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As the spin excitation quanta in magnetic materials, the magnon is at the heart of
the spintronics research because it plays a key role in magnetic dynamics, energy and spin
transport, and even determining the ground state of magnetic systems. In this thesis,
we will study the band-structure topology and transport properties of magnons in both
collinear and noncollinear magnets. Inspired by the great success of topological insula-
tors, exploring magnon topology can unveil the topological nature of bosonic particles and
widen the zoo of topological materials. We propose a three-dimensional magnon topo-
logical insulator model protected by sublattice chiral symmetries, which realizes a surface
Dirac cone in a magnonic system. On the other hand, magnons can facilitate angular mo-
mentum transport with low dissipation due to the absence of Joule heating. We explore
the spin Nernst effect, a transverse spin current driven by a temperature gradient, in non-
collinear magnetic systems by developing a new linear response theory. The theory will
be applied to frustrated noncollinear antiferromagnets, antiferromagnetic skyrmion crys-
tals, and an antiferromagnetic magnon topological insulator model. In particular, the an-
tiferromagnetic magnon topological insulator model is featured by unconventional Lan-
dau levels and can be regarded as a magnon version of the quantum spin Hall effect. In
addition to the magnon-mediated spin transport, magnons are also able to accumulate
nonequilibrium net spin density in a sample under the driving of a temperature gradient.
The latter effect is a magnon version of the Edelstein effect and can be also analyzed by the
aforementioned linear response theory. Such an effect can be ideally realized in 2D and 3D

noncollinear antiferromagnets that have a compensating ground state.
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Chapter1

Introduction

Research on topology and relevant transport phenomena in electronic systems has greatly
added to the richness of condensed matter physics in recent decades. The journey of these
topological explorations was initiated by the discovery of the quantum Hall effect [1], where
the quantum conductance is explained by a topological invariant [2,3]. Henceforth, the ex-
ploration of topological physics blossomed. Various Hall-type transport physics, includ-
ing (quantum) anomalous Hall [4-6], (quantum) spin Hall [7-9], and thermal Hall [10, 11],
have become the mainstream of condensed matter physics. The underlying connection
between the band-structure topology of materials, the quantized conductance, and the
edge-state physics was gradually recognized. Another breakthrough is the discovery of
topological insulators and superconductors [12, 13], which greatly expanded the realm of
topological physics in real materials. This development has improved our understanding
of topology mainly in the sense of uncovering the important relationship between sym-
metries and topology. At the same time, other fascinating physics emerges, e.g., surface
Dirac cone, topological magnetoelectric effect, Majorana zero modes, etc. Later, the fo-
cus was partially shifted from gapped (insulator, superconductor) systems to gapless sys-
tems, metals, which include topological Weyl and Dirac semimetals [14]. The rapid devel-

opment of topological condensed matter physics does not only improves our understand-



ing of fundamental physics, but also brings about a great potential for applications. For
example, (quantum) spin Hall effect has been widely used as a spin source in the spintron-
ics research [15], topological insulators can be used in photodetectors, magnetic devices,
field-eftect transistors, quantum computing, etc. [16,17]

Stimulated by developments in electronic systems, there has been a surge of study-
ing the topology of other systems, e.g., magnonic [18—-24], acoustic [25, 26], and photonic
[27] systems. The study of magnon topology started from the prediction and realization
of the magnon thermal Hall effect in ferromagnets [28, 29]. The thermal Hall effect was
quickly attributed to the Berry curvature induced anomalous velocity of magnons [30, 31].
There was subsequently investigation of the magnon analogy of Chern insulators and the
corresponding edge states [20, 32—35]. Remarkably, a magnon version of the representa-
tive Haldane model was found in a honeycomb ferromagnet [36,37]. In antiferromagnets,
with collinear or noncollinear spin orders, the magnon spin Nernst effect [38, 39] and the
magnon thermal Hall effect [40—44] have been discovered. Moreover, the realization of
magnon Weyl and Dirac spectrum drew considerable attention [45-51]. All the progress
does not only enrich the magnon physics from a fundamental level but also implies new
opportunities for spintronics. For instance, the magnon spin Nernst effect suggests a new
low-dissipation spin generation method; the thermal Hall effect offers a way to explore the
topology of the excitation spectrum in insulators or even to detect the spin liquid materi-
als [52].

In this work, we will study the rich physics of magnons in different kinds of magnetic
insulators, including collinear ferromagnets and antiferromagnets, noncollinear antifer-
romagnets, and spin textures. The focus is mainly on the magnon band-structure topol-
ogy and magnon-mediated spin transport and accumulation. In the rest of this chapter,
we introduce necessary background knowledge that will be frequently used in subsequent
chapters. First, we discuss the origin of spin-spin exchange interactions and briefly review

several kinds of commonly considered interactions in magnetic materials. Second, we dis-



cuss the concept of magnons by reviewing the Holstein-Primakoff transformation. Next,
we introduce the important concept of Berry curvature, and relevant topological physics.
As an example, we discuss the famous Haldane model and its realization in magnon sys-
tems. This can be regarded as a warm-up for Chapter 2 where more involved topology will
be discussed. We also discuss the real-space Berry curvature which induces an emergent
gauge field for electrons or magnons in a spin-texture background. This lays down the
foundation for exploring the magnon excitations in a skyrmion crystal, which is the topic
of Chapter 5. Finally, we outline the linear response theory to prepare for our discussion

on the temperature gradient induced linear response phenomena in Chapters 3 and 4.

1.1 Spin-spin interactions

The foundation of this thesis is a variety of spin-spin interaction models that describe dif-
ferent magnetic systems. In this section, we briefly review three types of common and
important interactions: the exchange, magnetic anisotropies, and Dzyaloshinskii-Moriya

interaction (DMI).

1.1.1 Exchange interaction

The simplest model commonly used to describe spin exchange is the Heisenberg model.
We follow Ref. [53] to explain the origin of exchange interaction. In materials, the mag-
netism comes from the alignment or staggered ordering of the magnetic moments of elec-
trons. The direct dipole-dipole interaction in which the spins of electrons are directly in-
volved is too weak to explain the typical magnetism at high temperatures. It has been real-
ized that the mechanism to explain the formation of local magnetization could come from
the Coulomb interaction.

This picture can be explained by considering two orbitals ¢, ¢, with energy €1, 5. The



electron fields can be described by ¢ (o)
Vi)=Y dicd,  s=Tl (1.1)

where ! is the creation operator for an electron of spin s. The Coulomb interaction is given

by

U= [ dedyV (@)Y vl @l @) ) 02

s,s’

where V' (x, y) describes the Coulomb interaction potential between electrons at « and y.

Substituting Eq. (1.1) into the interaction above leads to

U= Z Uijning + Z Usipippi,, + Z JCZSC;’S/Ci,SICj73 (1.3)
it i ij,ss'

where U;;, U;;, and J are overlap integrals of orbital function on the corresponding sites,
andn; = ) p; s with p; ; being the density of electron with spin s. In the full screening
or no screening cases, the exchange integral J can be shown to be positive, which endows
a ferromagnetic exchange between local spins in the following discussion. The Coulomb
interaction finds minimum value in the situation where electrons are distributed on two
orbitals, i.e., n; ~ 1, the interaction can be simplified to spin-spin exchange interaction

on two sites. Note

1
Z JCZSC;’S/Ci7SICj7S = _QJ(Sz . S]‘ + Z?’LZ‘TL]‘), (1.4)

where S; = % D es clsassf ¢; . Up to a constant, the Coulomb interaction is reduced to

i#j



To this point, we based the theory upon two assumptions: (i) the two orbitals are non-
degenerate and are isolated from other orbitals in energy, (ii) the two orbitals are orthog-
onal to each other, which is usually true for two orbitals around the same atom. These
assumptions limit the resultant coupling to be ferromagnetic. To gain antiferromagnetic
exchange, a model of two electrons living on different sites would be more appropriate.
Fix the ions on positions R;, R, and two orbitals ¢, ¢ are centered at the corresponding

atom position. The full Hamiltonian describing such a system is

H=>Y H"+H (1.6)
i=1,2
where
h? e?
HO — g2 =
! 2m " |’I",‘ — Ri|2’
_e? o2 o2
oH + + . (1.7)
oy i — R | =12 Ry — Ryf?
Here, the two orbital wave functions obey
HY, = Eopy,  (i=1,2). (1.8)

To avoid large on-site Coulomb interactions, electrons prefer spatially separated wave

functions which can be constructed as

P = ¢1("‘1)¢2(’P2)7
o = ¢1(T2)P2(T1). (1.9)

By performing the variational calculation, it can be shown that the energy minimized wave



function is either symmetric or antisymmetry under exchange of electron coordinates

F = %(1/)1 + 1hy). (1.10)

When the spin freedom of electrons is taken into account, the overall wave function should
be composed of a spatial part and a spinor vector part, and the wave function should flip

sign under the interchange of two electrons. Therefore, the full wave function is expressed

by
T = ¥ (r,r)xE (11, 12) (1.11)
where the spinor part is
X5 = X" (r)xH(r2) £ X (r2)x (). (1.12)

Here, Y= describes antiparallel spin states. It can be shown that the wave functions ¥+,

U~ are the triplet and singlet eigenstates of the total spin operator

1
Stotal - Z 5 Z C;‘rsa-ss’ci,s" (1-13)

i=1,2 ss!

The corresponding eigenvalues E* are spaced by an energy gap
ET—E"=J>0. (1.14)
The system can be effectively presented as a Heisenberg antiferromagnet

1 3 zlyL Storal = 1

H - JSl . 52 - J[é(stotal)Q - Z] == . (115)



Here, the relation Sf@) = S(S+1)with S = Lisapplied. Compared to the ferromagnetic
exchange case, the model leading to the antiferromagnetic exchange involves two spatially
separated non-orthogonal orbitals, which allows hopping of electrons between two sites.
The anti-alignment of spins in an antiferromagnetic state can reduce the kinetic exchange
energy.

In this thesis, we are mainly interested in the insulating antiferromagnet. The origin
of antiferromangetic exchange in aionic insulator can be easily understood by considering

a two-site Hubbard model [54],

H=—t Z 611'756275 + Z Upmpm, (1.16)

s=t,0 i=1,2

where the first term describes the kinetic energy with exchange energy ¢, U is the on-site

Coulomb interaction energy introduced in Eq. (1.3). The Hilbert space for this model is

composed by six bases, {| 14,0}, (0, 14),| 1,4),| 4, 1),| 1,1, 4, 4)}, under which the

Hamiltonian is written as a matrix

U

o
o o
~
L
o
o

H = . (1.17)

Transforming the sub-basis from (| 1, 1), | 1, 7)) onto {(| , 1) — | 1, ))/v2, (| 1, 1) +| |



. 1)) /V/2} simplifies the above Hamiltonian to

U 0 V2t|0 0 0
0 U V2t10 0 0

V2t V2t 0 |0 0 0
H = ) (1.18)

0 0 0 [0 00

0 0 0 [0 0 0

0 0 0 [0 0 0

The eigenvalues of the second sector are degenerated at 0. Their eigenstates form a triplet,

(|4 +14M)/V2, | 1,1), and | |, ). The eigenvalues of the first sector are U, (U =+
v U? 4 16t2) /2. For a ionic system with small kinetic energy, t < U, the lowest energy is

U—-VU*+ 16t _4_t2

5 U < 0. (1.19)

In the limit U/|t| — oo, the corresponding eigenstate approaches to the singlet (| 1,{
) — | 1,1))/+/2. Therefore, we found that the singlet (antiferromagnet) has a lower energy
than the triplet (ferromagnet), which can be described as a antiferromagnetic Heisenberg

exchange model

Heff = JSl . SQ (120)

with J = 4¢%/U. This mechanism is called kinetic exchange. It results from that the anti-
parallel spin configuration reduces the kinetic energy between electrons. This result does

not only hold for a two-site model, but can be generalized to lattice models.



1.1.2 Other interactions

In general, the interaction between spins can be written as
H=>"5,7;8, (1.21)
ij

where jl-j is a 3 x 3 matrix that describes the coupling between different components of
two spins. The Heisenberg model corresponds to a unit matrix 7;; = J1. If the diagonal
elements of the matrix take different values, i.e., J;; = Diag{J, Ji;, J5;}, it describes
anisotropic exchange interactions. A famous example of this is the Kitaev model [55]. The

coupling matrix also allows an antisymmetric part

0 —Dij. Dijy
\7ij = Dij,z 0 _Dij,ar (1.22)
_Dij,y Dz’j,m 0

which describes the Dzyaloshinskii-Moriya exchange interaction (DMI)

Hpy =Y Dy - (Si x S)). (1.23)
ij

DMI between spins usually arises from the superexchange interaction mediated by a non-
magnetic atom in non-centrosymmetric environment. In Fig. 1.1, the direction of the DMI
vector between two neighboring spins S; and Ss is given by D15 o 71 X o with 7y and
respectively being the vector pointing from the nonmagnetic atom to the magnetic atoms.
The strength of DMI is proportional to the energy scale of spin-orbit coupling. In magnetic
thin films, DMI usually arises from the nonmagnetic atoms of the heavy metal substrates.
Apart from the two-ion interactions, there are systems that also have single-ion con-

tributions. First, the spin orders are usually affected by the single-ion anisotropy due to
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Figure 1.1: The Dzyaloshinskii-Moriya exchange interaction (DMI) between two neighbor-
ing spins is mediated by a non-magnetic atom. The DMI vector is pointing along the di-
rection of 7; X 5.

the crystalline field
Hy=K» (S-7)" (1.24)

When K < 0, it is called easy-axis anisotropy with n; giving the preferred direction of
spins; when K > 0, it describes the easy-plane anisotropy due to which spins are inclined
to lie in the plane perpendicular to n;. Typically, in collinear ferromagnets or antiferro-
magnets, n;’s are given along a single direction for all spins. While for noncollinear anti-
ferromagnets, e.g., the three-sublattice antiferromagnets, the situation will become more
complicated.

In consideration of specific magnetic systems, it could also include Zeeman interac-
tions between the external magnetic field and local magnetic moments, or dipole-dipole

interactions with a strength inversely proportional to the cube of the distance between two
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Figure 1.2: Spin waves. Here, the vertical arrows show the ground-state spin direction.

spins. The details will be given if necessary in the following discussion.

1.2 Magnons: Holstein-Primakoff transformation

In the last section, we introduced different types of spin interactions, which can fix the
magnetic system to a certain ordered ground state in ferromagnets or antiferromagnets.
At low temperatures, it is mainly the quantum fluctuation on top of the ground state that
contributes to transport properties in insulating magnets. In the classical description, we
call the fluctuation as spin wave. In a quantum mechanical frame, the spin waves are quan-
tized as bosonic quasiparticles, magnons, which carry quantized spin k. Fig. 1.2 schemat-
ically shows the spin waves or magnons upon a vertical ground state. The main focus of
this thesis is the topology of magnon band structure and magnon-mediated spin trans-
port. Therefore, in this section, we introduce the concept of magnons by reviewing the
Holstein-Primakoff transformation.

In the ground state of a ferromagnet, all spins with magnitude S are aligned along a
certain direction. One can assign this direction to be the z-axis, thus the spin state on a

given site is labeled by the eigenvalues of the quantum operator $2, S=:

S8, 8.) = S(S +1)|S, S.),

5%8,58.) = 5|9, S.). (1.25)

Here, S, takes values —S, =S +1,--- ;S — 1, S. These successive states are distinguished

by a quantized variation of S,, which indicates a deviation of spins from the quantiza-
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tion axis. This deviation describes the excitation states. If one regards the ground state
as a quantum vacuum state, all excited states can be built up through the following ladder

operators

S* =S, +1iS,, (1.26)

where ST, S~ can respectively increase and decrease the value of S, by one, i.e.,

SE|S,S.) = V(S FS.)(S+S. +1)|S, S, +1). (1.27)

We see that the ladder operators realize the spin deviation from the ground state, which
facilitates the description of the quantum fluctuation. In the second quantization lan-
guage, the ladder operators are reformulated by magnon operators through the Holstein-

Primakoff (HP) transformation

S+ =\ 25 — nbb, ST = bT\/ 25 — Np, Sz =5 — Nny. (1.28)

Here, b and b' are magnon annihilation and creation operators, respectively. They respect

the following commutation relations

[b,07] = 1, [b,0] = [b', 0] = 0. (1.29)

The magnon number operatorisn;, = b'b. Away to confirm the validity of these relations is
by checking the agreement between magnon commutators and the commutator between
quantum spin operators [S;, S;] = i€, Sk. When dealing with magnons, one needs to be
aware of their unphysical aspects. The bosonic nature of magnons implies that the magnon
number ny, corresponding to a given spin can take any nonnegative integer value. This ob-

viously contradicts the HP transformation regarding the requirement 25 —n;, > 0. There-
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fore, to be physical, the system has to be restricted to the regime n;, < 25.

Magnon picture is an effective tool in the low-temperature region where the magnon
number is small: n, < 25 (this requires S > 1). In this case, the HP transformation
can be kept to the lowest order, ST =~ V2Sb, S— ~ /2Sbt, and 57 = S — bfb, thus
we can obtain a bilinear Hamiltonian by substituting these approximations into the spin-
spin interaction energy. The magnon bilinear Hamiltonian runs through the whole thesis,
playing the role of the starting point of all topics. We take the case of the ferromagnetic

Heisenberg model as an example

where J > 0 and (7, j) describes the nearest neighbors. Assuming the ground-state spins

lie in the z-direction, the Hamiltonian is re-expressed as below

H =-J) SSi+ S Sf+555;)
(.3)
Z Zaiai — Zagaj + aia;), (1.31)
i (i3)

where Z counts the neighboring sites of a given spin. The magnon operator bilinear form
of the Hamiltonian enables us to discuss band structure by going to momentum space

through the Fourier transformation

fzem of = %Z ol 1.32)
k

The Hamiltonian in momentum space reads

H=1JS Z[Z - Zcos(k - 0)]ala (1.33)
k 5

where § represents the nearest neighbor shifting vector. Here, this simple example has
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only one band
E(k)=JS[Z =) cos(k-8)]. (1.34)
s

In more general cases, each unit cell contains more than one spin freedom. The Hamilto-

nian could be generally expressed in the form
H=> UlHp¥, (1.35)
k

where Uy, = (a1 g, a2k, ,ank)’ with N being the number of spins per unit cell, and Hy,
isa NV x N matrix. The high dimensionality of the Hamiltonian allows multiple magnon
bands and thus makes the association with rich band structure topology possible. The most
common topological invariant considered for magnon bands is the Chern number that can
be defined for the Chern insulator or Weyl spectrum, as we will be discussing in the next
section.

The magnons in antiferromagnets can be introduced by following the same logic, and
similar derivations from the Heisenberg model can be carried out. However, the Hamil-
tonian will take a Bogoliubov-de Gennes (BdG) form that is usually used in superconduc-
tivity theory, because this form can capture the particle-nonconserved anomalous terms,

f

(3

ab;,a b}. In this thesis, we will extensively discuss the magnons in antiferromagnets. A
complete procedure of Hamiltonian presentation, diagonalization, and relevant topology

will be elaborated in Chapters 3 and 4.

1.3 Topological magnons

A key element of this thesis is the topology in the magnetic systems. As a warm-up, in
this section, some basic topology in condensed matter physics and a brief review of the

development in magnetic systems will be given by following Ref. [4, 56, 57].



15

1.3.1 Berry phase and Chern number

Consider a system described by a Hamiltonian H|[R(t)] that evolves with time ¢ through
the parameter R(t) = {Ry, Rs,- -+ , R,}. At each moment, the system has an instanta-

neous eigenstate
HIR(t)]|un(R(1))) = En(R(1))[un(R(1))). (1.36)

However, the state at each moment cannot be fully determined by this equation due to
the phase uncertainty. To understand this, we investigate the solution of the Schrodinger

equation
0| ®(t)) = H[R(1)]|D(t)). (1.37)

In the adiabatic approximation, the system stays at one of the instantaneous eigenstates
provided that the eigenvalues are separated from each other and the time evolution is very

slow. In this case, the Schrodinger equation solution will take the form
D(t)) = eMmem i do WERI) |y (R(1))) (1.38)
where the phase factor v, satisfies
O yn(t) = i{un, ()| 0pun (t)). (1.39)

Alternatively, the extra phase -, can be expressed in the parameter space

Yn = / dR- A,(R) (1.40)
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where A,,(R) is the so-called Berry connection and it is expressed as
A, (R) = i{u,(R)|Vu,(R)) (1.41)
which is gauge dependent. When the eigenstate acquires an extra phase factor
[un(R(t))) — e FE D, (R(1))), (1.42)
the Berry connection transforms as
A,(R) = A,(R) — VrXn, (1.43)

and the phase factor will correspondingly change by x,,(R(T")) — x.(R(0)) if the system
evolves from ¢ = O tot = T'. For a cyclic evolution of the system along a closed path in the

parameter space with R(7T") = R(0), the variation of phase factor requires
Xn(R(T)) — xn(R(0)) = 2mm, m € Integer, (1.44)

to make the phase choice of eigenstates to be single-valued. Therefore, the extra phase v,
is gauge independent for a closed path and known as the Berry phase. For a closed path,

the Berry phase can be re-expressed by Stokes’ theorem

Vo = / dR-A,(R) = / ds - Q, (1.45)
a8 s
where

Q, =V x A,(R) (1.46)
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is called Berry curvature. By utilizing the completeness identity

L= |un)(u,l (1.47)

and the perturbation theory induced identity

(um|VH(R)|un)

= 4
(U |V un) E —E. ) (1.48)
the Berry curvature can be expressed in terms of eigenstates
H H
0 1 3 (TR n) > o [VH () 10

(En - Em)2

m#n

In condensed matter, the Hamiltonian can be presented in the momentum space
H = H(k) and the corresponding eigenenergies are called Bloch bands. The momen-
tum variable falls into the Brillouin zone (BZ) which is naturally a closed manifold. For an
isolated band, the Berry phase and Berry curvature are well defined. Especially, in a 2-D
system, the Berry phase over the BZ is actually a Berry flux considering that the Berry cur-
vature is a momentum-space “magnetic” field and the BZ is identical to a torus. When the

flux is 27 multiplied by an integer, i.e.,

C, S dSy - Q,(k) € Integer, (1.50)

Y

C', the integer, is the well-known Chern number for Block band n. In condensed matter

physics, a nonzero total Chern number of occupied bands usually demonstrates nontrivial

topology.
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1.3.2 Haldane model and its realization in magnon systems

The Chern number introduced at the end of last section can bring us to a very important
concept in condensed matter: topology. This section will review a famous topological in-
sulator model, the Haldane model, and then discuss its realization in magnon systems. In
developing this model, Haldane tried to mimic the quantum Hall effect without using a net
magnetic flux [4]. He realized that the essential point is actually not the magnetic field but
breaking time-reversal symmetry instead. As a result, he built a model on a honeycomb
lattice without introducing a net magnetic flux. The way to achieve this is by introduc-
ing a next-nearest neighbor hopping with a path-dependent phase factor, and the overall
flux around a plaquette corresponding to the phase factor is zero. The Hamiltonian of the

model reads

H = tl Z C;er + t2 Z e_wiquC;-er + M Z EiC;er (151)
(i5) ((ig)) @

where t, t, are the strength of nearest and second nearest neighbor interaction, M is the
on-site inversion symmetry breaking potential, ¢, = +1 depending on the type of atom

on the site 7, the sign of phase factor is determined by
Vij = sign(cil X Cig)z =41 (1.52)

with d, » being the vector along the bonds bridging the second-nearest neighbor hopping.
Fig. 1.3 shows the sign convention of the phase factor for different next-nearest hopping.

In momentum space, the Hamiltonian is expressed as

h(k) = e(k) + d;(k)o; (1.53)
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Figure 1.3: The phase arrangement in the honeycomb lattice for the Haldane model.

with o; (i = 1,2, 3) being the Pauli matrix and

e(k) = 2ty cos¢Zcos(k: - by),
di(k) =t Z cos(k - a;),
do(k) =11y _sin(k - a;),

%

ds(k) = M — 2, sin¢ » _sin(k - b;). (1.54)

Here, a; = (0,1), ay = (—‘/75, —%), as = (‘/75, —%), andb; = ay, — a3, by = a3 — a,
bs; =a; — as.

Before exploring the topology, it is helpful to learn the symmetry of this model. Physi-
cally speaking, the imaginary hopping parameter implies the presence of a vector potential

that breaks time-reversal symmetry. The staggered on-site potential breaks the inversion
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symmetry. To see this, we need to analyze the momentum space Hamiltonian. First, the
time reversal operation changes the imaginary unit i to —¢, which will also effectively flip
the sign of the momentum variable, k — —k. Overall, time-reversal symmetry requires
h(k) = h*(—k). It is obvious that the d3(k) term doesn't satisfy this except for ¢ = 0, 7.
Second, the only possible inversion center is the center of the unit cell, with respect to
which the A, B sublattices switch with each other. This switching is executed in the Hamil-
tonian matrix by o,. Furthermore, inversion also maps k to —k. Therefore, the inversion
symmetry imposes the constraint h(k) = o0,h(—k)o, which is again broken by d3(k) due
to the nonzero M. The goal of the model is to realize the (anomalous) quantum Hall effect
which requires the absence of time-reversal symmetry, so the model is satisfying at least
the symmetry aspect.

In a honeycomb lattice, the band gap closing and reopening occur around two Dirac
points K and K'. An easy way to understand the topology of the model is by observing the
band gap behavior under tuning parameters. The Hamiltonian around two Dirac points

reads

3
hic = =3ty 08 ¢ + Sti(kyow — kaoy) + (M — 3v/3ty sin ¢)o.,

3
hK’ = —3t2 COSCb - itl(kyo—x + kxo_y) + (M + 3\/§t2 sin ¢)0-Z (155)

The energies of the two points are

9
Ex k) = —3tycosp £ \/Zt%kQ + A%((K,) (1.56)
where the energy gaps are

In aninsulating system, the change of Chern number is always accompanied by gap closing
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and reopening, which is called a topological phase transition. Let us start from the limit
M — oo, which describes a trivial atomic insulator in which all electrons are trapped at
B site. For ¢ € [0, 7], the gap at K closes and reopens when the parameters go across
the point M = 3v/3t,sin ¢, while the other gap stays open until M = —3/3t,sin ¢.

Therefore, in the region
—3V3tysind < M < 3v/3tysin o, (1.58)

the system is nontrivial. When M < —3+/3t, sin ¢, two gaps remain open, and the system
is topologically equivalent to the case M — —oo in which the system is again a trivial
insulator with all electrons trapped at site A. A similar analysis can be made for the case

¢ € [m, 27]. Overall, the topologically nontrivial region is
M < |3v/3tysin ¢). (1.59)

Onthe other hand, the topology of this model is marked by the Chern number of occu-
pied bands, which is the lower band in the two-band model. In the present case with two
Dirac cones, the Chern number can be shown to be the addition of the integral of Berry

curvature around each Dirac point (labeled as Ck k), i.e.,
C=Ckg+Cg. (1.60)
For a long wavelength Hamiltonian in the form of

h = €9 + Z kiAijO'j + moy,, (1.61)

4,J=2,Y
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the Chern number (integrated over whole momentum space) is

C= %sign(m)sign(DetA). (1.62)

Applying this conclusion to the model, the Chern number is
1
C = §[sign(M — 3V/3tysin ¢) — sign(M + 3v/3tysin ¢)] (1.63)

from which the topological condition is doubly confirmed.

