
1

σ

)
.

If +1 is stored, then an LSB error has occurred if either +3 is retrieved or if −3
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is retrieved. Therefore we obtain

P ( LSB error |s = +1) ≈ Q

(
1

σ

)
+Q

(
3

σ

)
.

The values for −1 and −3 are analogous. Therefore

P ( LSB error ) ≈ Q

(
1

σ

)
+Q

(
3

σ

)
.

In summary, the MSB and LSB probabilities of error in terms of σ are given by

b1 ≈
1

2
Q

(
1

σ

)
+

1

2
Q

(
3

σ

)
b2 ≈ Q

(
1

σ

)
.

The signal-to-noise ratio is an expression in terms of the noise variance σ2. In

terms of decibals (dB), the SNR expression is

SNRdB = 10 log10

(
PS
PN

)
,

where PS is the power of the signal and PN is the power of the noise. The power of

AWGN is given by σ2. With this signal set, the signal power is

(−1)2 + (−3)2 + (1)2 + (3)2

4
= 5.

Therefore, SNR in dB is given by

SNR = 10 log10

(
5

σ2

)
.
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The decoding thresholds for σ and corresponding SNR thresholds (in dB) demon-

strate the gain over BICM that can be achieved by using structured binary interleav-

ing in the case of this signal set. The threshold for a given code is the largest noise

variance (σ2) value such that the decoding probability of error goes to zero as the

iteration increases. In Table 5.1, the noise variance threshold and SNR thresholds are

given for two different check node types in a (3, 6)-regular LDPC code. These results

were obtained using MATLAB, and running the recursive system of equations (5.2.3)

(5.2.2).

The rows are ordered by performance, best to worst. Table 5.2 shows the noise

variance and SNR thresholds when three distinct check types are used. These results

were obtained using MATLAB and the recursive system of equations (5.3.1) and

(5.3.2). The gain over the expected BICM σ threshold is notably greater for the best-

case of the three check types than the best case of the two check types. There are

also some ratios of three check types that perform worse than the expected BICM σ

threshold. The results in Table 5.1 are consistent with the observations in Figure 5.4.

Check node types Frac. of each type σ thres. SNR thres.
T(1,5), T(5,1) 1/2, 1/2 0.6189 11.1573
T(2,4), T(5,1) 2/3, 1/3 0.6180 11.1699
T(2,4), T(4,2) 1/2, 1/2 0.6175 11.1770

Expected for BICM Random 0.6172 11.1812

Table 5.1: Noise variance and SNR thresholds for (3, 6)-regular LDPC codes with two
given check types.

That is, when the MSB probability of bit error from the channel is smaller than

that of the LSB, the check node configuration of T (1, 5), T (5, 1) with g1 = g2 = 1
2

has the best σ and SNR threshold. Similarly, Table 5.2 shows that the same check

type configurations outperform the expected BICM case as in Figures 5.14, 5.15, and
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Check node types Frac. of each type σ thres. SNR thres.
T(5,1), T(3,3), T(0,6) 1/2, 1/6, 1/3 0.6408 10.8552
T(0,6), T(4,2), T(5,1) 1/3, 1/3, 1/3 0.6405 10.8593
T(4,2), T(6,0), T(0,6) 1/2, 1/6, 1/3 0.6323 10.9712
T(5,1), T(2,4), T(0,6) 1/2, 1/4, 1/4 0.6287 11.0208
T(4,2), T(0,6), T(3,3) 1/2, 1/6, 1/3 0.6245 11.0791
T(5,1), T(3,3), T(1,5) 1/3, 1/3, 1/3 0.6183 11.1657
T(3,3), T(5,1), T(1,5) 1/2, 1/4, 1/4 0.6180 11.1699
T(2,4), T(5,1), T(3,3) 1/2, 1/4, 1/4 0.6178 11.1727
T(4,2), T(3,3), T(1,5) 1/2, 1/4, 1/4 0.6177 11.1741
T(3,3), T(1,5), T(4,2) 1/2, 1/6, 1/3 0.6175 11.1770
T(3,3), T(5,1), T(2,4) 1/2, 1/6, 1/3 0.6175 11.1770
T(4,2), T(3,3), T(2,4) 1/3, 1/3, 1/3 0.6174 11.1784
T(3,3), T(4,2), T(2,4) 1/2, 1/4, 1/4 0.6173 11.1798
Expected for BICM Random 0.6172 11.1812

T(3,3), T(6,0), T(0,6) 1/2, 1/4, 1/4 0.6169 11.1854
T(2,4), T(0,6), T(6,0) 1/2, 1/6, 1/3 0.6117 11.2589
T(2,4), T(6,0), T(3,3) 1/2, 1/6, 1/3 0.6106 11.2746
T(1,5), T(6,0), T(4,2) 1/2, 1/4, 1/4 0.6062 11.3374
T(1,5), T(3,3), T(6,0) 1/2, 1/6, 1/3 0.5986 11.4470
T(6,0), T(2,4), T(1,5) 1/3, 1/3, 1/3 0.5984 11.4499

Table 5.2: Noise variance and SNR thresholds for (3, 6)-regular LDPC codes with
three given check types.

5.16. Moreover, we again see that configurations with at least half of the check nodes

having type T (5, 1) or T (4, 2) (a majority of MSB neighbors) perform better than the

expected BICM case.

These threshold results indicate that given a good binary code, a structured ap-

proach to assigning the coded bits to MSBs and LSBs can yield better results than

standard BICM. An open problem in this area is to develop an algorithm that takes

a given Tanner graph and assigns variable nodes to MSB and LSB pages such that

the result is as close as possible to the unbalanced check node types that performed

well in this chapter.
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Chapter 6

Nonbinary structured

bit-interleaved LDPC codes1

Nonbinary LDPC codes have been an important area of study since the 1990s resur-

gence of the work of Gallager [19]. Finding efficient ways of exploiting nonbinary

codes and LDPC codes in multi-level flash memories has been a goal in the last

decade since flash memory became prominent [51, 85]. More recently, there has been

an increased focus on nonbinary LDPC codes for various applications [11, 56, 40, 12].

This chapter gives a general approach to designing nonbinary codes when the two bits

that compose a symbol over F4 possess different initial bit error probabilities. This is

a general phenonmenon that exists in many storage and transmission settings.

A Tanner graph derived from a nonbinary parity-check matrix H has an edge

between the jth variable node and the ith check node if there is a nonzero entry in

position (i, j) of H, and the edge is labeled by the matrix entry. This chapter presents

a nonbinary LDPC code construction and implementation method based partly on

1Material in this chapter will appear in [26], the IEEE Journal on Selected Areas of Commu-
nications (JSAC), Special Issue on Communication Methodologies for the Next-Generation Storage
Systems.
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the analysis in Chapter 5. The resulting nonbinary codes are sensitive to the different

error rates between the MSB and LSB pages, and we examine how the choice of edge

labels impacts the bit (and overall symbol) reliability.

This chapter begins with an introduction to the binary image of a nonbinary

parity-check matrix over F2m . We define the binary expanded graph of a nonbinary

LDPC code over F2m . We then show how this representation of the code facilitates the

implementation of nonbinary codes for MLC flash memory by assigning bits to MSB

and LSB pages in a natural way. Previous work on nonbinary LDPC codes has also

refered to the binary image of the parity-check matrix, and we use the terminology

binary image parity-check matrix in the same way as [56]. In [56, 57], the authors

chose nonzero row entries of a parity-check matrix H using the binary image of field

elements to improve performance, assuming that the positions of the nonzero entries

of H were already optimized. Binary image expansion techniques were also used in

[36] to iteratively decode Reed-Solomon codes.

