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microRNAs (miRNAs) are small non-coding RNA which play an important role in gene 

regulation. Majority of miRNAs are encapsulated in exosomes thereby confer protection 

against degradation and transport across cell. Recent study suggests that 1) humans 

absorb microRNAs from cow’s milk, 2) milk microRNAs are delivered to peripheral 

tissues where they alter the expression of human genes, and 3) endogenous synthesis of 

microRNAs does not compensate for dietary microRNA depletion in mice. Studies 

suggest that cow’s milk exosomes can be transported across the intestinal mucosa by 

processes involving endocytosis and exocytosis. Here we tested the hypothesis that 

endothelial cells also transport milk exosomes. Using FM-labelled exosomes, the 

transport of exosomes in HUVECs can be assessed, i.e., the quantitatively most important 

fraction of exosomes in milk taken up by HUVECs. Exosome uptake followed Michaelis-

Menten kinetics (Vmax = 0.057±0.004 ng exosome protein x 40,000 cells-1 x hour-1; Km= 

17.97±3.84 µg protein/200 µl media) and decreased by 80% when the incubation 

temperature was lowered from 37°C to 4°C, consistent with carrier-mediated transport. 

When exosome surface proteins were removed by treatment with proteinase K or 

transport measured in the presence of carbohydrate competitors, transport rates decreased 

by 30% to 50% compared with controls, consistent with a role of surface glycoproteins in 



 
 

endothelial transport. Treatment with cytochalasin D caused a 50% decrease in transport, 

consistent with endocytosis. We conclude that human endothelial cells transport bovine 

exosomes by endocytosis and propose that this is an important step in the delivery of 

exosome cargo to peripheral tissues. 
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Extracellular Vesicles (EVs)  

Extracellular vesicles (EVs) are term used to describe the diverse types of plasma 

membrane or endosomal vesicle origin (1). They appears in spherical form and composed 

by phospholipids and specific proteins which separates them from plasma membrane 

origin with size ranging from 30 nm to 1 µm (2-4). They are secreted by both eukaryotic 

and prokaryotic cell into the environment for cell-to-cell communication, protection, and 

exchange of genetic information (5).   

In the beginning, EVs were considered as cellular debris, which is resulted from 

the membrane remodeling of apoptotic cells (6). Indeed, the first and well-known EVs 

was apoptotic bodies which is released during apoptosis. However, healthy cells also 

release vesicles which comprised by large and small vesicles (7-10). Some EVs are 

derived from the shedding of plasma membrane which latter known as shedding vesicles 

or microvesicles (11), whereas other EVs are derived from the exocytosis process of 

multivesicular bodies (MVB) which known as exosome (12). These two types of EVs are 

majorly found to be released by the cell into the plasma as well in other biological fluids 

such as semen, saliva, urine, breast milk, cerebrospinal fluids, bronchoalveolar and 

lavage fluid, amniotic fluid, and malignant ascites (13-18).   

Perhaps the first experiment regarding the presence of EVs was dated back in 

1967 when Wolf (19) reported phospholipids rich small vesicle ranging from 20 to 50 nm 

from the platelet termed “platelet dust” that contains the platelet factor 3 for blood 

coagulation. Ultracentrifugation removed the small vesicle and caused a prolonged blood 

coagulation. The presence of small vesicles were confirmed later in fetal bovine serum, 

nerve tissue, healthy cell and cancerous cell with unknown biological function (7-9). In 
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the early 1980s, two independent researchers have identified the function of this small 

vesicle for transporting transferrin and its receptor during reticulocyte maturation (10, 

20). Further electron microscopy identified that the small vesicle was formed by inward 

budding of plasma membrane into intracellular endosomes followed by exocytosis of late 

endosome or multivesicular endosomes (MVBs) (10, 21). Term “exosomes” than had 

been used to characterize this small vesicles produced by mature reticulocytes which 

carry the transferrin receptor without the presence of cytosolic enzyme that can be 

isolated using centrifugation technique (12, 22). Noted that the term exosome used here 

should be distinguished from the RNA degrading complex in the cytosol (23). 

However, these findings were not appreciated enough until Raposo et al. (24) 

reporting the presence of major histocompatibility complex (MHC) class II in exosome-

like vesicle produced by antigen presenting cell. This result indicated that exosome is not 

only produced by the reticulocytes, but also from other cells such as B cell. This finding 

was confirmed by several studies that cancer and other normal cells also produce 

exosome vesicle that carry functional enzyme (25), mRNA (26) and microRNA (27, 28). 

Since then, large body of articles have identified numerous EVs isolated from different 

cell with distinct functional therapies such as cardioprotection (29), drug delivery (30), 

stroke therapy (31), and gene therapy (32).     
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Classification of Cell Derived EVs  

Although several cell derived EVs have been well characterized in numerous 

studies, however there is no consensus regarding the nomenclature and characteristic of 

cell derived EVs (33, 34). This condition led to the confusion on determining the cell 

derived EVs. For instance, one can use the term “ectosomes” (35, 36), “exosome-like 

vesicles” (37, 38), “argosomes” (39), “tolerasomes” (40, 41), “prostasomes” (42), 

“cardiosomes” (43) or “vexosomes” (44) to explain small vesicle with size <100 nm. The 

term of microparticles and microvesicles have been used collectively by numerous 

authors to describe direct, vesicular form of membrane shed vesicles with size >100 nm 

(45). Moreover, exosomes can be defined in different ways, i.e., the exfoliated plasma 

membrane, which has the plasma ecto-enzyme activity (9), or the vesicles that formed by 

inward budding of limited plasma membrane into endosome to form MVBs followed by 

exocytosis process of MVBs after fusion with plasma membrane (22). In order to make 

the classification clear, the term microvesicles (MVs) will be used instead of 

microparticle to explain vesicle larger than 100 nm.     
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Table 1.1. Characteristics of different types of cell derived EVs*)  

Feature Exosome Microvesicles Membrane 

Particles 

Ectosomes Exosome-like 

particle 

Apopto-

tic bodies 

Size (nm) 30-100 100-1,000 50-80 50-200 20-200 50-5000 

Density 

(g/ml) 

1.13-1.19 ND 1.03-1.07 ND 1.12-1.18 1.16-1.28 

Mechanism 

of 

generation 

Exocy-

tosis of 

MVBs 

Budding/blebbing 

of plasma 

membrane 

Budding/ 

blebbing of 

plasma 

membrane 

Budding/ 

blebbing of 

plasma 

membrane 

ND Release 

from 

dying/ap

optotic 

cells 

Morphology Cup-

shaped 

Irregular shape Round  Bilaminar 

round 

Cup-shaped Heteroge

neous 

Origin Endoso-

mes 

Plasma membrane Plasma 

membrane 

Plasma 

membrane 

Internal 

compartment

? 

ND 

Protein 

markers 

Tetra-

spanin 

(CD63, 

CD9, 

CD81), 

LAMP, 

Alix, 

TSG101 

Annexin V, 

integrins, 

selectins, CD40 

ligands 

CD133 CD59, 

CR1-

related 

enzyme 

TNFRI Histone 

*) Adapted from (13, 35, 45-50). ND, not defined.   
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Based on literature, there are several categories of cell derived EVs. Some 

classified cell derived EVs into two classes (51), three classes (1, 45, 47, 49), four classes 

(48) or more (46). Characteristics of cell derived EVs are reviewed in Table 1.1. These 

discrepancies in classification of cell derived EVs are caused by many factors, i.e., 

isolation procedure, size, density, morphology, lipid and protein composition as well 

cellular origin (33, 48). Thus, to mediate the ambiguous term in cell derived EVs 

research, International Society of Extracellular Vesicles (ISEV) has proposed some 

criteria to represent the minimal characterization of EVs. These including: 1) the 

presence or absence of some protein marker, which can be detected by western blot, flow 

cytometry, or mass-spectrophotometry, 2) characterization of single vesicles should be 

performed by using electron microscopy in wide area accompanied by size distribution 

measurement, 3) presence of controls in the studies of the functional activity of EVs (34).   

 

  



7 
 

Exosome  

Exosome is small, nano-sized vesicle with diameter of 30-100 nm and density of 

1.13-1.19 g/mL (50). It is secreted by normal or cancerous cell in spontaneous or 

inducible processes (9, 52, 53). It is present in biological fluid such as plasma, saliva, 

urine, breast milk, bronchoalveolar lavage fluid, amniotic fluid, cerebrospinal fluid, and 

malignant ascites (13, 14, 17, 54).  