The Haldane model is a representative example of topological insulator. Itis classified
by a Z-type (integer number) topological invariant, the Chern number. In recent years,
much effort has been made to extend the band-structure topology from electronic systems
to magnon systems. One successful attempt is a proposal of the magnonic Haldane model

in a honeycomb ferromagnet [36, 37]. The spin-spin interaction Hamiltonian is

() ((2,5))

where D;; = v;;D2 with v;; = sign(d; x d;).. After performing Holstein-Primakoff

transformation, the magnonic Hamiltonian reads

H = € Z aTai — 4 Z agaj — 1y Z ei””‘ﬁajaj (1.65)
i (4.3) (5.3

where ¢g = (3J, + 6.05)S, t; = J1 9,12 = \/JZ + D2S,and ¢ = arctan(D/.J,). Compar-

ing with Eq. (1.51), the Haldane model can be mapped to the magnon model by
t1 — —7?1, to — —1?2, M — 0, (1.66)

and the constant term ¢ is irrelevant to the topology. The Chern number for the lower band



23

is acquired from Eq. (1.63)
C' = sign(sin ¢) = sign(D). (1.67)

Apart from the magnon realization of the famous Haldane model, there has been ex-
tensive study of the edge-state transport of magnons in the so-called Chern insulator mod-
els, including the Haldane model [22,32-35,35,36,38,58,59,59-62,62-76]. There have also
been suggestions to realize the Weyl spectrum of magnons [46-51]. However, compared to
the electron system, the richness of magnon topology is limited due to the absence of a va-
riety of orbital freedoms, which leads to the fact that many fascinating topology features,
e.g., Zs topological insulator, surface Dirac cone, are hardly found in magnon systems. In

Chapter 2, we will attempt to generalize the discussion to a new topology for magnons.

1.4 Berry curvature in real space

Before the Berry curvature is introduced in momentum space as a key element of band-
structure topology, it can be also defined in real space when the relevant parameters vary
in time and space [77]. A representative example is electron motion in a temporally and

spatially inhomogenous magnetic texture background. One can consider the system de-

scribed by

2

ihOy ) = 2p—m+J0'-m(r,t) ) (1.68)

where ¢ = (4, 1,), m(r,t) is the local magnetization field, and J is the exchange cou-
pling strength between electron spin and local magnetization. In the strong coupling
regime, the spin direction of electrons adiabatically adjusts itself to the local magnetiza-
tion direction, which means when an electron traverses a nonuniform spin texture it will

pick up a Berry phase.
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A transparent way to see this effect is by describing the electron motion in a local
frame in which electrons can feel an emergent gauge field induced by the real-space Berry
curvature of spin texture. The local frame switching is realized by a local transformation
1 = Upwhere U = e~ "9/2o " withn = 2 x m/|2 x m/|, and thus Eq. (1.68) will be
converted to

(p— q°A°)°

thoyp = [¢°V° +
2m

+ Jo,| . (1.69)

Here, the matrix V¢ and A° are the scalar and vector part of the emergent gauge field with

the following expressions

Ve = —(ih/q)UOUT,

A° = —(ih/q ) UVUT. (1.70)

The emergent charge ¢° is artificially introduced to be in parallel with the standard form of
coupling between charge and gauge field, and it actually drops out in the equation above.
For a smooth magnetization texture, the emergent fields above can be regarded as a per-
turbation to the Hamiltonian H = % + Jo,. In the adiabatic limit, the gauge fields act

on each band separately, allowing us to introduce spin-dependent gauge potential

Ve = (s |VEIYo) = —(ih/ ) (o |UBU 1)),
AL = (s | A®[1h,) = —(ih/¢°) (Vo UV U 1)), (1.71)

The gauge potentials have a similar form as the Berry connection defined in Eq. (1.41). It

becomes clear that the emergent gauge field gives emergent electric and magnetic fields
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Figure 1.4: Two dimensional magnetic skyrmion texture: (a) Néel type (b) Bloch type.

as below

(E(e;)i = (—va — (%Af;)i = :FQ_ZCm . (&m X E)tm),

h €ijk

(B(e;)i = (V X Ai)i = :[:2(]6 9

m - (0;m x Oym). (1.72)

Note that the emergent magnetic field is a real space Berry curvature as it is the curl of a
Berry connection. In addition, we can also regard the emergent electric field as a Berry
curvature in the mixed space-time manifold.

As shown above, the emergent gauge field (real-space Berry curvature) relies on a
spin texture background. In the recent decade, there has been a surge of interest in the
skyrmion spin texture in chiral ferromagnetic or antiferromagnetic materials. Two typ-
ical magnetic skyrmion textures are shown in Fig. 1.4. The skyrmion in these magnetic

materials is characterized by a topological charge

1

Q= e /dxdym - (O,m x O,m) (1.73)

which takes a quantized value depending on the specific system. In a metallic ferromag-
net with skyrmionic texture, the z-component emergent magnetic field can accumulate a

quantized flux over an enlarged unit cell (due to magnetic field), which is proportional to
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the topological charge

/ dr(B), = F4hQ. (1.74)

This demonstrates that the magnetic skyrmion system is an ideal platform for the emer-
gent gauge field. The topological Hall effect induced by the emergent magnetic field is
usually used to detect the formation of skyrmions [78].

Moreover, the spin texture can also approximately induce an emergent gauge field
for magnons in the long-wavelength regime, and it shares a similar expression as that for

electrons. One can consider the free energy density of a ferromagnet
j 2 — =
F = E(&m) +D(m,V-m—-—m-Vm,) — B-m. (1.75)

Here, the three terms stand for exchange, DMI, and Zeeman coupling, respec-
tively. We assume the parameter field is locally pointing along the direction m, =
(sin 6 cos ¢, sin @ sin ¢, cos §) = Rz, where R = exp(L,¢p)exp(L,0) with (L;) ;i = —¢€;ji.
To take the spin wave fluctuation around the local parameter direction, the spin field m
can be parametrized by rotating a field m’ that fluctuates around z-axis, i.e., m = Rm/,
where m/ = 2,/1— |72 4+ i7" 4+ ¢ with |y| = \/(7%)2 + (7¥)2 < 1 and 7*® being
spin wave. Plugging this parametrized spin field into the free energy, to the leading-order
spatial gradient of spin texture, the free energy is rewritten as

D

j.Af)2m’ (1.76)

Foo= Lm0+ A

where Al = RT9,R, A = R"L,Rwith R = exp{L.5}R. Plugging the expression of m/

with spin-wave field into free energy above, the magnon Hamiltonian is obtained

N
2

H = p*=(=iV — a)*, (1.77)
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where a; = — (Al — %Af) l12. Here, a is an emergent gauge field [79-81] with two com-
ponents a = a' + a?, where a! = Al|;; = cos00;¢, a? = %Ad|12 = —%R,Zmo with

my = RZ. These two parts result in emergent magnetic fields,

- 1
bi=(V xa'); = 5k - (95mo x Ipmy),

b’ =V x a’. (1.78)

We find the form of b’ resembles that for electrons and is also connected to the topological
charge density. On the other hand, the kinetic term of magnons can be written as Ly, =
%w*(iat — @)y with ¢ = cos00,¢ being the scalar potential (see details in Chapter 5).

Therefore, the Lagrangian is £ = Ly, — H, which leads to a Schrodinger equation
S(i0, — )i = T (—iV — a)*y. (1.79)

Similar to the electronic system, the emergent gauge field also causes a Hall type response
associated with magnons analogous to the topological Hall effect, e.g., the thermal Hall
effect and the spin Nernst effect. We will discuss the relevant physics in more detail in

Chapter 5.

1.5 Linear response theory

The main theory built in Chapters 3 and 4 is based on the linear response theory. This sec-
tion introduces the basic quantum mechanical linear response theory by following Ref. [82]
and gives relevant examples to lay the foundation for later discussions.

A simple statement of linear response theory is that for a given system, the response

to aweak perturbation is proportional to the perturbation. To understand this we consider
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the following Hamiltonian
H(t) = Hy+ H'(t)0(t — to) (1.80)

where H describes the initial system, H'(t) describes a perturbation starting from ¢t = ¢,.

For a given observable A, its average value at a given time ¢ > 0 is calculated as

(A(t)) = tr[p(t)A] (1.81)

with

1) = 7 S In(0) (1) 7" 1.82)

where § = 1/(kgT), Z is the partition function, F,, and |n(t)) are the eigenstate and
eigenenergy of H(t). From the Schrodinger equation, the eigenstate can be written in a

form evolving from ¢t = ¢,
In(t)) = e T (L, ty) |n) (1.83)

. A - [t 1ET (41
where [n) = e |n(ty)) and U(t, tg) = ¢ o ™) Here, |n) is the eigenstate of the
time-independent Hamiltonian H,. Inserting Eq. (1.83) into Eq. (1.81) and keeping the

result to the first order of perturbation, the expectation value of the observable is

(A®) = (Ao~ i [ e (A, o "

to

where (- - - ) means the expectation value with respect to the Hamiltonian H,. Usually, we

are interested in the variation of the observable after the perturbation is applied

S(A()) = (A(t)) — (A)g = / h dt'CE (¢, 1" e 1) (1.85)

to
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with
CR(t, ) = —if(t — ') ([A(t), H'(t)])o. (1.86)

Here, the factor e="*~*) with n = 0%, a infinitesimal positive value, is added to ensure
that the response is substantially suppressed when t > t'.

When one switches the picture to the frequency domain, the Fourier transformation
of the perturbation is

H'(t) = / 2—we—th;, (1.87)
oo 2T

and the Fourier component of the response is given by

(6A,) = / I (1) (1.88)
where
Cliy (8) = —i0(){[A(t), H'(0)])o. (1.89)

The Kubo linear response formula is usually used to discuss the charge current re-

sponse to an external electric field. The perturbation is
H' = /d’rA(r,t) - J(r) (1.90)

where the coupling between charge density and electric potential is removed through

gauge transformation. Here, J(r) is the charge current that is composed of paramagnetic
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and diamagnetic terms: J = J para + J 4ia, Where

h |
Jpara(r) = W (k + EQ)elq CLLCLk_Fq,
k,q
—q igr T
Jaa(r) = —A(r) Ze T 4 gt q- (1.91)
mV P

In the frequency domain, A(r,w) = --E(r,w) with E being the electric field, and it is

assumed that the response takes the form
J(r,w) = /d’r’&(r,r’,w) -E(rw). (1.92)

Through the Kubo formula introduced before, the conductivity tensor can be calculated as

ie?

2
_Huu(r’ r’al,w) _I_ M
w

S(r — 1), (1.93)

ot w) = o

where n(r) is the local charge density, m is the electron mass, and
O, (r 7't —t) = —if(t — ") {[J.(r.t), J.(r', t)])o. (1.94)

For a system with translational symmetry, the above equation can be converted to momen-
tum space and all calculations can be performed in the eigenbasis representation. This will
become clear in our discussion in Chapters 3 and 4.

In this thesis, we will mainly focus on the linear response induced by a temperature
gradient, where the driving force will be temperature gradient V1'. To deal with this sta-
tistical force, we need to introduce a coupling between the Hamiltonian and a pseudo-
gravitational field. The response function will contain two parts: the Kubo-response part
and orbital contributions. The Kubo part will be calculated with similar theory to that in-
troduced here, while the orbital part requires some special techniques. All the details will

be discussed in Chapters 3 and 4.
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Chapter 2

Chiral topological insulator of magnons

2.1 Introduction

The discovery of topological insulators (TIs) [12, 13] is a remarkable achievement in con-
densed matter physics as it reveals fundamental connections to topology and is promising
for applications in electronics and quantum computing. At the same time, the concept
of topology has arisen in a variety of other fields under the encouragement of the suc-
cess of topological insulators [83, 84]. Recently, there has been considerable interest in
the topological physics of magnon systems [35, 36, 58—64]. Realizations of systems with
a Weyl spectrum of magnons have been suggested [46—51]. Multiple theoretical works
[22,32-35,38, 59, 62, 65-76] have discussed the edge or surface states of gapped magnon
systems. Due to the absence of the Kramers degeneracy and the electronic orbital free-
dom for magnons, the investigation has been limited to the magnon analog of the Chern
insulator. A magnon analog of the quantum spin Hall effect comprised of two copies of
magnon Chern insulators has also been proposed [38, 72]. Nevertheless, the topologically
protected helical surface states have not been discussed for magnon systems. According
to the ten-fold way of classifying T1Is [85, 86], the AIII class only requires the sublattice chi-

ral symmetry for realization of a topological insulator with Z invariant in one and three
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dimensions [87-90]. Hosur et al. [87] discussed an electronic model of chiral topological
insulator (cTI). Wang et al. suggested a realization of ¢TI in cold-atom systems [88].

In this chapter, we show that magnon chiral topological insulator (mcTI) can be re-
alized in a Heisenberg model endowed with the Dzyaloshinskii-Moriya interaction (DMI)
[91, 92]. We consider a layered honeycomb lattice structure [93, 94] in which the interac-
tions are chosen such that the system possesses the chiral symmetry (see Fig. 2.1). The
bulk is characterized by the Z topological invariant: winding number. In accordance with
the bulk-boundary correspondence, our model supports a symmetry-protected magnon
Dirac cone on its surface, provided the chiral symmetry is not broken on the surface. The
helical surface states lack backscattering in the presence of the chiral symmetry. By break-
ing the chiral symmetry, a small gap can be introduced in the surface band, which leads to
the magnon Hall response, e.g., under a temperature gradient. We observe that similar to
electronic systems, the chiral symmetric perturbations can change the system to the nodal
line and trivial phases. Furthermore, by adding terms breaking the chiral symmetry, we
can bring our system into the three-dimensional magnon anomalous Hall 3D-mAH) and

Weyl magnon phases.

2.2 Model

We consider a layered honeycomb magnetic structure with ferromagnetic ordering, as
shown in Fig. 2.1. To realize mcTI, we construct a model with the magnon Dirac spec-
trum in the bulk. We then open a gap by adding a mass term corresponding to additional
DMI, which can be done in various ways. The Hamiltonian is composed of the in-plane

and interlayer exchange interactions, and the axial anisotropy terms,

H = Hin + Hinter + Hanu (21)
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Figure 2.1: Left: The layered Honeycomb structure. The central non-magnetic atom gen-
erates DMI between interlayer third-nearest-neighbor atoms, e.g., A and B’. Middle: The
in-plane and interlayer exchange energy. Right: The projection of interlayer DMI between
Aand B’ on z direction.

where
3
H, = —JZ Z Sai-SBits, +Sai-Spi-s,,
2,0 p=1
Hinter = - Z(tISA,z : SB’,z+1 + t2SA,z : SB’,z—l)

0,2

—|—(t1 — tQ,A — B,B/ — A/),

Hy = D Y K(S§u.) 2.2)
w2z Q

Here ¢ corresponds to the in-plane index and z corresponds to the layer index; ; =
(1,0,0), 8 = (—1,%2,0), 8 = (—1,—¥2,0); J and K are nearest exchange and axial
anisotropy energy with K' < 0. ) stands for different spin modes, i.e., Q = A, B, A’, B'.
In the Hamiltonian, we suppress unrelated coordinates for clarity. For in-plane interac-

tion, we only consider nearest-neighbor exchange. For the interlayer interaction, we use a

staggered pattern as shown in Fig. 2.1 (this limitation simplifies analysis but it is not neces-
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sary, as we show in Sec. 2.6). We perform Holstein-Primakoft transformation in the large
Slimit, S5 ; = (S—Q!Q;)and Sgi= V25Q;, with Q!, Q; being the magnon creation and
annihilation operators for spin mode S¢. The Hamiltonian in momentum space is writ-
ten in the basis ¥y = (A, Bk, A}, By.), where we label the layer and sublattice degrees of

freedom by ;1 and 7 Pauli matrices,
H=JSY WMy, 2.3)
K
with

He = €0 — YikTe + YoxftaTy + 2X cos(k. ) ftp Ty

—20 sin(k,) py 7y (2.4)

Hereep = 3 — 2\ — 25, = >, e =~y + iy, with v = cos(k,) +

V3ky
2

k

L ) and vy = 2[cos(fz) — cos(‘/gk”)] sin(%), A = —1(t1 + )/ J,

2 cos(*) cos( > o
6 = 3(t2 — t1)/J, and kK = K/J. Note that the Hamiltonian above has the chiral sym-

metry 7, up to a constant term (below, we disregard this constant energy shift), i.e.,
TszTz = _%k' (25)

First, we consider the case A = 0, corresponding to the staggered interlayer exchange.
In this pattern, the exchange term realizes the so-called 7 flux [87] for vertical plaquettes
Hpsign(t;;) = —1, e.g., AB’A'BA, where t;; stands for the exchange strength between

two spins. The eigenenergy,

LTS = £/ Inf? + 462 sin’(k.), 2.6)
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reveals two Dirac cones at Qr(zy = (0, j:g47”§, 0). Around the Dirac point Qg, the Hamil-
tonian reads

Hox = qicvi, 2.7)

where ¢, = 2k,, q, = 3k,, and . = —26k.; {ow} = {p.7y, T, 127, } satisfy the relation
{ai,a;} = 20;;. For the other Dirac point, the Hamiltonian is easily obtained after the
transformation ¢, — —g, in Eq. (2.7). Since the two Dirac cones give us equivalent physics,
we use the form in Eq. (2.7) in the following discussion.

To realize the mcTI, the Hamiltonian should have a chiral symmetric mass term to
open the gap in the bulk Dirac cone while preserving the surface Dirac cone. In a mas-
sive Dirac equation for the bulk, the mass term is described by the matrix /3 satisfying the
anti-communication relation {3, Hox} = 0. The only possible term preserving the chi-
ral symmetry is 5 = 1, 7,. To this end, we include the third-nearest-neighbor interlayer
DMI in our model. The correct form of DMI can be produced by the central non-magnetic
atom as it is shown in Figs. 2.1 and 2.2, where we assume an overlap of relevant orbitals
and a sufficiently strong spin-orbit interaction. As an example, we calculate the interlayer
DMI between Al and B’1 spinsin Fig. 2.2. Here, the displacements of the two spins to the

central atom C'1 are

—— —
C1B'l1 =6, +c, (2.8)

where 2c is the vertical interlayer vector, e.g., A2B’l = 2c. The DMI vector between Al

and B’1 can be presented as
— ——
DAI—)B’I = D(OlAl X ClBll) = D(ez +c X 52) (2.9

with D being the interaction strength. In Fig 2.2, we give all the DMI z-component pro-
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Figure 2.2: The interlayer DMI pattern.

jections; as shown, B — A’ and A — B’ have opposite sign along the same interaction path
Vector.

The DMI contributes to the Hamiltonian a term

Hy = Y ) Dap(dy) [Sags X S rdysin)]

z;n==%1 ¢,dy

+{A— B,B' — A’} (2.10)

where i, z are the in-plane and layer coordinates with assumption of unit interlayer dis-
tance in the z direction, d, represents the in-plane second-nearest-neighbor between
atoms with d; = (2,2,0),d, = (—2,%£,0), and d3 = (0, —v/3,0) (the other three are
—d;,—d3,—d3). At the same time, we assume that the in-plane DMI between the second-
nearest-neighbors is absent, as such a term would break the chiral symmetry. For the
magnetization along the =z axis, only the z component of DMI vectors is relevant, which

is shown in Fig. 2.1. The z projections of DMI vectors have the same magnitude D? and
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follow the staggered pattern shown in Fig. 2.1. In momentum space, the DMI term reads

Hen = 40p&x cos(k.) ity Ty, (2.11)

where 6p = D?/Jand & = > sin(k - d;). Now, we have the full model given by
Egs. (2.4) and (2.11).

To confirm the existence of surface states, we diagonalize the Hamiltonian given by
Egs. (2.1) and (2.10) in a slab geometry. In our calculation, we consider two bulk regions
with the opposite sign of DMI ¢, which guarantees the sign change of the mass term
across the interface. As expected, the model has Dirac states confined to the x — y plane
separating the two bulk regions as shown in Fig. 2.3, left. The model hosts two surface
Dirac cones at the two-dimensional projection of Qg and Q as long as all parameters
are nonzero. We also considered a bulk terminated at a honeycomb plane with vacuum,
which results in a single Dirac cone with a gap opening due to breaking of the chiral sym-
metry at the interface (see Fig. 2.3, right). The chiral symmetry breaking appears due to the
exchange energy terms at the interface after application of the Holstein-Primakoff trans-
formation.

Now, we see that the model based on layered honeycomb lattice is realized by con-
sidering various type of interlayer exchange or DM interactions. As a guidance, all pos-
sible chiral symmetry allowed terms in a honeycomb lattice can be listed to inspire other
new models. For a ferromagnet on a layered honeycomb lattice with only intralayer ex-
change interactions considered, the long-wavelength magnon Hamiltonian around (2D)

Dirac point is

3JS
HK/K’ = —(kI[LZTy + kfyTx). (212)
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kx=0 kx=0
E/JS E/JS

Figure 2.3: A plot corresponding to a slab geometry with the parameters, § = 0.3, p =
0.15. Left: The surface state with the Dirac cone at Q, and Qg where the surface states
appear at the interface between the two bulk regions with the opposite sign of DMI dp.
Right: The surface state cone splits when the bulk is interrupted at a honeycomb plane in
contact with vacuum due to uncompensated exchange interactions leading to breaking of
the chiral symmetry.

Possible matrices describing the chiral symmetry (satisfy Eq. (2.5)) include

{0, .} @ 7., { s 11y} @ 7, (2.13)

We can now write all possible chiral symmetric terms that anticommute with the chiral
symmetry. All possibilities are listed in Table 2.1. A 3D chiral Hamiltonian will be obtained
by adding possible terms generating these matrices to the layered Honeycomb system. For
asystem of localized spins, the corresponding hopping terms of magnons can be obtained
from exchange interactions and DMI. To achieve our goal, one can first construct 3D Dirac
magnons and then open a gap with a chiral symmetric perturbation. The minimal model
only contains terms that anticommute with each other, but the chiral symmetric pertur-
bations do not necessarily anticommute with the minimal model and can serve to drive
the phase transition as discussed in Sec. 2.6. We note that the presence of the chiral sym-
metry does not guarantee the mcTI phase and one has to verify the nontrivial topology via
winding number calculation.

The above-mentioned steps can be applied to an arbitrary lattice to obtain other mod-
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els of mcTIs.

Table 2.1: Symmetry analysis

Chiral Symmetry Possible Terms
T {:u()nuxmu’ynuZ} ® {Tvay}
HzTx {,u:va,uy} ® {7—077—2} {/"L07/“’LZ} X {TwTy}
HzTy {IuyvluZ} ® {7_077-1/} {/’Lﬂaﬂx} X {TJ:7Tz}
HyTy {tey oy @ {10, 7} {po, iy} @ {7, 7}

2.3 Topological invariant

The presence of chiral symmetry ensures that the Hamiltonian could be brought to an off-
diagonal form by a unitary transformation. For our case, we need a transformation satis-

fying Ur,U' = p., under which,

0 Dy

Hy = UH Ut = , (2.14)
Dl oo
with
— A
De=| ™ 7% | (2.15)
AL —7-x
where Ay = —40p& cos(k,) + 12 sin(k,). This transformation matrix is identified as
1 0 0 O
0010
U— , (2.16)
01 00
00 01
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Assuming that the eigenstates of 7 have the form 1), = (x4, 7)7, the eigenequation

reads

=\ 2.17)

by applying Hy on both sides of which again can produce

DDl 0 Xa Xa

= A2 : (2.18)
0 DiDi || 7 T

If one can find u, that satisfies DkDLua = A2u, and u,ul = 1 (a = 1,2), the eigenstates

are constructed as

Xa | 1 Uq 2.19)
Ta V2| 1,
with
1 o
Vg = )\—Dkua. (2.20)
Now, we can adiabatically deform H,. into a flat-band Hamiltonian [85, 86]
Qu=1-2 " [tha)(¥a (2.21)
a€B.G.
where B.G. stands for the states below the gap. The matrix form reads
0 g«
Qx = ; (2.22)

a 0
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where the off-diagonal term is g = + Dy with A = /|7« [? + | Ak|?. The chiral topological

state can be characterized by the three-dimensional winding number [85, 86]

3k
il = [ e lld'9,0)(d'0,0) 0/ 9,0) 2.23

where p1, v = k,, ky, k. and the integration goes over the whole Brillouin zone. Numerical
results show that the winding number is quantized for nonzero ép and . When ép = 0
or 0 = 0, the model falls into the Dirac phase with vanishing winding number. This result

can be understood by considering the topologically equivalent Hamiltonian around Qp:

HQRJrk = QyTe + Qe lhzTy + qzlzTy + My Ty, (2-24)

where ¢, = 3k,, ¢, = 3k, ¢. = —20k., m = 2/30p, and we dropped the momentum

dependence of the mass term in topological sense. It’s straightforward to get

Dk = (y0o — inUx - Z'Tno—y - iQxUza
A= V]q]2+m?2 (2.25)
It can be further shown that

1 1 1

8q#q = X[aqMDk - 2)\2 (8%)\2)Dk] = >\3 ()\28q#Dk — qMDk), (2.26)
where the relation 19,,A* = g, is used. Specifically,

1 ) . . 9 2

8qzq = F[_QnyUO +19:9. 0, + 1@, Moy + Z(qz - A )Uz]y
1 . . )

0y,0 = ﬁ[()\z - q§)00 +1q,q.0, + iqumoy, + 1qyq,0;],
1

004 = ~—|—q.q,00 +i(q® — V)0, +iq,mo, + iq.q.0.). (2.27)

)\3
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After some calculation, we obtain
L : :
velg) = [ 55" ul(q'0k,9)(¢' O, q)(d' O, q)]
T
d3q ,
— —sgn(0) [ 5 e eila10,,0)(a10,.0) (00, 0)

d3q 12m
= sen(0) / SYECRBY

o m . ’q| L —1 @ 00
= sgn(d) 27T247r[ 20aP + 1) + 5 tan™ " ( - )0
™
= Sgn(5)2—ﬂ.24’ﬁm
= sgn(d)sgn(m)/2
= sgn(dpd)/2. (2.28)

For Q, point, we replace g, = —¢, and m — —m to get v [q] = sgn(dpd)/2. The total
winding number is the sum,

v[q] = sgn(dpd), (2.29)

which is a quantized number for the nontrivial mcTI phase and zero for the trivial phase.
In our model, there is only one Dirac cone on the surface projection point of Qy or Q.
Specifically, when v[q] = 1(—1), the Dirac cone appears on the projection of Qr (Qr)

point. In general, mcTI can have more than one Dirac cone at the boundary.