In Section 6.3, we use the results from Chapter 5 to choose nonbinary edge labels

for the Tanner graph of a (j, k)-regular LDPC code. We present an implementation

method for nonbinary LDPC codes on multi-level flash cells, where the decoding of

the nonbinary code is done by using a binary hard-decision decoder on its binary

expanded graph. This reduces complexity in addition to addressing the different

bit error probabilities. Sections 6.4 and 6.5 contain decoding thresholds in terms

of AWGN variance, using a particular mapping of 4-ary cell levels to bits. Since

the binary expanded graph of a nonbinary code has small cycles which can degrade

the decoding performance, we also developed a hard decision nonbinary decoding

technique that avoids the impact of these cycles. Section 6.5 gives a description of

the nonbinary hard decision decoding algorithm. We present noise variance threshold

results of various edge label choices using this decoding technique.
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6.1 The binary image of a code

We summarize the basics of the binary representation of a Galois field element here

(see [50] for more detail). A primitive element r ∈ F2m is the root of a primitive

polynomial f(x) = xm + cm−1x
m−1 + · · · + c0, where ci ∈ F2, for i = 0, . . . ,m − 1.

The binary matrix representation of r is the following m×m matrix (also called the

“companion matrix”):

A =



0 1 0 · · · 0

0 0 1 · · · 0

...
...

. . . . . .
...

0 0 · · · 0 1

c0 c1 · · · cm−2 cm−1


,

with characteristic polynomial f(x).

Recall that the nonzero elements of F2m are given by {ri : i = 1, . . . , 2m − 1}.

The matrix representation of ri is Ai, so the matrix representations of the nonzero

elements of F2m are {Ai : i = 1, . . . , 2m − 1}. If H is an l × n matrix over F2m , the

binary image parity-check matrix is the ml×mn matrix obtained by replacing entries

of H with the m×m matrix representation.

Example 6.1.1. Let r be a root of the primitive polynomial g(x) = x2 +x+1. Then

the binary matrix representation of elements of F4 is


 0 1

1 1

 ,

 1 1

1 0

 ,

 1 0

0 1

 ,

 0 0

0 0


 .

The field operations are standard matrix addition and matrix multiplication.
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Example 6.1.2. Consider F8, with r a root of the primitive polynomial f(x) =

x3 + x+ 1. The binary matrix representation of r is

A =


0 1 0

0 0 1

1 1 0


The field F8 is composed of the elements {0, A,A2, . . . , A7} (where 0 is the 3×3 all-zero

matrix and A7 is the identity matrix), under the standard matrix operations.

In Example 6.1.1 the GF (4) representation is unique, but for other m ≥ 3, the

representation depends on the choice of primitive polynomial.

Definition 6.1.3. The binary expanded graph of a code is the Tanner graph obtained

from the binary image parity-check matrix.

Even if the original graph is regular, the binary expanded graph is usually irreg-

ular.

6.2 Implementing nonbinary codes in MLC flash

We now introduce a way to implement codes over F4 in MLC flash using the binary

image representation. The binary expanded graph is treated as a binary LDPC code

whose variable nodes represent the bits of the corresponding symbols and are assigned

to different page types. Thus, the binary image of a code of length n over F4 gives

an immediate mapping of bits to MSB pages and LSB pages. Specifically, if vi is a

variable node in the original graph over F4 for i = 1, . . . , n, then viM and viL are the

bit nodes in the binary expansion of the symbol represented by vi, and viM is assigned

to an MSB page and viL to an LSB page. To obtain a simple decoder, we will use
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a binary decoder on the binary expanded graph to estimate the LSB and MSB bit

values of the nonbinary symbols.

Example 6.2.1. Figure 6.1 shows the graph of a nonbinary LDPC code over F4 on

the left, and its corresponding binary expanded graph on the right. Each variable

and check node in the graph of a nonbinary LDPC code over GF (2m) splits into m

copies in the binary expanded graph. For MLC flash implementation, we consider

codes over F22 as shown in Figure 6.1 and label the copies of a variable node vi by

viM and viL to designate the bit to be assigned to an MSB or LSB page, respectively.

Figure 6.1: Nonbinary and binary expanded graph representations of a code over F4

In the next section, we construct nonbinary codes using underlying (j, k)-regular

graphs by adding edge labels from F4 that give the desired types of check nodes using

the analysis from Chapter 5. Note that adding nonbinary edge labels to an arbitrary

(j, k)-regular graph results in a binary expanded graph with left degrees from the
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set {j, j + 1, . . . ,mj} and right degrees from the set {k, k + 1, . . . ,mk}. The binary

expanded graph of a code over F4 has binary check nodes ci1 and ci2 for each F4 check

node ci in the nonbinary code’s graph (where i = 1, . . . , `). By choosing consistent

sets of labels for the edges at each check node in the original graph, all of the check

nodes labeled ci1 in the binary expanded graph will have the same type (as defined

in Section 6.1), as will all of the check nodes labeled ci2. More specifically, when

choosing edge labels for a (j, k)-regular graph, we can fix a set of labels {r1, . . . , rk},

where ri ∈ F4 such that at each check node, these k labels are randomly ordered and

assigned to its incident edges. Figure 6.2 shows how the labels assigned to the edges

of a check node give rise to two check node types in the binary expanded graph.

Figure 6.2: The left graph has edge labels from F4. The binary expanded graph on
the right has check c1 of type T (3, 1) and check c2 of type T (1, 2), and is irregular
since α1 + β1 6= α2 + β2.

Remark 6.2.2. Binary images may be used for nonbinary LDPC codes over F2m ,

resulting in up to m different types of check nodes in the binary expanded graph.

Depending on the edge labels, some types may be the same. To design codes for

TLC flash memory, the analysis in the previous sections can be extended to binary
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expanded graphs with three different check node types. This can then be used to

choose edge labels from F23 that result in the desired three check node types.

6.3 Designing codes with nonbinary edge labels

In this section, we examine how different assignments of nonbinary elements from

F4 to the edges in an underlying regular LDPC code graph result in different binary

expanded graphs. In Subsection 6.3.1, we analyze nonbinary edge label sets using

binary decoding on the binary expanded graph. In Section 6.4, we then study the

nonbinary decoding performance of the LDPC codes, where the binary expanded

graph is no longer required.

Here, we will use insights from the thresholds in Chapter 5 to identify which

edge label sets are likely to yield a binary expanded graph (and corresponding code)

that performs well under binary decoding. These preferred edge labels (equivalently,

assignments of nonbinary elements to nonzero positions in the parity-check matrix)

result in constructions of nonbinary LDPC codes over F4 that have structured bit

assignments to the MSB and LSB pages and may be decoded using simple binary

LDPC decoders on their binary expanded graphs to estimate the MSB and LSB bits

of each symbol.

We start with a parity-check matrix whose locations of nonzero entries are known

(and possibly optimized), but the values have yet to be determined. In this section we

illustrate our construction using the parity-check matrix of a random (3, 6)-regular

binary LDPC code and replace the ones in the matrix with structured choices of

elements from F4. Better codes may be obtained if a parity-check matrix with po-

sitions optimized for a nonbinary code is used. As mentioned in Section 6.2, we

will assume that the field elements assigned to the edges at each check node are



101

Edge Label Set Type 1 Type 2 ∆M (MSB deg. dist.) ∆L (LSB deg. dist.)

