Magnetic and Magneto-Optical Properties of Mn$_x$CuBi ($x = 0.75 - 3.5$) Films†

Jian Chen
University of Nebraska - Lincoln

K. Wierman
University of Nebraska - Lincoln

Roger D. Kirby
University of Nebraska-Lincoln, rkirby1@unl.edu

David J. Sellmyer
University of Nebraska-Lincoln, dsellmyer@unl.edu

Follow this and additional works at: https://digitalcommons.unl.edu/physicsfacpub

Part of the Physics Commons

https://digitalcommons.unl.edu/physicsfacpub/55

This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications, Department of Physics and Astronomy by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Magnetic and Magneto-Optical Properties of MnxCuBi (x = 0.75 - 3.5) Films

Jian Chen, K. Wierman, R. D. Kirby, and D. J. Sellmyer
Center for Materials Research and Analysis
and Behlen Laboratory of Physics,
University of Nebraska, Lincoln, NE 68588 - 0111

Abstract - Magnetic and magneto-optical properties of MnxCuBi (x = 0.75 - 3.5) thin films are presented. With increasing Mn concentration x, the perpendicular anisotropy constant (Kp), the remanence squareness (S = Mr/Ms) and the coercivity (Hc), of the perpendicular hysteresis loop increase. Remanence squareness as high as 0.95 has been obtained. Kerr rotation (θk) and ellipticity (ρk) spectra from all samples measured from substrate side are similar, with θk exhibiting a broad peak in the blue wavelength region with maximum Kerr rotation up to 0.7 degrees.

I. Introduction

The Mn-Cu-Bi ternary system forms the compound MnCuBi4 with face-centered cubic structure [1, 2], and the related MnCuBi thin films were proposed and investigated [3 - 6] for magneto-optical (MO) recording applications. MnCuBi thin films possess properties of practical interest in regard to MO recording media, such as perpendicular magnetic anisotropy, low Curie temperature, and moderately high magneto-optical Kerr effect. However, along with other problems, MnCuBi films if grown on glass substrates do not possess unity remanence squareness in their hysteresis loops. It was found [3-5] that the use of quartz substrates and doping with elements like Ti, V, or Cr could improve the magnetic hysteresis characteristics. In this report, by merely changing the Mn concentration, we demonstrate that the relevant magnetic hysteresis characteristics can be improved as well.

II. Experimental Procedure

Six MnxCuBi samples, with x = 0.75, 1.0, 1.25, 1.5, 2.0, and 3.5 respectively, were made by vacuum deposition of Bi, Mn, and Cu successively on glass substrates, and overcoating with SiO2; in-situ thermal annealing (300°C for an hour) followed to form the crystalline phase. For all six samples, the amounts of Bi (36nm) and Cu (30nm) as well as their 1:1 atomic ratio were kept the same while the the amount of Mn was varied. The thickness of the SiO2 overcoat was 200nm.

The structure of MnxCuBi thin films was characterized by X-Ray Diffraction (XRD). Both perpendicular and in-plane magnetic hysteresis loops were measured by an Alternating Gradient Force Magnetometer (AGFM). The Kerr rotation and ellipticity spectra were measured on a Magneto-Optic Kerr Effect (MOKE) setup based on a photoelastic modulator. The Curie temperature was obtained from Kerr rotation vs. temperature measurements, and the temperature dependence of the coercivity was obtained from the MOKE hysteresis loops.

III. Results and Discussion

Figure 1 displays the XRD patterns of all six samples.

Fig. 1. XRD patterns of MnxCuBi films.
The marked peaks are from the Mn$_3$Cu$_3$Bi$_4$ phase. Note that the free Bi peaks on sample x = 0.75 indicate the incomplete reaction for that Mn concentration. The XRD patterns are characterized by a strong (222) diffraction peak, which indicates that Mn$_x$Cu$_3$Bi films are highly textured with the dense-packed plane parallel to the substrate surface. But the extra peaks indicate that crystallites with other orientations also exist.

Figures 2 (a) and (b) display the perpendicular and the in-plane magnetic hysteresis loops of all six samples. As the Mn concentration increases, the remanence squareness and the coercivity of the perpendicular loops increase, which are quantitatively shown in Fig. 3. Also, the in-plane saturation field increases drastically with increasing Mn concentration. Measurement of the area between the in-plane and the perpendicular loops, with correction for the demagnetization fields, shows that the anisotropy constant K_a increases from 0.5×10^6 erg/cm3 to 1.0×10^6 erg/cm3 as x increases from 0.75 to 3.5. Note that both H_c and S tend towards saturation for $x > 2.0$. The magnetization of samples $x = 1.0$ to 3.5 is roughly 300 emu/cm3, while that of $x = 0.75$ is only 240 emu/cm3, apparently because of the incomplete reaction.

The Kerr rotation θ_K and Kerr ellipticity η_k spectra of the sample Mn$_{1.0}$CuBi measured from the substrate side are shown in Fig. 4. θ_K exhibits a broad peak at the wavelength 490 nm with peak value at 0.7 degrees. The other compositions show similar θ_K and η_k spectra with slightly different magnitudes (\pm 0.1 degrees for $x > 1.0$, and about 0.2 degrees smaller for $x = 0.75$).

Fig. 2 (a) perpendicular and (b) in-plane hysteresis loops of Mn$_x$CuBi films measured by AGFM at room temperature.

Fig. 3. Mn concentration dependence of coercivity H_c and remanence squareness S of Mn$_x$CuBi films.

Fig. 4. Kerr rotation and ellipticity spectra of Mn$_{1.0}$CuBi film measured from substrate side.

Kerr rotation θ_K vs. temperature curves are plotted in Fig. 5. The Curie temperature slightly decreases with increasing Mn concentration, ranging from 225$^\circ$C for $x = 0.75$ down to 205$^\circ$C for $x = 2.0$ and 3.5. All the θ_K vs. temperature curves are reversible upon heating and cooling, indicating that Mn$_x$CuBi films are thermally stable above their Curie temperatures in contrast to the instability of the MnBi system [7].

The coercivity H_c of Mn$_x$CuBi decreases with increasing temperature, and vanishes near the Curie temperature. Figure 6 displays H_c vs. temperature for sample Mn$_{3.3}$CuBi.
IV. Conclusions

The magnetic properties of MnₓCuBi films can be changed by varying the Mn concentration. The perpendicular magnetic anisotropy, remanence squareness, and the coercivity increase with increasing Mn concentration, and these values tend to saturate at x = 2.0. Kerr rotation and ellipticity spectra of MnₓCuBi measured from the substrate side exhibit fairly large Kerr rotation (0.7 degrees) in the blue wavelength region, and the spectra are not altered by the varying Mn concentration. Although hysteresis loops of MnₓCuBi with S = 0.95 have been obtained, a square loop with fairly large nucleation or switching field needs to be further pursued if this material is to be used for MO recording applications.

We are indebted for financial support of this work to the Advanced Research Projects Agency / National Storage Industry Consortium under grant MDA972-93-1-0009, and to the Center for Materials Research and Analysis.

References