Exosome term was first determined by Trams et al (9) as a vesicle derived from 

the plasma membrane although the term was started to change two years afterwards when 

two independent researchers, Harding et al (10) and Pan et al (20), discovered a small 

vesicle formed from inward budding of late endosomes. This small vesicle contains 

transferrin receptor, which add another route for transferrin receptor recycle during 

maturation of red blood cells (12). Electron microscopy further revealed the formation of 

intraluminal vesicles (ILV) formed by invagination or budding from limited membrane of 

endosome, which will fuse with plasma membrane to release small vesicle through 

exocytosis process (10, 21). Small vesicles, which are released from MVBs, were later 

termed “exosome” (22) and later were confirmed in B-cell by Raposo et al (24). Since 

then, term exosomes is used to describe the small vesicles formed by the inward budding 

of endosomes (Figure 1).   

Exosomes harbor protein, lipid, carbohydrate and nucleic acids such as miRNA, 

small non-coding RNA and mRNA which derived from their cellular origin (55). These 

components, particularly miRNA, reflect the functionality to the host cell and posse 

molecular signature from their cellular origin (38, 47, 56-58). Therefore, it was thought 
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that molecular characterization of exosome exert potential biomarker of the disease such 

as cancer.    

The protein content in exosome comprised by protein involved in MVBs 

generation such as membrane transport and fusion protein (e.g., Rab, annexins, flotillins), 

MVB biogenesis (e.g., ESCRT family: Alix, TSG101), cytoskeletal protein (e.g., actin, 

tubulin, syntenin, and moesin) and tetraspanin (e.g., CD63, CD9, CD81, CD82) although 

other proteins which is not related to the MVBs generation also present in exosome such 

as metabolic enzymes, heat shock protein, ubiquitin, and protein important for signal 

transduction, apoptosis and protein synthesis (46, 59, 60). Protein contents in exosomes 

are reviewed in Table 1.2.  

The lipids of exosome comprised by cholesterol, phospholipids, sphingolipids, 

ceramides and lipid raft molecule (1, 46, 47). The carbohydrates in exosome is enriched 

in mannose, polylactosamine, α-2,6 sialic acid and complex N-glycans, which is 

important for protein recruitment in exosome (61-63). All of these components discrete 

exosomes from other organelle or plasma membrane (47). Currently, all of the protein 

and lipid components of exosomes are available online from three databases; EVpedia, 

Exocarta and Vesiclepedia (64, 65).    

Exosome also carry nucleic acids which can be translated into functional protein 

or regulate the activity of gene (26, 66, 67). Several RNA families such as messenger 

RNA (mRNA), microRNA (miRNA), transfer RNA (tRNA), ribosomal RNA (rRNA), 

piwi RNA (piRNAs), mitochondrial RNA (mitRNA) and long non-coding RNA present 

in exosome (60, 68-70). The presence of nucleic acids, especially the miRNA, are 

thought to be a reliable marker for exosome due to the equal level of miRNA in exosome 
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compared with the parental cell (15, 70, 71). However, identification of miRNA in 

exosome is challenged due to the low level of miRNAs in exosome compared to their cell 

origin (72). In addition, recent studies also suggest that other proteins; e.g., the HDL and 

argonaute, also transport miRNA which limit the potential use of miRNA detection as a 

marker of exosome (73-75).      

Based on the first discovery of exosomes, the exocytosis process of MVBs is the 

general process of exosomes biogenesis. The engulfment of plasma membrane by clathrin 

or non-clathrin coated pits resulting in early endosome was the first pathway in exosome 

biogenesis. The formation of early endosome was followed by multivesicular bodies 

(MVBs) development through trans-golgi network protein interaction, i.e., endosome 

sorting complex required for transport (ESCRT), resulting in the formation of 

intraluminal vesicle (ILV). The ESCRT protein family is also important for the fate of 

MVBs (76). The fusion of MVBs with the plasma membrane resulted in the releasing of 

exosomes. This mechanism is first confirmed in red blood cell, which was also 

established in dendritic cells (77).           

However, there are other exosome biogenesis pathways, which are ESCRT-

independent process. This pathway rises as silencing the production and activity of 

TSG101 or ESCRT complex did not hamper the production of exosome in some type of 

cells (53, 78, 79). For instance, silencing the production of CD69 protein in melanocyte 

has caused significant reduction in exosome biogenesis (80) while inhibiting ceramide 

production in oligodendroglial cell has resulted in lower production of exosomes (81). 

These results indicated the ESCRT-independent pathway for exosome biogenesis as well 
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the cellular specific pathway for exosome biogenesis, which may explain the variety on 

molecular signature in exosomes (82).   

Upon releasing into the plasma or serum, recent direct and indirect evidence 

reported that exosomes are taken up by the cell through several proposed mechanisms in 

order to transfer the cargo into recipient cells. Studies showed that exosomes uptake is 

endocytosis-dependent process as indicated by fluorescence microscopy method (83-88). 

In addition, other types of endocytosis process, i.e., phagocytosis and micropinocytosis, 

have been reported (89, 90). However, exosomes are also transported by direct fusion 

with plasma membrane of the cell, which suggesting the endocytosis-independent 

pathway for cellular internalization of exosomes (91).  

 

Microvesicles  

Microvesicles, also known as shedding vesicles, microparticles, ectosomes or 

membrane particles, is vesicles produced by outward budding and fission of plasma 

membrane (51, 92). They are found in most of biological fluids as well in atherosclerotic 

plaque (93, 94). Unlike exosomes, this small vesicles has heterogeneous shape, larger in 

diameter (from 100 nm up to 1 µm) and float in sucrose gradient with density of 1.032-

1.07 g/mL, slightly lower than exosomes (46, 48, 92).  

Microvesicles were first characterized by Wolf (19) as “platelet dust” that contain 

platelet factor 3 for blood coagulation. The vesicles were comprised by phospholipid rich 

vesicles and secreted by most type of cells in the body including circulating cells, 

vascular cells, and cardiomyocytes (95). Stress, hypoxia, apoptosis, inflammation, 

complement attack, bacteria lipopolysaccharides (LPS), intercellular calcium elevation, 
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senescence and platelets activation have been reported to stimulate the release of 

microvesicles (96-102). Thus, microvesicles play important role in coagulation (103), 

atherosclerosis development (104), tumor invasion and metastases (94), immunity and 

inflammatory modulator (105-107).    

Due to the plasma membrane origin, microvesicles contain several proteins and 

lipid from plasma membrane origin. In addition, microvesicles also acquired some 

protein from plasma or endocytic compartment, which indicated sorting protein process 

in microvesicles (99, 110). Although, they are originated from plasma membrane of the 

cells, protein and lipid component of microvesicles, as well the cargo content of 

microvesicles, are depend on several factors; i.e., cellular origin, cellular stage (e.g., 

resting, stimulated), and the stimulation agent (111). For instance, stimulation of platelet 

with complement complex C5b-9 resulted in platelet-derived microvesicles enriched in 

C9 neoantigen of the C5b-9 complex and α-granule-derived-coagulation factor V (or Va) 

(112). In addition, stimulation with this agent produced platelet-derived microvesicles 

that did not bind with fibrinogen (113).  

Although it is cleared that microvesicles was originated from plasma membrane 

of the cells, formation and released of microvesicles from plasma membrane is poorly 

understood. It is hypothesized that activated cells will cause an elevation of calcium level 

in the cytosol, particularly in site of vesiculation, will cause activation of kinases and 

calpain as well inhibition of phosphatases, which in turn will break the membrane 

cytoskeleton, releasing microparticles to extracellular compartment of the cells (98). Prior 

to membrane breakdown, it is hypothesized that non-secretory exocytic vesicles will 

accumulate into the plasma membrane, causing the budding of plasma membrane (51). 
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This event is characterized by the presence of desmoyokin and annexin 2, a marker of 

exocytic organelle, in microvesicles (111). It is also reported that budding of 

microvesicles from plasma membrane requires two important proteins: endosomal sorting 

complex required for transport (ESCRT) and arrestin domain-containing protein 1-

mediated microvesicles (ARMMs) (114, 115). Inhibition of ARMMs along with ESCRT 

inhibits the release of microvesicles from plasma membrane, which indicated the main 

function of these two proteins in mediating the release of microvesicles from plasma 

membrane (116).  
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Figure 1.1. Formation of exosome from multivesicular endosome. A limited plasma 

membrane is engulfed into the early endosome where it will mature into multivesicular 

endosome with the formation of intraluminal vesicle (ILV) derived from late endosome. 