2.4 Surface state

We can get a physical insight into the formation of the surface Dirac cone by consider-
ing the interlayer Dirac cone pairing pattern [87]. For simplicity, we ignore the chiral
symmetry-breaking terms appearing when we terminate a sample at one of the honey-
comb planes in contact with vacuum. Such symmetry-breaking terms do not appear if the
interface is formed between the two bulk regions with the opposite sign of DMI ¢, or if

the interface is terminated in such a way that the chiral symmetry-breaking terms due to
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exchange energy do not appear. We consider the Hamiltonian that is Fourier transformed

with respect to the in-plane momentum,

Hjj = =i Te + Yax Ty + (281, 0D — 6) 1y 7y,

Hjjer = £i(0 + 26p&i ) 1Ty, (2.30)

where the index j labels the bilayer, H; ; describes intralayer terms, and H ;11 describes
the interlayer terms in the Hamiltonian written in the basis (A ;, By, Al o B{‘ud’)’
with k|| representing the in-plane momentum (see Fig. 2.4). The intralayer Hamiltonians
describe two-dimensional Dirac cones (different from the bulk Dirac cones discussed be-
fore), which hybridize due to interlayer coupling. It is convenient to consider the Hamil-
tonian written in the subspace (Ag j, Brj, Ay j, B j, Ar.j; BLj, AL j, B, ;) where index
R(L) stands for the in-plane momentum (0, +--*2.), and Pauli matrix v, acts on R and L

3v3

Dirac cones,

Hjj=—(0— \/§5DVZ)MyTya

Hjjur = i(6 + V/30pv,) 7, (2.31)

Here 1o = (p, +ip,). For § = v/36p, we obtain that H;; o 5% and H; j.; oc =,
which shows that R and L Dirac cones hybridize in a pattern shown in Fig. 2.4. In this
special case, the surface states live on top and bottom surfaces without any penetration

into the bulk. If § = —/3dp, the R and L cones interchange in the hybridization pattern.

. . . o . . 4 . .
We can investigate the surface states further in the vicinity of (0, iﬁg) point using

the k - p theory. After replacing k. to its second order by —i0, in the Hamiltonian, the
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Figure 2.4: Pairing pattern for § = ‘?5 p- The R Dirac cone resides on the surface.

effective Hamiltonian becomes

H(z) = —A(id)pm, + MO~ (i),

= 1A, p,Ty +iM(1+ %83)(/1_ — 1) Ty, (2.32)
where A = 26, M = 40pqp,, (= +2+/30p). For the zero-energy surface state,
H(z)i(z) = 0, 2.33)
which gives us the form of ¢)(z) as

D0
Yi2)(2) = M. (2.34)
0
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Here, ®, () is the eigenstate of 7, as demanded by the chiral symmetry, i.e., (1,0)" and

(0,1)T with eigenvalues 4-1. Substituting Eq. (2.34) into Eq. (2.33) leads to
1 2
AN+ M(1+ 5)\ ) =0. (2.35)

The solution is

MN=—-8+p2-2, (2.36)

where 5 = A/M, and this corresponds to a surface state only if 3 > 0, i.e., Re(A) < 0.

Assuming the boundary condition ¢(0) = ¥ (0c0) = 0, we obtain two eigenstates:

0 1
1 N ) 0 N .
=N (e — et ), e = N (eF — et o). (2.37)
0 0
0 0
Here N is the normalization factor which fulfills
/ d2f(2)f(2) = 1. 2.38)
0

for f(z) = N(e)'* — &) %) = 2Ne P2 sinh(1/f? — 22). The normal factor is solved to be

N = —V\f;;‘z (2.39)

so that

f(z)=4/2(1 - %)e‘ﬁz sinh(y/ 32 — 22) with B> 0. (2.40)

As mentioned before, 5 > 0 has to be satisfied to ensure the existence of the surface state.
For a given 6, Sr = —/3; with Bp(1) being the value of 3 at Qg point. It is clear that

Br > 0when sgn(dpd) > 0, and the surface Dirac cone exists at the projection of Qg
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point; when sgn(édpd) < 0, B > 0, and the surface Dirac cone exists at the projection of
Q. point. This result is consistent with the earlier discussion.

Without loss of generality, we consider the surface state existing at the projection of
Qr point. In the vicinity of Qg the Hamiltonian can be decomposed into two parts as

below

H = H,,+ H(z),

H,, = gky7x+gkm,uzry. (2.41)
It is easy to get
(G 3
) Hy ) = S0 — b,
(o
il H(z)([th1), [¥2)) = 0. (2.42)
(o

Therefore, the effective low-energy surface Hamiltonian reads,
3
H,, = §(ky7x — ky1y) =vpk X €,) - T, (2.43)

where vp = 3. This Hamiltonian exhibits magnon spin-momentum locking [95] in the
spin space defined by sublattices A and B. The Rashba-like surface states in Eq. (2.43)
are described by helical eigenvectors, i.e., the eigenstate of k and —k are orthogonal to
each other, which prohibits backscattering between states with opposite momentum.
The chiral symmetric perturbation can only shift the position of the Dirac cone as it adds
additional terms of the form M7, + M,7, to Eq. (2.43). This is a manifestation of the fact

that the surface modes are protected by chiral symmetry.
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2.5 Surface state Hall response

Interesting physics can also arise when the chiral symmetry is weakly broken at the inter-
face. We can break the surface Dirac cone by considering an interface with vacuum (see
Fig. 2.3) or by contacting mcTI with another material that has a broken chiral symmetry.
The gapped effective surface Hamiltonian reads, Hg, = vp(k X €,) - 7+ my7,. The gap in
the surface Dirac cone will result in a Hall response to a longitudinal driving force on the
surface, similar to the surface Hall effect in 3D topological insulators with broken time-

reversal symmetry [96], which can be detected by the spin Nernst response [97],

j3 = .V, T, (2.44)

with response parameter
__FBNtgn 5
Qo =~ ; ve(K)ci(g(en)) (2.45)

where V' is the surface area of the system, 27, (k) is the momentum space Berry curvature,
ci1(x) = (1+2)In(1+2)—zInz,and g(¢) = 1/(e —1) is the Bose-Einstein distribution
function.

To get the Berry curvature around a Dirac cone, we write the gapped surface Hamil-
tonian above in a compact form

Hsur,k =d- T, (2.46)

withd = {vpk,, —vrk,, m,}. The energy and eigenstates are

By 1/JS = +d, (2.47)
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and

1 ds +d 1 ds —d
Uy = ————— , U = —— . (2.48)
2d(d+ds) | 4, —id, 2d(d —d3) | g, — id,

where d = |d| = \/v%|k|> + m2. As introduced in Chapter 1, the Berry connection for
two bands is defined as A = —i(u+|V4|u-), which helps to generate the corresponding
Berry curvature field

d

Q*(d) = Vg x AF(d) = 25 (2.49)

By using the relation,

1
Q% = Q)

5 ) (2.50)

with Q,,, = i(9,.A, — 0,.A,,), we can identify the concerned Berry curvature components

as 0 = Q,, = —,,. More explicitly,

9 Ms
Fogs

Q. (k) = i (d) = =075 (d) = +v (2.51)

Now we obtain the spin Nernst response coefficient by plugging the expression above into
Eq. (2.45)

kBms

e = 2 / B gl — )] — exlg(eo + D), 252)

where g = 3 — 2\ — 2k and we replaced {- >°, by [ dk. To identify the contribution from
the Dirac cone, we introduce a small energy cutoft A around the Dirac cone, i.e., A < &.
So that we expand ¢, (gg % d) to the first order of fd with 5 = JS/(kgT),

—52d€0

C1 [g<€0 — d)] —C [9(80 + d)] = T}l(ﬁ&?o) + O[(ﬁd)2] (2.53)
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Figure 2.5: Left: Phase diagram in jp — )\ parameter space with 6 # 0. The mcTI phase
is continuously connected to the A = 0 case considered in the previous sections. Right:
Phase diagram in np — 0p parameter space (A = 0) with 6 = 0.2; The boundary lines
between different phases are np = 26/v/3 and §p = np/2.

Taking the transform [ dk = [ [27 |k|d|k|df = [*° L-d(d)d [, df, we have

ms v

kBms

27 A 1
e = W [0 [ @) et~ ) - alte + )

7Tk’Bm55052
cosh(feg) — 1

In(A/|mg]). (2.54)

Unlike an electronic system, the response parameter is not quantized due to the Bose-
Einstein statistics. In Eq. (2.54), only the contribution from the Dirac cone has been con-
sidered. We note that the Berry curvature from other parts of the Brillouin zone can also

contribute to the spin Nernst response due to the Bose-Einstein statistics.

2.6 Topological phase transition

We now consider a more general model with a non-staggered pattern, i.e., A # 0. We find
that even for A # 0 there is still some region in parameter space with mcTI phase. As we
increase \, we encounter a phase transition into a nodal line phase before we reach the

trivial insulating phase (see Fig. 2.5). For the full Hamiltonian composed of Egs. (2.4) and
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(2.11), the energy is

E2/(JS)? = [12Acosk.| £ /| l? + (40p)2€7 cos? k.

+(20)?sin? k. (2.55)

To get nodal line phase, it’s required that k, = 0 and (2))? = |w|? + (46p)?EE. When
min{|v|? + (40p)262} < (20\)? < max{|y|? + (46p)?¢2}, the system falls into the
nodal line phase with the nodal lines lying on k., = 0 plane. When (2\)? < min{|y|* +
(46p)?&2}, it's in mcTI phase that is continuously related to the A = 0 case considered in
the previous sections. Note thatif § = 0, the gap is always closed at (0, :I:;T’%, +7), sothat
0 # 0 has to be satisfied. The phase diagram is shown in Fig. 2.5. We find that there is a
substantial region in parameter space with mcTI phase.

Besides the phase transition induced in the presence of the chiral symmetry, we find
that the system can also be tuned to the Weyl and 3D-mAH phase by introducing the in-

plane second-nearest-neighbor bulk DMI that breaks the chiral symmetry,

1 Mz
SH — 5 Z Z Dg(dy)e. - [Sq,az) X Sq,(i+ds,2)s
Q zi,dy
(2.56)

where () stands for different spin modes and Dé(d ») is the in-plane DMI parameter. The
presence of such DMI is consistent with the symmetry of the honeycomb lattice. In mo-
mentum space dHy = 2npkpt.T,, Where np = |f)22(dA)|/J Now the system (A = 0) has

energy

Eg/(JS)? = || +4lnp&l £

V(200602 cos? (k) + 62 sin? (k.2 2.57)
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Figure 2.6: Left: Local spins are pointing in the x direction due to applied magnetic field.
Nonmagnetic atoms in the face centers generate DMI along the z-axis for the vertical
bonds. Middle and right: Top view depicts the third-nearest interlayer exchange inter-
actions.

Conditions for the existence of Weyl point are |y = 0 and n%& =

(20p&k)? cos®(k.) + 0%sin®(k.), such that the Weyl nodes lie at k = (0,£;7%) and

3n% /2-362 —62
3mp /2365 =9 < 1, there are four-momentum

36%,—62

302, /2—36% —§2

). When —1 < e

k. = £ arccos(
space Weyl nodes originating in the separation of two Dirac cones along k. direction.
Similar to Ref. [98], the system can be manipulated into the Weyl, 3D-mAH, and insulat-
ing phases by changing parameters. In parameter space, the insulating and the 3D-mAH
phases are well separated by the Weyl phase as shown in Fig. 2.5, where we identify the 3D-
mAH phase by the quantized Chern number (C' = 2 in our model) for arbitrary given k.,

ie,C =535 0fos dkHQ,(;;?ky (k.) with Q,Ez)ky (k.) being the Berry curvature of bands

bellow the gap and B.Z. standing for the 2-D Brillouin zone.

2.7 Another model

Aside from the model we discussed so far, we show a different mcTI model based on the
layered honeycomb ferromagnet system. We consider the same lattice structure and labels
as in Fig. 2.1, but assume that all spins are aligned in the x direction, which can be real-
ized by applying an external magnetic field. Instead of putting extra nonmagnetic atoms

in the center of the unit cell, here we add atoms in the front and back face of each unit
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TQ 0. Qr T

Figure 2.7: The spectrum of model 2 in a slab geometry shows the presence of surface
states. The parameters are r = 0.2, 7 = 0.1, A = 0.2, g9 = 0.15. Here we neglected
the boundary effects which shift the position of the surface cone. In principle, this effect
can be weakened or even eliminated by an interface with another material.

cell to generate DMI along vertical interlayer bonds as shown in Fig. 2.6. We also need
third-nearest-neighbor exchange interactions, with the exchange strength depending on
the type of sublattices and their locations (see Fig. 2.6), to induce the Dirac cone mass term.

The model Hamiltonian reads

H = Hin+Hinter+HZ+HD +H§X> (2-58)
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where
3
Hy = —JY > Sai-Spits, +Sai-Swis,,
z,4 p=1
Hiuwer = — Y (8SazSpost +184. - Sp.1) + (A — BB — A),

Hy = =2 2 B:Sos
w2 Q

Hp = Z Z Dap/(8) - (Sa. X Sp.t5) +Dpar(6) - (S X Sazts),

iz 0==+1
H = - Z Z ZtISA,(i,z) “SBr (itdy,z4n) T 12SA,3i,2) - SBr (i—dy,z4n) T
i,z n=%x1 dy
{t; <> t5,A— B,B'— A'}. (2.59)

Here, the first two terms coincide with the previous model, except that the interlayer near-
est exchange interaction has uniform strength. The third term corresponds to the Zeeman
interaction with the external magnetic field in the x direction. The term H, represents ver-
tical bond DMI contribution with D 45/ (9) = —dDe, and D4/ (0) = 0 De, (6 = £1). HY
stands for the third-nearest-neighbor exchange interaction with the strength depending
on the sublattice type and position, as shown in Fig. 2.6. After performing the Holstein-
Primakoff transformation and the Fourier transformation, the Hamiltonian up to a con-

stant term becomes

Hyx = —Y1kTe + Yokt Ty — 2r sin(k, ) pry 7y + 40 cos (k. ) 7y + 2 cos (k) (A4 200 Xk ) T

(2.60)
wherer = D/J, A =t/J,n0 = (t1 +12)/2J, 1 = (t, —t2)/2J,and & = 37 sin(k-d;),
Xe =30 cos(k - d;) withd, = (2,%2,0),d, = (—2,*%,0),d; = (0, —V/3,0). First, we
consider the extreme case for which A = 7y = 0. The Hamiltonian has the same form as

the mcTI model in the main text, i.e., we obtain an effective massive Dirac equation. If we

turn on the parameters 1, and )\, they will not immediately break the mcTI phase, similar
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Figure 2.8: Left and middle: The self-energy diagrams corresponding to the first- and
second-order corrections due to the quartic magnon-magnon interactions. Right: The
self-energy diagram corresponding to the cubic magnon-magnon interactions.

to the case we discussed in Sec. 2.6. Specifically, the energy of Eq. (2.60) is

EE/(JS)? = [\/|7k]2 + 4r2sin’(k,) & 2| cos(k.) (A + 2noxi ) []* + 160*¢L cos?(k.).(2.61)

When n = 0, the spectrum is always gapless at two pairs of nodes lying at kyode =
)‘+2770XQL/R

Ir|

(0, j:;T“g, + arctan(

gap, which leads to k, = 0or /3k, + k, = 0. For ki satisfying these conditions, the

)). In addition, one needs to assume & = 0 to close the

4(/\+2770ka )2_|’Yk"*| 2
4()\+2770Xkﬁ )2+4r2

When max{4(\ + 2770Xk|*|)2 = e |} < 0, the system is gapped and it is continuously

2>0.

system is gapless at k, = + arcsin

when 4(A + 2o xx; )* — [

connected with the magnon ¢TI model with y = A = 0 (see Fig. 2.7).

2.8 Discussion

In this section, we discuss the role of magnon-magnon interaction effects and give pos-
sible material candidates for realizations of topological phases of magnons. So far, our
discussion has been limited to free magnon systems. It is known that magnon-magnon

interactions do not play an important role for a ferromagnetic alignment of spins at low
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temperatures. In a general case, magnon-magnon interactions can induce band renor-
malizations and magnon decay [99]. It has also been shown that anharmonic terms due to
DMI canlead to nonperturbative damping proportional to the strength of DMIin akagome
lattice for the spin alignment orthogonal to DMI vectors [100].

We have investigated the role of the above effects in our model by considering
the higher-order terms of the Holstein-Primakoff transformation. Three diagrams in
Fig. 2.8 contribute to the self-energy where the first two correspond to the quartic term
in magnon-magnon interactions and the last one corresponds to the cubic anharmonic
interaction. According to our analysis, the first two diagrams lead to the self-energy that
is proportional to at least the second power of temperature. The effects induced by such
diagrams are suppressed at low temperatures since all relevant terms behave in a contin-
uous fashion without singularities. As for the third diagram, it is also suppressed by a
factor o« D? without singularities. The effect of such a diagram completely vanishes for
the second model in Sec. 2.7. For the first model in the main text, we only observe a large
contribution when magnetic moments are near orthogonal to DMI vectors. This situation
can be avoided by tuning the strength of DMI in the model in the main text, in which case
the anharmonic contributions do not lead to any singularities. Given nonsingular con-
tributions from all three diagrams, we believe that magnon-magnon interactions cannot
hinder topological phases in our models, at least at low temperatures and for typical DMI.

For realizations of the two models given in the main text and in Appendix B, we sug-
gest to study stacked 2D honeycomb ferromagnets with additional nonmagnetic atoms.
From the above discussion it seems that the model in Appendix B corresponding to Dy,
point group is better suitable for realizations of the mcTI phase. Among material candi-
dates, one could consider Crl3 van der Waals crystals with honeycomb structure of mag-
netic atoms [101,102]. In addition, similar honeycomb magnetic lattices can be realized in

transition metal trihalides TX5 (X =F, Cl, Br, and I; T = transition metal) [103].
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2.9 Summary

In this chapter, we constructed a chiral symmetry-protected topological insulator of
magnons in light of the analogous works for electronic and cold-atom systems. In our
model, the bulk gap opens due to the presence of DMI. We expect that there could be other
magnonic models with mcTI phase and our analysis can facilitate finding other possible re-
alizations. Following the tenfold classification of topological insulators, such models can
be characterized by the 3D winding number. We found that the surface Dirac cone has
Rashba-like form, so that the backscattering can be suppressed, which is similar to the
surface of the electronic topological insulator. Systems with the broken chiral symmetry
at the surface can also be of interest due to a small gap in the surface states and due to ap-
pearance of the magnonic Hall response. We showed that the spin Nernst response can be
used as a signature of the chiral symmetry breaking at the surface. Finally, we constructed
a phase diagram in parameter space, which shows that the system can be tuned between
the mcTI, nodal line, 3D-mAH, and Weyl magnon phases. We hope that our work can pave

the way for realizations of new topological phases of magnons.
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Chapter3

Intrinsic spin Nernst effect of magnons in

anoncollinear antiferromagnet

3.1 Introduction

In this chapter, we turn the topic to the spin transport mediated by magnons. The possibil-
ity of coupling between various degrees of freedom has led to new visions for spintronics
[15,104], and resulted in new subfields such as spin caloritronics [105], in which spin carri-
ers are manipulated by exciting heat flows. The study of spin currents is fundamental for
the field of spintronics, and the spins carried by magnons possess certain advantages over
electrons, e.g., low dissipation. At the same time, magnons exhibit rich and fascinating
physics associated with the topology of magnonic bands, e.g., the thermal Hall effect has
been observed in collinear ferromagent Lu, V5,0~ [29]. The spin Nernst effect [106,107], akin
to the spin Hall effect [9], can also be realized in magnon systems [38—-40, 72, 97,108, 109].

Many spintronics concepts also apply to antiferromagnets [110]. In particular,
collinear antiferromagnets can exhibit the spin Seebeck effect [111], spin pumping [112],
spin-orbit torque [113], spin Nernst effect [38-40, 108, 109], etc. Noncollinear antiferro-

magnets (NAFMs) have attracted considerable attention in recent years, as such systems
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support nontrivial band structure topology. The anomalous Hall effect [114] and spin Hall
effect [115, 116] have been realized in Mn3X (X= Ge, Sn, Ga, Ir, Rh, or Pt) systems, where
electrons act as charge or spin carriers. Furthermore, the thermal Hall effect, mediated
by magnons, is also identified in NAFM insulators [40—-44]. Nevertheless, the magnon-
mediated spin transport in NAFMs [117-119] has not yet been well explored, especially in
the context of the topology of magnon bands. As a new class of materials, NAFMs feature
rich magnetic point group symmetries, chirality, and easily tunable properties (e.g., by
magnetic field). As a result, studies of spin currents in NAFMs can bring new vitality to
spintronics, especially in the context of spin caloritronics. In contrast to the unique spin
polarization of a magnon current in the collinear system, the spin current in NAFMs can
be arbitrarily polarized, which allows a better control of the spin current. NAFMs typically
possess different ground states [120-122] depending on the ambient environment, e.g.,
external field, temperature, substrates, and one can envisage using the spin current as a
probe of the ground state. Meanwhile, many NAFM materials can also hold exotic quantum
effects [123]. Studies of spin currents in such systems can provide a new venue for probing
these materials [124]. Motivated by these interesting possibilities, we initiate a discussion
on the magnon-mediated spin current physics in noncollinear antiferromagnets therein
and hope to stimulate subsequent research on, e.g., spin transport in topological magnon
insulators [74], optical generation of magnon-mediated spin currents [125,126], and many
others, as has been discussed above.

In this chapter, we formulate a linear response theory of magnon-mediated spin
transport induced by temperature gradients in a noncollinear antiferromagnet, concen-
trating on the intrinsic contribution not reliant on magnon lifetime. The difficulty in con-
sidering a NAFM is similar to a typical spin Hall system in which spin is not conserved
[127]. Magnons driven by temperature gradients require accounting for the effects associ-
ated with the orbital magnetization [38,128]. We start by discussing the definition of spin

current in particle-hole space by following Refs. [38,127], where spin non-conservation is



59

signaled by a source term. Next, we develop a linear response theory to temperature gra-
dients for a general observable, i.e., the source term (torque) or spin current, and discuss
the symmetry constraints. One of our main results is the expression for the intrinsic spin

Nernst response in noncollinear antiferromagnetic insulators,

2%y
— 73 ZZ S )Y e g(eni)] V4T, (3.1)

where J,, is the spin current with polarization v, (fok)gA is the spin Berry curvature of
magnons, and ¢;(z) = (1+x) In(1 4+ z) — x In(x) is an auxiliary function stemming from
the Bose-Einstein statistics of magnons. We apply our theory to the kagome antiferro-
magnet KFe3(OH)s(SO,)> (see Fig. 3.1) and show that the in-plane Dzyaloshinskii-Moriya
interaction (DMI) leads to a measurable spin Nernst response. Our study opens a way for
future studies of fascinating physics related to spin flows in noncollinear antiferromag-

nets, e.g., in the context of different magnetic orders and material realizations.

3.2 Hamiltonian and eigenstates

We consider a general Hamiltonian of the form:
H=3 |J7ses] + Dy - (i x 85)] + ZHZ, 5.2

where i, j label different lattice sites and «, 5 stand for different spin vector components,
ie., x,y, z. Moreover, Jf;ﬁ is the symmetric exchange energy between «, 5 spin compo-
nents on two sites i and j, while antisymmetric exchange is described by the DMI vector
D;; between spins on sites ¢ and j. Effects of the on-site anisotropy and magnetic field
may also be included in our analysis via the last term, H; = K;(S; - 2;)*> + (S; - B).

We proceed with the Holstein-Primakoff transformation [129] in the limit of large spin
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and map spin operators onto bosonic creation and anninilation operator, a, ana a;:

al +a  d —a
Si = 28 — a;raz-az —;alf{i —f-l 25 — ajaial 9 alyi

+(S — ala;)z;. (3.3)

%

Here, the unit vectors X;, y;, and z; form a local coordinate frame at position i with z;
pointing along the ground-state spin direction of site ¢ determined by a particular mag-
netic ordering. Keeping the leading order terms of bosonic operators, we obtain the bilin-

ear Hamiltonian written in magnon particle-hole space as
1 T 2
H= 5 drUT(r)HY(r), (3.4)

where U(r) = (ay(r),...,an(r),al(r),... al,(r))”, H is the real-space single-particle
Hamiltonian describing noninteracting magnons, and r describes the coordinate of a
magnetic unit cell containing NV atoms.

In momentum space, Hamiltonian (4.1) reads

1
_ - T
H = > Ul H Ty, (3.5)
k
where ¥y = (a1 k, ..., ANk, ai IR ,ajv ). From the standard bosonic commutation

relation [a; , a;k] = 0,5, it can be shown that
[‘Ifi,kﬂl’;k] = (03)ij, 3.6)

where here and henceforth o; i = 0,1,2,3) stands for the Pauli matrices acting in
particle-hole space (with o being the identity matrix). Hamiltonian (4.2) can be diago-

nalized by a matrix Ty, which introduces Bogoliubov quasiparticles: I'y = T} Wy, with
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I' = (Y1ks -+ s INKs 71,4« . ,vjvﬁk)T. In terms of the eigenbasis, Eq. (4.2) reads

N
H = % Ek: TlaDe =) enx (vi,kvn,k + %) : (3.7)

k n=1

where & = Diag(e1x,..-,ENK: €1k - - - s EN—k) 1S the eigenenergy matrix containing
the eigenvalues ¢,, k. By plugging Uy = Ty I’y into Eq. (3.6) and recalling that the normal
mode quasiparticles are bosons as well, i.e., [I'; x, F} ] = (03)i;, we conclude that Ty is

paraunitary:
TiosTy = TiosT) = o3. (3.8)

To appreciate the differences to a unitary transformation, let us write the diagonal-

ization in a more suggestive matrix form
T Hy Ty = Tyl o3 (03 Hy) T = &x., (3.9)

where o3 Hy can be regarded as a pseudo-Hermitian Hamiltonian. Although it violates
hermiticity, it can still be diagonalized by different left and right eigenstates with cor-
responding real eigenvalues. T} o5 and T} are alignments of left and right eigenstates,
respectively: the Ith entry of the nth left (right) eigenstate reads (u} [} = (Tios)m (
luffi )t = (Ti)im)- Paraunitarity is then expressed as (u, \ [uly) = (03)mn and Eq. (4.3) is
equivalent to (uﬁ%klangluf’Q = (& )nnOmn. Thus, the pseudo-Hermitian Hamiltonian
matrix in terms of its eigenbasis reads o3 Hy = 3, (Ei)nn |t ) (w) i |, from which follows

a pair of eigenequations [130]

o3 Hy|ul ) = Enxluiy), (3.10)

(ul losHy = (ul [Enk, (3.11)
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where &, 1 = (03€i)nn- From here on, we will only refer to the right eigenstates as |uf, ) =
|tin i), and their left partners can be always be obtained from (u;\ | = (unx|os.

Finally, note that the magnon basis possesses particle-hole symmetry (PHS) ¥} =
(019 )T so that the Hamiltonian obeys oy Hyoy = H*, ,whichleadsto &, yx = —&n,_x

and |u, k) = €m0 |u, 4 N _x)*, where ¢, is a redundant phase factor.

