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As the spin excitation quanta in magnetic materials, the magnon is at the heart of

the spintronics research because it plays a key role inmagnetic dynamics, energy and spin

transport, and even determining the ground state of magnetic systems. In this thesis,

we will study the band-structure topology and transport properties of magnons in both

collinear and noncollinear magnets. Inspired by the great success of topological insula-

tors, exploringmagnon topology can unveil the topological nature of bosonic particles and

widen the zoo of topological materials. We propose a three-dimensional magnon topo-

logical insulatormodel protected by sublattice chiral symmetries, which realizes a surface

Dirac cone in amagnonic system. On the other hand, magnons can facilitate angularmo-

mentum transport with low dissipation due to the absence of Joule heating. We explore

the spinNernst effect, a transverse spin current driven by a temperature gradient, in non-

collinear magnetic systems by developing a new linear response theory. �e theory will

be applied to frustratednoncollinear antiferromagnets, antiferromagnetic skyrmion crys-

tals, and an antiferromagnetic magnon topological insulatormodel. In particular, the an-

tiferromagnetic magnon topological insulator model is featured by unconventional Lan-

dau levels and can be regarded as a magnon version of the quantum spin Hall effect. In

addition to the magnon-mediated spin transport, magnons are also able to accumulate

nonequilibrium net spin density in a sample under the driving of a temperature gradient.

�e latter effect is amagnon version of the Edelstein effect and can be also analyzed by the

aforementioned linear response theory. Such an effect can be ideally realized in 2D and 3D

noncollinear antiferromagnets that have a compensating ground state.
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Chapter 1

Introduction

Research on topology and relevant transport phenomena in electronic systems has greatly

added to the richness of condensedmatter physics in recent decades. �e journey of these

topological explorationswas initiatedby thediscoveryof thequantumHall effect [1],where

the quantumconductance is explained by a topological invariant [2,3]. Henceforth, the ex-

ploration of topological physics blossomed. Various Hall-type transport physics, includ-

ing (quantum) anomalous Hall [4–6], (quantum) spin Hall [7–9], and thermal Hall [10, 11],

have become the mainstream of condensed matter physics. �e underlying connection

between the band-structure topology of materials, the quantized conductance, and the

edge-state physics was gradually recognized. Another breakthrough is the discovery of

topological insulators and superconductors [12, 13], which greatly expanded the realm of

topological physics in real materials. �is development has improved our understanding

of topology mainly in the sense of uncovering the important relationship between sym-

metries and topology. At the same time, other fascinating physics emerges, e.g., surface

Dirac cone, topological magnetoelectric effect, Majorana zero modes, etc. Later, the fo-

cus was partially shifted from gapped (insulator, superconductor) systems to gapless sys-

tems, metals, which include topological Weyl and Dirac semimetals [14]. �e rapid devel-

opment of topological condensedmatter physics does not only improves our understand-
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ing of fundamental physics, but also brings about a great potential for applications. For

example, (quantum) spinHall effect has beenwidely used as a spin source in the spintron-

ics research [15], topological insulators can be used in photodetectors, magnetic devices,

field-effect transistors, quantum computing, etc. [16, 17]

Stimulated by developments in electronic systems, there has been a surge of study-

ing the topology of other systems, e.g., magnonic [18–24], acoustic [25, 26], and photonic

[27] systems. �e study of magnon topology started from the prediction and realization

of the magnon thermal Hall effect in ferromagnets [28, 29]. �e thermal Hall effect was

quickly attributed to the Berry curvature induced anomalous velocity of magnons [30,31].

�ere was subsequently investigation of the magnon analogy of Chern insulators and the

corresponding edge states [20, 32–35]. Remarkably, a magnon version of the representa-

tive Haldanemodel was found in a honeycomb ferromagnet [36,37]. In antiferromagnets,

with collinear or noncollinear spin orders, the magnon spin Nernst effect [38, 39] and the

magnon thermal Hall effect [40–44] have been discovered. Moreover, the realization of

magnon Weyl and Dirac spectrum drew considerable attention [45–51]. All the progress

does not only enrich the magnon physics from a fundamental level but also implies new

opportunities for spintronics. For instance, themagnon spinNernst effect suggests a new

low-dissipation spin generationmethod; the thermalHall effect offers away to explore the

topology of the excitation spectrum in insulators or even to detect the spin liquid materi-

als [52].

In this work, wewill study the rich physics ofmagnons in different kinds ofmagnetic

insulators, including collinear ferromagnets and antiferromagnets, noncollinear antifer-

romagnets, and spin textures. �e focus is mainly on the magnon band-structure topol-

ogy and magnon-mediated spin transport and accumulation. In the rest of this chapter,

we introduce necessary background knowledge that will be frequently used in subsequent

chapters. First, wediscuss the origin of spin-spin exchange interactions andbriefly review

several kinds of commonly considered interactions inmagneticmaterials. Second,wedis-
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cuss the concept of magnons by reviewing the Holstein-Primakoff transformation. Next,

we introduce the important concept of Berry curvature, and relevant topological physics.

As an example, we discuss the famous Haldane model and its realization in magnon sys-

tems. �is can be regarded as a warm-up for Chapter 2 wheremore involved topology will

be discussed. We also discuss the real-space Berry curvature which induces an emergent

gauge field for electrons or magnons in a spin-texture background. �is lays down the

foundation for exploring the magnon excitations in a skyrmion crystal, which is the topic

of Chapter 5. Finally, we outline the linear response theory to prepare for our discussion

on the temperature gradient induced linear response phenomena in Chapters 3 and 4.

1.1 Spin-spin interactions

�e foundation of this thesis is a variety of spin-spin interactionmodels that describe dif-

ferent magnetic systems. In this section, we briefly review three types of common and

important interactions: the exchange, magnetic anisotropies, and Dzyaloshinskii-Moriya

interaction (DMI).

1.1.1 Exchange interaction

�e simplest model commonly used to describe spin exchange is the Heisenberg model.

We follow Ref. [53] to explain the origin of exchange interaction. In materials, the mag-

netism comes from the alignment or staggered ordering of themagneticmoments of elec-

trons. �e direct dipole-dipole interaction in which the spins of electrons are directly in-

volved is tooweak to explain the typicalmagnetism at high temperatures. It has been real-

ized that themechanism to explain the formation of localmagnetization could come from

the Coulomb interaction.

�is picture can be explained by considering twoorbitalsφ1, φ2with energy ε1, ε2. �e



4

electron fields can be described by φ1(2)

ψ†s(x) =
∑
i

φ∗i c
†
s, s =↑, ↓, (1.1)

where c†s is the creation operator for an electron of spin s. �eCoulomb interaction is given

by

U =
1

2

∫
dxdyV (x,y)

∑
s,s′

ψ†s(x)ψ†s′(y)ψs′(y)ψs(x) (1.2)

where V (x,y) describes the Coulomb interaction potential between electrons atx and y.

Substituting Eq. (1.1) into the interaction above leads to

U =
∑
i 6=j

Uijninj +
∑
i

Uiiρi,↑ρi,↓ +
∑
i 6=j,ss′

Jc†i,sc
†
j,s′ci,s′cj,s (1.3)

where Uii, Uij, and J are overlap integrals of orbital function on the corresponding sites,

and ni =
∑

s ρi,s with ρi,s being the density of electron with spin s. In the full screening

or no screening cases, the exchange integral J can be shown to be positive, which endows

a ferromagnetic exchange between local spins in the following discussion. �e Coulomb

interaction finds minimum value in the situation where electrons are distributed on two

orbitals, i.e., ni ' 1, the interaction can be simplified to spin-spin exchange interaction

on two sites. Note

∑
ss′

Jc†i,sc
†
j,s′ci,s′cj,s = −2J(Si · Sj +

1

4
ninj), (1.4)

whereSi = 1
2

∑
ss′ c

†
isσss′ci,s′. Up to a constant, the Coulomb interaction is reduced to

U = −J
∑
i 6=j
Si · Sj. (1.5)
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To this point, we based the theory upon two assumptions: (i) the two orbitals are non-

degenerate and are isolated from other orbitals in energy, (ii) the two orbitals are orthog-

onal to each other, which is usually true for two orbitals around the same atom. �ese

assumptions limit the resultant coupling to be ferromagnetic. To gain antiferromagnetic

exchange, a model of two electrons living on different sites would be more appropriate.

Fix the ions on positionsR1,R2 and two orbitals φ1, φ2 are centered at the corresponding

atom position. �e full Hamiltonian describing such a system is

H =
∑
i=1,2

H
(0)
i + δH (1.6)

where

H
(0)
i = − ~2

2m
∇2
i −

e2

|ri −Ri|2
,

δH =
∑
i 6=j

−e2

|ri −Rj|2
+

e2

|r1 − r2|2
+

e2

|R1 −R2|2
. (1.7)

Here, the two orbital wave functions obey

H
(0)
i φi = E0φi, (i = 1, 2). (1.8)

To avoid large on-site Coulomb interactions, electrons prefer spatially separated wave

functions which can be constructed as

ψ1 = φ1(r1)φ2(r2),

ψ2 = φ1(r2)φ2(r1). (1.9)

By performing the variational calculation, it can be shown that the energyminimizedwave
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function is either symmetric or antisymmetry under exchange of electron coordinates

ψ± =
1√
2

(ψ1 ± ψ2). (1.10)

When the spin freedomof electrons is taken into account, the overall wave function should

be composed of a spatial part and a spinor vector part, and the wave function should flip

sign under the interchange of two electrons. �erefore, the full wave function is expressed

by

Ψ± = ψ∓(r1, r2)χ±(r1, r2) (1.11)

where the spinor part is

χ± = χ↑(r1)χ↓(r2)± χ↑(r2)χ↓(r1). (1.12)

Here, χ± describes antiparallel spin states. It can be shown that the wave functions Ψ+,

Ψ− are the triplet and singlet eigenstates of the total spin operator

Stotal =
∑
i=1,2

1

2

∑
ss′

c†isσss′ci,s′ . (1.13)

�e corresponding eigenvaluesE± are spaced by an energy gap

E+ − E− = J > 0. (1.14)

�e system can be effectively presented as a Heisenberg antiferromagnet

H = JS1 · S2 = J [
1

2
(Stotal)

2 − 3

4
] =


1
4
J, Stotal = 1

−3
4
J, Stotal = 0

. (1.15)
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Here, the relationS2
1(2) = S(S+1)withS = 1

2
is applied. Compared to the ferromagnetic

exchange case, themodel leading to the antiferromagnetic exchange involves two spatially

separated non-orthogonal orbitals, which allows hopping of electrons between two sites.

�e anti-alignment of spins in an antiferromagnetic state can reduce the kinetic exchange

energy.

In this thesis, we are mainly interested in the insulating antiferromagnet. �e origin

of antiferromangetic exchange in a ionic insulator can be easily understood by considering

a two-site Hubbard model [54],

H = −t
∑
s=↑,↓

c†1,sc2,s +
∑
i=1,2

Uρi,↑ρi,↓, (1.16)

where the first term describes the kinetic energy with exchange energy t, U is the on-site

Coulomb interaction energy introduced in Eq. (1.3). �e Hilbert space for this model is

composed by six bases, {| ↑↓, 0〉, |0, ↑↓〉, | ↑, ↓〉, | ↓, ↑〉, | ↑, ↑〉, | ↓, ↓〉}, under which the

Hamiltonian is written as a matrix

H =



U 0 t −t 0 0

0 U t −t 0 0

t t 0 0 0 0

−t −t 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


. (1.17)

Transforming the sub-basis from (| ↑, ↓〉, | ↓, ↑〉) onto {(| ↑, ↓〉− | ↓, ↑〉)/
√

2, (| ↑, ↓〉+ | ↓
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, ↑〉)/
√

2} simplifies the above Hamiltonian to

H ′ =



U 0
√

2t 0 0 0

0 U
√

2t 0 0 0
√

2t
√

2t 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


. (1.18)

�e eigenvalues of the second sector are degenerated at 0. �eir eigenstates form a triplet,

(| ↑, ↓〉 + | ↓, ↑〉)/
√

2, | ↑, ↑〉, and | ↓, ↓〉. �e eigenvalues of the first sector are U , (U ±
√
U2 + 16t2)/2. For a ionic systemwith small kinetic energy, t� U , the lowest energy is

U −
√
U2 + 16t2

2
' −4t2

U
< 0. (1.19)

In the limit U/|t| → ∞, the corresponding eigenstate approaches to the singlet (| ↑, ↓

〉− | ↓, ↑〉)/
√

2. �erefore, we found that the singlet (antiferromagnet) has a lower energy

than the triplet (ferromagnet), which can be described as a antiferromagnetic Heisenberg

exchange model

Heff = JS1 · S2 (1.20)

with J = 4t2/U . �is mechanism is called kinetic exchange. It results from that the anti-

parallel spin configuration reduces the kinetic energy between electrons. �is result does

not only hold for a two-site model, but can be generalized to lattice models.
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1.1.2 Other interactions

In general, the interaction between spins can be written as

H =
∑
ij

SiĴijSj (1.21)

where Ĵij is a 3 × 3matrix that describes the coupling between different components of

two spins. �e Heisenberg model corresponds to a unit matrix Ĵij = J1. If the diagonal

elements of the matrix take different values, i.e., Ĵij = Diag{Jxij, Jyij, Jzij}, it describes

anisotropic exchange interactions. A famous example of this is the Kitaev model [55]. �e

coupling matrix also allows an antisymmetric part

Ĵij =


0 −Dij,z Dij,y

Dij,z 0 −Dij,x

−Dij,y Dij,x 0

 (1.22)

which describes the Dzyaloshinskii-Moriya exchange interaction (DMI)

HDMI =
∑
ij

Dij · (Si × Sj). (1.23)

DMI between spins usually arises from the superexchange interactionmediated by a non-

magnetic atom innon-centrosymmetric environment. In Fig. 1.1, the direction of theDMI

vector between two neighboring spinsS1 andS2 is given byD12 ∝ r1×r2 with r1 and r2

respectively being the vector pointing from the nonmagnetic atom to themagnetic atoms.

�e strength ofDMI is proportional to the energy scale of spin-orbit coupling. Inmagnetic

thin films, DMI usually arises from the nonmagnetic atoms of the heavymetal substrates.

Apart from the two-ion interactions, there are systems that also have single-ion con-

tributions. First, the spin orders are usually affected by the single-ion anisotropy due to
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Figure 1.1: �e Dzyaloshinskii-Moriya exchange interaction (DMI) between two neighbor-
ing spins is mediated by a non-magnetic atom. �e DMI vector is pointing along the di-
rection of r1 × r2.

the crystalline field

HA = K
∑
i

(S · n̂i)2. (1.24)

When K < 0, it is called easy-axis anisotropy with n̂i giving the preferred direction of

spins; whenK > 0, it describes the easy-plane anisotropy due to which spins are inclined

to lie in the plane perpendicular to n̂i. Typically, in collinear ferromagnets or antiferro-

magnets, n̂i’s are given along a single direction for all spins. While for noncollinear anti-

ferromagnets, e.g., the three-sublattice antiferromagnets, the situationwill becomemore

complicated.

In consideration of specific magnetic systems, it could also include Zeeman interac-

tions between the external magnetic field and local magnetic moments, or dipole-dipole

interactionswith a strength inversely proportional to the cube of the distance between two
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Figure 1.2: Spin waves. Here, the vertical arrows show the ground-state spin direction.

spins. �e details will be given if necessary in the following discussion.

1.2 Magnons: Holstein-Primakoff transformation

In the last section, we introduced different types of spin interactions, which can fix the

magnetic system to a certain ordered ground state in ferromagnets or antiferromagnets.

At low temperatures, it is mainly the quantum fluctuation on top of the ground state that

contributes to transport properties in insulatingmagnets. In the classical description, we

call thefluctuation as spinwave. In aquantummechanical frame, the spinwaves are quan-

tized as bosonic quasiparticles, magnons, which carry quantized spin ~. Fig. 1.2 schemat-

ically shows the spin waves or magnons upon a vertical ground state. �e main focus of

this thesis is the topology of magnon band structure and magnon-mediated spin trans-

port. �erefore, in this section, we introduce the concept of magnons by reviewing the

Holstein-Primakoff transformation.

In the ground state of a ferromagnet, all spins with magnitude S are aligned along a

certain direction. One can assign this direction to be the z-axis, thus the spin state on a

given site is labeled by the eigenvalues of the quantum operator Ŝ2, Ŝz:

Ŝ2|S, Sz〉 = S(S + 1)|S, Sz〉,

Ŝz|S, Sz〉 = Sz|S, Sz〉. (1.25)

Here, Sz takes values−S,−S+ 1, · · · , S− 1, S. �ese successive states are distinguished

by a quantized variation of Sz, which indicates a deviation of spins from the quantiza-
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tion axis. �is deviation describes the excitation states. If one regards the ground state

as a quantum vacuum state, all excited states can be built up through the following ladder

operators

S± = Sx + iSy, (1.26)

where S+, S− can respectively increase and decrease the value of Sz by one, i.e.,

S±|S, Sz〉 =
√

(S ∓ Sz)(S ± Sz + 1)|S, Sz ± 1〉. (1.27)

We see that the ladder operators realize the spin deviation from the ground state, which

facilitates the description of the quantum fluctuation. In the second quantization lan-

guage, the ladder operators are reformulated bymagnon operators through the Holstein-

Primakoff (HP) transformation

S+ =
√

2S − nbb, S− = b†
√

2S − nb, Sz = S − nb. (1.28)

Here, b and b† are magnon annihilation and creation operators, respectively. �ey respect

the following commutation relations

[b, b†] = 1, [b, b] = [b†, b†] = 0. (1.29)

�emagnonnumber operator isnb = b†b. Away to confirmthe validity of these relations is

by checking the agreement between magnon commutators and the commutator between

quantum spin operators [Si, Sj] = iεijkSk. When dealing with magnons, one needs to be

aware of their unphysical aspects. �ebosonicnature ofmagnons implies that themagnon

number nb corresponding to a given spin can take any nonnegative integer value. �is ob-

viously contradicts theHP transformation regarding the requirement 2S−nb ≥ 0. �ere-
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fore, to be physical, the system has to be restricted to the regime nb ≤ 2S.

Magnon picture is an effective tool in the low-temperature region where themagnon

number is small: nb � 2S (this requires S � 1). In this case, the HP transformation

can be kept to the lowest order, S+ ≈
√

2Sb, S− ≈
√

2Sb†, and Sz = S − b†b, thus

we can obtain a bilinear Hamiltonian by substituting these approximations into the spin-

spin interaction energy. �emagnon bilinear Hamiltonian runs through the whole thesis,

playing the role of the starting point of all topics. We take the case of the ferromagnetic

Heisenberg model as an example

H = −J
∑
〈i,j〉

Si · Sj (1.30)

where J > 0 and 〈i, j〉 describes the nearest neighbors. Assuming the ground-state spins

lie in the z-direction, the Hamiltonian is re-expressed as below

H = −J
∑
〈i,j〉

Szi S
z
j +

1

2
(S−i S

+
j + S+

i S
−
j )

= JS(
∑
i

Za†iai −
∑
〈i,j〉

a†iaj + aia
†
j), (1.31)

whereZ counts the neighboring sites of a given spin. �emagnon operator bilinear form

of the Hamiltonian enables us to discuss band structure by going to momentum space

through the Fourier transformation

ai =
1√
N

∑
k

eik·rak, a†i =
1√
N

∑
k

e−ik·ra†k. (1.32)

�e Hamiltonian in momentum space reads

H = JS
∑
k

[Z −
∑
δ

cos(k · δ)]a†kak (1.33)

where δ represents the nearest neighbor shifting vector. Here, this simple example has
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only one band

E(k) = JS[Z −
∑
δ

cos(k · δ)]. (1.34)

In more general cases, each unit cell contains more than one spin freedom. �e Hamilto-

nian could be generally expressed in the form

H =
∑
k

Ψ†kHkΨk (1.35)

whereΨk = (a1,k, a2,k, · · · , aN,k)T withN being thenumber of spins per unit cell, andHk

is aN × N matrix. �e high dimensionality of the Hamiltonian allows multiple magnon

bandsand thusmakes theassociationwith richbandstructure topologypossible. �emost

common topological invariant considered formagnon bands is theChern number that can

be defined for the Chern insulator or Weyl spectrum, as we will be discussing in the next

section.

�emagnons in antiferromagnets can be introduced by following the same logic, and

similar derivations from the Heisenberg model can be carried out. However, the Hamil-

tonian will take a Bogoliubov-de Gennes (BdG) form that is usually used in superconduc-

tivity theory, because this form can capture the particle-nonconserved anomalous terms,

aibj, a
†
ib
†
j. In this thesis, we will extensively discuss the magnons in antiferromagnets. A

complete procedure of Hamiltonian presentation, diagonalization, and relevant topology

will be elaborated in Chapters 3 and 4.

1.3 Topologicalmagnons

A key element of this thesis is the topology in the magnetic systems. As a warm-up, in

this section, some basic topology in condensed matter physics and a brief review of the

development in magnetic systems will be given by following Ref. [4, 56, 57].
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1.3.1 Berry phase and Chern number

Consider a system described by a HamiltonianH[R(t)] that evolves with time t through

the parameterR(t) = {R1, R2, · · · , Rn}. At each moment, the system has an instanta-

neous eigenstate

H[R(t)]|un(R(t))〉 = En(R(t))|un(R(t))〉. (1.36)

However, the state at each moment cannot be fully determined by this equation due to

the phase uncertainty. To understand this, we investigate the solution of the Schrödinger

equation

∂t|Φ(t)〉 = H[R(t)]|Φ(t)〉. (1.37)

In the adiabatic approximation, the system stays at one of the instantaneous eigenstates

provided that the eigenvalues are separated from each other and the time evolution is very

slow. In this case, the Schrödinger equation solution will take the form

|Φ(t)〉 = eiγne−
i
~
∫ t
0 dt
′En(R(t′))|un(R(t))〉 (1.38)

where the phase factor γn satisfies

∂tγn(t) = i〈un(t)|∂tun(t)〉. (1.39)

Alternatively, the extra phase γn can be expressed in the parameter space

γn =

∫
dR ·An(R) (1.40)
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whereAn(R) is the so-called Berry connection and it is expressed as

An(R) = i〈un(R)|∇un(R)〉 (1.41)

which is gauge dependent. When the eigenstate acquires an extra phase factor

|un(R(t))〉 → eiχn(R(t))|un(R(t))〉, (1.42)

the Berry connection transforms as

An(R)→ An(R)−∇Rχn, (1.43)

and the phase factor will correspondingly change by χn(R(T )) − χn(R(0)) if the system

evolves from t = 0 to t = T . For a cyclic evolution of the system along a closed path in the

parameter space withR(T ) = R(0), the variation of phase factor requires

χn(R(T ))− χn(R(0)) = 2πm, m ∈ Integer, (1.44)

to make the phase choice of eigenstates to be single-valued. �erefore, the extra phase γn

is gauge independent for a closed path and known as the Berry phase. For a closed path,

the Berry phase can be re-expressed by Stokes’ theorem

γn =

∫
∂S

dR ·An(R) =

∫
S

dS ·Ωn (1.45)

where

Ωn = ∇×An(R) (1.46)
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is called Berry curvature. By utilizing the completeness identity

1 =
∑
n

|un〉〈un| (1.47)

and the perturbation theory induced identity

〈um|∇|un〉 =
〈um|∇H(R)|un〉

En − Em
, (1.48)

the Berry curvature can be expressed in terms of eigenstates

Ωn = Im
∑
m 6=n

〈un|∇H(R)|um〉 × 〈um|∇H(R)|un〉
(En − Em)2

. (1.49)

In condensed matter, the Hamiltonian can be presented in the momentum space

H = H(k) and the corresponding eigenenergies are called Bloch bands. �e momen-

tum variable falls into the Brillouin zone (BZ) which is naturally a closed manifold. For an

isolated band, the Berry phase and Berry curvature are well defined. Especially, in a 2-D

system, the Berry phase over the BZ is actually a Berry flux considering that the Berry cur-

vature is a momentum-space “magnetic" field and the BZ is identical to a torus. When the

flux is 2πmultiplied by an integer, i.e.,

Cn =
1

2π

∫
BZ

dSk ·Ωn(k) ∈ Integer, (1.50)

Cn, the integer, is the well-known Chern number for Block band n. In condensed matter

physics, a nonzero total Chern number of occupied bands usually demonstrates nontrivial

topology.
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1.3.2 Haldanemodel and its realization inmagnon systems

�e Chern number introduced at the end of last section can bring us to a very important

concept in condensed matter: topology. �is section will review a famous topological in-

sulatormodel, theHaldanemodel, and then discuss its realization inmagnon systems. In

developing thismodel,Haldane tried tomimic the quantumHall effectwithout using anet

magnetic flux [4]. He realized that the essential point is actually not themagnetic field but

breaking time-reversal symmetry instead. As a result, he built a model on a honeycomb

lattice without introducing a net magnetic flux. �e way to achieve this is by introduc-

ing a next-nearest neighbor hopping with a path-dependent phase factor, and the overall

flux around a plaquette corresponding to the phase factor is zero. �e Hamiltonian of the

model reads

H = t1
∑
〈ij〉

c†icj + t2
∑
〈〈ij〉〉

e−iνijφc†icj +M
∑
i

εic
†
icj (1.51)

where t1, t2 are the strength of nearest and second nearest neighbor interaction,M is the

on-site inversion symmetry breaking potential, εi = ±1 depending on the type of atom

on the site i, the sign of phase factor is determined by

νij = sign(d̂1 × d̂2)z = ±1 (1.52)

with d̂1,2 being the vector along the bonds bridging the second-nearest neighbor hopping.

Fig. 1.3 shows the sign convention of the phase factor for different next-nearest hopping.

In momentum space, the Hamiltonian is expressed as

h(k) = ε(k) + di(k)σi (1.53)
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Figure 1.3: �e phase arrangement in the honeycomb lattice for the Haldane model.

with σi (i = 1, 2, 3) being the Pauli matrix and

ε(k) = 2t2 cosφ
∑
i

cos(k · bi),

d1(k) = t1
∑
i

cos(k · ai),

d2(k) = t1
∑
i

sin(k · ai),

d3(k) = M − 2t2 sinφ
∑
i

sin(k · bi). (1.54)

Here, a1 = (0, 1), a2 = (−
√

3
2
,−1

2
), a3 = (

√
3

2
,−1

2
), and b1 = a2 − a3, b2 = a3 − a1,

b3 = a1 − a2.

Before exploring the topology, it is helpful to learn the symmetry of thismodel. Physi-

cally speaking, the imaginaryhoppingparameter implies thepresenceof a vector potential

that breaks time-reversal symmetry. �e staggered on-site potential breaks the inversion
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symmetry. To see this, we need to analyze the momentum space Hamiltonian. First, the

time reversal operation changes the imaginary unit i to−i, which will also effectively flip

the sign of the momentum variable, k → −k. Overall, time-reversal symmetry requires

h(k) = h∗(−k). It is obvious that the d3(k) term doesn’t satisfy this except for φ = 0, π.

Second, the only possible inversion center is the center of the unit cell, with respect to

which theA,B sublattices switchwith each other. �is switching is executed in theHamil-

tonian matrix by σx. Furthermore, inversion also maps k to−k. �erefore, the inversion

symmetry imposes the constraint h(k) = σxh(−k)σx which is again broken by d3(k) due

to the nonzeroM . �e goal of the model is to realize the (anomalous) quantumHall effect

which requires the absence of time-reversal symmetry, so the model is satisfying at least

the symmetry aspect.

In a honeycomb lattice, the band gap closing and reopening occur around two Dirac

pointsK andK ′. An easyway to understand the topology of themodel is by observing the

band gap behavior under tuning parameters. �e Hamiltonian around two Dirac points

reads

hK = −3t2 cosφ+
3

2
t1(kyσx − kxσy) + (M − 3

√
3t2 sinφ)σz,

hK′ = −3t2 cosφ− 3

2
t1(kyσx + kxσy) + (M + 3

√
3t2 sinφ)σz. (1.55)

�e energies of the two points are

EK(K′) = −3t2 cosφ±
√

9

4
t21k

2 + ∆2
K(K′)

(1.56)

where the energy gaps are

∆K(K′) = M ∓ 3
√

3t2 sinφ. (1.57)

In an insulating system, the changeofChernnumber is always accompaniedbygapclosing
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and reopening, which is called a topological phase transition. Let us start from the limit

M → ∞, which describes a trivial atomic insulator in which all electrons are trapped at

B site. For φ ∈ [0, π], the gap atK closes and reopens when the parameters go across

the point M = 3
√

3t2 sinφ, while the other gap stays open until M = −3
√

3t2 sinφ.

�erefore, in the region

−3
√

3t2 sinφ < M < 3
√

3t2 sinφ, (1.58)

the system is nontrivial. WhenM < −3
√

3t2 sinφ, two gaps remain open, and the system

is topologically equivalent to the caseM → −∞ in which the system is again a trivial

insulator with all electrons trapped at site A. A similar analysis can be made for the case

φ ∈ [π, 2π]. Overall, the topologically nontrivial region is

M < |3
√

3t2 sinφ|. (1.59)

On theother hand, the topology of thismodel ismarkedby theChernnumber of occu-

pied bands, which is the lower band in the two-band model. In the present case with two

Dirac cones, the Chern number can be shown to be the addition of the integral of Berry

curvature around each Dirac point (labeled asCK(K′)), i.e.,

C = CK + CK′ . (1.60)

For a long wavelength Hamiltonian in the form of

h = ε0 +
∑
i,j=x,y

kiAijσj +mσz, (1.61)
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the Chern number (integrated over whole momentum space) is

C =
1

2
sign(m)sign(DetA). (1.62)

Applying this conclusion to the model, the Chern number is

C =
1

2
[sign(M − 3

√
3t2 sinφ)− sign(M + 3

√
3t2 sinφ)] (1.63)

fromwhich the topological condition is doubly confirmed.

�eHaldanemodel is a representative example of topological insulator. It is classified

by a Z-type (integer number) topological invariant, the Chern number. In recent years,

much effort has beenmade to extend the band-structure topology fromelectronic systems

tomagnon systems. One successful attempt is a proposal of themagnonic Haldanemodel

in a honeycomb ferromagnet [36, 37]. �e spin-spin interaction Hamiltonian is

H = −J1

∑
〈i,j〉

Si · Sj +
∑
〈〈i,j〉〉

−J2Si · Sj +Dij · Si × Sj (1.64)

whereDij = νijDẑ with νij = sign(d̂i × d̂j)z. After performing Holstein-Primakoff

transformation, the magnonic Hamiltonian reads

H = ε0
∑
i

a†ai − t̃1
∑
〈i,j〉

a†iaj − t̃2
∑
〈〈i,j〉〉

eiνijφa†iaj (1.65)

where ε0 = (3J1 + 6J2)S, t̃1 = J1S, t̃2 =
√
J2

2 +D2S, and φ = arctan(D/J2). Compar-

ing with Eq. (1.51), the Haldane model can be mapped to the magnonmodel by

t1 → −t̃1, t2 → −t̃2, M → 0, (1.66)

and the constant term ε0 is irrelevant to the topology. �eChernnumber for the lower band
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is acquired from Eq. (1.63)

C = sign(sinφ) = sign(D). (1.67)

Apart from themagnon realization of the famous Haldanemodel, there has been ex-

tensive studyof the edge-state transport ofmagnons in the so-calledChern insulatormod-

els, including theHaldanemodel [22,32–35,35,36,38,58,59,59–62,62–76]. �ere have also

been suggestions to realize theWeyl spectrumofmagnons [46–51]. However, compared to

the electron system, the richness ofmagnon topology is limited due to the absence of a va-

riety of orbital freedoms, which leads to the fact that many fascinating topology features,

e.g.,Z2 topological insulator, surface Dirac cone, are hardly found inmagnon systems. In

Chapter 2, we will attempt to generalize the discussion to a new topology for magnons.