The multivesicular endosome then fused with the plasma membrane to release small 

vesicle containing transferrin receptor. Adapted from Thery et al (46).   
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Table 1.2. Protein and glycolipid content of exosomes*)  

Protein Function/Class Protein 

Antigen presentation MHC Class I/II, CD86 

Adhesion molecules/targeting   Milk Fat Globule-Epidermal growth factor VIII 

(MFG-E8 or lactadherin), integrin (α3, α4, αM, 

αL, β1, β2), tetraspanin (CD63, CD9. CD37, 

CD53, CD81, CD82)  

Membrane transport and fusion  RAP1B/RABGDI, Rab 7, Rab 2, Annexins 

(Annexins 1-7), dynamin, syntaxin, AP-1, 

Arp2/3, SNAP 

Heat-shock protein HSC70, HSP84/90  

Cytoskeletal protein  Actin, cofilin, tubulin, moesin, rodixin, advilin, 

vimentin, talin, CAP1, ezrin 

Raft-associated protein or glycolipids Flotillin, CD55, CD59, GM1, GM3, Gi2α, 

cholesterol, stomatin 

Enzymes  Pyruvate kinase, alpha enolase, ATPase, glucose 

6-phosphate, isomerase, peroxiredoxin 1, 

aspartate amino transferase (ASAT), fatty acid 

synthetase, ATP citrate lyase    

MVB formation Alix, TSG101, Gag 

Signal transduction  Erk2, Fyn, RhoA/C, catenin, syntenin  

*) Adapted from (108) and (109)  
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Upon the release into extracellular compartment, microvesicles are taken up by 

the cells with half-life around 10 minutes in the plasma (117). Study indicated that 

microvesicles are taken up by the cells through endocytosis and phagocytosis pathway 

upon binding with specific receptor in the cells (118). Developmental endothelial locus 

(Del)-1 is important protein that recognize the phosphatidylserine in microvesicles and 

mediates the endocytosis process of microvesicles through binding with integrin, αvβ3, 

on cells (119). The lactadherin, also known as milk fat globule-epidermal growth factor 

8, is mediated the phagocytosis process of microvesicles upon binding with integrin of 

macrophages (120). In addition, other proteins are reported to mediate the uptake of 

microvesicles; growth arrest specific 6 (GAS6), β2-Glycoprotein I, P-selectin (117).                          

           

Apoptotic Bodies  

Apoptosis, also known as programmed cell death, is a major mechanism of cell 

death, both in cancer and normal cell, indicated by the release of membrane vesicles 

called apoptotic bodies or apoptosomes (6). The apoptosis process begins by activation of 

caspase protein in response to ligation of the death receptor in the cell membrane 

(CD95/FAS, TNFR1, TRAILR) (121). Activated caspase will cleave certain regions of 

genomic DNA, forming oligonucleosome ladder, followed by migration of 

oligonucleosome into the cytosol due to increased permeability of nuclear pores (122, 

123). Upon exiting the nucleus, the oligonucleosome will migrate into plasma membrane, 

forming “blebs” at the plasma membrane (124, 125). It is reported that rho effector 

protein I (ROCK I) is cleaved by caspase and promote the formation of apoptotic blebs 
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during apoptosis (126, 127). The blebs will contain cellular organelle, which will be 

cleared through phagocytosis by macrophage (128).  

 Although apoptotic bodies can be distinguished from others EVs; e.g., exosomes 

and microvesicles, by size (500-4000 nm in diameter), study suggests the presence of 

cellular organelle in small vesicles with diameter of 50-500 nm, which indicating the 

apoptotic bodies (129). In addition, some proteins present in other EVs such as epithelial 

cell adhesion molecules (EpCAM), CD63, CD81, which is found in most of extracellular 

vesicles including apoptotic bodies, and annexin V, which is detected in microvesicles 

and apoptotic bodies (130, 131). The similarity in size and protein composition between 

apoptotic bodies and others EVs have added the difficulties in characterizing EVs from 

the sample. Moreover, there is no established protocols for isolating apoptotic bodies. 

One method that has been developed to distinguish apoptotic bodies from other EVs is 

RNA analysis. Based on this technique, apoptotic bodies majorly composed by ribosomal 

RNA, which is lacked in others EVs such as exosome and microvesicles (131).  

Similar with other EVs, apoptotic bodies are cleared or taken up by the cells to 

mediate transfer of genetic between cells. Phagocytosis by the macrophage is the major 

route for apoptotic bodies’ clearance during normal development (132). The clearance 

process of apoptotic bodies consisted of 4 distinct steps: accumulation of phagocytes at 

the site where apoptotic cells are located through “find me” signals, recognition of 

apoptotic bodies through “eat me” signals and their cognate receptors, engulfment by 

macrophages through signaling pathways that regulate the cytoskeletal rearrangement of 

macrophage, digestion of engulfed apoptotic bodies within macrophage (133, 134). The 

presence of thrombospondin, complement protein C3b, and annexin V in apoptotic 
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bodies are believed to guide the macrophage to eat the apoptotic bodies, which serve as a 

protein marker for apoptotic bodies (125, 132, 133). Internalization of apoptotic bodies 

into targeted cells has been reported to promote several functions such as anti-

inflammatory properties (135, 136), viral transfer (137), endothelial cell repair (130), as 

well as cancer metastases (138).     

               

Biological Function of Cell derived EVs  

The presence of nucleic acids such as DNA, RNA, miRNA as well long non 

coding RNA in EVs has risen the importance of EVs for cell-to-cell communication 

(139). Indeed, the nucleic acid, particularly RNA, in EVs can be translated by recipient 

cells to promote function such as transcription termination (140) and lipid synthesis 

(141). Moreover, it is reported that most of detectable microRNA present in biological 

fluid such as serum, saliva and breast milk is encapsulated in EVs, particularly in 

exosomes (27). EVs exert potential protection against harsh environment and enzymatic 

degradation (142), which contribute to the transport and genetic transfer into recipient 

cells through local or systemic circulation in endocrine-like pathway (82).   

Study suggest that mRNA and microRNA-containing EVs can be transmitted 

across species. Using mouse dendritic cells, Valadi et al (26) have successfully 

demonstrated that mRNA from mouse dendritic cells can be translated into functional 

protein in human mast cells. In addition, Sun et al (143) reported the immune-related 

miRNAs from cow’s milk can influence gene transcription in human macrophage cells 

resulting in macrophage differentiation. Recent study conducted by our lab (67, 144) also 
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supported the notion that microRNAs present in cow’s milk and egg EVs can be exported 

into human blood and affect gene expression in human body.  

In addition, protein, enzyme and lipid components in EVs have been proposed to 

mediate several physiological or biochemical process in the body, i.e., cellular 

development, differentiation, and immune function. For instance, exosomes account for 

transferrin receptor transport from reticulocytes into the blood during red blood cells 

maturation (10, 145). In addition, Skokos et al (146) demonstrated that exosomes 

released from mast cells are able to induce maturation of immature dendritic cells (DC) 

by its ability in antigen presentation to T cells. Further studies indicated that the ability of 

antigen presenting of DC to T cells is mediated by exosomes released from mature DC 

(147, 148).    
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MicroRNA (miRNA)  

microRNA (miRNAs) is small, ~21 nucleotides long, non-coding RNA that plays 

an important role in gene regulation, both in animals and plants, by binding to 

untranslated region of mRNA, resulting in translation inhibition or mRNA degradation 

(149). It was first discovered in C. elegans as a non-coding RNA, produced by lin-4 and 

let-7 genes, that binds to 3-untranslated region of lin-14, lin-28, lin-41, lin-42 and daf-12 

mRNA (150, 151). Since then, let-7 RNA homolog has been identified in a wide range of 

animal species, e.g., vertebrae, ascidian, hemichordate, mollusk, annelid, and arthropod 

(152). This small, single stranded RNA was named miRNA and regulates as much as 

60% of mammalian genes (153-156).   

Since the discovery of miRNAs, other small RNAs have been characterized in 

animals, plants, and fungi, which including small interfering RNAs (siRNAs) and Piwi-

interacting RNAs (piRNAs) (157, 158). They have distinct characteristic, although have 

similarities particularly in post-transcriptional modification. The characteristic between 

miRNA, siRNA and piRNA are reviewed in Table 1.3.  