3.3 Time evolution of alocal observable under a
temperature gradient

In a system with a temperature gradient applied, the temperature gradient is a statisti-
cal force and doesn't directly enter the Hamiltonian. To perform linear response analysis,
we introduce a perturbation corresponding to a pseudo-gravitational potential, x(r), to

account for the temperature gradient [38,128,131],

H = %1 / et (1) ( H + H)U(r). 6.12)
With the perturbation, the total Hamiltonian is amended to H = 1 [ dr¥f(r) 1 (r),
where U(r) = (1 +r - Vy/2)¥(r). To linear order, the system will respond to a tem-
perature gradient in the same way as to a perturbation with x(r) = —T'(r) /7.

We now introduce an arbitrary matrix O and a local observable O(r) =
%WT(r)OQJ(r). In what follows, we will mostly consider O = S5, which corresponds to
the magnon spin density operator given by $* = —oy ® Diag((S®) /Sy, -, (S%) /Sn),
where o = x,y, z, 0 describes the particle-hole space, and averages of spins within a unit
cell have been taken. The time evolution of this operator can be obtained from the Heisen-
berg equation applied to the total Hamiltonian.

We first prepare a basic knowledge of the Hamiltonian operator and commutators

in particle-hole space by following Ref. [38,128]. The total Hamiltonian can be generally
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expressedas H = 1 [ drUt (r)HU(r) with H = S5 Hse™®?, in which e is the trans-
lation operator that satisfies e®®? f(r) = f(r + §). Here § is the vector shift between
unit cells, ¥(r) = (1 +r - V/2)¥(r). Based on the basic commutators between bosons
la;(r), a]( r')] = 6;;0r ., [ai(r), a;(r")] = 0, we can construct commutators in the particle-

hole basis

[0 (r), UH(r')] = (03)i;0r, [Wi(r), ¥;(r")] = i(02)ij0r

[‘I’;‘r(r)a ‘I’; (r’)] = —i(<72)z'j5r,r' (3.13)

where o; (i = 1,2, 3) are Pauli matrices acting in particle-hole space. Now we use the above
Hamiltonian and commutators to perform a local observable time evolution calculation in

two steps. First, we work out the Heisenberg equation commutation as follow,

a(gir) = i[H,O(r)] Z/dr Ul YHs U (' + 5), \Iﬁ( )OU(r)]

o Z / AEW) (Hy) g€ (1 + 8)Opnal W] ()0, (1 + 8), W), (1) 0, (1)
= -3 ;[‘I’T(I‘)OO’:;H(;‘I/(I' +8) — Ui(r — 8)Hso300(x)]. 3.14)
Here we used the simplified notation {(r) = 1 + r - Vx/2. We also took advantage of

particle-hole symmetry, i.e., ¥, (r) = (o1)¥!(r) and 0,00, = O, where the second

relation results from the first one. Next, we reduce the above result to a continuous ex-
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pression by properly sending the shift vector to an infinitely small value.

= LS )00 Ha(r + 6) — U (r — 8) Hyos O (r)]

_ L Z L5 (1) 00 (18 Hye® 2 Y () — B (x — 6)(i6 Hye ™)y O (x — 8)]

~ 1 - A~
= —= Z 005?}5 + 'U5030) ( ) + \IJT<I')§(OO'5’1A)5 — ’IA)(;UJO)\IJ(I‘)]
1 .|. ]_ ~ ~ AN T "‘.I. ]_ A ~ ~ AN T
—5[\11 (I‘ — 5)5(00'3’05 + 'U(;O'gO)\IJ(I‘ — 6) — v (I’ — 6)5(00’3@5 — ’050'30)\II<I' — 5)]

I Z 1[@*(1«)(003@5 + 05030)0(r) — UT(r — 8) (00305 + 15030)U (r — 8)]

—= Z r)(Oosis — 15030)U(r) + Ul (r — 8)(Oosis — 15030) T (r — 8)]

_ _ZV (B (1) (O0s¥ + 050) 0 (x)] — %@T(r)(éagﬁ — Hoy0)(r).

Here we used the notation 95 = id Hse®® and v = i Y5 8 Hse®® = 4i[H, r]. In the last
line, we take the limit § — 0 to obtain the continuous expression. We can easily read out
the current and source term from the final result [38]

00(r)
ot

— i[H,0(r)] = —V - jo + So. (3.16)

Here jo = Ui(r)jo¥(r) and Sp = ¥'(r)So¥(r) correspond to the local current and

source densities, respectively, with

3 L. A~ A .
jo = Z(VJ3O + Oo3V)

~

SO = —%(OAO'gg - .HUgO) (317)

where v = i[H,r|. To linear order in the temperature gradient, the above densities are

(3.15)



65

explicitly decomposed as py = p[eo] + pg}, with
Py = Wi(r)ou(r),

1 A A
oy = 5V () (s + rs0) W (X)Vax, (.19

where for 6 one needs to substitute either jo or Sp. We will use a four-vector conven-
tion in which #y = Sp and @ = jo. The non-vanishing source term indicates the non-
conservation of the observable, for instance, when O(r) corresponds to spin density, the
source term represents torque density. We note in passing that the source term dipole P
can be defined as Sp = —V - Py, for vanishing total source % [ drSo = 0, where V is
the volume and Py = rSp. Thus, a conserved current can be defined as Jo = jo + Po
to restore the continuity equation [127]. The current term jo coincides with the conven-
tional definition in the literature of the spin Hall effect [9]. In general, based on Eq. (3.16)
we can interpret jo as a spin current and Sy as the torque. In our discussion below, we

concentrate on the spin current term.

3.4 Linearresponse to a temperature gradient

We consider spatially averaged quantities ©, = o + ol withe! = -/ dr,ogl’l](r).

The thermal response to linear order in the temperature gradient reads
@Oc = <@¢[S}>neq + <®¢[)}]>eq7 (3.19)

where on the right hand side the first term is evaluated with respect to nonequilibrium
states from the Kubo linear response calculation, while the second term corresponds to

orbital magnetization in the system and is evaluated with respect to the equilibrium state.
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In total, we can express the linear response as
0 0
On = (S5 + Myz* )V, (3.20)

where Sg‘” and M g“ correspond to the first and second terms in Eq. (3.19).
In the spirit of the Kubo response calculation [38,97], the nonequilibrium part can be

described by

1
<@[c?}>neq = }}E% E[Haﬁ(w) — Tas(0)] V. (3.21)
Here I1,, (iwn) = — [1 dre®™(T,08)(7)J4(0)), with 8 = 1/(kpT), where w,, is the

bosonic Matsubara frequency. J? is the averaged heat current operator defined as J? =
L [ drj(r), where the heat current density j¢ = 1W'(r)(H o3V + Vo3 H)¥(r). This heat
current expression can be inferred from the energy conservation equation prp+V -j9 = 0,
where pp is the energy density of the system. After performing the linear response calcu-

lation, the intrinsic nonequilibrium coefficient reads

1 o= (03 =
She = = > = (058 + (mh 1)) 9(En)- (3.22)
nk
Here
211’1’1[(9& k)nm(v k)mn]
9 o ) 6’
(Qn,k>,8 - Z (US)nn(U3)mm (&Tnk — . k)2 s (323)
m(n) : :
—Im[(0a 1 )nm (V3.1 ) mn]
9 o ) )
(mn,k)ﬁ - Z (US)nn(Uﬁl)mm gn . — gmk ) (324)
m(n) : :
where (... )pm = (Unx|-..|umk) and g(&,x) is the Bose-Einstein distribution. Here

(€29 ,)% is the generalized Berry curvature calculated for operator 0.

. . . 1] -
The contribution corresponding to péi is expressed as

1 A N
M = 5 / drWl (r) (Oars + 7500) U(r))eg. (3.25)
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To calculate this term, we can identify a thermodynamic expression for M g"‘ by following
Refs. [132-136]. We introduce a perturbation coupled with a four-component fictitious
field h,(r), i.e., H, = Hy— [éaha(r) + ha(r)éa]. If the field varies very slowly on the scale

of the lattice constant, we can identify a thermodynamic expression

1 09
MY = — lim ———— 3.26
g has0 V 0(0y, ha) G.26)

where (2 is the thermodynamic grand potential of the system. The thermodynamic defini-

tion of grand potential reads
Q=FE—TS — uN, (3.27)

where S, 11, N are the entropy, chemical potential, particle number of the system, and £

is the energy which reads

2N

E=(H)ey=5 D (08)mng(Ensd) ur Hns). (3.28)

kn=1

Here we use the relation (FL’kak) = (03)ng(Enx) With T i = >, (T )mi Vi, Below
we will assume the chemical potential to be zero. If we regard the local fictitious field and
its gradient as independent variables, the variation of the grand potential can be identified

as
dQ = —SdT — (O)dho — M{*d(0, ,ha), (3.29)

from which we can identify the Maxwell relation

(aMZ") _{ S 1 530
o ) 9(0r,ha) . ’

Brgha
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To get rid of calculations involving entropy S, we first introduce an auxiliary quantity

~ 1 0K
Ml = ——__— 3.31
A TN (.31
with K = Q + TS = FE (u = 0). By utilizing Eq. (3.30), we obtain
. OMSe
Oa _ 70a B
Mﬂ —Mﬁ +T8—T (3.32)
and hence the dipole moment contribution can be calculated as
- o(BM Y
e = 20M5") (3.33)

B B

If we regard the fictitious field term as a perturbation, the variation of K to linear order

reads

0K (r) = : Z 09(Em) () (Cuic H i) = 9(Enic) (93)nn (i [0 (1) + (1) 0] [ )
2

ik-r . . .
where |¢,x) = Na |tk ) is the Bloch wave function of the system. If we assume a special

form of the fictitious field
ha(r) = 7“ sin(q - r), (3.35)

with q = ¢gés, where o, § = z,y, z in three dimensions or «, 5 = x, y in two dimensions,

the auxiliary quantity can be identified by picking up the appropriate Fourier component

—o . .
M —(1113(1J hgv/dréK(r) cos(q - r). (3.36)

Asanexample, we calculate MY bytakingq; = ¢é,and h,(r) = % sin(q;-r)da,,. Applying
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perturbation theory to linear order under the Bloch representation, we find

% (um ktq | (Byx + Oy iqr) [tnk)

Y ktaqr |030Unk) = — — , (3.37)
( ar|03]0%nk) 2 P Foera,
and
Zh o U, +0 Un,
m q £ nk — 6m Jk+qi

Here it is implied that we will use the operator under Bloch representation henceforth,
ie., H — Hy, = e krfeikr g — Oux = e *70,e™*". This step is guaranteed by the
requirement that the operator 6, is well defined in a periodic system. By using the results

above we obtain

Y 1
My =1may Z Z i2q? €k 08 )an 5 Jmm

n. m m 9 n
X[<“ k|03|u ,k+q1><u ketar | (Oyk + Oy kqr) [tn k) — (a1 — —q)] + e

8_ — Emk+q
- 11]5% W Z Z 22 5nk Enk — g(ém,k—i—ql)gm,k—&—ql](US)nn(J3)mm
% <unk"73|um,k+q1>ﬁum,k+_ql ’(Qy,k + ey,k+Q1)|un,k> Toee.
Enk — Emk+qu
(3.39)
Taking the limit, we get for m # n,
(M),
o (U x|03| Ok, u U k | Oy |
- _Z Z €mk éjmk - g(gn,k)gn,k](03)nn<a3)mm < n,k| 3| lj m,k>_< m,kl y| n,k> =+ c.c.
k m;én 5n,k - 8m,k
6)y|un,k>

+ c.c..

2 D) B o e I e

k m#n (‘gn,k — gm,k)2
(3.40)
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For m = n, we have

(Mg”)z
1 1
=7 Y % [9(En) + 9 (Entd) En i) [(Un x| 030k, Un 1) (U 1c|Oy [t 1c)
k n

+(U3)nn<akrun k|9 lunx)] + c.c.

- Z Z 9(Ens) + 9 (Cni)Enid (03)nn(03) mm (U x| Vg |}Lm’k>(itm,k|9y|un7k) N

€nk — Emk

C.C..

(3.41)

Above v, = O, H. Intotal, we have

ng (Mey)l +( Z 9(Enk)e Qfl WY+ [9Enx) + 9'(Eni)En] (mZk)Z

(3.42)

The calculation of all other components is fully analogous to what we have done. The gen-

eral result will be

Z 9(En)Enic (2 Ws T 19EnK) + g’(én,k)én,k](mi,k)g, (3.43)

Note that here the Berry curvature in the above equation is summed over both particle and

hole space. Finally, by using Eq. (3.33) we obtain

1 (7 - 1 Enke
R D DI AN T R U AR R YD

nk

1

o m and

Here we used the relation % fo dBg(Enx)Enx = Jy ™ dng(n) with g(n) =

d%?[ﬂ_g(gn,k)] = g(én,k) +g (gn,k)§n7k-

Now we can combine the nonequilibrium contribution in Eq. (3.22) and Eq. (3.44) to-
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gether to obtain the total response coefficient

1
Sga + Mga - V Z(Qf’z,k) 5nkg Z':nk / dng
nk
L e dg(n)
- _ QG e d
1 0 \ax (=
= _V (Qn,k)ﬁcl (gnk)a (3.45)
nk

1
ePn—1-

where ¢, (z) = [ dnn Wlth g(n) =
Before proceeding toward the final result, we provide two useful properties of Berry
curvature defined in (3.23).

(1) Summation rule:

YDCAIED PSR L L

(€n,k - gm,k)2

n=1 m#n
(x| Oa [ tn i) (un |V tm )
(gn,k - Em,k)2

] =0. (3.46)
Inthe middle step, we utilized the property that the band indices m, n can be interchanged.

(2) Mapping between particle and hole space. We note that the velocity operator vy satisfies

OHy
ok

o101 = 07 o1 = —v",. (3.47)
At the same time, the particle-hole symmetry of the Hamiltonian enforces the relation

0'195171(0'1 = 9;_}(, (348)

which is clearly satisfied when we consider the current and source term response for a

given operator O. Using the particle-hole symmetry property of the eigenstates and eigen-
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values, we are able to show

(2015

= Z <0.3) (0_3) 21m(<Un,k|9a,k‘um7k><Um7k"l)ﬁ’k’un’k>)
et (Eni = Emx)?

- Z <0-3)71+N,n+N(0-3>m+N7m+N
m+N(#n+N)

21m(<“Z+N,—k|019a,k01|Ufn+N,—k><U;~L+N,—k|alvﬂ,k01|U2+N,—k>)
(gn—i-N,—k - §m+N,—k)2
- 2Im|[((tn N, —k|0a,—x|Um, 1)) ({wm,—x| — V5 —x|tniN-K))"]
= Z (‘73)n+N,n+N(‘73)mm (8_ _z )2
m(£n+N) n+N,—k m,—k

= (Qfmv,fk)%- (3.49)

Now, from the relation —g(—n) = 1 + g(n), we have é¢(x) = é(—x). By using the two
properties of the general Berry curvature Eq. (3.46) and (3.49), the total response function

can be further reduced as below

N
1
0o 0o _ 0 ax
Sg* + Mg = V;; nk )5C1(Enk) + (s ni) 361 (—En,—1)]
LN
VZZ sz 3 QZ+N “k)5lci(Enk)
n=1 k
N
1 . > dg(n)
v ()5 + (in ) cenk—/ din—-=
= 20 M5+ (il = [ dm=g T
oo N
B a
:—72 Qik Qz+N “wsleilg(en)]
n=1 k
N
2kpT
5 >N (@ )5elg(En)- (3.50)
n=1 k
Here we used the relation — | Oondi’in")dn = —cl[g(sn)]. By substituting the coefficient

above in to Eq. (3.20), we obtain the thermal response formula which constitutes the main
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Figure 3.1: (a) Kagome antiferromagnet lattice with small out-of-plane spin canting. (b)
Spin order in-plane projection and DMI vectors for kagome antiferromagnet, where the
dashed line shows the mirror plane M.

result of this paper:

2 —
@a = 7 Z Z nk /3C1 €n k)]VﬂT (351)

n=1 k

Note that we express our result using particle bands (n < N) by utilizing PHS.

It is useful to identify the symmetry constraints leading to a vanishing source term
response. In general, for the averaged torque density this can happen for only some of
the torque components. However, for an inversion symmetric system, i.e., H, = H_y,
the Berry curvature of the torque term satisfies (Qg‘f{) g = —(Qi’ofk) 3. Together with the

relation €, x = €, _, this results in the vanishing of all torque components in Eq. (3.51).

3.5 Spin Nernst effect in kagome antiferromagnet

We use the resultin Eq. (3.51) to calculate the spin Nernst response tensor in a noncollinear
kagome antiferromagnet in Eq. (3.1) where the spin Berry curvature is calculated with re-

spect to operator j, = 1 (00357 + S7030,) corresponding to the spin current. We can
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immediately identify that the spin Berry curvature in Eq. (3.1) is even under the time re-
versal transformation. As aresult, the spin Nernst conductivity is also even under the time
reversal transformation, and this result will be used in the symmetry analysis below. Fur-
thermore, in a kagome antiferromagnet, due to the presence of inversion symmetry, the

averaged torque density (source term) vanishes. We consider the Hamiltonian

H=Y JiS;-S;+Di;- (Si xS;)+ > _ JS;-S;, (3.52)
(i) ((ig))

where the first and third terms represent nearest and second-nearest neighbor Heisen-
berg exchange, and the second term represents nearest neighbor Dzyaloshinskii-Moriya
interaction (DMI) with both in-plane and out-of-plane DMI vectors, as shown in Fig. 3.1.
The DMI vector can be expressed as D;; = D,n;; + D,Z, where D, and D, correspond
to the in-plane and out-of-plane DMI strength, and 7;; is an in-plane unit vector corre-
sponding to the direction of the in-plane DMI. The in-plane DMI can only arise when M.,
symmetry is broken [114], i.e., time-reversal followed by mirror symmetry with respect to
the kagome plane is not a symmetry in such a case. This introduces a small out-of-plane

canting angle 7 to spin order with magnitude =  tan~*( 7 —2D» ) [40]. Here we

(J14J2)—D-
consider the g = 0 phase with spin order as shown in Fig. 3.1. The magnetic moments
orient according to (S;) = S(cosn cos ¢;, cosnsin ¢;, sinn), where ¢; is the angle formed
by the in-plane projection of moment with the = axis. Specifically, p4 = 7/2, ¢ = 77 /6,
and ¢ = —m /6. For the spin Nernst response, we identify O discussed above as the
spin operator in the magnon basis ¥(r) = [b4(r), bg(r), be(r), bl (1), bl (r), bL,(r)]7, ie.,
§* = —a9 ® Diag({S4) , (S§) , (S&))/5.

The spin conductivity tensor of a spin-polarized current in a noncollinear antiferro-
magnet [116,137] is restricted to a certain form by the magnetic space group of the system.

Suppose the Hamiltonian respects a symmetry g with matrix representation U (g) for uni-

tary operation and U(g)K for anti-unitary operation (containing time-reversal) with
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Figure 3.2: Plots for kagome antiferromagnet KFe3(OH)s(SO,)s. (2) Energy bands. (b-d)
The spin Berry curvature for o, for top, middle, and lowest band. Detailed plots of the spin
Berry curvature in the vicinity of the white regions, corresponding to the values outside of
the range of the scale bar, can be found in Fig. 3.3.
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Figure 3.3: Spin Berry curvature plots for kagome antiferromagnet KFe3(OH)g(SO4)s. (a)
Middle energy band. (b) Lowest energy band.
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being the complex conjugate operator. Here U(g) corresponds to the point group opera-
tion on spin mode orbitals, which is a unitary matrix that satisfies U (g)" = U(g)”. Onthe
other hand, the point group symmetries don't mix particle and hole symmetry, such that

[03,U(g)] = 0. For the unitary case, we assume
U(9)HU'(9) = Hurgye (3.53)
where M (g) is the matrix acting on momentum variables. This can lead to relations below
[V pigx) = U(9)|[¥n), EM(g)k = Ek- (3.54)

As a consequence, by inserting the symmetry operation in the matrix elements of an ob-

servable, we find

(Wnsd Alma) = (Lol U(9)AU (9) [ m ar(ne)- (3.55)
Similarly, for the anti-unitary case, assume the symmetry contraint on Hamiltonian reads
Ulg)HyU'(9) = Hu(gks (3.56)
such that
[Vn k) = U(9)K[nx), EM(gk = Ek- (3.57)
These relations will lead to

<¢n,k|"21|¢m,k> = <¢H,M(g)k|U(g)AU(g)T |wm,M(g)k>*~ (3-58)
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If the operator A satisfies
U(g)AU(9)" =D R(9)i; 4, (3.59)
J

it can be combined with the operator element symmetry relation to produce a transforma-

tion relation for the spin Nernst response coefficient
g = £R(9),iR"(9)n R (9) sy (3.60)

where the plus and minus sign correspond to unitary and anti-unitary symmetry, and
R*/*(g) stands for the transformation matrix for the spin and velocity operator, respec-
tively. Moreover, suppose the involved non-magnetic point group symmetry U (g) corre-
sponds to a spatial operation with matrix form R in Cartesian coordinates. If g is a unitary

operation,
R’(g) = det(R)R, R’(g) = R. (3.61)
If ¢ is an anti-unitary operation,
R°(g) = —det(R)R, R’(g) = —R. (3.62)
Plugging Eq. (3.61), (3.62) into Eq. (3.60), we find
)y = det(R) Ry Ray Rgpra, g (3.63)

In the kagome AF, we focus on two symmetries of the system: the mirror reflection
with respect to the y — =z plane plus time-reversal §; = M, 7, and the threefold rotation

about the z axis g = Cs,. It is straightforward to obtain the matrix representation in
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Figure 3.4: Plots for kagome antiferromagnet KFe3(OH)s(SO4)2. () Band structure. (b)

Spin Nernst conductivity (SNC) o, and a? , where o is scaled for visibility. Relevant
parameters are J; = 3.18meV, J, = 0.11meV, |D,|/J; = 0.062, D, /.J; = —0.062.

Cartesian coordinates of these two symmetry operations

-1 0 0 -
Rig=] 0 10|, Rlg=| 2L -1 o0 (3.64)
0 01 0 0 1

By applying these symmetries to Eq. (3.63), the spin Nernst response tensor (only consid-

ering in-plane driven response) can be fixed to

[da:7 dyv &Z] - s . (365)

Here, the M, 7T symmetry can be replaced by C,, 7, twofold rotation about the x axis and
time-reversal, which will lead us to the same result. We note that our results are consistent
with the spin Hall response tensors in Mn3X (X= Rh, Ir or Pt) [115].

We apply our theory to a single layer of potassium iron jarosite, KFe3(OH)s(SO4)2, for
which the material parameters are J; = 3.18meV, J, = 0.11meV, |D,|/J; = 0.062,

D./J; = —0.062 [40, 138]. We note, however, that the magnon dispersion in this mate-
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rial can also be explained by ./, = 0, in which case the flat band is broadened by fluctua-
tions [139]. The numerically obtained form of the spin Nernst conductivities agrees with
Eq. (3.65). In Fig. 3.2, we plot the magnon bands and the spin Berry curvature for the y
polarization of the spin. The spin Berry curvature is peaked at avoided crossings as shown
in Fig. 3.3, which give the largest contribution to the spin Nernst effect. The integral of the
ordinary Berry curvature gives the Chern numbers —3, 1, and 2, from the bottom to the top
bands in Fig. 3.2. In Fig. 3.4, we show the spin Nernst response coefficients as a function
of temperature for the y and z spin polarizations. The spin Nernst response sharply in-
creases at temperatures sufficient to excite magnons in the Brillouin zone where the spin
Berry curvature is large. The z direction polarized spin current is two orders of magni-
tude smaller than the current with in-plane spin polarization, which is due to the fact that
the canting angle is fairly small, n = 1.9° [40]. By applying magnetic field, the canting
angle and the spin Nernst response with the z polarization direction can be substantially
increased. The predicted spin currents should be easily detectable in three dimensional
structures as a temperature gradient of 20 K/mm should result in a spin current of the
order of 10~ J/m? according to Fig. 3.4, where a3 = a/c, with ¢ being the interlayer
distance. Finally, we note that the spin Nernst effect reported in Ref. [117] differs from the

intrinsic effect reported here as the former has the symmetry of the extrinsic effect.

3.6 Summary

In this chapter, we have developed a theory of magnon-mediated intrinsic spin currents
in insulating noncollinear antiferromagnets and applied this theory to potassium iron
jarosite KFe3(OH)g(SOy4)2. Our results are applicable to two- and three-dimensional sys-
tems, promising to reveal fascinating physics in other layered quasi-2D antiferromagnets,
e.g., silverironjarosite AgFe3(OH)s(SO4); [140], chromium jarosite KCr3(OH)g(SO4), [141],

vesignieite BaCu3V,O0g(OH), [142], and 3D pyrochlore antiferromagnets LiGaGr,Og and



80

LiInGr4Osg [143, 144]. Besides exploring material candidates, one can also study the effect
of magnetic order on the spin Nernst effect, e.g., in kagome antiferromagnets other pos-
sible spin chiralities exist [44,122]. Recently proposed antiferromagnetic skyrmions with

noncollinear magnetic order [145] can also be explored using our theory.
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Chapter 4

Magnonic analogue of Edelstein effect in

antiferromagnetic insulators

4.1 Introduction

Generation of nonequilibrium spin imbalance is increasingly important for current spin-
tronics research [15], especially in the context of nonequilibrium torques [113]. In metal-
lic and semiconductor materials, spin-orbit coupling (SOC) facilitates the interplay be-
tween the orbital and spin degrees of freedom, which allows feasible electric manipula-
tion of spins, e.g., for technological applications. One consequence of such coupling is
the inverse spin-galvanic effect [146-148] which attracted considerable interest in recent
years [149-155, 155-160]. The nonequilibrium spin polarization contains an extrinsic part
dependent on the transport relaxation time and an intrinsic part independent of the re-
laxation time [113], and it can lead to spin-orbit torques. Both field-like and damping-like
spin-orbit torques can arise due to the nonequilibrium spin polarization at interfaces be-
tween magnetic and nonmagnetic materials [161-167].

In ferromagnetic and antiferromagnetic insulators, magnons — the quantum quasi-

particles carrying energy and spin — can mediate various transport phenomena. The
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Dzyaloshinskii-Moriya interaction (DMI) [168, 169] in such systems can lead to magnon
spin-momentum locking [170], magnon-mediated magnetization torques [97, 171, 172],
and magnonic thermal Hall [28-31,40-44, 81,128, 173] and spin Nernst effects [22, 38, 39,
72,97,108,109, 117, 174-176]. Ref. [174] has speculated about the possibility of magnon-
mediated spin polarization in insulating antiferromagnets lacking inversion symmetry.
In this chapter, we will use the theory developed in the last chapter to study the
magnonic analogue of the Edelstein effect by considering antiferromagnetic insulators
[177]. The spin nonconservation in such systems can be caused by noncollinear spin order
or anisotropic exchange. The final result for the magnonic spin polarization is separated
into the extrinsic and intrinsic contributions [177]. We apply our theory to several mod-
els and discuss relevant material candidates. In 1D, an antiferromagnetic spin chain with
anisotropic nearest neighbor exchange and Rashba-like DMI serves as a toy model exhibit-
ing both intrinsic and extrinsic contributions to the magnonic analogue of the Edelstein
effect. In 2D and 3D, we concentrate on realistic noncollinear antiferromagnets on the
kagome and breathing pyrochlore lattices. From the magnetic point group, we establish

the response tensor shapes which agree with our numerical results.