{1, 1, A,A,A2, A2} T (4, 4) T (4, 4) (0, 0, 8
27
, 4
9
, 2
9
, 1
27

) (0, 0, 8
27
, 4
9
, 2
9
, 1
27

)

{1, 1, 1, A,A,A2} T (4, 3) T (3, 5) (0, 0, 125
216
, 25
72
, 5
72
, 1
216

) (0, 0, 8
27
, 4
9
, 2
9
, 1
27

)

{1, 1, 1, A,A2, A2} T (5, 3) T (3, 4) (0, 0, 8
27
, 4
9
, 2
9
, 1
27

) (0, 0, 125
216
, 25
72
, 5
72
, 1
216

)

{1, 1, 1, A,A,A} T (3, 3) T (3, 6) (0, 0, 1, 0, 0, 0) (0, 0, 1
8
, 3
8
, 3
8
, 1
8
)

{1, 1, 1, A2, A2, A2} T (3, 3) T (6, 3) (0, 0, 1
8
, 3
8
, 3
8
, 1
8
) (0, 0, 1, 0, 0, 0)

{1, 1, 1, 1, A,A2} T (5, 2) T (2, 5) (0, 0, 125
216
, 25
72
, 5
72
, 1
216

) (0, 0, 125
216
, 25
72
, 5
72
, 1
216

)

{1, 1, 1, 1, A,A} T (4, 2) T (2, 6) (0, 0, 1, 0, 0, 0) (0, 0, 8
27
, 4
9
, 2
9
, 1
27

)

{1, 1, 1, 1, A2, A2} T (6, 2) T (2, 4) (0, 0, 8
27
, 4
9
, 2
9
, 1
27

) (0, 0, 1, 0, 0, 0)

{1, 1, 1, 1, 1, A} T (5, 1) T (1, 6) (0, 0, 1, 0, 0, 0) (0, 0, 125
216
, 25
72
, 5
72
, 1
216

)

{1, 1, 1, 1, 1, A2} T (6, 1) T (1, 5) (0, 0, 125
216
, 25
72
, 5
72
, 1
216

) (0, 0, 1, 0, 0, 0)

Table 6.1: Edge labels for (3,6)-regular graphs and corresponding check types and
degree distributions.

the same, and randomly assigned to the edges at that check node. Let ∆M =

(δM,1, δM,2, δM,3, δM,4, δM,5, δM,6) denote the degree distribution of the MSBs, where

δM,i is the fraction of MSBs having degree i, and likewise for ∆L. Table 6.1 summa-

rizes different sets of such edge labels, and the effect that they have on the resulting

MSB degree distribution, LSB degree distribution, and check node types in the cor-

responding binary expanded graph.

Recall that if there are ` check nodes in the nonbinary code, then the check nodes

of Type 1 have the form ci,1 for i = 1, . . . , ` in the binary expanded graph, and

the check nodes of Type 2 have the form ci,2 for i = 1, . . . , `. Thus, in addition to

providing a structured assignment of symbol bits to pages, the check nodes of each

type are readily identified.
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6.3.1 Performance of binary expanded graph decoding in

terms of bi thesholds

Using the degree distributions in Table 6.1, we obtain iterative equations for the

expected probability of error for messages sent from variable to check nodes using the

Gallager A algorithm. The probability that a check node sends a message in error

to an MSB on iteration t is the expression q
(t)
M , as detailed in Chapter 5. In this

setting, g = 1/2 and (α1, β1) and (α2, β2) are determined by the labeling of edges in

the nonbinary graph (see Table 6.1, columns Type 1 and Type 2). Since the variable

nodes have degree distributions given by ∆M and ∆L, the expressions for the MSB-

to-check probability of error on the (t + 1)th iteration is a weighted sum with δM,i

coefficients. First, we derive the probability that an MSB node of degree i sends a

message in error to a neighboring check: p
(t+1)
M,i = b1(1−(1−q(t)M )i−1)+(1−b1)(q(t)M )i−1.

Thus, the expected probability of error of an MSB-to-check message is given by

(6.3.1) p
(t+1)
M =

6∑
i=1

δM,ip
(t+1)
M,i .

We define p
(t+1)
L,i in the analogous way to obtain

(6.3.2) p
(t+1)
L =

6∑
i=1

δL,ip
(t+1)
L,i .

Figure 6.3 shows the thresholds for the codes represented by the binary expanded

graphs obtained from a (3, 6)-regular bipartite graph with the given edge label set at

each check. We assume that the set of edge labels at every check node in the graph

is the same (possibly permuted). For each edge label set in Table 6.1, we ran t = 100

iterations of the Gallager A algorithm for fixed values of the MSB error probability
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b1 to find the threshold for b2. Due to the number of codes tested, Figure 6.3 and the

following discussion focus on the range where b1 < b2.
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Figure 6.3: Thresholds of binary expanded graph codes obtained from (3, 6)-regular
graphs using edge label sets from Table 6.1.

Different edge label sets result in binary codes with different degree distributions

on both the variable nodes and the check nodes. The variable node degree distri-

butions are shown in Table 6.1, whereas the check node degrees are given by the

resulting check node types (i.e., half of the check nodes have degree α1 + β1, and the

rest have degree α2 + β2). The binary expanded codes described in Table 6.1 cannot

be directly compared to the (j, k)-regular codes shown in Chapter 5; however, the

codes shown here may be regarded as slightly irregular, with degrees varying on fixed

intervals.
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Using the analysis in Chapter 5, we can determine how the best-performing check

node types in the binary regular case relate to the best in configurations in the non-

binary setting. Recall that codes with g = 1/2 of check nodes of type T (1, k− 1) and

half of type T (k− 1, 1) were consistently among the best for the binary regular cases

tested in Section 5.2. Thus we expect the codes with edge label sets {1, 1, 1, 1, 1, A2},

{1, 1, 1, 1, 1, A}, and {1, 1, 1, 1, A2, A2} to be the strongest since their binary images

have similarly unbalanced check node types. Indeed, the codes corresponding to

{1, 1, 1, 1, A2, A2} and {1, 1, 1, 1, 1, A2} have the second and third best performance

in Figure 6.3, for 0 < b1 < 0.027. However, {1, 1, 1, 1, 1, A} did not perform as well,

possibly due to the fact that the total number of LSB connections exceeds the num-

ber of MSB connections. Surprisingly, the best performing code was obtained using

the edge labels {1, 1, 1, A2, A2, A2}. While neither check node types in this case has a

large difference between αi and βi, the total number of connections to MSB neighbors

exceeds the total LSB connections more than any other case tested. An example of

an edge label set yielding check types close to the random case is {1, 1, A,A,A2, A2}

in Table 6.1, which yields a right-regular binary expanded graph where all the check

nodes have half MSB and half LSB neighbors. Due to the increase in density of edges

that results from A or A2 labels, we chose to test check label sets with at least three

ones, with the exception of the “random-like” case, {1, 1, A,A,A2, A2}.

The curve labeled “Random” in Figure 6.3 refers to a (3, 6)-regular graph whose

edges are randomly assigned nonzero elements of F4, each with equal probability.

In this case, the qM and qL probability expression involves the degree distributions

resulting from each check node edge label configuration weighted by the probability

of the configuration occurring in the graph. Let ξ denote the collection of unordered

check node label sets over F4 \{0} (Table 6.1 contains a partial list). Denote by s ∈ ξ

a multi-set of size six with elements from F4 \ {0} resulting in binary check types
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T (αs,1, βs,1) and T (αs,2, βs,2). Let p(s) be the probability of edge set s, given that the

labels are assigned randomly from F4 \{0}. The density evolution expressions for the

random edge assignment case are given by the following proposition.

Proposition 6.3.1. In the binary image of a (3, 6)-regular graph whose edges are

randomly assigned nonzero elements of F4, the expected probability of error for a

message from a check node to an MSB or LSB variable node, respectively, on iteration

t is

q
(t)
M =

1

2
q
(t)
1,M +

1

2
q
(t)
2,M

q
(t)
L =

1

2
q
(t)
1,L +

1

2
q
(t)
2,L.

The expected probability of error of a message from a check node of type T (αs,1, βs,1)

to an MSB variable node on iteration t, denoted q
(t)
1,M , is

q
(t)
1,M =

∑
s∈ξ

p(s)

(
1− (1− 2p

(t)
M )αs,1−1(1− 2p

(t)
L )βs,1

2

)
,

and likewise for q
(t)
1,L, q

(t)
2,M , q

(t)
2,L.

Moreover, the expected probability of error for a message from an MSB (resp., LSB)

variable node to a check node on iteration (t + 1) is given by Equation 6.3.1 (resp.,

Equation 6.3.2) with ∆M = ∆L = (0, 0, 8
27
, 12
27
, 6
27
, 1
27

).

Proof. The expression q
(t)
M = 1

2
q
(t)
1,M+ 1

2
q
(t)
2,M requires justification. Given a random edge

label from F4 \{0} on an edge {v, c} in the nonbinary (3, 6)-regular graph, the binary

expanded graph contains one of the corresponding subgraphs shown in Figure 6.4.