1.4 Berry curvature in real space

Before the Berry curvature is introduced in momentum space as a key element of band-

structure topology, it can be also defined in real space when the relevant parameters vary

in time and space [77]. A representative example is electron motion in a temporally and

spatially inhomogenous magnetic texture background. One can consider the system de-

scribed by

i~∂t|ψ〉 =

[
p2

2m
+ Jσ ·m(r, t)

]
|ψ〉 (1.68)

where ψ = (ψ↑, ψ↓),m(r, t) is the local magnetization field, and J is the exchange cou-

pling strength between electron spin and local magnetization. In the strong coupling

regime, the spin direction of electrons adiabatically adjusts itself to the local magnetiza-

tion direction, which means when an electron traverses a nonuniform spin texture it will

pick up a Berry phase.
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A transparent way to see this effect is by describing the electron motion in a local

frame in which electrons can feel an emergent gauge field induced by the real-space Berry

curvature of spin texture. �e local frame switching is realized by a local transformation

ψ = Uϕ where U = e−i(θ/2)σ·n with n = ẑ ×m/|ẑ ×m|, and thus Eq. (1.68) will be

converted to

i~∂tϕ =

[
qeV e +

(p− qeAe)2

2m
+ Jσz

]
. (1.69)

Here, thematrixV e andAe are the scalar and vector part of the emergent gauge fieldwith

the following expressions

V e = −(i~/qe)U∂tU †,

Ae = −(i~/qe)U∇U †. (1.70)

�e emergent charge qe is artificially introduced to be in parallel with the standard formof

coupling between charge and gauge field, and it actually drops out in the equation above.

For a smooth magnetization texture, the emergent fields above can be regarded as a per-

turbation to the HamiltonianH = p2

2m
+ Jσz. In the adiabatic limit, the gauge fields act

on each band separately, allowing us to introduce spin-dependent gauge potential

Veσ = 〈ψσ|V e|ψσ〉 = −(i~/qe)〈ψσ|U∂tU †|ψσ〉,

Ae
σ = 〈ψσ|Ae|ψσ〉 = −(i~/qe)〈ψσ|U∇U †|ψσ〉. (1.71)

�e gauge potentials have a similar form as the Berry connection defined in Eq. (1.41). It

becomes clear that the emergent gauge field gives emergent electric and magnetic fields
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Figure 1.4: Two dimensional magnetic skyrmion texture: (a) Néel type (b) Bloch type.

as below

(Ee
σ)i = (−∇Veσ − ∂tAe

σ)i = ∓ ~
2qe
m · (∂im× ∂tm),

(Be
σ)i = (∇×Ae

σ)i = ∓ ~
2qe

εijk
2
m · (∂jm× ∂km). (1.72)

Note that the emergent magnetic field is a real space Berry curvature as it is the curl of a

Berry connection. In addition, we can also regard the emergent electric field as a Berry

curvature in the mixed space-timemanifold.

As shown above, the emergent gauge field (real-space Berry curvature) relies on a

spin texture background. In the recent decade, there has been a surge of interest in the

skyrmion spin texture in chiral ferromagnetic or antiferromagnetic materials. Two typ-

ical magnetic skyrmion textures are shown in Fig. 1.4. �e skyrmion in these magnetic

materials is characterized by a topological charge

Q =
1

4π

∫
dxdym · (∂xm× ∂ym) (1.73)

which takes a quantized value depending on the specific system. In a metallic ferromag-

net with skyrmionic texture, the z-component emergent magnetic field can accumulate a

quantized flux over an enlarged unit cell (due to magnetic field), which is proportional to
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the topological charge

∫
dr(Be

σ)z = ∓4~Q. (1.74)

�is demonstrates that the magnetic skyrmion system is an ideal platform for the emer-

gent gauge field. �e topological Hall effect induced by the emergent magnetic field is

usually used to detect the formation of skyrmions [78].

Moreover, the spin texture can also approximately induce an emergent gauge field

for magnons in the long-wavelength regime, and it shares a similar expression as that for

electrons. One can consider the free energy density of a ferromagnet

F =
J
2

(∂im)2 +D(mz
~∇ ·m−m · ~∇mz)−B ·m. (1.75)

Here, the three terms stand for exchange, DMI, and Zeeman coupling, respec-

tively. We assume the parameter field is locally pointing along the direction m0 =

(sin θ cosφ, sin θ sinφ, cos θ) = Rẑ, where R = exp(Lzφ)exp(Lyθ) with (Li)jk = −εijk.

To take the spin wave fluctuation around the local parameter direction, the spin fieldm

can be parametrized by rotating a fieldm′ that fluctuates around ẑ-axis, i.e.,m = Rm′,

wherem′ = ẑ
√

1− |γ|2 + x̂γx + ŷγy with |γ| =
√

(γx)2 + (γy)2 � 1 and γx(y) being

spin wave. Plugging this parametrized spin field into the free energy, to the leading-order

spatial gradient of spin texture, the free energy is rewritten as

F = −J
2
m′ · (∂i +Ati −

D
J A

d
i )

2m′ (1.76)

whereAti = RT∂iR,Adi = R̄TLiR̄ with R̄ = exp{Lz π2}R. Plugging the expression ofm′

with spin-wave field into free energy above, the magnon Hamiltonian is obtained

H = ψ∗
J
2

(−i~∇− a)2ψ, (1.77)
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where ai = −(Ati − D
JAdi )|12. Here, a is an emergent gauge field [79–81] with two com-

ponents a = at + ad, where ati = Ati|12 = cos θ∂iφ, ad = D
JA

d|12 = −DJ R̃zm0 with

m0 = Rẑ. �ese two parts result in emergent magnetic fields,

bti = (~∇× at)i = −1

2
εijkm0 · (∂jm0 × ∂km0),

bd = ~∇× ad. (1.78)

We find the form of bt resembles that for electrons and is also connected to the topological

charge density. On the other hand, the kinetic term of magnons can be written asLkin =

S
2
ψ∗(i∂t − ϕ)ψ with ϕ = cos θ∂tφ being the scalar potential (see details in Chapter 5).

�erefore, the Lagrangian isL = Lkin −H, which leads to a Schrödinger equation

S(i∂t − ϕ)ψ = J (−i~∇− a)2ψ. (1.79)

Similar to the electronic system, the emergent gauge field also causes aHall type response

associated with magnons analogous to the topological Hall effect, e.g., the thermal Hall

effect and the spin Nernst effect. We will discuss the relevant physics in more detail in

Chapter 5.

1.5 Linear response theory

�emain theory built in Chapters 3 and 4 is based on the linear response theory. �is sec-

tion introduces thebasic quantummechanical linear response theoryby followingRef. [82]

and gives relevant examples to lay the foundation for later discussions.

A simple statement of linear response theory is that for a given system, the response

to aweakperturbation is proportional to the perturbation. Tounderstand thiswe consider
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the following Hamiltonian

H(t) = H0 +H ′(t)θ(t− t0) (1.80)

whereH0 describes the initial system,H ′(t)describes a perturbation starting from t = t0.

For a given observableA, its average value at a given time t > 0 is calculated as

〈A(t)〉 = tr[ρ(t)A] (1.81)

with

ρ(t) =
1

Z

∑
n

|n(t)〉〈n(t)|e−βEn (1.82)

where β = 1/(kBT ), Z is the partition function, En and |n(t)〉 are the eigenstate and

eigenenergy of H(t). From the Schrödinger equation, the eigenstate can be written in a

form evolving from t = t0

|n(t)〉 = e−iH0tÛ(t, t0)|n〉 (1.83)

where |n〉 = eiH0t0|n(t0)〉 and Û(t, t0) = e
−i

∫ t
t0
dt′Ĥ′(t′). Here, |n〉 is the eigenstate of the

time-independent Hamiltonian H0. Inserting Eq. (1.83) into Eq. (1.81) and keeping the

result to the first order of perturbation, the expectation value of the observable is

〈A(t)〉 = 〈A〉0 − i
∫ t

t0

dt′〈[Â(t), Ĥ ′(t′)]〉0 (1.84)

where 〈· · · 〉0means the expectation valuewith respect to theHamiltonianH0. Usually, we

are interested in the variation of the observable after the perturbation is applied

δ〈A(t)〉 = 〈A(t)〉 − 〈A〉0 =

∫ ∞
t0

dt′CR(t, t′)e−η(t−t′) (1.85)
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with

CR(t, t′) = −iθ(t− t′)〈[Â(t), Ĥ ′(t′)]〉0. (1.86)

Here, the factor e−η(t−t′) with η = 0+, a infinitesimal positive value, is added to ensure

that the response is substantially suppressed when t� t′.

When one switches the picture to the frequency domain, the Fourier transformation

of the perturbation is

H ′(t) =

∫ ∞
−∞

dω

2π
e−iωtH ′ω, (1.87)

and the Fourier component of the response is given by

〈δAω〉 =

∫ ∞
−∞

ei(ω+iη)tCR
AH′ω

(t) (1.88)

where

CR
AH′ω

(t) = −iθ(t)〈[Â(t), Ĥ ′(0)]〉0. (1.89)

�e Kubo linear response formula is usually used to discuss the charge current re-

sponse to an external electric field. �e perturbation is

H ′ =

∫
drA(r, t) · J(r) (1.90)

where the coupling between charge density and electric potential is removed through

gauge transformation. Here,J(r) is the charge current that is composed of paramagnetic
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and diamagnetic terms: J = Jpara + Jdia, where

Jpara(r) =
~
mV

∑
k,q

(k +
1

2
q)eiq·ra†kak+q,

Jdia(r) =
−q
mV

A(r)
∑
k,q

eiq·ra†kak+q. (1.91)

In the frequency domain,A(r, ω) = 1
iω
E(r, ω) withE being the electric field, and it is

assumed that the response takes the form

J(r, ω) =

∫
dr′σ̂(r, r′, ω) ·E(r′, ω). (1.92)

�rough the Kubo formula introduced before, the conductivity tensor can be calculated as

σµν(r, r
′, ω) =

ie2

ω
Πµν(r, r

′, ω) +
ie2n(r)

ωm
δ(r − r′)δµν (1.93)

where n(r) is the local charge density,m is the electronmass, and

Πµν(r, r
′, t− t′) = −iθ(t− t′)〈[Jµ(r, t), Jν(r

′, t′)]〉0. (1.94)

For a systemwith translational symmetry, the above equation can be converted tomomen-

tum space and all calculations can be performed in the eigenbasis representation. �iswill

become clear in our discussion in Chapters 3 and 4.

In this thesis, we will mainly focus on the linear response induced by a temperature

gradient, where the driving force will be temperature gradient∇T . To deal with this sta-

tistical force, we need to introduce a coupling between the Hamiltonian and a pseudo-

gravitational field. �e response function will contain two parts: the Kubo-response part

and orbital contributions. �e Kubo part will be calculated with similar theory to that in-

troduced here, while the orbital part requires some special techniques. All the details will

be discussed in Chapters 3 and 4.
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Chapter 2

Chiral topological insulator ofmagnons

2.1 Introduction

�e discovery of topological insulators (TIs) [12, 13] is a remarkable achievement in con-

densedmatter physics as it reveals fundamental connections to topology and is promising

for applications in electronics and quantum computing. At the same time, the concept

of topology has arisen in a variety of other fields under the encouragement of the suc-

cess of topological insulators [83, 84]. Recently, there has been considerable interest in

the topological physics of magnon systems [35, 36, 58–64]. Realizations of systems with

a Weyl spectrum of magnons have been suggested [46–51]. Multiple theoretical works

[22, 32–35, 38, 59, 62, 65–76] have discussed the edge or surface states of gapped magnon

systems. Due to the absence of the Kramers degeneracy and the electronic orbital free-

dom for magnons, the investigation has been limited to the magnon analog of the Chern

insulator. A magnon analog of the quantum spin Hall effect comprised of two copies of

magnon Chern insulators has also been proposed [38, 72]. Nevertheless, the topologically

protected helical surface states have not been discussed for magnon systems. According

to the ten-fold way of classifying TIs [85,86], the AIII class only requires the sublattice chi-

ral symmetry for realization of a topological insulator with Z invariant in one and three
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dimensions [87–90]. Hosur et al. [87] discussed an electronic model of chiral topological

insulator (cTI). Wang et al. suggested a realization of cTI in cold-atom systems [88].

In this chapter, we show that magnon chiral topological insulator (mcTI) can be re-

alized in a Heisenberg model endowed with the Dzyaloshinskii-Moriya interaction (DMI)

[91, 92]. We consider a layered honeycomb lattice structure [93, 94] in which the interac-

tions are chosen such that the system possesses the chiral symmetry (see Fig. 2.1). �e

bulk is characterized by the Z topological invariant: winding number. In accordance with

the bulk-boundary correspondence, our model supports a symmetry-protected magnon

Dirac cone on its surface, provided the chiral symmetry is not broken on the surface. �e

helical surface states lack backscattering in the presence of the chiral symmetry. By break-

ing the chiral symmetry, a small gap can be introduced in the surface band, which leads to

themagnonHall response, e.g., under a temperature gradient. We observe that similar to

electronic systems, the chiral symmetric perturbations can change the system to the nodal

line and trivial phases. Furthermore, by adding terms breaking the chiral symmetry, we

can bring our system into the three-dimensional magnon anomalous Hall (3D-mAH) and

Weyl magnon phases.

2.2 Model

We consider a layered honeycomb magnetic structure with ferromagnetic ordering, as

shown in Fig. 2.1. To realize mcTI, we construct a model with the magnon Dirac spec-

trum in the bulk. We then open a gap by adding a mass term corresponding to additional

DMI, which can be done in various ways. �e Hamiltonian is composed of the in-plane

and interlayer exchange interactions, and the axial anisotropy terms,

H = Hin +Hinter +Han, (2.1)
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Figure 2.1: Left: �e layered Honeycomb structure. �e central non-magnetic atom gen-
erates DMI between interlayer third-nearest-neighbor atoms, e.g.,A andB′. Middle: �e
in-plane and interlayer exchange energy. Right: �e projection of interlayer DMI between
A andB′ on z direction.

where

Hin = −J
∑
z,i

3∑
µ=1

SA,i · SB,i+δµ + SA′,i · SB′,i−δµ ,

Hinter = −
∑
i,z

(t1SA,z · SB′,z+1 + t2SA,z · SB′,z−1)

+(t1 ↔ t2, A→ B,B′ → A′),

Han =
∑
i,z

∑
Q

K(SzQ,(i,z))
2. (2.2)

Here i corresponds to the in-plane index and z corresponds to the layer index; δ1 =

(1, 0, 0), δ2 = (−1
2
,
√

3
2
, 0), δ3 = (−1

2
,−
√

3
2
, 0); J andK are nearest exchange and axial

anisotropy energy withK < 0. Q stands for different spin modes, i.e.,Q = A,B,A′, B′.

In the Hamiltonian, we suppress unrelated coordinates for clarity. For in-plane interac-

tion, we only consider nearest-neighbor exchange. For the interlayer interaction, we use a

staggeredpattern as shown inFig. 2.1 (this limitation simplifies analysis but it is not neces-
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sary, as we show in Sec. 2.6). We performHolstein-Primakoff transformation in the large

S limit,SzQ,i = (S−Q†iQi) andS+
Q,i =

√
2SQi, withQ†i ,Qi being themagnoncreationand

annihilation operators for spin mode SQ. �e Hamiltonian in momentum space is writ-

ten in the basisΨk = (Ak, Bk, A
′
k, B

′
k), where we label the layer and sublattice degrees of

freedom by µ and τ Pauli matrices,

H = JS
∑
k

Ψ†kHkΨk, (2.3)

with

Hk = ε0 − γ1kτx + γ2kµzτy + 2λ cos(kz)µxτx

−2δ sin(kz)µxτy. (2.4)

Here ε0 = 3 − 2λ − 2κ, γk =
∑

µ e
ik·δµ = γ1k + iγ2k, with γ1k = cos(kx) +

2 cos(kx
2

) cos(
√

3ky
2

) and γ2k = 2[cos(kx
2

) − cos(
√

3ky
2

)] sin(kx
2

), λ = −1
2
(t1 + t2)/J ,

δ = 1
2
(t2 − t1)/J , and κ = K/J . Note that the Hamiltonian above has the chiral sym-

metry τz up to a constant term (below, we disregard this constant energy shift), i.e.,

τzHkτz = −Hk. (2.5)

First, we consider the case λ = 0, corresponding to the staggered interlayer exchange.

In this pattern, the exchange term realizes the so-called π flux [87] for vertical plaquettes

Π�sign(tij) = −1, e.g., AB′A′BA, where tij stands for the exchange strength between

two spins. �e eigenenergy,

E±/JS = ±
√
|γk|2 + 4δ2 sin2(kz), (2.6)
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reveals two Dirac cones atQR(L) = (0,± 4π
3
√

3
, 0). Around the Dirac pointQR, the Hamil-

tonian reads

H0,k = qiαi, (2.7)

where qx = 3
2
kx, qy = 3

2
ky, and qz = −2δkz; {αi} = {µzτy, τx, µxτy} satisfy the relation

{αi, αj} = 2δij. For the other Dirac point, the Hamiltonian is easily obtained after the

transformation qy → −qy inEq. (2.7). Since the twoDirac conesgiveus equivalentphysics,

we use the form in Eq. (2.7) in the following discussion.

To realize the mcTI, the Hamiltonian should have a chiral symmetric mass term to

open the gap in the bulk Dirac cone while preserving the surface Dirac cone. In a mas-

sive Dirac equation for the bulk, the mass term is described by the matrix β satisfying the

anti-communication relation {β,H0,k} = 0. �e only possible term preserving the chi-

ral symmetry is β = µyτy. To this end, we include the third-nearest-neighbor interlayer

DMI in ourmodel. �e correct form of DMI can be produced by the central non-magnetic

atom as it is shown in Figs. 2.1 and 2.2, where we assume an overlap of relevant orbitals

and a sufficiently strong spin-orbit interaction. As an example, we calculate the interlayer

DMI betweenA1 andB′1 spins in Fig. 2.2. Here, the displacements of the two spins to the

central atomC1 are

−−−→
C1A1 = δ3 − c,

−−−−→
C1B′1 = δ1 + c, (2.8)

where 2c is the vertical interlayer vector, e.g.,
−−−−→
A2B′1 = 2c. �e DMI vector between A1

andB′1 can be presented as

DA1→B′1 = D(
−−−→
C1A1×

−−−−→
C1B′1) = D(ez + c× δ2). (2.9)

withD being the interaction strength. In Fig 2.2, we give all the DMI z-component pro-
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Figure 2.2: �e interlayer DMI pattern.

jections; as shown,B−A′ andA−B′ have opposite sign along the same interaction path

vector.

�e DMI contributes to the Hamiltonian a term

Hth =
∑

z,n=±1

∑
i,dλ

DAB′(dλ) · [SA,(i,z) × SB′,(i+dλ,z+n)]

+{A→ B,B′ → A′}, (2.10)

where i, z are the in-plane and layer coordinates with assumption of unit interlayer dis-

tance in the z direction, dλ represents the in-plane second-nearest-neighbor between

atoms with d1 = (3
2
,
√

3
2
, 0), d2 = (−3

2
,
√

3
2
, 0), and d3 = (0,−

√
3, 0) (the other three are

−d1,−d2,−d3). At the same time, we assume that the in-plane DMI between the second-

nearest-neighbors is absent, as such a term would break the chiral symmetry. For the

magnetization along the z axis, only the z component of DMI vectors is relevant, which

is shown in Fig. 2.1. �e z projections of DMI vectors have the same magnitude Dz and
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follow the staggered pattern shown in Fig. 2.1. In momentum space, the DMI term reads

Hth = 4δDξk cos(kz)µyτy, (2.11)

where δD = Dz/J and ξk =
∑3

i=1 sin(k · di). Now, we have the full model given by

Eqs. (2.4) and (2.11).

To confirm the existence of surface states, we diagonalize the Hamiltonian given by

Eqs. (2.1) and (2.10) in a slab geometry. In our calculation, we consider two bulk regions

with the opposite sign of DMI δD, which guarantees the sign change of the mass term

across the interface. As expected, the model has Dirac states confined to the x − y plane

separating the two bulk regions as shown in Fig. 2.3, left. �e model hosts two surface

Dirac cones at the two-dimensional projection of QR and QL as long as all parameters

are nonzero. We also considered a bulk terminated at a honeycomb plane with vacuum,

which results in a single Dirac cone with a gap opening due to breaking of the chiral sym-

metry at the interface (see Fig. 2.3, right). �echiral symmetry breaking appears due to the

exchange energy terms at the interface after application of the Holstein-Primakoff trans-

formation.

Now, we see that the model based on layered honeycomb lattice is realized by con-

sidering various type of interlayer exchange or DM interactions. As a guidance, all pos-

sible chiral symmetry allowed terms in a honeycomb lattice can be listed to inspire other

new models. For a ferromagnet on a layered honeycomb lattice with only intralayer ex-

change interactions considered, the long-wavelength magnon Hamiltonian around (2D)

Dirac point is

HK/K′ =
3JS

2
(kxµzτy ± kyτx). (2.12)
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Figure 2.3: A plot corresponding to a slab geometry with the parameters, δ = 0.3, δD =
0.15. Left: �e surface state with the Dirac cone at QL and QR where the surface states
appear at the interface between the two bulk regions with the opposite sign of DMI δD.
Right: �e surface state cone splits when the bulk is interrupted at a honeycomb plane in
contact with vacuum due to uncompensated exchange interactions leading to breaking of
the chiral symmetry.

Possible matrices describing the chiral symmetry (satisfy Eq. (2.5)) include

{µ0, µz} ⊗ τz, {µx, µy} ⊗ τy. (2.13)

We can now write all possible chiral symmetric terms that anticommute with the chiral

symmetry. All possibilities are listed in Table 2.1. A 3D chiral Hamiltonianwill be obtained

by adding possible terms generating thesematrices to the layeredHoneycomb system. For

a system of localized spins, the corresponding hopping terms ofmagnons can be obtained

from exchange interactions andDMI. To achieve our goal, one can first construct 3DDirac

magnons and then open a gap with a chiral symmetric perturbation. �e minimal model

only contains terms that anticommute with each other, but the chiral symmetric pertur-

bations do not necessarily anticommute with the minimal model and can serve to drive

the phase transition as discussed in Sec. 2.6. We note that the presence of the chiral sym-

metry does not guarantee themcTI phase and one has to verify the nontrivial topology via

winding number calculation.

�e above-mentioned steps can be applied to an arbitrary lattice to obtain othermod-
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els of mcTIs.

Table 2.1: Symmetry analysis

Chiral Symmetry Possible Terms
τz {µ0, µx, µy, µz} ⊗ {τx, τy}
µzτz {µx, µy} ⊗ {τ0, τz} {µ0, µz} ⊗ {τx, τy}
µxτy {µy, µz} ⊗ {τ0, τy} {µ0, µx} ⊗ {τx, τz}
µyτy {µx, µz} ⊗ {τ0, τy} {µ0, µy} ⊗ {τx, τz}

2.3 Topological invariant

�epresence of chiral symmetry ensures that the Hamiltonian could be brought to an off-

diagonal form by a unitary transformation. For our case, we need a transformation satis-

fyingUτzU † = µz, under which,

H̃k = UHkU
† =

 0 Dk

D†k 0

 , (2.14)

with

Dk =

 −γk ∆k

−∆∗k −γ−k

 , (2.15)

where∆k = −4δDξk cos(kz) + i2δ sin(kz). �is transformationmatrix is identified as

U =



1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


. (2.16)
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Assuming that the eigenstates of H̃k have the form ψa = (χa, ηa)
T , the eigenequation

reads  0 Dk

D†k 0


 χa

ηa

 = λa

 χa

ηa

 (2.17)

by applying H̃k on both sides of which again can produce

 DkD
†
k 0

0 D†kDk


 χa

ηa

 = λ2
a

 χa

ηa

 . (2.18)

If one can find ua that satisfiesDkD
†
kua = λ2

aua and uau†a = 1 (a = 1, 2), the eigenstates

are constructed as  χ±a

η±a

 =
1√
2

 ua

±va

 , (2.19)

with

va =
1

λa
D†kua. (2.20)

Now, we can adiabatically deform H̃k into a flat-band Hamiltonian [85, 86]

Qk = 1− 2
∑
a∈B.G.

|ψa〉〈ψa| (2.21)

where B.G. stands for the states below the gap. �ematrix form reads

Qk =

 0 qk

q†k 0

 , (2.22)
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where the off-diagonal term is qk = 1
λ
Dk with λ =

√
|γk|2 + |∆k|2. �e chiral topological

state can be characterized by the three-dimensional winding number [85, 86]

ν[q] =

∫
d3k

24π2
εµνρtr[(q†∂µq)(q†∂νq)(q†∂ρq)], (2.23)

where µ, ν = kx, ky, kz and the integration goes over the whole Brillouin zone. Numerical

results show that the winding number is quantized for nonzero δD and δ. When δD = 0

or δ = 0, the model falls into the Dirac phase with vanishing winding number. �is result

can be understood by considering the topologically equivalent Hamiltonian aroundQR:

HQR+k ' qyτx + qxµzτy + qzµxτy +mµyτy, (2.24)

where qx = 3
2
kx, qy = 3

2
ky, qz = −2δkz,m = 2

√
3δD, and we dropped the momentum

dependence of the mass term in topological sense. It’s straightforward to get

Dk = qyσ0 − iqzσx − imσy − iqxσz,

λ =
√
|q|2 +m2. (2.25)

It can be further shown that

∂qµq =
1

λ
[∂qµDk −

1

2λ2
(∂qµλ

2)Dk] =
1

λ3
(λ2∂qµDk − qµDk), (2.26)

where the relation 1
2
∂qµλ

2 = qµ is used. Specifically,

∂qxq =
1

λ3
[−qxqyσ0 + iqxqzσx + iqxmσy + i(q2

x − λ2)σz],

∂qyq =
1

λ3
[(λ2 − q2

y)σ0 + iqyqzσx + iqymσy + iqyqxσz],

∂qzq =
1

λ3
[−qzqyσ0 + i(q2

z − λ2)σx + iqzmσy + iqzqxσz]. (2.27)
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After some calculation, we obtain

νR[q] =

∫
d3k

24π2
εµνρtr[(q†∂kµq)(q

†∂kνq)(q
†∂kρq)]

= −sgn(δ)

∫
d3q

24π2
εµνρtr[(q†∂qµq)(q

†∂qνq)(q
†∂qρq)]

= sgn(δ)

∫
d3q

24π2

12m

λ4

= sgn(δ)
m

2π2
4π[− |q|

2(|q|2 +m2)
+

1

2m
tan−1(

|q|
m

)]∞0

= sgn(δ)
m

2π2
4π

π

4|m|
= sgn(δ)sgn(m)/2

= sgn(δDδ)/2. (2.28)

ForQL point, we replace qy → −qy andm → −m to get νL[q] = sgn(δDδ)/2. �e total

winding number is the sum,

ν[q] = sgn(δDδ), (2.29)

which is a quantized number for the nontrivial mcTI phase and zero for the trivial phase.

In our model, there is only one Dirac cone on the surface projection point of QR or QL.

Specifically, when ν[q] = 1(−1), the Dirac cone appears on the projection of QR (QL)

point. In general, mcTI can have more than one Dirac cone at the boundary.

2.4 Surface state

We can get a physical insight into the formation of the surface Dirac cone by consider-

ing the interlayer Dirac cone pairing pattern [87]. For simplicity, we ignore the chiral

symmetry-breaking terms appearing when we terminate a sample at one of the honey-

comb planes in contact with vacuum. Such symmetry-breaking terms do not appear if the

interface is formed between the two bulk regions with the opposite sign of DMI δD or if

the interface is terminated in such a way that the chiral symmetry-breaking terms due to
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exchange energy do not appear. We consider the Hamiltonian that is Fourier transformed

with respect to the in-plane momentum,

Hj,j = −γ1k‖τx + γ2k‖µzτy + (2ξk‖δD − δ)µyτy,

Hj,j±1 = ±i(δ + 2δDξk‖)µ∓τy, (2.30)

where the index j labels the bilayer,Hj,j describes intralayer terms, andHj,j±1 describes

the interlayer terms in the Hamiltonian written in the basis (Ak‖,j, Bk‖,j, A
′
k‖,j

, B′k‖,j),

with k‖ representing the in-plane momentum (see Fig. 2.4). �e intralayer Hamiltonians

describe two-dimensional Dirac cones (different from the bulk Dirac cones discussed be-

fore), which hybridize due to interlayer coupling. It is convenient to consider the Hamil-

tonian written in the subspace (AR,j, BR,j, A
′
R,j, B

′
R,j, AL,j, BL,j, A

′
L,j, B

′
L,j) where index

R(L) stands for the in-plane momentum (0,± 4π
3
√

3
), and Pauli matrix νz acts onR and L

Dirac cones,

Hj,j = −(δ −
√

3δDνz)µyτy,

Hj,j±1 = ±i(δ +
√

3δDνz)µ∓τy. (2.31)

Here µ± = 1
2
(µx ± iµy). For δ =

√
3δD, we obtain thatHj,j ∝ 1−νz

2
andHj,j±1 ∝ 1+νz

2
,

which shows that R and L Dirac cones hybridize in a pattern shown in Fig. 2.4. In this

special case, the surface states live on top and bottom surfaces without any penetration

into the bulk. If δ = −
√

3δD, theR andL cones interchange in the hybridization pattern.

We can investigate the surface states further in the vicinity of (0,± 4π
3
√

3
) point using

the k · p theory. After replacing kz to its second order by −i∂z in the Hamiltonian, the
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RL

Intralayer

Figure 2.4: Pairing pattern for δ =
√

3
2
δD. �eRDirac cone resides on the surface.

effective Hamiltonian becomes

H(z) = −A(−i∂z)µxτy +M(1− 1

2
(−i∂z)2)µyτy

= iA∂zµxτy + iM(1 +
1

2
∂2
z )(µ− − µ+)τy, (2.32)

whereA = 2δ,M = 4δDξQR(L)
(= ±2

√
3δD). For the zero-energy surface state,

H(z)ψ(z) = 0, (2.33)

which gives us the form of ψ(z) as

ψ1(2)(z) =

 Φ1(2)

0

 eλz. (2.34)
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Here, Φ1(2) is the eigenstate of τz as demanded by the chiral symmetry, i.e., (1, 0)T and

(0, 1)T with eigenvalues±1. Substituting Eq. (2.34) into Eq. (2.33) leads to

Aλ+M(1 +
1

2
λ2) = 0. (2.35)

�e solution is

λ± = −β ±
√
β2 − 2, (2.36)

where β = A/M , and this corresponds to a surface state only if β > 0, i.e., Re(λ) < 0.