4.2 Review of magnon Hamiltonian and linear response
theory

We first briefly review the theory of magnonic systems introduced in the last chapter.
To capture magnonic excitation at low temperature, we can perform Holstein-Primakoff

transformation at the large-S limit, which leads us to a general Hamiltonian

H = % / drUt (r)HU(r), 4.1)
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where U(r) = (ai(r),...,an(r),al(r),..., al,(r))7, H is the real-space single-particle
Hamiltonian describing noninteracting magnons, and r describes the coordinate of a

magnetic unit cell containing N atoms. In momentum space, Hamiltonian (4.1) reads

1
H=2) UHib (4.2)
Kk
where ¥y = (a1 k, ..., 0Nk, a;_k, e a}r\,,_k)T. Here, Hy can be diagonalized by a parau-
nitary matrix 7y
TII,Hka = &, 4.3)

where T satisfies paraunitary relation
TiosTi = TiosT) = 3. (4.4)

The diagonalization can be re-expressed in terms of the eigenequation of pseudoHamilto-

nian osHy [130]

R - R
o3Hulty ) = Enxltnc); (4.5)
L L =
<un,k’03Hk = (Un,k|€n,k, (4.6)
where &,k = (03E)mn, (Ui li = (Tio3)m (Juf )i = (Ti)im), and the paraunitarity is
then expressed as (u% , [uf,) = (03),,. From here on, we will only refer to the right
eigenstates as |uf) = |unx), and their left partners can be always be obtained from
(uf ] = (unx|os. Finally, note that the magnon basis possesses particle-hole symme-

try (PHS) Ul = (019 _y)7 so that the Hamiltonian obeys oy Hyoy = H*,, which leads to
EniNk = —En—x and |u, k) = €01 |uny N k), where ¢, is a redundant phase factor.

Since we are interested in a nonequilibrium spin density response to an external force,
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we must denote the spin density operator in terms of the aforementioned magnonic vari-
ables. We introduce the 41 = z,y, z component of the magnonic spin density operator

as
ST R
M_V; k= ¥k “.7
where
1
2#:—§Diag(zf,...,zﬁ,,zf,...,z]‘f,), (4.8)

and the unit vectors z!' corresponding to directions of magnetic moments have been in-
troduced in Eq. (3.3). We note that PHS implies (u,, k|X,|tn k) = (Untn,—k| XUt N,—xk)-
The linear response of the nonequilibrium spin density with respect to a temperature

gradient V, T can be expressed as,
(Z0) = xw V. T = (X5 + X)) Vo T, 4.9)

where we separated the response tensor X, into extrinsic, X and intrinsic, Xiﬁ,, parts.
According to the Kubo formula calculation in Appendix A and the method we developed in

the last chapter, the response coefficient reads

N
1 0 n
- V_ Z nnvnk vEnk |: %k)} . (410)

N
; 2k
Xw = 73 DD (@) wer [ns(En)], (4.11)
n=1 k
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with

(QE ) = Z 2Im[(a3zu7k)nm(035V7k)mn}.

— — (4.12)
(En,k - Em,k)Q

Here, we used the notation ¢; (z) = (1 + ) In(1 + x) — z In(x). The extrinsic part can also
be obtained from the Boltzmann transport theory with the relaxation time 7,, = 1/(2[",,).
In following the approach introduced in the last chapter to calculate the intrinsic response
coefficient, we explicitly introduce a perturbation corresponding to an external magnetic

field B(r) into Hamiltonian H [132-134]:
Hp=—[B(r)- S+ 3-B(r)], (4.13)

where B(r) varies slowly in space, i.e., on a length scale much larger than the lattice con-
stant. Apart from this, the intrinsic response fully agrees with Eq. (3.51) in the last chapter
by replacing the operator 6 by 3.

Equations (4.10) and (4.11) are the main formulas that will be used in this chapter. In
Sec. 4.4, we use these formulas to make numerical predictions of the nonequilibrium spin
density for several relevant models, including material candidates.

Before proceeding to subsequent discussions, some useful remarks about the re-
sponse theory developed above are due. The validity of the magnon representation is well
established at low temperatures. Higher-order magnon-magnon interaction corrections
to the theory start with O(1/5) terms. These corrections include both effects from ther-
mally activated processes and spontaneous decay [99, 121]. The former are frozen in the
low-temperature regime. The latter contribute to spectrum broadening and renormaliza-
tion, both of which are further suppressed by the weak magnon-magnon coupling factor
and the restriction of energy and momentum conservation. The magnon-phonon scatter-
ing effects lead to the phenomenological broadening factor I',, in our theory [178]. Higher

order corrections, such as vertex corrections, could in principle be important in some
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cases but their consideration goes beyond the scope of this thesis. In a special case, when
the magnon-phonon coupling is strong enough, it may become necessary to explore the
magnon-phonon hybrid system [179,180], where our theory still applies by treating quasi-

particles as a mixture of magnon and phonon.

4.3 Symmetry constraints

In this section, we discuss constraints on the magnon response tensor, X, posed by the
symmetries. To generate the nonequilibrium spin density with magnons one needs a sys-
tem in which spin is not conserved locally or globally, at least for one direction of the
spin polarization. This is often the case in non-collinear antiferromagnets or in systems
with Dzyaloshinskii-Moriya interactions. For example, for inversion symmetric systems

spin density is globally conserved [174]. To see this, note that inversion symmetry implies

Hx = H_x, whichleadsto Ty, = 1"k, & = €k and v, x = —V,, k. Substituting these
relations into Eq. (4.10) results in xj;;, = —xj;, = 0. Furthermore, inversion symmetry
also enforces the relation (2, ), = —(, ), Which results in x}3, = —xi, = 0,

that is, in a vanishing intrinsic response. Below, in Sec. 4.4, we show several examples of
collinear and non-collinear systems in which spin can be generated.

In general, the response tensor will be constrained by the symmetry operations
of a specific material under consideration. The constraining relations can be readily
found within the framework of linear response theory [137, 181]. Assuming that a sys-
tem respects a symmetry operation represented by g, we find for an arbitrary operator
A that (g(¢n)|Alg(Vmi)) = (Vngx) |gflflg|wmg(k)> when the operation is unitary, and
(9(ri) |Alg (Vi) = (Vngx) |g_1flg|wmg(k)>* when the operation is antiunitary. Opera-
tors transform as g~ 'ig = 3_; Ry;0; and g g = > Rfjij, where R"/* is the corre-

sponding matrix representation of g with respect to the Cartesian components v, or X;.

We find R¥ = +£R and R® = =£det(R)R where =+ refers to unitary (+) or antiunitary
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(—) symmetries, respectively. Under the above premises, the following symmetry require-

ments on elements of the response tensor arise:

X = det(R)RiRy; Xij

X = T det(R)R,iR,;xi;, (4.14)

where + corresponds to unitary and antiunitary symmetry operations, respectively. Later
on, we show that these two relations result in different shapes of the response tensors,
which is useful for distinguishing extrinsic and intrinsic contributions. Notice that tensors
Xy and x77, transform differently under antiunitary operations, which is a consequence
of a complex factor in the expression for (€2, )., corresponding to taking the imaginary
part in Eq. (4.12). Given the transformation properties of velocity and spin, one finds that
X( is even and x1?, is odd under the time-reversal transformation. Consequently, a re-
versal of the magnetic ordering causes x 7, to flip sign while X, is invariant under such

transformation:

Xi;?u[{sz‘}] = _Xi;?u[{_si}L (4.152)

X [{Si}] = X {—=S:}. (4.15b)

Thus, it is possible to disentangle extrinsic from intrinsic contributions by measuring the
nonequilibrium spin density for two antiferromagnetically ordered states related by the
time reversal transformation. Such an approach has been used in studies of the spin Hall
effect [182].

A short note on the similarity to the electronic Edelstein effect is in order. In princi-
ple, the latter also consists of a time-reversal even extrinsic and time-reversal odd intrin-
sic contribution [183-185]. However, since the Edelstein effect is, for historical reasons,
mainly studied in nonmagnetic materials, the extrinsic contribution has been analyzed in

more detail. On the other hand, since the very notion of a magnon is tied to magnetism,
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both contributions are, in general, expected to be of equal importance.

4.4 Models

In this section, we apply our theory to specific models. To obtain some intuition, we first
focus on a toy model of a collinear antiferromagnetic spin chain with anisotropic exchange
and inversion asymmetry resulting in Rashba-type DMI. We then focus on more realistic
noncollinear kagome and breathing pyrochlore antiferromagnets, for which we use mate-
rial parameters established in the literature. To satisfy the requirement of inversion asym-
metry, we assume that the kagome antiferromagnet can have interfacial inversion asym-
metry, e.g., due to thin film geometry in contact with another material. The breathing
pyrochlore antiferromagnet has bulk inversion asymmetry. The details of the Holstein-
Primakoff transformations and explicit expressions of the magnon Hamiltonians are dis-

cussed in Appendix B.

4.4.1 Antiferromagnetic spin chain

As a simple model, we first consider the antiferromagnetic spin chain shown in Fig. 4.1(a).

Similar to Eq. (3.2), the Hamiltonian

H = Z Z U(”sti g,zwru + Szll,isg,i—i-u + )‘Slz,i QZ,H—V)

i v==%l1
+D7se. - (S1i X Sa40)], 4.16)

contains the anisotropic symmetric exchange interaction, which is given in terms of an
energy J and dimensionless factors v and ), and the antisymmetric exchange interaction
described by DMI vectors along the z direction. We choose v < 1and A > 1, such that
the collinear state with Néel vector along the z direction is the classical magnetic ground

state. For vy # 1, the anisotropy causes the magnons to experience the effect of “squeezing”
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[186]. Note that A has to be larger than a critical value to prevent the spins from canting
due to DMI. The DMI strength is set to D, = D; and Dy, = D,, where v = =+ refers to
the direction of the bond [+ for going from the left to the right in Fig. 4.1(a)].

It is convenient to reparameterize the DMI as Dy = (D; + D)/2J and §p =
(D1 — Ds)/2J. The staggered contribution to DMI is necessary for the model to exhibit
both intrinsic as well as extrinsic effects. To see this, observe that only in the absence of the
inversion symmetry can we have D # 0. However, when 6, = 0, the system still holds a
T * M, symmetry, where 7 is time reversal and M, is the mirror symmetry with respect
to the y — z plane passing through the atoms. Applying the corresponding Cartesian rep-
resentation matrix R = Diag{—1,1,1} of T * M, to Eq. (4.14), the intrinsic part x, is
rendered zero. Therefore, we set 0p # 0 to ensure the appearance of intrinsic contribu-
tions.

In Fig. 4.1(b), we show the magnon band structure. The degeneracy of spin-up and
-down modes is lifted by the DMI and v # 1. On top of that, since v # 1, spin is not con-
served and we observe the magnon spin-momentum locking [170] as shown in Fig. 4.1(c),
which is in agreement with Ref. [186]. This is in contrast to the usual case of uniaxial
collinear AFMs that features two eigenmodes with opposite spin quanta +h. Figs. 4.1(d)
and (e) show the extrinsic and intrinsic response coefficient, respectively. For the calcu-
lation of the extrinsic response, we regarded the broadening as a constant, I';, = h/27,
where 7 is the magnon lifetime [187]. In Figs. 4.1(d) and (e), the extrinsic spin accumula-
tion dominates.

To obtain an intuitive understanding of the extrinsic contributions, we recall the
usual electronic Edelstein effect scenario in a Rashba system. Upon shifting the spin-
momentum locked Fermi circles in reciprocal space due to application of an electric field,
electronic states with a particular spin polarization are more occupied than those with op-
posite spin polarization (e.g., see Fig. 13 of Ref. [188]). Consequently, this redistribution

leads to a nonzero macroscopic spin density in nonequilibrium. A similar explanation can
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Figure 4.1: (2) Spin order and DMI vectors in the antiferromagnet spin chain model. (b) and
(c) Magnon dispersion and magnon spin expectation value in the 1D Brillouin zone. We
used Dy/J = 0.2,6D/J = —0.1. (d) and (e) Extrinsic and intrinsic response coefficients.
In (d), 7 = JS/(2',) is the dimensionless magnon lifetime (4 is set to one). Parameters
read A = 1.05,v7 =0.95, J = 2meV, S = 3/2,and Dy/J = 0.2.
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Figure 4.2: Noncollinear antiferromagnetic PVC order on the kagome lattice. (a) and (b)
Ground state spin configuration from above and front view. Lattice vectors are denoted

by @ and b. (c) Left: intrinsic DMI vectors; right: Rashba DMI vectors. Arrows along the
bonds indicate ordering of sites in DMI terms. (d) Magnon dispersion with Dg/J = 0.06.
(e), (f) Extrinsic and intrinsic response tensor elements Xy and ', respectively. T is the

xx’

dimensionless magnon lifetime and a denotes the lattice constant. We used the mate-
rial parameters of KFe3(OH)(SO4)2: J1 = 3.18meV, Jo = 0.11meV, |D,|/J; = 0.062,
D./J, = —0.062and S = 5/2.

by given for the magnonic case. First, we consider the band 2 [cf. Fig. 4.1(b)]. Accord-
ing to Fig. 4.1(c), magnons in band 2 have a positive (negative) spin for negative (posi-
tive) momentum k, which corresponds to magnon spin-momentum locking discussed in
Ref. [170]. Upon application of the temperature gradient (or the pseudo-gravitational po-
tential) we redistribute magnons from k to —k (or vice versa, depending on the direction
of the gradient), causing an excess of magnons with positive spin. Although there is some
cancellation between the lower and upper band, the different thermal occupation ensures
that there is a nonzero resulting net spin density in nonequilibrium. There is no such sim-

ple picture for the intrinsic contributions, which arise due to interband mixing [113].
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4.4.2 Kagome antiferromagnet

In several real materials, spin nonconservation naturally emerges due to noncollinear
antiferromagnetism. For example, noncollinear antiferromagnets (NAFMs) exist in lay-
ered quasi-two-dimensional kagome and triangular magnetic structures, and in three-
dimensional pyrochlore magnetic structures. We first take the kagome antiferromagnet
in the so-called q = 0 phase with positive vector chirality (PVC) [120-122], which is de-
picted in Fig. 4.2(a), as an example.

The spin Hamiltonian under consideration is

H=Y"7S;-S;+Dy;-(SixS;)+ > JS;-S;,
(i) (i)
(4.17)

where the three terms describe the nearest-neighbor exchange with J; > 0, DMI, and
the second-nearest neighbor exchange with J, > 0. The DMI vector D,; is composed
of intrinsic DMI and extrinsic Rashba-DMI, i.e., D,;; = D, + Dy. The intrinsic DMI
Di, = D, + D, ;;2 has out-of-plane contributions D, ;; as well as in-plane contributions
D, = D,n;jalong n;;. The DMIvectors are arranged as shown in the left part of Fig. 4.2(c).
Accounting for the antiferromagnetic exchange interactions and only for the intrinsic
DM]I, the classical ground state is the 120°-ordered antiferromagnetic state [cf. Fig. 4.2(a)]
with a small out-of-plane canting, with an angle given by n = %tan_l(ﬁ)
[cf. Fig. 4.2(b)]. Thus, there is a weak ferromagnetic moment in the z direction and the
texture is not fully compensated. Here, we are concentrating on nonequilibrium spin den-
sities in the = and y direction, along which the texture is compensated.

Although nonzero D, breaks the mirror symmetry of the kagome lattice, the system is
still inversion symmetric. Thus, we need the Rashba-like DMI described by D i that we en-
vision to arise in an inversion-symmetry breaking environment, as caused, e.g., by putting

asingle kagome layer on a substrate. The vector D, lies in the kagome plane and has direc-



93

Table 4.1: The shape of spin polarization response tensors enforced by magnetic point
group symmetry for selected noncollinear antiferromagnets.

Structure Extrinsic Intrinsic
< X5 O
0 X

(X?x 0 )
0 Xy

Kagome(PVC,SVC) ( 0 _XW)
Xyw O
0 Xay
Kagome(NVC) (Xex 0 )

yr

] 0 _Xex Xin 0
Triangle e @
¢ (x;;; 0 ) ( 0 X
00 0 Xt 0 0
Pyrochlore (AIAO) 000 0 x= 0
00 0 0 0

tions similar to D,,, but with the crucial difference that its directions are always pointing in
the same direction relative to the bond [compare the left and right part of Fig. 4.2(c)]. We
also note that a large Rashba-DMI can twist the system into a spiral state. We confirmed
numerically that this does not happen for |[Dg|/J < 0.06 using computational package
SpinW [189].

The kagome NAFM described above exhibits two symmetries: (i) the mirror reflection
with respect to the y— z plane plus time-reversal, g; = M, T, and (ii) the threefold rotation
about the z axis, go = C3,. According to Eq. (4.14), these two symmetries fix the extrinsic
and intrinsic response tensors to the forms in Table 4.1 (Kagome PVC), where only the in-
plane spin polarizations are allowed.

Based on what we have discussed so far, we propose potassium iron jarosite
KFe3(OH)(SO4)2 as a candidate material. Concentrating on a single kagome layer of
this material and assuming that the mirror symmetry is broken due to a proper environ-
ment, the magnon dispersion is given in Fig. 4.2(d). We used parameters J; = 3.18meV,
Jo = 0.11meV, |D,|/J; = 0.062, D,/J; = —0.062 and S = 5/2 [40,138]. The spin den-
sity response is captured by virtue of Egs. (4.10) and (4.11). The results for the extrinsic, Xy

in
Tx?

and intrinsic, x™,, contributions are shown in Figs. 4.2 (e) and (f), respectively. The effect
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becomes stronger as we increase Rashba-DMI. The contributions g% and x}, are zero, in
agreement with tensor shapes in Table 4.1.

Approximating the magnon band broadening I',, ~ #//27 as a constant, with a
magnon lifetime 7 ~ 1075, and using a lattice constant @ = 107%m, a Rashba-DMI
Dr = 0.06J, a temperature gradient 9,7 = 10K/mm [190], and a temperature 7' =
0.5JS [which corresponds to a temperature ~ 46 K for KFe3(OH)(SO,)2] we obtain the
extrinsic part of the temperature-gradient-induced spin density (S¥)cx >~ 5 x 10% hi/cm?;
and the intrinsic part (S%);, ~ 2 x 105 h/cm?. With larger temperature gradients, the ex-
trinsic contribution can be made comparable to spin densities generated by the electronic

Edelstein effect [157], which are of the order of 10® ~ 101° /i/cm?.

4.4.3 Breathing pyrochlore antiferromagnets

The 3D pyrochlore lattices, which consist of corner-sharing tetrahedra, are well-known for
exhibiting noncollinear spin structures. Here, to break bulk inversion symmetry, we con-
centrate on the so-called “breathing” pyrochlore antiferromagnets that possess different
exchange interaction in up-pointing (u) and down-pointing (d) tetrahedra [see Fig. 4.3(a)].

The minimal Heisenberg model is [21]

H=J Y S-S;+J > Si-S;+D> (S;-2)
(i.3)€u (i,7)€d i
(4.18)

The first two terms describe the antiferromagnetic exchange interactions in up-pointing
and down-pointing tetrahedra, respectively. The last term comprises easy-axis anisotropy
(D < 0), with z; being a unit vector pointing either towards or away from the tetrahe-
dron’s center of gravity. This model can be energetically optimized to different spin con-
figurations depending on the values of .J'/.J, and D/.J [21,191], but here we only concen-

trate on the all-in—all-out (AIAO) order depicted in Fig. 4.3(b), in which all spins of a single
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Figure 4.3: (a) Breathing pyrochlore lattice with indicated lattice vectors @; (i = 1,2,3)
and nearest-neighbor exchange in up-pointing (blue, J') and down-pointing (yellow, .J)
tetrahedra. (b) Spin order in the all-in-all-out configuration. (c) Magnon band structure.
(d) The intrinsic response X', with a denoting the lattice constant. Parameters read J ~

xx’

50K (4.3meV), J'/J =0.6,D/J = —0.2, S = 3/2 to mimic the material LiGaCr,Os.

tetrahedron are either pointing inward [yellow tetrahedron in Fig. 4.3(b)] or outward (blue
tetrahedra).

The ATAO order respects the magnetic point group 7, = Span{Cs, Cy, T %04, T %S4}
[51, 63]. Here, we give the representative generators of these symmetries: C} is the three-
fold rotation with respect to [1, 1, 1] axis; C; is two-fold rotation about [1, 0, 0] axis; 7 * o4

is time-reversal followed by the reflection about (1, 1, 0) plane; and 7 * Sy is time-reversal
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followed by the combination of the four-fold rotation about [1, 0, 0] and the reflection about
(1,0,0). We find that this symmetry constraint eliminates any extrinsic response and
enforces the intrinsic response tensor to be proportional to a unit matrix, see Table 4.1.
In Fig. 4.3 (c), we plot the dispersion of the four magnon bands for the AIAO phase with
J ~ 50K (4.3meV)and J'/J = 0.6, which is the breathing ratio of LiGaCr,Og [192]. We
used D/J = —0.2 to stabilize the AIAO order. In Fig. 4.3 (d), we show the intrinsic re-
sponse X1, = X}, = Xis, which are the only nonzero tensor elements, in agreement with
the symmetry analysis. If we assume 9,7 = 10 K/mm, T = 0.12J5,and a ~ 107° m, the
intrinsic spin accumulation is estimated to be (S%);, ~ 5 x 10! ii/cm?. We can compare
this result with the electronic Edelstein effect by converting its 2D spin density to a bulk
density: (S)20...../a ~ 10 —10'" h/em?. Thus, the intrinsic contribution in breathing
pyrochlores is comparable with the electronic Edelstein effect. We believe that this result
is detectable in experiment either by transport measurements similar to those used for de-

tection of the inverse spin Hall effect, by magneto-optical Kerr microscopy, or by magnetic

sensing based on the nitrogen-vacancy (NV) centers [193].

4.5 Computer experiments

To better understand the nonequilibrium spin density brought about by the magnonic
counterpart to the Edelstein effect, we use atomistic spin dynamics simulations. We de-

scribe spin dynamics using the stochastic Landau-Lifshitz-Gilbert (SLLG) equation

S;=——— _[S;xB;+aS, x (S; x B, (4.19)

p(l+a?)

comprising the damped precession of S; about its local field B; = b; — 0H/3JS,. The

stochastic field b;(t) = \/2akpTu/(vAt) G(t) simulates thermal noise [194,195]. G(¢)
is a three-dimensional Gaussian random number distribution with zero mean. «, v, and

= 2up+/S(S + 1) are the dimensionless Gilbert damping, the gyromagnetic ratio, and
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the modulus of the magnetic moment at each lattice site, respectively. The numerical in-
tegration of Eq. (4.19) is done by the Heun method [195] with time steps At < 1fs.

We consider the antiferromagnetic spin chain introduced in Sec. 4.4.1 and study this
model in a nonequilibrium situation. As was shown in Sec. 4.4.1, the extrinsic contribution
to the nonequilibrium spin density dominates over the intrinsic contribution for the spin
chain model. Thus, we focus on the extrinsic contributions and set D; = D, = D such
that 0p = 0, rendering intrinsic contributions zero by symmetry.

We simulate a spin chain of N = 480 spins with spin Hamiltonian as in Eq. (4.16).
First, to characterize the chain in terms of magnon variables, i.e., in terms of (i) the

magnon dispersion and (ii) the magnon spin, we calculate the dynamical structure factor

Flk,w) = \/%Nzei’f(%xﬂ / e (SF(1)S7(0)) dt, 4.20)

iﬂj

i.e., the time and space Fourier transform of the spin-spin time-correlation function. x;
denotes the x coordinate of the ith spin and Si* = S¥ +iS?.

The numerically determined magnon spectra for the spin chain are shown in
Fig. 4.4(a), (0), (), and (g); they agree with those obtained analytically in the previous sec-
tion [shown as black lines in Fig. 4.4(b), (d), (f), and (h)]. In Fig. 4.4(a), we depict the dis-
persion of the isotropic antiferromagnetic spin chain (A = 1, D = 0, v = 1) with the
two degenerate linear Goldstone modes. This degeneracy is lifted in the presence of spin-
nonconserving anisotropies A > 1and v < 1 [cf. Fig. 4.4(c)]. In Fig. 4.4(e), we show
the Rashba-like spin-split dispersion in the presence of nonzero DMI and A > 1, and in
Fig. 4.4(g) the dispersion in the presence of both anisotropies as well as DMI, for which the
band degeneracy at k£ = 0 is lifted [as compared to (e)].

The magnon spin is extracted by computing the Stokes parameters [(k,w) =
|S712 + |SY)? and V (k,w) = —2Im(8*S%*) [196], where S = S(k,w) is the space

and time Fourier transform of the spin configuration {S;(¢)}. The quantity o(k,w) =
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Figure 4.4: Magnon spectra of the antiferromagnetic spin chain as obtained from numeri-
cal simulations for selected parameters; top row: dynamical structure factor; bottom row:
the spin of magnons or Stokes parameter ratio o(k,w) (red: negative; gray: zero; blue:
positive). Black solid lines show the analytically obtained magnon dispersion (within lin-
ear spin-wave theory). Parametersread J = 1meV,and (@,b) A =1, D =0,y = 1, (c,d)
A=105D=07=09(HA=105D =03meV,y = 1,and (gh) A = 1.05,
D = 0.3meV, v = 0.9. A small simulation temperature 7" = 0.01 K and Gilbert damping
a = 0.001 were chosen to reduce lifetime broadening.

V(k,w)/I(k,w) measures the ratio of circular to total polarization intensity; its sign re-
veals the sign of the magnon spin. There is no feature of o (k, w) in Fig. 4.4(b), in agreement
with the previous section. In contrast, o(k,w) becomes zero (gray color) in Fig. 4.4(d), in-
dicating that the magnon spin is suppressed due to ellipticity or “squeezing”, which is in
agreement with Ref. [186]. Without squeezing but with nonzero DMI we identify spin-up
and spin-down magnons by the antisymmetric blue-red features in Fig. 4.4(f). In the pres-
ence of squeezing and DMI this asymmetric feature survives [panel (h)] and shows that the
spin expectation value continuously goes through zero upon crossing k& = 0, an observa-
tion which is in agreement with Fig. 4.1(c).

In the previous section, we obtained a nonzero magnonic spin polarization for the
case in Fig. 4.4(g) and (h) [which are respectively reminiscent of Fig. 4.1(b) and (c)], but

zero effect for the other cases. We will now put this prediction to the test.
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To do so, direct nonequilibrium simulations with an imprinted temperature gradient
were performed. The spin chain was separated into three parts of equal length (160 spins
each). The terminating parts have temperature 7' + AT /2, while the temperature in the
central partlinearly interpolates between the two ends. Following this temperature profile,
a heat bath with temperature 7 is assigned to each spin i. After establishing a steady state
in this nonequilibrium situation, the spin density (S) = S 9201 (Si) of the central
chain segment is measured and normalized to the number of spins in this segment.