             

MicroRNA Biogenesis, Maturation and Molecular Mechanism   

Study suggest that miRNAs are encoded in the nucleus. Most of the miRNAs in 

human, around two third, are encoded in the intron region of protein-coding genes as well 

in long non-coding transcript (159). This condition let to the assumption that miRNAs are 

transcribed along with the host genes using RNA polymerase II (160, 161). However, 

Bortolin-Cavaille et al (162), reported the introgenic independent pathway of protein 

coding genes for miRNAs biogenesis. They reported that miRNAs in C19MC are 
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transcribed from intron region of non-protein-coding genes. In addition, studies suggest 

the role of exonic region of non-protein-coding genes for miRNA production (163, 164). 

Thus, miRNA can be encoded by three genomic regions in the nucleus; 1) intronic region 

of protein-coding genes, 2) exonic miRNA region in non-protein-coding genes and or 3) 

intronic region of non-protein-coding genes.  

Table 1.3. Characteristic of miRNA, siRNA, and piRNA*)  

 miRNA siRNA piRNA 

Origin  miRNA gene (exon) 

or DNA intron 

(endogenous) 

Long double 

stranded RNA 

(endegonous and/or 

exogenous) 

Repetitive elements 

such as retrotrans-

posons, DNA trans-

posons, and the 

Su(Stellate) locus 

Configuration  Single stranded 

RNA 

Double stranded 

RNA 

Single stranded 

RNA 

Length  19-25 nucleotides 21-22 nucleotides 21-33 nucleotides 

Complementarity to 

target mRNA 

Not exact  100% perfect match  100% perfect 

match 

Action  Cleveage of mRNA 

and/or translation 

inhibition  

Cleavage of mRNA  Cleavage of mRNA 

and recruitment of 

DNA methylation 

*)Adapted from (155, 165-168).  
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Biogenesis of miRNAs start with the translation of genomic region of miRNA in 

the nucleus. There are two enzymes: RNA polymerase II or RNA polymerase III, which 

mediate the transcription of miRNA (161, 169). The resulting product are called primary 

precursor of miRNA (pri-miRNA) that comprised by more than 1 kbp nucleotides with a 

double stranded stem of ~33 bp, a terminal loop and two flanking unstructured single-

stranded segments (160, 170). The pri-miRNA is cleaved by microprocessor complex 

(nuclear RNAse III Drosha/Pasha and DGCR8) to release ~65 bp hairpin-shaped 

nucleotides called precursor miRNA (pre-miRNA) (171-174). The resulting pre-miRNA 

will be exported outside the nucleus using exportin-5, which require the Ran-GTP 

cofactor (175, 176). In addition, the binding of pre-miRNA with exportin-5 also protects 

pre-miRNA from degradation (177).    

In the cytosol, pre-miRNA will subsequently cleave by another RNAse III 

nuclease called dicer to produce mature, 22 nucleotides miRNAs (178, 179). Dicer will 

recognize and bind to pre-miRNA in the 2-nt 3`-overhang in pre-miRNA through the 

PAZ domain in dicer (180-182). The binding of pre-miRNA with dicer will create a 

complex termed miRNA duplex, which will release a single stranded, mature miRNA. 

The mature miRNA will form a complex with Argonaute (Ago) protein while the other 

miRNA duplex will be degraded (170).  

Argonaute protein and its homolog are ~100 kDa proteins, which contain both 

PIWI and PAZ domain (183, 184). When the mature miRNA, as well siRNA, forms a 

complex with the argonaute, the resulting complex is referred to RNA-induced silencing 

complex (RISC) (185). The complex will identify the mRNA target based on the 

complementary bases (perfect or nearly perfect) and cleaves the mRNA at a site near the 
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middle of miRNA/siRNA complementarity (186, 187). In addition, it was proposed that 

the argonaute-bound miRNA complex could repress the translation of mRNA (188, 189). 

The mechanism in which miRNA-argonaute protein complex inhibits protein translation 

lies in the sequence motive in argonaute protein that can bind with functional 7-methyl-

guanine (m7G) cap of mRNA (190). Once the argonaute form a complex with m7G cap of 

mRNA, this cap is not accessible for elf4E to initiate the translation process of mRNA, 

resulting in translation inhibition of mRNA (191, 192).  

The translation inhibition mechanism of argonaute-miRNA complex is also 

postulated due to the ability in the formation of “pseudo-polysomes”, large EDTA 

sensitive mRNA-protein (mRNP) assemblies (193). It is hypothesized that formation of 

pseudo-polysomes was caused by protein interaction between GW182 with argonaute 

protein, which causing recruitment of 80S ribosomes to mRNA (194-196). This 

polysomes lack of translation machinery and reported to initiate mRNA degradation (197, 

198). Biogenesis, maturation and molecular mechanism of miRNA are reviewed in 

Figure 1.2.  

 

MicroRNA in Health and Disease  

Due to the important role of miRNAs in regulating gene expression in the cells, 

miRNAs have been associated with health or disease progression. For instance, miR-29b 

has been reported for bone remodeling through its effect in genes regulation in osteoclast 

and osteoblast differentiation (199, 200) while miR-200 subfamily (miR-200b/200c/429) 

has been reported to inhibit cancer metastasis in hepatocellular carcinoma (201-203). 

Thus, alteration in miRNAs level may impact health and disease progression of the host 
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and can potentially be used as diagnostic tools in various disease state such as carcinoma 

(204, 205), osteoporosis (206), type 2 diabetes mellitus and obesity (207), as well in 

cardiovascular disease (208).      

Although miRNAs are considered endogenous; e.g., miRNAs synthesized by the 

cells will be used by the cells to regulate the gene expression inside the cells, recent 

studies suggest that dietary miRNAs may contribute to the miRNAs body pool. Indeed, 

miRNAs present in food can be transferred into human through dietary means. The first 

study regarding the importance of dietary miRNAs in body pool miRNAs and the effect 

in human health was demonstrated by Zhang et al (210). In this study, they reported that 

rice miRNA, osa-miR-168a, is detected in the mouse and human sera and inhibits mRNA 

expression of LDL-receptor, thereby reducing LDL removal from the blood. However 

this study was challenged by several findings regarding the low bioavailability of plant 

miRNA in the blood (211-213). Interestingly, miRNAs present in milk and egg have been 

reported to be absorbed in biologically meaningful amount and affect human gene 

expression both in vivo and in vitro (67, 144). The discrepancies of the result was 

probably caused by the encapsulation of miRNAs in EVs that protect miRNAs from 

enzymatic degradation and harsh environment as well for miRNAs transportation across 

species (142, 214, 215).                   
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Figure 1.2. Biogenesis, maturation and molecular mechanism of miRNA. In the nucleus, 

miRNA is transcribed using RNA polymerase II/III to produce pri-miRNA. The pri-

miRNA will subsequently cleave by Drosha/Pasha to produce pre-miRNA and exported to 

cytoplasm using exportin/RAN-GTPAse. In the cytosol, pre-miRNA will be cleaved by 

Dicer, releasing mature, single stranded miRNA. Mature miRNA will form a complex with 

argonaute protein calling RNA induced-silencing complex (RISC). Several mechanisms 

and possible pathways have been proposed, e.g., inhibition of translation or mRNA 

degradation. Adapted from (209).        
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ABSTRACT 

MicroRNAs (miRNAs) can be synthesized endogenously and cause gene repression. 

Encapsulation of miRNAs in exosomes confers protection against degradation and a 

vehicle for shuttling between cells and tissues, and cellular uptake by endocytosis. 

Exosomes can be found in biological fluids and foods including milk. Evidence suggests 

that humans absorb cow’s milk exosomes and deliver the microRNA cargo to peripheral 

tissues, consistent with gene regulation by nucleic acids across species boundaries. There 

is strong evidence that milk exosomes may cross the mucosa without re-packaging in 

mice. Here, we tested the hypothesis that human vascular endothelial cells transport milk 

exosomes by endocytosis, as a crucial step toward delivery of dietary microRNAs to 

peripheral tissues. Studies were conducted using human umbilical vein endothelial cells 

and fluorophore-labeled exosomes isolated from cow’s milk. Exosome uptake followed 

Michaelis-Menten kinetics (Vmax = 0.057±0.004 ng exosome protein x 40,000 cells-1 x 

hour-1; Km= 17.97±3.84 µg protein/200 µl media) and decreased by 80% when the 

incubation temperature was lowered from 37°C to 4°C, consistent with carrier-mediated 

transport. When exosome surface proteins were removed by treatment with proteinase K 

or transport measured in the presence of carbohydrate competitors, transport rates 

decreased by 30% to 50% compared with controls, consistent with a role of surface 

glycoproteins in endothelial transport. Treatment with cytochalasin D caused a 50% 

decrease in transport, consistent with endocytosis. We conclude that human endothelial 

cells transport bovine exosomes by endocytosis and propose that this is an important step 

in the delivery of exosome cargo to peripheral tissues. 