Assuming the boundary condition ψ(0) = ψ(∞) = 0, we obtain two eigenstates:

ψ1 = N



0

1

0

0


(eλ

+z − eλ−z), ψ2 = N



1

0

0

0


(eλ

+z − eλ−z). (2.37)

HereN is the normalization factor which fulfills

∫ ∞
0

dzf(z)∗f(z) = 1, (2.38)

for f(z) = N(eλ
+z − eλ−z) = 2Ne−βz sinh(

√
β2 − 2z). �e normal factor is solved to be

N =

√
β2 − 2√
2|β|

, (2.39)

so that

f(z) =

√
2(1− 2

β2
)e−βz sinh(

√
β2 − 2z) with β > 0. (2.40)

Asmentioned before, β > 0 has to be satisfied to ensure the existence of the surface state.

For a given δ, βR = −βL with βR(L) being the value of β at QR(L) point. It is clear that

βR > 0 when sgn(δDδ) > 0, and the surface Dirac cone exists at the projection of QR
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point; when sgn(δDδ) < 0, βL > 0, and the surface Dirac cone exists at the projection of

QL point. �is result is consistent with the earlier discussion.

Without loss of generality, we consider the surface state existing at the projection of

QR point. In the vicinity of QR the Hamiltonian can be decomposed into two parts as

below

H = Hxy +H(z),

Hxy =
3

2
kyτx +

3

2
kxµzτy. (2.41)

It is easy to get

 〈ψ1|

〈ψ2|

Hxy(|ψ1〉, |ψ2〉) =
3

2
(kyτx − kxτy),

 〈ψ1|

〈ψ2|

H(z)(|ψ1〉, |ψ2〉) = 0. (2.42)

�erefore, the effective low-energy surface Hamiltonian reads,

Hsur =
3

2
(kyτx − kxτy) = vF (k× ez) · τ , (2.43)

where vF = 3
2
. �is Hamiltonian exhibits magnon spin-momentum locking [95] in the

spin space defined by sublattices A and B. �e Rashba-like surface states in Eq. (2.43)

are described by helical eigenvectors, i.e., the eigenstate of k and −k are orthogonal to

each other, which prohibits backscattering between states with opposite momentum.

�e chiral symmetric perturbation can only shift the position of the Dirac cone as it adds

additional terms of the formM1τx +M2τy to Eq. (2.43). �is is a manifestation of the fact

that the surface modes are protected by chiral symmetry.
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2.5 Surface stateHall response

Interesting physics can also arise when the chiral symmetry is weakly broken at the inter-

face. We can break the surface Dirac cone by considering an interface with vacuum (see

Fig. 2.3) or by contacting mcTI with another material that has a broken chiral symmetry.

�e gapped effective surfaceHamiltonian reads,Hsur = vF (k× ez) ·τ +msτz. �e gap in

the surface Dirac cone will result in a Hall response to a longitudinal driving force on the

surface, similar to the surface Hall effect in 3D topological insulators with broken time-

reversal symmetry [96], which can be detected by the spin Nernst response [97],

jsy = αyx∇xT, (2.44)

with response parameter

αyx = −kB
V

∑
k,n

Ωn
yx(k)c1(g(εn)) (2.45)

whereV is the surface area of the system,Ωn
yx(k) is themomentumspaceBerry curvature,

c1(x) = (1+x) ln(1+x)−x lnx, and g(ε) = 1/(eβε−1) is the Bose-Einstein distribution

function.

To get the Berry curvature around a Dirac cone, we write the gapped surface Hamil-

tonian above in a compact form

Hsur,k = d · τ , (2.46)

with d = {vFky,−vFkx,ms}. �e energy and eigenstates are

Ek,±/JS = ±d, (2.47)
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and

u+ =
1√

2d(d+ d3)

 d3 + d

d1 − id2

 , u− =
1√

2d(d− d3)

 d3 − d

d1 − id2

 , (2.48)

where d = |d| =
√
v2
F |k|2 +m2

s. As introduced in Chapter 1, the Berry connection for

two bands is defined asA±d = −i〈u±|∇d|u±〉, which helps to generate the corresponding

Berry curvature field

Ω±(d) = ∇d ×A±(d) = ∓ d

2d3
. (2.49)

By using the relation,

Ωα =
1

2
εαµνΩµν , (2.50)

withΩµν = i(∂µAν − ∂νAµ), we can identify the concerned Berry curvature components

asΩz = Ωxy = −Ωyx. More explicitly,

Ω±yx(k) = v2
FΩ±yx(d) = −v2

FΩ±,z(d) = ±v2
F

ms

2d3
. (2.51)

Nowwe obtain the spin Nernst response coefficient by plugging the expression above into

Eq. (2.45)

αyx =
kBms

2

∫
dk
v2
F

d3
{c1[g(ε0 − d)]− c1[g(ε0 + d)]}, (2.52)

where ε0 = 3− 2λ− 2κ andwe replaced 1
V

∑
k by

∫
dk. To identify the contribution from

the Dirac cone, we introduce a small energy cutoff Λ around the Dirac cone, i.e., Λ < ε0.

So that we expand c1(ε0 ± d) to the first order of βdwith β = JS/(kBT ),

c1[g(ε0 − d)]− c1[g(ε0 + d)] =
−β2dε0

1− cosh(βε0)
+O[(βd)2]. (2.53)
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Figure 2.5: Left: Phase diagram in δD − λ parameter space with δ 6= 0. �e mcTI phase
is continuously connected to the λ = 0 case considered in the previous sections. Right:
Phase diagram in ηD − δD parameter space (λ = 0) with δ = 0.2; �e boundary lines
between different phases are ηD = 2δ/

√
3 and δD = ηD/2.

Taking the transform
∫
dk =

∫∞
0

∫ 2π

0
|k|d|k|dθ =

∫∞
ms

1
v2
F
d(d)d

∫ 2π

0
dθ, we have

αyx =
kBms

2

∫ 2π

0

dθ

∫ Λ

|ms|
d(d)

1

d2
{c1[g(ε0 − d)]− c1[g(ε0 + d)]}

≈ πkBmsε0β
2

cosh(βε0)− 1
ln(Λ/|ms|). (2.54)

Unlike an electronic system, the response parameter is not quantized due to the Bose-

Einstein statistics. In Eq. (2.54), only the contribution from the Dirac cone has been con-

sidered. We note that the Berry curvature from other parts of the Brillouin zone can also

contribute to the spin Nernst response due to the Bose-Einstein statistics.

2.6 Topological phase transition

Wenow consider amore general model with a non-staggered pattern, i.e., λ 6= 0. We find

that even for λ 6= 0 there is still some region in parameter space with mcTI phase. As we

increase λ, we encounter a phase transition into a nodal line phase before we reach the

trivial insulating phase (see Fig. 2.5). For the full Hamiltonian composed of Eqs. (2.4) and
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(2.11), the energy is

E2
k/(JS)2 = [|2λ cos kz| ±

√
|γk|2 + (4δD)2ξ2

k cos2 kz]
2

+(2δ)2 sin2 kz. (2.55)

To get nodal line phase, it’s required that kz = 0 and (2λ)2 = |γk|2 + (4δD)2ξ2
k. When

min{|γk|2 + (4δD)2ξ2
k} 6 (2λ)2 6 max{|γk|2 + (4δD)2ξ2

k}, the system falls into the

nodal line phase with the nodal lines lying on kz = 0 plane. When (2λ)2 < min{|γk|2 +

(4δD)2ξ2
k}, it’s in mcTI phase that is continuously related to the λ = 0 case considered in

the previous sections. Note that if δ = 0, the gap is always closed at (0,± 4π
3
√

3
,±π

2
), so that

δ 6= 0 has to be satisfied. �e phase diagram is shown in Fig. 2.5. We find that there is a

substantial region in parameter space with mcTI phase.

Besides the phase transition induced in the presence of the chiral symmetry, we find

that the system can also be tuned to the Weyl and 3D-mAH phase by introducing the in-

plane second-nearest-neighbor bulk DMI that breaks the chiral symmetry,

δH =
1

2

∑
Q

∑
z,i,dλ

D̃z
Q(dλ)ez · [SQ,(i,z) × SQ,(i+dλ,z)],

(2.56)

whereQ stands for different spin modes and D̃z
Q(dλ) is the in-plane DMI parameter. �e

presence of such DMI is consistent with the symmetry of the honeycomb lattice. In mo-

mentum space δHk = 2ηDξkµzτz, where ηD = |D̃z
Q(dλ)|/J . Now the system (λ = 0) has

energy

E2
k/(JS)2 = |γk|2 + 4[|ηDξk| ±√

(2δDξk)2 cos2(kz) + δ2 sin2(kz)]
2. (2.57)
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Figure 2.6: Left: Local spins are pointing in the x direction due to applied magnetic field.
Nonmagnetic atoms in the face centers generate DMI along the x-axis for the vertical
bonds. Middle and right: Top view depicts the third-nearest interlayer exchange inter-
actions.

Conditions for the existence of Weyl point are |γk| = 0 and η2
Dξ

2
k =

(2δDξk)2 cos2(kz) + δ2 sin2(kz), such that the Weyl nodes lie at k‖ = (0,± 4π
3
√

3
) and

kz = 1
2

arccos(
3η2
D/2−3δ2

D−δ2

3δ2
D−δ2 ). When−1 <

3η2
D/2−3δ2

D−δ2

3δ2
D−δ2 < 1, there are four-momentum

space Weyl nodes originating in the separation of two Dirac cones along kz direction.

Similar to Ref. [98], the system can be manipulated into the Weyl, 3D-mAH, and insulat-

ing phases by changing parameters. In parameter space, the insulating and the 3D-mAH

phases arewell separated by theWeyl phase as shown in Fig. 2.5, wherewe identify the 3D-

mAH phase by the quantized Chern number (C = 2 in our model) for arbitrary given kz,

i.e.,C = 1
2π

∑
En<0

∫
B.Z. dk‖Ω

(n)
kx,ky

(kz)withΩ
(n)
kx,ky

(kz) being the Berry curvature of bands

bellow the gap andB.Z. standing for the 2-D Brillouin zone.

2.7 Anothermodel

Aside from the model we discussed so far, we show a different mcTI model based on the

layered honeycomb ferromagnet system. We consider the same lattice structure and labels

as in Fig. 2.1, but assume that all spins are aligned in the x direction, which can be real-

ized by applying an external magnetic field. Instead of putting extra nonmagnetic atoms

in the center of the unit cell, here we add atoms in the front and back face of each unit
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Figure 2.7: �e spectrum of model 2 in a slab geometry shows the presence of surface
states. �e parameters are r = 0.2, η = 0.1, λ = 0.2, η0 = 0.15. Here we neglected
the boundary effects which shift the position of the surface cone. In principle, this effect
can be weakened or even eliminated by an interface with another material.

cell to generate DMI along vertical interlayer bonds as shown in Fig. 2.6. We also need

third-nearest-neighbor exchange interactions, with the exchange strength depending on

the typeof sublattices and their locations (seeFig. 2.6), to induce theDirac conemass term.

�emodel Hamiltonian reads

H = Hin +Hinter +HZ +HD +Hex
3 , (2.58)
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where

Hin = −J
∑
z,i

3∑
µ=1

SA,i · SB,i+δµ + SA′,i · SB′,i−δµ ,

Hinter = −
∑
i,z

(tSA,z · SB′,z+1 + tSA,z · SB′,z−1) + (A→ B,B′ → A′),

HZ = −
∑
i,z

∑
Q

BxS
x
Q,(i,z),

HD =
∑
i,z

∑
δ=±1

DAB′(δ) · (SA,z × SB,z+δ) + DBA′(δ) · (SB,z × SA,z+δ),

Hex
3 = −

∑
i,z

∑
n=±1

∑
dλ

t1SA,(i,z) · SB′,(i+dλ,z+n) + t2SA,(i,z) · SB′,(i−dλ,z+n) +

{t1 ↔ t2, A→ B,B′ → A′}. (2.59)

Here, the first two terms coincidewith the previousmodel, except that the interlayer near-

est exchange interaction has uniform strength. �e third term corresponds to the Zeeman

interactionwith theexternalmagneticfield in thexdirection. �etermHD represents ver-

tical bondDMI contributionwithDAB′(δ) = −δDex andDBA′(δ) = δDex (δ = ±1).Hex
3

stands for the third-nearest-neighbor exchange interaction with the strength depending

on the sublattice type and position, as shown in Fig. 2.6. After performing the Holstein-

Primakoff transformation and the Fourier transformation, the Hamiltonian up to a con-

stant term becomes

Hk = −γ1kτx+γ2kµzτy−2r sin(kz)µyτy+4ηξk cos(kz)µxτy+2 cos(kz)(λ+2η0χk)µxτx,

(2.60)

where r = D/J , λ = t/J , η0 = (t1 + t2)/2J , η = (t1− t2)/2J , and ξk =
∑3

i=1 sin(k ·di),

χk =
∑3

i=1 cos(k · di)with d1 = (3
2
,
√

3
2
, 0),d1 = (−3

2
,
√

3
2
, 0),d1 = (0,−

√
3, 0). First, we

consider the extreme case for which λ = η0 = 0. �e Hamiltonian has the same form as

themcTImodel in themain text, i.e., we obtain an effectivemassive Dirac equation. If we

turn on the parameters η0 and λ, they will not immediately break the mcTI phase, similar
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Figure 2.8: Left and middle: �e self-energy diagrams corresponding to the first- and
second-order corrections due to the quartic magnon-magnon interactions. Right: �e
self-energy diagram corresponding to the cubic magnon-magnon interactions.

to the case we discussed in Sec. 2.6. Specifically, the energy of Eq. (2.60) is

E2
k/(JS)2 = [

√
|γk|2 + 4r2 sin2(kz)± 2| cos(kz)(λ+ 2η0χk)|]2 + 16η2ξ2

k cos2(kz).(2.61)

When η = 0, the spectrum is always gapless at two pairs of nodes lying at knode =

(0,± 4π
3
√

3
,± arctan(

λ+2η0χQL/R

|r| )). In addition, one needs to assume ξk = 0 to close the

gap, which leads to ky = 0 or
√

3kx ± ky = 0. For k∗‖ satisfying these conditions, the

system is gapless at kz = ± arcsin

√
4(λ+2η0χk∗‖

)2−|γk∗‖ |
2

4(λ+2η0χk∗‖
)2+4r2 when 4(λ+ 2η0χk∗‖

)2−|γk∗‖|
2 ≥ 0.

When max{4(λ + 2η0χk∗‖
)2 − |γk∗‖ |

2} < 0, the system is gapped and it is continuously

connected with the magnon cTI model with η0 = λ = 0 (see Fig. 2.7).

2.8 Discussion

In this section, we discuss the role of magnon-magnon interaction effects and give pos-

sible material candidates for realizations of topological phases of magnons. So far, our

discussion has been limited to free magnon systems. It is known that magnon-magnon

interactions do not play an important role for a ferromagnetic alignment of spins at low
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temperatures. In a general case, magnon-magnon interactions can induce band renor-

malizations andmagnon decay [99]. It has also been shown that anharmonic terms due to

DMIcan lead tononperturbativedampingproportional to the strengthofDMI inakagome

lattice for the spin alignment orthogonal to DMI vectors [100].

We have investigated the role of the above effects in our model by considering

the higher-order terms of the Holstein-Primakoff transformation. �ree diagrams in

Fig. 2.8 contribute to the self-energy where the first two correspond to the quartic term

in magnon-magnon interactions and the last one corresponds to the cubic anharmonic

interaction. According to our analysis, the first two diagrams lead to the self-energy that

is proportional to at least the second power of temperature. �e effects induced by such

diagrams are suppressed at low temperatures since all relevant terms behave in a contin-

uous fashion without singularities. As for the third diagram, it is also suppressed by a

factor ∝ D2 without singularities. �e effect of such a diagram completely vanishes for

the second model in Sec. 2.7. For the first model in the main text, we only observe a large

contribution whenmagnetic moments are near orthogonal to DMI vectors. �is situation

can be avoided by tuning the strength of DMI in the model in the main text, in which case

the anharmonic contributions do not lead to any singularities. Given nonsingular con-

tributions from all three diagrams, we believe that magnon-magnon interactions cannot

hinder topological phases in ourmodels, at least at low temperatures and for typical DMI.

For realizations of the two models given in the main text and in Appendix B, we sug-

gest to study stacked 2D honeycomb ferromagnets with additional nonmagnetic atoms.

From the above discussion it seems that the model in Appendix B corresponding to D2h

point group is better suitable for realizations of the mcTI phase. Among material candi-

dates, one could consider CrI3 van der Waals crystals with honeycomb structure of mag-

netic atoms [101,102]. In addition, similar honeycombmagnetic lattices can be realized in

transition metal trihalides TX3 (X = F, Cl, Br, and I; T = transition metal) [103].
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2.9 Summary

In this chapter, we constructed a chiral symmetry-protected topological insulator of

magnons in light of the analogous works for electronic and cold-atom systems. In our

model, the bulk gap opens due to the presence of DMI.We expect that there could be other

magnonicmodelswithmcTIphase andouranalysis can facilitatefindingotherpossible re-

alizations. Following the tenfold classification of topological insulators, such models can

be characterized by the 3D winding number. We found that the surface Dirac cone has

Rashba-like form, so that the backscattering can be suppressed, which is similar to the

surface of the electronic topological insulator. Systems with the broken chiral symmetry

at the surface can also be of interest due to a small gap in the surface states and due to ap-

pearance of themagnonic Hall response. We showed that the spin Nernst response can be

used as a signature of the chiral symmetry breaking at the surface. Finally, we constructed

a phase diagram in parameter space, which shows that the system can be tuned between

themcTI, nodal line, 3D-mAH, andWeylmagnon phases. We hope that our work can pave

the way for realizations of new topological phases of magnons.
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Chapter 3

Intrinsic spinNernst effect ofmagnons in

a noncollinear antiferromagnet

3.1 Introduction

In this chapter, we turn the topic to the spin transportmediated bymagnons. �epossibil-

ity of coupling between various degrees of freedom has led to new visions for spintronics

[15,104], and resulted in new subfields such as spin caloritronics [105], in which spin carri-

ers are manipulated by exciting heat flows. �e study of spin currents is fundamental for

the field of spintronics, and the spins carried bymagnons possess certain advantages over

electrons, e.g., low dissipation. At the same time, magnons exhibit rich and fascinating

physics associated with the topology of magnonic bands, e.g., the thermal Hall effect has

beenobserved incollinear ferromagentLu2V2O7 [29]. �espinNernst effect [106,107], akin

to the spin Hall effect [9], can also be realized in magnon systems [38–40, 72, 97, 108, 109].

Many spintronics concepts also apply to antiferromagnets [110]. In particular,

collinear antiferromagnets can exhibit the spin Seebeck effect [111], spin pumping [112],

spin-orbit torque [113], spin Nernst effect [38–40, 108, 109], etc. Noncollinear antiferro-

magnets (NAFMs) have attracted considerable attention in recent years, as such systems
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support nontrivial band structure topology. �e anomalous Hall effect [114] and spin Hall

effect [115, 116] have been realized in Mn3X (X= Ge, Sn, Ga, Ir, Rh, or Pt) systems, where

electrons act as charge or spin carriers. Furthermore, the thermal Hall effect, mediated

by magnons, is also identified in NAFM insulators [40–44]. Nevertheless, the magnon-

mediated spin transport in NAFMs [117–119] has not yet been well explored, especially in

the context of the topology of magnon bands. As a new class of materials, NAFMs feature

rich magnetic point group symmetries, chirality, and easily tunable properties (e.g., by

magnetic field). As a result, studies of spin currents in NAFMs can bring new vitality to

spintronics, especially in the context of spin caloritronics. In contrast to the unique spin

polarization of a magnon current in the collinear system, the spin current in NAFMs can

be arbitrarily polarized, which allows a better control of the spin current. NAFMs typically

possess different ground states [120–122] depending on the ambient environment, e.g.,

external field, temperature, substrates, and one can envisage using the spin current as a

probeof thegroundstate. Meanwhile,manyNAFMmaterials canalsoholdexoticquantum

effects [123]. Studies of spin currents in such systems can provide a new venue for probing

thesematerials [124]. Motivated by these interesting possibilities, we initiate a discussion

on the magnon-mediated spin current physics in noncollinear antiferromagnets therein

and hope to stimulate subsequent research on, e.g., spin transport in topological magnon

insulators [74], optical generation ofmagnon-mediated spin currents [125,126], andmany

others, as has been discussed above.

In this chapter, we formulate a linear response theory of magnon-mediated spin

transport induced by temperature gradients in a noncollinear antiferromagnet, concen-

trating on the intrinsic contribution not reliant onmagnon lifetime. �e difficulty in con-

sidering a NAFM is similar to a typical spin Hall system in which spin is not conserved

[127]. Magnons driven by temperature gradients require accounting for the effects associ-

ated with the orbital magnetization [38, 128]. We start by discussing the definition of spin

current in particle-hole space by following Refs. [38, 127], where spin non-conservation is
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signaled by a source term. Next, we develop a linear response theory to temperature gra-

dients for a general observable, i.e., the source term (torque) or spin current, and discuss

the symmetry constraints. One of our main results is the expression for the intrinsic spin

Nernst response in noncollinear antiferromagnetic insulators,

Jγλ =
2kB
V

N∑
n=1

∑
k

(ΩjS
n,k)γλβ c1[g(εn,k)]∇βT, (3.1)

where Jγλ is the spin current with polarization γ, (ΩjS
n,k)γλβ is the spin Berry curvature of

magnons, and c1(x) = (1 +x) ln(1 +x)−x ln(x) is an auxiliary function stemming from

the Bose-Einstein statistics of magnons. We apply our theory to the kagome antiferro-

magnet KFe3(OH)6(SO4)2 (see Fig. 3.1) and show that the in-plane Dzyaloshinskii-Moriya

interaction (DMI) leads to a measurable spin Nernst response. Our study opens a way for

future studies of fascinating physics related to spin flows in noncollinear antiferromag-

nets, e.g., in the context of different magnetic orders andmaterial realizations.

3.2 Hamiltonian and eigenstates

We consider a general Hamiltonian of the form:

H =
∑
i,j

[
Jαβij S

α
i S

β
j + Dij · (Si × Sj)

]
+
∑
i

Hi, (3.2)

where i, j label different lattice sites and α, β stand for different spin vector components,

i.e., x, y, z. Moreover, Jαβij is the symmetric exchange energy between α, β spin compo-

nents on two sites i and j, while antisymmetric exchange is described by the DMI vector

Dij between spins on sites i and j. Effects of the on-site anisotropy and magnetic field

may also be included in our analysis via the last term,Hi = Ki(Si · ẑi)2 + (Si ·B).

Weproceedwith theHolstein-Primakoff transformation [129] in the limit of large spin
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andmap spin operators onto bosonic creation and annihilation operator, a†i and ai:

Si =

√
2S − a†iai

a†i + ai
2

x̂i + i

√
2S − a†iai

a†i − ai
2

ŷi

+(S − a†iai)ẑi. (3.3)

Here, the unit vectors x̂i, ŷi, and ẑi form a local coordinate frame at position i with ẑi

pointing along the ground-state spin direction of site i determined by a particular mag-

netic ordering. Keeping the leading order terms of bosonic operators, we obtain the bilin-

ear Hamiltonian written in magnon particle-hole space as

H =
1

2

∫
drΨ†(r)ĤΨ(r), (3.4)

where Ψ(r) = (a1(r), . . . , aN(r), a†1(r), . . . , a†N(r))T , Ĥ is the real-space single-particle

Hamiltonian describing noninteracting magnons, and r describes the coordinate of a

magnetic unit cell containingN atoms.

In momentum space, Hamiltonian (4.1) reads

H =
1

2

∑
k

Ψ†kHkΨk, (3.5)

whereΨk = (a1,k, . . . , aN,k, a
†
1,−k, . . . , a

†
N,−k)T . From the standard bosonic commutation

relation [ai,k, a
†
j,k] = δij, it can be shown that

[
Ψi,k,Ψ

†
j,k

]
= (σ3)ij, (3.6)

where here and henceforth σi (i = 0, 1, 2, 3) stands for the Pauli matrices acting in

particle-hole space (with σ0 being the identity matrix). Hamiltonian (4.2) can be diago-

nalized by a matrix Tk, which introduces Bogoliubov quasiparticles: Γk = T−1
k Ψk with
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Γk = (γ1,k, . . . , γN,k, γ
†
1,−k, . . . , γ

†
N,−k)T . In terms of the eigenbasis, Eq. (4.2) reads

H =
1

2

∑
k

Γ†kEkΓk =
∑
k

N∑
n=1

εn,k

(
γ†n,kγn,k +

1

2

)
, (3.7)

where Ek = Diag(ε1,k, . . . , εN,k, ε1,−k, . . . , εN,−k) is the eigenenergy matrix containing

the eigenvalues εn,k. By pluggingΨk = TkΓk into Eq. (3.6) and recalling that the normal

mode quasiparticles are bosons as well, i.e., [Γi,k,Γ
†
j,k] = (σ3)ij, we conclude that Tk is

paraunitary:

T †kσ3Tk = Tkσ3T
†
k = σ3. (3.8)

To appreciate the differences to a unitary transformation, let us write the diagonal-

ization in a more suggestive matrix form

T †kHkTk = T †kσ3(σ3Hk)Tk = Ek, (3.9)

where σ3Hk can be regarded as a pseudo-Hermitian Hamiltonian. Although it violates

hermiticity, it can still be diagonalized by different left and right eigenstates with cor-

responding real eigenvalues. T †kσ3 and Tk are alignments of left and right eigenstates,

respectively: the lth entry of the nth left (right) eigenstate reads 〈uLn,k|l = (T †kσ3)nl (

|uRn,k〉l = (Tk)ln). Paraunitarity is then expressed as 〈uLm,k|uRn,k〉 = (σ3)mn and Eq. (4.3) is

equivalent to 〈uLm,k|σ3Hk|uRn,k〉 = (Ek)nnδmn. �us, the pseudo-Hermitian Hamiltonian

matrix in terms of its eigenbasis reads σ3Hk =
∑

n(Ek)nn|uRn,k〉〈uLn,k|, fromwhich follows

a pair of eigenequations [130]

σ3Hk|uRn,k〉 = ε̄n,k|uRn,k〉, (3.10)

〈uLn,k|σ3Hk = 〈uLn,k|ε̄n,k, (3.11)
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where ε̄n,k = (σ3Ek)nn. Fromhere on,wewill only refer to the right eigenstates as |uRn,k〉 =

|un,k〉, and their left partners can be always be obtained from 〈uLn,k| = 〈un,k|σ3.

Finally, note that the magnon basis possesses particle-hole symmetry (PHS) Ψ†k =

(σ1Ψ−k)T so that theHamiltonian obeys σ1Hkσ1 = H∗−k, which leads to ε̄n+N,k = −ε̄n,−k
and |un,k〉 = eiφnσ1|un+N,−k〉∗, where φn is a redundant phase factor.

3.3 Time evolution of a local observable under a

temperature gradient

In a system with a temperature gradient applied, the temperature gradient is a statisti-

cal force and doesn’t directly enter the Hamiltonian. To perform linear response analysis,

we introduce a perturbation corresponding to a pseudo-gravitational potential, χ(r), to

account for the temperature gradient [38, 128, 131],

H ′ =
1

4

∫
drΨ†(r)(χĤ + Ĥχ)Ψ(r). (3.12)

With the perturbation, the total Hamiltonian is amended to H = 1
2

∫
drΨ̃†(r)ĤΨ̃(r),

where Ψ̃(r) = (1 + r · ∇χ/2)Ψ(r). To linear order, the system will respond to a tem-

perature gradient in the same way as to a perturbation with χ(r) = −T (r)/T .

We now introduce an arbitrary matrix Ô and a local observable O(r) =

1
2
Ψ†(r)ÔΨ(r). In what follows, we will mostly consider Ô = Ŝα, which corresponds to

the magnon spin density operator given by Ŝα = −σ0 ⊗ Diag(〈Sα1 〉 /S1, · · · , 〈SαN〉 /SN),

whereα = x, y, z, σ0 describes the particle-hole space, and averages of spinswithin a unit

cell have been taken. �e time evolution of this operator can be obtained from theHeisen-

berg equation applied to the total Hamiltonian.

We first prepare a basic knowledge of the Hamiltonian operator and commutators

in particle-hole space by following Ref. [38, 128]. �e total Hamiltonian can be generally
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expressed asH = 1
2

∫
drΨ̃†(r)ĤΨ̃(r) with Ĥ =

∑
δHδe

ip̂·δ, in which eip̂·δ is the trans-

lation operator that satisfies eip̂·δf(r) = f(r + δ). Here δ is the vector shift between

unit cells, Ψ̃(r) = (1 + r ·∇χ/2)Ψ(r). Based on the basic commutators between bosons

[ai(r), a†j(r
′)] = δijδr,r′, [ai(r), aj(r

′)] = 0, we can construct commutators in the particle-

hole basis

[Ψi(r),Ψ†j(r
′)] = (σ3)ijδr,r′ , [Ψi(r),Ψj(r

′)] = i(σ2)ijδr,r′ ,

[Ψ†i (r),Ψ†j(r
′)] = −i(σ2)ijδr,r′ (3.13)

whereσi (i = 1, 2, 3) are Paulimatrices acting in particle-hole space. Nowweuse the above

Hamiltonian and commutators to perform a local observable time evolution calculation in

two steps. First, we work out the Heisenberg equation commutation as follow,

∂O(r)

∂t
= i[H,O(r)] = i[

1

2

∑
δ

∫
dr′Ψ̃†(r′)HδΨ̃(r′ + δ),

1

2
Ψ†(r)ÔΨ(r)]

=
i

4

∑
δ

∫
dr′ξ(r′)(Hδ)ijξ(r

′ + δ)Omn[Ψ†i (r
′)Ψj(r

′ + δ),Ψ†m(r)Ψn(r)]

= − i
2

∑
δ

[Ψ̃†(r)Ôσ3HδΨ̃(r + δ)− Ψ̃†(r− δ)Hδσ3ÔΨ̃(r)]. (3.14)

Here we used the simplified notation ξ(r) = 1 + r · ∇χ/2. We also took advantage of

particle-hole symmetry, i.e., Ψn(r) = (σ1)nlΨ
†
l (r) and σ1Ôσ1 = Ô, where the second

relation results from the first one. Next, we reduce the above result to a continuous ex-
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pression by properly sending the shift vector to an infinitely small value.