There is an additional technicality of the simulation: Since two neighboring spins in
the central chain segment experience slightly different temperatures (7; # 7;.1), their net
moment does not compensate exactly. Repeating this argument for all spins of the central
segment, we conclude that there is a tiny net magnetization simply due to the tempera-
ture dependence of the sublattice magnetizations. The sign of this artificial magnetiza-
tion is determined by the direction of the first spin at the cold end of the central segment.
This artificial effect would superimpose with the magnon analogue of the Edelstein effect.
Thus, to avoid the non-Edelstein contribution, we simulate two uncoupled spin chains
with opposite spin direction in parallel (The two chains are time-reversal partners). The
non-Edelstein contributions are exactly opposite, because the sublattice magnetization is
reversed, and sum to zero. In contrast, the extrinsic Edelstein contributions are time-
reversal even as shown in Eq. (4.15b) and do not cancel out.

Our simulation results are presented in Fig. 4.5. The z spin accumulation (S*) is zero
in equilibrium [AT = 0 in Fig. 4.5(a)], as expected for an antiferromagnet in zero mag-
netic field. It stays zero in nonequilibrium (AT # 0), if either DMI or squeezing (or both)
are absent [compare brown, blue, and purple marks in Fig. 4.5(2)]. However, it becomes
nonzero if DMI and squeezing are present (red marks), in full agreement with theory.

The other Cartesian components of the spin density, i.e, (S*) and (SV) are zero even
in nonequilibrium [blue and green marks in Fig. 4.5(b)]. This is not surprising, because no

magnon state has a nonzero z or y spin. Thus, a nonequilibrium state cannot give rise to
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Figure 4.5: Results from direct nonequilibrium spin dynamics simulations of the thermally
induced magnonic analogue of the Edelstein effect in an anisotropic antiferromagnetic
spin chain; parametersread J = 1 meV, A\ = 1.02,and o = 10~%. (a) Nonequilibrium spin
density (S*) in dependence on temperature difference AT for selected parameter combi-
nations. (b) (S%) (i = x, vy, ) in dependence on AT'. An average temperature of T = 0.2 K
was used for all simulations.

spin density of those components. In contrast, (S*) increases approximately linearly with
the external force AT'.

We note in passing other results that are not explicitly shown. We found that (i) re-
versing D reverses (S¥) due to the reversion of the magnon spin, (ii) increasing A increases
the magnon gap, leading to a decreasing (S*), and (iii) increasing the Gilbert damping «
diminishes the (S%), because the magnon transport lifetime decreases.

Overall, we find excellent qualitative agreement with theory (Sec. 4.4.1). However, we
mention that we cannot compare numbers, because the classical white noise used to model
the temperature bath results in a Rayleigh-Jeans distribution rather than in the true Bose-

Einstein distribution. Thus, the simulation suffers from the classical equipartition and
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(a) (b) (c)

Figure 4.6: (a), (b) Noncollinear spin textures on the kagome lattice, with (a) negative vector
chirality (NVC) and (b) staggered vector chirality (SVC). (c) Noncollinear antiferromagnetic
ground state on the 2D triangular lattice.

does not account for the quantum freezing of degrees of freedom as temperature goes to

Z€ro.

4.6 Summary

We have shown that a temperature gradient can induce a nonequilibrium spin density
due to magnonic transport in antiferromagnetic insulators with inversion asymmetry and
spin non-conservation. Our linear response theory revealed both intrinsic and extrinsic
contributions that behave differently under time reversal. Consequently, these two con-
tributions correspond to different elements of the response tensor, which can facilitate
their experimental disentanglement, e.g., in the presence of magnetic domains. Our pro-
posal can be realized in (quasi-)2D and 3D noncollinear antiferromagnets, for which we
find sizable effects in realistic material candidates. Our predictions can be tested by trans-
port measurements similar to those used for detection of the inverse spin Hall effect, by
magneto-optical Kerr microscopy, or by magnetic sensing based on the nitrogen-vacancy
(NV) centers. Given the omnipresence of inversion-symmetry-breaking interfaces (or sur-
faces) in experimental setups, observation of the magnonic analogue of the Edelstein effect

can stimulate further developments in the field of spintronics. In particular, with the im-
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portant role played by the electronic Edelstein effect in modern spintronics in mind, we
hope to have stimulated experimental research on the magnonic analogue of the Edelstein
effect.

The abundance of antiferromagnetic materials holds great promise for the identifi-
cation of well-suited experimental candidates. In kagome NAFMs, the coplanar magnetic
order can exhibit three types of vector chiralities: positive, negative, and staggered, which
are respectively abbreviated by PVC, NVC, and SVC [122,197] and depicted in Figs. 4.2(a),
4.6(a), and 4.6(b). Their distinct magnetic symmetries cause distinct magnonic spin
polarization responses, which are tabulated in Table 4.1. Besides kagome magnets,
quasi-2D triangular antiferromagnets [cf. Fig. 4.6(c)] with the 120° spin order [198, 199]
could be suitable candidates. Such systems as RbFe(MoO,), [200] and BazNiNb,Oq
[201] share symmetries with the PVC kagome NAFMs, resulting in identical response
tensor shapes [cf. Table 4.1]. Similar to kagome NAFMs, the 3D breathing pyrochlores
can exhibit magnetic orders different from the AIAO order [21, 191], which changes their
magnetic symmetries and, thus, the expected response tensor shapes. Experimentally,
the breathing pyrochlore materials BazYb,Zn;04; [202, 203], LilnCr4Og [144] have been

studied, all of which may be considered for a proof-of-principle study of our predictions.
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Chapters5

Magnon Landau levels and topological

spin responses in antiferromagnets

5.1 Introduction

Emergent electromagnetism [204, 205] is at the core of a multitude of fascinating phys-
ical phenomena ranging from the topological Hall effect [78, 206-211] in skyrmion crys-
tals [212-215] to the formation of topological magnons [20,24,32,33,38,72,216—218]. Many
applications related to information storage and processing can emerge from such useful
features of magnetic systems as topological protection and low-dissipation spin trans-
port [219-222]. The need for minimizing losses due to Joule heating has shifted the focus
of recent research to insulating materials lacking itinerant electrons but still capable of
carrying spin currents [110].

Recently, antiferromagnets (AFM) became the focus of active research as they pos-
sess unique features associated with lack of stray fields and ultrafast dynamics in THz
range [223]. Many spintronics concepts readily extend to AFM materials, as is the case with
spin-orbit torques [113] demonstrated experimentally in CuMnAs [224,225]. Skyrmions in

AFM can be potentially stabilized by staggered fields [226,227] induced by field-like spin-
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orbit torques in CuMnAs and Mn,Au or by coupling to boundary magnetization in Cr,O3.
AFMs are expected to exhibit interesting physics associated with vanishing topological and
skyrmion Hall effects [228-232].

The topological spin Hall effect has been predicted for conducting systems [226, 233,
234]. In insulating materials, the topological spin Hall effect mediated by magnons has
been studied for isolated skyrmions [176]. The topological spin Nernst effect in skyrmion
crystals has not been studied in insulators. The nature of topological response in skyrmion
crystals can be associated with the appearance of Landau levels of magnons [81, 235]. In-
terestingly, in AFM the Landau levels are described by the relativistic Klein-Gordon equa-
tion, which is reflected in the shape of steps describing the accumulation of the spin Chern
number. This also suggests a realization of an unconventional magnonic topological insu-
lator which in contrast to previous proposals [72] maps to the Klein-Gordon equation in
the presence of magnetic field.

In this chapter, we study the magnonic topological spin Nernst response in AFM
skyrmion crystals and square crystals of vortices and antivortices, which, as we show, can
both be stabilized by staggered magnetic field and anisotropy. The topological spin re-
sponses can be qualitatively understood by considering Landau levels induced by a uniform
magnetic flux in a generic model of an AFM magnonic topological insulator. We construct
amodel of an AFM magnonic topological insulator that in the long wavelength limit maps
to the Klein-Gordon equation in the presence of uniform magnetic field. In contrast to
previous proposals [72], our model does not rely on the Aharonov-Casher effect with pret-

actor 1/c* but originates in the Dzyaloshinskii-Moriya interactions (DMI).
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5.2 AFM skyrmions and stability phase diagram

We begin by considering the free energy density of a quasi-two-dimensional AFM written

in a long wavelength limit:

J

]—"[n]:5

(0m)* + K(n - 0)? — Hy(n - 0) + D;(0;m x ), (5.1)

where we sum over repeated index i = x,y, n is a unit vector along the Néel order, 7 is
the exchange constant, K is the effective uniaxial anisotropy along the direction « (typi-
cally u = 2), H, is the staggered magnetic field along the direction « arising due to the
spin-orbit torque or the effect of boundary magnetization [226,227], and D;; = (D,); is
the DMI described by a general tensor. When DMI is induced by an axially symmetric in-
terface with a heavy metal, which is the focus of this paper, there are only two non-zero
tensor coefficients Dy = —Dy = D [236]. The free energy density in Eq. (5.1) and result-
ing phase diagram can also describe other spin textures obtained from Néel skyrmions by
global transformation in spin space (e.g., antiskyrmions or Bloch skyrmions) [237]. This
can be seen by applying a global transformation to the spin texture followed by similar
transformations on @ and D;; [237]. The zero temperature phase diagram in Fig. 5.1 has
been calculated using the method of Ref. [237] relying on energy minimization [238] and
rescaling of the unit cell. In addition to the AFM-SkX phase identified in Ref. [227], we
also identify an AFM-SC vortex-antivortex lattice [237, 239-243] stabilized by the in-plane
anisotropy. Such textures can also contain antiferromagnetic antimerons with fractional
topological charge as shown in Fig. 5.1. In the following, we study the effect of fictitious

magnetic fields due to quantized topological charge per unit cell in SkX and SC phases.
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Figure 5.1: Zero temperature phase diagram of AFM with DMI. The axes correspond to the
dimensionless staggered magnetic field and dimensionless effective anisotropy. The gray
line separates the aligned and the tilted regions of the FM phase. This phase is taken over
by the hexagonal skyrmion lattice (SkX), spiral (SP), cone phase, and the square crystal
of vortices and antivortices (SC). The upper inset shows a hexagonal lattice unit cell with
a skyrmion in the center. The lower inset shows a square crystal unit cell with AFM an-
timeron in the center. Red and yellow correspond to positive topological charge density
and blue corresponds to the negative topological charge density.

5.3 AFM magnons and fictitious gauge fields

To describe magnonic excitations on top of a Néel texture, we turn to the picture with unit

sublattice spin fields m 4 and mp. To this end, we consider the free energy density,

Flm,n] = Fln| +

émz (5.2)
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with A being the transverse spin susceptibility. We consider a system with smoothly vary-
ing spin textures and limit the discussion to the leading order of its spatial derivative. As
the size of DMI induced textures scales as 7 /D, we systematically perform analysis up
to the first order in D/.J and discard anisotropy and staggered magnetic field terms (for
the SkX phase, H,7/D? ~ KJ/D? ~ 1), according to Fig. 5.1 [227, 235]. With these

preconditions, the free energy is explicitly written as

A J

F = EmQ + 5(&%)2 + D(nzﬁ n—n- ﬁnz), (5.3)

which can be rewritten as
F= §m2 + n(—%@f +D)n (5.4)
where D = DI:?ZTLZRZ@ with R, = exp{L.5}, (Li)jx = —é€ir. Now we replace the

field m, n with sublattice spin field m 4, m g by pluggingm = (m4 + mp)/2andn =
(m4 — mpg)/2 into the free energy above. As a result, it is converted to a form in terms of

sublattice-spin fields, up to some irrelevant constants,

A 1 Ty 1 Ty
Fooo= ZmA “mp + 1 EA:B ma(_gai +D)m, — ZmA<_5ai + D)msp
1 .
——’YTP,B(—Z(?Z2 —i—D)mA (55)
4 2
Furthermore, we assume that in the ground state my = 0 and ny =

(sin 6 cos ¢, sin @ sin ¢, cos ) where 0, ¢ are spherical angles. This assumption ensures de-
coupling of the two chirality subspaces. We will see that lifting this assumption does not
substantially modify our conclusions according to the numerical results. The local spin
field can be conveniently parametrized by a rotational matrix R = exp(L.¢) exp(L,0)

with (L;);r = —ejx (@ = x,y, 2 or 1,2, 3) being the generators of rotational matrices.
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Specifically, map) = Rmy ), with

m'y = 2\/1— |yal2 + @4 + 974,
mp = —2y/1— |y8]> + 275 — 7B, (5.6)

where 7’ stands for the spin wave, and |45 |* = (v 5))? + (¥4(p))?- Note that
9i(Rm!) = R(0; + R'O;R)ym/,, 0} (Rm.) = R(0; + R'0;R)*m/, (5.7)

where we used 9,R'9,R + R0, RR'0,R = 0 in the second equation above. Also,
m,Dm;, = Dm/ (R"L;0;R + R L;R9;)m|, = Dm. (AL Al + A%D,)m, (5.8)

where AY = R"L;Rwith R = R,R, and A' = RT9;R = R"9,R. Therefore, we have

ma<—§0? +Dym;, = m;[—g@ + A + DIALA + A0 Jmy,
= Lol (0, + A~ %ﬁ)%g 0@, 69

Utilizing the relation above the free energy can be rewritten as

A / / J / 2 J / 2
F = ZmA-mB—gagABma-(@—l—Ai) ma+§mA-(8i+Ai) m'y
j / 2 /
+=ml - (0; + A;)*m/, (5.10)

8

where A; = Al — %Ag. In the discussion, the second and higher orders of the spin-texture

spatial derivative will not be treated systematically. By substituting Eq. (5.6) into Eq. (5.10),
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the magnon energy density reads

1 1 -
Hiag = ?[—1 + 5 (Wava +Upvs) + S(WavE +davs)] + %WA(V +ia)*yp
(9 )]+ (Y — )i+ V(Y + ia)03] — L (Y i)
Fua(V + i) — (Y + ia) s + (Y — ia)yj) 5.1

where ¢, = v*+ivY,and a; = — (AL — %Afl)lg. Here a is an emergent gauge field [79-81]
with two components a = a' + a? with a! = Al|;5 = cos 00;¢, a® = %Adhz = —%ﬁizno

where ng = RZ. These two parts result in emergent magnetic fields,

. 1
by =(Vxa') = —5CijkT0 (0510 X Okno),
b =V x a’. (5.12)

The kinetic term of spin waves is considered by dividing the spin field into slow and

fast modes m, = m{) + dm,, where the fast modes dm, represents the spin wave. Re-

. . 0 ~ A~ ~ N
expressing these modes in a local frame, m = ez, and 6, ~ YZEL + Vel — 2€Z|v,|%,

where (€%, é%,¢%) = R(%,9, %) and (€%, €%, %) = R(Z, —9, —Z2). The variation of spin

Berry phase due to the second order of fast modes is [53, 244]

sy =Y S / dto*(Aq - M) = Zg / dtm, - (61, X 0m,)
a=A,B a
S .. vy o o
= Z dtgéma : (_7a eg + Pygea)
S ivst | wy o i oy s
=3 [ aten s+ aén) - (agen e

S - x . €T A AL AT 5 LT
= Z/thWm — Veiva + (€4 - e)vend — (€q - €5)vaal

S
= Z / dtZ[wZ(lat - Vasﬁ)% + wa(_iat - Va@)%]a (5-13)

where A, satisfies §ma X A, = myg, ¢ = —RTO,R|12 = cos00,¢p, and vapy = +(—).
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Here we used

% ¢Y = U (OuR%) - Rj = v,2T0,RT Ry = v,0,RT R|1y = —v,RT O, R,
&Y. 62 = U (OuRY) - Ri = vyt 0, RT Ri: = v,0,RT R|y1 = —voRTO,R|21 = v RTO,R| 5.

(5.14)

Note (58](32) contains both the kinetic energy of magnons and the coupling between
magnons and an emergent scalar gauge field ¢. Later, this coupling term will be attributed

to a part of the full Hamiltonian.

Combining the kinetic term and the magnon Hamiltonian together , the magnon La-

grangian of the system under basis 1/ = (14, 9%, ¥%, ¥p)T reads
S 1
L= ZZ¢ 03 & Tg'(ﬁ - éiﬂ Hl/), (515)
where H = H, ® H_ with

;A
8

- A > S
Hy =1 %(V —ixa)?]l + [§ + %(V —iya)?|m + 5P (5.16)

From the Lagrangian, it is straightforward to give a Schrodinger-like equation for the

magnon field in subspace 74

~

.S
ZXETgatT]X = %XUX' (517)

Through some linear combination, this equation is shown to be equivalent to a Klein-

Gordon equation

-

(10, — x)? = *(—iV — xa)*|n{”) =0, (5.18)

where n\” = 1,1 — n,2and c = VT A/S.
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In fact, the mapping to the Klein-Gordon equation can be also understood by consid-

ering the field theory of Néel field. The Lagrangian density of m, n reads
A T o | A
Lim,n] =8Sm - (n x on) — Zm + n(;@i +D)n (5.19)

where the m field can be eliminated by integrating it out to produce

Ln] = 8—2(8 n)* + n(za2 +D)n (5.20)
24 27 ‘ '
By substituting a rotational-matrix parametrized Néel field n = Rn/, where n’ =

V1 = 0m'? + 6n), 2 + 6n,,y with dn’,, on; describing the fluctuation of the Neel field, and
R is defined as RZ = (sinf cos ¢, sin fsin ¢, cos §), we obtain a Lagrangian for the Néel

field fluctuation

2

Lon!,, on’ | = §—A6n/[(i8t — )2 = A(—iV — a)}on,. (5.21)

Here, on/, = 0nj, + idn, . The Lagrangian gives us the Klein-Gordon equation for the Néel

field fluctuation

-

[(i0; F p)* — *(—=iV F a)?]on. =0 (5.22)

This result implies that on/, 77;7), which agrees with the definition of the Néel field.

5.4 Magnon Landaulevels

To understand physics associated with the emergence of Landau levels, we approximate
the emergent magnetic field by its spatial average, which is justified for smooth enough
textures. In particular, we consider b = — B2, with B = |(V x a)| = 47(p;,p) > 0, where

Pop = Mo+ (0xMg X Jy1g) and the DMIinduced contribution vanishes. As shown in the last
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section, the Hamiltonian is block diagonalized and the corresponding eigenproblem could
be solved in each block. We assume the spin texture is static, i.e.,¢o = 0. With the emergent
gauge field replaced by its average value aq and choosing the Landau gauge ag = (yB, 0, 0)

(B > 0), it’s easy to find

(—iV = X@0)*€ 4, = Ml (5.23)
where
xk — & —ikyw ,— 1B(y+xte )2[—],1[\/E(y+xﬁ)]7 and )\, = B(2n—|— 1)' (5.24)
nhe = T B
Here, N,, = L\/;T( )1/4. Suppose the eigenstate of the system takes the formof{), @\,

with @, ,, being a spinor. The eigenequation of the system is reduced to

A A
XS byn = (5 Z AL+ (- %An)ﬁ]cpx,n. (5.25)

Solving this equation shows that the eigenvalues are independent of x

eh~ \/jA/\ =+ \/AJB 2n +1). (5.26)

This agrees with the Landau levels of the Klein-Gordon equation [245]. The corresponding
eigenstates are
1y cosh %"

(I)+ :(Tl)T s o _7'1(1)+

o o (5.27)
— sinh %”

with cosh ¢, = (A+ T\,)/(2V T AN,), and sinh ¢, = (A — T\,) /(2 TAN,,). Here,
the eigenstates are degenerate with respect to the index k,. The number of degenerate

states is determined by the total number of the magnetic flux quanta, where each unit cell
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with topological charge || = 1 contributes two flux quanta. The magnon Landau levels
result in various Hall-like responses. However, the two species of magnons with opposite
chirality feel opposite magnetic flux in Eq. (5.3) as they are time-reversal partners of each
other, which always results in vanishing thermal Hall response (see next section). On the

other hand, spin and chirality current responses are nonzero.

— _ = 4 Fff/’ ol NN\
0.8 N t\w
06 = | / \ |
5 52
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0.0 °

- X M r 00 02 04 06 08 1.0
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Figure 5.2: Left: Lowest magnon bands of skyrmion crystal in a square lattice AFM along
the Brillouin zone loop I'— X — M —TI'". Asplitting of chiral modes can be clearly identified.
Right: The Hofstadter butterfly of AFM with uniform magnetic flux & = 2® per unit cell
for ¢ = 1000, @ is the flux quantum.

For a nonuniform fictitious field of a skyrmion lattice with basis vectors @; and a5, the
Landau-level wave functions can be linearly combined to a new periodic basis for each en-
ergy level, @Y, .., which satisfies T, , &X,, = e*P@@X  with magnetic translational
operator Ty, , satisfying Ty Ty, = eX@"T, T, . The phase factor indicates that each
skyrmion unit cell contains topological charge @) which leads to splitting into 2|Q)| sub-
bands described by quantum number m. In this new basis, one can include perturbations
to the Hamiltonian due to nonuniform fictitious flux and higher order terms disregarded
earlier [235] (see Appendix C for more details). This treatment leads to splitting of Landau

levels and to coupling of magnons with opposite chiralities, as confirmed by calculating
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the magnon spectrum of a skyrmion crystal in a square lattice AFM in Fig. 5.2. To un-

derstand the above effects, in the following we construct and solve various lattice models

corresponding to Eq. (5.3).
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Figure 5.3: The total (integrated) Berry and spin Berry curvatures for magnonic systems
exhibiting spin and topological spin responses of magnons. (a) and (c) The density of states
(DOS) of magnons in a square lattice FM or AFM in the absence of gauge fields. (b) The total
Berry curvature due to gauge fields induced by skyrmion crystal (red curve) or DMI (blue
curve). The semiclassical appoximation is shown by the green curve. (d) The total spin Berry
curvature due to gauge fields induced by DMI (blue curve) and the total sublattice Berry
curvature due to gauge fields induced by skyrmion crystal (red curve). The semiclassical
appoximation is shown by the green curve.
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5.5 Vanishing thermal Hall response

In this section, we discuss the thermal Hall effect in the AFM skyrmions in the ap-
proximated Landau-level picture in a single skyrmion and from symmetry analysis for a
skyrmion crystal. Both of these methods confirm the vanishing of the thermal Hall re-

sponse.

5.5.1 Thermal Hall calculation based on Landau-level picture

We first consider the thermal Hall response in a single AFM skyrmion based on the ap-
proximated Landau-level picture. Assuming a temperature gradient is applied along the

x-direction, in which the translational symmetry is conserved, the thermal conductivity is

[128]
_ kB s
= Z Z > X {ealgl 3} (5.28)
X ny=04 kg
where
X al _ _ 21m[<vg>f)n+ms<v?z<)msn+]
Qn+ = Z Z (03)n+n+<03)m5m5 (— = )2
s=1 (mo#n Jms=0s Eny ™ Em,
_ Z i S2Im[<vg>f)n+ms(v§)msn+]
_ 2 )
s==%1 (ms#ny)ms=0, (0 = 52m)
(5.29)
with
AX — i1 ,__'Z v )2 (T — )
v; = i[Hy,ri] = —i 3 [(0; —ixa;)*(1 — 71),74]

= —i%(ﬂ —1){(0; —ixa;)[(0; —ixa;), 5] + [(0; — ixa;), r:](0; — ixa;)}
= @m0, xa) = L (1 m)DY (530
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Here, 63 = 03 ® 1y with NV being the number of Landau Levels, (73).1.m. = $,and &,,, =
sen, (here, £, means the positive energy ¢ ). Note s = +1 respectively label the particle
and hole space. In the one-dimensional case, (2, doesn't represent the Berry curvature,
but it is regarded as an interband function, as that normally appears in a linear response

theory. Notice

(0 men, = %@%‘1! B (Pl (1 —1)DY[OY ) @) = Z<QI>f<,m|(]1 — )| P (D IEN)

4
= _X{}G?Sﬁﬁz(\/ﬁém,nfl +Vvn+ 1(5m,n+1)7

where o = £, /2, Gss = (@5, l(1 =) |<I>f<'7n>, which is independent of y as a result of

the property |®°, ) = 71|®3 ). Ina similar way,
('U;/()ru_ms = —ZﬁG:;(\/ﬁé‘myn_l —vn-+ 15m,n+l)- (531)

Above, we used the relation

B B
Dx&y = —X\/;(\/ﬁf;fq +Vn+15), Dy&x = —i\/;(\/ﬁfff_l —Vn+18),,15.32)

which can be easily verified by using the property of Hermite functions. Substituting

Eq (5.31), (5.31) into (5.29) results in

N

202G |2 [n0mm—1 — (N + 1) ni1]
R S o |
ny

(€n — $Em)?

s=%1 (man g )ma=0,
(5.33)

This expression tells us that the response kernels of two species of magnons take oppo-
site sign. Given that the bands of two chiralities are degenerate, the total thermal Hall
vanishes. This result illustrates that the magnons with opposite chirality propagate in op-

posite transverse directions as they feel opposite emergent magnetic flux. The vanishing
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of the thermal Hall response for a lattice model will be also confirmed below by a symmetry

analysis.

5.5.2 From symmetry point of view

Strictly speaking, the two-chiralities-magnon picture fails in an AFM-SkX, and thus the
thermal response cancellation between two chiralities doesn’t exist. Alternatively, to un-
derstand the thermal Hall therein we can study it in a symmetry point of view. We will first
build up a framework for symmetry analysis in a magnon tight-binding model and then
confirm the vanishing of the thermal Hall effect in the antiferromagntic SkX.

Suppose the SkX respects a unitary symmetry g or an antiunitary symmetry (contain-
ing time reversal) f. We first analyze the symmetry restriction on the Hamiltonian. For

simplicity, we focus on a Hamiltonian element
hij = 8] (7)0y;8;(5) = ST (1) Ay S5(75) (5.34)

where S;, S’ are connected by alocal rotational matrix S; = R;S’ with S’ ~ (S—ala;)2+

\/g (al 4 a;)@ + i g(ag — a;)§), a;(a]) being the annihilation (creation) operator, and

A;; = RIT;; R;. Rewriting the element in magnon basis

) 1
hij = Wlhy; 0, — 5(/\@)33(\1’1‘1% + Uiy, (5.35)

where U; = (a;,al)7, ﬁij = PTAj;P with Aj; being the upper-left 2 x 2 block of A;},

i ij
11 ,
= \/g and (577, S%¥) = W! P!, The symmetry operation simultaneously
—i 1
happens in atom, spin (spin components), and spatial space. For a global symmetry, all
these operations can be implemented as [0;(7;), ¢:(7;)] — [0y (7)) + AO, ¢y (7)) + Ad],
which is usually realized by performing a unitary transformation on the Hamiltonian ma-

trix (this will become clear when we go to specific examples). Meanwhile, if a symmetry
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contains time reversal, P will be transformed to its complex conjugate P*. Specifically,

£+ hil0iis), G — Ry [0 + A, by + Ag).