Keyword: endocytosis; endothelial cell; extracellular vesicles; milk exosomes; uptake  
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INTRODUCTION 

MicroRNAs (miRNAs) are small non coding RNA, which are encoded by their own 

genes, or introns and exons of long nonprotein-coding transcripts (1-3); miRNAs may 

silence genes via destabilizing of messenger RNA or preventing translation of mRNA (4, 

5). The online database miRBase, release 21, lists 1881 “high confidence” human 

miRNAs (6, 7), and about 60% of the miR-binding sites in the human genome are 

evolutionary conserved (8). Gene regulations by miRNAs has been implicated in 

numerous physiological (9) and pathological (10) conditions in humans. 

Until recently, miRNAs have been considered endogenous regulators of genes, 

i.e., miRNAs synthesized in a given organism regulate the expression of genes in that 

host. In a recent publication we have refuted this paradigm and provided strong evidence 

that 1) humans absorb biologically meaningful amounts of miRNAs from nutritionally 

relevant doses of cow's milk, 2) milk miRNAs are delivered to peripheral human tissues, 

3) physiological concentrations of milk miRNAs affect human gene expression in vivo 

and in cell cultures, and 4) endogenous synthesis of miRNAs does not compensate for 

dietary miRNAs deficiency in mice (11). That paper was the first report suggesting that 

miRNAs can be transferred between distinct animal species through dietary means. Our 

discoveries were corroborated in a recent report by investigators from the NIH-supported 

Genboree database who detected numerous dietary miRNAs in 6.8 billion sequencing 

reads from 528 human samples (12). Note that mammalian miRNAs are encapsulated in 

extracellular vesicles such as exosomes, thereby confer protection against degradation 

(13-16) and a pathway for cellular uptake by endocytosis (17, 18). Studies by us and an 

independent laboratory suggest that human and rat intestinal cells transport cow's milk 
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exosomes by endocytosis (Wolf, 2015, unpublished materials) and that milk exosomes 

may cross the intestinal mucosa without re-packaging in mice and enter circulation in 

intact form (19).  

 Here we tested the hypothesis that human endothelial cells transport cow's milk 

exosomes by a carrier-mediated process similar to the mechanism reported for the uptake 

of exosomes in intestinal cells. The uptake of dietary exosomes into endothelial cells is 

an important step in regulation of genes in peripheral tissues by dietary miRNAs in 

humans.  

 

Materials and methods  

Exosomes isolation and characterization  

Cow's milk (1% fat) was obtained from a local grocery store in Lincoln, 

Nebraska. Milk was centrifuged at 12,000 x g at 4°C for 30 minutes to remove somatic 

cells and debris. Fat-free supernatant was mixed with an equal volume of 0.25 M EDTA 

(pH 7.0) and incubated on ice for 15 minutes to precipitate casein (20). The suspension 

was ultracentrifuged at 80,000 x g at 4°C for 60 minutes (Sorvall WX Ultra 80, F37L-

8x100 rotor; Thermo Scientific, USA) to remove precipitated protein, milk fat globules, 

and microvesicles larger than exosomes. Exosomes were precipitated by centrifugation at 

120,000 x g at 4°C for 90 minutes. The exosome pellet was re-suspended in sterile 

phosphate-buffered saline and filtered through a 0.22-µm membrane filter (Milex). 

Sodium azide was added to produce a final concentration of 0.01% and exosomes were 

stored at 4°C for up to 5 days.  
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Exosome purity and absence of aggregation was assessed as recommended by the 

International Society for Extracellular Vesicles (21). Briefly, whole protein extract from 

exosomes were resolved by gel electrophoresis (10 µg protein/lane) as described 

previously (22) and membranes were probed using mouse anti-bovine CD63 (AbD 

Serotec, UK) as a marker for exosomes, rabbit anti-serum to bovine alpha s1-casein as a 

marker for the species of exosome origin, and goat anti-bovine histone H3(Santa Cruz 

Biotechnology, USA) as a negative control (all at 1,000-fold dilutions). Bands were 

visualized using an Odyssey infrared imaging system (Licor, Inc.) and IRDye 800CW-

labeled secondary antibodies (50,000-fold dilution). Anti-bovine alpha s1-casein was 

raised in rabbits (Cocalico, Inc, USA) using AHSMKEGIHAQQKEPMIGVGC coupled 

to keyhole limpet hemocyanin through amidated C-terminal and acetylated N-terminus as 

described previously (23). The anti-serum, but not pre-immunization serum, produced 

bands of the expected size with cow’s milk and the synthetic peptide antigen, but did not 

react with human breast milk (Online Supplementary Fig. 1).  Absence of exosome 

aggregation in our preparations was confirmed using negative staining transmission 

electron microscopy (Hitachi H7500, Japan) in the Microscopy Core Facility in the 

University of Nebraska-Lincoln. ImageJ (http://imagej.nih.gov/ij/index.html) was used to 

analyze the particle size of exosomes.  

Fluorophore conjugation  

Exosomes were labeled with FM-464 (Molecular Probes) as described previously 

(24). Unbound fluorophore was removed by pelleting the exosomes at 120,000 x g for 90 

minutes, followed by three wash and ultracentrifugation cycles with sterile phosphate-

buffered saline. The concentration of exosome protein was measured using a Nanodrop-
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1000 spectrophotometer (NanoDrop Technologies, Inc., USA) and diluted into F-12K 

media at the desired protein concentration.  

Cell culture  

Human umbilical vein endothelial cells (HUVEC, passages 38-45) were 

purchased from American Type Culture Collection (CRL-1730) and cultured in F-12K 

medium, supplemented with 0.04 mg/ml endothelial cell growth supplement (Sigma), 0.1 

mg/ml heparin (Sigma), 10,000 units of penicillin, 10 mg of streptomycin and 10% 

exosomes-free fetal bovine serum in a humidified atmosphere at 5% CO2 and 37° C. 

Exosome-free fetal bovine serum was prepared by sonicating the serum in a water bath 

for 1 hour, which destroyed most of the marker miRNA present in FBS (Online 

Supplementary Fig. 2). Media was replaced with fresh media every 48 hours.  

Transport studies  

In a typical experiment, 15x103 HUVECs were seeded per well in a 96-well plate 

and allowed to adhere overnight. . Fluorophore-labeled exosomes were added to the wells 

to produce the desired concentration of exosome protein. Cells were incubated for the 

length of time denoted in Results. Media were removed and cells were washed three 

times with sterile PBS to remove extracellular exosomes. Controls were prepared by 

washing the cells immediately after addition of exosomes. Cell fluorescence (560/645 

nm) was measured in a microplate spectrophotometer (BioTek, USA). Cells were 

harvested using trypsin and counted using a hemocytometer. Units of fluorescence were 

converted into mass of exosome transported by labeling a known mass of exosomes 

(protein) with fluorophore, and quantifying the fluorescence after removing unbound 

fluorophore. In select experiments, we measured the effects of the following treatments 
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on exosome transport: 1) cells were treated with 5 or 10 µg/mL of endocytosis inhibitor 

cytochalasin D (Gibco) for 30 minutes before adding exosomes (25); 2) cells were treated 

with 150 mM carbohydrate competitors D-glucose or D-galactose for 30 minutes before 

adding exosomes (26); and exosomes were treated with 100 µg/mL of proteinase K at 

37°C for 30 minutes to remove surface proteins (18). All assays were performed in 

triplicate in at least three independent experiments. Transport kinetics were modeled 

using the Michaelis-Menten equation and non-linear regression; modeling was conducted 

using GraphPad Prism 6.0 (GraphPad Software, La Jolla, CA, USA).  

Statistical Analysis  

Means±standard deviations are reported. Homogeneity of variances among 

groups confirmed using Bartlett’s test (27, 28). Statistical significance of differences 

among treatment groups was assessed using one-way ANOVA and Tukey-Kramer post 

hoc test. Analyses were performed in GraphPad Prism 6.0 (GraphPad Software, La Jolla, 

CA, USA). Differences were considered significant if p<0.05. 

 

Results  

Our exosome purification protocol yielded preparations of non-aggregated 

extracellular vesicles that were primarily composed of exosomes. When protein extracts 

were probed with anti-CD63 or anti-bovine alpha s1-casein strong bands were observed 

in western blots; in contrast, when protein extracts were probed with anti-histone H3 

(negative control) no band was visible (Fig. 1A). The particle suspension was largely free 

of aggregates and the shape and contour of exosomes suggested vesicle integrity (Fig. 