∂O(r)

∂t
= − i

2

∑
δ

[Ψ̃†(r)Ôσ3HδΨ̃(r + δ)− Ψ̃†(r− δ)Hδσ3ÔΨ̃(r)]

= −1

2

∑
δ

1

δ
[Ψ̃†(r)Ôσ3(iδHδe

ip̂·δ)Ψ̃(r)− Ψ̃†(r− δ)(iδHδe
ip̂·δ)σ3ÔΨ̃(r− δ)]

= −1

2

∑
δ

1

δ
[Ψ̃†(r)

1

2
(Ôσ3v̂δ + v̂δσ3Ô)Ψ̃(r) + Ψ̃†(r)

1

2
(Ôσ3v̂δ − v̂δσ3Ô)Ψ̃(r)]

−1

δ
[Ψ̃†(r− δ)

1

2
(Ôσ3v̂δ + v̂δσ3Ô)Ψ̃(r− δ)− Ψ̃†(r− δ)

1

2
(Ôσ3v̂δ − v̂δσ3Ô)Ψ̃(r− δ)]

= −1

4

∑
δ

1

δ
[Ψ̃†(r)(Ôσ3v̂δ + v̂δσ3Ô)Ψ̃(r)− Ψ̃†(r− δ)(Ôσ3v̂δ + v̂δσ3Ô)Ψ̃(r− δ)]

−1

4

∑
δ

1

δ
[Ψ̃†(r)(Ôσ3v̂δ − v̂δσ3Ô)Ψ̃(r) + Ψ̃†(r− δ)(Ôσ3v̂δ − v̂δσ3Ô)Ψ̃(r− δ)]

= −1

4
∇ · [Ψ̃†(r)(Ôσ3v̂ + v̂σ3Ô)Ψ̃(r)]− i

2
Ψ̃†(r)(Ôσ3Ĥ − Ĥσ3Ô)Ψ̃(r). (3.15)

Here we used the notation v̂δ = iδHδe
ip̂·δ and v̂ = i

∑
δ δHδe

ip̂·δ = i[Ĥ, r]. In the last

line, we take the limit δ → 0 to obtain the continuous expression. We can easily read out

the current and source term from the final result [38]

∂O(r)

∂t
= i[H,O(r)] = −∇ · jO + SO. (3.16)

Here jO = Ψ̃†(r)̂jOΨ̃(r) and SO = Ψ̃†(r)ŜOΨ̃(r) correspond to the local current and

source densities, respectively, with

ĵO =
1

4
(v̂σ3Ô + Ôσ3v̂)

ŜO = − i
2

(Ôσ3Ĥ − Ĥσ3Ô) (3.17)

where v̂ = i[Ĥ, r]. To linear order in the temperature gradient, the above densities are
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explicitly decomposed as ρθ = ρ
[0]
θ + ρ

[1]
θ , with

ρ
[0]
θ = Ψ†(r)θ̂Ψ(r),

ρ
[1]
θ =

1

2
Ψ†(r)(θ̂rβ + rβ θ̂)Ψ(r)∇βχ, (3.18)

where for θ one needs to substitute either jO or SO. We will use a four-vector conven-

tion in which θ0 = SO and θ = jO. �e non-vanishing source term indicates the non-

conservation of the observable, for instance, whenO(r) corresponds to spin density, the

source term represents torque density. We note in passing that the source term dipolePO

can be defined as SO = −∇ · PO for vanishing total source 1
V

∫
drSO = 0, where V is

the volume andPO = rSO. �us, a conserved current can be defined asJ O = jO + PO

to restore the continuity equation [127]. �e current term jO coincides with the conven-

tional definition in the literature of the spin Hall effect [9]. In general, based on Eq. (3.16)

we can interpret jO as a spin current and SO as the torque. In our discussion below, we

concentrate on the spin current term.

3.4 Linear response to a temperature gradient

We consider spatially averaged quantitiesΘα = Θ
[0]
α + Θ

[1]
α withΘ

[0,1]
α = 1

V

∫
drρ

[0,1]
θα

(r).

�e thermal response to linear order in the temperature gradient reads

Θα = 〈Θ[0]
α 〉neq + 〈Θ[1]

α 〉eq, (3.19)

where on the right hand side the first term is evaluated with respect to nonequilibrium

states from the Kubo linear response calculation, while the second term corresponds to

orbitalmagnetization in the system and is evaluatedwith respect to the equilibrium state.
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In total, we can express the linear response as

Θα = (Sθαβ +M θα
β )∇βχ, (3.20)

where Sθαβ andM θα
β correspond to the first and second terms in Eq. (3.19).

In the spirit of the Kubo response calculation [38,97], the nonequilibrium part can be

described by

〈Θ[0]
α 〉neq = lim

ω→0

1

iω
[Παβ(ω)− Παβ(0)]∇βχ. (3.21)

Here Παγ(iωm) = −
∫ β

0
dτeiωmτ 〈TτΘ[0]

α (τ)Jqγ(0)〉, with β = 1/(kBT ), where ωm is the

bosonic Matsubara frequency. Jq is the averaged heat current operator defined as Jq =

1
V

∫
drjq(r), where the heat current density jq = 1

4
Ψ†(r)(Ĥσ3v̂ + v̂σ3Ĥ)Ψ(r). �is heat

current expression can be inferred from the energy conservation equation ρ̇E +∇ · jq = 0,

where ρE is the energy density of the system. After performing the linear response calcu-

lation, the intrinsic nonequilibrium coefficient reads

Sθαβ =
1

V

∑
nk

−
[
(Ωθ

n,k)αβ ε̄n,k + (mθ
n,k)αβ

]
g(ε̄n,k). (3.22)

Here

(Ωθ
n,k)αβ =

∑
m(6=n)

(σ3)nn(σ3)mm
2Im[(θα,k)nm(vβ,k)mn]

(ε̄n,k − ε̄m,k)2
, (3.23)

(mθ
n,k)αβ =

∑
m(6=n)

(σ3)nn(σ3)mm
−Im[(θα,k)nm(vβ,k)mn]

ε̄n,k − ε̄m,k
, (3.24)

where (. . . )nm = 〈un,k| . . . |um,k〉 and g(ε̄nk) is the Bose-Einstein distribution. Here

(Ωθ
n,k)αβ is the generalized Berry curvature calculated for operator θ̂α.

�e contribution corresponding to ρ[1]
θα
is expressed as

M θα
β =

1

2V
〈
∫
drΨ†(r)(θ̂αrβ + rβ θ̂α)Ψ(r)〉eq. (3.25)
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To calculate this term, we can identify a thermodynamic expression forM θα
β by following

Refs. [132–136]. We introduce a perturbation coupled with a four-component fictitious

field hα(r), i.e., Ĥ1 = Ĥ0− [θ̂αhα(r) +hα(r)θ̂α]. If the field varies very slowly on the scale

of the lattice constant, we can identify a thermodynamic expression

M θα
β = − lim

hα→0

1

V

∂Ω

∂(∂rβhα)
(3.26)

whereΩ is the thermodynamic grand potential of the system. �e thermodynamic defini-

tion of grand potential reads

Ω = E − TS − µN, (3.27)

where S, µ,N are the entropy, chemical potential, particle number of the system, and E

is the energy which reads

E = 〈H〉eq =
1

2

2N∑
k,n=1

(σ3)nng(ε̄n,k)〈ψn,k|Ĥ|ψn,k〉. (3.28)

Here we use the relation 〈Γ†n,kΓm,k〉 = (σ3)nng(ε̄n,k) with Γm,k =
∑

l(Tk)mlΨk,l. Below

we will assume the chemical potential to be zero. If we regard the local fictitious field and

its gradient as independent variables, the variation of the grand potential can be identified

as

dΩ = −SdT − 〈Θ[0]
α 〉dhα −M θα

β d(∂rβhα), (3.29)

fromwhich we can identify the Maxwell relation

(
∂M θα

β

∂T

)
hα,∂rβhα

=

[
∂S

∂(∂rβhα)

]
T,hα

. (3.30)
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To get rid of calculations involving entropy S, we first introduce an auxiliary quantity

M̃ θα
β = − 1

V

∂K

∂(∂rβhα)
(3.31)

withK = Ω + TS = E (µ = 0). By utilizing Eq. (3.30), we obtain

M θα
β = M̃ θα

β + T
∂M θα

β

∂T
(3.32)

and hence the dipole moment contribution can be calculated as

M̃ θα
β =

∂(βM θα
β )

∂β
. (3.33)

If we regard the fictitious field term as a perturbation, the variation ofK to linear order

reads

δK(r) =
1

2

∑
nk

δg(ε̄nk)(σ3)nn〈ψnk|Ĥ|ψnk〉 − g(ε̄nk)(σ3)nn〈ψnk|[θ̂αhα(r) + hα(r)θ̂α]|ψnk〉

+g(ε̄nk)(σ3)nn(〈δψnk|Ĥ|ψnk〉+ 〈ψnk|Ĥ|δψnk〉), (3.34)

where |ψnk〉 = eik·r√
V
|unk〉 is the Bloch wave function of the system. If we assume a special

form of the fictitious field

hα(r) =
h0
α

q
sin(q · r), (3.35)

with q = qêβ, where α, β = x, y, z in three dimensions or α, β = x, y in two dimensions,

the auxiliary quantity can be identified by picking up the appropriate Fourier component

M̃ θα
β = lim

q→0

−2

h0
αV

∫
drδK(r) cos(q · r). (3.36)

As anexample,wecalculateM̃ θy
x by takingq1 = qêx andhα(r) = h

q
sin(q1·r)δα,y. Applying
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perturbation theory to linear order under the Bloch representation, we find

〈ψm,k±q1|σ3|δψnk〉 =
ih

2q

〈um,k±q1 |(θy,k + θy,k+q1)|un,k〉
ε̄nk − ε̄m,k±q1

, (3.37)

and

|δψnk〉 =
∑
m

ih

2q
(σ3)mm[ei(k+q1)·r|um,k+q1〉

〈um,k+q1|(θy,k + θy,k+q1)|un,k〉
ε̄nk − ε̄m,k+q1

− (q1 → −q1)].(3.38)

Here it is implied that we will use the operator under Bloch representation henceforth,

i.e., Ĥ → Hk = e−ik·rĤeik·r, θ̂α → θα,k = e−ik·rθ̂αeik·r. �is step is guaranteed by the

requirement that the operator θ̂α is well defined in a periodic system. By using the results

above we obtain

M̃ θy
x = lim

q→0

1

2V

∑
k

∑
mn

1

i2q
g(ε̄nk)(σ3)nn(σ3)mmε̄nk

×[
〈unk|σ3|um,k+q1〉〈um,k+q1|(θy,k + θy,k+q1)|un,k〉

ε̄nk − ε̄m,k+q1

− (q1 → −q1)] + c.c.

= lim
q→0

1

2V

∑
k

∑
mn

1

i2q
[g(ε̄nk)ε̄nk − g(ε̄m,k+q1)ε̄m,k+q1 ](σ3)nn(σ3)mm

×〈unk|σ3|um,k+q1〉〈um,k+q1 |(θy,k + θy,k+q1)|un,k〉
ε̄nk − ε̄m,k+q1

+ c.c.

(3.39)

Taking the limit, we get form 6= n,

(M̃ θy
x )1

=
1

V

∑
k

∑
m 6=n

1

2
[g(ε̄mk)ε̄mk − g(ε̄n,k)ε̄n,k](σ3)nn(σ3)mm

i〈un,k|σ3|∂kxum,k〉〈um,k|θy|un,k〉
ε̄n,k − ε̄m,k

+ c.c.

=
1

V

∑
k

∑
m 6=n
−1

2
[g(ε̄mk)ε̄mk − g(ε̄n,k)ε̄n,k](σ3)nn(σ3)mm

i〈un,k|vx|um,k〉〈um,k|θy|un,k〉
(ε̄n,k − ε̄m,k)2

+ c.c..

(3.40)
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Form = n, we have

(M̃ θy
x )2

=
1

V

∑
k

∑
n

1

2i
[g(ε̄n,k) + g′(ε̄n,k)ε̄n,k][〈un,k|σ3∂kxun,k〉〈un,k|θy|un,k〉

+(σ3)nn〈∂kxun,k|θy|un,k〉] + c.c.

=
1

V

∑
k

∑
n

−1

2
[g(ε̄n,k) + g′(ε̄n,k)ε̄n,k](σ3)nn(σ3)mm

i〈un,k|vx|um,k〉〈um,k|θy|un,k〉
ε̄n,k − ε̄m,k

+ c.c..

(3.41)

Above vx = ∂kxH. In total, we have

M̃ θy
x = (M̃ θy

x )1 + (M̃ θy
x )2 =

1

V

∑
nk

g(ε̄nk)ε̄nk(Ωθ
n,k)yx + [g(ε̄n,k) + g′(ε̄n,k)ε̄n,k](mθ

n,k)yx.

(3.42)

�e calculation of all other components is fully analogous to what we have done. �e gen-

eral result will be

M̃ θα
β =

1

V

∑
nk

g(ε̄nk)ε̄nk(Ωθ
n,k)αβ + [g(ε̄n,k) + g′(ε̄n,k)ε̄n,k](mθ

n,k)αβ , (3.43)

Note that here the Berry curvature in the above equation is summed over both particle and

hole space. Finally, by using Eq. (3.33) we obtain

M θα
β =

1

β

∫ β

0

dβ̄M̃ θα
β =

1

V

∑
nk

[(Ωθ
n,k)αβ

∫ ε̄nk

0

dηg(η) + (mθ
n,k)αβg(ε̄n,k)]. (3.44)

Here we used the relation 1
β

∫ β
0
dβ̄g(ε̄n,k)ε̄n,k =

∫ ε̄nk
0

dηg(η) with g(η) = 1
eβ̄η−1

and

d
dβ̄

[β̄g(ε̄n,k)] = g(ε̄n,k) + g′(ε̄n,k)ε̄n,k.

Nowwe can combine the nonequilibrium contribution in Eq. (3.22) and Eq. (3.44) to-
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gether to obtain the total response coefficient

Sθαβ +M θα
β =

1

V

∑
nk

(Ωθ
n,k)αβ [−ε̄nkg(ε̄nk) +

∫ ε̄nk

0

dηg(η)]

= − 1

V

∑
nk

(Ωθ
n,k)αβ

∫ ε̄nk

0

dηη
dg(η)

dη

= − 1

V

∑
nk

(Ωθ
n,k)αβ c̃1(ε̄nk), (3.45)

where c̃1(x) =
∫ x

0
dηη dg(η)

dη
with g(η) = 1

eβη−1
.

Before proceeding toward the final result, we provide two useful properties of Berry

curvature defined in (3.23).

(1) Summation rule:

2N∑
n=1

(Ωθ
n,k)αβ =

∑
m6=n

(σ3)nn(σ3)mmIm[
〈un,k|θα|um,k〉〈um,k|vβ|un,k〉

(ε̄n,k − ε̄m,k)2

+
〈um,k|θα|un,k〉〈un,k|vβ|um,k〉

(ε̄n,k − ε̄m,k)2
] = 0. (3.46)

In themiddle step,weutilized theproperty that theband indicesm,n canbe interchanged.

(2)Mappingbetweenparticle andhole space. Wenote that the velocity operator vk satisfies

σ1vkσ1 = σ1
∂Hk

∂k
σ1 = −v∗−k. (3.47)

At the same time, the particle-hole symmetry of the Hamiltonian enforces the relation

σ1θα,kσ1 = θ∗α,−k, (3.48)

which is clearly satisfied when we consider the current and source term response for a

givenoperator Ô. Using theparticle-hole symmetry property of the eigenstates and eigen-
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values, we are able to show

(Ωθ
n,k)αβ

=
∑
m(6=n)

(σ3)nn(σ3)mm
2Im(〈un,k|θα,k|um,k〉〈um,k|vβ,k|un,k〉)

(ε̄n,k − ε̄m,k)2

=
∑

m+N(6=n+N)

(σ3)n+N,n+N(σ3)m+N,m+N

×
2Im(〈u∗n+N,−k|σ1θα,kσ1|u∗m+N,−k〉〈u∗m+N,−k|σ1vβ,kσ1|u∗n+N,−k〉)

(ε̄n+N,−k − ε̄m+N,−k)2

=
∑

m( 6=n+N)

(σ3)n+N,n+N(σ3)mm
2Im[(〈un+N,−k|θα,−k|um,−k〉)∗(〈um,−k| − vβ,−k|un+N,−k〉)∗]

(ε̄n+N,−k − ε̄m,−k)2

= (Ωθ
n+N,−k)αβ . (3.49)

Now, from the relation−g(−η) = 1 + g(η), we have c̃(x) = c̃(−x). By using the two

properties of the general Berry curvature Eq. (3.46) and (3.49), the total response function

can be further reduced as below

Sθαβ +M θα
β = − 1

V

N∑
n=1

∑
k

[(Ωθ
n,k)αβ c̃1(εnk) + (Ωθ

n+N,k)αβ c̃1(−εn,−k)]

= − 1

V

N∑
n=1

∑
k

[(Ωθ
n,k)αβ + (Ωθ

n+N,−k)αβ ]c̃1(εn,k)

= − 1

V

N∑
n=1

∑
k

[(Ωθ
n,k)αβ + (Ωθ

n+N,−k)αβ ][c̃1(εn,k)−
∫ ∞

0

dηη
dg(η)

dη
]

= −kBT
V

N∑
n=1

∑
k

[(Ωθ
n,k)αβ + (Ωθ

n+N,−k)αβ ]c1[g(εn,k)]

= −2kBT

V

N∑
n=1

∑
k

(Ωθ
n,k)αβc1[g(εn,k)]. (3.50)

Here we used the relation −
∫∞
εn
η dg(η)

dη
dη = 1

β
c1[g(εn)]. By substituting the coefficient

above in to Eq. (3.20), we obtain the thermal response formula which constitutes themain
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Figure 3.1: (a) Kagome antiferromagnet lattice with small out-of-plane spin canting. (b)
Spin order in-plane projection and DMI vectors for kagome antiferromagnet, where the
dashed line shows the mirror planeMx.

result of this paper:

Θα =
2kB
V

N∑
n=1

∑
k

(Ωθ
n,k)αβc1[g(εn,k)]∇βT. (3.51)

Note that we express our result using particle bands (n ≤ N ) by utilizing PHS.

It is useful to identify the symmetry constraints leading to a vanishing source term

response. In general, for the averaged torque density this can happen for only some of

the torque components. However, for an inversion symmetric system, i.e., Hk = H−k,

the Berry curvature of the torque term satisfies (ΩSO
n,k)β = −(ΩSO

n,−k)β. Together with the

relation εn,k = εn,−k, this results in the vanishing of all torque components in Eq. (3.51).

3.5 SpinNernst effect in kagome antiferromagnet

Weuse the result in Eq. (3.51) to calculate the spinNernst response tensor in a noncollinear

kagome antiferromagnet in Eq. (3.1) where the spin Berry curvature is calculated with re-

spect to operator ĵγ,λ = 1
4
(v̂λσ3Ŝ

γ + Ŝγσ3v̂λ) corresponding to the spin current. We can



74

immediately identify that the spin Berry curvature in Eq. (3.1) is even under the time re-

versal transformation. As a result, the spinNernst conductivity is also even under the time

reversal transformation, and this result will be used in the symmetry analysis below. Fur-

thermore, in a kagome antiferromagnet, due to the presence of inversion symmetry, the

averaged torque density (source term) vanishes. We consider the Hamiltonian

H =
∑
〈ij〉

J1Si · Sj + Dij · (Si × Sj) +
∑
〈〈ij〉〉

J2Si · Sj, (3.52)

where the first and third terms represent nearest and second-nearest neighbor Heisen-

berg exchange, and the second term represents nearest neighbor Dzyaloshinskii-Moriya

interaction (DMI) with both in-plane and out-of-plane DMI vectors, as shown in Fig. 3.1.

�e DMI vector can be expressed as Dij = Dpn̂ij + Dz ẑ, where Dp and Dz correspond

to the in-plane and out-of-plane DMI strength, and n̂ij is an in-plane unit vector corre-

sponding to the direction of the in-plane DMI.�e in-plane DMI can only arise whenMz

symmetry is broken [114], i.e., time-reversal followed by mirror symmetry with respect to

the kagome plane is not a symmetry in such a case. �is introduces a small out-of-plane

canting angle η to spin order with magnitude η = 1
2

tan−1( −2Dp√
3(J1+J2)−Dz ) [40]. Here we

consider the q = 0 phase with spin order as shown in Fig. 3.1. �e magnetic moments

orient according to 〈Si〉 = S(cos η cosφi, cos η sinφi, sin η), where φi is the angle formed

by the in-plane projection of moment with the x axis. Specifically, φA = π/2, φB = 7π/6,

and φC = −π/6. For the spin Nernst response, we identify Ô discussed above as the

spin operator in the magnon basisΨ(r) = [bA(r), bB(r), bC(r), b†A(r), b†B(r), b†C(r)]T , i.e.,

Ŝα = −σ0 ⊗ Diag(〈SαA〉 , 〈SαB〉 , 〈SαC〉)/S.

�e spin conductivity tensor of a spin-polarized current in a noncollinear antiferro-

magnet [116,137] is restricted to a certain form by themagnetic space group of the system.

Suppose theHamiltonian respects a symmetry gwithmatrix representationU(g) for uni-

tary operation and U(g)K for anti-unitary operation (containing time-reversal) with K
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Figure 3.2: Plots for kagome antiferromagnet KFe3(OH)6(SO4)2. (a) Energy bands. (b-d)
�espinBerry curvature forαyyx for top,middle, and lowest band. Detailedplots of the spin
Berry curvature in the vicinity of the white regions, corresponding to the values outside of
the range of the scale bar, can be found in Fig. 3.3.
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Figure 3.3: Spin Berry curvature plots for kagome antiferromagnet KFe3(OH)6(SO4)2. (a)
Middle energy band. (b) Lowest energy band.
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being the complex conjugate operator. Here U(g) corresponds to the point group opera-

tion on spinmode orbitals, which is a unitarymatrix that satisfiesU(g)† = U(g)T . On the

other hand, the point group symmetries don’t mix particle and hole symmetry, such that

[σ3, U(g)] = 0. For the unitary case, we assume

U(g)HkU
†(g) = HM(g)k, (3.53)

whereM(g) is thematrix acting onmomentum variables. �is can lead to relations below

|ψn,M(g)k〉 = U(g)|ψn,k〉, εM(g)k = εk. (3.54)

As a consequence, by inserting the symmetry operation in the matrix elements of an ob-

servable, we find

〈ψn,k|Â|ψm,k〉 = 〈ψn,M(g)k|U(g)ÂU(g)†|ψm,M(g)k〉. (3.55)

Similarly, for the anti-unitary case, assume the symmetry contraint onHamiltonian reads

U(g)H∗kU
†(g) = HM(g)k, (3.56)

such that

|ψn,M(g)k〉 = U(g)K|ψn,k〉, εM(g)k = εk. (3.57)

�ese relations will lead to

〈ψn,k|Â|ψm,k〉 = 〈ψn,M(g)k|U(g)ÂU(g)†|ψm,M(g)k〉∗. (3.58)
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If the operator Â satisfies

U(g)ÂiU(g)† =
∑
j

R(g)ijÂj, (3.59)

it can be combinedwith the operator element symmetry relation to produce a transforma-

tion relation for the spin Nernst response coefficient

αγλβ = ±Rs(g)γiR
v(g)λjR

v(g)βkα
i
jk, (3.60)

where the plus and minus sign correspond to unitary and anti-unitary symmetry, and

Rs/v(g) stands for the transformation matrix for the spin and velocity operator, respec-

tively. Moreover, suppose the involved non-magnetic point group symmetry U(g) corre-

sponds to a spatial operationwithmatrix formR in Cartesian coordinates. If ĝ is a unitary

operation,

Rs(g) = det(R)R, Rv(g) = R. (3.61)

If ĝ is an anti-unitary operation,

Rs(g) = −det(R)R, Rv(g) = −R. (3.62)

Plugging Eq. (3.61), (3.62) into Eq. (3.60), we find

αγλβ = det(R)Rγγ′Rλλ′Rββ′α
γ′

λ′β′ (3.63)

In the kagome AF, we focus on two symmetries of the system: the mirror reflection

with respect to the y − z plane plus time-reversal ĝ1 =MyzT , and the threefold rotation

about the z axis ĝ2 = C3z. It is straightforward to obtain the matrix representation in
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Figure 3.4: Plots for kagome antiferromagnet KFe3(OH)6(SO4)2. (a) Band structure. (b)
Spin Nernst conductivity (SNC) αyyx and αzyx, where αzyx is scaled for visibility. Relevant
parameters are J1 = 3.18meV, J2 = 0.11meV, |Dp|/J1 = 0.062,Dz/J1 = −0.062.

Cartesian coordinates of these two symmetry operations

R(g1) =


−1 0 0

0 1 0

0 0 1

 , R(g2) =


−1

2
−
√

3
2

0
√

3
2
−1

2
0

0 0 1

 . (3.64)

By applying these symmetries to Eq. (3.63), the spin Nernst response tensor (only consid-

ering in-plane driven response) can be fixed to

[α̂x, α̂y, α̂z] =


 −α1 0

0 α1

 ,

 0 α1

α1 0

 ,

 0 −α2

α2 0


 . (3.65)

Here, theMxT symmetry can be replaced by C2xT , twofold rotation about the x axis and

time-reversal, whichwill lead us to the same result. Wenote that our results are consistent

with the spin Hall response tensors in Mn3X (X= Rh, Ir or Pt) [115].

We apply our theory to a single layer of potassium iron jarosite, KFe3(OH)6(SO4)2, for

which the material parameters are J1 = 3.18meV, J2 = 0.11meV, |Dp|/J1 = 0.062,

Dz/J1 = −0.062 [40, 138]. We note, however, that the magnon dispersion in this mate-
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rial can also be explained by J2 = 0, in which case the flat band is broadened by fluctua-

tions [139]. �e numerically obtained form of the spin Nernst conductivities agrees with

Eq. (3.65). In Fig. 3.2, we plot the magnon bands and the spin Berry curvature for the y

polarization of the spin. �e spin Berry curvature is peaked at avoided crossings as shown

in Fig. 3.3, which give the largest contribution to the spinNernst effect. �e integral of the

ordinaryBerry curvature gives theChernnumbers−3, 1, and2, fromthebottomto the top

bands in Fig. 3.2. In Fig. 3.4, we show the spin Nernst response coefficients as a function

of temperature for the y and z spin polarizations. �e spin Nernst response sharply in-

creases at temperatures sufficient to excite magnons in the Brillouin zone where the spin

Berry curvature is large. �e z direction polarized spin current is two orders of magni-

tude smaller than the current with in-plane spin polarization, which is due to the fact that

the canting angle is fairly small, η = 1.9◦ [40]. By applying magnetic field, the canting

angle and the spin Nernst response with the z polarization direction can be substantially

increased. �e predicted spin currents should be easily detectable in three dimensional

structures as a temperature gradient of 20 K/mm should result in a spin current of the

order of 10−11 J/m2 according to Fig. 3.4, where α3D = α/c, with c being the interlayer

distance. Finally, we note that the spin Nernst effect reported in Ref. [117] differs from the

intrinsic effect reported here as the former has the symmetry of the extrinsic effect.

3.6 Summary

In this chapter, we have developed a theory of magnon-mediated intrinsic spin currents

in insulating noncollinear antiferromagnets and applied this theory to potassium iron

jarosite KFe3(OH)6(SO4)2. Our results are applicable to two- and three-dimensional sys-

tems, promising to reveal fascinating physics in other layered quasi-2D antiferromagnets,

e.g., silver iron jarositeAgFe3(OH)6(SO4)2 [140], chromiumjarositeKCr3(OH)6(SO4)2 [141],

vesignieite BaCu3V2O8(OH)2 [142], and 3D pyrochlore antiferromagnets LiGaGr4O8 and
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LiInGr4O8 [143, 144]. Besides exploring material candidates, one can also study the effect

of magnetic order on the spin Nernst effect, e.g., in kagome antiferromagnets other pos-

sible spin chiralities exist [44, 122]. Recently proposed antiferromagnetic skyrmions with

noncollinear magnetic order [145] can also be explored using our theory.
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Chapter 4

Magnonic analogue of Edelstein effect in

antiferromagnetic insulators

4.1 Introduction

Generation of nonequilibrium spin imbalance is increasingly important for current spin-

tronics research [15], especially in the context of nonequilibrium torques [113]. In metal-

lic and semiconductor materials, spin-orbit coupling (SOC) facilitates the interplay be-

tween the orbital and spin degrees of freedom, which allows feasible electric manipula-

tion of spins, e.g., for technological applications. One consequence of such coupling is

the inverse spin-galvanic effect [146–148] which attracted considerable interest in recent

years [149–155, 155–160]. �e nonequilibrium spin polarization contains an extrinsic part

dependent on the transport relaxation time and an intrinsic part independent of the re-

laxation time [113], and it can lead to spin-orbit torques. Both field-like and damping-like

spin-orbit torques can arise due to the nonequilibrium spin polarization at interfaces be-

tweenmagnetic and nonmagnetic materials [161–167].

In ferromagnetic and antiferromagnetic insulators, magnons – the quantum quasi-

particles carrying energy and spin – can mediate various transport phenomena. �e
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Dzyaloshinskii-Moriya interaction (DMI) [168, 169] in such systems can lead to magnon

spin-momentum locking [170], magnon-mediated magnetization torques [97, 171, 172],

and magnonic thermal Hall [28–31, 40–44, 81, 128, 173] and spin Nernst effects [22, 38, 39,

72, 97, 108, 109, 117, 174–176]. Ref. [174] has speculated about the possibility of magnon-

mediated spin polarization in insulating antiferromagnets lacking inversion symmetry.

In this chapter, we will use the theory developed in the last chapter to study the

magnonic analogue of the Edelstein effect by considering antiferromagnetic insulators

[177]. �e spin nonconservation in such systems can be caused by noncollinear spin order

or anisotropic exchange. �e final result for the magnonic spin polarization is separated

into the extrinsic and intrinsic contributions [177]. We apply our theory to several mod-

els and discuss relevant material candidates. In 1D, an antiferromagnetic spin chain with

anisotropic nearest neighbor exchange andRashba-likeDMI serves as a toymodel exhibit-

ing both intrinsic and extrinsic contributions to the magnonic analogue of the Edelstein

effect. In 2D and 3D, we concentrate on realistic noncollinear antiferromagnets on the

kagome and breathing pyrochlore lattices. From the magnetic point group, we establish

the response tensor shapes which agree with our numerical results.

4.2 Review ofmagnonHamiltonian and linear response

theory

We first briefly review the theory of magnonic systems introduced in the last chapter.