(5.36)

Similar operations happen to (A;;)s3 as well. From now on, we will mainly concentrate
on the transformation of ﬁij, as natural generalization to (A;;)s3 is easily realized. The
magnon basis simply transforms as ;(7;) — W, (7)) = Uy (M ~'7;), where M is an oper-
ation on spatial variables, 7; = M77.

Now, we show how to implement the global variation of 6, ¢ angles for a real symmetry
operation. We discuss two types of operations: (i) unitary operation, (ii) time reversal oper-
ation. Note their results could be superimposed to an antiunitary operation. To be specific,
we consider the exchange and DMI between two spins, i.e., h;; = J.S;-S;+D;;-(S; xS;),

which corresponds to (I';;)os = Jéap + D7€y05. Through direct calculation, it can be

shown
hij = Ao(ajai + a}aj) + Aja;a; + AQCL;[CL]‘ + h.c. (5.37)
with
Ag = JS(cosb;cosb; + cosb;;sinb;sinb;) + D, .S sinb;;sin(¢; — Pa),
Ay = JTS [cos ¢ (£1 + cos 0; cos 0;) + i(cos b; = cos ;) sin ¢;; + sin 6; sin 6]

+§[iDz(cos 0; = cosb;) + D cos(¢; — ¢q)(sinb; & sinb;)

+D, sin6;; sin(¢; — ¢a)). (5.38)

Here, ¢;; = ¢; — ¢, 0;; = 0, — 0;, and we expressed the DMI vector as D;; =
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D,z + D, cos ¢qax + D sin ¢4y. For case (i), as we mainly focus on 2-D lattices, all rele-
vant symmetry transformations usually keep the angle # unchanged, i.e., A9 = 0. Under
a global transformation, ¢; ; and ¢, simultaneously change by an angle A¢, which has no
effect on the expression above. For case (ii), §; — 7™ — 6;, ¢; — ¢; + 7, which changes the
Hamiltonian elements to their complex conjugates. Therefore, the symmetry operations

are effectively implemented as
g+ hiz0i), Pacy] — harye [0 vy, G in)) [ hijlOiy, i) = Pirji O ey, Diryry] (5.39)

The same analysis works equivalently for the anisotropy term and the staggered Zeeman
interaction. The transformation above still holds with these terms added to the system.
Now, we turn to the discussion of the transformation under the full magnon basis,
U = (aj,---,an;al,---,aly). The symmetry operation only exchanges the order of
magnon species and its spatial argument, which can be realized by a unitary matrix U,
U(R) — UU(M~'R), where U doesn’t mix the particle and hole space, i.e., [U, 03] = 0

with o3 acting in the particle-hole space. In the momentum space
qg: Y, — Ug\I/Mgk:) f e — Uf\II—Mfkv (5.40)

Combining the operation on the Hamiltonian matrix and magnon basis, the symmetries

of the system enforce the momentum space Hamiltonian matrix to satisfy
9:UHWU, = Hypovy, [ URHUS = H_yoy, (5.41)
As a result, the eigenenergy and eigenstate satisfy

9k =Erurs  |Unk) = Uglnas,k), frew=cmpp,  |Unk) = Uplthn,—ni;0)15.42)
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Equipped with these results, we consider two symmetries of the SkX : © * S 1 with
O and S% being the time reversal and half-unit-cell shift, and C5, a two-fold rotation
with respect to the out-of-plane direction. The former is an antiunitary symmetry with
M@*S% = 1, and the latter is a unitary symmetry with M, = —1. Therefore, the eigenso-

lution of the system fulfills the conditions

Ek = €_k, Wm«) = U02|wn77k> = U@*Sl/g‘wnﬁky- (5.43)

The Berry curvature satisfies
QZ o = 2Im(Ok, Y 1|03, V) = 2Im (O, Y| UL, 03U, O, 1) = Qi e, (5.44)
where we used [Uc,, 03] = 0 and U& = Ug, . Inasimiar way, the © x S/, suggests
Q== (5.45)

Eq. (5.44) and (5.45) together enforce the Berry curvature to vanish everywhere in momen-
tum space, €27 , = 0. As aresult, the thermal Hall response vanishes as long as the system

has an effective time reversal symmetry.

5.6 Spin Nernst effect in AFM topological insulator

In this section we build a squre-lattice AFM magnon model whose low-energy spectrum
can be exactly mapped to the Klein-Gordon Landau levels. Then we calculate the spin
Nernst response and make a comparison with the same response in an AFM-SkX.

A square lattice Hamiltonian of collinear FM (AFM) reads

H=YJS;-S;+Dy;(5; xS;) Zﬂsy SY)2, (5.46)
(ig)
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As the order parameter direction controls the DMI effect on magnons, the order parame-
ter is oriented along the y-axis to realize the Landau gauge. Above, the exchange param-
eteris J < 0(J > 0) for FM (AFM), H; is (staggered) magnetic field, K is the magnetic
anisotropy, and D;; = D(r)Z x §;; describes DMI with Rashba symmetry for a bond §;;.

In FM case, the exchange interaction and DMI between two neighboring spins is

where
J 0  —Dy,
Fij = 0 J Dij,x . (5.48)

Reparametrizing the interaction by S’ leads to

1 1
z Qz jl —i¢i; Q— idij -
= JS;S; + 7](6 P STST + eSS (5.49)
where n is the direction of order parameter, jij = /J?+ (D;; - ng)?, and ¢;; =

tan"![(D;; - ng)/J]. In AFM case, we need to replace S;t — S, and S7 — —5% for
one of sublattices.
When D/J <« 1, ¢;; ~ (D - ng)/J, and

e ST (P)STH(IF+ 8;) = S (7)e® b nox DO/ gk () (5.50)

1

with p being the translational operator. Therefore, a fictitious gauge field for magnons can
be recoganized as A,,(7) = (ny x 2)D(7)/J, and the corresponding fictitious magnetic

fieldis B,, = —2(no - V)D(r)/J. For a uniform magnetic field B,,, = — B2, to replicate



122

the Landau gauge, it requires ny, = 0 and ny,D(r)/J = By. For the special case with
spins aligned along the y-direction, i.e., ny = ¢, the strength of the nonuniform DMI
satisfies D(7)/J = By.

Using the Holstein-PrimakofF transformation in the limit of large S, ie. SI ~
V2Sa;, Sy = \/ﬁal, S~ S — ajai, we recover discrete realization of noninteract-
ing magnons subjected to uniform magnetic field described by a vector potential ay =
(yB,0,0). In the long wavelength limit FM magnons are described by the Schrédinger
equation while AFM magnons are described by the Klein-Gordon equation. In what fol-
lows, we concentrate on AFM, using FM system only for comparison. The role of the chiral
index y in Eq. (5.3) is played by the spin index s., as the spin along the quantization axis is

conserved. After the Fourier transform, the Hamiltonian for s, = 1 becomes
1 N
Hy = §JSZ‘1’T+(k)H+(k)\I’+(k), (5.51)
k

where U = (ay(k),bl(—k)...bl(—k), asn(k))T is the bosonic field, and the unit cell
contains )V by 2 array of atoms from each sublattice of the square-lattice AFM. The Hamil-

tonian has a block structure

>
Q>
>

Ao (k)= , (5.52)

>
Q>

where for 2N x 2N matrices & and b the nonzero elements are given by a;; = 4, b;; =
cos(ky + joo) fori = j,and a;; = a}; = e”"*v fori — j = 1 modulo 2N. Here the phase
factor ¢pg = 2mp/q describes the strength of magnetic field, i.e., 2p is the number of flux
quanta for enlarged unit celland ¢ = 2N. For s, = —1, H_(k) = l:[f(—k) andV_(k) =
(al(—F),by(k) - - - bon(k), aly (—k))T. The total Hamiltonian matrix can be diagonalized

by a paraunitary matrix 7}, i.e., T,Iﬁ Ty, = &, where &, is a diagonal matrix describing

eigenvalues [246]. By varying the strength of DMI, we can control the magnetic flux per
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unit cell which allows us to observe the Hofstadter butterfly in full analogy with electronic
systems (see Fig. 5.2). Similar to electronic systems, the exact energy bands can be found
from expansion of p/q into continuous fractions or from the Diophantine equation [3,247].
As can be seen from Fig. 5.2, the form of the Hofstadter butterfly differs from the case of
nonrelativistic electrons.

The spin responses of magnons can be described with the help of the spin Berry cur-
vature [38,248],
10,5 m X D,

(gn,k - 5_m,k:)2

0, =i 2(53)nn(53)mm

m#n

, (5.53)

where we define the anticommutator {9, 20’} = 0533 + Y9530, Emk = (63<§k)mm,
and the Pauli matrix in the particle-hole space, i.e., (63)mm = 1 for particle-like states
and (63)mm = —1 for hole-like states. The magnon spin density operator along the a-
axis is given by ¥%(r) = 10l (r)S2W(r) where 3% = —oy ® Diag(mg, - - ,m$;) with
the Pauli matrix o, describing the particle-hole space and m,; being the direction of mag-

netic moment at position 7 in a unit cell of M atoms [248]. We consider the spin Nernst

response [97],
a, = — c1(g(enr)) Q0 (k) (5.54)

where g(¢) = (e?/T — 1)~! is the Bose-Einstein distribution and ¢, (z) = (1 + ) In(1 +
x) — zln(x). Due to degeneracy, we apply Eq. (5.53) to each subspace s, = +1 sepa-
rately. The total spin Chern number is a sum of spin Chern numbers for each subspace,
Le., C5 = (1/27) [, QP @2k where O = QP + Q7. To establish a connec-
tion to QHE, we study the total spin Berry curvature of states below a certain energy,
C(e) = (1/27) [, 3., (o QD k.

As a comparison, we first study the Berry curvature accumulation as a function of
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energy. For a ferromagnetic square lattice with fictitious magnetic flux ®,, = Ba?/27 =
p/q (a is the lattice constant, and p, ¢ are integers that don't share any common factor) in
each unit cell, if we choose a Landau gauge A,, = (By, 0,0), the effective magnetic unit
cell becomes a rectangle with size (1 x ¢)a?, one unit cell in the z-direction and g unit cells
in the y-direction. After performing the Holstein-Primakoff transformation, the magnon

Hamiltonianreads H = JS) \IfLHk\Ifk with Uy = (a1, G2k, - ,aqx)’ and

[ hy _eikya 0 . 0 _e—ikya |
_e—ikya ho _eikya ... 0 0
H, — 0 e~hva  hy e 0 0 (5.55)
0 0 0 hg—1 —ethva
_ptkya 0 0 ce. e tkya hq

where h; = 4 — 2cos(kya — 2mjp/q). It's easy to envision that the basis vectors for the
lattice of magnetic unit cells still point in the z, y directions but with the y-direction basis
vector elongated to ¢ times longer. Based on the Hamiltonian above, the results for the
total Berry curvature and the magnon density of states (DOS) are shown in Figs. 5.3(a) and
(b) where we choose p = 1 and ¢ = 77 to replicate the flux produced by two skyrmions in
an SkX unit cell of 14 x 22 atoms (see Fig. 5.1). We observe a behavior associated with the
van Hove singularity [249] of the magnon band structure. This causes a sign change in the
total Berry curvature at the transition between particle- and hole-like states [250, 251].

For AFM magnons, we choose p = 2and ¢ = 270 for the magnon topological insulator
model to replicate AFM SkX on a lattice of 18 x 30 atoms (which will be discussed later). The
total spin Berry curvature shown in Fig. 5.3(d) exhibits steps of 2 and uneven energy height
even in the long wavelength limit. We observe sharp change in the spin Berry curvature at
the DOS singularity in Fig. 5.3(c).

For both FM and AFM magnons, away from the DOS singularity the formation of
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magnon Landau levels can be described by the Onsager quantization scheme [252, 253].
We confirm this by comparing the semiclassical curve corresponding to the area enclosed
by DOS with the Berry curvature curves in Fig. 5.3. The spin Nernst response is shown in

Fig.5.4.
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Figure 5.4: Spin Nernst conductivity as a function of temperature. The red curve describes
the topological spin Nernst response for square lattice AFM with a unit cell of 18 x 30
atoms containing two skyrmions. The blue curve describes the spin Nernst response in
AFM magnonic topological insulator with DMI induced fictitious flux & = £®, forp = 2
and g = 270.

5.7 Topological spin Nernst effect in AFM

To describe magnon excitations on top of textures in Fig. 5.1, we use the Holstein-
Primakoff transformation in a local frame [145]. The resulting Hamiltonian describes non-
interacting magnons and can be diagonalized using the paraunitary matrices T}. The spec-
trum for the lowest bands of a lattice contaning 18 x 30 atoms is shown in Fig. 5.2. We ob-
serve that the Landau levels become dispersive and that AFM chiral modes split. The total
sublattice Berry curvature is shown in Fig. 5.3(d) where we use sublattice index instead of
spin index in Eq. (5.53). The sublattice index in Eq. (5.3) and spin index in Eq. (5.51) can be
mapped onto each other in the absence of coupling between chiral modes. We observe only

qualitative agreement with Landau levels in AFM calculated earlier for p = 2 and ¢ = 270
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due to coupling of chiral modes in AFM SkX as a consequence of higher order corrections.
In Fig. 5.3(b), we observe better agreement between Berry curvatures calculated for FM
SkX (lattice of 14 x 22 atoms) and for Landau levels in FM with DMI induced uniform flux
(p = 1land g = 77). The sign change of the Berry curvatures in Figs. 5.3(b) and (d) can lead
to the sign change of the topological thermal Hall and spin Nernst responses as a function
of temperature. Using the spin Berry curvature, we calculate the topological spin Nernst
response in Fig. 5.4 and confirm the sign change. As expected, the spin Nernst response
in AFM SkX is suppressed compared to similar response in AFM topological insulator (see

Fig. 5.4).

5.8 Summary

We have shown that AFM-SkX should exhibit a large topological spin Nernst response. The
spin response is associated with the formation of dispersive Landau levels. AFM magnon
Landau levels exhibit relativistic physics which in the long wavelength limit can be de-
scribed by the Klein-Gordon equation. Similar physics also arises in the AFM square
vortex-antivortex phase. To further uncover this behavior, we have constructed a model
of AFM topological insulator where the fictitious flux is induced by inhomogeneous DMI
and leads to the formation of an unconventional Hofstadter butterfly. Our predictions can
be tested in magnetoelectrics where the staggered field can be induced by the boundary
magnetization [254]. The spin Nernst response can be potentially observed in ferrimag-

nets, e.g., similar to TmIG [255].
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Chapter 6

Conclusion and outlook

As a key element of the magnetic insulator, magnons contribute rich physics ranging
from band structure topology to various kinds of transport phenomena. The research on
magnon physics is always inspired by the prosperous development of electronic systems,
partially because they both are (quasi-)particles and possess intrinsic spin freedom, while
the differences between the two systems also provide appealing reasons to study one or the
other. Electrons have both spin and orbital freedoms, which makes for diverse topology.
Many types of quantum response can only be found for electrons, not bosons (magnons),
because of the Fermi-Dirac distribution. The coupling between electrons and electromag-
netic field gives a handle on the transport by taking advantage of diverse band structures in
asolid. On the other hand, magnon transport has no Joule heating due to decoupling with
gauge field (except the Zeeman coupling). Due to the long coherent distance, spin waves
can mediate long-distance information transport. The goal of this thesis is investigating
the possible underlying nature or applicability of magnon physics, especially by following
various successful examples in electronic systems.

In Chapter 2, we introduced our work on a 3D magnon topological insulator model
protected by sublattice chiral symmetry. The work is stimulated by a surge of interest on

generalizing the diversity of topological insulators from the fermion system to bosons, in-
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cluding magnons, photons, and phonons. In magnon systems, the main focus was on the
realization of Weyl and Dirac spectrum and chiral edge states in a Chern insulator. How-
ever, the absence of Kramer pairs and orbital freedoms hinders the realization of the more
fascinating Z, topological insulator that holds a helical edge state in 2D and a Dirac cone
surface state in 3D. Our work fills in the gap by constructing a 3D magnon topological in-
sulator model with a surface Dirac cone. An essential point for such a model is that it is
protected by a feasible sublattice symmetry for magnons instead of time-reversal symme-
try. Therefore, this kind of model belongs to a Z classification (AIII class) in the tenfold
way classification of topological insulators. We show that the magnon chiral topological
insulator (mcTI) can be realized in a Heisenberg model endowed with the Dzyaloshinskii-
Moriya interaction (DMI) in a layered honeycomb lattice structure. All interactions are
chosen such that the system possesses the chiral symmetry: the Hamiltonian anticom-
mutes with a chiral operator. The bulk is characterized by a topological invariant: winding
number, which is also equal to the number of surface Dirac cones as a result of the bulk-
boundary correspondence, provided the chiral symmetry is not broken on the surface. At
the same time, the helical surface states lack backscattering in the presence of the chiral
symmetry. By breaking the chiral symmetry, a small gap can be introduced in the surface
band, which leads to the magnon Hall response, e.g., under a temperature gradient. This
is analogous to the quantum Hall effect on the surface of a topological insulator. Finally,
we show that the model exhibits a rich phase diagram in parameter space, which covers
mcT], nodal line, three-dimensional magnon anomalous Hall, and Weyl magnon phases.

This work can be regarded as a springboard for exploring possible 3D topological
magnon phases. Though the model includes seemingly unrealistic interlayer couplings
and DM, it could be possibly realized in the van der Waals magnets with careful fabri-
cation. More importantly, the idea of creating a bosonic topological insulator protected
by chiral symmetry is inspiring because it could be transplanted to other bosonic systems,

e.g., acoustic or photonic systems. At the same time, searching for other different and re-
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alistic structures with chiral symmetry in magnetic materials is also a continuing direction
for exploration.

In Chapter 3, we studied the magnon-mediated intrinsic transverse spin current in-
duced by a longitudinal temperature gradient (spin Nernst effect) in a noncollinear anti-
ferromagnet (NAFM) insulator. Compared to collinear systems, the spin current in non-
collinear antiferromagnets can be polarized along any direction, which adds to the control
of spin current in an insulator. The main difficulty of discussing spin current in NAFMs
is magnon spin nonconservation due to noncollinear ground-state background. We over-
come this difficulty by drawing an analogy with the scenario of spin Hall effect where spin-
orbit coupling usually breaks spin conservation. The spin current can be defined if an ac-
companying spin-torque term is clearly identified. As for the response theory to a tem-
perature gradient, we used a pseudogravitational field to incorporate the gradient field
in a linear response frame. In addition to the typical Kubo-formula contribution, we also
identify a dipole contribution which originates from a correction to the spin current op-
erator due to the pseudogravitational field. This dipole contribution can be calculated by
a thermodynamic approach which is generally useful in treating the equilibrium average
of an observable containing spatial variables. In principle, the formula we obtained can be
generalized to other bosonic systems for calculating other temperature-gradient-induced
response. Finally, we applied our theory to a kagome NAFM KFe3(OH)s(SO4)2 and found a
sizable response. It is worth noticing that the response coefficient is always restricted by
the magnetic point group symmetry of a given material.

With this theory of spin Nernst effect in NAFMs, we expect further studies could be fo-
cused on searching for materials and potential applications of this effect. In general, any
systems with noncollinear spin order can be used to generate magnon-mediated trans-
verse spin current. In three dimensions, more magnetic materials with noncollinearity
are available, which allows more control of spin polarization. In Chapter 5, we also applied

this theory to discuss spin transport in an antiferromagnet skyrmion crystal. In regard to
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application, the spin Nernst response could be used to detect the ground-state informa-
tion of quantum magnet materials, as the response signal is very sensitive to spin order
configurations. Moreover, designing a spin source (injector) based on NAFMs also seems
promising in the study of spintronics.

In Chapter 4, we moved our attention to the spin polarization in fully compensated
antiferromagnets. The motivation comes from the famous Edelstein effect due to which a
uniform spin accumulation can be generated by applying an electric field in an electron gas
with Rashba spin-orbit coupling. The key features of the system are zero equilibrium spin
density and the spin-orbit coupling that breaks inversion symmetry and the spin conser-
vation. We generalize this effect to magnons in noncollinear antiferromagnets (NAFMs),
where equilibrium magnon spin density also vanishes and spin conservation is naturally
lost due to the noncollinearity of spin arrangement. Moreover, through basic symmetry ar-
gument, it is found that the inversion asymmetry is also required as otherwise, the related
response function will vanish. In NAFMs, we could either pay attention to noncentrosym-
metric materials (e.g., breathing pyrochlore) or supply the materials with a Rashba-like
DMI (e.g., a kagome layer on a substrate). In an electron gas, the nonequilibrium state is
driven by an electric field, while for the charge neutral magnons the driving force is a tem-
perature gradient. The developed response theory is reminiscent of the theory in Chapter
3. We divided the magnon spin polarization response function into intrinsic and extrin-
sic parts, which are respectively independent and dependent on the magnon lifetime. It
is also found that these two parts behave differently under time reversal and are restricted
in different ways by the magnetic point group symmetry of materials. We proposed three
models for the effect, including spin chain, kagome NAFM, and pyrochlore NAFM, and
further performed computer experiments on the spin chain model to verify our findings.
According to our estimation, the accumulated spin density is detectable in experiment.

Given the importance of the Edelstein effect in spintronics, its magnonic analog, in

principle, should also bring new vitality to spintronics research. Further studies on this
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effect could be in the following directions. First, the experimental confirmation will be
an important step. This effect can be tested by transport measurements similar to those
used for detection of the inverse spin Hall effect, by magneto-optical Kerr microscopy, or
by magnetic sensing based on the nitrogen-vacancy centers. Second, on account of the di-
versity of antiferromagnetic materials, finding a suitable material that can optimize the
effect deserves some effort. Finally, considering its potential application is also an inter-
esting question. Like the spin Nernst effect discussed in Chapter 3, the effect could also be
used to make spin sources, or detect the ground state of quantum magnets as implied by
the connection between response coefficients and the underlying spin structure.

In Chapter 5, we continued the exploration of magnon-mediated spin transport, the
spin Nernst effect, in a bipartite antiferromagnet (AFM) system, instead of NAFM. The fo-
cus in this chapter is magnon transport in a spin texture, which is essentially treated by
using the formula developed in Chapters 3 and 4. However, the understanding of the un-
derlying mechanism is enhanced by considering spin-texture-induced fictitious magnetic
field in a long-wavelength limit. We first generated a new phase diagram that identifies
the AFM skyrmion crystal and vortex-antivortex square lattice phases. These two phases
are ideal platforms for the spin-texture induced spin Nernst effect, which is alternatively
recognized as a topological Nernst effect duo to its association with the topological spin
texture. Due to the aforementioned fictitious magnetic field, the magnon spectrum ap-
proximately forms unevenly spaced Landau levels, which originate from the fact that the
long-wavelength description of magnons in such systems can be roughly mapped to the
Klein-Gordon equation of a charged particle in a magnetic field. In this sense, the trans-
verse spin transport is due to the magnon Landau-level structure. Nevertheless, by numer-
ical calculation, we find this picture is far from accurate, though it is conceptually trans-
parent. To further appreciate the interesting Landau levels of a Klein-Gordon equation,
we develop a new magnon AFM topological insulator (TI) model, which could exactly map

to the equation in the long-wavelength limit and thus forms exact uneven magnon Lan-
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dau levels. Interestingly, we numerically investigated the quantum Hall signature of this
model, the accumulated spin Chern number in energy regime, and found that a clear step
formed. Moreover, a similar quantity in AFM skyrmion crystal shows qualitative agree-
ment with the magnon TI model, which confirms the validity of the Landau-level picture
on a qualitative level in the skyrmion case.

Aside from the understanding of the intrinsic mechanism mentioned above, the work
brings out two surprising results: (1) the spin response magnitude in both AFM skyrmion
crystal and AFM magnon TI are unexpectedly large, which makes the response promising
for experimental observation and application in spintronics, e.g., as a spin current source;
(2) the magnon AFM topological insulator model shows a new Hofstadter butterfly as the
signature of the uneven Landal levels, which can serve as a smoking gun for experimental-
ists to confirm the new physics.

Overall, this thesis investigated the rich magnon physics in various systems. A sys-
tematic framework of theoretically treating the magnon-mediated spin transport in mag-
netic insulators and its connection with band topology were extensively discussed. Though
many of the results obtained are still waiting for experimental observation, the useful the-
oretical tools and interesting predictions provided by this thesis already demonstrate the
appealing aspects of magnon physics. Furthermore, more exciting physics in magnetic
systems could be boosted by this thesis. For instance, all the topics here focus on low tem-
perature, where the magnon picture is valid. If one goes to higher temperatures, represen-
tations other than magnons, e.g., Schwinger bosons, need to be considered. The results
here will fail to capture the physics, but they can still provide some insight for possible

extensions.
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Appendix A
Linear response for antiferromagnets

A.0.1 General theory

For the 1 component of a spatially averaged observable 4, = + [ dr\IfT(r)flu\I/(r), the

non-equilibrium response to a temperature gradient is
(Aphne = lim — (I, (w) = I (0)] V., A1)
where the correlator in frequency space is defined as
CEE
L, (iwy,) = — / dre*mT (T A, (7)J1(0)). (A.2)
0

In momentum space, 4, = % Dk \IILAM,k\IIk and JI = >, \IILJgjk\Ifk, with Jg,k =
1(Hxo3v,x + vixo3Hx). Here, JZ comes from %—If = +[H,H'| = JiV,9¢, see the sup-

plementary of Refs. [38, 97]. Plugging in above expressions, the correlation tensor can be
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presented as

. 1 o
I, (iwn) = _VZ / dre™m (UL (T) A Ui (7)WL T Tier)
0

kK

1 7 Wi, T
= T [ A (A g o (T W () (70 OB O
k. k’
(A.3)

According to Wick’s theorem,

(T U o (7) Wiy (1) T, (0)Pie 5 (0)) connected
= (T o (0) UL (M)NT W (7)Y, (0)) + (T (7)), (00T, T (7) Ty 0 (0)).

(A.4)

Here, the second anomalous term can be shown to be equivalent to the first term. First,
we note that the basis W, obeys the particle-hole symmetry, ¥y = (¥', 5,)7, which leads

to the relation

1 1
A = 5 2 VeolAudasWios = 7 D a1 45p00)n Voo (A5
k,af8 k,\y

Hence, we gain the relation: 01A£’ L0 = A, _x, which will be used repeatedly in the later
proof. Second, the systematic linear response analysis needs a plain expression of the
particle-hole space Green function, whose definition is G(k, 7; k', 0); ; = G(k, k';7);; =
—(TT\I/k,Z-(T)\IILJ(OD. We derive the Green function expression by virtue of its equation

of motion,

&Q(k, k/; T)ag = —5(7’)0'3,045(51{,1{/ — (O’37’[k>a7g(k, k/; T)’YB7 (A6)
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where we used the relation

1 1
aT\I/k,a(T) = [Ha \Ijk,a(T)] = —5(0'37-[1()&7\111(,7 + ~ut

5 7k7,},(7‘[—k02)7a = —(0'3%1()@7\1/1(,7(14-7)

The equation of motion [Eq. (A.6)] in matrix form reads

(87 + ang)Q(k, k/; 7’) = —035(7')51(71(/, (A.8)
so that G(k,k’;7) = % and G(k,k’;ik,) = Z.k"_"gngék,k/ in frequency-

momentum space.