Since each of the labels 1, A, and A2 has equal probability of being assigned to {v, c},

the probability that vM is adjacent to c1 in the binary expanded graph is the same
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Figure 6.4: Nonzero F4 edge labels and the corresponding subgraphs.

as the probability that vM is adjacent c2 (both are 2/3, since these events are not

independent). Similarly, vL is equally likely to have c1 as a neighbor as c2. More

precisely, we have that the probability of a random check node sending an incorrect

message to an MSB node is

q
(t)
M =

1

3
q
(t)
1,M +

1

3
q
(t)
2,M +

1

3

(
1

2
q
(t)
1,M +

1

2
q
(t)
2,M

)
=

1

2
q
(t)
1,M +

1

2
q
(t)
2,M .

The rest of the proof is straightforward.

Example 6.3.2. For example, the edge label set {1, 1, 1, 1, 1, A2} has a 2/243 chance

of occurring in the graph, and results in two check nodes c1 and c2, having types

T (6, 1) and T (1, 5), respectively. The expression q
(t)
1,M described above will include

the term 6
729

(1−2p
(t)
M )5(1−2p

(t)
L ) from the configuration {1, 1, 1, 1, 1, A2} since T (6, 1)

is the resulting Type 1 check node. Similarly, the sum q
(t)
2,M will include the term

6
729

(1− 2p
(t)
L )5 due to the T (1, 5) node c2.

Figure 6.5 shows the analysis for the same codes using the Gallager B algorithm,
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Figure 6.5: Thresholds of binary expanded graph codes obtained from (3, 6)-regular
graphs under Gallager B decoding.

also run for t = 100 iterations. The probability expressions for variable nodes of degree

five and six were altered to reflect Gallager B decoding. In this setting, the code

with structured edge label set {1, 1, 1, 1, 1, A2} outperforms all other codes tested,

including the random code with nonzero edge labels assigned with equal probability

from F4 \ {0}.

Remark 6.3.3. Although we started with a random (3, 6)-regular graph without

small cycles, the binary expanded graph most likely does contain some small local

cycles, due to the introduction of subgraphs from A and A2 (see, e.g., Figure 6.1).

Since density evolution assumes the graph is cycle-free, the results in Figures 6.3
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and 6.5 should be regarded as estimates. These results are still meaningful because

the graph may be assumed to be globally cycle-free, as in the case of random regular

LDPC codes. Edge label sets dominated by 1’s will result in the least number of

local cycles in the binary expanded graph. While an edge label set consisting of all

ones yields a disconnected graph, the configurations we considered can be shown to

be connected.

6.3.2 Nonbinary performance in terms of noise variance

and SNR thresholds

In Chapter 5 we derived the initial MSB and LSB error probabilities in terms of the

noise variance σ of AWGN, given the signal mapping set {−3,−1, 1, 3}:

(6.3.3) b1 ≈
1

2
Q

(
1

σ

)
+

1

2
Q

(
3

σ

)
,

(6.3.4) b2 ≈ Q

(
1

σ

)
.

Using these values in the binary decoding analysis, we found that the σ threshold

for all configurations of edge labels was the same, with the exception of the all-ones

edge label set, which performed worse than the rest (see Table 6.2). The all-ones

edge label set results in two disjoint graphs, one with only LSBs and one with only

MSBs, which is essentially assuming that we are using the same codes in both parts

of a multi-level coding scheme. Therefore, we expect the all-ones edge label set to

perform worse, in general, than other edge label sets. However, the fact that all
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Edge label sets σ thres. SNR thes. (dB)
{1, 1, 1, 1, 1, 1} 0.5691 11.8859

Other 0.5774 11.7602

Table 6.2: Binary image decoding thresholds, in terms of noise variance.

other sets had the same σ and SNR thresholds indicates that the differences between

the MSB and LSB connections in the binary image mappings have less impact on

the binary decoding when the noise is modeled as AWGN and the initial bit error

probabilities are given as in Equations 6.3.3 and 6.3.4.

Consider the line b1 = 1
2
b2 in Figures 6.3 and 6.5. This line intersects the perfor-

mance curves at a location where the behavior of the curves for various edge label

sets becomes erratic, indicating that this region of the (b1, b2) plot does not accu-

rately capture the performance of the codes with given edge labels. Therefore, the

threshold value of b1 and b2 in terms of noise variance is not a meaningful measure of

code performance in this case.

6.4 Performance using nonbinary decoding

In this section, we will use nonbinary decoding directly on the nonbinary LDPC

code graph. Nonbinary iterative decoding of LDPC codes has been shown to be

efficient, although it requires more computational power than binary decoding [11].

In this section we analyze the performance of various edge label configurations under

a nonbinary hard-decision message passing decoder—a generalization of Gallager’s

Algorithm A for codes over F4. We consider only (3, 6)-regular codes in order to

assess the impact of the edge label choices that were analyzed under binary decoding

in Section 6.3.

We consider the mapping given in Figure 5.18, and again assume AWGN with
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variance σ2. The probability of decoding success will be recorded in a vector of

length four, where the positions correspond to the probabilities of a given message

being a 0, 1, α, or α2, respectively.

The probability vector for a message sent from a variable node to a check node

on iteration t is denoted by

p(t) = (p
(t)
0 , p

(t)
1 , p

(t)
α , p

(t)

α2),

where p
(t)
i is the probability that a message being sent along an edge to a check node

has value i.

Similarly, we define the check-to-variable probability vector q(t):

q(t) = (q
(t)
0 , q

(t)
1 , q(t)α , q

(t)

α2 ),

where q
(t)
i is the probability that the check-to-variable message in iteration t has value

i.

The variable node update rule is the same as in the binary case. Since we are

considering only (3, 6)-regular codes, a variable node is processing information from

the channel and two neighboring check nodes in order to send information over its

remaining edge. Therefore, if both incoming check messages agree on a value in F4,

the variable node will send that value along its third edge. If the incoming messages

are distinct, then the variable node will send the message that it received from the

channel.

The check node update is as follows. Five of the incoming messages from adjacent

edges will be processed by the check node, and the resulting check-to-variable node

message will be sent along the remaining edge. Given a particular edge label set
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from Chapter 5, we will assume a uniform distribution on labels being assigned to

the outgoing edge. For example, with an edge label set of {1, 1, 1, 1, 1, α2}, there is

a 1/6 chance that the outgoing edge will have label α2, and a 5/6 chance that the

outgoing edge will have label 1. In the check node processing, the edge label acts

as the coefficient of the incoming message when the check node is forming a linear

combination of its neighboring values. Before giving the general form of the check

node update, we provide a specific example.

Example 6.4.1. Consider that a check node receives the following linear combination

from five of its adjacent edges:

1 · α + 1 · 1 + α2 · 0 + 1 · α + 1 · 0 = 1.

In order for that check node to be satisfied, the message from its remaining edge

would need to be the additive inverse of the sum above, which is 1 in F4. Therefore,

the message it sends along that edge is 1 times the multiplicative inverse of the label

on the outgoing edge. If the outgoing edge were labeled α, the outgoing message from

the check node would be (α−1) · 1 = α2 · 1.

Denote the incoming variable messages in iteration t as ν1, . . . , ν5 ∈ F4, and the

incoming edge labels as ε1, . . . , ε5. Let ε6 denote the outgoing edge label. Then the

check node sends the following message along the outgoing edge:

γ = ε−16

5∑
i=1

εiνi.

The edge labels must be taken into account when calculating the updated proba-

bility vector q(t+1). The incoming variable node probability vector p gets permuted

when the edge label is either α or α2. Since a variable-to-check message of 1 with
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an edge label of α results in a term 1× α in the check node linear combination, the

p1(t) in the probability vector becomes the probability that the check node receives

an α along that edge. Therefore an incoming probability vector can be permuted in

the following ways:

(p
(t)
0 , p

(t)
1 , p

(t)
α , p

(t)

α2)
α−→ (p

(t)
0 , p

(t)

α2 , p
(t)
1 , p

(t)
α ),

(p
(t)
0 , p

(t)
1 , p

(t)
α , p

(t)

α2)
α2

−→ (p
(t)
0 , p

(t)
α , p

(t)

α2 , p
(t)
1 ).