1B) with the particle size of 69±19.5 in diameter as expected for exosomes (29).   
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The uptake of milk exosomes into HUVECs is a carrier-mediated process. First, 

we established that exosomes uptake was linear with time up to one hour if 70 µg 

exosome protein was added to 200 µL media (Figure 2A), i.e. concentration below 

transporter saturation (see below). Subsequent transport studies were carried out using an 

incubation time of one hour. Exosome uptake followed Michaelis-Menten kinetics 

(Figure 2B): Vmax=0.057±0.004 ng exosome protein x 40,000 cells-1 x hour-1 and Km= 

18.0±3.84 µg exosome protein/200 µL media. Exosomes uptake depended on the 

incubation temperature (Fig. 3). When a 5-fold excess (equaling to 6 times Km) of 

unlabeled exosomes as added to the cell cultures, the uptake of fluorophore-conjugated 

exosomes decreased to 16.83±0.07 % of control (P<0.05, n=3 biological replicates each 

measured in triplicates). When cells were treated with 5 or 10 µg/ml, exosome uptake 

decreased to 63.5±21.3% and 40.8±22.0%, respectively, of controls, consistent with 

endocytosis. 

Surface proteins played an important role in facilitating exosome uptake into 

HUVECs. When exosomal surface proteins were removed by treatment with proteinase 

K, exosome uptake decreased to about 50% of controls (Fig. 4A). The carbohydrate 

competitor galactose, but not glucose, caused a significant decrease in exosome uptake 

(Fig. 4B).     

 

Discussion  

Evidence is accumulating in support of the theory that dietary miRNAs may cross 

the intestinal mucosa and has biological activity in humans (11, 12, 19, 30). However, the 

mechanisms of intestinal transport and subsequent delivery to tissues are unknown. To 
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the best of our knowledge, this is the first paper to propose that the transport of cow’s 

milk exosomes across vascular endothelial cells is mediated by endocytosis and that 

proteins on the surface of milk exosomes are compatible with proteins on the surface of 

human vascular endothelial cells. This study further corroborates the notion that dietary 

miRNAs have biological activity in humans. 

This study has far-reaching implications for human nutrition and health. The 

National Cancer Institute defines bioactive compounds as “a type of chemical found in 

small amounts in plants and certain foods […]. Bioactive compounds have actions in the 

body that may promote good health. They are being studied in the prevention of […] 

diseases” (31). Milk miRNAs meet that definition, based on our previous studies (11). 

Future studies will need to reveal the extent to which dietary miRNAS contribute to the 

total miRNA body pool. 

miRNAs have been implicated in virtually all aspects of human health and disease 

including bone health (32, 33), female and male reproduction (34, 35), arthritis and 

inflammatory bowel disease (36-38), metabolic syndrome (39-42), and cancer (43). Note 

that miRNAs also may have effects detrimental to human health. For example, the 

plasma concentrations of miR-210 are significantly higher in patients with pancreatic 

cancer compared with healthy controls (44), plasma miR-141 and miR-25 are elevated in 

prostate cancer and esophageal squamous cell carcinoma, respectively (45); plasma miR-

21 is elevated in various types of cancer (46); and the urinary excretion of miR-126 and 

miR-182 is greater in bladder cancer patients compared with healthy controls (47). 

Additional areas of health relevance include the possible use of milk exosomes as 

vehicle for the oral delivery of unstable drugs, and the potential role of dietary miRNAs 
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as confounders in biomarker studies that rely on miRNAs in body fluids. Evidence 

suggests that that dietary preferences affect miRNA signatures in human plasma (48). 

Some uncertainties remain and will need to be addressed in future studies. First, 

the identities of the glycoproteins that mediates endocytosis of milk exosomes in 

endothelial cells is unknown and is an area of investigation in our laboratory. Second, it 

is possible that an excess of endogenous exosomes might compete with the endocytosis 

of dietary exosomes. We cannot assess this possibility until the plasma concentration of 

dietary exosomes has been established; distinct glycoproteome profiles on the surfaces of 

cells from distinct tissues might be a confounder in such studies. Third, our studies did 

not formally exclude the remote possibility that adherence to cells, rather than uptake into 

cells, accounted for cell fluorescence. We consider the mere adhesion of exosomes to cell 

surfaces an unlikely scenario, based on previous studies suggesting that milk exosomes 

may cross the intestinal mucosa without re-packaging in mice and enter circulation in 

intact form (19). Also, our own studies of intestinal transport of milk exosomes in human 

and rat cell cultures suggest that exosomes are endocytosed at the apical membrane for 

subsequent secretion across the basolateral membrane. Fourth, it is unknown whether 

dietary exosomes from species remotely related will be recognized by surface proteins in 

human cells. 

We conclude that this study provides an important mechanistic framework for 

future studies of dietary extracellular vesicles and the roles of dietary miRNAs in human 

health and disease. In particular, due to the controversy surrounding the bioavailability of 

plant-borne miRNAs in humans, resources need to be devoted to this promising field of 
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research. A representative example would be the identification and validation of 

molecular signatures for assessing the dietary intake of vesicles and their cargo.  

 

ABBREVIATIONS USED 

miR, microRNA; miRNA, microRNA; HUVEC, human umbilical vein endotelial cells  
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FIGURE 2.1. A: western blot result showing the absence of intercellular protein histone 

H3 but positive for commonly enriched exosomal protein; CD63 and bovine protein 

origin; alpha s1-casein. B: electron microscopy images of cow’s milk exosomes showing 

round shape (69±19.5 nm) and intact vesicles.     
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FIGURE 2.2. Milk exosomes uptake is time (A) and dose (B) dependent (n=9, 3 

independent replicates).  
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FIGURE 2.3. Reducing temperature to room temperature and 4°C significantly reduced 

exosomes uptake (n=9 from 3 biological replicates; p<0.05).  
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FIGURE 2.4. Treatment of exosomes with proteinase K (Prot K) and addition of 

unlabeled exosomes (Exosome) (A) as well endocytosis inhibitors (B) significantly 

reduced milk exosome uptake (n=9, 3 independent experiments, p<0.05).    
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Chapter 3 

Loss of miRNAs during Processing and 

Storage of Cows (Bos taurus) Milk 
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ABSTRACT 

MicroRNAs (miRs, miRNAs) play central roles in gene regulation. Previously, we 

reported that miRNAs from pasteurized, store-bought bovine milk have biological 

activity in humans. Here we assessed the effects of milk processing, storage, somatic cell 

content, and handling by consumers on the degradation of miRNAs in milk; we also 

quantified miRNAs in dairy products. Pasteurization and homogenization caused a 63% 

loss of miR-200c, whereas a 67% loss observed for miR-29b was statistically significant 

only in skim milk. Effects of cold storage and somatic cell content were quantitatively 

minor (<2% loss). Heating in the microwave caused a 40% loss of miR-29b but no loss of 

miR-200c. Milk fat content had no effect on miRNA stability during storage and 

microwave heating. The concentrations of miRNAs in dairy products were considerably 

lower than in store-bought milk. We conclude that processing of milk by dairies and 

handling by consumers causes a significant loss of miRNAs. 
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INTRODUCTION 

MicroRNAs (miRs, miRNAs) are small non-coding RNAs that play essential roles in the 

regulation of genes at the posttranscriptional level in plants and animals.1 Mature 

miRNAs are about 22 nucleotides long and bind to complementary sequences in the 3’-

untranslated region of mRNAs. Perfect or near perfect base pairing of the miRNAs and 

its target mRNAs typically results in mRNAs degradation, whereas less perfect base 

pairing typically results in inhibition of mRNAs translation.2-3 Traditionally, miRNAs 

have been considered endogenous regulators of genes, i.e., miRNAs synthesized by a 

given host regulate the expression of genes in that host. Recently, our laboratory refuted 

this paradigm. We provided strong evidence that 1) humans absorb biologically 

meaningful amounts of miRNAs from nutritionally relevant doses of cow’s milk, 2) 

physiological concentrations of milk miRNAs affect human gene expression in vivo and 

in cell cultures, and 3) endogenous synthesis of miRNAs does not compensate for dietary 

miRNA deficiency in mice.4 Our discoveries were largely modeled on miR-29b and miR-