Now we show that the anomalous term in Eq. (A.4) can be alternatively expressed,

with the help of particle-hole symmetry, in form of Green function

(T 0o (W, (0)) = (Tro105Vies(7) P, (0)) = —01.05G (k. K )5,

(Tr Vi (T) Wk (0)) = <TT\Ijk,7(T)\I/ik',u(o)al,uﬂ = —G(k, =K', 7)3,01 o

Therefore, Eq. (A.4) and the correlation tensor in Eq. (A.3) are rewritten in terms of Green

function as

(T Wi o (7) Wi (T) W, (0) Wi, (0))

= Gk ki —7)G,,(k,K;7) + [01G(—k, K'; 7)]aplG (k, =K'; T) 0110, (A.9)

and

1

B .
H#V(iwm) = v Z/{) dTeWMT(Au,k)a'y(Jg,k/)po{gm(k/ak§ _T)gw(ka k/QT)
KK/

+[01G(=k, K5 7)]aplG (k, —=K'; T)01] 40 } (A.10)
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respectively. Furthermore, with the aid of the Green function relation G(—k,7) =
—01G(k, —7)%01, we can prove the equivalence of the first and second part on the right

hand side of Eq. (A.10). As a result, the correlation function becomes

11, (iwm,) = Z/ dre™mTtr[A, kG (k, T) S G (k; —7)], (A.11)

where G(k, 7) = ;—%2--. Let's transform the Green function to frequency space with

Gk;7) = Ze"q”Q(k iqy), then

an

T dwy dw ng(wy) — ng(w
M, (i) = —Z / 2 r{ Ay (k1) TS (O )] f;f_l)w "2 1

Here, we performed the Matsubara summation and utilized G (k; ik,) = fj;o Lo %k’_“g ,

with S(k,w) being the spectral function. Going back to the real time space and taking the

zero frequency limit, we obtain the response tensor

ML, (w +1407)

K;U/ = —1 B |w—>0
2 o0 de oGrt 0G4
= 23 [ el - e - T Ala
k —o0
where we used the relation
/°° dw  S(kw) 9 / dw S(k,w) 0GR a1
Lom(e—wEi0t)?2  Oe 2me —w+i0t De '

and the expression S(k, ) = i(GF — G4).

A.0.2 Inthe eigenstate basis

To distinguish the intraband and interband contributions, we rewrite the response ten-

sor in Eq. (A.13) in the eigenstate basis via the transformation ¥, = Ty['x. By defini-
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tion, we have the Green function transformation G(k; 7) = Tig(k, 7)T}, where g(k, 7) =

—(T, T (7)TL(0)) and g%/ (k, &) = . After this transformation, we obtain

03
e—03EK+i0t

Ku=23 [ Sl - o)A,

k o0

" 94
g Tk = Ty J AL @)

where T, = Ty J% Ty and A, ) = Tj A, Ti. We split the expression into two parts:
intraband and interband contributions. Owing to the hermitian conjugate property of op-

erators, we write the response tensor elements as

“+oo dE agn 897,14
b =y Z Z / _nB R B g’ﬁ)(("A" k)m” (‘Z’k) (jv,k>mn¥("4ﬂzk)nm)]
k mn
93,mm93 m[”B((‘73gk)mm) — nB((03E)nn)]
= 35 A mn jzl nm : 7 - ) A.16
; ;( e * (03K ) mm — (03Ek)nn + 1072 (A.16)
where we took the approximation g% — g2 = i2Im(¢Z) = —i2703 mmdle — (03EK) mm)-

If we incorporate the magnon spectrum broadening I',, into the Green function, i.e.,

R — T3, mm o . .
gie) = P v e Dl the response tensor can be naturally divided into two parts,

K, =K, intra 4 KL“;”, where

; 1
Kan/tra _ Z Z F_ jk v nn(AM,k)nnagnB[(Jgé'k)nn], (A.17)
k

n

and

inter % 03,mm03,nn[nB((a3€k)mm) - ((USgk) )L
KHV = % ;;(Au,k)mn(ju,k)nm [(0'3gk)mm — (03€k> ]2 \LL-LS)

The limit I',, — 0 for K" is taken here. In consideration ofAL = A, and (J9) = Jg,

Eq. (A.18) can be transformed to

I A nm v)mn & nn
Jeinter _ VZZ m|(03A,.1)nm (03 Taw ) mn |18[(03Ek) ]_ A.19)

" k m#n U3gk)mm (U3gk>nn]
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The intraband response Eq. (4.10) in the main text can be recovered if we consider Jy , =

i(é’kag@kﬂ, + ¥k ,03E) whose diagonal components read

(T = (038R )an (i) 4.20)

where
i = O, Ex — (O, Ty Hi T — Ty Hac (O, Tic).- (A.21)
From the paraunitary relation of 7y and 8ku(Tk03TlI) = 0, we get 8kyTli =

—Tkag(ﬁk”Tk)ongﬁ. From Tli’Hka = & and (Ty)™' = O'3T110'3, we have Tlin =

Skangiag. Therefore, the diagonal elements of ¥, are shown to be
(f)k,u)nn - (ak’l,gk)nn + (TkT038kka038k)nn - (5kU3TkTO-38kVTk)nn - (augk)nna (AZZ)

thus,

1
(Jrw)nn = §(U3gk)nn(ak,,gk)nn- (A.23)

By inserting Eq. (A.23) into Eq. (A.17), we arrive at

2N
. 1 1
K;E,tra = V Z Z E(Au,k)nnak,,gk,nn(JBSk)nnasnB[(035k)7m]- (A24)
k n=1
Given the relation ng(z) = —1 — ng(—=x), the band index can be confined to the particle

space,ie., 1 <n <N,

1

N
intra 1
K,ulf = V zk: nzjl E[(A%k)nn + (AM7—k)(n+N)(n+N)]akygk,nngk,nnasnB [Sk,nn]- (AZS)

Applying particle-hole symmetry (PHS), (Aux)mn = (Au—k)@n+N)n+n), replacing A, x

by S, x and taking V,¢ = —V,T'/T into account, we can obtain the intraband response
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Eq. (4.10).

On the other hand, by plugging the expression of .7, x into Egs. (A.18) or (A.19), the

interband part can be reorganized as below

Kigjter =375 Z Z nm U3gk)mm(vu>mn + (Uu>mn(0-3gk)nn]

k myﬁn
U3,mm03,nn[nB((035k)nn) - nB((USSk)mm)]

[(035k>mm — (036 ) nn)? 7

= 15 Z Z n k /ﬂ/en knB<8n k) (mfj,k)uunB (g_n,k)u (A26)

k n=1

with

(@ = 3 2T s (05 Ts

(gn,k - E?m,k>2 ’

m(#n)
Z —Im[(UgAu,k)nm(0—37~Ju,k)mn]

gn,k - 87m7k

(mé,k)/w =

(A.27)
m(#n)



169

Appendix B

Details of the models

B.0.1 Antiferromagnetic spin chain

We recapitulate that the Hamiltonian for the antiferromagnetic spin chain is

H = Z Z [J(¥ST:9% i + 5119540 + AST:95,4,) + Dises - (S1i X Sz40JB.1)

i 0==%1

with exchange and DMI parameters as stated in the main text. After performing the
Holstein-Primakoff transformation, the quadratic Hamiltonian written in the basis ¥, =

T T \T
(aLk? az , 0’17_]{;7 aQ,—k) reads

2\ 2A_cosk 0 2A cosk + ipg
2A_cosk 2\ 2A, cosk +ip_ 0
My = JS ’ '
0 2A cosk — ipy 2\ 2A_cosk
2A  cosk —io_g 0 2A_cosk 2\
) (B.2)

where Ay = &TV’ ok = Y.,0D,e* /] =i2Dgsink + 20p cos k, with Dy = —Dlgf]DQ and

op = PPz,
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B.0.2 Non-coplanar Kagome antiferromagnet

We consider the non-coplanar kagome antiferromagnet discribed by

H = Z JlSZ . Sj + Dz’j . (SZ X SJ) + Z JQSZ . Sj, (B3)
(i) ((ig))

where D;; = D,,;; + D, ;2. The spins cant out of the 2-D plane with a small angle 7, and
the spins’ projection on the the x — y plane form angles 6; (i = 1,2, 3) with respect to =
axis, specifically, 6, = —7 /6, 02 = w/2and 3 = 77 /6. For each spin S;, we choose a local

reference frame defined as follow

€, = {sinf; —cosb;,0}, e;, = {sinncosb;,sinnsinb;, — cosn},

e; . = {cosncosb;, cosnsinb;,sinn}. (B.4)

For a given spin S;, in the global frame, its components can be connected to the local frame

expression S; by
S = e, (5% 5) = Rj S’ (B.5)
i €a i €8 1,05 5 .
where R; .3 = €, - €; g, or in matrix form,

sinf; sinncos#; cosncosb;
R;=1| —cosf; sinnsin®; cosnsinb; | - (B.6)

0 —Ccos 7 sinn

For the general spin-spin interaction a correspondence between the two frames can be
written as Sf‘FfljﬁSf = Nf‘(RiTFinj)aBS’f. The interaction matrices are: Fgﬁ = Jas

for exchange and Fffﬁ = Dfe¥ for DMI. Using these relations, we express the non-
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interacting magnon Hamiltonian in terms of the local reference frames as

H;, =4 Z cos 0;;S; - S; + 2sin?(6;;/2) (cos? nSZyS’Jy + sin? ngfgj) + sinnsin 0,2 - (S; x S;),
(i5)
H;, = Z cos 0;;S; - S; + 2sin?(6;;/2)(cos? ngf’gj’ + sin? ngfgj) +sinnsinby;2 - (S; x S;),
((ig))
Hp, = Z — 54D [sin 0;;(S7 ST + sin®nSYSY + cos® nS7S7) — sinncos 052 - (S; x S;)],
0:j & 0, S
Hp, = Z —3si;D,[sin(2n) sm( 1)(5757 — SYSY) + cosncos(— 5 1)z (S; x S;)],

Hp, _Z sZ]uUDR[sm(Qn)sm(e )(S;S: — SySy)~|—cosncos(%) (S x S)).

(i7)

Here we used the notation that 0;; = 0; — 0; = —s;;7% 28, D,;j = D,s;and D,;; =

—siij[cos(eﬁ 1)z +sin( ’;9

5 )y], where s;; is used to express the sign convention: s;; = 1

as the indices ¢, j run clockwise around the triangle loop and s;; = —1 when they run
counter-clockwise. The notation v;; takes care of the opposite convention for Rashba-DMI
in upward and downward triangles with v;; = +1 for (ij) € A/s/. Plugging in the ex-
pression of #;; and performing the Holstein-Primakoff transformation S¢ = \/g(bj +b;),
SY = z\/g (b — b;), S7 = (S — bib;), we can obtain nearest neighbor interaction

HNN = —SZ + V” )(bjbz + b;rb]) + (Al,ij + VijAR,ij>bl-Lbj + h.C.

+(A] + uijagz)bj bl + h.cl (B.8)

(B.7)
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with
A§O) = Ji(1 —3sin’n) — V3(D, cos’n + Dy sin(2n)),
Arij = AF° +is A
1
A = 511 = 3sin®n)Jy + V3(L+sin’ ) D. — V3sin(20) Dy,
Azlm = COSUDp + Sinn(Dz + \/§J1),
1
A = Sleos?n(vV3D. = 3.1) + V3sin(2n) D, (B-9)
and

Ag) = —V/3Dp sin 27,

3
AR = —%DR sin(2n) + is;;Dg cosn,

A = ? sin(2n) Dg. (B.10)

In a similar way, we get second-nearest neighbor interaction, i.e. the second-nearest ex-

change, as

1
Haws =55 S 1AL ]b; + 1b;) + Agisblb; + hoc. + ARBIDE + hec] (BN
({i5))

with

AY = Jp(1 - 3sin?1),
Ao yj = AL +is ;AL
ALY = %(1 — 3sin?n)Js,
AL = V3sinnJ,

3
AL, = ) cos® nJy. (B.12)
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Let’s denote Hyy and Hynn by Hy and Hs, respectively. The total Hamiltonian can be
written as H = H; + Hy + Hpg. By performing Fourier transformation, H,, (m = 1,2)

becomes

S 1 . n
Hy o =500 D S{ADBL)ba(r) + (e + 2075 )bs(x + A6.5)]

r,af A==+1
+A bl ()b (T + )\égg)) + h.c + A;nbg(r)bg(r + )xégg)) + h.c.}
= g Z[4A7(2)5a5 + 28,05 cos(k - 5£))]bl,kbﬁ,k + Al cos(k - 5&75))
k,af
X (bl 1Dl i + baichs, 1) (B.13)

Hered}; = e3,8%) = e, 85 = e;and 8} = e}, 833 = e/, &5 = e}. We choose (Sgg) =

—5/(;2) ande; = (—3,—%3), e = (1,0),e3 = (—1,2), ¢} = e, —e3, €, = e3 — ey,

e, = e; — ey. In a similar way, we can show

S
Hp =3 ) i20papsin(k- SUNDL bsa + i, sin(k - 00) (] bE i + baibs,—1)(B.14)
k,a
Finally, the Hamiltonian is expressed in the basis Wy, = (by x, b2k, b3k, bl_k, b;_k, b;_k)T

as H = % Zk U Hi Wy with

Ao + Ak Bk
Hi = . (B.15)

B Ao+ A:
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Here, Ay = 2(A§0) + Ago))]lgxg and

0 cos k3 Ay cos ka A} 0 cospsAy  cospaAl
Ax = | cos ks A} 0 coskiA; | + | cospsAj 0 cos p1Ay
cos ko Ay cos k1 A} 0 cos p2Ag  cosprA; 0
0 isinksAp  —isin kAR
+ | —isinksAj 0 i1sin k1Ag )
isinkoAp  —isink Aj 0
0 cos ks cos ko 0 COSpP3  COS Do

Bix=Al| cos ks 0 cosk; | + A | cos D3 0 COos Py

cos ko cos kq 0 COS Py COS Py 0
0 isinks —isin ks
+AR | —isinkg 0 isink; |- (B.16)
isinky, —isink; 0

We abbreviated the notations: k; = k-e;,p; = k-el, A, = AT +iA"™ (m = 1,2), Agr =
—‘/TEDR sin(2n) + iDg cosn and considered the convention that sj5 = s93 = 33 = 1 and

Sij = _Sji-

B.0.3 Breathing pyrochlore antiferromagnet

We consider the model

H=JY S-S, +J > S-S +D> (S, 2) (B.17)
< < i

ij)Eu ijyed

Similar to the two-dimensional model, the magnon excitation is represented via the local

. . . A~ S A~ . S
Holstein-Primakoff transformationas S, = (S —al,a,)2, + /5 (a, +a}) 2, — z\/;(au -
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al )i, Therefore, the exchange interaction between two neighboring spins is expressed as

S
+ —[GL%FW + a,a,8,, + H.c.(B.18)

S, S, = SiSINY = SPN7 — S(alay, + afa,)AZ, 5

u~vttuv

where I'),, = A7 + AV — ATy + A% and Q,,, = AS7 — AV —iATY — iAY7. Here
Afff, =Cy- d, with Cu, d, being the ¢, d axis of the local frame of 1z and v atoms, respectively,
ie.,c,d=z,y,zand pu,v € (0,1,2,3) with u # v. We choose local frames as shown in
Table B.I. It can be shown by straightforward calculation that A% = —3, T, = —2 and
Q= §€i¢”” where g1 = ¢o3 = —§, Go2 = P13 = §, $o3 = ¢12 = 7 and other terms
can be generated by ¢, = ¢,, (1 # v). By substituting the magnon representation of

spin-spin interaction Eq. (B.18) into Eq. (B.17) and performing Fourier transformation, we

obtain the noninteracting magnon Hamiltonian

1 )
H= Y S[(J+J —2D)du, — S+ Jemdw)lal |,

k,uv

1 . )
+53(J + J'emkdw)eiPmg ya,y + h.c. (B.19)

where d,, = a, — a, witha, = (0,0,0), a; = %(0,1,1), a, = %(1,0,1), and a3 =
£(1,1,0).

I Ty Yu Zu
1 1 1
e [,
NoA S ) 76 )+ 7?; s T4y T
2| "L(1,1,0) | L(1,-1,-2) | L(-1,1,—-1)
1\/5 s Ly \/61’ ’ \{g y Ly
3 Ti(L_laO) _6(1’1’2) 75(_1a_1a1>

Table B.1: Local coordinates of AIAO breathing pyrochlore.
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Appendix C

Spin Nernst calculation

C.1 Squeezed cone phase

To intuitively understand the squeezed cone phase, we extract an ansatz depicting the pro-
file of both spiral and squeezed cone phases from the numerical simulation. Without loss
of generality, assuming these two types of spin texture vary along the x-direction, the spin

texture can be approximately captured by

n = N(a; sin %, g, a3 + COS %) (C.1)

Here, N is a normalization factor, L is the spatial period of spin texture, a;, as, az are vary-
ing parameters. When ay; = 0, the ansatz delineates a spiral structure with Néel field ly-
ing in x — z plane. Otherwise, it describes a squeezed cone structure with an elliptic cone
cross-section which is captured by a;, a3. Next, we substitute the ansatz into the free en-
ergy (the spatial integration of Eq. (5.1)) and minimize it with respect to aq, as, as, K, and
H,. The ground state at each point in the parameter manifold can be determined by com-
paring the minimized free energy resulting from a different ansatz. In a collinear phase,

F =K(n, — %) + Z’E, which favors a tilted collinear phase with n, = 53z < 1 when

. . . . . . . 2 . . .
Hs < 2K. The free energy in this tilted phase is minimized to Fijteq = Zf—,c The minimiza-
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tion process based on ansatz Eq. (C.1) shows that, at H, = 0, the spiral and squeezed cone
phasemeetat K7 /D? = 1, and the squeezed cone phase turns to the tilted collinear phase
at KJ /D? = 2. This is consistent with the phase diagram in the main text. Furthermore,
when H, > 0, the minimization shows that the critical K value between the squeezed cone
and tilted phase slowly shifts to the left along with increasing the value of H,, which again

confirms an oblique-line boundary between two phases in the phase diagram.

C.2 Spin current operator

In antiferromagnets, the local magnon spin density is S.(7) = S(ms + mp) - 2 ~

£ cosO(7) (Y5vp — ¥itha), which can be written in subspace up to a constant as
SX(7) = — St cos 6 C.2
() = =i cos 97Ty (C.2)

According to the spin density definition and Schrédinger-like equation (5.17), the time evo-

lution of spin density reads

S . — =
0,SY = D) coS e(atnLTan + T]LTg@ﬂ]X) = —1i)x Ccos 977>T<<Hx — H )y

= i cosnl (. + ixa)? — (T~ ixa)(n — D,

= _iX% cos 9771[(%12 — 3?) + ix2(<51»ai + aigz)](ﬁ — 1)n,
iJ < 2 (VN
= —X§&-{cos Q[UL(&- — 0;)(mn — 1)ny ]} — §&»(22ai cos 077;(7'1 —1)n,)
' = =
—l—x%(@i cos 9)771(@ —0;) (=1L +--- (C.3)
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Here, “ - - " refers to higher order of spin texture derivative. We can identify a spin current
as
) 1J S 7 .
J?,i = X? COS 9[77;(82‘ —0;) (11 — ﬂ)nx + ZX2CL2‘77>T<(7'1 - ﬂ)ﬁx]
J Y =
= xg cos{0n'((i 9 — xai) + (=i di — xai)|(n — D)n}
— X%ﬂ(%f* cos 8 + cos 03?‘)(7’1 —1)n, (C.4)
where DX = —i0; — xa;. The left term is regarded as a torque contribution for z-

component spin density, i.e.,

1J = =
TX = X?(&- cos 9)77;2(81- — 0;)(1 — 1)ny. (C.5)
So far, the derivation is performed in subspace for each chirality, while it’s straightforward
to recover the full basis representation. Take the spin current as an example,

. 1 ~ N
Joi = 5#}*(1;; & Jo)v (C.6)

where j;‘z = X%(%f* cos f + cos 93?‘)(71 — 1), the prefactor 1/2 compensates for the
double counting effect. Note that this result is block diagonalized as a result of the leading
order approximation. When all higher-order terms are taken into account, there could be

components mixing two chiralities.

C.3 Spin Nernst effect calculation based on the Landau
levels

Since the spin current density operator j, ; breaks translational symmetry in both direc-
tions, there is no ready-made formula for calculating the spin Nernst response. However,

in a skyrmion lattice (SkX), }sz takes the same form in each skyrmion unit cell, which al-
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lows us to use the result for a periodic system. Consider a triangle SkX with basis vec-
tors @ = ai and @y = a/2% + \/3/2ag, where a = 2R and R is the radius of a sin-
gle skyrmion. In the two subspaces, as a result of two magnetic flux per unit cell, i.e.,
Bz - (dy x dz)/(27) = 2 (the sign of the flux depends on the chirality), magnetic transla-

tional operators are defined as
KPS s 4l F e
Ty = 0P Ty, = e NI TRP, (C.7)

where p = —iV. We are able to construct a basis based on the Landau level solution,
which is composed of a scalar and a spinor part. The periodic condition is imposed on
the spatial variable dependent scalar part. Suppose the periodic basis takes the form
©X =@ pX . (7 inthe full space, where &, = (1,0)T®@®5 ,_, = (0,1)T®@®* .
Translational invariance requires pX . (7') to satisfy

ikia

X _ X X _ tkaa x
Talpns,m =€ pns,m7 T(Izpns,m =e pns,rm (CS)

where k = Kby + koby with by, = %ﬂ(i - gj/\/g) and 132 = %”\%yj, m = 0,1 refers to a

degeneracy index for each Landau level. The basis scalar part is constructed as [235, 256]

o0

_ ) I+ —1) —ix (4 2) (B —ko)a ex
pgsvm - Z ( 1) : : e 2 ’ n,—kl—(l—i-%n)%r' (C9)
l=—0

To include all possible terms neglected in the leading-order-derivative approximation
and uniform magnetic field assumption, we go back to work in the full space v =
(a4, 0%, 0%, ¥p)T. The Fourier components of this field can be expanded in the periodic

basis

k= Y nymx (BB 0X, (F). (C.10)

n7m’X7S
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Here, {pX,,(k)} is a set of complete orthogonal basis with [ dripX%,(k)py .. (k) =
Onn/ Oy and 3 pX . (K)pX5, (k) = 1pp with 177, being the unitary matrix in the

Landau-level space. In second quantization language, regard a,,_ .., (a] ) as annihi-

T, 1M, X

lation (creation) operator. Therefore,

w"”d}k Z Z pn mpg :1 q);n<q)i/’,n’)T[anb m,x» CLIL, m/ X] g3 & T3, (CII)

n,m,x,s n’;m’,x’,s’

with o3, 73 being the Pauli matrix acting on chirality (or particle-hole) and sublattice space,

respectively. This requires

[ang, m,xo CLL/ m’ X] = 5n,n’5m,m’5x,x’(7-3)ss’7 (CIZ)

where we used
Z ci);,n(é;,n)T(Ti%)ss = 03 & T3. (C.13)

On the other hand, the original basis satisfies particle-hole symmetry, vF = ¢, o1 ® 7
with o, being the Pauli matrix in chirality space, and this property will also be reflected in

the new basis. Apply the particle-hole symmetry relation

Vi =vhoien= ) al L (CR)I(®,) 0@ mlek, (k)

n,M,X,S

= > b (FR@T) Pk (R)

n,m,x,s
= ) al o (ZR)(@,) 0 (K), (C.14)

n7m7X7S

which suggests

ans,m,x(k) = aT_ - (_k) (C.15)
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Here, we used the relations (93 )"0y ® 79 = (073 ,)" and pX, (k) = p, X/(—k). The
relations in Eq. (C.12) and (C.15) guarantee that a Hamiltonian expressed in the new ba-
sis can be also diagonalized by a paraunitary matrix, as we shall discuss below. Actually,
Eq. (C.12) is a natural result of Eq. (C.15).

To describe the magnon excitation in a real skyrmion lattice based on the Landau-
level expansion, one can divide the magnon Hamiltonian in a SkX into two parts: H =
Ho + H'. Here, H, is the Hamiltonian leading to the Landau levels, H' is regarded as a
perturbation, which contains all possible terms dropped in the Landau level analysis. These
perturbations include anisotropy, staggered Zeeman term, and those containing higher
orders of the spin-texture spatial derivative, and especially the emergent gauge field lost
in the average process, i.e., @’ = a — ao. In principle, the spin texture induced emergent
vector potential, especially the part corresponding to a nonuniform magnetic field, a’, acts
as a periodic potential that confines magnons in alattice. In total, the full Hamiltonian can

be represented as a matrix under the periodic basis Eq. (C.9)

(Hk)nsmx,n;,m’x’ = gn(sss’én,n’(sm,mléxxl + (Hl/c)nsz,”;/m/X/’ (C.16)

Whet‘e <90%s7m|7:[0|sp)7§:‘“m/> = 871555/ (Sn,n’(Sm,m/(SXXl and (Hllc>nsz7n;/m,X’ —
~ / 2\ X —\ A ! :

(P R ) Here, (03, ulOleY ) = Jue dFl0%, (P Oy (7), with

u.c. standing for the “unit cell" and O = H,, H'. If we number the element of the Hamil-
tonian matrix by arranging the indexes in the order s — n — m — x, the Hamiltonian

matrix can be diagonalized by a paraunitary matrix T}
T;IHka = Diag{e1 k. " s E4N K, E1,—ks " » EAN,—k }- (C.17)

Here, N counts the Landau levels which are truncated to an energy comparable with the
dominant scale .J, and T,i&ng = 03, where o3 = 03 @ 1y ® 15 ® 1, with four matrices

on the right acting in particle-hole, Landau level, degeneracy freedom, and chirality space,



182

individually. The Bloch wave function is expressed as

(7)) = D (Te)nams [0, 1 (F))- (C.18)
n,s,m,x
Here, uX (") = ¢X (7~ R)with B = pd, + qd (p, q € integer) and 7 € V5, the “unit
cell" at . This is a result of the periodic property of X iX (7)) = ei’z'éuﬁs (7).

Finally, the spin Nernst current is calculated as

2k .
Jsy = 73 ()2 er[g(en)]0T (C.19)
n,k
with
j ~ ~ QIm[(js y)nm(vx)mn]
Js,y — )
(Qn)vz mZin(o-l%)'rm(0-3>mm (émk — ém’k)Q . (CZO)

Here, O = (Gt |Otnr) = [, difue (7)) Ot (7) with O, = e * RO R, O =
Jsws Vs, aNd &y g = € (—& i) forn < N (N < n < 2N)with N = 4N being the total
number of bands. Note that the result calculated in this way is correct to the leading order

of spin-texture spatial gradient as the spin current operator is derived to this order.
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