In Gallager’s original work [19], he derived an answer to the following question:

if you have l bits, each with probability p of being a 1, what is the probability that

the sum of the l bits is even? (Proposition 5.2.2 contains a modified version of this.)

In the update of the check node probability vector, we will need to consider a sum

of five elements of F4, each with probability pi of being i, and derive the probability

for each j ∈ F4 that the sum will be j. This is one step of the program in MATLAB

that calculates the probability vector p(100) that we use to assess decoding success.

We use 100 decoding iterations in both Chapters 5 and 6 since the probabilities after

this number of iterations provide a good indicator of decoding performance.

The following example demonstrates the process of calculating an updated qt

vector.

Example 6.4.2. Suppose β = λ + δ, where λ, δ ∈ F4. The probability vectors

L = (l0, l1, lα, lα2) and D = (d0, d1, dα, dα2) describe the variables λ and δ, respectively;

i.e., li is the probability that λ = i and di is the probability that δ = i for i ∈ F4.

Let B = (b0, b1, bα, bα2) be the probability vector for β. Then in terms of L and D,
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we have

b0 = l0d0 + l1d1 + lαdα + lα2dα2

b1 = l0d1 + l1d0 + lαdα2 + lα2dα

bα = l0dα + l1dα2 + lαd0 + lα2d1

bα2 = l0dα2 + l1dα + lαd1 + lα2d0

Now suppose that β′ = λ + δ + τ , where τ is described by T = (t0, t1, tα, tα2).

To find the probability vector for β′, the equations above can be iterated, using B in

place of L and T in place of D. Repeating this process three more times results in

the new probability vector for a sum of five elements in F4.

Since the edge label assignments are made randomly from the designated edge la-

bel set, the probability calculations will need to incorporate all possible permutations

of the edge assignments. In order to visualize the process, Figure 6.6 shows three

levels of the tree when the Tanner graph for the code has been unwrapped.

Figure 6.6: Part of the Tanner graph for a (3, 6)-regular code over F4.

The top level in Figure 6.6 is a check node labeled c. A variable node neighbor
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a is sending a message along the edge {a, c}, and we will calculate the probability

vector for the message being sent along that edge in iteration t.

At the outset of the calculation, the stored value for a is chosen from F4, where

each element is equally likely. Given a particular edge label set from Section 6.3,

{e1, . . . , e6} are matched to the labels in the set using a random permutation ρ of

{1, . . . , 6}. If the chosen edge label set is {1, 1, 1, 1, 1, α2}, then eρ(i) = 1 for i =

1, . . . , 5 and eρ(6) = α2. A different random permutation ρ′ is used to assign the

labels e′1, . . . , e
′
6. The stored values v1, . . . , v4 are chosen randomly from F4. Since v5

must satisfy the check node h, the value of v5 is given by:

v5 = e−15 (e6a+ e1v1 + e2v2 + e3v3 + e4v4).

The same process is used for the values v′1, . . . , v
′
5. The initial probability vector

for vertex a depends on the assignment of the stored value from F4.

Proposition 6.4.3. Given the 4-ary signal set {−3,−1, 1, 3}, and assuming AWGN

with variance σ2, the initial channel probability vectors are denoted by

p
(0)
a=i = (p

(0)
0,i , p

(0)
1,i , p

(0)
α,i, p

(0)

α2,i),

where p
(0)
j,i is the initial probability that j is read, given that i was stored. The proba-
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bility vectors for i = 0, 1, α, α2 are:

p
(0)
a=0 =

(
1−Q

(
1

σ

)
, Q

(
1

σ

)
−Q

(
3

σ

)
, Q

(
3

σ

)
−Q

(
5

σ

)
, Q

(
5

σ

))
if a = 0,

p
(0)
a=1 =

(
Q

(
1

σ

)
, 1− 2Q

(
1

σ

)
, Q

(
1

σ

)
−Q

(
3

σ

)
, Q

(
3

σ

))
if a = 1,

p(0)
a=α =

(
Q

(
3

σ

)
, Q

(
1

σ

)
−Q

(
3

σ

)
, 1− 2Q

(
1

σ

)
, Q

(
1

σ

))
if a = α,

p
(0)

a=α2 =

(
Q

(
5

σ

)
, Q

(
3

σ

)
−Q

(
5

σ

)
, Q

(
1

σ

)
−Q

(
3

σ

)
, 1−Q

(
1

σ

))
if a = α2.

Proof. We are assuming the following mapping:

−3→ 0

−1→ 1

1→ α

3→ α2.

As described in Section 5.4, the probability of a difference of one cell level between

the stored and retrieved symbols can be estimated by Q(1/σ); the probability of a

difference of two cell levels can be estimated by Q(3/σ); the probability of a difference

of three cell levels by Q(5/σ). For example, given that a 1 is stored, the probability

of retrieving a symbols of α is Q(1/σ)−Q(3/σ). Similarly, given a stored symbol α2,

the probability of retrieving the symbol 0 is Q(5/σ).

The initial probability vectors for vi and v′i are analogous. The check node update

is processed using the process described in Example 6.4.2 and the values ei, vi. The

resulting (normalized) vectors are q(t) and q̃(t), from edges e6 and e′6, respectively.

Intuitively, the probability that a variable node sends j ∈ F4 is the probability

that the two incoming check messages are both j, plus the probability that the check
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messages differ times the probability that the channel information at the variable node

is j. We first calculate the update equations, and then normalize the probabilities to

obtain p(t+1). (The normalization guarantees that the probabilities add up to one.)

The update equations at the variable node a = i are:

π
(t+1)
0,i =q

(t)
0 q̃

(t)
0 +

(
1− q(t)0 q̃

(t)
0 − q

(t)
1 q̃

(t)
1 − q(t)α q̃(t)α − q

(t)

α2 q̃
(t)

α2

)
p
(0)
0,i ,

π
(t+1)
1,i =q

(t)
1 q̃

(t)
1 +

(
1− q(t)0 q̃

(t)
0 − q

(t)
1 q̃

(t)
1 − q(t)α q̃(t)α − q

(t)

α2 q̃
(t)

α2

)
p
(0)
1,i ,

π
(t+1)
α,i =q(t)α q̃

(t)
α +

(
1− q(t)0 q̃

(t)
0 − q

(t)
1 q̃

(t)
1 − q(t)α q̃(t)α − q

(t)

α2 q̃
(t)

α2

)
p
(0)
α,i,

π
(t+1)

α2,i =q
(t)

α2 q̃
(t)

α2 +
(

1− q(t)0 q̃
(t)
0 − q

(t)
1 q̃

(t)
1 − q(t)α q̃(t)α − q

(t)

α2 q̃
(t)

α2

)
p
(0)

α2,i.

The updated probability vector p
(t+1)
i = (p

(t+1)
0,i , p

(t+1)
1,i , p

(t+1)
α,i , p

(t+1)

α2,i ) is given by:

p
(t+1)
j,i =

π
(t+1)
j,i(

π
(t+1)
0,i + π

(t+1)
1,i + π

(t+1)
α,i + π

(t+1)

α2,i

) , for i, j ∈ F4.

Table 6.3 shows the σ thresholds and SNR thresholds for edge label sets from

Section 6.3. The results were obtained using 1000 instances of randomly chosen

values for a, ei, and e′i. A greater number of instances would give a more accurate

analysis, but the computing time for each edge label set made this difficult to obtain.