To capture magnonic excitation at low temperature, we can perform Holstein-Primakoff

transformation at the large-S limit, which leads us to a general Hamiltonian

H =
1

2

∫
drΨ†(r)HΨ(r), (4.1)
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where Ψ(r) = (a1(r), . . . , aN(r), a†1(r), . . . , a†N(r))T , H is the real-space single-particle

Hamiltonian describing noninteracting magnons, and r describes the coordinate of a

magnetic unit cell containingN atoms. In momentum space, Hamiltonian (4.1) reads

H =
1

2

∑
k

Ψ†kHkΨk, (4.2)

whereΨk = (a1,k, . . . , aN,k, a
†
1,−k, . . . , a

†
N,−k)T . Here,Hk can be diagonalized by a parau-

nitary matrix Tk

T †kHkTk = Ek, (4.3)

where Tk satisfies paraunitary relation

T †kσ3Tk = Tkσ3T
†
k = σ3. (4.4)

�e diagonalization can be re-expressed in terms of the eigenequation of pseudoHamilto-

nian σ3Hk [130]

σ3Hk|uRn,k〉 = ε̄n,k|uRn,k〉, (4.5)

〈uLn,k|σ3Hk = 〈uLn,k|ε̄n,k, (4.6)

where ε̄n,k = (σ3Ek)nn, 〈uLn,k|l = (T †kσ3)nl ( |uRn,k〉l = (Tk)ln), and the paraunitarity is

then expressed as 〈uLm,k|uRn,k〉 = (σ3)mn. From here on, we will only refer to the right

eigenstates as |uRn,k〉 = |un,k〉, and their left partners can be always be obtained from

〈uLn,k| = 〈un,k|σ3. Finally, note that the magnon basis possesses particle-hole symme-

try (PHS)Ψ†k = (σ1Ψ−k)T so that the Hamiltonian obeys σ1Hkσ1 = H∗−k, which leads to

ε̄n+N,k = −ε̄n,−k and |un,k〉 = eiφnσ1|un+N,−k〉∗, where φn is a redundant phase factor.

Sinceweare interested inanonequilibriumspindensity response to anexternal force,
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wemust denote the spin density operator in terms of the aforementionedmagnonic vari-

ables. We introduce the µ = x, y, z component of the magnonic spin density operator

as

Σµ =
1

V

∑
k

Ψ†kΣ̂µΨk, (4.7)

where

Σ̂µ = −1

2
Diag (zµ1 , . . . , z

µ
N , z

µ
1 , . . . , z

µ
N) , (4.8)

and the unit vectors zµi corresponding to directions of magnetic moments have been in-

troduced in Eq. (3.3). We note that PHS implies 〈un,k|Σ̂µ|un,k〉 = 〈un+N,−k|Σ̂µ|un+N,−k〉.

�e linear response of the nonequilibrium spin density with respect to a temperature

gradient∇νT can be expressed as,

〈Σµ〉 = χµν∇νT =
(
χex
µν + χin

µν

)
∇νT, (4.9)

where we separated the response tensor χµν into extrinsic, χex
µν, and intrinsic, χin

µν, parts.

According to the Kubo formula calculation in Appendix A and themethodwe developed in

the last chapter, the response coefficient reads

χex
µν =

1

V T

N∑
k,n=1

1

Γn
(Σµ,k)nnvnk,νεn,k

[
−∂nB(εn,k)

∂ε

]
. (4.10)

χin
µν =

2kB
V

N∑
n=1

∑
k

(ΩΣ
n,k)µνc1[nB(εn,k)], (4.11)
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with

(ΩΣ
n,k)µν =

∑
m( 6=n)

2Im[(σ3Σµ,k)nm(σ3ṽν,k)mn]

(ε̄n,k − ε̄m,k)2
. (4.12)

Here, we used the notation c1(x) = (1 +x) ln(1 +x)−x ln(x). �e extrinsic part can also

be obtained from the Boltzmann transport theory with the relaxation time τn = 1/(2Γn).

In following the approach introduced in the last chapter to calculate the intrinsic response

coefficient, we explicitly introduce a perturbation corresponding to an external magnetic

fieldB(r) into HamiltonianH [132–134]:

ĤB = −[B(r) · Σ̂ + Σ̂ ·B(r)], (4.13)

whereB(r) varies slowly in space, i.e., on a length scale much larger than the lattice con-

stant. Apart from this, the intrinsic response fully agrees with Eq. (3.51) in the last chapter

by replacing the operator θ̂ by Σ̂.

Equations (4.10) and (4.11) are the main formulas that will be used in this chapter. In

Sec. 4.4, we use these formulas tomake numerical predictions of the nonequilibrium spin

density for several relevant models, including material candidates.

Before proceeding to subsequent discussions, some useful remarks about the re-

sponse theory developed above are due. �e validity of the magnon representation is well

established at low temperatures. Higher-order magnon-magnon interaction corrections

to the theory start withO(1/S) terms. �ese corrections include both effects from ther-

mally activated processes and spontaneous decay [99, 121]. �e former are frozen in the

low-temperature regime. �e latter contribute to spectrum broadening and renormaliza-

tion, both of which are further suppressed by the weak magnon-magnon coupling factor

and the restriction of energy andmomentum conservation. �emagnon-phonon scatter-

ing effects lead to the phenomenological broadening factor Γn in our theory [178]. Higher

order corrections, such as vertex corrections, could in principle be important in some
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cases but their consideration goes beyond the scope of this thesis. In a special case, when

the magnon-phonon coupling is strong enough, it may become necessary to explore the

magnon-phonon hybrid system [179,180], where our theory still applies by treating quasi-

particles as a mixture of magnon and phonon.

4.3 Symmetry constraints

In this section, we discuss constraints on the magnon response tensor, χµν, posed by the

symmetries. To generate the nonequilibrium spin density with magnons one needs a sys-

tem in which spin is not conserved locally or globally, at least for one direction of the

spin polarization. �is is often the case in non-collinear antiferromagnets or in systems

with Dzyaloshinskii-Moriya interactions. For example, for inversion symmetric systems

spin density is globally conserved [174]. To see this, note that inversion symmetry implies

Hk = H−k, which leads to Tk = T−k, Ek = E−k and vn,k = −vn,−k. Substituting these

relations into Eq. (4.10) results in χex
µν = −χex

µν = 0. Furthermore, inversion symmetry

also enforces the relation (ΩΣ
n,k)µν = −(ΩΣ

n,−k)µν, which results in χin
µν = −χin

µν = 0,

that is, in a vanishing intrinsic response. Below, in Sec. 4.4, we show several examples of

collinear and non-collinear systems in which spin can be generated.

In general, the response tensor will be constrained by the symmetry operations

of a specific material under consideration. �e constraining relations can be readily

found within the framework of linear response theory [137, 181]. Assuming that a sys-

tem respects a symmetry operation represented by g, we find for an arbitrary operator

Â that 〈g(ψnk)|Â|g(ψmk)〉 = 〈ψng(k)|g−1Âg|ψmg(k)〉 when the operation is unitary, and

〈g(ψnk)|Â|g(ψmk)〉 = 〈ψng(k)|g−1Âg|ψmg(k)〉∗ when the operation is antiunitary. Opera-

tors transform as g−1v̂ig =
∑

j R
v
ij v̂j and g−1Σ̂ig =

∑
j R

s
ijΣ̂j, where Rv/s is the corre-

sponding matrix representation of g with respect to the Cartesian components v̂j or Σ̂j.

We find Rv = ±R and Rs = ± det(R)R where ± refers to unitary (+) or antiunitary
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(−) symmetries, respectively. Under the above premises, the following symmetry require-

ments on elements of the response tensor arise:

χex
µν = det(R)RµiRνjχ

ex
ij

χin
µν = ± det(R)RµiRνjχ

in
ij , (4.14)

where± corresponds to unitary and antiunitary symmetry operations, respectively. Later

on, we show that these two relations result in different shapes of the response tensors,

which isuseful fordistinguishingextrinsic and intrinsic contributions. Notice that tensors

χex
µν and χin

µν transform differently under antiunitary operations, which is a consequence

of a complex factor in the expression for (ΩΣ
n,k)µν corresponding to taking the imaginary

part in Eq. (4.12). Given the transformation properties of velocity and spin, one finds that

χex
µν is even and χin

µν is odd under the time-reversal transformation. Consequently, a re-

versal of the magnetic ordering causes χin
µν to flip sign while χex

µν is invariant under such

transformation:

χin
µν [{Si}] = −χin

µν [{−Si}], (4.15a)

χex
µν [{Si}] = χex

µν [{−Si}]. (4.15b)

�us, it is possible to disentangle extrinsic from intrinsic contributions by measuring the

nonequilibrium spin density for two antiferromagnetically ordered states related by the

time reversal transformation. Such an approach has been used in studies of the spin Hall

effect [182].

A short note on the similarity to the electronic Edelstein effect is in order. In princi-

ple, the latter also consists of a time-reversal even extrinsic and time-reversal odd intrin-

sic contribution [183–185]. However, since the Edelstein effect is, for historical reasons,

mainly studied in nonmagnetic materials, the extrinsic contribution has been analyzed in

more detail. On the other hand, since the very notion of a magnon is tied to magnetism,
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both contributions are, in general, expected to be of equal importance.

4.4 Models

In this section, we apply our theory to specific models. To obtain some intuition, we first

focus on a toymodel of a collinear antiferromagnetic spin chainwith anisotropic exchange

and inversion asymmetry resulting in Rashba-type DMI. We then focus on more realistic

noncollinear kagome and breathing pyrochlore antiferromagnets, for which we usemate-

rial parameters established in the literature. To satisfy the requirement of inversion asym-

metry, we assume that the kagome antiferromagnet can have interfacial inversion asym-

metry, e.g., due to thin film geometry in contact with another material. �e breathing

pyrochlore antiferromagnet has bulk inversion asymmetry. �e details of the Holstein-

Primakoff transformations and explicit expressions of the magnon Hamiltonians are dis-

cussed in Appendix B.

4.4.1 Antiferromagnetic spin chain

As a simplemodel, we first consider the antiferromagnetic spin chain shown in Fig. 4.1(a).

Similar to Eq. (3.2), the Hamiltonian

H =
∑
i

∑
ν=±1

[J(γSx1,iS
x
2,i+ν + Sy1,iS

y
2,i+ν + λSz1,iS

z
2,i+ν)

+Dν
12ez · (S1,i × S2,i+ν)], (4.16)

contains the anisotropic symmetric exchange interaction, which is given in terms of an

energy J and dimensionless factors γ and λ, and the antisymmetric exchange interaction

described by DMI vectors along the z direction. We choose γ ≤ 1 and λ ≥ 1, such that

the collinear state with Néel vector along the z direction is the classical magnetic ground

state. Forγ 6= 1, the anisotropy causes themagnons to experience the effect of “squeezing”
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[186]. Note that λ has to be larger than a critical value to prevent the spins from canting

due to DMI. �e DMI strength is set toD+
12 = D1 andD−12 = D2, where ν = ± refers to

the direction of the bond [+ for going from the left to the right in Fig. 4.1(a)].

It is convenient to reparameterize the DMI as D0 = (D1 + D2)/2J and δD =

(D1 − D2)/2J . �e staggered contribution to DMI is necessary for the model to exhibit

both intrinsic aswell as extrinsic effects. To see this, observe that only in the absence of the

inversion symmetry can we haveD0 6= 0. However, when δD = 0, the system still holds a

T ∗Mx symmetry, where T is time reversal andMx is themirror symmetry with respect

to the y − z plane passing through the atoms. Applying the corresponding Cartesian rep-

resentation matrix R = Diag{−1, 1, 1} of T ∗ Mx to Eq. (4.14), the intrinsic part χin
zx is

rendered zero. �erefore, we set δD 6= 0 to ensure the appearance of intrinsic contribu-

tions.

In Fig. 4.1(b), we show the magnon band structure. �e degeneracy of spin-up and

-downmodes is lifted by the DMI and γ 6= 1. On top of that, since γ 6= 1, spin is not con-

served and we observe the magnon spin-momentum locking [170] as shown in Fig. 4.1(c),

which is in agreement with Ref. [186]. �is is in contrast to the usual case of uniaxial

collinear AFMs that features two eigenmodes with opposite spin quanta ±~. Figs. 4.1(d)

and (e) show the extrinsic and intrinsic response coefficient, respectively. For the calcu-

lation of the extrinsic response, we regarded the broadening as a constant, Γn = ~/2τ ,

where τ is the magnon lifetime [187]. In Figs. 4.1(d) and (e), the extrinsic spin accumula-

tion dominates.

To obtain an intuitive understanding of the extrinsic contributions, we recall the

usual electronic Edelstein effect scenario in a Rashba system. Upon shifting the spin-

momentum locked Fermi circles in reciprocal space due to application of an electric field,

electronic states with a particular spin polarization aremore occupied than thosewith op-

posite spin polarization (e.g., see Fig. 13 of Ref. [188]). Consequently, this redistribution

leads to a nonzeromacroscopic spin density in nonequilibrium. A similar explanation can
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Figure 4.1: (a) Spinorder andDMIvectors in the antiferromagnet spin chainmodel. (b) and
(c) Magnon dispersion and magnon spin expectation value in the 1D Brillouin zone. We
usedD0/J = 0.2, δD/J = −0.1. (d) and (e) Extrinsic and intrinsic response coefficients.
In (d), τ = JS/(2Γn) is the dimensionless magnon lifetime (~ is set to one). Parameters
read λ = 1.05, γ = 0.95, J = 2meV, S = 3/2, andD0/J = 0.2.
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Figure 4.2: Noncollinear antiferromagnetic PVC order on the kagome lattice. (a) and (b)
Ground state spin configuration from above and front view. Lattice vectors are denoted
by ~a and~b. (c) Left: intrinsic DMI vectors; right: Rashba DMI vectors. Arrows along the
bonds indicate ordering of sites in DMI terms. (d)Magnon dispersionwithDR/J = 0.06.
(e), (f) Extrinsic and intrinsic response tensor elements χex

yx and χin
xx, respectively. τ is the

dimensionless magnon lifetime and a denotes the lattice constant. We used the mate-
rial parameters of KFe3(OH)6(SO4)2: J1 = 3.18meV, J2 = 0.11meV, |Dp|/J1 = 0.062,
Dz/J1 = −0.062 and S = 5/2.

by given for the magnonic case. First, we consider the band 2 [cf. Fig. 4.1(b)]. Accord-

ing to Fig. 4.1(c), magnons in band 2 have a positive (negative) spin for negative (posi-

tive) momentum k, which corresponds to magnon spin-momentum locking discussed in

Ref. [170]. Upon application of the temperature gradient (or the pseudo-gravitational po-

tential) we redistribute magnons from k to −k (or vice versa, depending on the direction

of the gradient), causing an excess of magnons with positive spin. Although there is some

cancellation between the lower and upper band, the different thermal occupation ensures

that there is a nonzero resulting net spin density in nonequilibrium. �ere is no such sim-

ple picture for the intrinsic contributions, which arise due to interbandmixing [113].
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4.4.2 Kagome antiferromagnet

In several real materials, spin nonconservation naturally emerges due to noncollinear

antiferromagnetism. For example, noncollinear antiferromagnets (NAFMs) exist in lay-

ered quasi-two-dimensional kagome and triangular magnetic structures, and in three-

dimensional pyrochlore magnetic structures. We first take the kagome antiferromagnet

in the so-called q = 0 phase with positive vector chirality (PVC) [120–122], which is de-

picted in Fig. 4.2(a), as an example.

�e spin Hamiltonian under consideration is

H =
∑
〈ij〉

J1Si · Sj + Dij · (Si × Sj) +
∑
〈〈ij〉〉

J2Si · Sj,

(4.17)

where the three terms describe the nearest-neighbor exchange with J1 > 0, DMI, and

the second-nearest neighbor exchange with J2 > 0. �e DMI vector Dij is composed

of intrinsic DMI and extrinsic Rashba-DMI, i.e., Dij = Din + DR. �e intrinsic DMI

Din = Dp + Dz,ij ẑ has out-of-plane contributionsDz,ij as well as in-plane contributions

Dp = Dpn̂ij along n̂ij. �eDMI vectors are arranged as shown in the left part of Fig. 4.2(c).

Accounting for the antiferromagnetic exchange interactions and only for the intrinsic

DMI, the classical ground state is the 120◦-ordered antiferromagnetic state [cf. Fig. 4.2(a)]

with a small out-of-plane canting, with an angle given by η = 1
2

tan−1( −2Dp√
3(J1+J2)−Dz

)

[cf. Fig. 4.2(b)]. �us, there is a weak ferromagnetic moment in the z direction and the

texture is not fully compensated. Here, we are concentrating on nonequilibrium spin den-

sities in the x and y direction, along which the texture is compensated.

AlthoughnonzeroDp breaks themirror symmetry of the kagome lattice, the system is

still inversion symmetric. �us, we need theRashba-likeDMI described byDR thatwe en-

vision to arise in an inversion-symmetrybreaking environment, as caused, e.g., byputting

a single kagome layer on a substrate. �e vectorDR lies in the kagomeplane andhas direc-
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Table 4.1: �e shape of spin polarization response tensors enforced by magnetic point
group symmetry for selected noncollinear antiferromagnets.

Structure Extrinsic Intrinsic

Kagome(PVC,SVC)
(

0 −χex
yx

χex
yx 0

) (
χin
xx 0
0 χin

xx

)
Kagome(NVC)

(
0 χex

xy

χex
yx 0

) (
χin
xx 0
0 χin

yy

)

Triangle
(

0 −χex
yx

χex
yx 0

) (
χin
xx 0
0 χin

xx

)

Pyrochlore (AIAO)

 0 0 0
0 0 0
0 0 0

  χin
xx 0 0
0 χin

xx 0
0 0 χinxx


tions similar toDp, butwith the crucial difference that its directions are always pointing in

the same direction relative to the bond [compare the left and right part of Fig. 4.2(c)]. We

also note that a large Rashba-DMI can twist the system into a spiral state. We confirmed

numerically that this does not happen for |DR|/J < 0.06 using computational package

SpinW [189].

�e kagomeNAFMdescribed above exhibits two symmetries: (i) themirror reflection

with respect to they−z planeplus time-reversal, g1 =MxT , and (ii) the threefold rotation

about the z axis, g2 = C3z. According to Eq. (4.14), these two symmetries fix the extrinsic

and intrinsic response tensors to the forms in Table 4.1 (Kagome PVC), where only the in-

plane spin polarizations are allowed.

Based on what we have discussed so far, we propose potassium iron jarosite

KFe3(OH)6(SO4)2 as a candidate material. Concentrating on a single kagome layer of

this material and assuming that the mirror symmetry is broken due to a proper environ-

ment, the magnon dispersion is given in Fig. 4.2(d). We used parameters J1 = 3.18meV,

J2 = 0.11meV, |Dp|/J1 = 0.062,Dz/J1 = −0.062 and S = 5/2 [40, 138]. �e spin den-

sity response is captured by virtue of Eqs. (4.10) and (4.11). �e results for the extrinsic,χex
yx,

and intrinsic, χin
xx, contributions are shown in Figs. 4.2 (e) and (f), respectively. �e effect
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becomes stronger as we increase Rashba-DMI.�e contributions χex
xx and χin

yx are zero, in

agreement with tensor shapes in Table 4.1.

Approximating the magnon band broadening Γn ∼ ~/2τ as a constant, with a

magnon lifetime τ ∼ 10−10 s, and using a lattice constant a = 10−9 m, a Rashba-DMI

DR = 0.06J , a temperature gradient ∂xT = 10 K/mm [190], and a temperature T =

0.5JS [which corresponds to a temperature≈ 46 K for KFe3(OH)6(SO4)2] we obtain the

extrinsic part of the temperature-gradient-induced spin density 〈Sy〉ex ' 5× 106 ~/cm2;

and the intrinsic part 〈Sx〉in ' 2× 105 ~/cm2. With larger temperature gradients, the ex-

trinsic contribution can bemade comparable to spin densities generated by the electronic

Edelstein effect [157], which are of the order of 108 ∼ 1010 ~/cm2.

4.4.3 Breathing pyrochlore antiferromagnets

�e3Dpyrochlore lattices, which consist of corner-sharing tetrahedra, arewell-known for

exhibiting noncollinear spin structures. Here, to break bulk inversion symmetry, we con-

centrate on the so-called “breathing” pyrochlore antiferromagnets that possess different

exchange interaction in up-pointing (u) and down-pointing (d) tetrahedra [see Fig. 4.3(a)].

�eminimal Heisenberg model is [21]

H = J
∑
〈i,j〉∈u

Si · Sj + J ′
∑
〈i,j〉∈d

Si · Sj +D
∑
i

(Si · ẑi)2

(4.18)

�e first two terms describe the antiferromagnetic exchange interactions in up-pointing

and down-pointing tetrahedra, respectively. �e last term comprises easy-axis anisotropy

(D < 0), with ẑi being a unit vector pointing either towards or away from the tetrahe-

dron’s center of gravity. �is model can be energetically optimized to different spin con-

figurations depending on the values of J ′/J , andD/J [21, 191], but here we only concen-

trate on the all-in–all-out (AIAO) order depicted in Fig. 4.3(b), in which all spins of a single
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Figure 4.3: (a) Breathing pyrochlore lattice with indicated lattice vectors ~ai (i = 1, 2, 3)
and nearest-neighbor exchange in up-pointing (blue, J ′) and down-pointing (yellow, J )
tetrahedra. (b) Spin order in the all-in-all-out configuration. (c) Magnon band structure.
(d) �e intrinsic response χin

xx, with a denoting the lattice constant. Parameters read J ≈
50K (4.3 meV), J ′/J = 0.6,D/J = −0.2, S = 3/2 to mimic the material LiGaCr4O8.

tetrahedron are either pointing inward [yellow tetrahedron in Fig. 4.3(b)] or outward (blue

tetrahedra).

�eAIAOorder respects themagnetic point group T̄d = Span{C3, C2, T ∗σd, T ∗S4}

[51, 63]. Here, we give the representative generators of these symmetries: C3 is the three-

fold rotation with respect to [1, 1, 1] axis;C2 is two-fold rotation about [1, 0, 0] axis; T ∗σd
is time-reversal followed by the reflection about (1̄, 1, 0) plane; and T ∗S4 is time-reversal
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followedby thecombinationof the four-fold rotationabout [1, 0, 0]and the reflectionabout

(1, 0, 0). We find that this symmetry constraint eliminates any extrinsic response and

enforces the intrinsic response tensor to be proportional to a unit matrix, see Table 4.1.

In Fig. 4.3 (c), we plot the dispersion of the four magnon bands for the AIAO phase with

J ≈ 50K (4.3 meV) and J ′/J = 0.6, which is the breathing ratio of LiGaCr4O8 [192]. We

used D/J = −0.2 to stabilize the AIAO order. In Fig. 4.3 (d), we show the intrinsic re-

sponse χin
xx = χin

yy = χin
zz, which are the only nonzero tensor elements, in agreement with

the symmetry analysis. If we assume ∂xT = 10 K/mm,T = 0.12JS, and a ∼ 10−9 m, the

intrinsic spin accumulation is estimated to be 〈Sx〉in ' 5× 1014 ~/cm3. We can compare

this result with the electronic Edelstein effect by converting its 2D spin density to a bulk

density: 〈S〉2D
electron/a ∼ 1015−1017 ~/cm3. �us, the intrinsic contribution in breathing

pyrochlores is comparable with the electronic Edelstein effect. We believe that this result

is detectable in experiment either by transportmeasurements similar to those used for de-

tection of the inverse spinHall effect, bymagneto-optical Kerrmicroscopy, or bymagnetic

sensing based on the nitrogen-vacancy (NV) centers [193].

4.5 Computer experiments

To better understand the nonequilibrium spin density brought about by the magnonic

counterpart to the Edelstein effect, we use atomistic spin dynamics simulations. We de-

scribe spin dynamics using the stochastic Landau-Lifshitz-Gilbert (sLLG) equation

Ṡi = − γ

µ (1 + α2)
[Si ×Bi + αSi × (Si ×Bi)] , (4.19)

comprising the damped precession of Si about its local field Bi = bi − ∂H/∂Si. �e

stochastic field bi(t) =
√

2αkBTµ/(γ∆t) G(t) simulates thermal noise [194, 195]. G(t)

is a three-dimensional Gaussian random number distribution with zero mean. α, γ, and

µ = 2µB

√
S(S + 1) are the dimensionless Gilbert damping, the gyromagnetic ratio, and
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the modulus of the magnetic moment at each lattice site, respectively. �e numerical in-

tegration of Eq. (4.19) is done by the Heunmethod [195] with time steps∆t ≤ 1 fs.

We consider the antiferromagnetic spin chain introduced in Sec. 4.4.1 and study this

model in anonequilibriumsituation. Aswas shown inSec. 4.4.1, the extrinsic contribution

to the nonequilibrium spin density dominates over the intrinsic contribution for the spin

chain model. �us, we focus on the extrinsic contributions and setD1 = D2 = D such

that δD = 0, rendering intrinsic contributions zero by symmetry.

We simulate a spin chain of N = 480 spins with spin Hamiltonian as in Eq. (4.16).

First, to characterize the chain in terms of magnon variables, i.e., in terms of (i) the

magnon dispersion and (ii) the magnon spin, we calculate the dynamical structure factor

F(k, ω) =
1√

2πN

∑
i,j

eik(xi−xj)
∫ ∞
−∞

eiωt
〈
S+
i (t)S−j (0)

〉
dt, (4.20)

i.e., the time and space Fourier transform of the spin-spin time-correlation function. xi

denotes the x coordinate of the ith spin and S±i = Sxi ± iSyi .

�e numerically determined magnon spectra for the spin chain are shown in

Fig. 4.4(a), (c), (e), and (g); they agree with those obtained analytically in the previous sec-

tion [shown as black lines in Fig. 4.4(b), (d), (f), and (h)]. In Fig. 4.4(a), we depict the dis-

persion of the isotropic antiferromagnetic spin chain (λ = 1, D = 0, γ = 1) with the

two degenerate linear Goldstone modes. �is degeneracy is lifted in the presence of spin-

nonconserving anisotropies λ > 1 and γ < 1 [cf. Fig. 4.4(c)]. In Fig. 4.4(e), we show

the Rashba-like spin-split dispersion in the presence of nonzero DMI and λ > 1, and in

Fig. 4.4(g) the dispersion in the presence of both anisotropies aswell as DMI, forwhich the

band degeneracy at k = 0 is lifted [as compared to (e)].

�e magnon spin is extracted by computing the Stokes parameters I(k, ω) =

|Sx|2 + |Sy|2 and V (k, ω) = −2Im(SxSy,∗) [196], where S = S(k, ω) is the space

and time Fourier transform of the spin configuration {Si(t)}. �e quantity σ(k, ω) =
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Figure 4.4: Magnon spectra of the antiferromagnetic spin chain as obtained fromnumeri-
cal simulations for selected parameters; top row: dynamical structure factor; bottom row:
the spin of magnons or Stokes parameter ratio σ(k, ω) (red: negative; gray: zero; blue:
positive). Black solid lines show the analytically obtained magnon dispersion (within lin-
ear spin-wave theory). Parameters read J = 1 meV, and (a,b) λ = 1,D = 0, γ = 1, (c,d)
λ = 1.05, D = 0, γ = 0.9, (e,f) λ = 1.05, D = 0.3 meV, γ = 1, and (g,h) λ = 1.05,
D = 0.3 meV, γ = 0.9. A small simulation temperature T = 0.01 K and Gilbert damping
α = 0.001were chosen to reduce lifetime broadening.

V (k, ω)/I(k, ω) measures the ratio of circular to total polarization intensity; its sign re-

veals the sign of themagnon spin. �ere is no feature ofσ(k, ω) in Fig. 4.4(b), in agreement

with the previous section. In contrast, σ(k, ω) becomes zero (gray color) in Fig. 4.4(d), in-

dicating that the magnon spin is suppressed due to ellipticity or “squeezing”, which is in

agreement with Ref. [186]. Without squeezing but with nonzero DMI we identify spin-up

and spin-downmagnons by the antisymmetric blue-red features in Fig. 4.4(f). In the pres-

ence of squeezing andDMI this asymmetric feature survives [panel (h)] and shows that the

spin expectation value continuously goes through zero upon crossing k = 0, an observa-

tion which is in agreement with Fig. 4.1(c).

In the previous section, we obtained a nonzero magnonic spin polarization for the

case in Fig. 4.4(g) and (h) [which are respectively reminiscent of Fig. 4.1(b) and (c)], but

zero effect for the other cases. We will now put this prediction to the test.
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To do so, direct nonequilibrium simulationswith an imprinted temperature gradient

were performed. �e spin chain was separated into three parts of equal length (160 spins

each). �e terminating parts have temperature T ± ∆T/2, while the temperature in the

central part linearly interpolates between the twoends. Following this temperatureprofile,

a heat bathwith temperatureTi is assigned to each spin i. After establishing a steady state

in this nonequilibrium situation, the spin density 〈S〉 = 1
160

∑320
i=161〈Si〉 of the central

chain segment is measured and normalized to the number of spins in this segment.

�ere is an additional technicality of the simulation: Since two neighboring spins in

the central chain segment experience slightly different temperatures (Ti 6= Ti+1), their net

moment does not compensate exactly. Repeating this argument for all spins of the central

segment, we conclude that there is a tiny net magnetization simply due to the tempera-

ture dependence of the sublattice magnetizations. �e sign of this artificial magnetiza-

tion is determined by the direction of the first spin at the cold end of the central segment.

�is artificial effect would superimpose with themagnon analogue of the Edelstein effect.

�us, to avoid the non-Edelstein contribution, we simulate two uncoupled spin chains

with opposite spin direction in parallel (�e two chains are time-reversal partners). �e

non-Edelstein contributions are exactly opposite, because the sublattice magnetization is

reversed, and sum to zero. In contrast, the extrinsic Edelstein contributions are time-

reversal even as shown in Eq. (4.15b) and do not cancel out.

Our simulation results are presented in Fig. 4.5. �e z spin accumulation 〈Sz〉 is zero

in equilibrium [∆T = 0 in Fig. 4.5(a)], as expected for an antiferromagnet in zero mag-

netic field. It stays zero in nonequilibrium (∆T 6= 0), if either DMI or squeezing (or both)

are absent [compare brown, blue, and purple marks in Fig. 4.5(a)]. However, it becomes

nonzero if DMI and squeezing are present (red marks), in full agreement with theory.

�e other Cartesian components of the spin density, i.e, 〈Sx〉 and 〈Sy〉 are zero even

in nonequilibrium [blue and greenmarks in Fig. 4.5(b)]. �is is not surprising, because no

magnon state has a nonzero x or y spin. �us, a nonequilibrium state cannot give rise to
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Figure 4.5: Results fromdirect nonequilibriumspindynamics simulations of the thermally
induced magnonic analogue of the Edelstein effect in an anisotropic antiferromagnetic
spin chain; parameters readJ = 1 meV,λ = 1.02, andα = 10−4. (a)Nonequilibriumspin
density 〈Sz〉 in dependence on temperature difference∆T for selected parameter combi-
nations. (b) 〈Si〉 (i = x, y, z) in dependence on∆T . An average temperature of T = 0.2 K
was used for all simulations.

spin density of those components. In contrast, 〈Sz〉 increases approximately linearly with

the external force∆T .