200c, but likely hold true for all miRNAs encapsulated in milk exosomes.5-6 To the best 

of our knowledge, our previous paper is the first to provide unambiguous evidence that 

miRNAs can be transferred between distinct species through dietary means. In contrast, 

previous claims that miRNAs from plants affect human gene expression7-8 are highly 

controversial and were met with skepticism by the scientific community.4, 9-12 Based on 

the above observations, milk miRNAs are a novel class of bioactive food compounds as 

defined by the National Cancer Institute in the United States.13 The discovery that milk 

miRNAs are bioactive food compounds has broader implications as miRNAs play 

essential roles in gene regulation,2-3 cell communication,14-15 and human health.16-23 
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This study focused on determining the effect of milk processing, storage, somatic 

cell content, and handling by consumers on two miRNAs, miR-29b and miR-200c levels 

based on the following rationale. In bovine milk, miR-29b and miR-200c are among the 

most abundant miRNAs.20 MiR-29b is an important regulator of bone mineralization in 

humans, as it increases osteoblast differentiation16 and decreases osteoclast differentiation 

and function.17 MiR-200c decreases cancer risk by targeting the transcription factor 

ZEB1, which induces E-cadherin expression, thereby limiting epithelial-to-mesenchymal 

transition, a key event in metastasis.24-25 Also, the nucleotide sequences of miR-29b and 

miR-200c in bovine milk are identical to those of their human orthologs.26 Our rationale 

for including the somatic cell count in our analysis was to assess whether an increase in 

milk cells, as seen in mastitis, might be a confounder in the analysis of milk miRNAs. 

In Western societies, the majority of milk is processed prior to consumption. In fact, 

the production and sale of raw milk dairy products is illegal in many states in the United 

States and pasteurization is required.27 Moreover, while the per capita consumption of 

milk has declined from 236 pounds in 1982 to 195 pounds in 2012, total dairy 

consumption increased by 11% during the same time period.28 Therefore, we considered 

it worthwhile to assess the effects of processing on the miRNA content in both milk and 

dairy products. 

Little is known about the effects of processing and storage on milk miRNAs levels. 

In two studies, synthetic miRNAs were added to bovine milk and their stability after 

exposure to harsh treatments such as acid and RNase was assessed and compared to the 

stability of endogenous miRNAs in milk.6, 20 Synthetic miRNAs were rapidly degraded, 

whereas endogenous miRNAs were resistant to treatment. However, the harsh treatments 
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applied in these studies are not representative of the treatments applied in commercial 

dairy production. In this study, we assessed the effects of pasteurization, fat content, cold 

storage, heating as well as processing into dairy products on content of milk miRNAs. 

 

MATERIALS AND METHODS 

Chemicals. Guanidinium thiocyanate and ethanol were purchased for use in the 

NucleoSpin miRNA plasma RNA extraction kit (Macherey-Nagel Inc., Bethlehem, PA). 

TRIzol was purchased from Life Technologies (Grand Island, NY). 

Milk and dairy products. Raw, whole, 2%, and skim cow’s (Bos taurus) milk was 

obtained from The Pennsylvania State University Creamery (University Park, PA) from 

separate collections in three consecutive weeks in May 2014.  All milk was procured 

from the Penn State Animal Science Department’s Holsteins breed herd.   The milk for 

this study was processed from using raw milk and cream routinely supplied to the Penn 

State Berkey Creamery, University Park, PA and stored under intermittent agitation in a 

22,712.5 liter raw milk silo at 2.2°C (Feldmeier Equipment, E-015-05;  Little Falls, NY).  

The milk contained 3.25% milk fat and 8.9% milk solids non-fat (near-infrared method, 

CEM, Turbo Smart5, Model 907990; Matthews, NC).  

For the preparation of the product, milk (3.25% Milk Fat; 12.15% Milk Solids Non Fat) 

was pasteurized at 75.55°C with a 28-s holding time (APV Paraflow, Serial number 

20053003000302; Goldsboro, NC).  It was homogenized at 145 Bar and 60°C (APV 

Gaulin Homogenizer, Serial Number 20052410702; Lake Mills, WI).  The product was 

standardized using a Westfalia Separator, type MSE 55-01-177; Oelde, Germany.  A 

details and process diagram for preparation of whole cow’s milk is presented in figure 1.  
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After cooling the product was transferred to a 7200 liter refrigerated storage tank at 2.2°C 

(Feldmeier Equipment, E-015-05; Little Falls, NY).  The product was bottled on filling 

machine (Federal Manufacturing, Serial Number 1/12.4GL843; Milwaukee, WI) and 

stored in a conventional cold-milk warehouse at 3.0°C.  

 On our initial collection dates, milk of all fat levels were stored at 4ºC for up to 15 days, and 

aliquots were taken and frozen at -80ºC every other day. In a separate experiment bovine cells 

were removed from raw milk by centrifugation (500 g, 10 min, 4°C) to determine 

whether somatic cells are a meaningful confounder when analyzing the concentrations of 

miRNAs in milk from healthy cows. Samples were frozen at -80°C and shipped on dry 

ice to Lincoln, NE, for miRNA analysis.  Samples from all fat levels of milk on day 15 

were heated in the microwave for 15 seconds and analyzed after cooling off to room 

temperature. Dairy products other than milk were purchased from grocery stores in 

Lincoln, NE. All samples were produced and analyzed as biological repeats in triplicate. 

MiRNA analysis. Milk samples were spiked with a synthetic internal standard (twenty-

five attomoles) prior to extraction of miRNAs using miSPIKE Synthetic RNA (IDT 

Technologies).4 Dairy products (100 mg) other than milk were extracted using TRIzol 

prior to addition of the synthetic internal standard. MiR-29b and miR-200c were 

quantified using quantitative real-time PCR as described previously.4 

Statistics. Analysis by Bartlett’s Test Homogeneity suggested that variances were 

homogeneous.29 The paired t-test was used for pairwise comparisons. One-way analysis 

of variance (ANOVA) and Fisher’s protected least significant differences were used 

when comparing more than two groups. Repeated measures ANOVA was used for 

assessing the effects of storage time on miRNA concentration. StatView 5.0.1 (SAS 
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Institute; Cary, NC) was used for conducting statistical analyses. Means ± SD are 

reported. Differences were considered statistically significant if P≤ 0.05. 

 

RESULTS 

Pasteurization and homogenization of raw milk resulted in a 63±28% decrease of 

miR-200c in whole milk; effects were similar for 2% fat milk and skim milk (Fig. 3.1A). 

The effect was less pronounced for miR-29b for which a significant decrease (67±18%) 

was observed only in skim milk (Fig. 3.1B).  Cold storage of milk did not affect the 

concentration of mir-29b and miR-200c in whole milk, 2% milk and skim milk up to 15 

days; 2% fat milk is shown as a representative example in Fig. 3.2.  Somatic cells are not 

meaningful confounds regarding the analysis of miRNAs in milk from healthy cows. 

When somatic cells were removed from raw milk by centrifugation and analyzed for 

miRNA content, the cellular miRNAs were found to contribute less than 2% of the total 

miRNAs present in raw milk before centrifugation: 1.1±0.9% for miR-29b and 

0.14±0.08% for miR-200c. 

Processing in the household has the potential to cause a considerable loss of some 

miRNAs in milk. For example, the concentration of miR-29b decreased by 40±28% when 

processed milk was heated in the microwave and cooled to room temperature compared 

to milk before heating (Fig. 3.3).  In contrast, when milk was heated in the microwave the 

concentration of miR-200c was not statistically different compared with unheated 

controls.   

The concentration of miRNAs varied considerably among the product tested (Table 

3.1), but were generally lower than the concentration in pasteurized whole milk (compare 



82 
 

to figure 3.2). Fresco queso dip was a notable exception and contained higher 

concentrations of miRNAs than those observed in milk.  

 

DISCUSSION 

In a recent paper we reported the importance of milk miRNAs for gene regulation in 

humans.4 That report has major implications for the roles of milk and possibly other dairy 

products in human health. Cow’s milk contains meaningful quantities of 245 miRNAs,20, 

30 and 71.4% of these miRNAs are predicted to target about 11,000 human transcripts 

(unpublished observations). In addition to the roles of miR-29b and miR-200c in bone 

health and cancer prevention,16-17, 24-25 respectively, miRNAs have been implicated in 

various aspects of human health and disease including hypertension, insulin resistance 

and diabetes, hyperlipidemia and atherosclerosis, reproduction, immune function and 

Crohn’s disease.18, 20-21, 31-33 

We propose that milk has a meaningful effect on human health, mediated by 

miRNA-dependent gene regulation. The potential importance of dietary milk miRNA 

intake is supported by data suggesting that 1) Americans consume large quantities of 

milk and dairy products,28 2) a large proportion of milk miRNAs is encapsulated in 

extracellular vesicles, thereby providing protection against degradation 5-6 and a pathway 

for cellular uptake by endocytosis,34-35, and 3) milk miRNAs are  resistant against 

degradation during storage (this study). 