The best performing edge label set from the Gallager A decoding in Figure 6.3

remains the best in the case of nonbinary decoding: {1, 1, 1, α2, α2, α2}. However,

the binary decoding analysis in Section 6.3.1 results in edge label set {1, 1, 1, 1, 1, α2}

outperforming the edge label set {1, 1, α, α, α2, α2}, while the nonbinary analysis has

the opposite outcome. This is most likely due to the fact that the AWGN model is

symmetric, which is not the case for the binary image analysis. For example, in the

binary image analysis, the probability that a stored symbol of 00 would be read as
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Edge label sets σ thres. SNR thes. (dB)
{1, 1, 1, α2, α2, α2} 0.5948 11.5023
{1, 1, 1, α, α2, α2} 0.5948 11.5023
{1, 1, 1, 1, α, α2} 0.5947 11.5037
{1, 1, α, α, α2, α2} 0.5946 11.5052
{1, 1, 1, 1, α2, α2} 0.5946 11.5052
{1, α, α, α, α, α} 0.5941 11.5125
{1, α2, α2, α2, α2, α2} 0.5939 11.5154
{1, 1, 1, 1, 1, α2} 0.5937 11.5184

{α2, α2, α2, α2, α2, α2} 0.5661 11.9318

Table 6.3: Nonbinary decoding thresholds.

the symbol 10 is b1 and the probability that it would be read as 01 is b2. However,

using the mapping given in Figure 5.18 and the AWGN model, the probabilities of the

above errors are Q(1/σ)−Q(3/σ) and Q(1/σ), respectively, which does not capture

the case when there are larger differences between b1 and b2. Finding a q-ary noise

model that reflects the nature of the differing bit error probabilities remains a goal.

A distinct advantage of the nonbinary decoding method is that we are no longer

concerned with cycles in the binary expanded graph2. Therefore it is no longer nec-

essary to consider only edge label sets with a majority of ones. As a result we were

able to test a wider variety of edge label sets, and consider the performance of label

sets dominated by α and α2 elements, although these configurations of edge labels do

not perform best under the current decoding scheme.

To summarize this chapter, we first used the binary image of a graph with edge

labels from F4 to analyze edge label sets using binary Gallager A and B decoding algo-

rithms. We described the different check node types that result in the binary expanded

graphs that we tested, and we compared these results to the expected outcome, given

the good check node types in Chapter 5. We then described a nonbinary hard de-

cision decoding algorithm and studied probability vectors, given an AWGN model.

2We still assume that the (3, 6)-regular Tanner graph is locally cycle-free.
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As noted above, the strongest edge label set in both cases is {1, 1, 1, α2, α2, α2}, but

there are also edge label sets whose relative performance differs among the different

types of decoding.
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Chapter 7

Bounds on the covering radius of

graph-based codes

Families of random LDPC codes with degree sequences optimized by certain parame-

ters tend to perform well in simulations, but these codes lack the structure needed to

determine the covering radius from the Tanner graph. In [74], Wadayama considers

the covering radius of the family of LDPC codes originally proposed by Gallager. In

this chapter, we give bounds on the covering radius of various families of finite geom-

etry LDPC codes. These bounds show that the covering radius of such codes grows

with the size of the code, and therefore they are not promising candidates for the

coset encoding WOM code construction [8, 24]. However, these results lead to new

techniques in determining the covering radius, which is a classical and well-known

problem for general classes of codes.

In Section 7.1 we derive a general lower bound on the covering radius of a code

based on its Tanner graph. Section 7.2 provides background on constructions of finite

geometry LDPC codes. In Sections 7.3 and 7.4 we derive bounds on particular families

of these codes using the underlying structure of the finite geometry.
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7.1 Graph-based bound on covering radius

While Tanner graphs are a common code realization tool for LDPC codes due to

the efficiency of message-passing decoding, any code can be realized using a Tanner

graph. Therefore, a bound on the covering radius in terms of a Tanner graph degree

characterization is a useful tool for studying a variety of code classes. In the following

proposition, we provide a lower bound on the covering radius of a code using a Tanner

graph for the code.

Remark 7.1.1. The following proposition requires that the all ones word occurs as

a syndrome of the code, which depends on the particular parity-check matrix that is

used to define the code. In the special case where a parity-check matrix H has full

rank, the all ones syndrome is guaranteed. If H does not have full rank, then the

syndromes form an n− k-dimensional subspace of an M -dimensional space (where H

has M rows), and therefore the all ones syndrome may not occur for H.

Proposition 7.1.2. Let C(H) be the code defined by H, and T the Tanner graph

derived from H. Suppose M is the number of check nodes in T , and j is the maximum

degree of a variable node in the Tanner graph. If the all ones word occurs as a

syndrome of C(H), then the following bound holds:

M

j
≤ R(C),

Proof. Since 1 occurs as a syndrome of the code, there exists x ∈ Fn2 such that

xHT = 1. Let i be the minimum number of variable nodes that must be flipped so

that every check node is satisfied, that is, d(x, C) = i. Since each variable node has

degree at most j, we have that M ≤ ji. Thus, M
j
≤ i, and M

j
≤ R(C).
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Figure 7.1: A Tanner graph model illustrating Proposition 7.1.2.

A special case of this bound is when the Tanner graph is left-j-regular, and there-

fore the maximum degree of a variable node in the Tanner graph is j.

A similar result was proven in [74] without the need for the all-ones syndrome, but

the result only applies to the Gallager ensembles of LDPC codes. Proposition 7.1.2

applies to some families of finite geometry LDPC codes, but not all. In the following

sections we derive bounds based on the incidence structure of finite geometries that

are used to create families of codes and if applicable, we compare the bounds to the

bound in Proposition 7.1.2.

7.2 LDPC codes from finite geometries

A linear code C is called cyclic if for every codeword (c1, . . . , cn) ∈ C, all cyclic shifts

of the codeword are also in C. That is,

(c1, . . . , cn) ∈ C =⇒ {(c2, . . . , cn, c1), (c3, . . . , cn, c1, c2), . . . , (cn, c1, . . . , cn−1)} ⊆ C

A linear code C is called quasi-cyclic if all shifts of a codeword by p positions are also

in the code. When p = 1, the code is cyclic.

The cyclic structure allows for practical implementation of encoding and decoding
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using shift registers and logic circuits. Quasi-cyclic codes can also be encoded using

a shift register, and therefore they are of practical interest.

Example 7.2.1. The following example demonstrates a quasi-cyclic code with p = 2.

Let C be the code generated by the matrix G.

G =


1 1 0 1 0 0

0 0 1 1 0 1

0 1 0 0 1 1


Observe that each row of the matrix is identical to the previous row, with a shift of

two positions, and that all such shifts of the first row are present in the generator

matrix. Therefore C has the property that for any word v ∈ C, all 2-position shifts

of v are also in C.

In [43], Kou, Lin, and Fossorier describe families of cyclic or quasi-cyclic LDPC

codes with parity-check matrices determined by the incidence structure of finite Eu-

clidean and projective geometries. The constructions involve defining a subgeometry

without the origin point, and creating incidence matrices of points and lines for these

families of subgeometries. These matrices alone can be used as parity-check matrices

of LDPC codes; they can also be extended by a column splitting process that results

in a code of longer length. The cyclic or quasi-cyclic structure of these codes is an

advantage, however the parity-check matrices have high redundancy in the number

of rows. Higher redundancy in the parity-check matrices result in increased decoding

complexity, but it also has a positive effect on the decoding performance of the codes

[66, 13, 41].

We recall the basic properties of finite projective and Euclidean geometries. The
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m-dimensional finite projective geometry PG(m, ps) has the following parameters.

There are ρ = p(m+1)s−1
ps−1 points and the number of lines is

(pms + · · ·+ ps + 1)(p(m−1)s + · · ·+ ps + 1)/(ps + 1).

Each line contains ps + 1 points and each point is on (pms− 1)/(ps− 1) lines. Any

two points have exactly one line in common and two lines have exactly one point in

common.

The m-dimensional finite Euclidean geometry EG(m, ps) has the following param-

eters. There are pms points and the number of lines is

ps(m−1)(pms − 1)

ps − 1
.

Each line contains ps points and each point is on pms−1
ps−1 lines. Any two points have

exactly one line in common and two lines either have one point in common or are

parallel.