We note in passing other results that are not explicitly shown. We found that (i) re-

versingD reverses 〈Sz〉due to the reversion of themagnon spin, (ii) increasingλ increases

the magnon gap, leading to a decreasing 〈Sz〉, and (iii) increasing the Gilbert damping α

diminishes the 〈Sz〉, because the magnon transport lifetime decreases.

Overall, we find excellent qualitative agreement with theory (Sec. 4.4.1). However, we

mention thatwe cannot comparenumbers, because the classicalwhite noiseused tomodel

the temperature bath results in a Rayleigh-Jeans distribution rather than in the true Bose-

Einstein distribution. �us, the simulation suffers from the classical equipartition and
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Figure 4.6: (a), (b)Noncollinear spin textures on the kagome lattice, with (a) negative vector
chirality (NVC) and (b) staggered vector chirality (SVC). (c)Noncollinear antiferromagnetic
ground state on the 2D triangular lattice.

does not account for the quantum freezing of degrees of freedom as temperature goes to

zero.

4.6 Summary

We have shown that a temperature gradient can induce a nonequilibrium spin density

due tomagnonic transport in antiferromagnetic insulatorswith inversion asymmetry and

spin non-conservation. Our linear response theory revealed both intrinsic and extrinsic

contributions that behave differently under time reversal. Consequently, these two con-

tributions correspond to different elements of the response tensor, which can facilitate

their experimental disentanglement, e.g., in the presence ofmagnetic domains. Our pro-

posal can be realized in (quasi-)2D and 3D noncollinear antiferromagnets, for which we

find sizable effects in realisticmaterial candidates. Our predictions can be tested by trans-

port measurements similar to those used for detection of the inverse spin Hall effect, by

magneto-optical Kerr microscopy, or by magnetic sensing based on the nitrogen-vacancy

(NV) centers. Given the omnipresence of inversion-symmetry-breaking interfaces (or sur-

faces) in experimental setups, observationof themagnonic analogueof theEdelstein effect

can stimulate further developments in the field of spintronics. In particular, with the im-
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portant role played by the electronic Edelstein effect in modern spintronics in mind, we

hope to have stimulated experimental research on themagnonic analogue of the Edelstein

effect.

�e abundance of antiferromagnetic materials holds great promise for the identifi-

cation of well-suited experimental candidates. In kagome NAFMs, the coplanar magnetic

order can exhibit three types of vector chiralities: positive, negative, and staggered, which

are respectively abbreviated by PVC, NVC, and SVC [122, 197] and depicted in Figs. 4.2(a),

4.6(a), and 4.6(b). �eir distinct magnetic symmetries cause distinct magnonic spin

polarization responses, which are tabulated in Table 4.1. Besides kagome magnets,

quasi-2D triangular antiferromagnets [cf. Fig. 4.6(c)] with the 120◦ spin order [198, 199]

could be suitable candidates. Such systems as RbFe(MoO4)2 [200] and Ba3NiNb2O9

[201] share symmetries with the PVC kagome NAFMs, resulting in identical response

tensor shapes [cf. Table 4.1]. Similar to kagome NAFMs, the 3D breathing pyrochlores

can exhibit magnetic orders different from the AIAO order [21, 191], which changes their

magnetic symmetries and, thus, the expected response tensor shapes. Experimentally,

the breathing pyrochlore materials Ba3Yb2Zn5O11 [202, 203], LiInCr4O8 [144] have been

studied, all of which may be considered for a proof-of-principle study of our predictions.
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Chapter 5

Magnon Landau levels and topological

spin responses in antiferromagnets

5.1 Introduction

Emergent electromagnetism [204, 205] is at the core of a multitude of fascinating phys-

ical phenomena ranging from the topological Hall effect [78, 206–211] in skyrmion crys-

tals [212–215] to the formation of topologicalmagnons [20,24,32,33,38,72,216–218]. Many

applications related to information storage and processing can emerge from such useful

features of magnetic systems as topological protection and low-dissipation spin trans-

port [219–222]. �e need for minimizing losses due to Joule heating has shifted the focus

of recent research to insulating materials lacking itinerant electrons but still capable of

carrying spin currents [110].

Recently, antiferromagnets (AFM) became the focus of active research as they pos-

sess unique features associated with lack of stray fields and ultrafast dynamics in THz

range [223]. Many spintronics concepts readily extend toAFMmaterials, as is the casewith

spin-orbit torques [113] demonstrated experimentally in CuMnAs [224,225]. Skyrmions in

AFM can be potentially stabilized by staggered fields [226, 227] induced by field-like spin-
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orbit torques in CuMnAs andMn2Au or by coupling to boundarymagnetization in Cr2O3.

AFMsare expected to exhibit interestingphysics associatedwith vanishing topological and

skyrmion Hall effects [228–232].

�e topological spin Hall effect has been predicted for conducting systems [226, 233,

234]. In insulating materials, the topological spin Hall effect mediated by magnons has

been studied for isolated skyrmions [176]. �e topological spin Nernst effect in skyrmion

crystals has not been studied in insulators. �enature of topological response in skyrmion

crystals can be associated with the appearance of Landau levels of magnons [81, 235]. In-

terestingly, in AFM the Landau levels are described by the relativistic Klein-Gordon equa-

tion, which is reflected in the shape of steps describing the accumulation of the spinChern

number. �is also suggests a realization of an unconventional magnonic topological insu-

lator which in contrast to previous proposals [72] maps to the Klein-Gordon equation in

the presence of magnetic field.

In this chapter, we study the magnonic topological spin Nernst response in AFM

skyrmion crystals and square crystals of vortices and antivortices, which, as we show, can

both be stabilized by staggered magnetic field and anisotropy. �e topological spin re-

sponses canbequalitativelyunderstoodbyconsideringLandau levels inducedbyauniform

magnetic flux in a genericmodel of an AFMmagnonic topological insulator. We construct

amodel of an AFMmagnonic topological insulator that in the long wavelength limit maps

to the Klein-Gordon equation in the presence of uniform magnetic field. In contrast to

previous proposals [72], ourmodel does not rely on the Aharonov-Casher effect with pref-

actor 1/c2 but originates in the Dzyaloshinskii-Moriya interactions (DMI).
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5.2 AFM skyrmions and stability phase diagram

We begin by considering the free energy density of a quasi-two-dimensional AFMwritten

in a long wavelength limit:

F [n] =
J
2

(∂in)2 +K(n · û)2 −Hs(n · û) + Dj(∂jn× n), (5.1)

where we sum over repeated index i = x, y, n is a unit vector along the Néel order, J is

the exchange constant, K is the effective uniaxial anisotropy along the direction û (typi-

cally û = ẑ), Hs is the staggered magnetic field along the direction û arising due to the

spin-orbit torque or the effect of boundary magnetization [226, 227], andDij = (Dj)i is

the DMI described by a general tensor. When DMI is induced by an axially symmetric in-

terface with a heavy metal, which is the focus of this paper, there are only two non-zero

tensor coefficientsD12 = −D21 = D [236]. �e free energy density in Eq. (5.1) and result-

ing phase diagram can also describe other spin textures obtained fromNéel skyrmions by

global transformation in spin space (e.g., antiskyrmions or Bloch skyrmions) [237]. �is

can be seen by applying a global transformation to the spin texture followed by similar

transformations on û and Dij [237]. �e zero temperature phase diagram in Fig. 5.1 has

been calculated using the method of Ref. [237] relying on energy minimization [238] and

rescaling of the unit cell. In addition to the AFM-SkX phase identified in Ref. [227], we

also identify an AFM-SC vortex-antivortex lattice [237, 239–243] stabilized by the in-plane

anisotropy. Such textures can also contain antiferromagnetic antimerons with fractional

topological charge as shown in Fig. 5.1. In the following, we study the effect of fictitious

magnetic fields due to quantized topological charge per unit cell in SkX and SC phases.
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Figure 5.1: Zero temperature phase diagram of AFMwith DMI.�e axes correspond to the
dimensionless staggered magnetic field and dimensionless effective anisotropy. �e gray
line separates the aligned and the tilted regions of the FM phase. �is phase is taken over
by the hexagonal skyrmion lattice (SkX), spiral (SP), cone phase, and the square crystal
of vortices and antivortices (SC). �e upper inset shows a hexagonal lattice unit cell with
a skyrmion in the center. �e lower inset shows a square crystal unit cell with AFM an-
timeron in the center. Red and yellow correspond to positive topological charge density
and blue corresponds to the negative topological charge density.

5.3 AFMmagnons and fictitious gauge fields

To describemagnonic excitations on top of a Néel texture, we turn to the picture with unit

sublattice spin fieldsmA andmB. To this end, we consider the free energy density,

F [m,n] = F [n] +
A
2
m2 (5.2)
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withA being the transverse spin susceptibility. We consider a systemwith smoothly vary-

ing spin textures and limit the discussion to the leading order of its spatial derivative. As

the size of DMI induced textures scales as J /D, we systematically perform analysis up

to the first order inD/J and discard anisotropy and staggered magnetic field terms (for

the SkX phase, HsJ /D2 ∼ KJ /D2 ∼ 1), according to Fig. 5.1 [227, 235]. With these

preconditions, the free energy is explicitly written as

F =
A
2
m2 +

J
2

(∂in)2 +D(nz ~∇ · n− n · ~∇nz), (5.3)

which can be rewritten as

F =
A
2
m2 + n(−J

2
∂2
i + D̂)n (5.4)

where D̂ = DR̃T
z LiR̃z∂i with R̃z = exp{Lz π2}, (Li)jk = −εijk. Now we replace the

fieldm,n with sublattice spin fieldmA,mB by pluggingm = (mA +mB)/2 and n =

(mA −mB)/2 into the free energy above. As a result, it is converted to a form in terms of

sublattice-spin fields, up to some irrelevant constants,

F =
A
4
mA ·mB +

1

4

∑
a=A,B

ma(−
J
2
∂2
i + D̂)ma −

1

4
mA(−J

2
∂2
i + D̂)mB

−1

4
mB(−J

2
∂2
i + D̂)mA. (5.5)

Furthermore, we assume that in the ground state m0 = 0 and n0 =

(sin θ cosφ, sin θ sinφ, cos θ)where θ, φ are spherical angles. �is assumption ensures de-

coupling of the two chirality subspaces. We will see that lifting this assumption does not

substantially modify our conclusions according to the numerical results. �e local spin

field can be conveniently parametrized by a rotational matrix R = exp(Lzφ) exp(Lyθ)

with (Li)jk = −εijk (i = x, y, z or 1, 2, 3) being the generators of rotational matrices.
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Specifically,mA(B) = Rm′A(B), with

m′A = ẑ
√

1− |γA|2 + x̂γxA + ŷγyA,

m′B = −ẑ
√

1− |γB|2 + x̂γxB − ŷγyB, (5.6)

where γx,yA(B) stands for the spin wave, and |γA(B)|2 = (γxA(B))
2 + (γyA(B))

2. Note that

∂i(Rm
′
a) = R(∂i +R−1∂iR)m′a, ∂2

i (Rm
′
a) = R(∂i +R−1∂iR)2m′a, (5.7)

where we used ∂µR−1∂µR +R−1∂µRR
−1∂µR = 0 in the second equation above. Also,

maD̂mb = Dm′a(R̄TLi∂iR̄ + R̄TLiR̄∂i)m
′
b = Dm′a(AdiAti +Adi ∂i)m′b (5.8)

whereAdi = R̄TLiR̄with R̄ = R̃zR, andAti = R̄T∂iR̄ = RT∂iR. �erefore, we have

ma(−
J
2
∂2
i + D̂)mb = m′a[−

J
2

(∂i +Ati)2 +D(AdiAti +Adi ∂i)]m′b

= −J
2
m′a(∂i +Ati −

D
J A

d
i )

2m′b +O(∂2
i ). (5.9)

Utilizing the relation above the free energy can be rewritten as

F =
A
4
m′A ·m′B −

J
8

∑
a=A,B

m′a · (∂i +Ai)2m′a +
J
8
m′A · (∂i +Ai)2m′B

+
J
8
m′B · (∂i +Ai)2m′A (5.10)

whereAi = Ati− DJAdi . In the discussion, the second andhigher orders of the spin-texture

spatial derivativewill not be treated systematically. By substitutingEq. (5.6) intoEq. (5.10),
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the magnon energy density reads

Hmag =
A
4

[−1 +
1

2
(ψ∗AψA + ψ∗BψB) +

1

2
(ψ∗Aψ

∗
B + ψAψB)] +

J
16

[ψA(~∇+ ia)2ψB

+ψ∗A(~∇− ia)2ψ∗B] +
J
16

[ψB(~∇− ia)2ψA + ψ∗B(~∇+ ia)2ψ∗A]− J
16

[ψ∗A(~∇− ia)2ψA

+ψA(~∇+ ia)2ψ∗A]− J
16

[ψ∗B(~∇+ ia)2ψB + ψB(~∇− ia)2ψ∗B] (5.11)

whereψa = γxa + iγya , and ai = −(Ati− DJAdi )12. Herea is an emergent gauge field [79–81]

with two componentsa = at+ad with ati = Ati|12 = cos θ∂iφ,ad = D
JA

d|12 = −DJ R̃zn0

wheren0 = Rẑ. �ese two parts result in emergent magnetic fields,

bti = (~∇× at)i = −1

2
εijkn0 · (∂jn0 × ∂kn0),

bd = ~∇× ad. (5.12)

�e kinetic term of spin waves is considered by dividing the spin field into slow and

fast modesma = m
(0)
a + δma where the fast modes δma represents the spin wave. Re-

expressing these modes in a local frame,m(0)
a = êza, and δma ' γxa ê

x
a + γya ê

y
a − 1

2
êza|γa|2,

where (êxA, ê
y
A, ê

z
A) = R(x̂, ŷ, ẑ) and (êxB, ê

y
B, ê

z
B) = R(x̂,−ŷ,−ẑ). �e variation of spin

Berry phase due to the second order of fast modes is [53, 244]

δS(2)
B =

∑
a=A,B

S
∫
dtδ2(Aa · ṁa) =

∑
a

S
2

∫
dtma · (δṁa × δma)

=
∑
a

∫
dt
S
2
δṁa · (−γxa êya + γya ê

x
a)

=
∑
a

∫
dt
S
2

(γ̇xa ê
x
a + γ̇ya ê

y
a + γxa

˙̂exa + γya
˙̂eya) · (−γxa êya + γya ê

x
a)

=
∑
a

∫
dt
S
2

[γya γ̇
x
a − γ̇yaγxa + ( ˙̂eya · êxa)γyaγya − ( ˙̂exa · êya)γxaγxa ]

=
∑
a

∫
dt
S
4

[ψ∗a(i∂t − νaϕ)ψa + ψa(−i∂t − νaϕ)ψ∗a], (5.13)

whereAa satisfies ~∇ma ×Aa = ma, ϕ = −RT∂tR|12 = cos θ∂tφ, and νA(B) = +(−).
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Here we used

˙̂exa · êya = νa(∂tRx̂) ·Rŷ = νax̂
T∂tR

TRŷ = νa∂tR
TR|12 = −νaRT∂tR|12,

˙̂eya · êxa = νa(∂tRŷ) ·Rx̂ = νaŷ
T∂tR

TRx̂ = νa∂tR
TR|21 = −νaRT∂tR|21 = νaR

T∂tR|12.

(5.14)

Note δS(2)
B contains both the kinetic energy of magnons and the coupling between

magnons and an emergent scalar gaugefieldϕ. Later, this coupling termwill be attributed

to a part of the full Hamiltonian.

Combining the kinetic term and themagnonHamiltonian together , themagnon La-

grangian of the system under basis ψ = (ψA, ψ
∗
B, ψ

∗
A, ψB)T reads

L = i
S
4
ψ†σ3 ⊗ τ3ψ̇ −

1

2
ψ†Ĥψ, (5.15)

where Ĥ = Ĥ+ ⊕ Ĥ− with

Ĥχ = [
A
8
− J

8
(~∇− iχa)2]1+ [

A
8

+
J
8

(~∇− iχa)2]τ1 +
S
2
ϕτ3. (5.16)

From the Lagrangian, it is straightforward to give a Schrödinger-like equation for the

magnon field in subspace η±

iχ
S
2
τ3∂tηχ = Ĥχηχ. (5.17)

�rough some linear combination, this equation is shown to be equivalent to a Klein-

Gordon equation

[(i∂t − χϕ)2 − c2(−i~∇− χa)2]η(−)
χ = 0, (5.18)

where η(−)
χ = ηχ,1 − ηχ,2 and c =

√
JA/S.
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In fact, themapping to the Klein-Gordon equation can be also understood by consid-

ering the field theory of Néel field. �e Lagrangian density ofm,n reads

L[m,n] = Sm · (n× ∂tn)− A
2
m2 + n(

J
2
∂2
i + D̂)n (5.19)

where them field can be eliminated by integrating it out to produce

L[n] =
S2

2A(∂tn)2 + n(
J
2
∂2
i + D̂)n. (5.20)

By substituting a rotational-matrix parametrized Néel field n = Rn′, where n′ =

ẑ
√

1− δn′2 + δn′xx̂+ δn′yŷ with δn′x, δn′y describing the fluctuation of the Neel field, and

R is defined as Rẑ = (sin θ cosφ, sin θ sinφ, cos θ), we obtain a Lagrangian for the Néel

field fluctuation

L[δn′+, δn
′
−] =

S2

2Aδn
′
−[(i∂t − ϕ)2 − c2(−i~∇− a)2]δn′+. (5.21)

Here, δn′± = δn′x± iδn′y. �e Lagrangian gives us the Klein-Gordon equation for the Néel

field fluctuation

[(i∂t ∓ ϕ)2 − c2(−i~∇∓ a)2]δn′± = 0 (5.22)

�is result implies that δn′± ∝ η
(−)
± , which agrees with the definition of the Néel field.

5.4 Magnon Landau levels

To understand physics associated with the emergence of Landau levels, we approximate

the emergent magnetic field by its spatial average, which is justified for smooth enough

textures. In particular, we consider b = −Bẑ, withB = |〈~∇×a〉| = 4π〈ρtop〉 > 0, where

ρtop = n0 ·(∂xn0×∂yn0) and theDMI induced contribution vanishes. As shown in the last
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section, theHamiltonian is block diagonalized and the corresponding eigenproblemcould

be solved in eachblock. Weassume the spin texture is static, i.e.,ϕ = 0. With the emergent

gaugefield replacedby its average valuea0 and choosing theLandaugaugea0 = (yB, 0, 0)

(B > 0), it’s easy to find

(−i~∇− χa0)2ξχn,kx = λnξ
χ
n,kx

, (5.23)

where

ξχn,kx =
Nn√
L
e−ikxxe−

1
2
B(y+χ kx

B
)2

Hn[
√
B(y + χ

kx
B

)], and λn = B(2n+ 1). (5.24)

Here,Nn = 1
L
√

2nn!
(B
π

)1/4. Suppose the eigenstate of the systemtakes the formof ξχn,kxΦχ,n

withΦχ,n being a spinor. �e eigenequation of the system is reduced to

χSτ3εχΦχ,n = [(
A
4

+
J
4
λn)1+ (

A
4
− J

4
λn)τ1]Φχ,n. (5.25)

Solving this equation shows that the eigenvalues are independent of χ

ε+,−
n = ± 1

2S
√
JAλn = ± 1

2S
√
AJB(2n+ 1). (5.26)

�is agrees with the Landau levels of the Klein-Gordon equation [245]. �e corresponding

eigenstates are

Φ+
χ,n = (τ1)

1−χ
2

 cosh ϑn
2

− sinh ϑn
2

 , Φ−χ,n = τ1Φ+
χ,n, (5.27)

with coshϑn = (A + J λn)/(2
√
JAλn), and sinhϑn = (A − J λn)/(2

√
JAλn). Here,

the eigenstates are degenerate with respect to the index kx. �e number of degenerate

states is determined by the total number of themagnetic flux quanta, where each unit cell
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with topological charge |Q| = 1 contributes two flux quanta. �e magnon Landau levels

result in various Hall-like responses. However, the two species of magnons with opposite

chirality feel opposite magnetic flux in Eq. (5.3) as they are time-reversal partners of each

other, which always results in vanishing thermal Hall response (see next section). On the

other hand, spin and chirality current responses are nonzero.
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Figure 5.2: Left: Lowest magnon bands of skyrmion crystal in a square lattice AFM along
theBrillouin zone loopΓ−X−M−Γ. A splitting of chiralmodes can be clearly identified.
Right: �e Hofstadter butterfly of AFMwith uniformmagnetic fluxΦ = p

q
Φ0 per unit cell

for q = 1000,Φ0 is the flux quantum.

For a nonuniformfictitious field of a skyrmion latticewith basis vectors~a1 and~a2, the

Landau-level wave functions can be linearly combined to a new periodic basis for each en-

ergy level, ϕ̃χnmk, which satisfies T~a1(2)
ϕ̃χnmk = eik·~a1(2)ϕ̃χnmk with magnetic translational

operator T~a1,2 satisfying T~a1T~a2 = eiχQ4πT~a2T~a1. �e phase factor indicates that each

skyrmion unit cell contains topological charge Q which leads to splitting into 2|Q| sub-

bands described by quantum numberm. In this new basis, one can include perturbations

to the Hamiltonian due to nonuniform fictitious flux and higher order terms disregarded

earlier [235] (see Appendix C for more details). �is treatment leads to splitting of Landau

levels and to coupling of magnons with opposite chiralities, as confirmed by calculating
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the magnon spectrum of a skyrmion crystal in a square lattice AFM in Fig. 5.2. To un-

derstand the above effects, in the following we construct and solve various lattice models

corresponding to Eq. (5.3).
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Figure 5.3: �e total (integrated) Berry and spin Berry curvatures for magnonic systems
exhibiting spin and topological spin responses ofmagnons. (a) and (c)�edensity of states
(DOS) ofmagnons in a square lattice FMorAFM in the absence of gaugefields. (b)�e total
Berry curvature due to gauge fields induced by skyrmion crystal (red curve) or DMI (blue
curve). �esemiclassical appoximation is shownby thegreencurve. (d)�etotal spinBerry
curvature due to gauge fields induced by DMI (blue curve) and the total sublattice Berry
curvature due to gauge fields induced by skyrmion crystal (red curve). �e semiclassical
appoximation is shown by the green curve.
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5.5 Vanishing thermal Hall response

In this section, we discuss the thermal Hall effect in the AFM skyrmions in the ap-

proximated Landau-level picture in a single skyrmion and from symmetry analysis for a

skyrmion crystal. Both of these methods confirm the vanishing of the thermal Hall re-

sponse.

5.5.1 �ermalHall calculation based on Landau-level picture

We first consider the thermal Hall response in a single AFM skyrmion based on the ap-

proximated Landau-level picture. Assuming a temperature gradient is applied along the

x-direction, inwhich the translational symmetry is conserved, the thermal conductivity is

[128]

κyx = −k
2
BT

Lx

∑
χ

N+∑
n+=0+

∑
kx

Ωχ
n+
{c2[g(εn)]− π2

3
} (5.28)

where

Ωχ
n+

=
∑
s=±1

Ns∑
(ms 6=n+)ms=0s

(σ̄3)n+n+(σ̄3)msms
2Im[(vχy )n+ms(v

χ
x )msn+ ]

(ε̄n+ − ε̄ms)2

=
∑
s=±1

Ns∑
(ms 6=n+)ms=0s

s
2Im[(vχy )n+ms(v

χ
x )msn+ ]

(εn − sεm)2
,

(5.29)

with

v̂χi = i[Ĥχ, ri] = −iJ
8

[(∂j − iχaj)2(1− τ1), ri]

= −iJ
8

(1− τ1){(∂j − iχaj)[(∂j − iχaj), ri] + [(∂j − iχaj), ri](∂j − iχaj)}

=
J
4

(1− τ1)(−i∂i − χai) =
J
4

(1− τ1)Dχi . (5.30)
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Here, σ̄3 = σ3⊗1N withN being the number of Landau Levels, (σ̄3)msms = s, and ε̄ms =

sεm (here, εm means the positive energy ε+
m). Note s = ±1 respectively label the particle

and hole space. In the one-dimensional case, Ωχ
n+
doesn’t represent the Berry curvature,

but it is regarded as an interband function, as that normally appears in a linear response

theory. Notice

(vχx )msn+ =
J
4
〈ξχm| ⊗ 〈Φs

χ,m|(1− τ1)Dχx |Φ+
χ,n〉 ⊗ |ξχn〉 =

J
4
〈Φs

χ,m|(1− τ1)|Φ+
χ,n〉〈ξχm|Dχx |ξχn〉

= −χṽGs,+
m,n(
√
nδm,n−1 +

√
n+ 1δm,n+1),

where ṽ = J
4

√
B
2
,Gs,s′

m,n = 〈Φs
χ,m|(1− τ1)|Φs′

χ,n〉, which is independent of χ as a result of

the property |Φs
−χ,n〉 = τ1|Φs

χ,n〉. In a similar way,

(vχy )n+ms = −iṽG+s
nm(
√
nδm,n−1 −

√
n+ 1δm,n+1). (5.31)

Above, we used the relation

Dχxξχn = −χ
√
B

2
(
√
nξχn−1 +

√
n+ 1ξχn+1), Dχy ξχn = −i

√
B

2
(
√
nξχn−1 −

√
n+ 1ξχn+1),(5.32)

which can be easily verified by using the property of Hermite functions. Substituting

Eq (5.31), (5.31) into (5.29) results in

Ωχ
n+

= χ
∑
s=±1

Ns∑
(ms 6=n+)ms=0s

s
2ṽ2|G+s

nm|2[nδm,n−1 − (n+ 1)δm,n+1]

(εn − sεm)2
.

(5.33)

�is expression tells us that the response kernels of two species of magnons take oppo-

site sign. Given that the bands of two chiralities are degenerate, the total thermal Hall

vanishes. �is result illustrates that the magnons with opposite chirality propagate in op-

posite transverse directions as they feel opposite emergent magnetic flux. �e vanishing
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of the thermalHall response for a latticemodelwill be also confirmedbelowby a symmetry

analysis.

5.5.2 From symmetry point of view

Strictly speaking, the two-chiralities-magnon picture fails in an AFM-SkX, and thus the

thermal response cancellation between two chiralities doesn’t exist. Alternatively, to un-

derstand the thermalHall thereinwe can study it in a symmetry point of view. Wewill first

build up a framework for symmetry analysis in a magnon tight-binding model and then

confirm the vanishing of the thermal Hall effect in the antiferromagntic SkX.

Suppose the SkX respects a unitary symmetry g or an antiunitary symmetry (contain-

ing time reversal) f . We first analyze the symmetry restriction on the Hamiltonian. For

simplicity, we focus on a Hamiltonian element

hi,j = STi (~ri)ΓijSj(~rj) = S′Ti (~ri)ΛijS
′
j(~rj) (5.34)

whereSi,S′i are connected by a local rotationalmatrixSi = RiS
′
iwithS

′
i ' (S−a†iai)ẑ+√

S
2
(a†i + ai)x̂ + i

√
S
2
(a†i − ai)ŷ, ai(a†i ) being the annihilation (creation) operator, and

Λij = RT
i ΓijRj. Rewriting the element in magnon basis

hij = Ψ†i ĥijΨj −
1

2
(Λij)33(Ψ†iΨi + Ψ†jΨj), (5.35)

where Ψi = (ai, a
†
i )
T , ĥij = P †Λ⊥ijP with Λ⊥ij being the upper-left 2 × 2 block of Λij,

P =
√

S
2

 1 1

−i i

 and (S ′xi , S
′y
i ) = Ψ†iP

†. �e symmetry operation simultaneously

happens in atom, spin (spin components), and spatial space. For a global symmetry, all

these operations can be implemented as [θi(~ri), φi(~ri)]→ [±θi′(~ri′) + ∆θ, φi′(~ri′) + ∆φ],

which is usually realized by performing a unitary transformation on theHamiltonianma-

trix (this will become clear when we go to specific examples). Meanwhile, if a symmetry
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contains time reversal, P will be transformed to its complex conjugate P ∗. Specifically,

g : ĥij[θi(j), φi(j)]→ ĥi′j′ [±θi′(j′) + ∆θ, φi′(j′) + ∆φ],

f : ĥij[θi(j), φi(j)]→ ĥ∗i′j′ [±θi′(j′) + ∆θ, φi′(j′) + ∆φ].

(5.36)

Similar operations happen to (Λij)33 as well. From now on, we will mainly concentrate

on the transformation of ĥij, as natural generalization to (Λij)33 is easily realized. �e

magnon basis simply transforms asΨi(~ri)→ Ψi′(~r
′
i) = Ψi′(M

−1~ri), whereM is an oper-

ation on spatial variables, ~ri = M~r′i.

Now,weshowhowto implement theglobal variationofθ, φangles for a real symmetry

operation. Wediscuss two typesof operations: (i) unitaryoperation, (ii) time reversal oper-

ation. Note their results couldbe superimposed to anantiunitary operation. Tobe specific,

we consider the exchange andDMIbetween two spins, i.e.,hij = JSi ·Sj+Dij ·(Si×Sj),

which corresponds to (Γij)αβ = Jδαβ + Dγεγαβ. �rough direct calculation, it can be

shown

hij = A0(a†iai + a†jaj) + A1aiaj + A2a
†
iaj + h.c. (5.37)

with

A0 = JS(cos θi cos θj + cos θij sin θi sin θj) +D⊥S sin θij sin(φi − φd),

A1,2 =
JS

2
[cosφij(±1 + cos θi cos θj) + i(cos θi ± cos θj) sinφij + sin θi sin θj]

+
S

2
[iDz(cos θi ± cos θj) + iD⊥ cos(φi − φd)(sin θi ± sin θj)

+D⊥ sin θij sin(φi − φd)]. (5.38)

Here, φij = φi − φj, θij = θi − θj, and we expressed the DMI vector as Dij =
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Dz ẑ + D⊥ cosφdx̂ + D⊥ sinφdŷ. For case (i), as we mainly focus on 2-D lattices, all rele-

vant symmetry transformations usually keep the angle θ unchanged, i.e.,∆θ = 0. Under

a global transformation, φi,j and φd simultaneously change by an angle∆φ, which has no

effect on the expression above. For case (ii), θi → π − θi, φi → φi + π, which changes the

Hamiltonian elements to their complex conjugates. �erefore, the symmetry operations

are effectively implemented as

g : ĥij[θi(j), φi(j)]→ ĥi′j′ [θi′(j′), φi′(j′)] f : ĥij[θi(j), φi(j)]→ ĥ∗i′j′ [θi′(j′), φi′(j′)] (5.39)

�e same analysis works equivalently for the anisotropy term and the staggered Zeeman

interaction. �e transformation above still holds with these terms added to the system.