The concentrations of miRNAs varied considerably among the dairy products tested 

(Table 1), but were generally lower than the concentrations in pasteurized whole milk 
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(compare Fig. 2). Fresco Queso Dip was a notable exception and contained higher 

concentrations of miRNAs than those observed in milk. 

Our previous studies of milk miRNAs in humans and mice were conducted using 1% 

fat milk from the grocery store.4 Based on this study, the content of miRNAs is about two 

times higher in unprocessed milk compared with pasteurized, store-bought milk. Note 

that we have no intent recommending the consumption of raw cow’s milk by humans, 

because of food safety concerns associated with raw milk. We observed that a loss of 

milk miRNAs occurred only during pasteurization, homogenization, and processing to 

dairy products. This observation is consistent with previous studies of milk miRNAs. For 

example, endogenous miRNAs were not degraded when milk was exposed to harsh 

treatments such as low pH or treatment with RNase.6, 20 It is reasonable to propose that 

encapsulation of miRNAs in extracellular vesicles5 prevents miRNA degradation, based 

on the following lines of evidence. 1) When synthetic miRNAs are added to milk and 

subjected to low pH or RNase treatment, the miRNAs are rapidly degraded.6, 20 2) When 

exosome membranes in milk were disrupted by sonication for preparing miRNA-depleted 

mouse diets in previous studies, miR-29b was rapidly degraded to concentrations below 

detection limit.4 Presumably, degradation was due to milk RNases gaining access to 

miRNAs released from exosomes. 3) When milk was fermented to produce yoghurt, 

miRNA concentrations decreased to levels much lower than in milk (this study). We 

speculate that the decrease was due to the lysis of exosomes during fermentation and the 

large amounts of RNases produced by microbes. 4) When milk was homogenized, 

miRNA concentrations decreased by on average 50% (this study). We speculate that the 

decrease was caused by a disruption of exosome mebranes by shear forces applied during 
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homogenization. Collectively, our studies suggest that milk, and perhaps dairy products, 

have the potential to contribute to the miRNA body pool in humans. 

Some uncertainties remain to be addressed in future studies. For example, this study 

was modeled based on miR-29b and miR-200c, however, there is a possibility that 

distinct miRNAs may be differentially metabolized.8, 36 Another layer of uncertainty is 

the possible effects of feeding regimens, season, and breed on the miRNA content in 

milk. Moreover, while this study suggests that somatic cells in milk from healthy cows do 

not contribute meaningful amounts to the total miRNA content in milk, it is possible that 

the increased somatic cell count in milk from cows suffering from mastitis37 may cause 

an artificial increase in milk miRNA concentrations. Our previous studies suggest that 

plasma miRNA concentrations decrease by 61% in mice fed a milk miRNA-depleted diet 

for four weeks. This observation is consistent with milk miRNAs contributing 

meaningful quantities to the miRNA body pool, but does not necessarily establish the 

essentiality of dietary miRNA intake. Clearly, this is an uncertainty that will need to be 

addressed in future studies. Finally, it is conceivable that miRNAs from foods other than 

milk also contribute toward the total body pool of miRNAs. 

ABBREVIATIONS USED 

miR, microRNA; miRNA, microRNA 
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Figure 3.1. Loss of miR-200c (A) and miR-29b (B) during milk pasteurization and 

homogenization of milk with different fat content. a,bSignificantly different (n=3 

biological replicates, P<0.05). 
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Figure 3.2: Storage at 4°C did not affect the concentrations of miR-29b in pasteurized 

and homogenized 2% fat milk (n=3 biological replicates, P>0.05). 
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Figure 3.3: Loss of miR-29b (A) and miR-200c (B) during heating of whole milk in the 

microwave after 15 days of storage at 4°C. Abbreviation: MW, microwaved. 

a,bSignificantly different (n=3 biological replicates, P<0.05). 
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Table 3.1. Concentration of miRNAs-29b and -200c in dairy products 

 MiRNA 

  _______________   ______________  

Product miR-29b miR-

200c 

 fmol/kg 

Best Choice Yogurt 0.9±0.10 37.6±2.8 

Fresco Queso Dip  36.1±5.5  1029.8±478.6 

Greek Yogurt  14.2±3.9  462.3±126.9 

Half and Half 3.0±0.17 513.3±159.2 

Heavy Whip Cream 2.6±1.3 342.0±132.9 

Parmesan Cheese                     4.9±1.9                              

232.0±64.5 

Upstate Farm Yogurt  2.4±1.0 216.9±93.8 

Data are means±SD, n=3. 
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Chapter 4  

Future Study 
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Although there is still a debate whether miRNA can be transferred across species 

(1-3), our lab has provided an evidence that miRNA indeed can be transported across 

species (4, 5). It is hypothesized that the miRNA transport across species was mediated 

by exosomes or other extracellular vesicles as these small vesicles protect the miRNA 

from enzymatic degradation and harsh environment such as low pH (6, 7). Furthermore, 

exosomes also facilitated the transport into the recipient cells as numerous studies have 

reported the ability of the cells to internalize exosomes and use the miRNA cargo inside 

exosomes to promote function (5, 8-12).  

In recent study, we provide another evidence that cow’s milk exosomes can be 

transported into human endothelial cells through endocytosis process. However, several 

endocytosis pathway warrant further study. For instance, we only provide the evidence 

that the transport was mediated by actin-dependent process. Actin is required for most 

endocytosis process including phagocytosis, macropinocytosis and chlatrin-mediated 

endocytosis (13-15). This indicated the non-specific endocytosis mechanism that 

mediated the uptake of cow’s milk exosomes into human endothelial cells. Therefore, it 

is necessary to address this issue by performing another inhibitory studies or protein 

inhibition through RNA interference, specific for each endocytosis mechanism, to answer 

specific endocytosis-mechanism.  

Study suggest that surface glycoprotein in exosomes play an important role in 

cellular recognition and internalization of exosomes by target cells (16-18). In this study 

we suggest that glycoprotein surface in cow’s milk exosomes is important for mediating 

the uptake into human endothelial cells as indicated by lower uptake of cow’s milk 

exosomes in the presence of galactose and when the milk exosomes was treated with 
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proteinase K. It is interesting if we could provide the glycoprotein class or component in 

surface area of cow’s milk exosomes that mediated the uptake process in human 

endothelial cells. Thus, performing another transport study using surface-blunt 

glycoprotein of milk exosome is important in the future to characterize the glycoproteins 

that mediates the uptake in human cell. Additional mass-spectrophotometry (MS) to 

identify the surface glycoprotein in cow’s milk exosome can also be used to support the 

data derived from the transport study using surface-blunt glycoprotein of cow’s milk 

exosomes.      

In addition, we only based our experiment by indirect observations. It is still not 

clear whether the exosomes from cow’s milk is indeed internalized by endocytosis, not 

by fusion with plasma membrane. Electron microscopy image or phase contrast 

microscopy should be performed in the future study to clarify the data obtained by the 

FM4-64 labelled exosomes.  

Recent study suggests that cow’s milk exosome can be transported across the rat’s 

intestinal cells without being degraded or repackaged by the intestinal cells (19). 

However, question remains whether this event occur in human peripheral cells and the 

miRNAs present in cow’s milk exosomes can promote function after being transported 

across endothelial cells. Transwell study is a way to answer this question. In the first 

experiment, HUVEC were grown in the apical surface and cow’s milk exosomes were 

added when HUVECs have formed monolayer in the apical surface. Exosomes was 

isolated from the apical and basolateral surfaces of transwell by using differential 

centrifugation method. Electron microscopy, western blot and Q-RT-PCR for selected 

miRNAs were performed to characterize the exosomes isolated from both of the surfaces. 
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In the second experiment, HUVECs were grown in the apical surface of transwell and 

stable transfected HEK-293 carrying the miR-200c reporting gene were grown in the 

basolateral of transwell. Milk exosomes was added and luciferase activity was measured 

after incubation for several hours.  
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qRT-PCR primers used to quantify gene expression 

 

microRNA Forward Primer Sequence (5-3’) Reverse Primer Sequence (3-5’) 

miSpike CTCAGGATGGCGGAGCGGTCT  Universal primer mix 

miR-29b GTAGCACCATTTGAATCAGTGTT Universal primer mix 

miR-200c TAATACTGCCGGGTAATGATGGA Universal primer mix 
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