An LDPC code can be formed from an m-dimensional finite geometry by taking

the incidence matrix of µ1-flats and µ2-flats, where 0 ≤ µ1 < µ2 ≤ m. Taking µ1 = 0

and µ2 = 1 gives the incidence matrix of points and lines in a finite geometry, which

encompasses the constructions presented in [43]. However, in [43], the origin point

in the Euclidean geometry is eliminated before creating the incidence matrix. In the

following subsections, we include the origin point, as is the case in the more general

constructions presented in [72]. Type-I codes use points in the geometry to correspond

to columns in the parity check matrix while lines correspond to rows. Type-II codes

have a parity check matrix that is the transpose of the Type-I parity check matrix.

We use the notation H
(1)
EG(m, ps) to denote a parity check matrix formed with the

points in EG(m, ps) corresponding to columns, and lines in the geometry correspond-
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ing to rows. Define H
(2)
EG(m, ps) to be a parity check matrix formed by having points

in EG(m, ps) correspond to rows and lines correspond to columns. H
(1)
PG(m, ps) and

H
(2)
PG(m, ps) are defined analogously. For i = 1, 2, the code defined by H

(i)
EG(m, ps) is

denoted C(i)EG(m, ps), and the code defined by H
(i)
PG(m, ps) is denoted C(i)PG(m, ps).

Generalizations of finite geometry codes include codes for which a parity-check

matrix is the incidence matrix of two different higher dimensional subspaces in a

finite geometry [72]. For example, starting with an m-dimensional finite geometry,

we can look at incidence structures of µ2-flats and µ1-flats, where 1 ≤ µ1 < µ2 ≤

m. Creative constructions of codes using other finite incidence structures such as

generalized quadrangles and latin squares have also been studied extensively [37, 41,

42].

7.3 Covering radius of Euclidean geometry

LDPC codes

Our general approach to bounding the covering radius of finite Euclidean geometry

LDPC codes is to consider parallel bundles of lines. The following bound for Type-I

EG codes uses this strategy.

Proposition 7.3.1. The covering radius of the Type-I Euclidean geometry LDPC

code C(1)EG(m, 2s) determined by H
(1)
EG(m, 2s) satisfies:

2(m−1)s ≤ R(C(1)EG(m, 2s)).

Proof. Recall that H
(1)
EG(m, 2s) is the incidence matrix of the Euclidean geometry

EG(m, 2s), where the columns are indexed by the points and rows are indexed by the
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lines of the geometry. A word x ∈ F(2
ms)

2 is a codeword if and only if it satisfies the

following characterization. Let S be the support of x, and let L be the set of all lines

in EG(m, 2s). If S, viewed as a subset of the points of EG(m, 2s), has the property

that for every line l ∈ L, the number of points from S that lie on l is even, then x is

a codeword.

We will demonstrate a word x that is not a codeword, and has the additional

property that x is a minimum weight word in its coset. Then wt(x) will be a lower

bound on the covering radius. For a given Euclidean geometry EG(m, 2s), a parallel

bundle of lines is a set of parallel lines that partition the space. There are 2s(m−1) lines

in each bundle and 2ms−1
2s−1 distinct parallel bundles of lines. Fix a parallel bundle of

lines, and consider a word x ∈ F(2
ms)

2 , where the support of x is formed by taking one

point from each line in the bundle. Therefore wt(x) = 2s(m−1). Using the observation

above, we can see that in the Tanner graph of the code, there are at least 2s(m−1)

unsatisfied checks—one for each line in the parallel bundle (since each of those lines

has an odd-sized intersection with the support of x). Flipping a single variable node

can alter the state of at most one of the check nodes that represents a line in the

fixed parallel bundle, so in order for each of the parallel lines to become ‘satisfied’ in

the Tanner graph, at least one variable bit per line must be flipped. The vector x

is the minimum weight word in its coset since the indicator vector of any collection

of points of size smaller than 2s(m−1) cannot impact each of the 2s(m−1) lines in the

parallel bundle.

This gives

2(m−1)s ≤ R(C(1)EG(m, 2s)).

We now use a similar strategy of considering a subset of points on a parallel bundle
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of lines to bound the covering radius of Type-II EG codes.

Proposition 7.3.2. The covering radius of a Type-II Euclidean geometry LDPC code

C(2)EG(m, 2s) determined by H
(2)
EG(m, 2s) satisfies:

2(m−1)s ≤ R(C(2)EG(m, 2s)).

Proof. Let L denote the number of lines in EG(m, 2s). SinceH
(2)
EG(m, 2s) = [H

(1)
EG(m, 2s)]T ,

codewords of C(2)EG(m, 2s) can be characterized by lines and points in the geometry. In

this case, x ∈ F(L)2 is a codeword if and only if for each point in the space, the number

of lines in the support of x that pass through the point is even. A word that has ones

in the positions corresponding to a bundle of parallel lines leaves every check node

corresponding to a point unsatisfied. In order for the check nodes to become satisfied,

the number of variable nodes that must be flipped is 2(m−1)s, since each unsatisfied

check node corresponds to a point on one line in the parallel bundle. Since flipping

the value of all of the variable nodes that correspond to the lines in the parallel bun-

dle is the most efficient way to satisfy all the checks, this word is a minimum weight

word in its coset. The number of unsatisfied check nodes is 2ms, since every point

contained in a line in the parallel bundle would be unsatisfied, and there are 2s(m−1)

parallel lines in the bundle, with 2s points on each one.

Remark 7.3.3. Proposition 7.1.2 can be applied to Type-II EG LDPC codes since

the all-ones syndrome occurs (for example, when the support of the word corresponds

to a parallel bundle of lines) and the resulting bound coincides with Proposition 7.3.2.

To refine the possible values forR(C(2)EG(m, 2s)), we use the well-known redundancy

bound [9] to provide an upper bound.
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Theorem 7.3.4 (Redundancy bound). An [n, k] code with covering radius R satisfies

R ≤ n− k.

Moreover, the dimension k of various families of finite geometry LDPC codes was

derived in [43, 72].

Example 7.3.5. In the case m = 2, we get the following bounds on the covering

radius of Euclidean geometry LDPC codes:

2s − 1 ≤ R(C(i)EG(2, 2s)) ≤ 3s − 1, for i = 1, 2.

The lower bound comes from Propositions 7.3.1 and 7.3.2, and the upper bound

from the redundancy bound.

Another useful upper bound is the Norse bound, by Helleseth, Klove, and Mykkeltveit

[27].

Theorem 7.3.6 (Norse bound). The covering radius of a code with zeros and ones

occurring equally often in each coordinate (i.e., having dual distance at least 2) is at

most bn
2
c.

None of the finite geometry LDPC codes has a zero column, and so all the codes

in these families have dual distance at least two. The Norse bounds applied to the

EG finite geometry codes are:

(7.3.1) R(C(1)EG(m, 2s)) ≤ 2ms−1 − 1.

(7.3.2) R(C(2)EG(m, 2s)) ≤ (2(m−1)s − 1)(2ms − 1)

(2s+1 − 2)
.
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The strategy of using the parallel structure of the Euclidean geometry has not led

to upper bounds on the covering radius, but other arguments based on the incidence

structure may yield more refined bounds.

7.4 Covering radius of projective geometry

LDPC codes

The analysis differs when dealing with LDPC codes from projective geometries. Un-

like the Euclidean geometry cases, there are no parallel bundles in finite projective

spaces. To prove results about the covering radius of projective geometry code fami-

lies, we will consider the distance of the vector 1 from the code. The vector 1 is not a

codeword in either the Type-I or the Type-II codes, since each line in PG(m, 2s) has

an odd number of points (2s+1), and each point is contained in an odd number of lines

(2
ms−1
2s−1 ). Each check node in the respective Type-I and Type-II Tanner graphs has

odd degree, and therefore the all-ones word leaves every check node unsatisfied. The

distance d(1, C) provides a lower bound on the covering radius R(C), since spheres of

radius R around codewords must cover 1.

Theorem 7.4.1 (Sphere Covering Bound). A linear [n, k, d] code satisfies the follow-

ing bound: ⌊
d− 1

2

⌋
≤ R(C).

Corollary 7.4.2. The Type-I finite projective geometry LDPC code C(1)PG(m, 2s) has

⌊
2ms − 1

2s+1 − 2

⌋
≤ R(C(1)PG(m, 2s)).