Now, we turn to the discussion of the transformation under the full magnon basis,

Ψ = (a1, · · · , aN ; a†1, · · · , a†N). �e symmetry operation only exchanges the order of

magnon species and its spatial argument, which can be realized by a unitary matrix U ,

Ψ(~R) → UΨ(M−1 ~R), where U doesn’t mix the particle and hole space, i.e., [U, σ3] = 0

with σ3 acting in the particle-hole space. In the momentum space

g : Ψk → UgΨMgk, f : Ψk → UfΨ−Mfk. (5.40)

Combining the operation on the Hamiltonian matrix and magnon basis, the symmetries

of the system enforce the momentum space Hamiltonian matrix to satisfy

g : UgHkU
−1
g = HM−1

g k, f : UfH
∗
kU
−1
f = H−M−1

f k. (5.41)

As a result, the eigenenergy and eigenstate satisfy

g : εk = εMgk, |ψn,k〉 = Ug|ψn,Mgk〉, f : εk = ε−Mfk, |ψn,k〉 = Uf |ψn,−Mfk〉∗.(5.42)
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Equipped with these results, we consider two symmetries of the SkX : Θ ∗ S 1
2
with

Θ and S 1
2
being the time reversal and half-unit-cell shift, and C2, a two-fold rotation

with respect to the out-of-plane direction. �e former is an antiunitary symmetry with

MΘ∗S 1
2

= 1, and the latter is a unitary symmetry withMC2 = −1. �erefore, the eigenso-

lution of the system fulfills the conditions

εk = ε−k, |ψn,k〉 = UC2|ψn,−k〉 = UΘ∗S1/2
|ψn,−k〉∗. (5.43)

�e Berry curvature satisfies

Ωz
n,k = 2Im〈∂kyψn,k|σ3∂kxψn,k〉 = 2Im〈∂kyψn,−k|U †C2

σ3UC2∂kxψn,−k〉 = Ωz
n,−k, (5.44)

where we used [UC2 , σ3] = 0 andU †C2
= U−1

C2
. In a simiar way, theΘ ∗ S1/2 suggests

Ωz
n,k = −Ωz

n,−k. (5.45)

Eq. (5.44) and (5.45) together enforce the Berry curvature to vanish everywhere inmomen-

tum space,Ωz
n,k = 0. As a result, the thermal Hall response vanishes as long as the system

has an effective time reversal symmetry.

5.6 SpinNernst effect in AFM topological insulator

In this section we build a squre-lattice AFM magnon model whose low-energy spectrum

can be exactly mapped to the Klein-Gordon Landau levels. �en we calculate the spin

Nernst response andmake a comparison with the same response in an AFM-SkX.

A square lattice Hamiltonian of collinear FM (AFM) reads

H =
∑
〈ij〉

JSi · Sj +Dij(Si × Sj)−
∑
i

HiS
y
i −K(Syi )2. (5.46)
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As the order parameter direction controls the DMI effect on magnons, the order parame-

ter is oriented along the y-axis to realize the Landau gauge. Above, the exchange param-

eter is J < 0 (J > 0) for FM (AFM),Hi is (staggered) magnetic field, K is the magnetic

anisotropy, andDij = D(r)ẑ × δij describes DMI with Rashba symmetry for a bond δij.

In FM case, the exchange interaction and DMI between two neighboring spins is

JSi · Sj +Dij · (Si × Sj) = STi ΓijSj (5.47)

where

Γij =


J 0 −Dij,y

0 J Dij,x

Dij,y −Dij,x J

 . (5.48)

Reparametrizing the interaction byS′ leads to

S′Ti R
TΓijRS

′
j = JSzi S

z
j +

1

2
(J − iDij · n0)S−i S

+
j +

1

2
(J + iDij · n0)S+

i S
−
j

= JSzi S
z
j +

J̃ij
2

(e−iφijS−i S
+
j + eiφijS+

i S
−
j ) (5.49)

where n0 is the direction of order parameter, J̃ij =
√
J2 + (Dij · n0)2, and φij =

tan−1[(Dij · n0)/J ]. In AFM case, we need to replace S±j → S∓j , and Szj → −Szj for

one of sublattices.

WhenD/J � 1, φij ≈ (Dij · n0)/J , and

e−iφijS−i (~r)S+
j (~r + δij) = S−i (~r)eiδij ·[p̂−(n0×ẑ)D(~r)/J ]S+

j (~r) (5.50)

with p̂ being the translational operator. �erefore, a fictitious gauge field formagnons can

be recoganized asAm(~r) = (n0 × ẑ)D(~r)/J , and the corresponding fictitious magnetic

field isBm = −ẑ(n0 · ~∇)D(r)/J . For a uniformmagnetic fieldBm = −Bẑ, to replicate
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the Landau gauge, it requires n0,x = 0 and n0,yD(~r)/J = By. For the special case with

spins aligned along the y-direction, i.e., n0 = ŷ, the strength of the nonuniform DMI

satisfiesD(~r)/J = By.

Using the Holstein-Primakoff transformation in the limit of large S, i.e. S+
j ≈

√
2Sai, S−j ≈

√
2Sa†i , Szi ≈ S − a†iai, we recover discrete realization of noninteract-

ing magnons subjected to uniform magnetic field described by a vector potential a0 =

(yB, 0, 0). In the long wavelength limit FM magnons are described by the Schrödinger

equation while AFM magnons are described by the Klein-Gordon equation. In what fol-

lows, we concentrate on AFM, using FM system only for comparison. �e role of the chiral

indexχ in Eq. (5.3) is played by the spin index sz, as the spin along the quantization axis is

conserved. After the Fourier transform, the Hamiltonian for sz = 1 becomes

H+ =
1

2
JS
∑
k

Ψ†+(k)Ĥ+(k)Ψ+(k), (5.51)

where Ψ+ = (a1(k), b†1(−k) . . . b†2N(−k), a2N(k))T is the bosonic field, and the unit cell

containsN by 2 array of atoms from each sublattice of the square-lattice AFM.�eHamil-

tonian has a block structure

Ĥ+(k) =

â b̂

b̂ â

 , (5.52)

where for 2N × 2N matrices â and b̂ the nonzero elements are given by ai,j = 4, bi,j =

cos(kx + jφ0) for i = j, and ai,j = a∗j,i = e−iky for i− j = 1modulo 2N . Here the phase

factor φ0 = 2πp/q describes the strength of magnetic field, i.e., 2p is the number of flux

quanta for enlarged unit cell and q = 2N . For sz = −1, Ĥ−(k) = ĤT
+(−k) andΨ−(k) =

(a†1(−k), b1(k) · · · b2N(k), a†2N(−k))T . �e total Hamiltonianmatrix can be diagonalized

by a paraunitary matrix Tk, i.e., T †kĤTk = Êk, where Êk is a diagonal matrix describing

eigenvalues [246]. By varying the strength of DMI, we can control the magnetic flux per
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unit cell which allows us to observe the Hofstadter butterfly in full analogy with electronic

systems (see Fig. 5.2). Similar to electronic systems, the exact energy bands can be found

fromexpansionofp/q into continuous fractions or fromtheDiophantine equation [3,247].

As can be seen from Fig. 5.2, the form of the Hofstadter butterfly differs from the case of

nonrelativistic electrons.

�e spin responses of magnons can be described with the help of the spin Berry cur-

vature [38, 248],

Ωα
n = i

∑
m 6=n

(σ̃3)nn(σ̃3)mm

1
2
{v̂, Σ̂α}nm × v̂mn
(ε̄n,k − ε̄m,k)2

, (5.53)

where we define the anticommutator {v̂, Σ̂α} = v̂σ̃3Σ̂α + Σ̂ασ̃3v̂, ε̄m,k = (σ̃3Êk)mm,

and the Pauli matrix in the particle-hole space, i.e., (σ̃3)mm = 1 for particle-like states

and (σ̃3)mm = −1 for hole-like states. �e magnon spin density operator along the α-

axis is given by Σα(r) = 1
2
Ψ†(r)Σ̂αΨ(r) where Σ̂α = −σ0 ⊗ Diag(mα

1 , · · · ,mα
M) with

the Pauli matrix σ0 describing the particle-hole space andmi being the direction of mag-

netic moment at position i in a unit cell ofM atoms [248]. We consider the spin Nernst

response [97],

αsxy =
kB
V

N∑
k,n=1

c1(g(εn,k))Ω(z)
n (k) (5.54)

where g(ε) = (eε/T − 1)−1 is the Bose-Einstein distribution and c1(x) = (1 + x) ln(1 +

x) − x ln(x). Due to degeneracy, we apply Eq. (5.53) to each subspace sz = ±1 sepa-

rately. �e total spin Chern number is a sum of spin Chern numbers for each subspace,

i.e., Cs
n = (1/2π)

∫
BZ

Ω
(z)
n d2k where Ω

(z)
n = Ω

(z)+
n + Ω

(z)−
n . To establish a connec-

tion to QHE, we study the total spin Berry curvature of states below a certain energy,

Cs(ε) = (1/2π)
∫
BZ

∑
εn,k<ε

Ω
(z)
n d2k.

As a comparison, we first study the Berry curvature accumulation as a function of
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energy. For a ferromagnetic square lattice with fictitious magnetic fluxΦm = Ba2/2π =

p/q (a is the lattice constant, and p, q are integers that don’t share any common factor) in

each unit cell, if we choose a Landau gaugeAm = (By, 0, 0), the effective magnetic unit

cell becomes a rectangle with size (1× q)a2, one unit cell in the x-direction and q unit cells

in the y-direction. After performing the Holstein-Primakoff transformation, the magnon

Hamiltonian readsH = JS
∑
k Ψ†kHkΨk withΨk = (a1,k, a2,k, · · · , aq,k)T and

Hk =



h1 −eikya 0 · · · 0 −e−ikya

−e−ikya h2 −eikya · · · 0 0

0 −e−ikya h3 · · · 0 0

...
...

... . . . ...
...

0 0 0 · · · hq−1 −eikya

−eikya 0 0 · · · −e−ikya hq


(5.55)

where hj = 4 − 2 cos(kxa − 2πjp/q). It’s easy to envision that the basis vectors for the

lattice of magnetic unit cells still point in the x, y directions but with the y-direction basis

vector elongated to q times longer. Based on the Hamiltonian above, the results for the

total Berry curvature and themagnon density of states (DOS) are shown in Figs. 5.3(a) and

(b) where we choose p = 1 and q = 77 to replicate the flux produced by two skyrmions in

an SkX unit cell of 14× 22 atoms (see Fig. 5.1). We observe a behavior associated with the

van Hove singularity [249] of the magnon band structure. �is causes a sign change in the

total Berry curvature at the transition between particle- and hole-like states [250, 251].

ForAFMmagnons,we choosep = 2and q = 270 for themagnon topological insulator

model to replicateAFMSkXona lattice of18×30 atoms (whichwill bediscussed later). �e

total spin Berry curvature shown in Fig. 5.3(d) exhibits steps of 2 and uneven energy height

even in the long wavelength limit. We observe sharp change in the spin Berry curvature at

the DOS singularity in Fig. 5.3(c).

For both FM and AFM magnons, away from the DOS singularity the formation of
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magnon Landau levels can be described by the Onsager quantization scheme [252, 253].

We confirm this by comparing the semiclassical curve corresponding to the area enclosed

by DOS with the Berry curvature curves in Fig. 5.3. �e spin Nernst response is shown in

Fig. 5.4.
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Figure 5.4: SpinNernst conductivity as a function of temperature. �e red curve describes
the topological spin Nernst response for square lattice AFM with a unit cell of 18 × 30
atoms containing two skyrmions. �e blue curve describes the spin Nernst response in
AFMmagnonic topological insulator with DMI induced fictitious fluxΦ = p

q
Φ0 for p = 2

and q = 270.

5.7 Topological spinNernst effect in AFM

To describe magnon excitations on top of textures in Fig. 5.1, we use the Holstein-

Primakoff transformation in a local frame [145]. �e resultingHamiltonian describes non-

interactingmagnonsandcanbediagonalizedusing theparaunitarymatricesTk. �espec-

trum for the lowest bands of a lattice contaning 18× 30 atoms is shown in Fig. 5.2. We ob-

serve that the Landau levels become dispersive and that AFM chiral modes split. �e total

sublattice Berry curvature is shown in Fig. 5.3(d) where we use sublattice index instead of

spin index in Eq. (5.53). �e sublattice index in Eq. (5.3) and spin index in Eq. (5.51) can be

mapped onto each other in the absence of coupling between chiralmodes. Weobserve only

qualitative agreement with Landau levels in AFM calculated earlier for p = 2 and q = 270
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due to coupling of chiral modes in AFM SkX as a consequence of higher order corrections.

In Fig. 5.3(b), we observe better agreement between Berry curvatures calculated for FM

SkX (lattice of 14× 22 atoms) and for Landau levels in FMwith DMI induced uniform flux

(p = 1 and q = 77). �e sign change of the Berry curvatures in Figs. 5.3(b) and (d) can lead

to the sign change of the topological thermal Hall and spin Nernst responses as a function

of temperature. Using the spin Berry curvature, we calculate the topological spin Nernst

response in Fig. 5.4 and confirm the sign change. As expected, the spin Nernst response

in AFM SkX is suppressed compared to similar response in AFM topological insulator (see

Fig. 5.4).

5.8 Summary

Wehave shown that AFM-SkX should exhibit a large topological spinNernst response. �e

spin response is associated with the formation of dispersive Landau levels. AFMmagnon

Landau levels exhibit relativistic physics which in the long wavelength limit can be de-

scribed by the Klein-Gordon equation. Similar physics also arises in the AFM square

vortex-antivortex phase. To further uncover this behavior, we have constructed a model

of AFM topological insulator where the fictitious flux is induced by inhomogeneous DMI

and leads to the formation of an unconventional Hofstadter butterfly. Our predictions can

be tested in magnetoelectrics where the staggered field can be induced by the boundary

magnetization [254]. �e spin Nernst response can be potentially observed in ferrimag-

nets, e.g., similar to TmIG [255].
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Chapter 6

Conclusion and outlook

As a key element of the magnetic insulator, magnons contribute rich physics ranging

from band structure topology to various kinds of transport phenomena. �e research on

magnon physics is always inspired by the prosperous development of electronic systems,

partially because they both are (quasi-)particles and possess intrinsic spin freedom, while

the differences between the two systems also provide appealing reasons to study one or the

other. Electrons have both spin and orbital freedoms, which makes for diverse topology.

Many types of quantum response can only be found for electrons, not bosons (magnons),

because of the Fermi-Dirac distribution. �e coupling between electrons and electromag-

netic field gives ahandle on the transport by taking advantage of diverse band structures in

a solid. On the other hand,magnon transport has no Joule heating due to decoupling with

gauge field (except the Zeeman coupling). Due to the long coherent distance, spin waves

can mediate long-distance information transport. �e goal of this thesis is investigating

the possible underlying nature or applicability of magnon physics, especially by following

various successful examples in electronic systems.

In Chapter 2, we introduced our work on a 3D magnon topological insulator model

protected by sublattice chiral symmetry. �e work is stimulated by a surge of interest on

generalizing the diversity of topological insulators from the fermion system to bosons, in-
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cluding magnons, photons, and phonons. In magnon systems, the main focus was on the

realization of Weyl and Dirac spectrum and chiral edge states in a Chern insulator. How-

ever, the absence of Kramer pairs and orbital freedoms hinders the realization of themore

fascinating Z2 topological insulator that holds a helical edge state in 2D and a Dirac cone

surface state in 3D. Our work fills in the gap by constructing a 3Dmagnon topological in-

sulator model with a surface Dirac cone. An essential point for such a model is that it is

protected by a feasible sublattice symmetry formagnons instead of time-reversal symme-

try. �erefore, this kind of model belongs to a Z classification (AIII class) in the tenfold

way classification of topological insulators. We show that the magnon chiral topological

insulator (mcTI) can be realized in a Heisenbergmodel endowed with the Dzyaloshinskii-

Moriya interaction (DMI) in a layered honeycomb lattice structure. All interactions are

chosen such that the system possesses the chiral symmetry: the Hamiltonian anticom-

mutes with a chiral operator. �e bulk is characterized by a topological invariant: winding

number, which is also equal to the number of surface Dirac cones as a result of the bulk-

boundary correspondence, provided the chiral symmetry is not broken on the surface. At

the same time, the helical surface states lack backscattering in the presence of the chiral

symmetry. By breaking the chiral symmetry, a small gap can be introduced in the surface

band, which leads to the magnon Hall response, e.g., under a temperature gradient. �is

is analogous to the quantum Hall effect on the surface of a topological insulator. Finally,

we show that the model exhibits a rich phase diagram in parameter space, which covers

mcTI, nodal line, three-dimensional magnon anomalous Hall, andWeyl magnon phases.

�is work can be regarded as a springboard for exploring possible 3D topological

magnon phases. �ough the model includes seemingly unrealistic interlayer couplings

and DMI, it could be possibly realized in the van der Waals magnets with careful fabri-

cation. More importantly, the idea of creating a bosonic topological insulator protected

by chiral symmetry is inspiring because it could be transplanted to other bosonic systems,

e.g., acoustic or photonic systems. At the same time, searching for other different and re-
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alistic structureswith chiral symmetry inmagneticmaterials is also a continuingdirection

for exploration.

In Chapter 3, we studied the magnon-mediated intrinsic transverse spin current in-

duced by a longitudinal temperature gradient (spin Nernst effect) in a noncollinear anti-

ferromagnet (NAFM) insulator. Compared to collinear systems, the spin current in non-

collinear antiferromagnets can be polarized along any direction, which adds to the control

of spin current in an insulator. �e main difficulty of discussing spin current in NAFMs

is magnon spin nonconservation due to noncollinear ground-state background. We over-

come this difficulty by drawing an analogywith the scenario of spinHall effectwhere spin-

orbit coupling usually breaks spin conservation. �e spin current can be defined if an ac-

companying spin-torque term is clearly identified. As for the response theory to a tem-

perature gradient, we used a pseudogravitational field to incorporate the gradient field

in a linear response frame. In addition to the typical Kubo-formula contribution, we also

identify a dipole contribution which originates from a correction to the spin current op-

erator due to the pseudogravitational field. �is dipole contribution can be calculated by

a thermodynamic approach which is generally useful in treating the equilibrium average

of an observable containing spatial variables. In principle, the formula we obtained can be

generalized to other bosonic systems for calculating other temperature-gradient-induced

response. Finally, we applied our theory to a kagomeNAFMKFe3(OH)6(SO4)2 and found a

sizable response. It is worth noticing that the response coefficient is always restricted by

the magnetic point group symmetry of a givenmaterial.

With this theoryof spinNernst effect inNAFMs,weexpect further studies couldbe fo-

cused on searching for materials and potential applications of this effect. In general, any

systems with noncollinear spin order can be used to generate magnon-mediated trans-

verse spin current. In three dimensions, more magnetic materials with noncollinearity

are available, which allowsmore control of spin polarization. In Chapter 5, we also applied

this theory to discuss spin transport in an antiferromagnet skyrmion crystal. In regard to
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application, the spin Nernst response could be used to detect the ground-state informa-

tion of quantum magnet materials, as the response signal is very sensitive to spin order

configurations. Moreover, designing a spin source (injector) based on NAFMs also seems

promising in the study of spintronics.

In Chapter 4, we moved our attention to the spin polarization in fully compensated

antiferromagnets. �emotivation comes from the famous Edelstein effect due to which a

uniformspin accumulation canbe generated by applying an electric field in an electron gas

with Rashba spin-orbit coupling. �e key features of the system are zero equilibrium spin

density and the spin-orbit coupling that breaks inversion symmetry and the spin conser-

vation. We generalize this effect to magnons in noncollinear antiferromagnets (NAFMs),

where equilibrium magnon spin density also vanishes and spin conservation is naturally

lost due to thenoncollinearity of spin arrangement. Moreover, throughbasic symmetry ar-

gument, it is found that the inversion asymmetry is also required as otherwise, the related

response function will vanish. In NAFMs, we could either pay attention to noncentrosym-

metric materials (e.g., breathing pyrochlore) or supply the materials with a Rashba-like

DMI (e.g., a kagome layer on a substrate). In an electron gas, the nonequilibrium state is

driven by an electric field, while for the charge neutralmagnons the driving force is a tem-

perature gradient. �e developed response theory is reminiscent of the theory in Chapter

3. We divided the magnon spin polarization response function into intrinsic and extrin-

sic parts, which are respectively independent and dependent on the magnon lifetime. It

is also found that these two parts behave differently under time reversal and are restricted

in different ways by the magnetic point group symmetry of materials. We proposed three

models for the effect, including spin chain, kagome NAFM, and pyrochlore NAFM, and

further performed computer experiments on the spin chain model to verify our findings.

According to our estimation, the accumulated spin density is detectable in experiment.

Given the importance of the Edelstein effect in spintronics, its magnonic analog, in

principle, should also bring new vitality to spintronics research. Further studies on this
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effect could be in the following directions. First, the experimental confirmation will be

an important step. �is effect can be tested by transport measurements similar to those

used for detection of the inverse spin Hall effect, by magneto-optical Kerr microscopy, or

bymagnetic sensing based on the nitrogen-vacancy centers. Second, on account of the di-

versity of antiferromagnetic materials, finding a suitable material that can optimize the

effect deserves some effort. Finally, considering its potential application is also an inter-

esting question. Like the spinNernst effect discussed in Chapter 3, the effect could also be

used to make spin sources, or detect the ground state of quantummagnets as implied by

the connection between response coefficients and the underlying spin structure.

In Chapter 5, we continued the exploration of magnon-mediated spin transport, the

spin Nernst effect, in a bipartite antiferromagnet (AFM) system, instead of NAFM.�e fo-

cus in this chapter is magnon transport in a spin texture, which is essentially treated by

using the formula developed in Chapters 3 and 4. However, the understanding of the un-

derlyingmechanism is enhanced by considering spin-texture-induced fictitiousmagnetic

field in a long-wavelength limit. We first generated a new phase diagram that identifies

the AFM skyrmion crystal and vortex-antivortex square lattice phases. �ese two phases

are ideal platforms for the spin-texture induced spin Nernst effect, which is alternatively

recognized as a topological Nernst effect duo to its association with the topological spin

texture. Due to the aforementioned fictitious magnetic field, the magnon spectrum ap-

proximately forms unevenly spaced Landau levels, which originate from the fact that the

long-wavelength description of magnons in such systems can be roughly mapped to the

Klein-Gordon equation of a charged particle in a magnetic field. In this sense, the trans-

verse spin transport is due to themagnonLandau-level structure. Nevertheless, bynumer-

ical calculation, we find this picture is far from accurate, though it is conceptually trans-

parent. To further appreciate the interesting Landau levels of a Klein-Gordon equation,

we develop a newmagnon AFM topological insulator (TI) model, which could exactly map

to the equation in the long-wavelength limit and thus forms exact uneven magnon Lan-
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dau levels. Interestingly, we numerically investigated the quantum Hall signature of this

model, the accumulated spin Chern number in energy regime, and found that a clear step

formed. Moreover, a similar quantity in AFM skyrmion crystal shows qualitative agree-

ment with the magnon TI model, which confirms the validity of the Landau-level picture

on a qualitative level in the skyrmion case.

Aside from theunderstanding of the intrinsicmechanismmentioned above, thework

brings out two surprising results: (1) the spin response magnitude in both AFM skyrmion

crystal and AFMmagnon TI are unexpectedly large, whichmakes the response promising

for experimental observation and application in spintronics, e.g., as a spin current source;

(2) the magnon AFM topological insulator model shows a new Hofstadter butterfly as the

signature of the uneven Landal levels, which can serve as a smoking gun for experimental-

ists to confirm the new physics.

Overall, this thesis investigated the rich magnon physics in various systems. A sys-

tematic framework of theoretically treating themagnon-mediated spin transport inmag-

netic insulators and its connectionwith band topologywere extensively discussed. �ough

many of the results obtained are still waiting for experimental observation, the useful the-

oretical tools and interesting predictions provided by this thesis already demonstrate the

appealing aspects of magnon physics. Furthermore, more exciting physics in magnetic

systems could be boosted by this thesis. For instance, all the topics here focus on low tem-

perature,where themagnonpicture is valid. If one goes to higher temperatures, represen-

tations other than magnons, e.g., Schwinger bosons, need to be considered. �e results

here will fail to capture the physics, but they can still provide some insight for possible

extensions.
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Appendix A

Linear response for antiferromagnets

A.0.1 General theory

For the µ component of a spatially averaged observable Aµ = 1
V

∫
drΨ†(r)ÂµΨ(r), the

non-equilibrium response to a temperature gradient is

〈Aµ〉ne = lim
ω→0

1

iω
[Πµν(ω)− Πµν(0)]∇νφ, (A.1)

where the correlator in frequency space is defined as

Πµν(iωm) = −
∫ β

0

dτeiωmτ 〈TτAµ(τ)Jqν (0)〉. (A.2)

In momentum space, Aµ = 1
V

∑
k Ψ†kAµ,kΨk and Jqν =

∑
k Ψ†kJ

q
ν,kΨk, with Jqν,k =

1
4
(Hkσ3vν,k + vν,kσ3Hk). Here, Jqν comes from

∂H′

∂t
= i

~ [H,H ′] = Jqν∇νφ, see the sup-

plementary of Refs. [38, 97]. Plugging in above expressions, the correlation tensor can be
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presented as

Πµν(iωm) = − 1

V

∑
k,k′

∫ β

0

dτeiωmτ 〈Ψ†k(τ)Aµ,kΨk(τ)Ψ†k′J
q
ν,k′Ψk′〉

= − 1

V

∑
k,k′

∫ β

0

dτeiωmτ (Aµ,k)αγ(J
q
ν,k′)ρσ〈TτΨ†k,α(τ)Ψk,γ(τ)Ψ†k′,ρ(0)Ψk′,σ(0)〉.

(A.3)

According toWick’s theorem,

〈TτΨ†k,α(τ)Ψk,γ(τ)Ψ†k′,ρ(0)Ψk′,σ(0)〉connected

= 〈TτΨk′,σ(0)Ψ†k,α(τ)〉〈TτΨk,γ(τ)Ψ†k′,ρ(0)〉+ 〈TτΨ†k,α(τ)Ψ†k′,ρ(0)〉〈TτΨk′,γ(τ)Ψk,σ(0)〉.

(A.4)

Here, the second anomalous term can be shown to be equivalent to the first term. First,

we note that the basisΨk obeys the particle-hole symmetry,Ψk = (Ψ†−kσ1)T , which leads

to the relation

Aµ =
1

V

∑
k,αβ

Ψ†k,α(Aµ,k)αβΨk,β =
1

V

∑
k,λγ

Ψ†−k,λ(σ1A
T
µ,kσ1)λγΨ−k,γ. (A.5)

Hence, we gain the relation: σ1A
T
k,µσ1 = Aµ,−k, which will be used repeatedly in the later

proof. Second, the systematic linear response analysis needs a plain expression of the

particle-hole space Green function, whose definition is G(k, τ ; k′, 0)i,j ≡ G(k,k′; τ)i,j ≡

−〈TτΨk,i(τ)Ψ†k′,j(0)〉. We derive the Green function expression by virtue of its equation

of motion,

∂τG(k,k′; τ)αβ = −δ(τ)σ3,αβδk,k′ − (σ3Hk)αγG(k,k′; τ)γβ, (A.6)
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where we used the relation

∂τΨk,α(τ) = [H,Ψk,α(τ)] = −1

2
(σ3Hk)αγΨk,γ +

i

2
Ψ†−k,γ(H−kσ2)γα = −(σ3Hk)αγΨk,γ.(A.7)

�e equation of motion [Eq. (A.6)] in matrix form reads

(∂τ + σ3Hk)G(k,k′; τ) = −σ3δ(τ)δk,k′ , (A.8)

so that G(k,k′; τ) =
−σ3δ(τ)δk,k′

∂τ+σ3Hk
and G(k,k′; ikn) = σ3

ikn−σ3Hk
δk,k′ in frequency-

momentum space.

Now we show that the anomalous term in Eq. (A.4) can be alternatively expressed,

with the help of particle-hole symmetry, in form of Green function

〈TτΨ†k,α(τ)Ψ†k′,ρ(0)〉 = 〈Tτσ1,αδΨ−k,δ(τ)Ψ†k′,ρ(0)〉 = −σ1,αδG(−k,k′; τ)δρ,

〈TτΨk′,γ(τ)Ψk,σ(0)〉 = 〈TτΨk,γ(τ)Ψ†−k′,µ(0)σ1,µσ〉 = −G(k,−k′; τ)γµσ1,µσ.

�erefore, Eq. (A.4) and the correlation tensor in Eq. (A.3) are rewritten in terms of Green

function as

〈TτΨ†k,α(τ)Ψk,γ(τ)Ψ†k′,ρ(0)Ψk′,σ(0)〉

= Gσα(k′,k;−τ)Gγρ(k,k′; τ) + [σ1G(−k,k′; τ)]αρ[G(k,−k′; τ)σ1]γσ, (A.9)

and

Πµν(iωm) = − 1

V

∑
k,k′

∫ β

0

dτeiωmτ (Aµ,k)αγ(J
q
ν,k′)ρσ{Gσα(k′,k;−τ)Gγρ(k,k′; τ)

+[σ1G(−k,k′; τ)]αρ[G(k,−k′; τ)σ1]γσ}, (A.10)
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respectively. Furthermore, with the aid of the Green function relation G(−k, τ) =

−σ1G(k,−τ)Tσ1, we can prove the equivalence of the first and second part on the right

hand side of Eq. (A.10). As a result, the correlation function becomes

Πµν(iωm) = − 2

V

∑
k

∫ β

0

dτeiωmτ tr[Aµ,kG(k, τ)Jqν,kG(k;−τ)], (A.11)

where G(k, τ) = σ3

ikn−σ3Hk
. Let’s transform the Green function to frequency space with

G(k; τ) = 1
β

∑
iqn

e−iqnτG(k; iqn), then

Πµν(iωm) =
2

V

∑
k

∫ +∞

−∞

dω1

2π

dω2

2π
tr[Aµ,kS(k, ω1)Jqν,kS(k, ω2)]

nB(ω1)− nB(ω2)

ω1 − ω2 − iωm
.(A.12)

Here, we performed the Matsubara summation and utilized G(k; ikn) =
∫ +∞
−∞

dω
2π

S(k,ω)
ikn−ω ,

with S(k, ω) being the spectral function. Going back to the real time space and taking the

zero frequency limit, we obtain the response tensor

Kµν = −i∂Πµν(ω + i0+)

∂ω
|ω→0

=
2

V

∑
k

∫ +∞

−∞

dε

2π
nB(ε)tr[(GR −GA)(Aµ,k

∂GR

∂ε
Jqν,k − Jqν,k

∂GA

∂ε
Aµ,k)],(A.13)

where we used the relation

∫ ∞
−∞

dω

2π

S(k, ω)

(ε− ω ± i0+)2
= − ∂

∂ε

∫ ∞
−∞

dω

2π

S(k, ω)

ε− ω ± i0+
= −∂G

R/A

∂ε
(A.14)

and the expression S(k, ε) = i(GR −GA).