Proof. The minimum distance of C(1)PG(m, 2s) satisfies (2ms−1)
(2s−1) + 1 ≤ d

(1)
PG(m, s), by the
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Tree bound in [73]. Therefore the result follows from the sphere covering bound.

We now seek to improve this bound by a factor of two using the geometric structure

of PG(m, 2s).

Proposition 7.4.3 (Limbupasiriporn, Storme, Vandendriessche 2012). The all-ones

word 1 ∈ Fρ2 is not a codeword in C(1)PG(m, 2s), and moreover, the distance from 1 to

the code C is:

d(1, C(1)PG(m, 2s)) =
2ms − 1

2s − 1
.

Proof. We demonstrate a vector x of weight 2ms−1
2s−1 such that x + 1 ∈ C(1)PG(m, 2s).

Fix an m − 1 dimensional subspace of the projective geometry PG(m, 2s), called a

hyperplane, and let x be the indicator vector of the 2ms−1
2s−1 points in the hyperplane.

Every line in PG(m, 2s) is either completely in this hyperplane or intersects it in

exactly one point. To see this, suppose that a line intersects the hyperplane in more

than one point. There is a unique line through those two points in the hyperplane,

and there is also a unique line that contains these points in PG(m, 2s). These lines

must coincide, so the line is contained entirely in the hyperplane. Every check is

satisfied by the word x + 1, because each check node has either 2s adjacent variable

nodes with ones, or all adjacent variable nodes are zeros. Theorem 3.1 in [3] implies

that a maximum weight word in the code has weight 2ms−1
2s−1 , so the distance is bounded

below by this quantity, which then gives equality.1

Corollary 7.4.4. The covering radius of C(1)PG(m, 2s) satisfies:

2ms − 1

2s − 1
≤ R(C(1)PG(m, 2s)).

1The proof given by the authors of [47] uses a different argument.



130

Proof. The covering radius is bounded below by d(1, C(1)PG(m, 2s)), so the result follows

from Proposition 7.4.3.

We can compare this to the graph-based result, since the all-ones syndrome occurs

for the code C(1)PG(m, 2s). Proposition 7.1.2 gives

2(m+1)s − 1

22s − 1
≤ R(C(1)PG(m, 2s)).

The lower bound from Corollary 7.4.4 is a better bound than the one resulting from

Proposition 7.1.2. Indeed,

2(m+1)s − 1

22s − 1
<

2ms − 1

2s − 1
,

since the expanded version of the expression on the right contains all of the terms of

the expanded expression on the left, as well as additional terms.

Example 7.4.5. In this example, we consider m = 2, and again use the redundancy

bound and the dimension shown in [43] to determine the following range for C(1)PG(2, 2s):

2s + 1 ≤ R(C(1)PG(2, 2s)) ≤ 3s + 1.

In particular, the covering radius grows with the size of the underlying field of the

finite projective geometry.

The Norse bounds also apply to the Type-I projective geometry LDPC codes, and

the resulting bounds are:

(7.4.1) R(C(1)PG(m, 2s)) ≤ 2(m+1)s − 1

(2s+1 − 2)
.
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(7.4.2) R(C(2)PG(m, 2s)) ≤ (2ms + · · ·+ 2s + 1)(2(m−1)s + · · ·+ 2s + 1)

(2s+1 + 2)
.

For Type-II PG-LDPC codes, the parity check matrix is the transpose of the

corresponding Type-I parity check matrix from PG(m, 2s). Recall that each point in

the geometry PG(m, 2s) is on

(2ms − 1)

(2s − 1)
= 2(m−1)s + 2(m−2)s + · · ·+ 2s + 1

lines. Every check node in the Tanner graph involves an odd number of variable nodes.

The all-ones word in Fn2 is therefore not a codeword, and the syndrome associated with

this word is the all-ones syndrome. We can mirror the process above and consider

the distance from the all-ones word to the code.

Proposition 7.4.6. The all-ones vector is not an element of C(2)PG(m, 2s), and its

distance to the code is given by

d(1, C(2)PG(m, 2s)) =
2ms − 1

2s − 1
.

Proof. Choose a point p in PG(m, 2s). Note that there are 2ms−1
2s−1 lines through this

point. Let x be the indicator vector of this set of lines. Note that 1 + x ∈ C, since

the check node corresponding to p is satisfied (all variable node neighbors are zero),

and all other check nodes have 2ms−1
2s−1 − 1 neighboring nodes with ones, and so are

satisfied. This shows that d(1, C(2)PG(m, 2s)) ≤ 2ms−1
2s−1 . It remains to show that at least

this many variable nodes corresponding to lines must be made zero in order to satisfy

all check nodes.

Recall that the geometric interpretation of 1 is that every line has a corresponding

variable node with an entry of 1. Suppose that fewer than 2ms−1
2s−1 lines are changed to
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zeros. Let P be the number of points contained in the union of these lines. Then

P ≤ (2s + 1) +

(
2ms − 1

2s − 1
− 2

)
(2s),

since every pair of lines intersects in one point, and several lines may intersect at the

same point.

Therefore, by rewriting the expression above,

P ≤ 2(m+1)s − 1

2s − 1
+

2s+1 − 2s − 22s

2s − 1
<

2(m+1)s − 1

2s − 1
.

I.e., P is smaller than the number of points in the geometry. Since every point in the

geometry represents a check node, and there is at least one point not contained on a

line that was flipped, the distance from 1 to the code is at least 2ms−1
2s−1 . That is,

2ms − 1

2s − 1
≤ d(1, C(2)PG(m, 2s)).

Corollary 7.4.7. The covering radius of C(2)PG(m, 2s) satisfies:

2ms − 1

2s − 1
≤ R(C(2)PG(m, 2s)).

Proof. Since the all-ones word has distance 2ms−1
2s−1 from the code, the covering radius

is at least as large as this distance.

The results here suggest a general strategy for bounding the covering radius of

LDPC codes derived from finite geometries—in the case of Euclidean geometries,

consider parallel bundles of µ-flats, and in the case of finite projective geometries,

consider the distance from the all ones word to the code. These strategies could
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be applied to many of the families of finite geometry LDPC codes that have been

proposed to refine existing covering radius bounds.
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Chapter 8

Conclusions

This thesis has explored mathematical approaches to coding for flash memory storage.

We conclude with extensions and open questions.

In Chapter 3, we constructed families of rewriting codes using the incidence struc-

ture of finite Euclidean geometries. One question that arises from these construc-

tions is: can we rebuild a finite geometry (or more general incidence structure) using

a WOM code encoding map? Can incidence structures be derived using recently-

constructed WOM codes? We have investigated constructions of WOM codes using

more general discrete structures, but the incidence relations of finite geometries seem

to lend themselves best to deriving natural encoding and decoding maps. Perhaps

starting with an efficient WOM code and creating an incidence structure can shed

light on the precise incidence relations that are needed to achieve such a construction.

Extensions for Chapter 4 include classifying when a WOM code meets the lower

bound given in Section 4.1. In Section 4.4, it would be interesting to calculate the

optimum parameters when using error-correcting WOM codes as the inner and outer

codes, and incorporating variable-rate WOM codes as the component codes.

Chapters 5 and 6 comprise an approach to the design and implementation of
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binary and nonbinary LDPC codes for flash memory. One interesting question is how

to take a structured binary LDPC code (such as one described in Section 7.1) and

efficiently delineate the precise bit assignments in order to achieve unbalanced check

node types. An alternate approach is to construct a (j, k)-regular LDPC code with

the bit assignments built into the construction. These codes can then be compared

to existing schemes for error-correction in flash memory (e.g., in [17]).

In Chapter 6, the binary decoding thresholds and the nonbinary decoding thresh-

olds indicated different results for certain edge label assignments. Is there a different

noise model for which these results coincide?

The results in Chapter 7 suggest that bounds on the covering radius of a wide

variety of families of finite geometry LDPC codes can be derived using the geometric

incidence relations. It would be interesting to extend the strategies in Chapter 7 to

bound the parameters of such structured code families.
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