A.0.2 In the eigenstate basis

To distinguish the intraband and interband contributions, we rewrite the response ten-

sor in Eq. (A.13) in the eigenstate basis via the transformation Ψk = TkΓk. By defini-
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tion, we have the Green function transformation G(k; τ) = Tkg(k, τ)T †k, where g(k, τ) =

−〈TτΓk(τ)Γ†k(0)〉 and gR/A(k, ε) = σ3

ε−σ3Ek±i0+ . After this transformation, we obtain

Kµν =
2

V

∑
k

∫ +∞

−∞

dε

2π
nB(ε)tr[(gR − gA)(Aµ,k

∂gR

∂ε
Jν,k − Jν,k

∂gA

∂ε
Aµ,k)], (A.15)

where Jν,k = T †kJ
q
ν,kTk and Aµ,k = T †kAµ,kTk. We split the expression into two parts:

intraband and interband contributions. Owing to the hermitian conjugate property of op-

erators, we write the response tensor elements as

Kµν =
2

V

∑
k

∑
mn

∫ +∞

−∞

dε

2π
nB(ε)[(gRm − gAm)((Aµ,k)mn

∂gRn
∂ε

(Jν,k)nm − (Jν,k)mn
∂gAn
∂ε

(Aµ,k)nm)]

=
2i

V

∑
k

∑
mn

(Aµ,k)mn(Jν,k)nm
σ3,mmσ3,nn[nB((σ3Ek)mm)− nB((σ3Ek)nn)]

[(σ3Ek)mm − (σ3Ek)nn + i0+]2
, (A.16)

where we took the approximation gRm − gAm = i2Im(gRm) = −i2πσ3,mmδ[ε − (σ3Ek)mm].

If we incorporate the magnon spectrum broadening Γm into the Green function, i.e.,

gRm(ε) = σ3,mm

ε−(σ3Ek)mm+iΓm
, the response tensor can be naturally divided into two parts,

Kµν = K intra
µν +K inter

µν , where

K intra
µν =

1

V

∑
k

∑
n

1

Γn
(Jk,ν)nn(Aµ,k)nn∂εnB[(σ3Ek)nn], (A.17)

and

K inter
µν =

2i

V

∑
k

∑
m 6=n

(Aµ,k)mn(Jν,k)nm
σ3,mmσ3,nn[nB((σ3Ek)mm)− nB((σ3Ek)nn)]

[(σ3Ek)mm − (σ3Ek)nn]2
.(A.18)

�e limit Γn → 0 forK inter
µν is taken here. In consideration of A†µ = Aµ and (Jqν )† = Jqν ,

Eq. (A.18) can be transformed to

K inter
µν =

4

V

∑
k

∑
m 6=n

Im[(σ3Aµ,k)nm(σ3Jk,ν)mn]nB[(σ3Ek)nn]

[(σ3Ek)mm − (σ3Ek)nn]2
. (A.19)
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�e intraband response Eq. (4.10) in the main text can be recovered if we consider Jk,ν =

1
4
(Ekσ3ṽk,ν + ṽk,νσ3Ek)whose diagonal components read

(Jk,ν)nn =
1

2
(σ3Ek)nn(ṽν,k)nn, (A.20)

where

ṽk,ν = ∂kνEk − (∂kνT
†
k)HkTk − T †kHk(∂kνTk). (A.21)

From the paraunitary relation of Tk and ∂kν (Tkσ3T
†
k) = 0, we get ∂kνT

†
k =

−Tkσ3(∂kνTk)σ3T
†
k. From T †kHkTk = Ek and (Tk)−1 = σ3T

†
kσ3, we have T †kHk =

Ekσ3T
†
kσ3. �erefore, the diagonal elements of ṽk,ν are shown to be

(ṽk,ν)nn = (∂kνEk)nn + (T †kσ3∂kνTkσ3Ek)nn − (Ekσ3T
†
kσ3∂kνTk)nn = (∂νEk)nn; (A.22)

thus,

(Jk,ν)nn =
1

2
(σ3Ek)nn(∂kνEk)nn. (A.23)

By inserting Eq. (A.23) into Eq. (A.17), we arrive at

K intra
µν =

1

V

∑
k

2N∑
n=1

1

2Γn
(Aµ,k)nn∂kνEk,nn(σ3Ek)nn∂εnB[(σ3Ek)nn]. (A.24)

Given the relation nB(x) = −1 − nB(−x), the band index can be confined to the particle

space, i.e., 1 ≤ n ≤ N ,

K intra
µν =

1

V

∑
k

N∑
n=1

1

2Γn
[(Aµ,k)nn + (Aµ,−k)(n+N)(n+N)]∂kνEk,nnEk,nn∂εnB[Ek,nn]. (A.25)

Applying particle-hole symmetry (PHS), (Aµ,k)nn = (Aµ,−k)(n+N)(n+N), replacing Aµ,k
by Sµ,k and taking∇νφ = −∇νT/T into account, we can obtain the intraband response
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Eq. (4.10).

On the other hand, by plugging the expression of Jν,k into Eqs. (A.18) or (A.19), the

interband part can be reorganized as below

K inter
µν =

1

V

∑
k

∑
m6=n

i

2
(Aµ,k)nm[(σ3Ek)mm(vν)mn + (vν)mn(σ3Ek)nn]

×σ3,mmσ3,nn[nB((σ3Ek)nn)− nB((σ3Ek)mm)]

[(σ3Ek)mm − (σ3Ek)nn]2
,

=
1

V

∑
k

2N∑
n=1

−(ΩA
n,k)µν ε̄n,knB(ε̄n,k)− (mA

n,k)µνnB(ε̄n,k), (A.26)

with

(ΩA
n,k)µν =

∑
m( 6=n)

2Im[(σ3Aµ,k)nm(σ3ṽν,k)mn]

(ε̄n,k − ε̄m,k)2
,

(mA
n,k)µν =

∑
m( 6=n)

−Im[(σ3Aµ,k)nm(σ3ṽν,k)mn]

ε̄n,k − ε̄m,k
. (A.27)



169

Appendix B

Details of themodels

B.0.1 Antiferromagnetic spin chain

We recapitulate that the Hamiltonian for the antiferromagnetic spin chain is

H =
∑
i

∑
δ=±1

[J(γSx1,iS
x
2,i+ν + Sy1,iS

y
2,i+ν + λSz1,iS

z
2,i+ν) +Dν

12ez · (S1,i × S2,i+ν)],(B.1)

with exchange and DMI parameters as stated in the main text. After performing the

Holstein-Primakoff transformation, the quadratic Hamiltonian written in the basisΨk =

(a1,k, a2,k, a
†
1,−k, a

†
2,−k)

T reads

Hk = JS



2λ 2∆− cos k 0 2∆+ cos k + i%k

2∆− cos k 2λ 2∆+ cos k + i%−k 0

0 2∆+ cos k − i%k 2λ 2∆− cos k

2∆+ cos k − i%−k 0 2∆− cos k 2λ


,

(B.2)

where∆± = 1±γ
2
, %k =

∑
ν δDνe

ikν/J = i2D0 sin k + 2δD cos k, withD0 = D1+D2

2J
and

δD = D1−D2

2J
.
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B.0.2 Non-coplanar Kagome antiferromagnet

We consider the non-coplanar kagome antiferromagnet discribed by

H =
∑
〈ij〉

J1Si · Sj + Dij · (Si × Sj) +
∑
〈〈ij〉〉

J2Si · Sj, (B.3)

whereDij = Dp,ij + Dz,ij ẑ. �e spins cant out of the 2-D plane with a small angle η, and

the spins’ projection on the the x − y plane form angles θi (i = 1, 2, 3) with respect to x

axis, specifically, θ1 = −π/6, θ2 = π/2 and θ3 = 7π/6. For each spinSi, we choose a local

reference frame defined as follow

ei,x = {sin θi − cos θi, 0}, ei,y = {sin η cos θi, sin η sin θi,− cos η},

ei,z = {cos η cos θi, cos η sin θi, sin η}. (B.4)

For a given spinSi, in the global frame, its components can be connected to the local frame

expression S̃i by

Sαi = eα · (S̃βi ei,β) = Ri,αβS̃
β
i , (B.5)

whereRi,αβ = eα · ei,β, or in matrix form,

Ri =


sin θi sin η cos θi cos η cos θi

− cos θi sin η sin θi cos η sin θi

0 − cos η sin η

 . (B.6)

For the general spin-spin interaction a correspondence between the two frames can be

written as Sαi ΓijαβS
β
j = S̃αi (RT

i ΓijRj)αβS̃
β
j . �e interaction matrices are: Γijαβ = Jδαβ

for exchange and Γijαβ = Dρ
ijε

ραβ for DMI. Using these relations, we express the non-
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interacting magnon Hamiltonian in terms of the local reference frames as

HJ1 = J1

∑
〈ij〉

cos θijS̃i · S̃j + 2 sin2(θij/2)(cos2 ηS̃yi S̃
y
j + sin2 ηS̃zi S̃

z
j ) + sin η sin θij ẑ · (S̃i × S̃j),

HJ2 = J2

∑
〈〈ij〉〉

cos θijS̃i · S̃j + 2 sin2(θij/2)(cos2 ηS̃yi S̃
y
j + sin2 ηS̃zi S̃

z
j ) + sin η sin θij ẑ · (S̃i × S̃j),

HDz =
∑
〈ij〉
−sijDz[sin θij(S̃

x
i S̃

x
j + sin2 ηS̃yi S̃

y
j + cos2 ηS̃zi S̃

z
j )− sin η cos θij ẑ · (S̃i × S̃j)],

HDp =
∑
〈ij〉
−sijDp[sin(2η) sin(

θij
2

)(S̃zi S̃
z
j − S̃yi S̃yj ) + cos η cos(

θij
2

)ẑ · (S̃i × S̃j)],

HDR =
∑
〈ij〉
−sijνijDR[sin(2η) sin(

θij
2

)(S̃zi S̃
z
j − S̃yi S̃yj ) + cos η cos(

θij
2

)ẑ · (S̃i × S̃j)].

(B.7)

Here we used the notation that θij = θi − θj = −sij 2π
3
, Dz,ij = Dzsij and Dp,ij =

−sijDp[cos(
θi+θj

2
)x̂+sin(

θi+θj
2

)ŷ], where sij is used to express the sign convention: sij = 1

as the indices i, j run clockwise around the triangle loop and sij = −1 when they run

counter-clockwise. �e notation νij takes care of the opposite convention for Rashba-DMI

in upward and downward triangles with νij = ±1 for (ij) ∈ 4/5. Plugging in the ex-

pression of θij and performing theHolstein-Primakoff transformation S̃xi =
√

S
2
(b†i +bi),

S̃yi = i
√

S
2
(b†i − bi), S̃zi = (S − b†ibi), we can obtain nearest neighbor interaction

HNN =
1

2
S
∑
〈ij〉

[(∆
(0)
1 + νij∆

(0)
R )(b†ibi + b†jbj) + (∆1,ij + νij∆R,ij)b

†
ibj + h.c.

+(∆′1 + νij∆
′
R)b†ib

†
j + h.c.] (B.8)
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with

∆
(0)
1 = J1(1− 3 sin2 η)−

√
3(Dz cos2 η +Dp sin(2η)),

∆1,ij = ∆re
1 + isij∆

im
1 ,

∆re
1 =

1

2
[(1− 3 sin2 η)J1 +

√
3(1 + sin2 η)Dz −

√
3 sin(2η)Dp],

∆im
1 = cos ηDp + sin η(Dz +

√
3J1),

∆′1 =
1

2
[cos2 η(

√
3Dz − 3J1) +

√
3 sin(2η)Dp], (B.9)

and

∆
(0)
R = −

√
3DR sin 2η,

∆R,ij = −
√

3

2
DR sin(2η) + isijDR cos η,

∆′R =

√
3

2
sin(2η)DR. (B.10)

In a similar way, we get second-nearest neighbor interaction, i.e. the second-nearest ex-

change, as

HNNN =
1

2
S
∑
〈〈ij〉〉

[∆
(0)
2 (b†ibi + b†jbj) + ∆2,ijb

†
ibj + h.c.+ ∆′2b

†
ib
†
j + h.c.] (B.11)

with

∆
(0)
2 = J2(1− 3 sin2 η),

∆2,ij = ∆re
2 + isij∆

im
2 ,

∆re
2 =

1

2
(1− 3 sin2 η)J2,

∆im
2 =

√
3 sin ηJ2,

∆′2 = −3

2
cos2 ηJ2. (B.12)
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Let’s denote HNN and HNNN by H1 and H2, respectively. �e total Hamiltonian can be

written asH = H1 + H2 + HR. By performing Fourier transformation, Hm (m = 1, 2)

becomes

Hm =
S

2

∑
r,αβ

∑
λ=±1

1

2
{∆(0)

m [b†α(r)bα(r) + b†β(r + λδ
(m)
αβ )bβ(r + λδ

(m)
αβ )]

+∆m,αβb
†
α(r)bβ(r + λδ

(m)
αβ ) + h.c.+ ∆′mb

†
α(r)b†β(r + λδ

(m)
αβ ) + h.c.}

=
S

2

∑
k,αβ

[4∆(0)
m δαβ + 2∆m,αβ cos(k · δ(m)

αβ )]b†α,kbβ,k + ∆′m cos(k · δ(m)
αβ )

×(b†α,kb
†
β,−k + bα,kbβ,−k). (B.13)

Here δ(1)
12 = e3, δ

(1)
23 = e1, δ

(1)
31 = e2 and δ

(2)
12 = e′3, δ

(2)
23 = e′1, δ

(2)
31 = e′2. We choose δ

(m)
αβ =

−δ(m)
βα and e1 = (−1

2
,−
√

3
2

), e2 = (1, 0), e3 = (−1
2
,
√

3
2

), e′1 = e2 − e3, e′2 = e3 − e1,

e′3 = e1 − e2. In a similar way, we can show

HR =
S

2

∑
k,αβ

i2∆R,αβ sin(k · δ(1)
αβ )b†α,kbβ,k + i∆′m sin(k · δ(1)

αβ )(b†α,kb
†
β,−k + bα,kbβ,−k).(B.14)

Finally, theHamiltonian is expressed in the basisΨk = (b1,k, b2,k, b3,k, b
†
1,−k, b

†
2,−k, b

†
3,−k)T

asH = S
2

∑
k ΨkHkΨk with

Hk =

 A0 + Ak Bk

Bk A0 + A∗k

 . (B.15)
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Here,A0 = 2(∆
(0)
1 + ∆

(0)
2 )13×3 and

Ak =


0 cos k3∆1 cos k2∆∗1

cos k3∆∗1 0 cos k1∆1

cos k2∆1 cos k1∆∗1 0

+


0 cos p3∆2 cos p2∆∗2

cos p3∆∗2 0 cos p1∆2

cos p2∆2 cos p1∆∗2 0



+


0 i sin k3∆R −i sin k2∆∗R

−i sin k3∆∗R 0 i sin k1∆R

i sin k2∆R −i sin k1∆∗R 0

 ,

Bk = ∆′1


0 cos k3 cos k2

cos k3 0 cos k1

cos k2 cos k1 0

+ ∆′2


0 cos p3 cos p2

cos p3 0 cos p1

cos p2 cos p1 0



+∆′R


0 i sin k3 −i sin k2

−i sin k3 0 i sin k1

i sin k2 −i sin k1 0

 . (B.16)

We abbreviated the notations: ki = k · ei, pi = k · e′i,∆m = ∆re
m + i∆im

m (m = 1, 2),∆R =

−
√

3
2
DR sin(2η) + iDR cos η and considered the convention that s12 = s23 = s31 = 1 and

sij = −sji.

B.0.3 Breathing pyrochlore antiferromagnet

We consider the model

H = J
∑
〈ij〉∈u

Sri · Srj + J ′
∑
〈ij〉∈d

Sri · Srj +D
∑
i

(Sri · ẑi)2. (B.17)

Similar to the two-dimensional model, the magnon excitation is represented via the local

Holstein-Primakoff transformation asSµ = (S−a†µaµ)ẑµ+
√

S
2
(aµ+a†µ)x̂µ− i

√
S
2
(aµ−
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a†µ)ŷµ. �erefore, the exchange interaction between two neighboring spins is expressed as

Sµ · Sν = ScµS
d
νΛcd

µν = S2Λzz
µν − S(a†µaµ + a†νaν)Λ

zz
µν +

S

2
[a†µaνΓµν + aµaνΩµν +H.c.],(B.18)

where Γµν = Λxx
µν + Λyy

µν − iΛxy
µν + iΛyx

µν and Ωµν = Λxx
µν − Λyy

µν − iΛxy
µν − iΛyx

µν. Here

Λcd
µν = ĉµ ·d̂ν with ĉµ, d̂ν being the c, d axis of the local frameofµ and ν atoms, respectively,

i.e., c, d = x, y, z and µ, ν ∈ (0, 1, 2, 3) with µ 6= ν. We choose local frames as shown in

Table B.1. It can be shown by straightforward calculation that Λzz
µν = −1

3
, Γµν = −2

3
and

Ωµν = 4
3
eiφµν where φ01 = φ23 = −π

3
, φ02 = φ13 = π

3
, φ03 = φ12 = π and other terms

can be generated by φµν = φνµ (µ 6= ν). By substituting the magnon representation of

spin-spin interaction Eq. (B.18) into Eq. (B.17) and performing Fourier transformation, we

obtain the noninteracting magnon Hamiltonian

H =
∑
k,µν

S[(J + J ′ − 2D)δµν −
1

3
(J + J ′e−ik·dµν )]a†µ,kaν,k

+S
1

3
(J + J ′e−ik·dµν )eiφµνaµ,−kaν,k + h.c. (B.19)

where dµν = aν − aµ with a0 = (0, 0, 0), a1 = 1
2
(0, 1, 1), a2 = 1

2
(1, 0, 1), and a3 =

1
2
(1, 1, 0).

µ x̂µ ŷµ ẑµ

0 1√
2
(−1, 1, 0) 1√

6
(−1,−1, 2) 1√

3
(1, 1, 1)

1 1√
2
(−1,−1, 0) 1√

6
(−1, 1,−2) 1√

3
(1,−1,−1)

2 1√
2
(1, 1, 0) 1√

6
(1,−1,−2) 1√

3
(−1, 1,−1)

3 1√
2
(1,−1, 0) 1√

6
(1, 1, 2) 1√

3
(−1,−1, 1)

Table B.1: Local coordinates of AIAO breathing pyrochlore.
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Appendix C

SpinNernst calculation

C.1 Squeezed cone phase

To intuitively understand the squeezed conephase,we extract an ansatz depicting the pro-

file of both spiral and squeezed cone phases from the numerical simulation. Without loss

of generality, assuming these two types of spin texture vary along thex-direction, the spin

texture can be approximately captured by

n = N(a1 sin
x

L
, a2, a3 + cos

x

L
). (C.1)

Here,N is a normalization factor,L is the spatial period of spin texture, a1, a2, a3 are vary-

ing parameters. When a2 = 0, the ansatz delineates a spiral structure with Néel field ly-

ing in x− z plane. Otherwise, it describes a squeezed cone structure with an elliptic cone

cross-section which is captured by a1, a3. Next, we substitute the ansatz into the free en-

ergy (the spatial integration of Eq. (5.1)) and minimize it with respect to a1, a2, a3,K, and

Hs. �e ground state at each point in the parameter manifold can be determined by com-

paring the minimized free energy resulting from a different ansatz. In a collinear phase,

F = K(nz − Hs
2K )2 + H2

s

4K , which favors a tilted collinear phase with nz = Hs
2K < 1 when

Hs < 2K. �e free energy in this tilted phase isminimized toFtilted = H2
s

4K . �eminimiza-
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tion process based on ansatz Eq. (C.1) shows that , atHs = 0, the spiral and squeezed cone

phasemeet atKJ /D2 = 1, and the squeezed conephase turns to the tilted collinear phase

atKJ /D2 = 2. �is is consistent with the phase diagram in the main text. Furthermore,

whenHs > 0, theminimization shows that the criticalK value between the squeezed cone

and tilted phase slowly shifts to the left alongwith increasing the value ofHs, which again

confirms an oblique-line boundary between two phases in the phase diagram.

C.2 Spin current operator

In antiferromagnets, the local magnon spin density is Sz(~r) = S(mA + mB) · ẑ '
S
2

cos θ(~r)(ψ∗BψB − ψ∗AψA), which can be written in subspace up to a constant as

Sχz (~r) = −S
2
η†χ cos θ(~r)τ3ηχ. (C.2)

According to the spindensity definition andSchrödinger-like equation (5.17), the timeevo-

lution of spin density reads

∂tS
χ
z = −S

2
cos θ(∂tη

†
χτ3ηχ + η†χτ3∂tηχ) = −iχ cos θη†χ(

←−H∗χ −
−→Hχ)ηχ

= −iχJ
8

cos θη†χ[(
←−
∂ i + iχai)

2 − (
−→
∂ i − iχai)2](τ1 − 1)ηχ

= −iχJ
8

cos θη†χ[(
←−
∂ 2
i −
−→
∂ 2
i ) + iχ2(

←−
∂ iai + ai

−→
∂i )](τ1 − 1)ηχ

= −χiJ
8
∂i{cos θ[η†χ(

←−
∂i −

−→
∂i )(τ1 − 1)ηχ]} − iJ

8
∂i(i2ai cos θη†χ(τ1 − 1)ηχ)

+χ
iJ
8

(∂i cos θ)η†χ(
←−
∂i −

−→
∂i )(τ1 − 1)ηχ + · · · (C.3)
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Here, “· · · " refers to higher order of spin texture derivative. We can identify a spin current

as

jχs,i = χ
iJ
8

cos θ[η†χ(
←−
∂i −

−→
∂i )(τ1 − 1)ηχ + iχ2aiη

†
χ(τ1 − 1)ηχ]

= χ
J
8

cos{θη†[(i←−∂ i − χai) + (−i−→∂ i − χai)](τ1 − 1)η}

= χ
J
8
η†(
←−Dχ∗

i cos θ + cos θ
−→Dχ

i )(τ1 − 1)η, (C.4)

where Dχi = −i∂i − χai. �e left term is regarded as a torque contribution for z-

component spin density, i.e.,

τχz = χ
iJ
8

(∂i cos θ)η†χ(
←−
∂i −

−→
∂i )(τ1 − 1)ηχ. (C.5)

So far, the derivation is performed in subspace for each chirality, while it’s straightforward

to recover the full basis representation. Take the spin current as an example,

js,i =
1

2
ψ†(ĵ+

s,i ⊕ ĵ−s,i)ψ (C.6)

where ĵχs,i = χJ
8

(
←−Dχ∗

i cos θ + cos θ
−→Dχ

i )(τ1 − 1), the prefactor 1/2 compensates for the

double counting effect. Note that this result is block diagonalized as a result of the leading

order approximation. When all higher-order terms are taken into account, there could be

components mixing two chiralities.

C.3 SpinNernst effect calculation based on the Landau

levels

Since the spin current density operator ĵs,i breaks translational symmetry in both direc-

tions, there is no ready-made formula for calculating the spin Nernst response. However,

in a skyrmion lattice (SkX), ĵs,i takes the same form in each skyrmion unit cell, which al-
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lows us to use the result for a periodic system. Consider a triangle SkX with basis vec-

tors ~a1 = ax̂ and ~a2 = a/2x̂ +
√

3/2aŷ, where a = 2R and R is the radius of a sin-

gle skyrmion. In the two subspaces, as a result of two magnetic flux per unit cell, i.e.,

Bẑ · (~a1 × ~a2)/(2π) = 2 (the sign of the flux depends on the chirality), magnetic transla-

tional operators are defined as

T~a1 = ei~a1·p̂, T~a2 = e−iχ
4π
a
xei~a2·p̂, (C.7)

where p̂ = −i~∇. We are able to construct a basis based on the Landau level solution,

which is composed of a scalar and a spinor part. �e periodic condition is imposed on

the spatial variable dependent scalar part. Suppose the periodic basis takes the form

ϕχns,m = Φ̄s
χ,nρ

χ
n,m(~r) in the full space,where Φ̄+,n = (1, 0)T⊗Φs

+,n, Φ̄−,n = (0, 1)T⊗Φs
−,n.

Translational invariance requires ρχn,m(~r) to satisfy

T~a1ρ
χ
ns,m = eik1aρχns,m, T~a2ρ

χ
ns,m = eik2aρχns,m, (C.8)

where ~k = k1b̂1 + k2b̂2 with b̂1 = 2π
a

(x̂ − ŷ/
√

3) and b̂2 = 2π
a

2√
3
ŷ,m = 0, 1 refers to a

degeneracy index for each Landau level. �e basis scalar part is constructed as [235, 256]

ρχns,m =
∞∑

l=−∞
(−1)(l+m

2
)(l+m

2
−1)e−iχ(l+m

2
)(
k1
2
−k2)aξχ

n,−k1−(l+m
2

) 4π
a

. (C.9)

To include all possible terms neglected in the leading-order-derivative approximation

and uniform magnetic field assumption, we go back to work in the full space ψ =

(ψA, ψ
∗
B, ψ

∗
A, ψB)T . �e Fourier components of this field can be expanded in the periodic

basis

ψk =
∑

n,m,χ,s

ans,m,χ(k)Φ̄s
χ,nρ

χ
n,m(k). (C.10)
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Here, {ρχn,m(k)} is a set of complete orthogonal basis with
∫
d~rρχ∗n,m(k)ρχn′,m′(k) =

δnn′δmm′ and
∑

n,m ρ
χ
n,m(k)ρχ∗n,m(k) = 1LL with 1LL being the unitary matrix in the

Landau-level space. In second quantization language, regard ans,m,χ (a†ns,m,χ) as annihi-

lation (creation) operator. �erefore,

[ψk, ψ
†
k] =

∑
n,m,χ,s

∑
n′,m′,χ′,s′

ρχn,mρ
χ′,∗
n′,m′Φ̄

s
χ,n(Φ̄s′

χ′,n′)
T [ans,m,χ, a

†
n′
s′ ,m

′,χ′ ] = σ3 ⊗ τ3, (C.11)

withσ3, τ3 being the Paulimatrix acting on chirality (or particle-hole) and sublattice space,

respectively. �is requires

[ans,m,χ, a
†
n′
s′ ,m

′,χ′ ] = δn,n′δm,m′δχ,χ′(τ3)ss′ , (C.12)

where we used

∑
χ,s

Φ̄s
χ,n(Φ̄s

χ,n)T (τ3)ss = σ3 ⊗ τ3. (C.13)

On the other hand, the original basis satisfies particle-hole symmetry, ψTk = ψ†−kσ1 ⊗ τ0

with σ1 being the Pauli matrix in chirality space, and this property will also be reflected in

the new basis. Apply the particle-hole symmetry relation

ψTk = ψ†−kσ1 ⊗ τ0 =
∑

n,m,χ,s

a†ns,m,χ(−k)[(Φ̄s
χ,n)Tσ1 ⊗ τ0]ρχ∗n,m(−k)

=
∑

n,m,χ,s

a†ns,m,χ(−k)(Φ̄−s−χ,n)Tρ−χn,m(k)

=
∑

n,m,χ,s

a†n−s,m,−χ(−k)(Φ̄s
χ,n)Tρχn,m(k), (C.14)

which suggests

ans,m,χ(k) = a†n−s,m,−χ(−k). (C.15)
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Here, we used the relations (Φ̄s
χ,n)Tσ1 ⊗ τ0 = (Φ̄−s−χ,n)T and ρχn,m(k) = ρ−χ∗n,m (−k). �e

relations in Eq. (C.12) and (C.15) guarantee that a Hamiltonian expressed in the new ba-

sis can be also diagonalized by a paraunitary matrix, as we shall discuss below. Actually,

Eq. (C.12) is a natural result of Eq. (C.15).

To describe the magnon excitation in a real skyrmion lattice based on the Landau-

level expansion, one can divide the magnon Hamiltonian in a SkX into two parts: H =

H0 + H′. Here, H0 is the Hamiltonian leading to the Landau levels, H′ is regarded as a

perturbation,whichcontainsall possible termsdropped in theLandau level analysis. �ese

perturbations include anisotropy, staggered Zeeman term, and those containing higher

orders of the spin-texture spatial derivative, and especially the emergent gauge field lost

in the average process, i.e., a′ = a− a0. In principle, the spin texture induced emergent

vector potential, especially thepart corresponding to anonuniformmagneticfield,a′, acts

as a periodic potential that confinesmagnons in a lattice. In total, the fullHamiltonian can

be represented as a matrix under the periodic basis Eq. (C.9)

(Hk)nsmχ,n′s′m
′χ′ = εnδss′δn,n′δm,m′δχχ′ + (H ′k)nsmχ,n′s′m

′χ′ , (C.16)

where 〈ϕχns,m|Ĥ0|ϕχ
′

n′
s′ ,m

′〉 = εnδss′δn,n′δm,m′δχχ′ and (H ′k)nsmχ,n′s′m
′χ′ =

〈ϕχns,m|Ĥ′|ϕ
χ′

n′
s′ ,m

′〉. Here, 〈ϕχns,m|Ô|ϕ
χχ

n′
s′ ,m

′〉 =
∫
u.c.

d~r[ϕχns,m(~r)]∗T Ôϕχ′n′
s′ ,m

′(~r), with

u.c. standing for the “unit cell" and Ô = Ĥ0, Ĥ′. If we number the element of the Hamil-

tonian matrix by arranging the indexes in the order s → n → m → χ, the Hamiltonian

matrix can be diagonalized by a paraunitary matrix Tk

T †kHkTk = Diag{ε1,k, · · · , ε4N,k, ε1,−k, · · · , ε4N,−k}. (C.17)

Here, N counts the Landau levels which are truncated to an energy comparable with the

dominant scale J , and T †kσ̃3Tk = σ̃3, where σ̃3 = σ3 ⊗ 1N ⊗ 12 ⊗ 12 with four matrices

on the right acting in particle-hole, Landau level, degeneracy freedom, and chirality space,
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individually. �e Bloch wave function is expressed as

|uj,k(~r)〉 =
∑

n,s,m,χ

(Tk)nsmχ,j|uχns,m(~r)〉. (C.18)

Here, uχns,m(~r) = ϕχns,m(~r− ~R)with ~R = p~a1 + q~a2 ( p, q ∈ integer) and ~r ∈ V~R, the “unit

cell" at ~R. �is is a result of the periodic property of ϕχns,m: ϕ
χ
ns,m(~r) = ei

~k·~Ruχns,m(~r).

Finally, the spin Nernst current is calculated as

Js,y =
2kB
V

∑
n,k

(Ωn)js,yvx c1[g(εn,k)]∂xT (C.19)

with

(Ωn)js,yvx =
∑
m6=n

(σ̃3)nn(σ̃3)mm
2Im[(js,y)nm(vx)mn]

(ε̄n,k − ε̄m,k)2
. (C.20)

Here,Omn = 〈ψmk|Ô|ψnk〉 =
∫
u.c.

d~r[u∗mk(~r)]T Ôkunk(~r) with Ôk = e−ik·
~RÔeik·~R,O =

js,y, vx, and ε̄n,k = εn,k (−εn,−k) for n ≤ N (N < n ≤ 2N ) withN = 4N being the total

number of bands. Note that the result calculated in this way is correct to the leading order

of spin-texture spatial gradient as the spin current operator is derived to this order.
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